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Sparse Representations for Image Classification:
Learning Discriminative and Reconstructive

Non-Parametric Dictionaries

Fernando Rodriguez and Guillermo Sapiro

University of Minnesota

December 2007

Abstract. A framework for learning optimal dictionaries for simulta-
neous sparse signal representation and robust class classification is in-
troduced in this paper. This problem for dictionary learning is solved
by a class-dependent supervised simultaneous orthogonal matching pur-
suit, which learns the intra-class structure while increasing the inter-class
discrimination, interleaved with an efficient dictionary update obtained
via singular value decomposition. This framework addresses for the first
time the explicit incorporation of both reconstruction and discrimina-
tion terms in the non-parametric dictionary learning and sparse coding
energy. The work contributes to the understanding of the importance of
learned sparse representations for signal classification, showing the rel-
evance of learning discriminative and at the same time reconstructive
dictionaries in order to achieve accurate and robust classification. The
presentation of the underlying theory is complemented with examples
with the standard MNIST and Caltech datasets, and results on the use
of the sparse representation obtained from the learned dictionaries as
local patch descriptors, replacing commonly used experimental ones.

1 Introduction

The study of sparse representations has become a major field of research in signal
processing. Efforts have been focused mainly on the development of theoretical
frameworks (e.g., [2, 5]), algorithms to efficiently perform sparse coding (e.g., [4,
8, 21]), learning of overcomplete sets of vectors denoted as dictionaries (e.g., [1,
23, 28]), and applications in image processing (e.g., [6, 20, 28]). Sparse represen-
tations over non-parametric learned dictionaries lead to state-of-the-art results
for image enhancement [20].

Since originally trained to contain sufficient information for reconstruction,
sparse representations are, from the point of view of signal classification, a re-
constructive approach. This provides representations that are relatively robust
against distortions and missing data. On the other hand, discriminative methods
have as criteria the classification performance itself, an element that has not been
significantly addressed yet in the sparsity (non-parametric) dictionary learning
community and that constitutes one of our key contributions in this work. Dis-
criminative methods often outperform reconstructive ones in ideal conditions,
but lack robustness.
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Our proposed framework introduces a novel metric which includes both re-
construction and discrimination terms in the dictionary learning process, ben-
efitting from the best of both discriminative and reconstructive worlds. This is
incorporated into a new energy, inspired by the framework put forward in [1,
20], leading to the learning of adapted dictionaries and sparse discriminative and
reconstructive image representations with them. These learned dictionaries pro-
vide robust discriminant representations through adaptation to the dataset. Our
proposed framework is based on the concept of obtaining simultaneous sparse
decompositions within each class, so as to extract its internal structure, while
keeping a global discrimination term among different classes. Such explicit and
efficient incorporation of the task (classification) into the dictionary learning for
sparse coding is unique and a key novelty of the proposed work.

1.1 Related Work and Our Contribution

Huang and Aviyente, [11], proposed the marriage of discrimination and recon-
struction in sparse image representations, introducing a novel discrimination
term into the classical reconstructive energy formulation of sparse coding. Their
approach proved to yield robust and discriminant image representations through
an intrinsic dimensionality reduction. In contrast with our proposed framework,
there is no dictionary learning in [11], and they use pre-defined dictionaries and
sparse coding over them. As shown below, and it is further supported by the im-
age processing literature on non-parametric dictionary learning, adapted learned
dictionaries outperform off-the-shelf ones. Effrosyni and Frossard introduced a
similar algorithm [14], which they named Supervised Simultaneous Orthogonal
Matching Pursuit or SSOMP. Simultaneous sparse decompositions, which are
applied to the whole dataset/class at once, are proven to be essential in order
to extract the structure of a class and to help capturing its intrinsic variability.

LeCun et al. introduced an algorithm for learning sparse representations,
based on a energy model, through a linear coder and a linear decoder [26, 27].
This is based on a (coordinate) sparsifying logic quite different from our princi-
ple of sparse coding. The work includes a complex neural network, with multiple
layers and training steps. The dictionary design and neural network training are
based on different criteria, it is not clear how much of the outstanding perfor-
mance is due to each part. No results are given concerning robustness, which
are needed to verify weather the properties from sparse coding have been inher-
ited. Our objective is learning representations that by themselves are discrimina-
tive and robust, leading both to different energy formulations and optimization
techniques. We include explicit discriminative terms, which are absent in the
framework in [26, 27], in addition to the reconstructive one.

Lazebnik and Raginsky recently introduced an elegant dictionary learning al-
gorithm based on Information Loss Minimization [16]. It learns a codebook with
the objective of obtaining a quantization that does not cause high distortion and
at the same time keeps nearly all the information about the class of the original
signal. There is no explicit discrimination constraints, although classification is
the main goal. Leibe and collaborators, e.g., [7, 17], have proposed in a series of
leading works the use of learned dictionaries, these obtained from clustering of
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image patches, without explicit sparsity, reconstruction, and/or discrimination
requirements. Sparsity also has been recently incorporated into a very interest-
ing robust face recognition framework by Ma et al., [32], motivated by the work
on compressed sensing and random projections. This work does not explicitly
enforce reconstruction and/or discrimination neither it learns adapted dictio-
naries. In [9] and companion papers, the authors develop an efficient l1-based
optimization approach for learning dictionaries for sparse representation, much
of the spirit of [1], again with an energy tuned to reconstruction only, and use
the coefficients of the overcomplete representation for classification. The min-
imal reconstruction error from multiple generative-only dictionaries, each one
independently learned for a different class, is used in [25] for classifying tex-
tures. Finally, we should mention that the work on epitomes, [12], provides a
different generative-only model for learning dictionaries that can also be used
for recognition [15].

Contributions: In contrast with previous approaches, the framework here
proposed learns a non-parametric dictionary which is efficient for sparsely rep-
resenting a signal and at the same time performing class discrimination. Such
dictionary and sparse representation are derived from the efficient minimiza-
tion of an energy that explicitly includes these critical components. This novel
classification framework can be seen as a deviation and step forward from ap-
proaches that either use off-the-shelf dictionaries and features (e.g., [11, 18, 22,
31]), or learn dictionaries without explicit discrimination and/or reconstruction
goals (meaning they obtain or learn dictionaries with a criteria that often does
not explicitly include the actual application and performance criteria). Although
such alternative approaches have performed outstandingly, their actual optimal-
ity, performance, and limitation studies have been purely experimental. The
underlying idea behind our proposed framework is to start gearing toward the
design of feature detectors and non-parametric dictionaries that are designed
and optimized for the task at hand.

2 Learning Dictionaries for Representation and
Discrimination

We now build, step-by-step, the proposed framework for learning discriminative
and representative non-parametric dictionaries.

2.1 Supervised Sparse Coding

For sparse coding, we will extend, by adding discrimination power, the Simul-
taneous Orthogonal Matching Pursuit (SOMP) algorithm, see [24, 29, 30] for de-
tails and theoretical results on this greedy technique. Given a dictionary matrix
D ∈ Rn×K (which we will later learn), that contains K atoms {dj}Kj=1 ∈ Rn
(K ≥ n), and a set of signals {xj}sj=1 ∈ Rn, SOMP attempts to represent these
signals at once as a linear combination of a common subset of atoms of cardi-
nality much smaller than n (sparse representation). Under the assumption that
those signals belong to a certain class, SOMP attempts to extract their common
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internal structure. By keeping the sparsity low enough, the internal variation of
the class could be eliminated, leading to more accurate classification while being
robust to noise. After adding classification terms into SOMP, see next, we will
explicitly use these coefficients of sparse representation, over a discriminative
learned dictionary, for classification.

To further increase the inherent discriminant capacity of SOMP, we will next
incorporate into SOMP a discrimination measure inspired by linear discriminant
analysis (LDA) (on top of the original reconstruction component, see also [11,
14]), the quotient of the l2 norms of the corresponding scatter matrices. Given
c sets of vectors, each one representing one class, {αji}

nj

i=1 with j ∈ {1, ..., c} and

αji ∈ RK, we propose as linear discrimination measure J
({
{αji}

nj

i=1

}c
j=1

)
:=

trace(SB)
trace(SW )+µ , where SB and SW are the standard between-classes and within-
class scatter matrices and µ is a regularization parameter.1

Following the introduction of the discriminative measure J(·), the originally
purely reconstructive objective of SOMP is modified incorporating this discrim-
ination measure over the sparse representation coefficients {{αji}

nj

i=1}cj=1 corre-
sponding to each one of the c classes. For a dictionary {dj}Kj=1 and a set of
indices

∧
, let Φ∧ ∈ Rn×|∧ | be the matrix whose columns are the di, i ∈

∧
. Let

{xji}
nj

i=1 be the signals form the j-th class, j ∈ {1, ..., c} (e.g., images in column
representation), and X the matrix with columns {{xji}

nj

i=1}cj=1. We state the
Simultaneous Sparse Discriminant Problem as

max∧
,|

∧
|≤L

{
θ · J((ΦT∧Φ∧)−1ΦT∧X︸ ︷︷ ︸

ℵ

)− ‖X−Φ∧ (ΦT∧Φ∧)−1ΦT∧X︸ ︷︷ ︸
ℵ

‖2F
}
. (1)

Here, L is the sparsity factor indicating how many atoms are used to represent
the signals, ℵ is simply the orthogonal projection of the signal onto the selected
set Φ∧, and θ is a parameter that controls the trade-off between the discrimi-
native term (first component of (1)) and the reconstruction term (second com-
ponent of (1), where ‖ · ‖F stands for the Frobenius norm, and only one present
in the original SOMP). θ is dynamically updated (see also [14]).2 We propose
a greedy approach to address this optimization, denoted as Supervised SOMP
(SSOMP), see Figure 1 (in the following we omit the dynamic dependency of θ
in the notation).

Considering that the sparsity coefficients are αji = (ΦT∧Φ∧)−1ΦT∧xj
i, the cor-

responding scatter matrices of {{αji}
nj

i=1}cj=1 and {{xji}
nj

i=1}cj=1 verify
SA(α) = (ΦT∧Φ∧)−1ΦT∧SA(x)Φ∧(ΦT∧Φ∧)−1, where A ∈ {B,W}. Under the
assumption that the degree of correlation is low, (ΦT∧Φ∧)−1 can be approxi-
mated by the identity and thus we decompose the contribution of each vector,
1 Ideally, we would like to use the product of the positive eigenvectors of those matrices.

Since the determinant is zero (c < n), it is not possible to use it. We then chose the
summation to yield our discrimination term.

2 θ(t) ←− θ · 1
K

∑c
j=1

∑nj

i=1

∑K
p=1 | < r

j,(t−1)
i ,dp > |, with r

j,(t−1)
i being the previous

residual, Figure 1.
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Input: dictionary D ∈ Rn×K , signals
{
{xji}

nj

i=1

}c
j=1

, sparsity level L.

Convention: Φ0 is an empty matrix.

Output: reconstruction
{
{x̂j

i}
nj

i=1

}c
j=1

, sparsity coefficients
{
{αji}

nj

i=1

}c
j=1

.

SSOMP:

1. Initialize the residuals r
j(0)
i = xji ,

∧
0 = ∅, t = 1.

2. Find the index λt (break the tie deterministically when needed) that solvesa

λt = argmax
p=1,...,K

{
c∑
j=1

nj∑
i=1

|〈rj,(t−1)
i ,dp〉|+ θ · J

({
{< r

j,(t−1)
i ,dp >}

nj

i=1

}c
j=1

)}

3. Update sets
∧
t =

∧
t−1

⋃
{λt} , Φt = [Φt−1,dλt ].

4. Compute new coefficients (sparse representations), reconstructions, and residu-
als

α
j,(t)
i = argmin

α
‖xj

i −Φtα‖2 = (ΦT
t Φt)

−1ΦT
t xj

i,

x̂
j,(t)
i = Φtα

j,(t)
i , r

j,(t)
i = xj

i − x̂
j,(t)
i

5. t = t+ 1. If t ≤ L go back to 2.

6. Return estimates x̂
j,(L)
i , coefficients α

j,(L)
i , indices

∧
L

a Next best coefficient/atom to simultaneously provide good reconstruction and
good discrimination.

Fig. 1. Supervised SOMP (SSOMP).

trace(SA(α)) ≈
∑L
i=1 dT

λi
SA(x)dλi

, where, as in Figure 1,
∧

= {λ1, ..., λL}. This
quantity can be greedily calculated. Furthermore, to yield a better estimate, we
evaluate each one of the summation terms in this expression over the residuals,
so that the non orthogonality is better taken into account. This is equivalent
to the way that classical OMP treats correlations in the orthogonal projection
to evaluate the reconstruction error. Furthermore, it is equivalent to applying
a one-dimension dimensionality reduction over the residual, so that we can di-
rectly use J , as stated in the algorithm. Finally, note that there is no need to
build any matrix explicitly, since it can be directly evaluated.

2.2 Class Supervised SOMP

The SOMP extracts the common coherent internal structure of a given class.
However, when dealing with signals from different classes, this coherence does
not exist any more. Thus the number of atoms needed to give a proper char-
acterization of all the classes with SOMP is larger than that needed for each
class individually. As a consequence, the representation captures more of the
intra-class variance, decreasing the classification performance. Performing one
independent SOMP per class, and joining the sets of atoms selected could be
even worse, since there may well be a minimum common structure among the
classes and redundancies could arise, giving rise to problems such as multiple
representations. This fact is critical when the atoms have been trained for re-
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construction tasks, since a small number of them can highly accurately describe
the signals.

In order to achieve the goal of seeking internal structure within each class
and at the same time global discrimination among the classes, we propose the
Class Supervised SOMP (CSSOMP) algorithm in Figure 2. The reconstruction
term is treated class per class, whereas the discrimination one is always global.

Now that we know how to sparsely encode signals to simultaneously achieve
discrimination and reconstruction (thereby robustness), it is time to optimize the
dictionary to the data and task, bringing an additional novelty to the framework.

Input: dictionary D ∈ Rn×K , signals
{
{xji}

nj

i=1

}c
j=1

such that ∀i, j xj
i ∈ Rn, and

sparsity level L.
Output:

{
{x̂j

i}
nj

i=1

}c
j=1

,
{
{αji}

nj

i=1

}c
j=1

, selected set Γc.

CSSOMP:

1. Initialize the class counter q = 1 and Γ0 = ∅.
2. Selection of L vectors according to the structure of the class q.

1.q. Initialize the residuals r
j(0)
i = xji , the index set

∧q
0 = ∅, and the iteration

counter t = 1.
2.q. Find the index λqt that solves (break the tie deterministically when needed)

λqt = argmax
p=1,...,K

{ nq∑
i=1

|〈rq,(t−1)
i ,dp〉|︸ ︷︷ ︸
Class−q

+θ · J
({
{< r

j,(t−1)
i ,dp >}

nj

i=1

}c
j=1

)
︸ ︷︷ ︸

Global

}

3.q.
∧q
t =

∧q
t−1

⋃
{λqt}, Φq

t = [Φq
t−1, dλq

t
].

4.q. Compute new sparsity coefficients, reconstructions, and residuals

α
j,(t)
i = (ΦqT

t Φq
t )−1ΦqT

t xj
i

x̂
j,(t)
i = Φq

t · α
j,(t)
i r

j,(t)
i = xj

i − x̂
j,(t)
i

5.q. t = t+ 1. If t ≤ L go back to 2.q..

6.q. For the class q the estimates are x̂
q,(L)
i and it’s coefficients of sparse rep-

resentation are α
q,(L)
i .

3. Save only x̂
q,(L)
i and α

q,(L)
i ∀i ∈ {1, ..., nq}

4. Γq = Γq−1

⋃∧q
L, q = q + 1. If q ≤ c go back to 2.

5. Return

Fig. 2. Class Supervised SOMP (CSSOMP).

2.3 Learning the Dictionary: The Complete Model

In order to learn dictionaries that are also discriminant, we define the Sparse
Discriminant Dictionary Problem:

max
D,α

{
θ · J

({
{αji}

nj

i=1

}c
j=1

)
−

c∑
j=1

nj∑
i=1

‖xj
i −Dαj

i‖
2
2

}
, (2)
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subject to ‖αji‖0 ≤ L, ∀i, j. In contrast with the energies in previous sections,
the optimization is both over the dictionary D and the sparse representation
over it, α. If θ = 0, we obtain the reconstruction only formulation in [1].

To address this optimization problem, we extend the K-SVD, an algorithm
for learning overcomplete non-parametric dictionaries for sparse representation
[1]. Its objective is to design a dictionary such that the reconstruction error over
a set of signals, when coded sparsely, is minimal. This is achieved through an
iterative process which alternates a Sparse Coding stage which follows the clas-
sical OMP, and a Dictionary Update stage derived from simple SVD (each atom
is updated to improve the reconstruction of those signals that use it). Our pro-
posed algorithm modifies the Sparse Coding Stage, which is now performed by a
CSSOMP instead of OMP, adding the discrimination component, and obtaining
the Supervised K-SVD (SKSVD), Figure 3.

Input: initial dictionary matrix D(0) ∈ Rn×K , signals
{
{xji}

nj

i=1

}c
j=1

, sparsity

level L.
Output: trained dictionary D and sparse representation α.
SKSVD: Set J = 1. Repeat until convergence:

– Sparse coding stage: Use CSSOMP to compute the sparse representation co-

efficient vectors
{
{αji}

nj

i=1

}c
j=1

for each signal
{
{xji}

nj

i=1

}c
j=1

.

– Dictionary Update Stage: For each column k = 1, ...,K in D(J−1) update by
- Define the group of examples that use this atom ωj := {i|1 ≤ i ≤
K,αkT (i) 6= 0}

- Compute the overall representation error matrix, Ek := X−
∑
j 6=k dj · αj

T.
- Restrict Ek selecting only the columns corresponding to ωk and obtain

ER
k .

- Apply SVD decomposition ER
k = U4VT. Select the updated dictionary

column d̂k to be the fist column of U. Update the coefficient vector xkR
to be the first column of V multiplied by 4(1,1).

a

– Set J = J + 1

a This step minimizes the reconstruction error for the group of signals correspond-
ing to ωj .

Fig. 3. Supervised K-SVD (SKSVD).

The proposed CSSOMP permits to maximize the energy according to all of
the αji , keeping in mind the global aspect of the discrimination term. At the
same time we incorporate the prior of a coherent structure in a class. This is not
only obtained through the simultaneous decomposition of each class, but also
from the transmission of the information between both coding and dictionary
update stages. All signals from the same class will use the same atoms, and thus
the Dictionary Update Stage accounts for the general internal structure of the
class (specially if the sparsity is kept small compared to the dimension).3

3 Explicitly incorporating an additional discrimination term into the dictionary update
step is the subject of parallel efforts, [19].
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Since the proposed framework permits the use of common atoms by multiple
classes, the inner common structures of the whole ensemble of atoms will be
learned by those atoms used by multiple classes. Finally, compared to selecting
a set of atoms simply through CSSOMP, the learning will adapt to any desired
amount of atoms, being fixed at first, so that we force during the learning stage
the use of atoms by multiple classes. We have thereby eliminated the problem
of divergence of supports.

3 Experimental Results

Experimental analysis to demonstrate the importance of learning discrimina-
tive and representative (non-parametric) dictionaries has been first carried out
with the standard MNIST Handwritten Digit Database, n = 16 × 16 = 256
dimensional vectors. This is done to demonstrate the importance of the pro-
posed framework, and in particular of learning non-parametric dictionaries that
reconstruct and discriminate. We then show results on natural images.

The classification tasks have been performed using linear SVMs on the sparse
representation coefficients (see also [9]), coherently with our criteria. In partic-
ular we have used the implementation in [3] and a multiclass one-against-one
strategy [10]. Following [13], and given the large amount of data, parameters
and accuracies have been estimated through 10-fold Cross-Validation. SVMs are
trained in noiseless conditions and tested over corrupted data. Then, the robust-
ness comes from the representation itself.4

The particular dictionaries used in the test are: (1) union of DCT and Haar
basis (511 total atoms), which are very well adapted to this database; (2) KSVD
learned dictionary of size 1031 and sparsity L = 4 (no discrimination compo-
nents); and (3) the introduced SKSVD learned for dimension (total number of
atoms) 50 and sparsity L = 15, yielding an under-complete system. Dictionaries
are learned with 20000 images and the different algorithms are tested with about
9000 images.
The Need for Simultaneous Decompositions- The first idea we could have
is to directly use the coefficients of a sparse decomposition through OMP for clas-
sification, under the hypothesis that different classes will have different supports.
Unfortunately, this does not hold. First of all, a sparse representation over over-
complete dictionaries has the problem of multiple representations. Through the
SOMP we reduce the size of the dictionaries (to 50), thereby addressing this first
problem. Even then, for all of the dictionaries, the distribution of Hamming dis-
tances among supports (α-s) is very similar within one class and between classes.
Even worse, the average distance is close to the maximum possible. Learning
the dictionary with KSVD, and in particular with the proposed SKSVD, yields

4 There is a link between SVMs feature selection techniques and our discrimination
term. This could be interpreted as incorporating the F-Score criteria itself in the de-
sign of the dictionary. However, those techniques do not take into account possible
correlations between variables and reconstruction properties, SVMs is a discrimina-
tive approach.
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significantly better results than the fixed dictionary one, but this is still not
sufficient for classification.

The underlying problems are the non ideality of OMP and the over-completeness
of our dictionaries. Consider the images for the class corresponding to the num-
ber “1.” There may well be 15 atoms of the KSVD dictionary that describe the
ensemble accurately and show the internal coherence within the class. However,
when one performs an OMP decomposition for a single number “1,” the over-
completeness of the dictionaries and their good reconstruction capacity may well
drive the greedy selection towards different atoms tailored specifically for it. This
is illustrated in Figure 4 for the DCT+Haar dictionary. In the case of OMP, after
5 atoms, the algorithm selects highly localized Haar atoms, in order to describe
small details. The reconstructions are not natural and focus on certain areas
of the images. Details are important for reconstruction, but not necessarily for
classification, since they are often associated to the intra-class variation. How-
ever, in the case of SOMP over two classes together (Figure 4-center), and each
one of them separately (Figure 4-bottom), all the atoms are dedicated to the
general shape, mostly DCTs. The reconstructions are blurred, with no details,
but keep the essential structure of the number/image (class). They achieve the
extraction of the common internal structure. This is why simultaneous decom-
position is so important in classification. The difference between SOMP global
and per-class is not very high in this particular example since there are only two
classes. Nevertheless, it is remarkable that for the per-class over “1”-s, instead
of selecting as first atom the DC one, it selects a DCT that has the shape of a
vertical stroke.

The sparsity has to be kept small not to capture those intra-class variations
associated to details and, at the same time, the maximal number of atoms that
could be selected is c · L. Previous arguments show that as a matter of fact the
number should be much smaller than this quantity. Since multiple representa-
tion is a major concern, we train highly under-complete dictionaries. Once those
atoms (dictionary) are selected, multiple characterizations could then be envi-
sioned, such as correlation with those atoms, OMP with fixed error instead of
sparsity, and OMP with fixed sparsity. Even when the set is under-complete, the
problem with OMP remains and correlation does not do better. The right de-
scriptor are then the coefficients of orthogonal projection over the span of those
atoms.5 In fact, our criteria treats the intra-class variations as noise, trying not
to capture them in the selected subset of atoms. Orthogonal projection follows
this objective and unifies the representation.
Robustness of the Framework- In order to study the robustness of our ap-
proach and to compare it with the fixed dictionary, we test the classification
performance, for the MNIST data, under noisy (additive Gaussian noise) and
random occlusion conditions. For each dictionary we obtain 9 different repre-
sentations (for the different types of dimensionality reduction), with dictionary
sizes of 15, 30, and 50, both for the SOMP and SSOMP (θ = 1.5 and θ = 2).
5 There is an interesting link with the work on the Dantzig Detector [2]. Under noisy

conditions, this detector is used in sparse representation to first select the atoms
whose representation coefficients are not zero, and then projects the signal orthogo-
nally over their span, as we do here. This increases the performance of the algorithm.
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Fig. 4. OMP vs SOMP vs Class-SOMP for a fixed dictionary. Left: test images. Top-
center: atoms selected by OMP for the images of zeros and ones in the order they have
been selected. Top-right: 10-sparse reconstructions form OMP coefficients. Center-
center: atoms selected by SOMP for both of the classes together, in the order they
have been selected. Center-right: reconstructions from 10-sparse SOMP coefficients.
Bottom-center: atoms selected by SOMP for each one of the classes separately, in
the order they have been selected. Bottom-right: reconstructions from 10-sparse Class-
SOMP coefficients

Each scenario is tested according to the following protocol: The testing ensemble
is divided into ten blocks, each one containing the same number of images from
each class. For each one of the blocks {bi}10i=1, we train one ensemble of SVMs
according to a one-against-one scheme with the coefficients of the rest of the
blocks and using the parameters already fixed in advance (the training data is
noiseless). We then repeat 5 times the following: Corrupt with noise or occlude
the signals in the block bi, and then project them orthogonally over the subset of
the dictionary and perform classification over those coefficients (the testing data
is now corrupted). We average the accuracies of the 5 repetitions and save them
as accuracy of test over the block. We them average the accuracy results among
the 10 executions. This procedure is a combination of 10-fold cross-validation
with averaging due to the randomness of the noise and occlusion. The SVM pa-
rameters have been previously estimated through 10-fold cross-validation over
a training set of 10000 images, different from the one used to perform SOMP
or SSOMP. As we mentioned, the representation will have to deal with all the
distortions introduced.

Both the results for noisy (Figure 5-left) and occluded (Figure 5-right) im-
ages show three major points. First of all, results are almost equivalent for all
algorithms for high dimension (30 and 50). In those cases, most of the informa-
tion has already been captured and thus improvement is not really possible. For
complex datasets with less visual coherence, such high dimensions will capture
too much intra-variance. For a dictionary of dimension 30, the pre-defined dic-
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Fig. 5. Left: Classification under noisy conditions. SNR in dB in abscises (25 dB is
noiseless), accuracy in ordinates. From left-to-right: (a) DCT and Haar, (b) KSVD
and (c) SKSVD. In each one of the cases we perform analysis at L = 15, 30, 50. The
selection is done by SOMP, SSOMP with θ = 1.5, and SSOMP with θ = 2. Right:
Classification under occlusion conditions. Size of the occlusion in abscises, accuracy in
ordinates. Same order as for noisy conditions. (This is a color figure.)

tionary shows a breakdown for SNR ≤ 10, proving that learning a dictionary
via SKSVD is more robust. When going from dimension 256 (the image di-
mension) to 15 (the dictionary dimension), SKSVD derived dictionaries provide
significantly more robustness than the fixed one. For example, when decreasing
the SNR from noiseless to 5 dB, the accuracy variation is smaller than 5% for
SKSVD, whereas for the fixed dictionary is more than 15%. This implies that
learning a dictionary provides a much more accurate description of the internal
structure of the class, capturing much of the manifold the signals belong to.

Secondly, we verify the relevance of the discrimination power in the SSOMP.
For dimension 15 for example, the SSOMP over the fixed dictionary achieves
similar performance (slightly lower) to that of SKSVD in nearly noiseless sit-
uations. However, when noise is introduced, the representation remains highly
un-robust, the performance falling by more than 10% relatively to the others for
the same distortion level. It is clear that robustness comes form adaptation of
the dictionary to the signals, learning is essential.

Thirdly, SOMP over SKSVD produces more accurate classification than over
KSVD, since the discrimination component has been included in the dictionary
learning itself. When coupled with SSOMP, both learning strategies yield similar
results. This implies that the incorporation of the discrimination measure is
highly important, but the gain in each of the stages seems to be limited.

We have also compared between learning the SKSVD dictionary and then
performing dimensionality reduction and learning it directly at the proposed
dimension. The obtained results (here omitted due to space limitations) show
that not only incorporating the per-class SOMP is critical, but also that learning
the set directly into the final dimension yields better results (with improvements
of about 2%).

These results have clearly shown that learning dictionaries under combined
discriminative and reconstructive constraints, as provided by our proposed SKSVD
framework, is critical for signal classification, in particular for robustness under
common distortions. Let us close with an illustration of the dictionaries learned
by our proposed technique. Figure 6 presents those obtained for the experiments
in Figure 4.
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Fig. 6. Dictionaries of size 15 obtained through SSOMP θ = 2 over DCTandHaar (left),
KSVD (center) and SKSVD (rigth)

3.1 Natural Images

3.2 Working with Patches

Following the rich literature on object recognition and scene classification, we
need to extend the present framework to work on local patches. For the digits
dataset, we have performed that, and obtained the same robust classification
results described in previous section, actually improving by 5% the classification
(with a ground polynomial metric). In particular, all 8 × 8 patches are consid-
ered, and their signatures according to our proposed framework are clustered.
Following this, digits are compared using a normalized sum-of-kernels distance
between the corresponding vector signatures, where each coordinate in the vec-
tor is provided by the cluster center and cluster cardinality. This opens the door
to exploit the proposed framework, for example, in the form of bags-of-words
models, replacing standard SIFT-type of features by the ones explicitly learned
for classification with our method.

Let us now present preliminary results in this direction for three classes shown
in Figure 7 (top-left) from the Caltech Categories dataset. We first perform a
standard key-point detector based on the Harris-Laplace approach. On these
patches, we run our proposed learning technique, see Figure 7 (top-right) for
examples of the learned dictionaries. The coefficients corresponding to the sparse
representation over these learned dictionaries become the local discriminative
feature descriptors for each patch (in contrast for example with SIFT). Once the
local descriptors have been extracted, we perform standard K-means and obtain
signatures for 40 clusters. The metric between those signatures is established
with the Gaussian extension of the Earth Movers Distance (EMD), where the
spread parameter is fixed as the average of all the EMDs, and the distance is the
Euclidean one (linear kernel). We normalize the weights so that they have total
weight one, thereby representing a probability distribution, where EMD can be
interpreted in terms of the work to transform one probability distribution into
the other. Finally we perform learning and classification with SVMs. For 100
samples from each class, the 10-fold cross validation accuracy has been of 94%.
For 5 classes, adding leaves and cars rear, we obtained a classification of 89.7%.
Following the success of this simple local study, which does not depend on ad-
hoc features but formally computes the local descriptors following the energies
provided by our framework, global structures (as currently done in the literature
for the ad-hoc features), will prove to be further discriminant, inheriting also the
robustness of the learned local representations. Further analysis will be carried
out in this direction and results will be reported elsewhere.



Sparse Representations for Image Classification 13

Fig. 7. Examples from the classes faces, airplanes, and motorbikes from Caltech Cat-
egories (top-left); atoms learned with our technique from key patches (top-right).

4 Concluding Remarks

An energy based framework for learning dictionaries for simultaneous sparse
signal representation and robust class classification has been introduced in this
paper. This energy is minimized by a class-dependent simultaneous orthogo-
nal matching pursuit interleaved with an efficient dictionary update. We have
contributed to the understanding of learning sparse representations for signal
classification, and showed the relevance of learning dictionaries to achieve accu-
rate and robust classification. We demonstrated that performing simultaneous
decomposition per class is essential in order to extract the internal structure of
the class. The orthogonal projection over dictionaries increases robustness and
unifies the representation of signals. We further demonstrated that learned dic-
tionaries outperform fixed ones in classification tasks, in particular for distorted
data and compact representations. Current work is concentrated in the topic of
local patches, following the promising preliminary results described above.
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