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Abstract

We consider issues associated with the Lagrangian characterisation of flow structures arising
in aperiodically time-dependent vector fields that are only known on a finite time interval. A
major motivation for the consideration of this problem arises from the desire to study transport
and mixing problems in geophysical flows where the flow is obtained from a numerical solution,
on a finite space-time grid, of an appropriate partial differential equation model for the velocity
field. Of particular interest is the characterisation, location, and evolution of transport barriers
in the flow, i.e. material curves and surfaces. We argue that a general theory of Lagrangian
transport has to account for the effects of transient flow phenomena which are not captured
by the infinite-time notions of hyperbolicity even for flows defined for all time. Notions of
finite-time hyperbolic trajectories, their finite time stable and unstable manifolds, as well as
finite-time Lyapunov exponent (FTLE) fields and associated Lagrangian coherent structures
have been the main tools for characterizing transport barriers in the time-aperiodic situation.
In this paper we consider a variety of examples, some with explicit solutions, that illustrate, in
a concrete manner, the issues and phenomena that arise in the setting of finite-time dynamical
systems. Of particular significance for geophysical applications is the notion of flow transition
which occurs when finite-time hyperbolicity is lost, or gained. The phenomena discovered and
analysed in our examples point the way to a variety of directions for rigorous mathematical
research in this rapidly developing, and important, new area of dynamical systems theory.

1 Introduction

Organised or ‘coherent’ structures in fluid flows have been a subject of intense study for some
time, especially since the seminal paper of Brown and Roshko ([14]). The dynamical systems
approach to the Lagrangian aspects of fluid transport, which became widespread in the 1980’s
and 90’s, has provided a variety of techniques for determining the existence and quantifying
‘organised structures’ in fluid flows. Hyperbolic trajectories and their associated stable and
unstable manifolds have provided one approach to this problem, in both the periodic and
aperiodic time dependent settings, that dates back to the beginning of studies of ‘chaotic
advection’ in fluid flows ([68, 3, 1, 4, 86, 47, 74]). More recently, the notion of ‘Lagrangian
coherent structure’ (henceforth LCS) derived from finite-time Lyapunov exponent (FTLE) fields
has provided another means of identifying coherent flow structures in fluid flows which can be
used in Lagrangian transport analysis ([42, 37, 38, 78, 59]). The purpose of this paper is to
compare the methods based on determination of stable and unstable manifolds of hyperbolic
trajectories with LCS’s derived from FTLE’s as techniques for uncovering organised structures
in fluid flows and quantifying their influence on transport.



We begin in Section 2 by reviewing some theoretical issues associated with Lagrangian
transport analysis in time-dependent vector fields defined over a finite time interval. We also
and take the opportunity to clarify a number of misconceptions that have arisen in the literature
concerning the applicability of hyperbolic trajectories and their stable and unstable manifolds
in analysing Lagrangian transport in fluid flows, especially with respect to their comparison
with LCS’s. This will naturally lead to the issue of a relationship between the stable and
unstable manifolds of hyperbolic trajectories and LCS’s.

The purpose of this paper is to compare the methods based on detection of stable and
unstable manifolds of hyperbolic trajectories with LCS’s derived from FTLE fields as techniques
for uncovering organised structures in unsteady fluid flows. We will particularly focus on the
performance and applicability of these techniques in flows undergoing transitions associated
with a loss or gain of finite-time hyperbolicity by some trajectories. An understanding of
this relationship is essential for understanding the role that each of these structures plays in
Lagrangian transport. Both methods can have drawbacks as tools for diagnosing the finite-
time Lagrangian flow structure, In Section 3 we consider a series of examples which aim at
providing a guide for choosing the most suitable technique for a particular application. We
begin the discussion by studying a one-dimensional non-autonomous system which can be
solved analytically and which provides a good illustration of issues concerning the finite-time
hyperbolic trajectories and FTLE fields in higher dimensions. The subsequent examples of 2D
non-autonomous systems are chosen to highlight various properties and problems arising in the
invariant manifolds and FTLE analysis.

We summarise our findings in Section 4 where we also discuss a number of outstanding
problems. The Appendices contain a number of technical details and definitions, as well as a
discussion of some important facts necessary for computation of finite-time stable and unstable
manifolds.

2 Some Theoretical Background and Questions

In this section we describe some of the relevant theoretical issues related to hyperbolic trajec-
tories and their stable and unstable manifolds and LCS’s. This will serve to highlight some
practical issues arising from applications and computation, as well as the need for further
theoretical and computational developments. We will not go into great detail in describing
the theoretical results and computational methods since they are already covered in numerous
papers in the literature; relevant references will be provided wherever appropriate in the discus-
sion. Rather, we will discuss ideas and concepts and provide a guide to the existing literature.
In order to achieve a relative self-containment of the following discussion, we also provide a
number of important definitions in the Appendix A in order to make this discussion easier to
follow.

The notion of hyperbolicity of a trajectory has been around for some time. It is particularly
worth remembering in the context of the present discussion that hyperbolicity is not dependent
on the nature of the considered time dependence (although continuity in time, which is also our
operating assumption here, eliminates many technical issues). In particular, if hyperbolicity is
determined by Lyapunov exponents ([51]) or exponential dichotomies ([19]), then the nature
of the time dependence, e.g. periodicity, quasiperiodicity, or aperiodicity plays no role in any
of these definitions (and equivalence between these definitions is considered in [24]). Once a
hyperbolic trajectory is located, then the stable and unstable manifold theorem for hyperbolic
trajectories immediately applies, and this is also independent of the nature of the time depen-
dence. It can be verified that the statement of this theorem is also independent of the nature
of the time dependence by examining, for example, its proof in the classic ordinary differential
equations textbook of Coddington and Levinson [18]. Additional resources on the stable and
unstable manifold theorem for arbitrary time dependence can be found in [21, 46, 51].

Of course, a central issue in practical applications is the location of hyperbolic trajectories
in aperiodically time dependent velocity fields. Historically, there have been many algorithms
for finding equilibrium points (stagnation points) of steady velocity fields and periodic orbits of
time-periodic velocity fields, but relatively little work had been done on algorithms for finding
hyperbolic trajectories of aperiodically time dependent velocity fields (and quite a few new is-
sues arise, in comparison to the issues associated with steady and time periodic velocity fields,
which we will mention below). An algorithm for determining hyperbolic trajectories in arbi-
trary unsteady flows was given in [45] and further refined in [49, 61]. This technique is based



on an iterative method defined on a space of ‘paths’ and, provided it converges, is guaranteed
to yield a hyperbolic trajectory on a specified time interval which is bounded in most practical
applications. (The ‘finiteness’ of the considered time interval brings up yet another technical
issue that we will shortly address.) The iterative algorithm requires an initial ‘guess’ in the form
of a C*' path defined on the appropriate time interval. It is important to stress here that such
a path need not be a trajectory of the velocity field. We provide a few more details regarding
some necessary properties of the initial guess in the Appendix A (cf Definition A.5 and remarks
after Definition A.6). The initial guess is often chosen to be a path of hyperbolic instantaneous
stagnation points (ISPs, cf (83), Appendix A). This particular choice of the initial path has lead
to numerous misleading and incorrect statements in the LCS literature related to the notion of
“Galilean invariance” and the nature of this algorithm ([58, 59, 78]). Galilean transformations
consist of spatial translations, time translations, shear transformations, reflections, and rota-
tions. Paths of ISPs are mot, in general, particle trajectories. This has been a known fact in
the fluid dynamics community for some time, and a simple proof can be found, for example, an
appendix in [45]. Clearly, ISPs are not invariant under Galilean transformations. However, it is
well-known in the dynamical systems community that trajectories are invariant under Galilean
transformations (i.e. a trajectory maps to a trajectory under a Galilean transformation) and
hyperbolic trajectories to which the iterative algorithm converges are likewise invariant under
Galilean transformations'. Consequently, the fact that a non-Galilean invariant path is used as
an initial guess for the iterative algorithm is irrelevant since if the algorithm converges, it yields
a hyperbolic trajectory, which is manifestly Galilean invariant. Likewise, since the stable and
unstable manifolds of a hyperbolic trajectory are, by definition, composed of trajectories, they
are also Galilean invariant. The importance of Galilean invariance to specific oceanographic
investigations is another matter entirely. Oceanographers require a fixed reference frame to de-
scribe the ocean through measurements and grid based computations. In the chosen frame, the
behavior and stability of ISPs have historically played an important role in describing observed
Eulerian flow structures. While ISPs may bear little relation to particle trajectories, we believe
that dismissal of their utility on the grounds of not being Galilean-invariant is unjustified.

Now we return to a more serious issue. Hyperbolicity, and therefore hyperbolic trajectories
and their stable and unstable manifolds are ‘infinite-time objects’. More precisely, hyperbol-
icity of a trajectory is determined on the basis of the asymptotic behaviour of neighbouring
trajectories in the infinite time limit. The stable and unstable manifolds associated with a hy-
perbolic trajectory are proven to exist via a fixed point, or iterative, argument where the limit
as time goes to either positive or negative infinity is taken. If the velocity field is aperiodic in
time, and it is obtained from the output of a numerical computation, then we have knowledge
of the velocity field only on a finite time interval. This fact creates a host of new problems in
applying the ‘traditional’ dynamical systems approach to fluid transport. The main difficulty
in the ‘finite-time’ description of Lagrangian transport stems from the fact that the dynamical
systems theory is generally concerned with the ‘long time behavior’ of systems of ODE’s (many
of these problems are discussed in [86] and [62]). In particular, the standard definitions of
hyperbolicity of trajectories do not apply to velocity fields that are only known on a finite time
interval (henceforth finite-time velocity fields).

The subject of ‘finite-time dynamical systems theory’ gives rise to many new issues that
require new theoretical and computational results. These are discussed in [86, 62]. There have
also been a number of mathematical papers developing various aspects of this subject in recent
years ([28, 8]). The ‘finite-time’ framework is intrinsically dependent on the time interval one
considers in the analysis and the implications of non-uniqueness associated with this setting
has been discussed in numerous papers, see, e.g., [66, 41, 36, 45, 62]. In particular, in the
context of finite-time dynamical systems, hyperbolicity of a trajectory is defined over a finite
time interval (cf Definitions A.4 and A.11 in the Appendix A) and the stable and unstable
manifolds associated with the trajectory no longer have a lower dimension than the underlying
phase space (cf Appendix B and [28]). Consequently, a trajectory which is hyperbolic over
some time interval (in the finite time sense) may not be hyperbolic over a longer time interval.
In other words, given that a < b < ¢ < d, it is possible for a trajectory to possess finite-
time hyperbolic characteristics on all intervals contained in I, = [a,b], and then lose such
characteristics on some intervals contained in I, possibly regaining the finite-time hyperbolic
properties for all intervals contained in I.q. We refer to such a scenario as a ‘loss’ and a

IThe Galilean invariance of hyperbolic trajectories is proven in [45] for hyperbolicity determined with exponential
dichotomies.



subsequent ‘gain’ of finite-time hyperbolicity and point out that one cannot pin these transitions
to a particular time instant. Purists in dynamical systems theory may immediately object by
saying that hyperbolicity is a notion that only has meaning for trajectories defined for all
time. According to the traditional definition, this is certainly correct. However, applications
to transport in velocity fields defined for finite time have motivated this new definition of
hyperbolic-like properties over a finite-time (i.e. the finite-time hyperbolicity) and the notion of
loss or gain of (finite-time) hyperbolicity has proven useful for describing the transient behavior
of a number of time dependent structures in oceanographic flows. We will discuss examples of
simple flows whose transitions are induced by the loss (or gain) of finite-time hyperbolicity in
§3.2.2, §3.2.6 and §3.2.7.

In any case, it is important to realise that all of the finite-time dynamical systems notions
that we mentioned above are trajectory based. That is, the finite-time hyperbolic trajectories
are indeed trajectories and material curves contained in their finite-time stable and unstable
manifolds are barriers to transport (see also Appendix B). Their usefulness for applications
derives solely from their ability to explain new phenomena in applications, and this is assessed
in the context of specific applications.

We now turn to another technique used in the finite-time transport analysis which is based
on determination of the so-called Lagrangian coherent structures (LCS) from finite-time Lya-
punov exponent fields (FTLE). Lyapunov exponents are quantities associated with trajectories
that are obtained as infinite time limits. For an n-dimensional continuous time dynamical sys-
tem a trajectory has n Lyapunov exponents — one associated with a direction tangent to the
trajectory (which is always zero) and n — 1 Lyapunov exponents associated with the remaining
directions. The Lyapunov exponents are measures of the growth of infinitesimal perturbations
in these directions, i.e. growth rates of the linearized dynamics about the trajectory (cf Ap-
pendix A). Of particular interest is the maximum Lyapunov exponent since the existence of a
single positive Lyapunov exponent indicates that the trajectory is unstable. The fundamental
theorem on the existence of Lyapunov exponents is expressed by the Oseledec multiplicative er-
godic theorem ([67]). There are many excellent references on Lyapunov exponents that describe
their properties ([51, 56, 57]) and algorithms for their computation ([23, 22, 24, 35, 32]).

In the infinite-time setting, Lyapunov exponents are one measure of the hyperbolicity of
a trajectory. If a trajectory has nonzero Lyapunov exponents (with the exception of the zero
exponent associated with the direction tangent to the trajectory), it is said to be hyperbolic
([51]). Finite time Lyapunov exponents are obtained by computing the same quantities, but
restricting the computation to a finite time interval, rather than taking the limit as the time
goes to positive infinity (for forward time Lyapunov exponents) or minus infinity (for backward
time Lyapunov exponents)2. Clearly, one would like to know the length of the time interval
on which they must be computed so that they are “close” to the infinite time limit. Some
interesting arguments are given in [34, 29] which indicate that the rate of convergence may
be quite slow. The FLTE technique® is not immune to the non-uniqueness issues arising in
the finite time setting mentioned earlier. These are highlighted by the fact that for any time
instant in the considered time interval I one can compute a whole family of FTLE fields. We
discuss implications of this fact in the following sections.

For each time instant ¢, within the considered (or available) time interval I, forward FTLE
fields are obtained by computing the forward Lyapunov exponents of the trajectory starting at
that initial condition at ¢, in a chosen grid for the length T" of time available (and computable)
and colour coding the initial condition according the the magnitude of the largest FTLE (e.g.
bright colors for large values, light colors for small values). By performing such a computation
for an ordered sequence of ‘observation times’, {tn}nez,tn € I, one can examine the spatial
evolution of the structures exhibited by the forward FTLE fields in time. Clearly, backward
FTLE fields can also be computed by reversing the direction of time. Note here that for any
t, in such a sequence it is possible to compute an FTLE field for any T such that ¢, + T € I.
It is often not obvious which length of the integration time interval T" should be chosen in such
computations especially when the structure of the resulting FTLE fields varies significantly for

2We note that in the literature the notion of a “direct Lyapunov exponent” (DLE) has been introduced ([37]).
This has created some confusion in the literature in the sense that the acronyms "FTLE” and "DLE” are used
somewhat synonymously. In recent years the consensus has become that there is no substantive difference between
the two notions and “FTLE” has now returned to being the accepted acronym (e.g., see [78, 76, 77, 59]).

3We note that in much of the literature concerning FTLEs, the phrase refers to the mazimum FTLE.



different values of T'. We discuss these issues in most of the examples presented in §3.

Since Lyapunov exponents are a measure of the (linearized) growth rates of a set of or-
thogonal directions perpendicular to the tangent vector to a trajectory, FTLE fields have been
more physically referred to as “stretching fields”*. Numerous groups have computed FTLE
fields over the years in the context of fluid transport (e.g., [69, 70, 83]) and have noted that
these fields appear to exhibit a great deal of structure. A more precise quantification of such
structures have led to the notion of LCS ([36, 42, 37, 38, 39, 78, 59]). In particular, since
FTLE’s are a measure of separation of nearby trajectories after some finite-time, regions of
high values for the maximal FTLE would seem to be likely candidates for regions containing
hyperbolic trajectories and their stable and unstable manifolds. Heuristic arguments support-
ing this assertion are given in the aforementioned references, and will not be reproduced here.
Rather, in this paper we will focus upon the assumption that “maxima” of the FTLE fields
are “approximations” to the unstable manifolds of hyperbolic trajectories (forward time FTLE
fields) and unstable manifolds of hyperbolic trajectories (backward time FTLE fields). We have
put the word maxima is quotes since this notion needs careful consideration. This was done in
[78] via the notion of a ridge curve of an FTLE field. Roughly speaking, a ridge curve has the
property that moving transverse to the direction tangent to the curve corresponds to moving
to a lower value of the FTLE. Precise definitions are given in [78] where ridges of the FTLE
field are taken as the definition of LCS. This raises the question of precisely how “Lagrangian”
are LCS’s? In general, they are not material curves, and therefore not necessarily barriers to
transport. In the following sections we will demonstrate this with several examples designed
to highlight different aspects of the problem. Nevertheless, certain segments of an LCS may
be “close” to a barrier to transport in the sense that the flux across the curve may be small.
This issue was carefully considered in [78]. However, the extent to which LCS’s are barriers
to transport must be assessed after they are computed. The stable and unstable manifolds of
finite time hyperbolic trajectories are a priori barriers to transport since they are computed as
curves of fluid particle trajectories.

We remark that a possible misconception that has appeared in several places in the LCS
literature is that the concept of invariant manifold is somehow either not well defined or applica-
ble or easily interpretable for time-dependent flows, where the time dependence is not periodic
([42, 37, 38, 76, 58]). In particular, this point has been emphasized in the finite time dynam-
ical systems context. While the approach to Lagrangian transport based on finite-time stable
and unstable manifolds of finite-time hyperbolic trajectories certainly requires more complex
algorithms and computational techniques, the results, being trajectory based, are certainly un-
ambiguous (in that sense) and the value of the approach can only be assessed in its ability to
explain Lagrangian transport phenomena. Towards this end we note that [60] utilises a finite
time, realistic velocity field obtained from a data assimilating oceanographic model (DieCAST)
that uses finite time hyperbolic trajectories and their (non-unique) stable and unstable mani-
folds to give the first Lagrangian characterization of a salinity front in the Mediterranean Sea
and provide and explanation and characterization of the notion of ‘leakiness’ of the front. Of
course, the finite time issues mentioned above do require careful consideration in the context
of specific applications. It is incorrect to think that the LCS approach has somehow “solved”
this problem.

A broader issue here, which keeps recurring throughout the following discussion, concerns
the problem of description of the Lagrangian structure of a time-dependent flow in a way which
would allow for a meaningful finite-time Lagrangian transport analysis. It is well known that
in order to establish the existence of, for example, a transport barrier (i.e. a flow-invariant,
Lagrangian structure) in the non-autonomous case, one requires non-local (in time and space)
information about the governing flow. As already pointed out, the finite-time notions discussed
above may provide ambiguous diagnostics due to their potential sensitivity to the time-interval
chosen for extracting the relevant information. Consequently, it seems crucial for the devel-

4As we have noted, FTLE’s are a measure of the growth of “infinitesimal perturbations” to a given trajectory, i.e.
growth rates of the linearized dynamics about a trajectory. Finite size (or “scale”) Lyapunov exponents (FSLE’s) are
a technique to analyze the growth of “finite perturbations” to a given trajectory. Alternatively, FSLE quantify the
relative dispersion of two particles, as discussed in [9]. In [9, 53, 48, 25, 31, 26] Lagrangian structures are identified
using FSLE’s. The maxima of the FSLE fields look very much like the maxima of FTLE fields and bear a striking
resemblance to the stable and unstable manifolds of hyperbolic trajectories. However, it must be emphasized that
FSLE’s are a non-rigorous numerical technique and, despite the strong numerical evidence, there are no theorems
relate the results of the calculations to Lagrangian transport barriers. Much like the case with FTLE’s, this must be
assessed “after the fact”.



opment of a general theory of finite-time transport in aperiodically time-dependent velocity
fields to understand and properly describe transient flow phenomena. Undoubtedly, this task
requires development of tools which would adequately capture the finite-time flow properties.
The examples discussed in the next section highlight a number of important points regarding
the techniques of invariant manifolds and FTLE fields:

(1) One can obtain a good agreement between the ridges of the FTLE fields (i.e. the LCS)
and the finite-time stable/unstable manifolds of distinguished hyperbolic trajectories in
sufficiently ‘well-behaved’ flows,

(2) Both approaches may provide non-unique results, particularly in flows undergoing tran-
sitions (discussed later), and their interpretation may require a subjective interpretation.
The main drawback affecting the invariant manifold computations lies in identifying the
appropriate hyperbolic trajectory (i.e. the Distinguished Hyperbolic Trajectory) used for
‘seeding’ the finite-time stable and unstable manifolds. The main drawback affecting the
FTLE technique stems from the fact that it is a function of trajectory separation which
depends, in general, on the time interval chosen for assessment of such a measure. Conse-
quently, in flows undergoing transitions it is often difficult to decide which time interval is
most suitable for assessing the (non-local) flow structure. Moreover, there is no guarantee
that the time evolution of the ridges of locally strongest separation is continuous in time.

3 Tests

In this section we analyse a wide range of example flows for which both the FTLE fields and
the appropriate invariant manifolds are computed. We then analyse and compare the infor-
mation about the Lagrangian flow structure obtained from computing the backward/forward
FTLE maps, and the information obtained from computing the unstable and stable manifolds
of certain Distinguished Hyperbolic Trajectories (cf Definition A.6) in these flows. The al-
gorithms used for computing the DHTs and their manifolds, based on the ideas described in
[45, 49, 63, 61], were developed in MATLAB. The FTLE computations are performed also in
MATLAB using an implementation of methods described in [37, 78, 76, 77]. We also compare
our results with the LCS MATLAB Kit v.2.3, developed in the Biological Propulsion Labora-
tory at Caltech, which is available online [20]. In the case of the LCS MATLAB Kit, several
minor modifications were introduced in the code in order to enable FTLE computations from
analytically defined vector fields.

All the examples considered here are based on analytically defined velocity fields. While
the resulting flows are certainly not sufficiently complex to be of importance in practical ap-
plications, they provide an easily reproducible testbed for our analysis.

3.1 1D non-autonomous configuration

We consider first a one-dimensional, non-autonomous ODE which can be solved analytically,
and which illustrates in the simplest possible setting a number of issues which are important
in the following sections. Based on three related examples, we highlight potential difficulties
when trying the uncover the structure of a non-autonomous flow using the finite-time Lyapunov
exponents, or when trying to identify some ‘special’ trajectories which play an important role
in organising the global dynamics. Of course, in such a setting there are no non-trivial invariant
manifolds in the (non-autonomous) flow. However, one can consider the 1D geometry discussed
below to represent some aspects of transverse dynamics in the neighbourhood of an invariant
manifold in a higher-dimensional flow; in fact, we use this analogy in §3.2.7. Here, we are
particularly interested in the properties of the FTLE maps and their relationship to during
certain flow transitions characterised by changes of finite-time stability properties of some
distinguished trajectories in the flow.

Consider a one-dimensional, non-autonomous dynamical system given by
i=z(o(t)—2%), z,teR, (1)

where o (t) is a prescribed function of time. In the autonomous configuration, with o = const. < 0,
the trivial solution & = 0, representing the only fixed point in the flow, attracts all trajectories
as t — oco. When o = const. > 0, there are three fixed points in the flow: xz; = 0, and
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Figure 1: Geometry of the one-dimensional flows (1) with the time dependence induced by o(t) characteristic of the
three scenarios considered in §3.1. The trajectories y1(t), y2(t) are distinguished in the sense described in appropriate
sections. Analysis of these flow structures using the FTLE technique are summarised in figures 2, 3 and 4.
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Z2,3 = £+/0. It can be easily checked by examining the linearisation of (1) about these points
that x; is an unstable hyperbolic fixed point and z2,3 are stable hyperbolic fixed points.

When 9o /0t # 0, it is more convenient to consider the resulting dynamics in the extended
phase space, spanned by {ez,et}, with coordinates (z,¢). We note here that (1) is, in fact, a
Bernoulli equation with solutions given by the family
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It can be easily verified using (2) that z(to,zo,t0) = xo. For any trajectory x(¢,xo,to), given
by (2), we can consider a perturbation, z(t, o + do, to), with do < 1, so that the growth of the
perturbation after time T is given by

Gx(to +T,s, to)

(S(T7 50, xo, to) = ‘x(to —I-T, woﬂfo) — .T(to + T7 xo + (50, to)l = ’ D5
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Thus, since the solutions (2) are continuous, the growth of an infinitesimal perturbation intro-
duced at (zo,to) after time T is given by

— to+T o(s)ds
. (5(T (50 t()) e 2f7‘0 ®
A(T, xzo,to) = lim s = . 4
( 0 0) 50—0 do 72j't0+Ta(s)ds ) to+T o to+T g 3/2 ()
e 2t +2m0/ e 2T osdsqy
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We note further that (4) is related to the 1D finite time Lyapunov exponent Ar(zo, to) at time
t() via 1

)\T(l'o,to) = mlnA(T, $07t0), (5)

which is computed over the time interval T, (see the Appendix for a more general formulation).

Note that even if solutions satisfying a given system are only known numerically, an estimate

on the separation rate of trajectories which were initially infinitesimally close can be obtained

via finite differences. Therefore, Ar can be estimated for any flow defined by sufficiently smooth
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Figure 2: (a-d) 1D FTLE fields, A (z, to), for the flow (1) with o(¢) given by (16) which is characteristic of Scenario
I discussed in §3.1. The finite time Lyapunov exponents, Ap, are computed over different time intervals of length 7.
In this configuration, there are three ‘distinguished’ trajectories in the flow, v1,2(¢) (cf (10)) and = = 0, which play
an important role in organising the dynamics (blue curves; left column). (b-c¢) Backward FTLE field computed, using
(4) and (5), at (b) t =5 and (c) t = —1 with different values of the integration parameter T. Note that the maxima
of the FTLE fields (i.e. the LCS) vary with T, and that they do not coincide with the location of v1 2(t = —1) in the
transition phase (e.g. (c)), regardless of the value of T'. See text for a discussion. (d-e) Forward FTLE field computed
for the same flow at (d) t = 0 and (e) t = —10 with different values of the parameter T.

velocity field on some time interval I. Consequently, the map
R>z— A(z,t0) €R, to+T€lCR, (6)

can be used, in principle, as a straightforward diagnostic tool for uncovering time-dependent
flow structures characterised by locally strongest separation of nearby trajectories. Note how-
ever, that at any time to during the flow evolution one can construct the whole family of
FTLE fields {A\r(z,t0)}r+t,er which generally results in a non-uniqueness of the computed
diagnostic. The ambiguities associated with choosing the ‘right’ FTLE map from the family
{Ar(z,t0)}r+toer which ‘best’ describes the flow structure at a given time are especially evi-
dent in analysis of flows displaying transient phenomena. We recall that this problem is not
restricted to the FTLE method. In particular the techniques, mentioned in §2, based on iden-
tification of the so called ‘distinguished hyperbolic trajectories’ and their invariant stable and
unstable manifolds suffer from similar limitations in the case of flows defined on a finite time
interval. We analyse these issues further below based on three different scenarios of evolution
of the one-dimensional flow (1), characterised by different types of time dependence induced
by the form of o(t). Clearly, the dimensionality of the problem does not allow for existence
of any non-trivial invariant manifold of a hyperbolic trajectory. Nevertheless, the discussed
examples serve to highlight some important consequences of flow transitions (specified below)
on the computed FTLE fields and their relationship to some (possibly non-unique) ‘special’
trajectories in the space of solutions of (1). Moreover, we will show that the non-uniqueness
of the FTLE diagnostic may lead to detection of ‘ghosts’ or ‘premonitions’ of flow structures
associated with the future, or past, stability properties of such ‘special’ trajectories. We will
later return to these examples in §3.2.2 in the context of locally transverse dynamics in a neigh-
bourhood of a stable or unstable manifold of a hyperbolic trajectory in the 2D non-autonomous
case.

Scenario I: 0 < o(t) < oco.
With the above constraints imposed on o(t), the trivial solution, z(¢) = 0, of (1) is (finite-
time) unstable on any time interval I = [tq,%3] € IR in the sense that for each nonempty,



bounded set Z; 3 0 there exists a trajectory, z(t, zo, to), with zo € Z1, to € I, such that

d

ah‘(t,wmto)‘ >0, Vtel. (7)
A more general definition of instability of a trajectory in a non-autonomous dynamical system,
which we do not require here, can be found, for example, in [55]. It can be easily verified that
(7) is satisfied on z(t) = 0 over any time interval I C IR by noticing that

t
d (71 ) = 2 (Co(t)e I 79 g (t)a? / 2@ g 4 g2y (8)

dt \ z(t, 2o, to)? xg to
which implies that (7) is satisfied at least for

a—mine_Q("min (tp—ta)

e—QUmax(tb—tn)(eQUmin(tb—ta) _ 1).

2
Xy <

(9)

We note further that there are two ‘distinguished’ trajectories in the space of solutions of
(1) given by
1

t )
2/ 6_2 f,ﬁ a(s)dsdk
—o0

which have the property that any trajectory of (1) x(¢, zo, to),zo > 0 is ‘attracted’ (in the sense
we specify below) towards 71 (¢) and any trajectory z(t,zo,t0),z0 < 0 is ‘attracted’ towards
~2(t). There are two different notions of attraction which we can utilise here. If we rewrite (2)
as

Y1,2(t) = (10)

1

t bl
%e—2ftf0 a(®)ds 1 - 2/ 0 o2 St o()ds g
Xy ’Y(t) —c0

it can be seen that the following are true (when 0 < o(t) < 00)

I(tv Zo, tD)Z =

(11)

tlirgo (az(t7 Zo,to) — ’yl(t)> =0, Vz0<0,t0€RR, (12)
tlirglo (x(t, Zo,to) — yz(t)) =0, Vao>0,% € R, (13)
and
tolir{lm (m(t, :co,to)2 — fy(t)2> =0, Vao<0,t€e R, (14)
tolirzloo (az(t7 xo,t0)° — 'y(t)Q) =0, Vau<0,teR. (15)

Since we intend to minimise the amount of mathematical formalism here, we just remark
that the property (12) implies that v1(¢) is forwards attracting (and Lyapunov stable) within
Zo € (—00,0) and (14) implies that it is pullback attracting within zo € (—00,0). Similarly,
~2(t) is both forwards and pullback stable within o € (0,00). A more formal introduction to
the stability and bifurcation phenomena in non-autonomous dynamical systems can be found
in [55, 54, 52, 28, 72, 73]. Pullback convergence is useful in constructing limiting sets, such as
the distinguished trajectories in our 1D toy example, provided that the flow is defined on the
negative half-line (—oo,t*], t* > —oo. Otherwise, we cannot uniquely define a distinguished
trajectory. We will see in the next example that these two notions are not necessarily equivalent
in the non-autonomous case.

We can now examine the one-dimensional FTLE fields, Ar(z,to), associated with scenario
I which are obtained from (5) and (4) for different lengths of the integration time interval, T'.
The results shown in figure 2 were computed for a sigmoidal function

o(t) = %(atan(lO(t +4)) 4 7/2 4 0.01), (16)

so that the flow (1) is asymptotically autonomous.
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Figure 3: (a-d) 1D FTLE fields, Ar(z,to), for the flow (1) with o(t) given by (20) which is characteristic of
Scenario II discussed in §3.1; the fields, Ap, are computed over different time intervals of length T'. (b-c) Backward
FTLE field computed, using (4) and (5), at (b) t = 5 and (¢) ¢ = —8 with different values of the integration
parameter T'. In this configuration there distinguished trajectories 1 2(t) (cf (10)) dominate the flow structure after
the transition when the trivial solution becomes unstable. Note that for sufficiently large values of the integration
parameter T the maxima of the FTLE fields detect ‘ghosts’ of the past stability of the trivial solution and not
the situation at the time of computation ¢. See text for a discussion. (d-e) Forward FTLE field computed for the
same flow at (d) ¢t = —12 and (e) ¢ = 0 with different values of the parameter T. The trivial solution z = 0 is
globally attracting in the sense of (17) on any time interval I = (—oo,t* |,t* < t* where t* &~ —4.105. Note that,
when computed over sufficiently long time intervals, the FTLE fields detect ‘premonitions’ of the future (finite-time)
stability properties of the trivial solution (cf (d)) which is repelling (in this case) on any time interval contained in
I =(—4.105,00).

The top-row insets of figure 2 focus on detection of attracting structures in the (extended)
phase space of the flow (1). Since such structures should be characterised by separation of
trajectories in backward time, we compute a number of the backward FTLE fields at two
different times ¢ = 5 (b) and ¢ = —1 (c). The geometry of the two attracting distinguished
trajectories 7y1,2(t) is marked by the blue curves. Note that the maxima of the FTLE fields (i.e.
the LCS) vary with 7', and that they do not coincide with the location of v1 2(t = —1) in the
transition phase (e.g. (c)), regardless of the value of T. The maxima of the forward FTLE fields,
computed for the same flow at (d) t = 0 and (e) t = —10, are all located at the trivial solution
x = 0 which is unstable. However, during the flow phase when the unstable trivial solution
is ‘sandwiched’ between the two attracting ‘distinguished’ solutions 71,2, the FTLE field has
to be computed over sufficiently long time intervals in order to reveal a positive maximum
(i.e. exponential growth of the infinitesimal perturbation to z = 0 over the considered time
interval).

Scenario (II): \ lim o(t) <0, o(t") =0, and do/dt > 0.

In this situation the trivial solution of (1), z(t) = 0, is stable (in the pullback sense) on any
time interval I = (—oo,t™],t* < t*, i.e.

lim l‘(t,xo,to) =0, V tel, (17)

top— —o00

and unstable, in the sense (7), on any time interval contained in I = (¢*,00). Note that the
trajectories v1,2(¢) (10), which are still solutions of (1), are now only asymptotically attracting,
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tlim (Z’(t, xo,to) — 'yl(t)> =0, Vzo<0,to € R, (18)
tlim (m(m l‘o,to) — Vz(t)) =0, Vzo>0,t € R, (19)

but they are not asymptotically pullback attracting. We will loosely refer to ¢t* as the transition
time, since it corresponds to the boundary of the pullback stability of the trivial solution.
In figure 3 we analyse the phase-space geometry of the flow (1) with o(t) given by

o(t) = (atan(l()(t +4) + 0.8), (20)

/24 0.8

which satisfies the constraints characteristic of this scenario and changes sign at t* ~ —4.105.
Moreover, such a choice introduces an additional simplification to the problem, making it
asymptotically autonomous. This configuration makes it easier to observe the emergence of
an ‘attracting’ structure developing around the trajectories ~1,2(t) after the transition (see
figure 3). The FTLE fields, Ar, shown in figure 3(b-e) are computed using (4) and (5) at four
different times and over different time intervals of length 7. The examples of the backward
FTLE fields, computed at (b) ¢ = 5 and (c¢) ¢ = —8 highlight some typical characteristics of
this technique when applied to flows with transient phenomena. When computed at times
after the transition (as in (b)) over sufficiently short time interval lengths 7', the maxima of the
FTLE fields coincide well with the location of the distinguished trajectories (dashed blue lines
in figure 3(b)). Note, however, that for sufficiently large values of T' the maxima of the FTLE
fields detect ‘ghosts’ (red) of the past stability of the trivial solution and not the situation at
the time of computation ¢. It is worth remembering here that while the geometry of the flow
trajectories and the transition time is known in the considered example, it may not be at all
obvious what length of the time interval one should choose when computing FTLE fields for a
realistic, higher-dimensional geophysical flow. A similar problem might occur when trying to
identify structures characterised by trajectory separation in forward time via the computation of
forward FTLE fields. We show examples of such computations for the same flow in figure 3(d,e)
which are computed at (d) ¢ = —12 and (e) ¢ = 0 with different values of the parameter T'.
As already mentioned above, the trivial solution x = 0 is asymptotically pullback attracting at
any t contained in I = (—oo,t" ], t* < t* &~ —4.105. Therefore, no trajectory separates, in the
sense (7), from the trivial solution on I. The FTLE fields computed in figure 3(d) correspond to
such a situation. However, if one computes the forward FTLE fields at t = —12 for sufficiently
large T' a sharp positive maximum appears which might be interpreted as a ‘premonition’ of
the future (finite-time) stability properties of the trivial solution after the transition.

Scenario (III): o(t) > 0 for t € [t*,¢t*"], and o(t) <0 V t € (—o0,t"| U [t*", 00].
In this configuration the trivial solution is the only ‘distinguished’ one. It is globally asymp-
totically pullback stable on any time interval I = (—oo,t™],t* < t*, i.e.

lim ZB(t,xo,to) =0, V tel,x € R, (21)

top——o0
and is globally asymptotically stable on any time interval I = [¢7*, 00), 7" > ¢*, i.e.

thm l’(t, Iﬂo,to) =0, V toel,zo € R. (22)
However, it can be easily verified by examining (2) that z(¢) = 0 is unstable, in the sense of
condition (7), on any time interval contained in I = [t*,¢*"].
In order to illustrate the typical properties of the FTLE field in such a case we choose the
time dependence in the following form

o(t) = 2<e_t2/16 - o.4>, (23)

so that ¢+ ~ —3.83 and t** ~ 3.83. In figure 4 we examine the backward (b,c) and forward
(d,e) FTLE fields for this flow configuration, which are computed for different lengths, T, of
the time test interval. The trivial solution is unstable on any time interval contained (in this

11
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Figure 4: (b-d) 1D FTLE fields, Ar(z,t0), for the flow (1) with o(¢) given by (23) which is characteristic of
Scenario III discussed in §3.1.The trivial solution, x = 0, is asymptotically attracting on the time interval I = IR and
globally pullback stable (see (21)) on any time interval I = (—oo,t* |,t* < ¢* (in this case t* ~ —3.83; see text).
The trivial solution is unstable on any time interval contained (in this case) within I = [—3.83,3.83]. (b-c) Backward
FTLE field computed, using (4) and (5), at (b) t = 3 and (c) t = 8 with different values of the integration parameter
T. Note that the maxima of the FTLE fields (i.e. the LCS) vary with T and, for sufficiently large T, the FTLE
fields detect a ‘ghost’ of the past attracting phase of the trivial solution = 0 (red curves in (b-c)). See text for a
discussion. (d-e) Forward FTLE field computed for the same flow at (d) t = —8 and (e) ¢ = 0 with different values of
the parameter T. Note that at t = —8 (d), when z = 0 is attracting and globally pullback attracting, the FTLE field
computed over sufficiently long interval T' detects a ‘premonition’ of the future unstable phase of the trivial solution.

case) within I = [—3.83,3.83]. The backward FTLE fields, A\r(z,to), computed at ¢t = 3 show
a similar behaviour as in figure 3(b) except that the magnitude of ‘ghost’ maximum (red),
indicating the past attracting properties of the trivial solution, is similar to those computed
for T'= —5 and T = —10. This simple example indicates the possible problems with inter-
pretation of the families of FTLE fields at time ¢, {\r(z,t) }r+ter, and the right choice of the
time integration interval best describing the flow structure at the given time ¢t. The forward
FTLE computations reveal similar ambiguities when trying to detect structures characterised
by separating trajectories in forward time. The FTLE field computed at t = —8 (d) with 7' = 2
indicates correctly the lack of trajectory separation points. The profile of A\io(x,t = —8) is,
however, rather broad and one might be tempted to increase the integration time interval T’
in order to obtain a more localised profile. If one then computes the forward FTLE field at
t = —8 with 7" = 10, the A10(z,t = —8) reveals a positive maximum at z = 0 (red curve in
(d)) which indicates that the perturbations of the trivial solution will eventually separate with
a positive Ar. It is important to understand here that this is not an erroneous result. Indeed,
we know that the trivial solution is unstable on the time interval I = [—3.83,3.83] and if one
follows trajectories from ¢t = —8 to a time contained within this interval this is certainly what
is going to happen. Moreover, if we follow such trajectories to times beyond I, the positive
maximum disappears again (e.g. A2o(z,t = —8) in figure 4d). An important question arises in
connection to this: Which FTLE fields from the T-parametrised family {Ar(z,t)}ryicr, best
describes the flow structure at ¢ and how do we recognise that it is not always the field with
sharpest maxima?

3.2 Two-dimensional, time-dependent flows

In the reminder of this paper we consider 2D flows which are defined analytically so that there
is no additional ambiguity with data handling. In each case we determine the stable and
unstable manifolds of Distinguished Hyperbolic Trajectories and compare the results with the
LCS identified from the FTLE maps.
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3.2.1 Two examples of dynamical systems where the Lyapunov exponents
of every trajectory are equal

In this section we point out two situations where the Lyapunov exponents of every trajectory
are equal. Interestingly, the two flows are, in some sense, almost exact opposites in terms of the
complexity of the dynamics that they exhibit. The first example is the velocity field due to a
linear, time-dependent straining flow defined on the plane. In this case we can compute the form
of the Lyapunov exponents explicitly, and as a result it is evident that the Lyapunov exponents
do not depend of the initial condition of the trajectory, which implies that they are identical for
all trajectories. In this case the FTLE field reveals no LCS’s, for any time over which the FTLE
field is defined. The second example is the Arnold cat map, defined on the torus (i.e. doubly-
periodic boundary conditions). It is a linear map, defined on a nonlinear, bounded phase space
(i.e. the torus). The Lyapunov exponents for every trajectory can be computed explicitly, and
linearity of the map implies that all exponents are equal. Hence, also in the Arnold cat map
case the FTLE fields reveal no LCS’s. Contrasting these two examples is interesting. Neither
example has LCS’s as diagnosed by the FTLE field (although the phase space of each does
have hyperbolic trajectories with stable and unstable manifolds), and the velocity field given
by the linear, time-dependent straining flow has ”simple” trajectories, while the trajectories
exhibited by the Arnold cat map are ”extremely” chaotic. We will now describe each of these
examples in more detail, and in the process provide more background and justification for these
statements.

Linear, time-dependent strain: We consider here the simplest class of incompressible
2D flows, defined for all ¢ € IR, which possess a DHT in the sense of [45]. The flows are trivial,
time-dependent extensions of the linear steady strain and the corresponding non-autonomous
dynamical system is given by

T -1 0 T

o[9[ 2
where A(¢) is a time-dependent strain amplitude. When A = const., the point (z,y) = (0,0) is
a hyperbolic saddle with a 1D stable and unstable manifolds aligned with, respectively, e, and
ey. When dA/dt #= 0 and A(t) > 0, it can be easily verified that () = 0 is a trajectory of
(24) in the extended phase space (z,y,t). Moreover, y(¢) is hyperbolic and has a 2D stable and
unstable manifolds in the extended phase space which are spanned by, respectively, {ez, et}
and {ey, et}A The fundamental solution matrix, X(t,to), of (24) is given by

_efi(t»to) 0

X(t,to) = . At |

(25)

where A(t, to) = ftto A(7)dr.
Note that the finite-time Lyapunov exponents, A1,2 (cf Definition A.1), for the flow associ-
ated with (25) are given by

A(to + T, to)

)";’2(1"7y7t0) ==+ 2|T‘ 5

(26)

and are independent on the spatial coordinates. Consequently, the FTLE field given by
Ar(z,y,to) = max[A'(z,y,t0), A’ (z,y,t0)] is spatially homogeneous and does not reveal any
structure despite the fact that the stable and unstable manifolds of the hyperbolic trajectory
~(t) = 0 are well defined.

The Arnold cat map: The Arnold cat map, defined on the torus, is given by

Pnt1 =DPn+qn  (mod 1), (27)
Gn+1 = Dn + 2¢n  (mod 1), (28)

This dynamical system has a number of remarkable properties that are amenable to explicit
analysis resulting from the linearity of the map and the doubly periodic boundary conditions.
In particular, every trajectory can be shown to be hyperbolic and explicit expressions for its
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Figure 5: Geometry of two material surfaces in the extended space (z,y,t) approximating the unstable manifold
(red) and the stable manifold (blue) of the trivial solution, 2(t) = 0, of the system (30). For the chosen form of the
amplitudes Ag, Ayy (cf (45)), the trivial solution is (infinite-time) hyperbolic on I = R but finite-time hyperbolic
only on I = (—o0,—4.47] and I = (4.47, 00] (see text for definition of finite-time hyperbolicity on an interval).

stable and unstable manifolds can be computed. The map can be shown to be ergodic, mixing,
and to have the Bernoulli property, and each of these properties is present on the entire domain
of the map. The proofs of these results are ”well-known”, but are often difficult to track down
in the literature. [80] contains proofs, and also a guide to the original literature. However, for
our purposes here we are only concerned with the Lyapunov exponents of trajectories of the
cat map. These can be explicitly computed from the map and are found to be

Aio=+In(3+5)/2, (29)

and they are the same for every trajectory. Therefore, we have a situation where, in some sense,
the map is the “most chaotic possible” (i.e. it has the Bernoulli property) on its entire domain
and every trajectory is hyperbolic (having one Lyapunov exponent with modulus greater than
one and one Lyapunov exponent with modulus less than one) with stable and unstable manifolds
that can be computed explicitly. Nevertheless, since the Lyapunov exponents of every trajectory
are identical then contours of the FTLE fields are all identical, and this they reveal no LCS’s®.

Summary: We have shown two examples where the Lyapunov exponents can be explicitly
computed for every trajectory. In each example the Lyapunov exponents were shown to be
identical for every trajectory. Dynamically, these two examples could not be more different.
The flow defined by a linear, time-dependent strain on the plain does not possess complex
dynamics, even though (almost) every trajectory has a positive Lyapunov exponent. The
Arnold cat map defined on the torus is extremely chaotic on its entire domain (and every
trajectory also has a positive Lyapunov exponent). Clearly, complexity of trajectories is not
sufficient for the FTLE field to reveal “structure”. Rather, spatial heterogeneity is required,
and this does not occur for linear flows, or flows exhibiting ‘uniform’ chaos, in the sense of
identical Lyapunov exponents for (almost) every trajectory.

5This paper is concerned with an understanding of the role of manifolds and LCSs in fluid transport. Consequently
we have been dealing with flows that are defined for continuous time. The Arnold cat map is a discrete time dynamical
system. We have chosen it to illustrate a specific point because of its familiarity, and the ease for which its various
properties can be explicitly computed. Nevertheless, the Arnold cat map dynamics can be realized in continuous
time flows; see [11, 12, 71] for details.
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Figure 6: (Left) Geometry (in the extended phase space (z,y,t)) of an unstable manifold of the trivial solution,
z(t) = 0, in a flow generated by (30)). (Right) Finite-time Lyapunov exponent fields, i.e. Ap(z,y,t) (cf A.2),
computed at three different times during the evolution ¢ = 5 (top row), ¢t = 7 (middle row), ¢ = 13 (bottom row); for
each of these times the FTLE fields were computed over two time intervals of different lengths 7. The green lines
denote the instantaneous geometry of the unstable manifold. When computed over sufficiently long time intervals,
the ridges of the backward FTLE fields coincide with the unstable manifold.

3.2.2 Strain-vortex-strain transition

We consider here an example which is designed to illustrate the geometry and fate of finite-
time stable and unstable manifolds of a finite-time hyperbolic trajectory during a flow transition
associated with a loss and subsequent re-gain of finite-time hyperbolicity by this trajectory. We
show here what kind of information about transport properties of such a flow can be obtained
by analysing this transition using, respectively, the invariant manifold approach and the FTLE
approach.

Consider the following two-dimensional, non-autonomous dynamical system
&= (As(t) S(z) + Ay () W(x)>e—“z”2/5"’, e R’ te R, (30)

where 0 is a constant and the terms in the brackets represent a linear superposition (with
time-dependent coefficients As(t) and Ayy(t)) of a straining field given by

S(z) =<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>