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ABSTRACT 

Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which has been 

proven very successful in resolving multiple intravoxel fiber orientations in MR images. The standard 

computation of the orientation distribution function (ODF, the probability of diffusion in a given 

direction) from q-ball data uses linear radial projection, neglecting the change in the volume element 

along each direction. This results in spherical distributions that are different from the true ODFs. For 

instance, they are neither normalized nor as sharp as expected, and generally require post-processing, 

such as artificial sharpening or spherical deconvolution. In this paper, a new technique is proposed that, 

by considering the solid angle factor, uses the mathematically correct definition of the ODF and results in 

a dimensionless and normalized ODF expression. Our model is flexible enough so ODFs can either be 

estimated from single q-shell datasets, or exploit the greater information available from multiple q-shell 

acquisitions. We show that this can be achieved by using a more accurate multi-exponential model for the 

diffusion signal. The improved performance of the proposed method is demonstrated on artificial data and 

real HARDI volumes. 

 

Key words: Orientation distribution function (ODF), q-ball imaging (QBI), high angular resolution 

diffusion imaging (HARDI), solid angle. 
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INTRODUCTION 

Diffusion-weighted magnetic resonance imaging (DWMRI) provides valuable information about the fiber 

architecture of neural tissue by measuring the diffusion of water molecules in three-dimensional (3D) 

space. The microscopic diffusion function may be measured by using the model-free diffusion spectrum 

imaging (DSI) (1), which uses the direct Fourier inversion of the diffusion signal. This technique is time 

intensive, as it measures the diffusion signal on a 3D (e.g., 11×11×11) Cartesian lattice. Thus, an 

alternative approach based on sampling only on one or multiple spherical shells in q-space has been 

proposed, referred to as high angular resolution diffusion imaging (HARDI) (2). The spherical shell, 

being a 2D manifold, includes a number of measurement points which grows quadratically with the 

desired angular resolution, as opposed to cubically with the spatial resolution in the entire 3D lattice of 

DSI. 

While the 3D probability density function (PDF) of the diffusion is helpful in studying the tissue 

microstructure, the orientation distribution function (ODF) – the marginal probability of diffusion in a 

given direction – is the quantity of interest for mapping the orientation architecture of the tissue. Q-ball 

imaging (QBI), (3), is a widely used acquisition scheme for HARDI, from which ODFs can be 

reconstructed through a spherical tomographic inversion called the Funk-Radon transform. This 

technique’s simplicity and its ability to resolve intravoxel fiber orientations have made it popular for fiber 

tracking and characterizing white matter architecture. A number of recently proposed methods have 

turned QBI into a very efficient and robust technique (4)–(6). Moreover, a few works have suggested 

exploiting data from multiple q-shells to benefit from the high signal-to-noise ratio (SNR) and high 

angular contrast-to-noise ratio (CNR) of the data acquired at respectively low and high b-values, (3), (7)–

(9). Using multiple q-shells also allows us to employ richer models for the diffusion signal, as discussed 

in this paper. 

However, the definition of the ODF used in the original QBI is different from the actual marginal PDF 

of diffusion in a constant solid angle. It is computed as a linear radial projection of the PDF, which does 

not take into account the quadratic growth of the volume element with respect to its distance from the 

origin (see the “General ODF Definition” section and Fig. 1 for more details). This inaccurate formulation 

generally distorts the ODF, produces non-distribution functions, and has created the need for artificial 

post-processing such as manual normalization and sharpening. 

In this paper, we re-derive the ODF expression for QBI via Fourier analysis, this time starting from the 

proper definition of the ODF in constant solid angle. We show that this results in an inherently 
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normalized and dimensionless expression. In addition, we illustrate through our experiments that the 

ODFs are naturally sharp and that multiple fiber orientations are thus better resolved. We also provide a 

general formulation for multiple q-shell QBI, and demonstrate the improvement achieved by considering 

the information from multiple q-shells and using richer multi-exponential models. Furthermore, by 

making use of the spherical harmonic basis, we demonstrate that the implementation of the new, 

mathematically correct expression is as straightforward as that of the original formula, or maybe even 

simpler, considering that further sharpening (post-processing) is not necessary. 

This paper extends our previous conference versions for single (10) and multiple q-shells (11). In 

particular, we provide complete mathematical proofs, a regularization scheme, and additional validation 

and comparisons.1 

 

METHODS 

General ODF Definition 

The PDF of the diffusion of water molecules, ( )rP
� , gives the displacement probability ( )dvrP

�  of a 

molecule, initially placed at the origin, to be in the infinitesimal volume dv  located at r
�  after a certain 

amount of time. We assume this function to be symmetric (i.e. ( ) ( )rPrP
��

=− ), which is a quite common 

assumption in DWMRI. The PDF can be presented in Cartesian coordinates with ( )T
zyxr ,,=

�  and 

dxdydzdv = . However, for mapping the orientation architecture of the tissue, the representation which 

mostly interests us is in the standard spherical coordinates, parameterized by ( )φθ ,,r , where urr ˆ=
�

, with 

( ) ( )T
u θφθφθφθ cos,sinsin,cossin,ˆ =  being the unit direction vector. The volume element in this case is 

Ω= drdrdv 2  with φθθ ddd sin=Ω  being the infinitesimal solid angle element. 

                                                           
1 After our conference paper was accepted and its extension to multiple shells was submitted, a parallel 

and independent work was published (14), where the proper definition of the ODF was considered in 

single q-shell QBI. However, in addition to not considering multiple shells and the richer model as done 

here, the authors of (14) take the integral of the diffusion signal on a circle and not on the entire plane, 

and that results in a different formula which is not necessarily normalized and leads to other potential 

inaccuracies. (See the “Q-ball Imaging ODF Reconstruction” section for further details and comparison). 
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We denote by ( ) ΩduODF ˆ  the probability of diffusion in the direction û  through the solid angle Ωd , 

which can be computed by integrating the displacement probabilities, i.e., ( ) ( ) Ω= drdrurPdvrP 2ˆ
� , for all 

magnitude r , while keeping û  constant: 

( ) ( )∫
∞=

=
Ω=Ω

r

r
drdrurPduODF

0

2ˆˆ , 

or simply: 

 
( ) ( )∫

∞

=
0

2ˆˆ drrurPuODF .
 

[1] 

The above definition, which is normalized and dimensionless, is the integral of the probability values 

in a cone of “very small” constant solid angle (Fig. 1(a)). This correct definition was used for instance by 

the authors of (1) in DSI, where ( )rP
�  was first computed from the diffusion data via Fourier inversion 

and then integrated to calculate the ODF, and also in (12)–(13) for diffusion tensor imaging (DTI), where 

the ODF was analytically computed. However, the original expression for ODF reconstruction in HARDI, 

and specifically QBI (3), is different from Eq. [1], in the sense that the integral is not weighted by the 

important (and mathematically correct) factor 2
r  (Fig. 1(b)). To the best of our knowledge, the only paper 

which has so far considered this factor in (single shell) QBI, is a very recent parallel work (14) (published 

independently after a conference version of our paper (10) had just been accepted), where the ODF is 

approximated from the q-shell using Eq. [1]. (See the “Q-ball Imaging ODF Reconstruction” section for 

details and comparison.) 

Computing the ODF without the factor 2
r  would be equivalent to assuming the PDF to be ( ) 2

rrP
�� , as 

( ) ( )
∫∫

∞∞

=
0

2

20

ˆ
ˆ drr

r

urP
drurP . This radial projection gives an artificial weight to ( )rP

�  which is, respectively, 

too large and too small for points close to and far from the origin, and in fact, the computed quantity 

would be different just as the zeroth moment of a one-dimensional function ( ) ( )urPrP ˆ:=  is different from 

its second moment. For instance, a consequence of not including the factor 2
r  is that the computed ODF 

will not be necessarily normalized, and an artificial normalization factor will be required. Moreover, the 

ODF will not be dimensionless, since, given that ( )rP
�  has the dimension of 3−

L  ( L  being the length 

dimension), the dimensions of ( ) drrrP 2�  and ( )drrP
�  are respectively 1 and 2−

L . 
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As an example intended for comparison, we compute the ODFs with and without 2
r  in the case of DTI, 

with the following standard Gaussian PDF: 

( )
( )

rDr T

e

D

rP
��

�
1

2

1

2

1

2

3

2

1 −−

=

π

, 

where D  is the covariance matrix (proportional to the diffusion tensor). The computed ODFs are: 

( )
( )

2 31 
1 22

1
ˆ

ˆ ˆ4
with r

T

ODF u

D u D uπ −

=

 

( )
( )

2 11 
1 22

1 1
ˆ

ˆ ˆ4
without r

T

ODF u
Z

D u D uπ −

= , 

where Z  is the normalization constant that subsequently needs to be computed and considered in 

( )uODF
rwithout

ˆ
2 

 (see (3)). An example of this pair of ODFs is illustrated in Fig. 2. (No min-max normalization is 

used in any of the figures.) 

Next, we derive a closed-form expression for the ODF in QBI using the correct 2
r -weighted integral. 

 

Q-ball Imaging ODF Reconstruction 

Let ( )qE
�  be the 3D Fourier transform of ( )rP

� . We have the values of ( )qE
�  measured on a q-ball, i.e., the 

frequencies with constant norm 0qq =
�

, as ( ) ( ) ( )

0

0

ˆ
ˆ:ˆ

~

S

uS
uqEuE == , where ( )uS ˆ  is the HARDI signal and 

0S  is the non diffusion-weighted (or B0) image. In addition, since the diffusion signal at 0q =
�  is 

0S , one 

can see that ( ) 10 =E . Alternatively, ( )0E  is the zero frequency of a PDF which is its integral over the 

entire space, yielding 1. 

Our mathematical derivation is based on the following two fundamental facts from Fourier analysis:  

• The Fourier transform of ( ) 2
rrP
��  is ( )qE

�2∇− , where 2∇  is the Laplacian operator (proof 

presented in Appendix A). 
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• For a symmetric function  with the 3D Fourier transform function ( )qf
�ˆ , and for the 

arbitrary unit vector û , we have that ( ) ( )∫∫∫ ⊥
=

∞

u
qdqfdrurf

ˆ

2

20

ˆ
8

1
ˆ

��

π
, where ⊥û  is the plane 

perpendicular to û  (proof presented in Appendix B). 

Combining these statements with Eq. [1] leads to 

( ) ( )∫∫ ⊥
∇−=

u
qdqEuODF

ˆ

22

28

1
ˆ

��

π
. 

Now, without loss of generality, we choose our coordinates such that uz ˆˆ = , thus making ⊥û  the qx-qy 

plane. We then use the following expansion for the Laplacian in spherical coordinates ( )φθ ,,q : 

( ) ( ) E
q

qE
qq

qE b

2

22

2
2 11

∇+
∂

∂
=∇
� , 

where 2
b∇  is the Laplace-Beltrami operator which is defined independently of the radial component q , as

2
2

2 2

1 1
sin

sin sinb

E E
E θ

θ θ θ θ ϕ

∂ ∂ ∂ 
∇ = + 

∂ ∂ ∂ 
. The surface integral on the qx-qy plane is computed by fixing 

2

π
θ =  and using the expression φqdqdqd =

�2  for the surface element, which yields 

( ) ( )

( )

2 2

2 0 0

2
2

2

2 2 20 0

1
ˆ

8

1 1 1

8 b

ODF z E q qdqd

qE E qdqd
q q q

π

π

ϕ
π

ϕ
π

∞

∞

= − ∇

 ∂
= − + ∇ 

∂ 

∫ ∫

∫ ∫

�

 

We can see that the integral of the first term is constant and independent of ( )qE
�  and its derivatives: 

( ) ( )

( ) [ ]

( ) ( ) [ ] [ ]
1

0

1

0

0
0

0 2

2

0 2

2

−=

−+−∞=

+=








∂

∂
=

∂

∂
=









∂

∂

=∞=

∞

∞

∞∞

∫∫

qqqq

q

qEqEEE

qEEqE
q

dqqE
q

qdqqE
qq

, 

( )
2

2

20 0

1
2qE qdqd

q q

π

φ π
∞  ∂

= − 
∂ 

∫ ∫ , 
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where the subscript indicates the partial derivative. We assumed (the standard assumptions) that the 

diffusion signal and its radial derivative go to zero (sufficiently fast) as q → ∞ , and also that the 

derivative is bounded at the origin. Therefore we have 

 
( ) ( )

2
2

2 0 0

1 1 1
ˆ

4 8 bODF z E q dqd
q

π

ϕ
π π

∞

= − ∇∫ ∫
� ,

 
[2] 

while 
2

π
θ =  is kept constant in the integration. 

To compute the integral of the second term, the values of ( )qE
�  are required in the entire q-space. The 

above equation could be used for example in the DSI modality, where direct computation of the ODF 

from the diffusion signal would eliminate the need for 3D Fourier inversion. In QBI, however, the values 

of ( )qE
�  are not available in the entire q-space. Thus, we need to approximate ( )qE

�  from the values 

measured on the q-ball. In this work, we consider the following radial mono-exponential model: 

( ) ( ) ( ) 2
0

2

2
0

2

ˆ
~

ˆ0 q

q

q

q

uEuqEqE =≅
� , 

where 
0q  is the radius of the q-ball. This type of interpolation has been previously used and discussed in 

(15)–(16). An advantage of this model over the original QBI model, i.e. ( ) ( ) ( )0ˆ
~

ˆ qquEuqE −≅ δ  (see (17)), 

is the compatibility with ( ) 10 =E . 

After applying the mono-exponential assumption and a few more steps of calculations (see Appendix C 

for details), the following ODF expression can be derived: 

( ) ( )( )∫ −∇+=
π

φ
ππ

2

0

2

2
ˆ

~
lnln

16

1

4

1
ˆ duEzODF b

. 

Finally, rewriting the expression independently of the choice of axes, the following analytical formula 

can be shown to hold for the ODF: 

 
( ) ( )( ){ }uEFRTuODF b

ˆ
~

lnln
16

1

4

1
ˆ 2

2
−∇+=

ππ  
[3] 

where FRT is the Funk-Radon transform (18), defined as 

( ){ } ( ) ( )∫∫ ⊥
−=

u
wdwwfufFRT

ˆ

21:ˆ
���

δ , 



9 

 

with ( )•δ  the Dirac delta function. 

The above ODF expression is dimensionless and intrinsically normalized, since the integrals of the first 

and second terms over the sphere are respectively 1 and 0. This is in contrast to the ODF formulas used in 

the original QBI, i.e., ( ){ }uEFRT
Z

ˆ
~1 , and also in (14), where an artificial normalization factor Z  is needed. 

Additional fundamental differences can be observed in the approach presented here, compared to (14). 

As we demonstrated, integration of the radial part of the Laplacian on the plane always results in a 

constant and does not require any model for the diffusion signal. Yet, (14) uses the Bessel approximation 

of the Dirac delta function which yields a variable (sometimes even negative) term. As for the integral of 

the tangential term of the Laplacian, we use the exponential model that is in particular consistent with 

( ) 10 =E , in contrast to (14) that assumes the tangential term of the Laplacian to be zero outside the q-ball 

(Bessel approximation again), leading to an expression rather similar to Laplace-Beltrami post-processing 

sharpening (19). A major disadvantage of approximating the Dirac delta function with a Bessel function 

while considering the factor 2
r  is that, unlike for ( )P r

�  which is typically concentrated near the origin, 

the projection of ( ) 2
rrP
��  may have its highest values at a certain positive radius coinciding with the side 

lobes of the Bessel function, reducing the accuracy of the approximation. 

From Eq. [3], it can be seen that the essential quantity used in computing the ODF from the raw data is 

( ) ( )EEL
~

lnln:
~

−= , which is plotted along with the absolute value of its derivative with respect to E
~

, in 

Fig. 3. The behavior of this quantity is almost linear for the values of the signal close to 1 0.368e− ≈ , 

which makes the reconstructed ODFs corresponding to such signals similar to those obtained by the 

original QBI (3) with Laplace-Beltrami sharpening. Nevertheless, ( )L Eɶ  becomes greatly non-linear as 

the range of the signal values approaches 0 or 1 (for e.g. by acquiring the data at respectively higher and 

lower b-values), and the advantages of Eq. [3] become obvious, particularly in resolving fiber crossings 

(see the “Results and Discussions” section). 

 

Implementation 

Our implementation of the ODF reconstruction makes use of the spherical harmonic (SH) basis, ( )uY m

k
ˆ , 

which is common for the analysis of HARDI data. The steps taken here to numerically compute Eq. [3] 
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are similar to those described in (5). Particularly, we use the real and symmetric modified SH basis 

introduced in (5), where SH functions are indexed by a single parameter ( ) 121 +++= mkkj , with 

corresponding 
jk  and 

jm , as follows: 

{ }

{ }








≤<

=

<≤−

=

jj

m

k

jk

jj

m

k

j

kmY

mY

mkY

Y

j

j

j

j

j

0,Im2

0,

0,Re2
0  

We adopt a minimum least square scheme to compute the modified SH coefficients 
jc  of the double 

logarithm of the signal, such that 

 
( )( ) ( )∑

=

≈−
R

j

jj uYcuE
1

ˆˆ
~

lnln ,
 

[4] 

where ( )( ) 221 ++= llR , with l  being the order of the SH basis (we chose 4=l  throughout our 

experiments). Next, since the SH elements are eigenfunctions of the Laplace-Beltrami operator, we 

compute ( )( )uEb
ˆ

~
lnln2 −∇  by multiplying the coefficients 

jc  by their corresponding eigenvalues, 

( )1+− jj kk . Then, as suggested in (5), the Funk-Radon transform is computed by multiplying the 

coefficients by ( )02
jkPπ , where ( )•kP  is the Legendre polynomial of degree k , with 

( ) ( ) ( )
k

k
P

k

k
×××

−×××
−=

⋯

⋯

42

131
10 2  for even k . Finally, given that ( )

π2

1
ˆ1 =uY , the SH coefficients of the 

ODF are derived as 

( )
( )
( )









>
−×××

+×××
−−

=

=′

1
242

131
1

8

1

1
2

1

2 j
k

k

j

c

j

j
kj j

⋯

⋯

π

π  

By taking advantage of the SH framework, this implementation of the proposed technique for the true 

ODF is as straightforward as the one introduced in (5) for the original QBI ODF formula. Additionally, 

neither normalization, nor sharpening is required with this technique. This work was recently extended in 

(20) to impose positivity constraint and spatial regularity if further desired. 
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Regularization 

As mentioned before, the essential quantity used in computing the ODF from the raw data is 

( ) ( )EEL
~

lnln:
~

−= , plotted in Fig. 3. Hence, if there is a relatively constant error E
~

∆  in the diffusion data, 

the error introduced in the computed ODF will be proportional to the derivative of ( )EL
~ : 

( )
EE

E
E

Ed

dL
EL ~

ln
~

~
~

~
~ ∆

=∆=∆  

As Fig. 3 suggests, this quantity becomes unstable for values of E
~

 close to 0 and 1, which 

subsequently amplifies the error in the diffusion data. To overcome this problem, we propose using a 

flexible threshold on the diffusion data in order to keep their values away from the unstable regions of 

[ ]1,0 δ  and [ ]1,1 2δ− , where the thresholds 
1δ  and 

2δ  are manually defined. To perform this operation, we 

use the following function ( )Ef
~ , plotted in Fig. 4 for 15.021 == δδ : 

( )
( )



















≤−

<≤−
−

−−

−<≤

<≤+

<

=

E

E
E

EE

E
E

E

Ef

~
1,

2
1

1
~

1,
2

~
1

2
1

1
~

,
~

~
0,

2

~

2

0
~

,
2

~

2

2

2

2

2

21

1

1

2
1

1

δ

δ
δ

δ

δδ

δ
δ

δ

δ

 

Conversely, the ODF is most stable to noise when ( )EL
~

∆  is minimum, which is achieved for 

368.0
~ 1 ≈= −eE . This gives us a clue on how to choose an optimum b-value in data acquisition. 

Particularly, in the mono-exponential model, since ADCbeE .~ −=  where the Apparent Diffusion Coefficient 

(ADC) is assumed independent of the b-value, the optimum b-value, ∗b , is obtained as 

ADC
b

1
=∗ , 

where ADC  is the mean ADC in the region of interest. Note that this result holds only in the simple 

model which assumes both ADC and E
~

∆  to be independent of the b-value. 
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Extension to Multiple q-Shells 

Multi-Exponential Model 

We have so far employed the proposed technique to compute the ODF from a single q-shell. However, if 

diffusion data are available on multiple q-shells, this technique can be applied to reconstruct the ODF 

while exploiting the information from all the q-shells. With more available data, richer models become 

practical and appealing. Here we consider the following radial multi-exponential model (see (16),(21)), 

( ) ( ) ( )∑
=

≅
N

k

q

kk uuuqE
1

2

ˆˆˆ αλ , 

with the constraints 

( ) ( ) 1ˆ,ˆ0 << uu kk λα ,
 

 
( ) 1ˆ

1

=∑
=

N

k

k uλ ,
 

[5] 

where Eq. [5] comes from the fact that ( ) 10 =E . Once the values of 
kλ  and 

kα  are estimated (see the 

“Parameter Estimation” subsection), they can be used in the following more general ODF expression, 

which is derived in details in Appendix D: 

( ) ( ) ( )( )








−∇+= ∑
=

N

k

kkb uuFRTuODF
1

2

2
ˆlnlnˆ

16

1

4

1
ˆ αλ

ππ  

The implementation is quite similar to what we explained in the “Implementation” section, with Eq. [4] 

being the only difference, as it now writes 

( ) ( )( ) ( )∑∑
==

≈−
R

j

jj

N

k

kk uYcuu
11

ˆˆlnlnˆ αλ . 

In addition, the function ( )Ef
~  introduced in the “Regularization” section can be applied to 

kα s, to 

reduce the effect of the noise. 
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Parameter Estimation 

In order to approximate the diffusion signal in a direction û  by a weighted sum of N  exponentials, we 

need to estimate the N2  parameters ( )uk
ˆλ  and ( )uk

ˆα  , for Nk ,,1…= . To estimate the parameters, at 

least 12 −N  independent equations – besides Eq. [5] – are required, which can be obtained from the 

HARDI signals measured on M  q-balls, for 12 −≥ NM , as follows: 

( ) ( ) ( )

Mi

uEuu i

N

k

q

kk
i

,,1

ˆ
~

ˆˆ
1

2

…=

=∑
=

αλ

,

 

where ( ) ( )uqEuE ii
ˆ:ˆ

~
=  and 

iq  corresponds to the thi  q-ball. Parameterizing the problem in terms of b-

values, 2

ii qb τ= , and choosing the physical units such that the diffusion time becomes 1=τ , we obtain 

( ) ( ) ( )

Mi

uEuu i

N

k

b

kk
i

,,1

ˆ
~

ˆˆ
1

…=

=∑
=

αλ

.

 

Numerical optimization approaches such as the trust region algorithm, (22), may be employed to solve 

this non-linear system in the most general case. Here, however, we discuss two special cases (one familiar 

and one new) with analytical solutions. We continue this subsection considering a fixed direction, and 

therefore drop the notation ( )û . 

The mono-exponential assumption ( 1N = ) requires measurement on at least 1=M  q-ball. 1=M  leads 

to 11 =λ  and 11

11

~ b
E=α . As it is shown in Appendix D, γ

α1
 can also be a solution with any constant γ . 

Therefore, choosing 1b=γ  results in the solution 
11

~
E=α , which is consistent with what we already 

derived (Eq. [3]). Furthermore, if measured values are provided on more than one q-shells and the mono-

exponential model is still desired, then the assumption in this model (ADC being independent of the b-

value) suggests that the best exponential can be fitted by computing the average ADC across all the q-

balls. 

Another practical case of great interest arises when we consider the aforementioned richer bi-

exponential model ( 2N = , see for example (23)–(24)) to reconstruct the ODFs from (at least) 3=M  q-

shells. For 3=M , the following system of equations holds for each direction: 
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( )

( )

( )
1,,0

~
1

~
1

~
1

3

2

1

33

22

11

<<

=−+

=−+

=−+

λβα

βλλα

βλλα

βλλα

E

E

E

bb

bb

bb

 

In general, this set of equations can be solved numerically. Nevertheless, an analytical solution can be 

derived for the particular and reasonable case when the sequence 
321 ,,,0 bbb  is an arithmetic progress (the 

sequence 
ix  is an arithmetic progress if 

1−− ii xx  is constant). We describe this solution here, along with 

some regularization that guarantees the parameters to remain within the correct range. 

Without loss of generality, let us assume βα ≥ , and also choose the physical units such that 11 =b , 

22 =b , and 33 =b . Then, 

( )

( )

( )
1,,0

~
1

~
1

~
1

3
33

2
22

1

<<

=−+

=−+

=−+

λβα

βλλα

βλλα

βλλα

E

E

E

.

 

We first define and calculate the following two quantities: 

( )

( ) 2

12

2

231

2

2

12

213

2

12

213

~~

~~~

~~
2

~~~

2
:

~~
2

~~~

2
:

EE

EEE

EE

EEE
B

EE

EEE
A

−

−
−











−

−
=

−
=

−

−
=

+
=

βα

βα

 

The parameters are afterward computed as follows: 

B

AE

BA

BA

2

~

2

1 1 −
+=

−=

+=

λ

β

α
 

However, we still need to ensure that they are real and in the correct ranges. One can verify that these 

conditions are satisfied by enforcing the following constraints: 
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2

231

2

12213

31

2

2

2

2

1

123

~~~~~~~~

~~~

~~
1

~~~
0

EEEEEEEE

EEE

EE

EEE

−+−<−

<

<

<<<<

 

Thus, we can obtain the optimal values of α , β , and λ , by initially projecting 
iE

~
s onto the subspace 

defined by the above inequalities, and then computing the parameters. Note that such projection is usually 

necessary, because the bi-exponential model may not be fully accurate and the data may be noisy. 

Furthermore, using a small separating margin of 1.0~01.0=δ  in the inequalities makes the ODFs more 

stable in practice. 

 

RESULTS AND DISCUSSIONS 

Results from Single q-Shell 

To validate our approach, we first show results using artificial data. We simulated fiber crossing by 

generating diffusion images from the sum of two exponentials, ( ) ( )1 2ˆ ˆ ˆ ˆˆ 2
T Tu D u u D u

E u e e
− −= +ɶ , where 

1D  is a 

diagonal matrix with diagonal entries (9, 2, 2), and 
2D  is 

1D  rotated about the y-axis by a varying angle, 

producing diffusion values smaller than 0.15 (corresponding to rather high b-values). The ODFs were 

reconstructed in the fourth order SH basis from 76 diffusion directions, uniformly sampled on the sphere. 

The results are shown in Fig. 5, for three different methods: our proposed framework, the original 

(standard) QBI, and the original QBI followed by Laplace-Beltrami sharpening, ( )21 bλ− ∇  (see (19)), with 

parameter λ=0.15 (chosen to produce the optimal results). As can be seen, our method resolves the 

crossings starting at about 45˚, compared to about 60˚ by the other two methods. We also verified this 

using the dip test (25) – a measure of multimodality in a distribution – on the reconstructed ODFs from 

the same synthetic diffusion signals, with Rician noise. As can be observed in Fig. 6, the two modes of 

the ODFs with high SNR are distinguished at a crossing angle which is about 15˚ smaller with the 

proposed reconstruction method, compared to the two other techniques. As expected, this difference 

becomes less marked as the noise increases. 

We also tested our method on three real HARDI datasets; first on the physical phantom in (26), which 

was constructed from excised rat spinal cords and designed to have crossing tracts (90 diffusion images at 
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b=1300 s/mm²), and then on human brain data (27) (200 diffusion images at b=3000 s/mm²). (For the 

third real dataset, set the “Results from Multiple q-Shells” section.) The ODFs were reconstructed with 

the fourth order SH basis using three approaches: our proposed method, the original (standard) QBI, and 

the original QBI followed by Laplace-Beltrami sharpening with parameters 0.5 for the rat data and 0.8 for 

the brain data. Results are superimposed on the generalized fractional anisotropy (GFA) map and 

presented in Fig. 7. (Note that the ODFs are shown as they are; no min-max normalization is used in any 

of the figures.) Our method (left) produces sharper and more accurate ODFs than the original QBI 

(middle). In addition, although sharpening (right) enhances the original QBI ODFs considerably in 

anisotropic tissue, it causes significant instability in isotropic regions (e.g. the background of the rat 

phantom and the CSF in the human brain data), in contrast to our technique which preserves isotropy 

fairly well. For the human brain dataset, we focus on the region of the centrum semiovale, where three 

major fiber bundles intersect: the internal capsule (IC)/corona radiata (CR), the radiations of the corpus 

callosum (CC), and the superior longitudinal fasciculus (SLF). 

 

Results from Multiple q-Shells 

To demonstrate the advantages of exploiting multiple q-shells in QBI, we first show experimental results 

on a synthetic example which consists of large diffusion values in two orthogonal directions. We 

synthesized diffusion images by sampling the sum of two exponentials, ( ) ( )
2 22 2

sin cos 2
q q

E q φ φ= +
� , 

on seven q-shells ( 2 1, 2, ,7b q= = … ) and in 76 directions, uniformly distributed on the sphere. Figure 8 

illustrates the ODFs reconstructed from single q-shells for different b-values, and from three q-shells with 

both mono-exponential and bi-exponential models. As can be observed, for the data acquired at low b-

values ( 1, 2,3b = ), the proposed bi-exponential model using three q-shells is the only method correctly 

resolving the horizontal and vertical ODF peaks, corresponding to the strong ADC values in those 

directions ( 0 ,90 ,180 ,270φ = ° ° ° ° ). It should be noted, however, that the drawback of such a more general 

model is its lesser robustness to noise, as low order models are often more robust (e.g., computing the 

average of a signal is more robust than estimating the actual signal). Dark red represents negative values. 

These values do not appear often in general, nonetheless, a possible formal approach to handle them can 

be found at (20). 

We also tested our method on the real HARDI dataset initially introduced in (28). An anesthetized 

Macaca mulatta monkey was scanned using a 7T MR scanner (Siemens) equipped with a head gradient 
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coil (80mT/m G-maximum, 200mT/m/ms) with a diffusion weighted spin-echo EPI sequence. Diffusion 

images were acquired (twice during the same session, and then averaged) over 100 directions uniformly 

distributed on the sphere. We used three b-values of 1000, 2000, and 3000 s/mm², TR/TE of 4600/65 ms, 

and a voxel size of 1×1×1 mm³. The proposed method was used to reconstruct the ODFs from the three q-

shells using both bi-exponential and mono-exponential methods, and also from the single q-shells 

individually. Figure 9 depicts the results on a coronal slice through the centrum semiovale area, 

superimposed on the fractional anisotropy (FA) map. (For comparison, one of the sub-figures shows 

results by the original QBI.) Note how using the bi-exponential method allows for more clear recovery of 

certain fiber bundles, such as callosal radiations and corticospinal tract, and better resolution of crossing 

areas (see outlined regions in Fig. 9). 
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APPENDIX A 

Fourier Transform of ( ) 2
rrP
��

 

From the Fourier analysis, we know that if ( )qE
�  is the Fourier transform function of ( )rP

� , then: 

( ){ } ( )

( ){ } ( )qE
q

rPxF

qE
q

irxPF

x

x

��

��

2

2
2

∂

∂
−=

∂

∂
=

,

 

where { }•F  is the Fourier transform operator. By writing the second equation for y  and z  and summing 

them, we will get: 

( ){ } ( )qErPrF
�� 22 −∇=  

 

APPENDIX B 

Computing the Radial Projection of a Symmetric Function in the Fourier Domain 

Let  be a symmetric function with the 3D Fourier transform function ( )qf
�ˆ , and û  be an 

arbitrary unit vector. We will show that ( ) ( )∫∫∫ ⊥
=

∞

u
qdqfdrurf

ˆ

2

20

ˆ
8

1
ˆ

��

π
, where ⊥û  is the plane 

perpendicular to û . 

Without loss of generality, we choose our coordinates such that uz ˆˆ = , thus making ⊥
û  the qx-qy plane. 

We first rewrite the expression as a volume integral over the entire space, with the help of Dirac delta 

functions: 

( ) ( ) ( ) ( ) ( )30 0

1
ˆ 0,0, , ,

2 R
f rz dr f z dz f x y z x y dxdydzδ δ

∞ ∞

= =∫ ∫ ∫∫∫ , 
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where the factor 
2

1  is required because we need the integral only on the positive half of the z-axis, and the 

function is symmetric. Let us define ( ) ( ) ( )yxzyxg δδ=:,, . For the two functions  with 

Fourier transform functions ( )qf
�ˆ  and ( )qg

�
ˆ , Parseval’s theorem states that 

( ) ( )
( )

( ) ( )3 33

1 ˆ ˆ, , , , , , , ,
2

x y z x y z x y z
R R

f x y z g x y z dxdydz f q q q g q q q dq dq dq
π

∗ ∗=∫∫∫ ∫∫∫ . 

Computing ( ) ( )zzyx qqqqg πδ2,,ˆ =  and replacing it in the above equations, leads to 

( ) ( ) ( )

( )
( ) ( )

( )

3

3

0

3

2

1
ˆ , , , ,

2
1 ˆ , , 2

2 2

1 ˆ , ,0
8

R

x y z z x y z
R

x y x y

f rz dr f x y z g x y z dxdydz

f q q q q dq dq dq

f q q dq dq

πδ
π

π

∞

∞ ∞

−∞ −∞

=

=

=

∫ ∫∫∫

∫∫∫

∫ ∫ .

 

As can be seen, the integral is taken on the qx-qy plane, which is ⊥û . This completes the proof. 

 

APPENDIX C 

Incorporating the Mono-Exponential Model in the ODF Formula 

We will show here that by assuming the mono-exponential model, ( ) ( ) 2
0

2

ˆ
~

q

q

uEqE =
� , we have: 

( ) ( )( )∫∫ ∫ −∇−=∇
∞ ππ

φφ
2

0

22

0 0

2 ˆ
~

lnln
2

11
duEddqqE

q
bb

� , 

while 
2

π
θ =  is kept constant in the integration. We begin by proving a lemma: 

Lemma: For a continuous and differentiable function  with 2
S  being the unit sphere, 

we have: 

∫∫ 







=








∇

π

θθ

π

φφ
π

φφ
π 2

0

2

0

2 ,
2

,
2

dfdfb
, 

where the subscript indicates the partial derivative. 

Proof: We use the following expansion for Laplace-Beltrami operator: 
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φφθθπ
θ

φφθθθ
θ

θ

φθθ
θ

θθ

fff

fff

ff
f

b

b

+=∇

++=

∂

∂
+








∂

∂

∂

∂
=∇

=
2

2

2

2

2

2

2

sin

1
.cot

sin

1
sin

sin

1

 

The integral of the second term is zero, because of the periodicity of 
φf : 

0,
2

,
2

2

0

2

0
=








=








∫

π

φ

π

φφ φ
π

φφ
π

fdf  

Therefore the only remaining term in the integral is 
θθf , which completes the proof of the lemma. 

 

We now change the orders of the integrals twice, while using the lemma in between: 

 

( ) ( )

( )

( )

( )∫ ∫

∫ ∫

∫ ∫

∫ ∫∫ ∫

∞

∞

∞

∞∞

∂

∂
=

∂

∂
=

=

∇=∇

π

θ

π

θ

π

θθ

ππ

φ
θ

φ
θ

φ

φφ

2

0 0

0

2

0

0

2

0

0

2

0

22

0 0

2

1

1

ddqqE
q

dqE
q

dq

dqE
q

dq

dqE
q

dq
ddqqE

q
bb

�

�

�

��

 
[6] 

Next, we compute the radial integral: 

( ) ( )

( )

( )( )
( )

( )( )
( )

( )
∞

∞

∞

∞∞

=

=














=









=

∫

∫

∫∫

0

ˆ
~

ln

0

ˆ
~

ln

2

0

0

ˆ
~

ln

00

2
0

2

2
0

2

2
0

2

2
0

2

ˆ
~

ln2

ˆ
~

ln

ˆ
~

ln

1

ˆ
~11

uE
q

q

uE
q

q

uE
q

q

q

q

e
uE

uE

dqe
q

q
uE

dqe
q

dquE
q

dqqE
q

θ

θ

θ

θ

θ

�

 

We know that ( ) ( ) 0ˆ
~

ln1ˆ
~

0 <→<< uEuE , so the above expression vanishes as ∞→q . Also, since for a 

negative function ( )θf  we have ( )
( )

( )[ ] ( )( )[ ]θθ

θ θθ
θ

θ
ff

f

f
−== lnln , the above integral simplifies as: 
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( ) ( )( )[ ]θθ uEdqqE
q

ˆ
~

lnln
2

11
0

−−=∫
∞ �  

Substituting in Eq. [6]: 

( ) ( )( )[ ]

( )( )∫

∫∫ ∫

−∇−=

−−=∇
∞

π

π

θθ

π

φ

φφ

2

0

2

2

0

2

0 0

2

ˆ
~

lnln
2

1

ˆ
~

lnln
2

11

duE

duEddqqE
q

b

b

�

 

We completed the proof by reusing the lemma in the last step. 

 

APPENDIX D 

Incorporating the Multi-Exponential Model in the ODF Formula 

By assuming the multi-exponential model, ( ) ( ) ( )∑
=

≅
N

k

q

kk uuuqE
1

2

ˆˆˆ αλ , we will show that: 

( ) ( ) ( )( )∫ ∑∫ ∫
=

∞

−∇−=∇
ππ

φαλφ
2

0
1

22

0 0

2 ˆlnlnˆ
2

11
duuddqqE

q

N

k

kkbb

� , 

while 
2

π
θ =  is kept constant in the integration. The ODF will then be derived by replacing the above 

expression in Eq. [2]. 

The proof is an extension of Appendix C. We first introduce the new non-negative variable 

( ) ( )uus kk
ˆln:ˆ α−=  which yields ( ) ( ) ( )∑

=

−=
N

k

qus

k
keuuqE

1

ˆ 2

ˆˆ λ . For simplicity, here we drop the notation ( )û . We 

then continue from Eq. [6] and compute the radial integral 

 

∫ ∑∫ ∑

∫ ∑∫

∞

=

−
∞

=

−

∞

=

−
∞

+−=









=

0
1

0
1

0
1

0

22

2

1

11

dqe
q

dqqes

dqe
q

dqE
q

N

k

qs

k

N

k

qs

kk

N

k

qs

k

kk

k

θθ

θ

θ

λλ

λ
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[7] 

The first integral is computed the same way as in Appendix C: 
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Regarding the second integral of Eq. [7], let us define ( ) ∫ ∑
∞

=

−=
0

1

21
: dqe

q
sI

N

k

qs

k
k

θ
λ

� , with s
�

 the vector of 

ks s, and derive it with respect to 
ks : 
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Then, we can see that: 

( ) CssI
N

k

kk +−= ∑
=1

ln
2

1
θ

λ
�  

where C  is independent of s
�

. By evaluating the function for 1=s
�

 (vector of all 1s), we obtain ( )1IC = , 

which we then compute using the original definition of ( )sI
� : 
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Therefore, 

( ) ∑
=

−=
N

k

kk ssI
1
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2

1
θ

λ
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We now insert the values of the two integrals in Eq. [7]: 
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Finally, substituting in Eq. [6]: 
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We completed the proof by using the lemma introduced in Appendix C. 

 

An interesting observation is that if ( )uk
ˆα  is a set of estimated parameters in the multi-exponential 

model, then for any constant γ , the set ( )γ
α uk

ˆ  results in the same ODF: 
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λ α λ γ α
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λ α γ λ

λ α γ

λ α

= =
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= =

=

=

∇ − = ∇ −

 = ∇ − + 

 
= ∇ − + ∇  

 

= ∇ − + ∇
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∑ ∑

∑

∑ ∑

∑

∑

 

This is expected, since the ODF is dimensionless and should not depend on the physical units of q . 
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   (a)                                                                                                   (b) 

Fig. 1.  Radial integration of the PDF,  (a) in a cone of constant solid angle (i.e., the factor �� is considered),  and (b) by linear 

projection (i.e., inaccurately without the factor ��as commonly done in the HARDI literature before this work). 
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Fig. 2.  DTI example of ODF reconstruction (with {10, 5, 1} as the diagonal entries of the tensor), shown from two view angles,  (left) 

with the factor ��,  (right) without the factor �� and after normalization. Note how less sharp the latter is and how incompletely it 

represents the true structure of the ODF. 

 

 

  



29 

 

Fig. 3.  Behavior of ln�− ln 	
 (left) and the absolute value of its derivative (right) with respect to 	. Note how unstable they are for 	 

close to 0 or 1. 
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Fig. 4.  The regularization function used for the diffusion signal to avoid the unstable regions (blue curve). 
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Fig. 5.  Experimental results on synthetic data with fiber crossing, using:  (top) our proposed technique,  (middle) original QBI after 

normalization,  and (bottom) original QBI with Laplace-Beltrami sharpening. 
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Fig. 6.  Results of the dip test on the same ODFs as in Fig. 5, with various noise levels. 
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Fig. 7.  Reconstructed ODFs from rat spinal cord phantom (top) and human brain (bottom), shown on the GFA map, using:  (left) our 

proposed technique,  (middle) original QBI after normalization,  and (right) original QBI with Laplace-Beltrami sharpening. 
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Fig. 8. Results of the ODF reconstruction on synthetic data. Note how the bi-exponential model 

correctly resolves the maxima of the ODF from low b-values. 
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Fig. 9. Reconstructed ODFs from the real brain data, shown on the FA map. The bi-exponential 

model ODFs (top, left) have been scaled down 1.5 times for better comparison. All the ODFs 

except those in (top, right) have been reconstructed considering the factor r². Note how the bi-

exponential model for diffusion improves the resolution of fiber crossings, compared to the 

mono-exponential (constant ADC) model. 

b = 1000, 2000, 3000 s/mm², bi-exp. b = 2000 s/mm², without r² (original 

QBI), after Laplace-Beltrami sharpening 

b = 1000 s/mm² b = 2000 s/mm² b = 3000 s/mm² 

b = 1000, 2000, 3000 s/mm², mono-exp. 




