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Three-Dimensional Point Cloud Recognition
via Distributions of Geometric Distances

Mona Mahmoudi and Guillermo Sapiro

Electrical and Computer Engineering, University of Minnesota

200 Union St. SE, Minneapolis, MN, 55455, USA

Abstract

A geometric framework for the recognition of three-dimensional objects represented
by point clouds is introduced in this paper. The proposed approach is based on
comparing distributions of intrinsic measurements on the point cloud. In particu-
lar, intrinsic distances are exploited as signatures for representing the point clouds.
The first signature we introduce is the histogram of pairwise diffusion distances
between all points on the shape surface. These distances represent the probability
of traveling from one point to another in a fixed number of random steps, the av-
erage intrinsic distances of all possible paths of a given number of steps between
the two points. This signature is augmented by the histogram of the actual pairwise
geodesic distances in the point cloud, the distribution of the ratio between these
two distances, as well as the distribution of the number of times each point lies on
the shortest paths between other points. These signatures are not only geometric
but also invariant to bends. We further augment these signatures by the distribu-
tion of a curvature function and the distribution of a curvature weighted distance.
These histograms are compared using the x? or other common distance metrics for
distributions. The presentation of the framework is accompanied by theoretical and
geometric justification and state-of-the-art experimental results with the standard
Princeton 3D shape benchmark, ISDB, and nonrigid 3D datasets. We also present
a detailed analysis of the particular relevance of each one of the different proposed
histogram-based signatures. Finally, we briefly discuss a more local approach where
the histograms are computed for a number of overlapping patches from the object
rather than the whole shape, thereby opening the door to partial shape comparisons.

Key words: Point cloud data, 3D shape recognition, intrinsic distances,
distributions.
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1 Introduction and Key Contributions

Three-dimensional (3D) data is becoming more and more ubiquitous. 3D ob-
ject retrieval is essential for tasks such as navigation, target recognition, and
identification. In particular, point clouds are one of the most primitive and
fundamental representations of 3D objects, obtained, e.g., from laser range
scanners, and working directly with such representation is critical and chal-
lenging at the same time. See for example [9,15,19,22,27,30,31,33] and refer-
ences therein for some of the recent works in this area. In this paper, we develop
a framework for 3D object recognition from point cloud data. In particular,
we introduce and exploit signatures which extract the intrinsic geometry of
the 3D shapes represented by the point cloud.

The diffusion distance, [18], and the geodesic distance are two intrinsic (geo-
metric) distances measured by paths constrained to travel on the point cloud
surface of the shapes, and are the key components of the framework here pro-
posed. The diffusion distance is related to the probability of traveling on the
surface from one point to another in a fixed number of random steps, while
the geodesic distance is the length of the shortest surface-path between two
points.

Being invariant to bending of the surface makes these intrinsic distances nat-
ural and useful for recognition of non-rigid objects, see e.g., [5,14,16,23,38] for
the use of the geodesic distance. While in order to obtain an explicit match-
ing of the shapes, the matrices corresponding to pairwise distances need to
be compared and matched [4,23], it has been, at least empirically, demon-
strated that such computationally elaborate matchings can be often avoided
in recognition tasks. In particular, in [3], the authors have shown that with
high probability, shapes can be uniquely distinguished by the distribution of
Euclidean (non-intrinsic) distances between pairs of points (samples on the
shapes). The diffusion distance is equivalent to the Euclidean distance in an
embedding space, as detailed in Section 2.1, which makes this argument about
distributions applicable to diffusion distances in the embedding space as well.
This argument combined with the need for a bending invariant signature,
provides a solid reason to consider the distributions of intrinsic distances as
signatures for object retrieval. Comparing the distributions of distances (or
any other features), instead of applying traditional global matching methods,
reduces the recognition problem to a one-dimensional comparison problem,
considerably saving memory and computational time [14,16,20,24,28,37].

In real complex 3D scenarios, objects are often noisy and partially occluded or
not completely scanned. It is therefore important to perform such 3D recogni-
tion robustly and from partial information (see also [13,26] for partial match-
ing results). Graph-based methods in the object recognition literature, e.g.,



see [17] for Reeb graphs comparison and [29] for object recognition in videos,
have been shown useful for partial matching based on local shape patches. Ex-
ploiting these graph-based matching techniques, combined with the intrinsic
distance distributions here proposed, the introduced framework starts building
in this direction of partial matching.

Motivated by these prior theoretical and computational results, in this pa-
per we introduce and exploit distribution/histogram-based signatures for 3D
shape recognition, and develop methods for global and local comparison be-
tween shapes represented by point clouds. The first signature we introduce is
the distribution of the diffusion distance [7,18], which has not been used before
for comparing 3D surfaces. This distance basically measures the probability of
connectivity between points, considering all possible surface-constrained paths
between them and not just the shortest one. The diffusion distance, which is
easily computed from eigenvalue/eigenvector decompositions, is more robust
than the natural geodesic distance to topological noise in the point cloud data,
as well as topological errors created in the process of computing local neigh-
borhoods due to the lack of connectivity information. The combination of
both geodesic and diffusion distances also helps to better define these neigh-
borhoods, as demonstrated in this paper. We also use as signatures the dis-
tribution of pairwise geodesic distances (the feature that has not been used
before for point cloud data), and the distribution of the ratio between diffusion
and geodesic distances. This ratio is a measure of the width of the shape in
the parts connecting the two points being considered in the computation. We
further introduce a measure of “centrality” for each point, which is the num-
ber of shortest paths between pairs of points that include the corresponding
point, and use the distribution of this measure as an additional signature in
this work. All the above signatures are not only intrinsic to the object, but
invariant to bends as well. We also include the histogram of a curvature func-
tion and the distribution of a curvature weighted distance in our signatures in
order to further improve the recognition performance. The relative contribu-
tion of each one of these histogram-based geometric signatures, which are all
used here for the first time in a framework for point cloud shape recognition
(and some like those associated with the diffusion distance for the first time
for 3D recognition in general), is investigated in this work.

To compare these signatures for different shapes, both x? and Jensen-Shannon
divergence, [11], produce very good results. In particular, the results here
reported based on the y2. These results are state-of-the-art for the standard
datasets.

In addition to these global comparisons, and in order to develop a framework
that is more geared toward finding local shape similarities, we also propose
a method based on the computation of these signatures on “patches” of the
point cloud data (see also [12,25,26]). In our approach, and following [25], we



use random overlapping patches on the shape, with a control on the amount
of overlap. In contrast to the more classical literature on patches, we explicitly
consider their spatial relationship by using a graph-based approach.

The remainder of this paper is organized as follow: in Section 2, we discuss the
basic concepts on the diffusion distance and the curvature classifier. Then, we
describe the distribution signatures we develop based on these features, and
the technique to compare these signatures in Section 3. Experimental results
are presented in Section 4, and in Section 5, we discuss a graph-oriented local
framework and conclude the work.

A preliminary version of this paper appeared at a workshop, [21]. Here we
extend the framework by adding fundamental new signatures that improve
the results, provide additional details, and present additional examples.

2 Basic Intrinsic Measures

2.1 Diffusion Distance

In [7,18] (see also [2] for related work), the authors introduced diffusion maps
and diffusion distances as a method for data parametrization and dimension-
ality reduction. The diffusion distance is equivalent to the Euclidean distance
in the embedding space corresponding to a mapping known as diffusion map.
The diffusion distance between two points in the point cloud involves the
average of all the paths of m steps connecting these two points (average prob-
ability of traveling between the points). This makes the diffusion distance a
bending invariant function of the path length and the shape width between
two points. Since this distance does not rely on just the shortest path between
two points, it is more robust than the geodesic distance. As briefly mentioned
before, in [3] the authors proved that the distribution of Euclidean distances
is very informative of the shape. Combining the theory in [3] and the char-
acteristics of diffusion distances, such as being the Euclidean distance in an
embedding space and being bending invariant, makes the diffusion distance a
good natural signature for non-rigid object recognition.

In order to compute the diffusion distance, we first create the affinity function
k(x,y) over all pairs of points x, y in the point cloud. These values become the
elements of an N x N square matrix K, where N is the number of available
points. This matrix is symmetric, positive semidefinite, and positive. If we



then define a(z,y) as

k(z,y)
v(z) ’ (1)

a(z,y) =

where v(x) := >, k(z,y) is the sum of the elements in each row, the matrix
A, composed by the elements a(z,y), can be viewed as the probability for a
random walker on the point cloud to make a step from x to y. Now if we
further define a(x,y) as

, (2)

a(z,y) = a(z,y)

the corresponding matrix A is symmetric and can be decomposed as

. y) = 32 N6 (@)6(y), )

where A2 =1 > A\ > A\ > ... > )\ are the eigenvalues (note the “square,”
which will simplify the expressions later), of the matrix A and ¢, are the
corresponding eigenvectors. Therefore, for the elements of the matrix A™ we
obtain

N

A" (z,y) =Y A" i) diy), (4)

=0

which can be interpreted as representing the probability for a random walker
or Markov chain with transition matrix A to reach y from x in m steps.

Following in part standard concepts from kernel methods, the authors in [7]
introduced the diffusion map (®,,) from the given point cloud data to an
Euclidean space using the kernel . This mapping is obtained as

G do()
B, (x) = AT ¢ () ‘ (5)
NG pa()

It is easy to prove, e.g., see [34] for more details on these kernel methods, that
the Euclidean distance between the mapped points ®,,(x) and ®,,(y) in the



new space is

D2 (z,y) = a"™(z,2) + a"™(y,y) — 22" (z, ), (6)

which is exactly the diffusion distance between points x and y. (The selected
values for m and other parameters are presented in Section 4.)

In order to separate the geometry of the point cloud from its density, k(x,y)
is further normalized, [18],

k’(l’,y) =N N (7)

where p(z) := >, k(z,y), and k is used in Eq. (1) instead of k.

In this work, we first use the Gaussian kernel k(x,y) = exp(—||z — y||*/0?)
to define the affinity matrix, where o is the average of FKuclidean distances
between all pairs of points in the shape. As a result of using Euclidean distances
to define this affinity kernel, we have topological shortcuts in computing the
diffusion distance. This is illustrated in Figure 1, where some points on the
legs of the dog are so close to each other in terms of Euclidean distance that
the “shortcut” leads to an undesired (and incorrect) small diffusion distances
between the two adjacent back legs. One possible solution would be to reduce
the value of 0. However, with a small o, many points become isolated and
their diffusion distance to all other points becomes too large. To avoid such
shortcuts, we first compute the geodesic distance between all the points in
the shape, computation done using Floyd’s algorithm on the graph obtained
from connecting only a few nearest neighbors, 3-6 neighbors in our case (an
alternative technique is given in [22] which works directly on the point cloud).
Then, for each point = we find the set M(z) of g-nearest neighbors of z, in
terms of geodesic distance. Then, we define k(x, y) by a neighborhood filtering
as

(_|\z;2y|\2)

k) = € y & M) ®)
0 y & M(x).

See in Figure 1 how this addresses the shortcuts problem.

This concludes the presentation of the diffusion distance, and we now proceed
to present the basic concepts of the curvature classifier.



Fig. 1. In both pictures the colors show the diffusion distance for all the points
from a fized point in one of the legs of the dog (dark blue for small and dark red
for large values). The left picture shows the case without neighborhood filtering in
computing the diffusion distance, obtaining undesired shortcuts (see how the back
legs are considered close). In the right figure we observe how these shortcuts are
avoided by using the neighborhood filtering based on the geodesic distance. (This is
a color figure.)

2.2 Curvature Classifier

We now describe a local surface classifier introduced in [6], which will be used
to augment the discriminatory power of the diffusion and geodesic distances.
This classifier robustly distinguishes between smooth regions and edges or
corners. While the distributions of intrinsic distances and their ratio ignore
small parts on the shape which have high curvature, using the distributions of
a function of the curvature and a curvature weighted distance, as additional
signatures, helps in recognizing these parts.

If M is the considered surface and B.(z) is an Euclidean ball with radius e
centered at a point x, we define the zero moment of the e-neighborhood of x
as

MO () = / zdz, 9)

Be(z)NM

and its first moment as

M (z) = [p,@nu (@ — M (2)) ® (& — M (x))dx (10)
= Jp@ym @1 — M2 (x) ® M)(x)dz,

where y®z := (y;2;)ij=123. These moments are expected to be robust to noise,
and provide information about the curvature at z, using the eigenvalues of the
first moment and the zero moment shift defined as

T.(z) == M?(z) — z. (11)



For example, T, (z) scales quadratically with the filter width € in smooth areas
and linearly at corners and edges. The following function of these moments is
then used as a measure of curvature:

C -G <W> | (12)

€>\maac

where \,,;, and \,,q; are the minimum and maximum eigenvalues of the first
moment at point z, respectively. In particular, we consider G(s) = ﬁﬁsg,
with appropriately chosen o and (3. In our application, we have set o = .002
and 3 = 2000. The value of C.(x) will be close to é at smooth areas and
Ce(z) << é at corners and edges.

Having the basic concepts of intrinsic distances and curvature functions, we
now proceed to present the signatures derived from them and the proposed
recognition framework.

3 Recognition Framework

In this section, we present the signatures we use in order to recognize 3D
objects represented by point clouds, and the techniques for comparing between
these signatures in different shapes.

3.1 Characterizing Signatures

In this part, we present six characterizing signatures which, except for the
histogram of the geodesic distance, which has been used but for meshes, have
not been previously used in 3D object recognition.

Histogram of diffusion distance. As our first signature, we use the his-
togram of diffusion distance, motivated by the discussion in Section 2.1. Being
bending invariant, similar to geodesic distance, it has the advantage of being
more robust to noise since it exploits all the paths of fixed number of steps,
not only the shortest one as in geodesic distance.

Histogram of geodesic distance. As mentioned above, the geodesic dis-
tance is the length of the shortest path, constrained to the manifold, between
two points. Works such as those in [14,16] have used the histogram of the
average geodesic distance from a point to the rest as a signature for shape
recognition (primarily for meshes). This is motivated in part by the fact that
geodesic distances are the basic bending invariant features of the shape, and



thereby useful for non-rigid object recognition [23]. When compared with the
diffusion distance, the geodesic distance is more sensitive to noise, and it is
thereby used here to augment the other features, and not alone. We compute
this distance by Floyd’s algorithm, while we could also use the work in [22]
to compute it directly on the point cloud. To avoid shortcuts, we start with
three nearest neighbors in the neighborhood graph and increase it by one in
each step, until the constructed graph is connected or it reaches a maximum
number.

Histogram of the ratio between diffusion and geodesic distances. The
diffusion distance contains information about the “width” of the object in the
area connecting two points by considering the number of paths with a fixed
number of steps between them, in addition to their distance on the manifold.
Since the geodesic distance is the length of the shortest path between two
points, the ratio between the diffusion distance and the geodesic distance pro-
vides information about the average width in the path between the two points.
The histogram of this ratio is the third signature considered here. Since for
small geodesic distances, the ratio is too large, we have excluded the distances
that are smaller than a threshold. The threshold we use in our experiments
is three times the average of the smallest nonzero geodesic distance at each

point, and we remove all pairs of points with a geodesic distance less than this
threshold.

Histogram of a centrality measure. One of the characteristics of a point in
a 3D surface is its intrinsic centrality. We propose a new function to measure
the centrality of each point, which is the number of shortest paths (geodesic
curves) between all the pairs of points in the shape that include the specific
point (to avoid noise and the possible effects of non-uniformity of the samples,
we can average this number in a K-neighborhood of each point). We expect
higher values of this measure for points closer to the center or in the center of
narrow parts (for example, legs of the animals), and lower values for the end
points. In the proposed point cloud recognition framework, the histogram of
this measure for all the points in a shape is used as an additional signature.

Histogram of the curvature classifier. In our experiments, we noticed
that considering only the histograms of bending invariant distances neglects
the information in the small high curvature parts. This becomes more critical
for recognizing classes of 3D objects as in the results presented in Section 4, and
not just single bended representatives per class as in [10,23]. For this purpose,
we propose two additional new signatures, the histogram of the curvature
classifier described in Section 2.2, and the histogram of a curvature weighted
distance (see below for the description of this signature). Since there are a
lot of low curvature points in each shape and many high curvature parts are
caused by noisy or non-smoothly sampled manifolds, the part of the curvature
histograms corresponding to these very low or high curvature points is not



informative. Thus, disregarding them improves the results.

Histogram of a curvature weighted distance. Following the above discus-
sion about considering curvature as a distinguishing feature, we define a new
distance between points which gives larger weights to the points with higher
curvature. This curvature weighted distance is computed by accumulating a
linear decreasing function of the curvature classifier, explained in Section 2.2,
over the shortest paths between all pairs of points (natural geodesic). We use
the histogram of these distances as the last of the proposed signatures.

In Figure 2 we illustrate the diffusion distance, geodesic distance, their ratio,
the curvature weighted distance, and the curvature classifier, as well as the
centrality measure, for a few examples. In Figure 3, we present each one of the
six distribution/histogram-based signatures for some representative shapes.

Fig. 2. From left to right in each row: The value of the diffusion distances, geodesic
distances, their ratio, and the curvature weighted distance, from a point (dark blue)
to the rest of the 3D shape; followed by the value of the curvature classifier and
the centrality measure for all points. Dark blue represents small values and dark red
large values. (This is a color figure.)

3.2 Signatures Comparison

To conclude the description of the global shape recognition framework, we
must describe how we combine and compare the above mentioned histograms.
In order to compare two histograms, which are automatically normalized to
compensate for the shape scale, we tested different distance measures, such as
L, and L, norms, 2, correlation coefficients, and the Jensen-Shannon diver-
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Fig. 3. All sixz histograms are shown following the respective shapes. The histograms,
from left to right, are presented in the order described in the text. Colors on the
shapes correspond to the geodesic distance from one point on the shape to the rest.
(This is a color figure.)

gence (JSD), which is the symmetric and smoothed version of the Kullback-
Leibler divergence. The best results were obtained for the x? measure, followed
by the JSD. Therefore, in our results, we have used the y? measure between
two normalized Z-bins distributions, h; and h;, which is given by

Having the basic way to compare pairs of histograms, now we need to combine
the distance metric for the six signatures presented in the previous section
in order to obtain the “dissimilarity” between two shapes. For the results
presented in Section 4, we multiply the six distances obtained for each one
of the six different histograms. This leads to better results than, for example,
considering multidimensional histograms of two or more features.

As detailed in the next section, this simple distance between histograms al-
ready leads to state-of-the-art results. In the future we plan to further investi-
gate replacing the y? by other metrics, and also other ways of combining the
signatures, including automatically learning the weights and relevance of each
one of them.

11



4 Experimental Results

In our experimental results, for comparison, we use 3D shapes from the same
database tested in [14], which is the combination of two different databases,
part of the Princeton Shape Benchmark (PSB), [35], and ISDB. These two
databases consist of 22 categories, overall. We also present the results tested
on a nonrigid 3D database (NR) [4].

We have a total of 635 shapes from 27 categories in the three databases.
Since our proposed recognition techniques do not rely on the connectivity
information in these triangulated data, we first converted them to point clouds.
We have uniformly sampled 3000 random points from vertices of each shape,
using the maxmin sampling method in [8], after subdividing the triangles using
the Graph toolbox in MATLAB [32]. Even if the point samples of a shape are
non-uniform but large enough, 3000 points can be uniformly sampled without
loss of generality for originally non-uniform point clouds. We have used m = 50
for the number of steps of the path in the diffusion distance, g = 100 nearest
neighbors to find M(z) in Eq. (8), and only the 6 largest eigenvalues of A. In
computing the curvature function, we used 8 nearest neighbors for each point
and defined € as the maximum Euclidean distance to the 8-th neighbor of all
points. Since the maximum value of the curvature classifier is 500 (based on
the selected values of a and /3), in computing the curvature weighted distance,
we use the curvature classifier subtracted from 500 at each point, as the actual
curvature function. All six histograms have 50 bins. For the curvature classifier
histogram, considering only the last 40 bins leads to better recognition, as
discussed in Section 3.1.

In order to evaluate the effectiveness of the different signatures and methods,
we first find the similarity measure between each pair of shapes by applying
each signature to form a square matrix of dissimilarity values. We use the
following three criteria for the recognition performance:

Nearest neighbor: The percentage of the cases where the query belongs to
the same category as its closest match (not considering the query itself).

First tier: The percentage of the shapes in the same category as the query
that are among its U closest matches, where U + 1 is the total number of
shapes in the corresponding category.

Second tier: This value is the same as in the first tier with the difference
that now the 2U closest matches are considered.

The percentages presented here are the average values of these measures over
one category or the whole dataset. Although, the commonly used first and
second tiers are good criteria for evaluating recognition methods when the

12



intraclass variability is low, it can be a misleading measure when there is a
lot of variability in the classes. For example, based on the signatures used for
recognition, a square chair without handle can be more similar than a round
table to a square table. In this case, assume we have the same number of square
chairs, square tables, and round tables in the database; and the tables are all
in the same category. In this situation, since the chairs are closer matches to
square tables than the round tables are, the first tier of square tables can be
close to 50%. On the other hand, if the tables are categorized in two different
categories, with exactly the same signatures, the first tier for square tables
can be increased to 100%. This discussion shows that the amount of intraclass
variability in different databases makes a big difference in values of tiers. The
PSB database, that is reported here, has a large intraclass variability in many
of the categories, and the ISDB and NR databases have lower variability within
each class. Thus, lower values for tiers is expected in the PSB dataset.

In Table 1, the results of using each signature as well as some combinations of
them over the three datasets are presented. For comparison, we also included
the results obtained when using the histogram of the average geodesic distance
from each point to every other point, which was used in [14,16] for meshes.
Among the single signature methods, the best result, considering the best
match, is obtained by the proposed diffusion distance, and the best overall
result is obtained by combining our proposed six signatures. In Figure 4, the
best matches given by combining these six signatures are presented for six
representative shapes.

In Table 2, the results for some of the objects categories by using the proposed
global comparison (DCRGcDP) and the state-of-the-art CDF method [14],
over the whole dataset used in [14], are presented. In the table, we present
the results for some of the 22 classes, containing all the ones reported in [14].
In [14], the authors use, as the signature, a two dimensional histogram of the
combination of the average geodesic distance (which as shown in Table 1 is
not as good as diffusion distance), and a measure of diameter of the shape
around each point over the triangulated data.

We observe that the overall performance of our method, considering the best
match, over the whole dataset is better than the performance of the CDF
method, which reported state-of-the-art results at the time of publication. One
can observe that in both techniques, the categories of “humans,” “horses,” “hu-
man hands,” and “furniture” have the highest correct recognition rates. We
have noticeably better results in categories of “airplanes,” “humans,” “ships,”
“furniture,” and “fishes,” showing that our proposed descriptors better capture
the intrinsic characteristics of those classes. Having a very diverse collection
of models, the classes “chairs,” “tables,” “insects,” and “helicopters” show
lower performance. Finally, note that unlike most algorithms reported in the

literature, including [14], we do not rely on the neighborhood information in

13



Total (635) ISDB (106) PSB (331) NR (148)
BM FT ST | BM FT ST |BM FT ST | BM FT ST
D 68% 32% 47% | 92% 59% 68% | 56% 29% 44% | 89% 63% 81%
G 57% 32% 48% | 7A% 45% 65% | 52% 32% 47% | 9% 45% 66%
mG 52% 29% 45% | 82% 52% 73% | 47% 29% 44% | 73% 42% 65%
R 57% 26% 42% | 5% 45% 60% | 43% 24% 38% | 86% 58% 74%
C 43%  28% 43% | 69% 49% 68% | 40% 23% 31% | 81% 57% 76%
D 50% 24% 38% | 71% 45% 63% | 3% 20% 32% | 84% 55% 72%
P 28% 19% 33% | 52% 36% 56% | 31% 23% 39% | 24% 20% 41%
DC 2% 35% 51% | 91% 66% 74% | 60% 30% 46% | 91% 67% 83%
DR 66% 32% 46% | 87% 56% 67% | 51% 29% 43% | 88% 63% 80%
DG T1% 39% 55% | 89% 59% 71% | 62% 35% 50% | 91% 66% 82%
DRC 73% 35% 51% | 92% 63% 73% | 60% 32% 47% | 90% 66% 2%
DGR 74% 38% 54% | 88% 60% 71% | 62% 36% 49% | 94% 66% 82%
DCRG 78% 40% 56% | 91% 66% 75% | 68% 38% 51% | 95% 69% 83%
DCRGcD | 79% 38% 54% | 94% 68% 77% | 68% 36% 50% | 95% 69% 82%
DCRmGcDP | 78% 36% 50% | 97% 71% 79% | 68% 33% 49% | 93% 61% 82%
DCRGcDP | 80% 38% 53% | 95% 70% 79% | 71% 31% 51% | 95% 69% 82%

Table 1

Effectiveness of each one of the six signatures (plus average geodesic) and some
of their combinations, evaluated with the global comparison method over the three
datasets: ISDB, PSB, NR, and the combination of all of them (Total). In the table,
D stands for diffusion distance, G for geodesic distance, mG for average geodesic
distance, R for ratio of diffusion and geodesic distances, P for the centrality sig-
nature, C for curvature classifier, and cD for the curvature weighted distance. The
evaluation measures presented here are best match (BM), first tier (FT), and second
tier (ST).

the triangulated data. This lack of information leads to lower recognition in
some categories, for example “cats,” when the cat is seated. Overall, recogniz-
ing point-clouds is significantly more challenging than working with meshes,
while we still obtain state-of-the-art results when compared to mesh-based
approaches.

In Table 3, values of best match, first tier, and second tier are presented for the
databases ISDB and PSB and their combination (Total), for four methods: DCRGcDP,
CDF, Light Field Descriptor (LFD), and Spherical Harmonics (SH), based on the
results reported in [14]. Light Field Descriptor (LFD) and Spherical Harmonics (SH)
are two out of the three top performing descriptors for PSB as described in [35].
Among all the four methods, we have the second best overall results, considering
the best match. As discussed above, the tiers corresponding to PSB database with
larger amount of intraclass variability are lower than the tiers corresponding to the
ISDB database. Recall that our results are for the more challenging point cloud 3D
data representation, while the other algorithms are reported on meshes.
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Table 2

Recognition results for both DCRGcDP and CDF matching methods for some of
the 3D object categories, where the recognition is among all the shapes in PSB and

Best | First | Second
Match | Tier | Tier
Planes (29) | DCRGcDP | 76% | 26% | 37%
CDF 45% 25% 44%
Humans (134) | DCRGcDP | 99% | 60% | 89%
CDF 88% 57% 84%
Horses (16) | DCRGcDP | 8% | 64% | 73%
CDF 94% 68% 85%
Hands (33) | DCRGceDP | 8% | 48% | 58%
CDF 82% 67% 76%
Insects (20) | DCRGeDP | 60% | 17% | 24%
CDF 1% 23% 34%
Chairs (33) | DCRGeDP | 58% | 18% | 30%
CDF 45% 20% 34%
Ships (21) | DCRGeDP | 67% | 19% | 25%
CDF 24% 11% 20%
Guns (7) | DCRGeDP | 71% | 20% | 35%
CDF 1% 40% 50%
Furniture (19) | DCRGceDP | 89% | 37% | 56%
CDF 63% NA NA
Fishes (26) | DCRGceDP | 81% | 37% | 48%
CDF 65% NA NA
Birds (20) | DCRGeDP | 40% | 18% | 23%
CDF 30% NA NA
Total (487) | DCRGeDP | 76% | 38% | 53%
CDF 1% | 45% 63%

ISDB datasets used in [14).
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Fig. 4. Results of shape retrieval for the global recognition algorithm using all six
histogram-based signatures. The first column on the left shows the query models, and
the other figures on each row show the top eight matches. (This is a color figure.)

5 Discussions, Local Analysis, and Conclusions

In this paper, we introduced a new framework for 3D object recognition from point
cloud data. The proposed 3D signatures are derived from the distribution of the
pairwise diffusion distances, the distribution of the pairwise geodesic distances, the
distribution of the ratio between these two distances, the distribution of a centrality
measure, the distribution of a curvature classifier, and the distribution of a curvature
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Total (487) ISDB (106) PSB (381)
BM FT ST | BM FT ST |[BM FT ST
DCRGcDP | 76% 38% 53% | 95% 70% 79% | 71% 37% 51%

CDF | 71% 45% 63% | 100% 98% 100% | 65% 40% 58%

LFD | 79% 42% 59% | 73% 44% 62% | 87% 47% 62%

SH 5% 37% 54% | 8% 47% 64% | T1% A41% 57%

Table 3
The overall results of the four methods, DCRGcDP, LFD, SH, and CDF), tested on
ISDB and PSB databases and their combination (Total) is presented.

weighted distance. The use of intrinsic distances and their distributions is supported
by theoretical work as well as by extensive experimental results in both the 3D shape
recognition and image analysis literature. Although the distribution of geodesic
distances has been used before for 3D recognition of triangulated surfaces (not
point clouds as here reported), the other signatures have not been incorporated in
prior art.

Since the information in the signatures (histograms) defined on the whole shape
is global, it might ignore some important local information for identification. It is
thereby reasonable to compute the signatures more locally. In addition, in practical
scenarios where occlusions (or partial acquisition) are present, there is a need for
more local signatures. We extend the global framework to (semi-)local recognition
by considering overlapping patches (similar to the idea in [25]). Patches, originally,
are 50 sets of the 300 closest, in the geodesic sense, points to 50 center points,
sampled from the shape by the maxmin sampling method [8]. Then, all the patches
with more than 70% overlap are joined as one patch. These patches become nodes
in a graph, with attributes given by the six histograms described in Section 3.1,
and edges encoding the spatial relationship between the patches (connecting the
nodes corresponding to two neighboring patches). The edge weights are the geodesic
distances between the two corresponding center points, computed on the whole
shape. Then, we apply a graph comparison algorithm, following in part the work
introduced in [29] for shape recognition in video. We have applied this method
over a dataset of 119 shapes from the Princeton Shape Benchmark (PSB), [35],
and SCAPE pose and body shapes data [1], and the preliminary overall obtained
results where comparable to the global point cloud 3D shape recognition method
introduced in this paper. In categories such as tables, human hands, and insects, the
graph method produced better results; while for cars, planes, and horses, the global
method lead to better results. One of our ongoing objectives is to further improve
the graph comparison method and to use it in partial matching applications.

We are also considering combining the framework here proposed with topological
techniques, e.g., [36], in particular to address diverse classes such as chairs.

We have started to experiment with more advanced classification methods from the
learning community, applying them to our signatures, e.g., SVM, which have been
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very successfully used in the image recognition literature. Preliminary results are
encouraging, since straightforward use of SVM produces similar results to the 2
metric. Results in all these direction will be reported elsewhere.
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