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SEMIGROUPS OF OPERATORS ON HARDY SPACES AND
COCYCLES OF FLOWS

FARHAD JAFARI, ZBIGNIEW SLODKOWSKI, AND THOMAS TONEV

Abstract. In this paper the strongly continuous semigroups on Hardy
spaces which arise from cocycle-weighted holomorphic flows are charac-
terized.

1. Introduction.

The following question naturally arises in the study of semigroups of op-
erators on Banach spaces of analytic functions:

Which strongly continuous semigroups of operators on Ba-
nach spaces of analytic functions arise from holomorphic
flows and their cocycles?

The answer to this question is related with cocycles of flows of analytic
functions on Banach spaces. Cocycles arise in various occasions in analysis.
Let Γ be a discrete abelian group and G be the compact dual group of Γ .
The normalized Haar measure on G will be denoted by σ. Classically, a
cocycle B on G is defined to be a unitary Borel function on G × R which
satisfies the cocycle identity

B(x+ es, t) = B(x, s)B(x, s+ t)

for all x ∈ G and s, t ∈ R, where xs is a standard embedding of R into G.
In particular, B(x, 0) = 1 for all x ∈ G. If α is a unitary Borel function,
then letting

B(x, t) = α(x)α(x+ et)
determines a cocycle. Cocycles that arise in this form are called cobound-
aries. Clearly, coboundaries form a subgroup of the group of cocycles and
one says that two cocycles are cohomologous if their quotients is a cobound-
ary.

The importance of cocycles in abstract harmonic analysis arise from the
fact that every cocycle B determines an invariant subspace, BH2(σ), of
L2(σ) consisting of all functions f ∈ L2(σ) such that B(x, t) f(x + et) ∈
H2
(
dt/(1+ t2)

)
for almost all x ∈ G. If B is a coboundary with generator α
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on G, then the invariant subspace BH2(σ) is exactly αH2(σ) by a theorem
of Helson and Lowdenslager [?]. This correspondence between the invariant
subspaces of L2(σ) and the cocycles of G, and the explicit description of
these invariant subspaces when the cocycles are coboundaries motivates the
study of cocycles and their coboundaries. Recently, many studies of cocycles
of various spaces have appeared in the literature and this area remains an
active area of research in many subfields of algebra, functional analysis,
mathematical physics, harmonic analysis and function theory. An excellent
survey of the Helson-Lowdenslager theory and cocycles and their prominence
in function theory is presented in the classical monograph of Gamelin [G].

Recall that according to the celebrated Banach-Stone Theorem if X is a
compact Hausdorff space and T is a surjective isometry of C(X) onto itself,
then there exist a homeomorphism ϕ : X → X and a unimodular function
m such that

Tf(x) = m(x)f(ϕ(x)).
Generalizations of this theorem to more general settings are also known.
This paper aims at perpetuating the ubiquity of such generalized compo-
sition operators, also referred to as weighted composition operators in the
literature, to semigroups and show that strongly continuous semigroups on
certain Banach spaces of holomorphic functions are cocycle weighted com-
positions of holomorphic flows. Combining this result with characterization
of cocycles of holomorphic flows on arbitrary domains in C provides a con-
crete model to study strongly continuous weighted semigroups and their
associated operators (see [?, ?, ?, ?], for example) in the category of Banach
spaces of analytic functions. Abate [?] presents a nice compendium of the
results on holomorphic flows and their significance in function theory on
taut manifolds in Cn.

Berkson and Porta [?], in their highly cited paper, provide characteri-
zation of flows on Hardy spaces of the right half plane in terms of their
infinitesimal generators ([?, Proposition 2.2]). This paper may be viewed as
an extension of Berkson and Porta’s work to cocycle weighted composition
operators of holomorphic flows on Banach spaces of analytic functions.

We begin by introducing some notation and definitions. Most of the
additional notation used here is standard (see [?] or [?] for example). Let
H(G) be the set of holomorphic functions on an open domain G ⊂ C and let
X ⊆ H(G) be a Banach space of holomorphic functions on G. We suppose
that the imbedding X → H(G) is continuous with respect to the respective
topologies. Let T : X → X be a bounded operator. We say that T is a
weighted composition operator on X if

(Tf)(z) = m(z)f(ϕ(z)),

where f ∈ X, ϕ is a holomorphic map from G into G and m ∈ H(G) is a
holomorphic function on G. If, in addition, m belongs to a particular space
Y ⊂ H(G), we will say that T is a Y -weighted composition operator.
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In section 2, we present some background on cocycles and holomorphic
flows and present a complete characterization of these objects on general
open domain in the complex plane. This will set the stage to establish a
correspondence between weighted composition operators and strongly con-
tinuous semigroups on Hardy spaces. Such a result is presented in Sections
3 and 4 (Corollary ?? and Theorem ??). Section 5 provides an explicit char-
acterization of such weighted flows in terms of their infinitesimal generators.

2. Background and Preliminaries.

Let E be a topological space. A one-parameter family {ϕt}, t ∈ [0,∞),
of mappings ϕt ∈ C(E,E) is called a flow on E if ϕ0(x) = x, the functions
ϕ(t, x) = ϕt(x) belong to C

(
[0,∞)× E,E

)
, and the semigroup rule

ϕs+t(x) = ϕs(ϕt(x)) = ϕt(ϕs(x))

holds for every x ∈ E and s, t ≥ 0. When {ϕt} is a flow of holomorphic
mappings from a domain G ⊆ C into itself we say that {ϕt} is a holomorphic
flow on G. Any holomorphic flow {ϕt} on G generates a one-parameter
semigroup of composition operators on H(G) which evolves with ϕt, defined
by

(Ttf)(z) = f(ϕt(z))

If m = {mt(z)}, t ∈ [0,∞), is a family of holomorphic functions on G, then
the family {St} of weighted operators

(Stf)(z) = mt(z)(Ttf)(z), f ∈ H(G), t ∈ [0,∞),

also is a semigroup if and only if m is a cocycle of the flow {ϕt}, i.e. if
m(0, z) ≡ 1 and m satisfies the ϕ-cocycle identity

m(t+ s, z) = m(s, z)m
(
t, ϕ(s, z)

)
for all s, t ≥ 0 and z ∈ G, where m(t, z) = mt(z). By additive co-
cycle a = {at}, we shall mean that the multiplicative properties of co-
cycle are replaced by the corresponding additive properties (simply put,
mt(z) = exp(at(z)), a0(z) ≡ 0). When m is a coboundary, i.e. mt(z) =
α(ϕt(z))/α(z) for some α ∈ H(G), α 6= 0, then S has the simpler repre-
sentation St = α−1Tt α, namely (Stf)(z) = α(z)−1(Tt(αf))(z). So if the
cocycle is a coboundary, then Tt and the cocycle-generated operator St are
similar, and hence isospectral.

It is noteworthy that if G is the upper half-plane, and the flow is the
translation flow ϕt(z) = z + t, for example, then the above two concepts
of cocycles readily coincide. Thus, the study of cocycles may or, perhaps,
should be done in more generality, by associating cocycles to flows of the
domain and characterizing these weighted flows. Once the structure of the
flows on domains in C are determined, the cocycles of these holomorphic
flows can be classified.
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If D is the open unit disk in C and ϕ is a holomorphic self-map of the disk
into itself, Cowen [?] has shown that there exists fractional linear transfor-
mation Φ similar to ϕ, i.e. such that Φ ◦ σ = σ ◦ ϕ for some σ ∈ H(D). If
the iterates ϕn of ϕ can be embedded in a continuous semigroup, {ϕt} so
that ϕn = ϕn, this semigroup comes from the semigroup generated by Φ.
The proof of this theorem is based on constructing a Riemann surface on
which an extension of ϕ is bijective. Hence, up to conjugacy with the map
σ, a fractional linear transformation model may be used to study flows on
simply connected domains in C.

Lastly, but significantly, semigroups of self-maps of domains in C have
found interesting applications in operator theory. For example, Cowen [?]
has used the correspondence between one-parameter flows on the disk and
their infinitesimal generators to prove the subnormality of the Cesaro op-
erator on Hardy spaces of the unit disk. Siskakis [?] has studied weighted
Cesaro operators on Hardy and Bergman spaces. Finally, Berkson and Porta
[?], who arguably initiated application of holomorphic flows into operator
theory, obtained spectral information about certain weighted differential op-
erators in the right half-plane.

If we consider the flow as a continuous version of the iterates of a mapping
ϕ (i.e. assume iterates ϕn of ϕ are embeddable in a continuous flow {ϕt}),
then automatically the functions ϕt are univalent. More precisely,

Theorem 1. (e.g. [?, ?]) Let G be a domain in C. If {ϕt}, ϕt : G→ G, t ∈
[0,∞), is a holomorphic flow on G, then all its functions ϕt are univalent.

Theorem 2. (a) If {ϕt} is a nontrivial holomorphic flow on C, then every
ϕt can have at most one fixed point in C and one of the following holds:

(i) If {ϕt} does not have fixed points in C, then ϕt(z) = z +Kt for some
K ∈ C, K 6= 0, i.e. {ϕt} is a translation flow.

(ii) If {ϕt} has one fixed point at K, then ϕ(t, z) = eαtz +K(1− eαt) for
some α ∈ C, α 6= 0, i.e. ϕ is an exponential flow.

(b) If ϕ is a flow on G ⊂ C and G is proper and simply connected, then
ϕ is conjugated, by a conformal map, to the restriction of a translation and
exponential flow on C to one of its invariant subsets.

(c) If G is a multiply connected domain in C or a Riemann surface, then
nontrivial holomorphic flows exist on G if and only if G is 2-connected; The
only holomorphic flows on an annulus are of type

{
eiαtz, t ∈ [0,∞), α ∈ R

}
.

Proof. For (a) and (b) see [?, Theorems 2.2-2.3], and for (c) see [?] or [?].
�

3. Weighted composition operators and intertwiners.

Here we characterize weighted composition operators on Hardy spaces.
Recall that if X is a normed space, then the commutant algebra A′ of a



SEMIGROUPS OF OPERATORS AND COCYCLES 5

linear operator A ∈ B(X) is the set of all linear operators R ∈ B(X) that
commute with A, i.e.

A′ =
{
R : RA = AR

}
.

In general, A′ is a, not necessarily commutative, closed subalgebra of B(X).

Denote by Hp, 1 ≤ p ≤ ∞, the Hardy space on the unit disk D. Note that
Hp is closed under multiplication with H∞-functions. For every f ∈ H(D)
we denote by Mf the multiplication operator by f on H(D), i.e. Mfh = fh,
h ∈ Hp. If f, g ∈ H∞ then Mg ∈ M ′f , since MgMfh = gfh = fgh =
MfMgh, thus MgMf = MfMg. In particular, Mg ∈M ′z.

It is well known that the commutant algebra of the operator Mz ∈ B(Hp)
is commutative. Namely,

Proposition 1. (cf. [R] or [RV]) Let 1 ≤ p ≤ ∞. The commutant algebra
M ′z ∈ B(Hp) of the multiplication operator Mz on Hp is the algebra A0 ={
Mf : f ∈ H∞

}
of H∞-multiplication operators; thus M ′z is a commutative

algebra isomorphic to H∞.

For every ϕ ∈ H(D,D) we denote by Cϕ the composition operator on
Hp by ϕ, namely, (Cϕh)(z) = h(ϕ(z)). Here Cϕ ∈ B(Hp) since if ϕ ∈
H(D,D) then Hp ◦ϕ ∈ Hp (cf. [?], [?]). Observe that if T is a Hp-weighted
composition operator on Hp, i.e. (Tf)(z) = m(z) f(ϕ(z)) for some m ∈ Hp

and ϕ ∈ H(D,D), then T = MmCϕ. Hence T ∈ B(Hp) if, say, m ∈ H∞, or
if m ∈ Hp and Cϕ ∈ B(Hp, H∞).

There is a close connection between Hp-weighted composition operators
on Hp and the so called intertwiners of the operator Mz ∈ B(Hp).

Definition 1. Let X be a normed space and let T,A ∈ B(X) be bounded
operators of X into itself. We say that T is a (left) abelian intertwiner of A,
if there exists a bounded operator B that commutes with A and such that
TA = BT .

Proposition 2. Let f ∈ H∞. Every Hp-weighted composition operator
T = MmCϕ ∈ B(Hp), where m ∈ Hp, 1 ≤ p ≤ ∞, and ϕ ∈ H(D,D) is a
(left) abelian intertwiner of the multiplication operator Mf on Hp.

Proof. Let f ∈ H∞. For every h ∈ Hp, we have

(TMf h)(z) =
(
T (fh)

)
(z)

=
(
MmCϕ(fh)

)
(z)

= m(z) (fh)(ϕ(z))
= m(z) (f ◦ ϕ)(z) (h ◦ ϕ)(z)
= (f ◦ ϕ)(z)m(z) (h ◦ ϕ)(z)
= (f ◦ ϕ)(z) (MmCϕ h)(z)
= (f ◦ ϕ)(z) (Th)(z)
= (Mf◦ϕT h)(z).



6 JAFARI, SLODKOWSKI, AND TONEV

Consequently, TMf = BT with B = Mf◦ϕ. In addition,

MfMf◦ϕ h = f (f ◦ ϕ)h = (f ◦ ϕ) fh = Mf◦ϕMf h,

for every h ∈ Hp. Hence, B = Mf◦ϕ commutes with Mf . Consequently, T
is an intertwiner of Mf . �

In particular, T is an intertwiner of Mz. Proposition ?? holds, say, in the
case when m ∈ H∞, or if m ∈ Hp and Cϕ ∈ B(Hp, H∞).

Theorem 3. Let 1 ≤ p ≤ ∞. Every (left) abelian intertwiner T ∈ B(Hp)
of Mz ∈ B(Hp) is a Hp-weighted composition operator, i.e.

(Th)(z) = m(z)(h ◦ ϕ)(z), h ∈ Hp,

where m ∈ Hp and ϕ ∈ H∞, ‖ϕ‖∞ ≤ 1.

Proof. Without loss of generality we may assume that T 6= 0. If T ∈ B(Hp)
is a left abelian intertwiner of Mz then there exists an operator B ∈ M ′z ⊂
B(Hp) such that TMz = BT . Proposition 1 implies that B = Mϕ for
some function ϕ ∈ H∞. By induction, TMn

z = BnT , n = 1, 2, · · · . We
claim that ‖ϕ‖∞ ≤ 1. Since T 6= 0 there is a function f ∈ Hp so that
Tf = g 6= 0. We have TMn

z f = Mn
ϕTf = Mn

ϕg. Since ‖Mn
z f‖p ≤ ‖f‖p we

get that ‖Mn
ϕTf‖p = ‖TMn

z f‖p ≤ ‖T‖‖Mn
z f‖p ≤ ‖T‖‖f‖p for every n ∈ N.

Therefore, for almost every eiθ ∈ S1 we have |ϕ(eiθ)|n|g(eiθ)| ≤ ‖T‖‖f‖p.
Since g(eiθ) 6= 0 almost everywhere on S1, it follows that |ϕ(eiθ)| ≤ 1 almost
everywhere on S1. Hence, ‖ϕ‖∞ ≤ 1, as claimed.

Let a ∈ D and let f ∈ Hp, considered as a function on D. Define the
function

g(z) =


f(z)− f(ϕ(a))

z − ϕ(a) when z 6= ϕ(a),

f ′(ϕ(a)) when z = ϕ(a).

Since |ϕ(a)| < 1 it is clear that g ∈ Hp. Let e(z) ≡ 1 and denote m = Te.
We have

f(z)− f(ϕ(a)) = ((z − ϕ(a))g(z), i.e. f − f(ϕ(a))e = Mzg − ϕ(a)g.

Applying T to both sides gives:

Tf − f(ϕ(a))Te = TMzg − ϕ(a)Tg = MϕTg − ϕ(a)Tg.

Hence, Tf = f(ϕ(a))m+MϕTg − ϕ(a)Tg. Therefore,

(Tf)(a) = f(ϕ(a))m(a) + ϕ(a)(Tg)(a)− ϕ(a)Tg(a)
= f(ϕ(a))m(a) = (MmCϕf)(a).

Since a is arbitrary in D we deduce that Tf = MmCϕf , thus T = MmCϕ,
i.e. T is a weighted composition operator. �

If, in particular, T (e) ∈ H∞ in Theorem ?? then we have the following
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Corollary 1. If 1 ≤ p ≤ ∞ then every (left) abelian intertwiner T ∈ B(Hp)
of Mz ∈ B(Hp) with T (e) ∈ H∞ is a H∞-weighted composition operator,
i.e.

(Th)(z) = m(z)(h ◦ ϕ)(z), h ∈ Hp

with some m ∈ H∞ and ϕ ∈ H(D,D).

4. Semigroups of operators

Recall that a one-parameter family {At}, t ≥ 0, of bounded linear op-
erators on a normed space X is called a semigroup if A0 = Id and At+s =
At ◦ As for every s, t ≥ 0. The semigroup {At} is strongly continuous if
(As − A0)(x) → 0 for every x ∈ X as s → 0. The infinitesimal operator of

{At} is the operator A = lim
t→0

At −A0

t
. If so, then At = etA for every t ≥ 0.

If {Tt} ⊂ B(Hp) is a semigroup generated by a Hp-cocycle {mt} of a flow
ϕ = {ϕt}, then expressing this semigroup as the action of a composition
semigroup Cϕt followed by a multiplication with a ϕ-cocycle {m(t)}, by
the automatic differentiability of the cocycles [?], Mm(t) induces a strongly
continuous semigroup on Banach spaces of analytic functions and (by [BP],
for example) Cϕ is strongly continuous on (typical) Banach spaces of analytic
functions. Here we show that the converse is also true.

Let {Tt}, t ≥ 0, be a strongly continuous semigroup of operators in
B(Hp), 1 ≤ p ≤ ∞. Since T0 = Id we have that (T0e)(z) = 1 and
(T0(Id))(z) = Id(z) ≡ z.

Theorem 4. Let {Tt}, t ≥ 0, be a strongly continuous semigroup of opera-
tors in B(Hp), 1 ≤ p ≤ ∞. Then {Tt} consists of (left) abelian intertwiners
of Mz if and only if its operators Tt are Hp-weighted composition operators
in B(Hp) for a holomorphic flow {ϕt} on D, i.e.

(1) (Tth)(z) = mt(z)(h ◦ ϕt)(z),
where {mt} is a Hp-cocycle for the flow {ϕt}.

Proof. If (??) holds then according to Proposition 2, Tt is an intertwiner
of each Mf , f ∈ H∞, and in particular of Mz. Conversely, if every Tt
is an intertwiner of Mz then (??) holds for some functions mt ∈ Hp and
ϕt ∈ H∞(D), ‖ϕt‖∞ = 1 by Theorem ??. Note that mt = Tte and ϕt =
Tt(Id)/Tte. For every f ∈ Hp

TtTsf = Tt+sf = Ts+tf,

and since Tt = MmtCϕt ,

TtTsf = MmtCϕt(msf ◦ ϕs)
= mt[ms(f ◦ ϕs)] ◦ ϕt
= mt(ms ◦ ϕt)f ◦ (ϕs ◦ ϕt)
= mt+sf ◦ ϕs+t = Tt+sf.
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Hence
[mt(ms ◦ ϕt)]f(ϕs ◦ ϕt) = mt+sf(ϕs+t).

Substituting f ≡ 1, we get ms+t = mt(ms ◦ϕt). Note that this does not yet
show that mt is a cocycle, since we don’t know that ϕt is a flow. However,

mt+sϕt+s = Tt+s(Id)(z)
= Tt(Ts(Id)(z)) = Tt(ms(z)ϕs(z))
= mt(z)ms(ϕt(z))ϕs(ϕt(z)) = mt+s(z)ϕs(ϕt(z)).

Now if mt(z) 6= 0, it follows that

ϕt+s(z) = ϕs(ϕt(z)),

i.e. ϕt is a flow and hence mt is a cocycle. To show that mt(z) 6= 0, suppose
that mτ (z0) = 0 for some τ > 0 and assume that τ is the smallest index for
which mt(z0) = 0. Then by the identity mt+s = mt(ms ◦ ϕt),

mτ (z) = ms(z)mτ−s(ϕτ (z)) for 0 < s < τ.

Now, since τ is the smallest index such that mτ (z0) = 0, ms(z0) 6= 0. So
mτ−s(ϕτ (z0)) = 0 for all 0 < s < τ . Let ϕτ (z0) = z1. Then mt(z1) = 0
for 0 < t < τ , which contradicts the continuity of mt and m0(z) ≡ 1. The
strong continuity of {Tt} implies that the functions m(t, z) = mt(z) and
ϕ(t, z) = ϕt(z) are jointly continuous. �

In general m = T (1) need not be in H∞ which may happen if, say,
Cϕ ∈ B(Hp, H∞).

Example 1. Let ϕt : D → D be defined by ϕt(z) = e−tz, t ≥ 0. Let
g be a function in H2 \ H∞ such that g(z) 6= 0 for every z ∈ D. Let
mt(z) = g(z)/g(ϕt(z)), z ∈ D. Clearly mt is a cocycle and 1/g ◦ ϕt ∈ C(D)
since ϕt(D) ⊆ D(0, r), r < 1. So mt ∈ H2 but not in H∞. Hence if
Tt = MmtCϕt , thus Tth(z) = mt(z)h(ϕt(z)) and t > 0, then Tt ∈ B(H2)
because h ◦ ϕt ∈ C(D) for every h ∈ H2 and so mt (h ◦ ϕt) ∈ H2. Note that
here Cϕt = Tt/Tte = Ce−tz ∈ B(H2, C(D) ⊂ B(H2, H∞).

5. Weighted flows and their infinitesimal generators

The infinitesimal generator of the cocycle-weighted semigroup {MmCϕ}
for the translation flow ϕ is given by

A = lim
t→0

Mm(t,·)Cϕt −Mm(0,·)Cϕ0

t

= lim
t→0

Mm(t,·)Cϕt − I
t

= lim
t→0

Mm(t,·)Cϕt −Mm(t,·)

t
+ lim
t→0

Mm(t,·) − I
t

= lim
t→0

Mm(t,·)
Cϕt − I

t
+ lim
t→0

Mm(t,·) − I
t

=
d

dz
+M ∂m

∂t
(0,·)

= A1 +A2,
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where A1 =
d

dz
is the infinitesimal generator of the translation composition

semigroup {Cϕt} and A2 is the infinitesimal generator of the multiplication
semigroup

{
M ∂m

∂t
(0,·)
}

, i.e. multiplication by the t-derivative of the cocycle.
Similarly, the infinitesimal generator of the dilation (including contractions

and rotations) flow is the operator z
d

dz
. Hence a similar decomposition,

would allow to write the infinitesimal generator of the cocycle-weighted semi-

group for the dilation flow as A1 + A2, where now A1 is z
d

dz
and A2 is as

before. Now, one might ask what will be the class of infinitesimal operators
arising from the cocycles associated with translation and/or dilation flows?
Related questions were treated in ([JTTY]) for simply connected domains
in C and in ( [Ab]) for multiply connected domains for flows without cocycle
weights on domains in C. Recall that, by Theorem ??, if G ⊂ C and G is
proper and simply connected and if ϕ is a flow on G, then ϕ is the restric-
tion of a translation or exponential flows to invariant subsets of C under
conjugacy with conformal maps.

Let G be a proper and simply connected domain in C, and let ψ : G→ D
be a Riemann mapping of G. We denote by Hp(G) the space Hp ◦ ψ.

Proposition 3. Let G be a proper and simply connected domain in C, and ψ
be as above. Then the infinitesimal generator of any Hp(G)-flow ϕ on G will

be A = A1 +A2, where A1 is either M v
χ′(z)

d

dz
, v > 0, or M

α
λ(z)

λ′(z)

d

dz
, α ∈ C,

depending on whether the flow arises from a translation or a dilation flow,
respectively, restricted to invariant subsets H of C, χ and λ are univalent
maps from G onto H, and A2 is as above.

Proof. Let (ϕt) be a general flow on G. Then, by ?? this flow is equivalent
to one of the model flows on a domain H in C: restriction of a translation
flow z → z + vt , v > 0, or restriction of an exponential flow z → eαtz,
α possibly a complex number. In either case, H has to be invariant with
respect to the corresponding model flow. Let χ or λ be the univalent maps
mapping G onto H and G onto H, respectively. Denote by χ, conjugacy
with a translation flow and by λ with an exponential flow. Proceeding as in
the above calculation, the infinitesimal generator of the weighted semigroup
will be of the form A1 +A2, where A2 is the same as before. In either case
of the model flows, A1f = [dϕtdt (t = 0) ddz ]f . If the model flow is a translation
on H, then χ(ϕt(z)) = χ(z)+vt, and differentiating and evaluating at t = 0,
A1 = v

χ′(z)
d
dz on G. For the exponential flow on H, λ(ϕt(z)) = eαtλ(z), and

A1 = α λ(z)
λ′(z)

d
dz . �

The multiplication operator by the derivative of the cocycle evaluated at
t = 0 has appeared in Theorem 5 ([JTT]) and Theorem 4.3 (ii) [JTTY].
If m(t, z) = exp(a(t, z)), then a defines an additive cocycle, and since
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∂m(t, z)
∂t

= m(t, z)
∂a(t, z)
∂t

= m(t, z)g(ϕ(t, z)), for g ∈ H(G). By Theo-

rem 5 (in [JTT]), if the flow is fixed-point free, then every cocycle on G is
a coboundary, and if the flow has a fixed point at z0, then m is coboundary
if and only if g(z0) = 0. Hence the infinitesimal generators generated by
cocycle-weighted composition semigroups on Hardy spaces on G as given
by Proposition 3, are of the form A1 + A2, where A2 is multiplication by
m(t, z)g(ϕ(t, z)), and A1 is generated by the univalent maps from the in-
variant subsets of the flow into itself and differentiation, as described in
Proposition 3. Of course, clearly, the converse of this also holds. Hence,

Theorem 5. Let G be a proper and simply connected domain in C. If
{Tt}, t ∈ [0,∞] is a one-parameter strongly continuous semigroup acting
on Hp(G), then Tt is a cocycle-weighted composition semigroup on Hp(G),
1 ≤ p ≤ ∞, if and only if the infinitesimal generator of Tt can be written in
the form A1 +A2 where A1 and A2 are described above.

In conclusion, in light of the fact that flows on domains on C are ei-
ther translation flows or dilation flows, semigroups on Hardy spaces of an-
alytic functions are primarily produced by cocycles followed by a change of
variable. This observation is very much in the spirit of Stone’s celebrated
theorem on isometries of C(X).
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