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Multiscale Analysis of Heterogeneous Media in the
Peridynamic Formulation∗

Bacim Alali† Robert Lipton‡

October 28, 2008

Abstract

A rigorous multiscale method is presented for modeling the dynamics of fiber-
reinforced composite structures using the peridynamic formulation. The multiscale
analysis delivers a new multiscale numerical method that captures the dynamics at
structural length scales while at the same time is capable of resolving the dynamics at
the length scales of the fiber reinforcement. The new numerical method is able extract
this information at a cost that is anticipated to be far less than the direct numerical
simulation of structural components made from multiple plys containing thousands of
fibers.
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1 Introduction

The peridynamic formulation introduced in [21] is a nonlocal continuum theory for de-
formable bodies that does not use the spatial derivatives of the displacement field. In-
teractions between material particles are characterized by a pairwise force field that acts
across a finite horizon, see Section 1.1. The same equations of motion are applicable over
the entire body and no special treatment is required near or at defects. These properties
make it a powerful tool to model problems that involve cracks, interfaces, and other defects,
see [2, 3, 14, 22, 23, 24]. This work focuses on the multiscale analysis of heterogeneous media
using the peridynamic formulation. The objective is to provide numerical methods that cap-
ture the dynamics inside composites at both the structural scale and the microscopic scale
with a cost far below that of direct numerical simulation.

We consider particle or fiber reinforced composites. Here the characteristic length scale
of the particle or fiber reinforced geometry is assumed to be very small relative to the length
scale of the applied loads. The length scale of the microstructure is denoted by ε. We
study three peridynamic models of fiber-reinforced materials. In the first model, which we
call “the short-range bond model”, the peridynamic horizon is of the same length scale as
that of the microstructure and the horizon approaches zero as ε goes to zero. In the second
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Figure 1: Fiber-reinforced composite.

model, a long-range ε-independent pairwise force is added to the short-range pairwise force
of the first model. Here the long-range pairwise force depends only on the relative position
of the two particles and the associated peridynamic horizon is fixed and independent of the
microstructure length scale ε. We will refer to the second model as “the short-range and
long-range bond model”. In the third model, we consider a long-range pairwise force that
fluctuates with the microstructure. The peridynamic horizon in this model is fixed and
independent of ε. This model will be called “the fluctuating long-range bond model”. In
all of these models, the peridynamic initial value problem is a partial integro-differential
equation with rapidly-oscillating coefficients supplemented with initial conditions.

For the first two models the concept of two-scale convergence, introduced by Nguetseng
[18] and Allaire [1], is used as a tool to identify both the macroscopic and microscopic dy-
namics inside the composite. A downscaling method obtained through the use of Semigroup
theory provides a strong approximation for capturing the mirco-level fluctuations about the
macroscopic displacement field. The multiscale approximation obtained for the first two
models are shown to be good approximations to the actual solution in the Lp norm when
the microstructure is sufficiently fine. Explicit error estimates are provided for sufficiently
regular initial and loading data for the first model. This multiscale analysis provides the
theoretical framework for a new multiscale numerical method for computing the deformation
of fiber-reinforced composites in the presence of residual forces. The multiscale numerical
method delivered here captures the dynamics at structural length scales while at the same
time is capable of resolving the dynamics at the length scales of the fiber reinforcement. The
new numerical method is able extract this information at a cost that is anticipated to be far
less than the direct numerical simulation of structural components made from multiple plys
containing thousands of fibers.

For the third model, the Semigroup theory of linear operators [12, 13] is utilized to
identify both the macroscopic and microscopic dynamics of the composite. These are used
to develop an approximation to the actual solution that is shown to be a good approximation
to the actual solution in the Lp norm when the microstructure is sufficiently fine. Explicit
error estimates for the approximation are provided for this model. Last, the corresponding
multiscale numerical scheme is presented.

This report is organized as follows. Section 1.1 provides an overview of the peridynamic
formulation of continuum mechanics. In Section 1.2, we introduce three peridynamic models
of fiber-reinforced composites. The results for the first two models are discussed and derived
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in Sections 2-5. In Section 2, we present a multiscale analysis method for these two models.
Section 3 provides uniqueness and existence results for the linear peridynamic initial-value
problem (1.10)-(1.12). In Section 4, we review two-scale convergence and then use it to
identify the two-scale asymptotic limit of (1.10)-(1.12). In Section 5, we build on the analysis
provided in Section 4 to justify the results of Section 2. Section 6 is devoted to the third
peridynamic model of fiber-reinforced composites. A multiscale analysis method is presented
and justified for this model.

1.1 The Peridynamic Formulation of Continuum Mechanics

In the peridynamic theory, the time evolution of the displacement vector field u, in a het-
erogeneous medium, is given by the partial integro-differential equation

ρ(x) ∂2
t u(x, t) =

∫
Hx

f(u(x̂, t)− u(x, t), x̂− x, x) dx̂+ b(x, t), (x, t) ∈ Ω× (0, T ) (1.1)

where Hx is a neighborhood of x, ρ is the mass density, b is a prescribed loading force density
field, and Ω is a bounded set in R3. Here f denotes the pairwise force field whose value is
the force vector (per unit volume squared) that the particle at x̂ exerts on the particle at
x. For a homogeneous medium f is of the form f(u(x̂, t) − u(x, t), x̂ − x), i.e., it depends
only on the relative position of the two particles. We will often refer to f as a bond force.
Equation (1.1) is supplemented with initial conditions for u(x, 0) and ∂tu(x, 0). For the sake
of simplicity, we assume constant mass density given by ρ(x) = 1. However, the removal of
this hypothesis presents no barrier to the subsequent analysis. For the purposes of discussion
it will be convenient to set

ξ = x̂− x,

which represents the relative position of these two particles in the reference configuration,
and

η = u(x̂, t)− u(x, t),

which represents their relative displacement (see Figure 2). In the peridynamic formulation,
it is assumed that for a given material there is a positive number δ, called the horizon, such
that

f(η, ξ, x) = 0, for |ξ| > δ.

The pairwise force field f is required to satisfy the following properties:

f(−η,−ξ, x+ ξ) = −f(η, ξ, x) (1.2)

which assures conservation of linear momentum, and

(ξ + η)× f(η, ξ, x) = 0

which assures conservation of angular momentum.
A material is said to be microelastic if the pairwise force is derivable from a scalar

micropotential ω

f(η, ξ, x) =
∂ω

∂η
(η, ξ, x).
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Figure 2: Deformation of a bond within the peridynamic horizon.

It can be shown that for a microelastic material the pairwise force is of the form (see [21])

f(η, ξ, x) = H(|ξ + η|, ξ, x)(ξ + η),

where H is a real-valued function. Finally, a material is linear if the associated bond force
f(η, ξ, x) is linear in η.

In this treatment, all materials will be taken to be microelastic and linear.

1.2 Three Peridynamic Models of Fiber-Reinforced Materials

To fix ideas, we consider a periodic medium of unidirectional fiber-reinforced material. Here
the pairwise force is given by the linearized version of the bond-stretch model proposed in
[24]

f(η, ξ, x) = α(x, x+ ξ)
ξ ⊗ ξ

|ξ|3
η, for ξ ∈ Hx.

Here α is a real-valued function satisfying α(x, x̂) = α(x̂, x). We will study three different
peridynamic models for this composite. These models are distinct in the way the coeffi-
cient α and the neighborhood set Hx are defined. We start by providing the mathematical
description of the periodic microgeometry.

Let Y ⊂ R3 be a unit cube and the local coordinates inside Y are denoted by y with
the origin at the center of the unit cube. The unit cube is composed of a fiber which is
surrounded by a second material called the matrix material, see Figure 3. Let χf denote the
indicator function of the set occupied by the fiber material and χm denote the the indicator
function of the set occupied by the matrix material. Here χf is given by

χf(y) =

{
1, y is in the fiber phase,
0, otherwise,

and χm is given by
χm(y) = 1− χf(y).

We extend the functions χf and χm to R3 by periodicity. For future reference, we denote by
θf and θm the volume fractions of the fiber material and the matrix material, respectively.
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Here θf =
∫

Y
χf(y)dy and θm = 1 − θf. Also, we let n denote a unit vector parallel to the

fiber direction.
In the first model, the short-range pairwise force is given by

fshort(ηy, ξy, y) =

 α(y, y + ξy)
ξy ⊗ ξy
|ξy|3

ηy, |ξy| ≤ δ

0, otherwise.
(1.3)

where y ∈ Y , ξy = ŷ − y, ηy = u(ŷ, t)− u(y, t), and α is given by

α(y, ŷ) = Cf χf(y)χf(ŷ) + Cm χm(y)χm(ŷ) + Ci (χf(y)χm(ŷ) + χm(y)χf(ŷ)) . (1.4)

We note that (1.3)-(1.4) give the pairwise force on R3 associated with a unit periodic geom-
etry. In summary, the function α in (1.4) is given by

α(y, ŷ) =


Cf, if y and ŷ are in the fiber phase
Cm, if y and ŷ are in the matrix phase
Ci, otherwise.

In equation (1.3), the peridynamic horizon δ is chosen to be smaller than the fiber thickness
in the unit cell. The material parameters Cf and Cm are intrinsic to each phase and can be
determined through experiments. Bonds connecting particles in the different materials are
characterized by Ci, which can be chosen such that Cf > Ci > Cm > 0, see [24].

The microgeometry associated with the length scale ε is obtained by rescaling the bond
force fshort as follows. For x ∈ Ω,

f ε
short(η, ξ, x) =


1

ε2
α

(
x

ε
,
x+ ξ

ε

)
ξ ⊗ ξ

|ξ|3
η, |ξ| ≤ εδ

0 , otherwise.

We see from (1.4) that α(x
ε
, x̂

ε
) is given by

α

(
x

ε
,
x̂

ε

)
= Cf χ

ε
f (x)χ

ε
f (x̂) + Cm χε

m(x)χε
m(x̂) + Ci (χ

ε
f (x)χ

ε
m(x̂) + χε

m(x)χε
f (x̂)) , (1.5)

where χε
f (x) := χf(

x
ε
) and χε

m(x) := χm(x
ε
).

The peridynamic equation of motion for this model is given by

∂2
t u

ε(x, t) =

∫
Hεδ(x)

1

ε2
α

(
x

ε
,
x̂

ε

)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
(uε(x̂, t)− uε(x, t)) dx̂+ b

(
x,
x

ε
, t
)

(1.6)

supplemented with initial conditions

uε(x, 0) = u0
(
x,
x

ε

)
, (1.7)

∂tu
ε(x, 0) = v0

(
x,
x

ε

)
. (1.8)

In what follows, we will denote by s a real number such that 3
2
< s <∞. In (1.6)-(1.8),

b(x, y, t) is in C([0, T ]; Ls(Ω × Y )3) and Y -periodic in y and u0(x, y) and v0(x, y) are in
Ls(Ω× Y )3 and Y -periodic in y.
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Figure 3: (a) Composite cube Y . (b) Cross-section of Y along the fiber direction.

Figure 4: Long-range bonds (horizon γ) and short-range bonds (horizon εδ).

In the second model, the following long-range pairwise force is added to the short-range
pairwise force of the first model (see Figure 4)

flong(η, ξ) =

 λ(ξ)
ξ ⊗ ξ

|ξ|3
η, |ξ| ≤ γ

0, otherwise,

where γ is a prescribed peridynamic horizon. Here λ is a real-valued function defined by

λ(ξ) =

{
CM

f , νξ ≤
π

2
θf,

CM
m , otherwise,

(1.9)

where νξ denotes the angle between ξ and a line parallel to the fiber direction, with
0 ≤ νξ ≤ π

2
. The constants CM

f and CM
m are macroscopic parameters determined through

experiments, see [24, 10].
Now the peridynamic equation of motion associated with the total pairwise force is given

by

∂2
t u

ε(x, t) =

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
(uε(x̂, t)− uε(x, t)) dx̂

+

∫
Hεδ(x)

1

ε2
α

(
x

ε
,
x̂

ε

)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
(uε(x̂, t)− uε(x, t)) dx̂

+ b
(
x,
x

ε
, t
)
,

(1.10)
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supplemented with initial conditions

uε(x, 0) = u0
(
x,
x

ε

)
, (1.11)

∂tu
ε(x, 0) = v0

(
x,
x

ε

)
. (1.12)

Remark 1. The first model follows from the second model on setting λ = 0. Thus in
Sections 2-5, we will often present our results and analysis for the second model only.

In the third model, the pairwise force is given by

f(ηy, ξy, y) =

 αL(y, y + ξy)
ξy ⊗ ξy
|ξy|3

ηy, |ξy| ≤ δ

0, otherwise,

where y ∈ Y and δ is a prescribed peridynamic horizon, and αL is given by

αL(y, y + ξy) =


Cf |ξy| δn(ξy), if y and y + ξy are in the fiber phase,

and ξy is parallel to n,
Cm |ξy| , otherwise.

Here δn is the Dirac delta distribution concentrated at a line parallel to n. The function αL

can be written in terms of χf as follows

αL(y, y + ξy) = Cf |ξy| δn(ξy)χf(y)χf(y + ξy) + Cm |ξy| (1− δn(ξy)χf(y)χf(y + ξy)) . (1.13)

We note that in equation (1.13), χf(y) = χf(y + ξy) because y and y + ξy both lie on a line
parallel to the fiber direction n.

The the pairwise force defined on Ω is given by

f ε(η, ξ, x) =

 αε
L(x, x+ ξ)

ξ ⊗ ξ

|ξ|3
η, |ξ| ≤ δ

0 , otherwise,

where αε
L is defined by

αε
L(x, x+ ξ) = Cf |ξ| δn(ξ)χε

f (x) + εCm |ξ| (1− δn(ξ)χε
f (x)) . (1.14)

The peridynamic equation of motion for this model is given by

∂2
t u

ε(x, t) =

∫
Hδ(x)

αε(x, x̂)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
(uε(x̂, t)− uε(x, t)) dx̂ (1.15)

supplemented with initial data

uε(x, 0) = u0 (x) , (1.16)

∂tu
ε(x, 0) = v0 (x) . (1.17)

Here the initial data u0 and v0 are in Lp(Ω)3 with 1 ≤ p < ∞ and the loading force in
equation (1.15) is zero.



Bacim Alali and Robert Lipton 9

2 Multiscale Analysis and the Numerical Scheme for

the Short-Range and Long-Range Bond Model

In this section, we present the multiscale analysis method for computing the deformation
of fiber-reinforced composites modeled by the peridynamic formulation. This is done for
the Short-Range and Long-Range Bond model described in Section 1.2. The method de-
livers a computationally inexpensive multiscale numerical scheme for the analysis of these
peridynamic models of fiber-reinforced materials. It consists of the following three steps.

1. Macroscopic Equation
Compute the macroscopic or average displacement field uH(x, t) by solving a peridy-
namic macroscopic equation.

2. Cell–Problem
Compute the micro-level displacement field r(y, t) by solving a peridynamic problem
on a single period cell.

3. Downscaling
The displacement field of the oscillatory peridynamic equation is given approximately
by superimposing the rescaled micro-level mechanical responses over the average dis-
placement field, i.e., uε

Approx = uH(x, t) + r(x/ε, t). The error in this approximation is
shown to converge in norm to zero, i.e., ‖uε(x, t)− uε

Approx(x, t)‖ → 0 as ε→ 0.

In the following subsections, we consider four cases of initial and loading conditions.
For each case, we present the macroscopic equation, the cell-problem, and the associated
approximation. The results provided in this section are justified in Section 5.

For convenience, we introduce the following notation for the average of a periodic func-
tion. Let a function of the form p(y), p(x, y), or p(x, y, t) be Y -periodic in the variable y.
Its average over Y is denoted by

p̄ =

∫
Y

p(y) dy,

p̄(x) =

∫
Y

p(x, y) dy, or

p̄(x, t) =

∫
Y

p(x, y, t) dy,

respectively. For future reference, we let

K =

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
dx̂ . (2.1)

By the change of variables ξ = x̂ − x, it is easy to see that K is a constant matrix, which
depends on the macroscopic parameters γ, CM

matrix, and CM
fiber.

For future reference, we will adopt the notation Lp
per(Y ) for the space of Lebesgue p-

integrable functions which are Y -periodic. Similarly, Cper(Y ) denotes the space of continuous
Y -periodic functions. Also we denote by C0,β(Ω̄) the space of Hölder continuous functions
with exponent β, where 0 < β ≤ 1.
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2.1 First Case

In this section, the loading force and initial data are given by

b
(
x,
x

ε
, t
)

= l(x, t) +R
(x
ε

)
, (2.2a)

u0
(
x,
x

ε

)
= u0(x) + u1

(x
ε

)
, (2.2b)

v0
(
x,
x

ε

)
= v0(x) + v1

(x
ε

)
, (2.2c)

where l ∈ C([0, T ]; Ls(Ω)3), R is in Ls
per(Y )3 with R̄ = 0, u0 and v0 are in Ls(Ω)3, and u1

and v1 are in Ls
per(Y )3 with ū1 = v̄1 = 0. Here, R(x

ε
) can be interpreted as a residual force.

For example, such forces can arise from the differences in thermal expansion between the
two materials.

2.1.1 The Macroscopic Equation

The macroscopic or homogenized peridynamic equation is given by

∂2
t u

H(x, t) =

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
(uH(x̂, t)− uH(x, t)) dx̂+ l(x, t), (2.3)

supplemented with initial data

uH(x, 0) = u0(x), ∂tu
H(x, 0) = v0(x). (2.4)

Here the macroscopic displacement uH is the weak limit of the sequence of displacements uε.
This is described by the following theorem.

Theorem 2.1. Let uε be the solution of (1.10)-(1.12), where b, u0, and v0 are given by
(2.2). Then as ε→ 0

uε(x, t) → uH(x, t) weakly in Ls(Ω× (0, T ))3,

where uH ∈ C2([0, T ]; Ls(Ω)3) is the unique solution of (2.3)-(2.4).
Moreover, assume that l ∈ C([0, T ]; C(Ω̄)3), and u0 and v0 are in C(Ω̄)3. Then uH is in

C2([0, T ]; C(Ω̄)3).

2.1.2 The Cell–Problem

The cell-problem or the micro-level peridynamic equation is given by

∂2
t r(y, t) =

∫
Hδ(y)

α(y, ŷ)
(ŷ − y)⊗ (ŷ − y)

|(ŷ − y)|3
(r(ŷ, t)− r(y, t)) dŷ

−K r(y, t) +R(y), (2.5)

supplemented with initial conditions

r(y, 0) = u1(y), ∂tr(y, 0) = v1(y). (2.6)

The matrix K is given by (2.1).
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2.1.3 Downscaling

The macroscopic displacement uH together with the rescaled solution of the cell problem
provide the approximation to the actual solution uε given by uε

Approx = uH(x, t) + r(x/ε, t).
This is expressed in the following theorem.

Theorem 2.2. Let uε be the solution of (1.10)-(1.12), where b, u0, and v0 are given by
(2.2). Assume that l ∈ C([0, T ]; C(Ω̄)3), and u0 and v0 are in C(Ω̄)3. Then for almost every
t ∈ (0, T ),

lim
ε→0

∥∥∥uε(x, t)−
(
uH(x, t) + r

(x
ε
, t
))∥∥∥

Ls(Ω)3
= 0, (2.7)

where r ∈ C2([0, T ]; Ls
per(Y )3) is the unique solution of (2.5)-(2.6).

Moreover, assume that λ = 0 in equation (1.10). Then, for t ∈ (0, T ) and u0, v0, and
l(·, t) in C0,β(Ω̄)3, the error in (2.7) is estimated by∥∥∥uε(x, t)−

(
uH(x, t) + r

(x
ε
, t
))∥∥∥

Ls(Ω)3
≤M1(t)ε

β, (2.8)

where M1(t) is independent of ε. The function M1(t) is given explicitly in
Section 5.2.1.

2.2 Second Case

In this section, the loading force and initial data are given by

b
(
x,
x

ε
, t
)

= F
(x
ε
, t
)
h(x), (2.9a)

u0
(
x,
x

ε

)
= 0, (2.9b)

v0
(
x,
x

ε

)
= 0, (2.9c)

where F ∈ C([0, T ]; Ls
per(Y )3×3) and h ∈ Ls(Ω)3.

2.2.1 The Macroscopic Equation

The macroscopic peridynamic equation is given by

∂2
t u

H(x, t) =

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
(uH(x̂, t)− uH(x, t)) dx̂+ F̄ (t)h(x), (2.10)

supplemented with initial data

uH(x, 0) = 0, ∂tu
H(x, 0) = 0. (2.11)

Here the macroscopic displacement uH is the weak limit of the sequence of displacements uε.
This is described by the following theorem.

Theorem 2.3. Let uε be the solution of (1.10)-(1.12), where b, u0, and v0 are given by
(2.9). Then as ε→ 0

uε(x, t) → uH(x, t) weakly in Ls(Ω× (0, T ))3,

where uH ∈ C2([0, T ]; Ls(Ω)3) is the unique solution of (2.10)-(2.11).
Moreover, assume that h ∈ C(Ω̄)3. Then uH is in C2([0, T ]; C(Ω̄)3).
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2.2.2 The Cell–Problem

The micro-level peridynamics is given by the following equations. For j = 1, 2, 3,

∂2
t r

j(y, t) =

∫
Hδ(y)

α(y, ŷ)
(ŷ − y)⊗ (ŷ − y)

|(ŷ − y)|3
(
rj(ŷ, t)− rj(y, t)

)
dŷ

−K rj(y, t) + (F j(y, t)− F̄ j(t)), (2.12)

supplemented with initial conditions

rj(y, 0) = 0, ∂tr
j(y, 0) = 0. (2.13)

In (2.12), F j(y, t) and F̄ j(t) denote the jth columns of the matrices F (y, t) and F̄ (t), respec-
tively. The matrix K is given by (2.1).

2.2.3 Downscaling

The macroscopic displacement uH together with the rescaled solution of the cell problem
provide an approximation to the actual solution uε. This is expressed in the following
theorem.

Theorem 2.4. Let uε be the solution of (1.10)-(1.12), where b, u0, and v0 are given by
(2.9). Assume that h ∈ C(Ω̄)3. Then for almost every t ∈ (0, T ),

lim
ε→0

∥∥∥∥∥uε(x, t)−

(
uH(x, t) +

3∑
j=1

rj
(x
ε
, t
)
hj(x)

)∥∥∥∥∥
Ls(Ω)3

= 0, (2.14)

where rj ∈ C2([0, T ]; Ls
per(Y )3) is the unique solution of (2.12)-(2.13).

Moreover, assume that λ = 0 in equation (1.10). Then, for t ∈ (0, T ) and
h ∈ C0,β(Ω̄)3, the error in (2.14) is estimated by∥∥∥∥∥uε(x, t)−

(
uH(x, t) +

3∑
j=1

rj
(x
ε
, t
)
hj(x)

)∥∥∥∥∥
Ls(Ω)3

≤M2(t)ε
β, (2.15)

where M2(t) is independent of ε. The function M2(t) is given explicitly in
Section 5.2.2.

2.3 Third Case

In this section, the loading force and initial data are given by

b
(
x,
x

ε
, t
)

= 0, (2.16a)

u0
(
x,
x

ε

)
= F

(x
ε

)
h(x), (2.16b)

v0
(
x,
x

ε

)
= 0, (2.16c)

where F ∈ Ls
per(Y )3×3 and h ∈ Ls(Ω)3.
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2.3.1 The Macroscopic Equation

The macroscopic peridynamic equation is given by

∂2
t u

H(x, t) =

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
(uH(x̂, t)− uH(x, t)) dx̂, (2.17)

supplemented with initial data

uH(x, 0) = F̄ h(x), ∂tu
H(x, 0) = 0. (2.18)

Here the macroscopic displacement uH is the weak limit of the sequence of displacements uε.
This is described by the following theorem.

Theorem 2.5. Let uε be the solution of (1.10)-(1.12), where b, u0, and v0 are given by
(2.16). Then as ε→ 0

uε(x, t) → uH(x, t) weakly in Ls(Ω× (0, T ))3,

where uH ∈ C2([0, T ]; Ls(Ω)3) is the unique solution of (2.17)-(2.18).
Moreover, assume that h ∈ C(Ω̄)3. Then uH is in C2([0, T ]; C(Ω̄)3).

2.3.2 The Cell–Problem

The micro-level peridynamics is given by the following equations. For j = 1, 2, 3,

∂2
t r

j(y, t) =

∫
Hδ(y)

α(y, ŷ)
(ŷ − y)⊗ (ŷ − y)

|(ŷ − y)|3
(
rj(ŷ, t)− rj(y, t)

)
dŷ

−K rj(y, t), (2.19)

supplemented with initial conditions

rj(y, 0) = F j(y)− F̄ j, ∂tr
j(y, 0) = 0. (2.20)

In (2.20), F j(y) and F̄ j denote the jth columns of the matrices F (y) and F̄ , respectively.
The matrix K is given by (2.1).

2.3.3 Downscaling

The macroscopic displacement uH together with the rescaled solution of the cell problem
provide an approximation to the actual solution uε. This is expressed in the following
theorem.

Theorem 2.6. Let uε be the solution of (1.10)-(1.12), where b, u0, and v0 are given by
(2.16). Assume that h ∈ C(Ω̄)3. Then for almost every t ∈ (0, T ),

lim
ε→0

∥∥∥∥∥uε(x, t)−

(
uH(x, t) +

3∑
j=1

rj
(x
ε
, t
)
hj(x)

)∥∥∥∥∥
Ls(Ω)3

= 0, (2.21)
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where rj ∈ C2([0, T ]; Ls
per(Y )3) is the unique solution of (2.19)-(2.20).

Moreover, assume that λ = 0 in equation (1.10). Then, for t ∈ (0, T ) and h ∈ C0,β(Ω̄)3,
the error in (2.21) is estimated by∥∥∥∥∥uε(x, t)−

(
uH(x, t) +

3∑
j=1

rj
(x
ε
, t
)
hj(x)

)∥∥∥∥∥
Ls(Ω)3

≤M3(t)ε
β, (2.22)

where M3(t) is independent of ε. The function M3(t) is given explicitly in
Section 5.2.3.

2.4 Fourth Case

In this section, the loading force and initial data are given by

b
(
x,
x

ε
, t
)

= 0, (2.23a)

u0
(
x,
x

ε

)
= 0, (2.23b)

v0
(
x,
x

ε

)
= F

(x
ε

)
h(x), (2.23c)

where F ∈ Ls
per(Y )3×3 and h ∈ Ls(Ω)3.

2.4.1 The Macroscopic Equation

The macroscopic peridynamic equation is given by

∂2
t u

H(x, t) =

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
(uH(x̂, t)− uH(x, t)) dx̂, (2.24)

supplemented with initial data

uH(x, 0) = 0, ∂tu
H(x, 0) = F̄ h(x). (2.25)

Here the macroscopic displacement uH is the weak limit of the sequence of displacements uε.
This is described by the following theorem.

Theorem 2.7. Let uε be the solution of (1.10)-(1.12), where b, u0, and v0 are given by
(2.23). Then as ε→ 0

uε(x, t) → uH(x, t) weakly in Ls(Ω× (0, T ))3,

where uH ∈ C2([0, T ]; Ls(Ω)3) is the unique solution of (2.24)-(2.25).
Moreover, assume that h ∈ C(Ω̄)3. Then uH is in C2([0, T ]; C(Ω̄)3).
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2.4.2 The Cell–Problem

The micro-level peridynamics is given by the following equations. For j = 1, 2, 3,

∂2
t r

j(y, t) =

∫
Hδ(y)

α(y, ŷ)
(ŷ − y)⊗ (ŷ − y)

|(ŷ − y)|3
(
rj(ŷ, t)− rj(y, t)

)
dŷ

−K rj(y, t), (2.26)

supplemented with initial conditions

rj(y, 0) = 0, ∂tr
j(y, 0) = F j(y)− F̄ j. (2.27)

In (2.27), F j(y) and F̄ j denote the jth columns of the matrices F (y) and F̄ , respectively.
The matrix K is given by (2.1).

2.4.3 Downscaling

The macroscopic displacement uH together with the rescaled solution of the cell problem
provide an approximation to the actual solution uε. This is expressed in the following
theorem.

Theorem 2.8. Let uε be the solution of (1.10)-(1.12), where b, u0, and v0 are given by
(2.23). Assume that h ∈ C(Ω̄)3. Then for almost every t ∈ (0, T ),

lim
ε→0

∥∥∥∥∥uε(x, t)−

(
uH(x, t) +

3∑
j=1

rj
(x
ε
, t
)
hj(x)

)∥∥∥∥∥
Ls(Ω)3

= 0, (2.28)

where rj ∈ C2([0, T ]; Ls
per(Y )3) is the unique solution of (2.26)-(2.27).

Moreover, assume that λ = 0 in equation (1.10). Then, for t ∈ (0, T ) and h ∈ C0,β(Ω̄)3,
the error in (2.28) is estimated by∥∥∥∥∥uε(x, t)−

(
uH(x, t) +

3∑
j=1

rj
(x
ε
, t
)
hj(x)

)∥∥∥∥∥
Ls(Ω)3

≤M4(t)ε
β, (2.29)

where M4(t) is independent of ε. The function M4(t) is given explicitly in
Section 5.2.3.

3 Existence and Uniqueness Results for the Peridy-

namic Equation

In this section, we make use of semigroup theory of operators to study the existence and
uniqueness of (1.10)-(1.12). We begin by introducing the following operators. For v ∈ Ls(Ω)3,
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with 3
2
< s <∞, let

AL,1v(x) =

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
v(x̂) dx̂, (3.1)

AL,2v(x) =

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
dx̂ v(x), (3.2)

Aε
S,1v(x) =

∫
Hεδ(x)

1

ε2
α

(
x

ε
,
x̂

ε

)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
v(x̂) dx̂, (3.3)

Aε
S,2v(x) =

∫
Hεδ(x)

1

ε2
α

(
x

ε
,
x̂

ε

)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
dx̂ v(x). (3.4)

Also we set

AL = AL,1 − AL,2, (3.5)

Aε
S = Aε

S,1 − Aε
S,2, (3.6)

Aε = AL + Aε
S. (3.7)

Then by making the identifications uε(t) = uε(·, t) and bε(t) = b(·, ·
ε
, t), we can write (1.10)-

(1.12) as an operator equation in Ls(Ω)3
üε(t) = Aεuε(t) + bε(t), t ∈ [0, T ]
uε(0) = uε

0,
u̇ε(0) = vε

0.
(3.8)

or equivalently, as an inhomogeneous Abstract Cauchy Problem in
Ls(Ω)3 × Ls(Ω)3 {

U̇ ε(t) = AεU ε(t) +Bε(t), t ∈ [0, T ]
U ε(0) = U ε

0 .
(3.9)

where

U ε(t) =

(
uε(t)
u̇ε(t)

)
, U ε

0 =

(
uε

0

vε
0

)
, Bε(t) =

(
0

bε(t)

)
, and Aε =

(
0 I
Aε 0

)
.

Here I denotes the identity map in Ls(Ω)3.

Proposition 3.1. Let 3
2
< s <∞ and assume that bε ∈ C([0, T ]; Ls(Ω)3). Then

(a) The operators Aε and Aε are linear and bounded on Ls(Ω)3 and
Ls(Ω)3 × Ls(Ω)3, respectively. Moreover, the bounds are uniform in ε.

(b) Equation (3.9) has a unique classical solution U ε in
C1([0, T ]; Ls(Ω)3 × Ls(Ω)3) which is given by

U ε(t) = etAε

U ε
0 +

∫ t

0

e(t−τ)Aε

Bε(τ) dτ, t ∈ [0, T ], (3.10)
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where

etAε

=
∞∑

n=0

tn

n!
(Aε)n. (3.11)

Moreover, equation (3.8) has a unique classical solution uε ∈ C2([0, T ]; Ls(Ω)3) which
is given by

uε(t) = cosh
(
t
√
Aε
)
uε

0 +
√
Aε

−1
sinh

(
t
√
Aε
)
vε

0

+
√
Aε

−1
∫ t

0

sinh
(
t
√
Aε
)
bε(τ) dτ (3.12a)

with the notation

cosh
(
t
√
Aε
)

:=
∞∑

n=0

t2n

(2n)!
(Aε)n (3.12b)

√
Aε

−1
sinh

(
t
√
Aε
)

:=
∞∑

n=0

t2n+1

(2n+ 1)!
(Aε)n (3.12c)

(c) The sequences (uε)ε>0, (u̇ε)ε>0, and (üε)ε>0 are bounded
in L∞([0, T ]; Ls(Ω)3).

Proof. Part (a). It is clear that the operators Aε
S,1, A

ε
S,2, AL,1, and AL,2 are linear. So

we begin the proof by showing that Aε
S,1 and Aε

S,2 are uniformly bounded on Ls(Ω)3 for
3
2
< s <∞. Let v ∈ Ls(Ω)3. Then by the change of variables x̂ = x+ εz in (3.3) we obtain

Aε
S,1v(x) =

∫
Hδ(0)

α
(x
ε
,
x

ε
+ z
) z ⊗ z

|z|3
v(x+ εz) dz. (3.13)

Let αmax = max
y,y′∈Y

α(y, y′). Then by taking the Euclidean norm in (3.13), we see that

|Aε
S,1v(x)| ≤ αmax

∫
Hδ(0)

1

|z|
|v(x+ εz)| dz

≤ αmax

(∫
Hδ(0)

1

|z|s′
dz

)1/s′ (∫
Hδ(0)

|v(x+ εz)|s dz
)1/s

, (3.14)

where Hölder’s inequality was used in the second inequality, with 1/s+ 1/s′ = 1
and 1 ≤ s′ < 3. By changing the variable of integration back to x̂ in the second integral,
and then taking the limit as ε→ 0, we see that∫

Hδ(0)

|v(x+ εz)|s dz =
1

ε3

∫
Hδε(x)

|v(x̂)|s dx̂

→ |Hδ(x)| |v(x)|s, a.e. x, (3.15)

where we have used Lebesgue’s Differentiation Theorem to evaluate this limit. On the other
hand, we observe that the first integral in (3.14) is finite because s′ < 3. Therefore, it follows
from (3.14) and (3.15) that

|Aε
S,1v(x)| ≤ M1 |v(x)|,
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for some real number M1 > 0 which is independent of ε. It follows that

‖Aε
S,1v‖Ls(Ω)3 ≤ M1 ‖v‖Ls(Ω)3 ,

which shows that the operator Aε
S,1 is uniformly bounded. Similarly, Aε

S,2 can be written as

Aε
S,2v(x) =

∫
Hδ(0)

α
(x
ε
,
x

ε
+ z
) z ⊗ z

|z|3
dz v(x). (3.16)

Thus

|Aε
S,2v(x)| ≤ αmax

∫
Hδ(0)

1

|z|
dz |v(x)|,

from which the boundedness of Aε
S,2 immediately follows. Combining these results shows

that Aε
S, which is given by Aε

S,1 − Aε
S,2, is a uniformly bounded operator on Ls(Ω)3.

Next we show that the linear operator AL = AL,1 − AL,2 is bounded on Ls(Ω)3. Let
λmax = max

ξ∈Hγ(0)
λ(ξ). Then by taking the Euclidean norm in (3.1), we see that

|AL,1v(x)| ≤ λmax

∫
Hγ(x)

1

|x̂− x|
|v(x̂)| dx̂

≤ λmax

(∫
Hγ(x)

1

|x̂− x|s′
dx̂

)1/s′ (∫
Hγ(x)

|v(x̂)|s dx̂

)1/s

, (3.17)

where Hölder’s inequality was used in the second inequality, with 1/s+ 1/s′ = 1
and 1 ≤ s′ < 3. By the change of variables ξ = x̂− x, it is easy to see that the first integral
in (3.17) is independent of x and finite because s′ < 3. Therefore from (3.17) we obtain

‖AL,1v‖Ls(Ω)3 ≤ λmax

(∫
Hγ(0)

1

|z|s′
dz

)1/s′

‖v‖Ls(Ω)3 .

This shows that AL,1 is bounded on Ls(Ω)3. The boundedness of AL,2, which is given by
(3.2), is clear. Therefore AL is bounded on Ls(Ω)3.

Since Aε = AL + Aε
S, we conclude that

‖Aεv‖Ls(Ω)3 ≤M ‖v‖Ls(Ω)3 , (3.18)

for some real number M > 0 which is independent of ε.
The operator Aε is clearly linear, thus it remains to show that this operator is uniformly

bounded on Ls(Ω)3×Ls(Ω)3. To see this, we let (v, w) ∈ Ls(Ω)3×Ls(Ω)3. The norm in this
Banach space is given by

‖(v, w)‖Ls(Ω)3×Ls(Ω)3 = ‖v‖Ls(Ω)3 + ‖w‖Ls(Ω)3 .

We note that

Aε

(
v
w

)
=

(
0 I
Aε 0

)(
v
w

)
=

(
w

Aεv

)
.
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Thus by taking the norm, we obtain

‖Aε(v, w)‖Ls(Ω)3×Ls(Ω)3 = ‖w‖Ls(Ω)3 + ‖Aεv‖Ls(Ω)3

≤ ‖w‖Ls(Ω)3 + ‖Aε‖ ‖v‖Ls(Ω)3 . (3.19)

From (3.19) and since we may assume that M > 1 in (3.18), it follows that

‖Aε(v, w)‖Ls(Ω)3×Ls(Ω)3 ≤M‖(v, w)‖Ls(Ω)3×Ls(Ω)3 , (3.20)

completing the argument.
Part (b). We have seen from Part (a) that Aε is a bounded linear operator on the Banach

space Ls(Ω)3 × Ls(Ω)3. Also, since bε is in C([0, T ]; Ls(Ω)3) by assumption, it follows that
Bε = (0, bε) is in C([0, T ]; Ls(Ω)3 × Ls(Ω)3). From these facts, it follows from the theory of
semigroups that1

1. The operator Aε generates a uniformly continuous semigroup {etAε}t≥0 on Ls(Ω)3 ×
Ls(Ω)3, where etAε

is given by (3.11).

2. The inhomogeneous Abstract Cauchy Problem (3.9) has a unique classical solution
U ε ∈ C1([0, T ]; Ls(Ω)3 × Ls(Ω)3) which is given by (3.10).

It immediately follows from (2) that the second order inhomogeneous Abstract Cauchy Prob-
lem (3.8) has a unique classical solution uε ∈ C2([0, T ]; Ls(Ω)3). It remains to show that uε

is given explicitly by (3.12). To see this, we begin by the following observations which can
be easily shown using mathematical induction. For n = 0, 1, 2, . . ., we have

(
0 I
Aε 0

)2n

=
(

(Aε)n 0
0 (Aε)n

)
(3.21)

(
0 I
Aε 0

)2n+1

=
(

0 (Aε)n

(Aε)n+1 0

)
(3.22)

From (3.11) and by using these two equations we see that

etAε

=
∞∑

n=0

tn

n!

(
0 I
Aε 0

)n

=


∞∑

n=0

t2n

(2n)!
(Aε)n

∞∑
n=0

t2n+1

(2n + 1)!
(Aε)n

∞∑
n=0

t2n+1

(2n + 1)!
(Aε)n+1

∞∑
n=0

t2n

(2n)!
(Aε)n


(3.23)

Equation (3.12) follows from equations (3.10) and (3.23), and the fact that

U ε =

(
uε

u̇ε

)
.

1see for example [20, 12].
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Part (c). We recall that

uε
0(x) := u0(x,

x

ε
)

vε
0(x) := v0(x,

x

ε
)

Also by assumption u0(x, y), v0(x, y) are in Ls(Ω;Ls
per(Y )3). Therefore we see that

‖uε
0‖Ls(Ω)3 ≤ ‖u0‖Ls(Ω;Ls

per(Y )3) :=

(∫
Ω

∫
Y

|u0(x, y)|s dydx
)1/s

,

‖vε
0‖Ls(Ω)3 ≤ ‖v0‖Ls(Ω;Ls

per(Y )3) :=

(∫
Ω

∫
Y

|v0(x, y)|s dydx
)1/s

.

Thus uε
0 and vε

0 are uniformly bounded in Ls(Ω)3, which implies that U ε
0 is uniformly

bounded in Ls(Ω)3 × Ls(Ω)3. Similarly we can show that for t ∈ [0, T ], bε(t) is uniformly
bounded in Ls(Ω)3. Since bε(t) is continuous in t, it follows that bε is uniformly bounded in
C([0, T ]; Ls(Ω)3), which implies that Bε is uniformly bounded in C([0, T ]; Ls(Ω)3×Ls(Ω)3).

Next we note that

‖etAε‖ ≤ et‖Aε‖

≤ etM , (3.24)

where in the last inequality we have used the fact that Aε is uniformly bounded. Taking the
norm in both sides of (3.10) and by using (3.24), we obtain

‖U ε(t)‖Ls(Ω)3×Ls(Ω)3 ≤ M1e
tM +

∫ t

0

e(t−τ)MM2 dτ, (3.25)

for some positive numbers M1, M2, and M . This implies that U ε is uniformly bounded
in L∞([0, T ]; Ls(Ω)3 × Ls(Ω)3). Therefore the sequences (uε)ε>0 and (u̇ε)ε>0 are bounded
in L∞([0, T ]; Ls(Ω)3). Finally, it follows from equation (3.8) that the sequence (üε)ε>0 is
bounded in L∞([0, T ]; Ls(Ω)3), completing the proof.

4 Two-Scale Convergence and the Two-Scale Limit Equa-

tion

The aim of this section is to identify the two-scale limit of the peridynamic initial-value
problem (1.10)-(1.12).

4.1 Two-Scale Convergence

We begin by defining two-scale convergence and recalling some results from two-scale con-
vergence. In the subsequent discussion, we will often refer to the following function spaces

K = {ψ ∈ C∞
c (R3 × Y ), ψ(x, y) is Y -periodic in y},

J = {ψ ∈ C∞
c (R3 × Y × R+), ψ(x, y, t) is Y -periodic in y},

Q = {w ∈ C2([0, T ]; Ls(Ω× Y )3), w(x, y, t) is Y -periodic in y, and 3/2 < s <∞}.
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Let p and p′ be two real numbers such that 1 < p <∞ and 1/p+ 1/p′ = 1.

Definition 4.1 (Two-scale convergence [18, 1]). A sequence (vε) of functions in Lp(Ω),
is said to two-scale converge to a limit v ∈ Lp(Ω× Y ) if, as ε→ 0∫

Ω

vε(x)ψ
(
x,
x

ε

)
dx→

∫
Ω×Y

v(x, y)ψ(x, y) dxdy (4.1)

for all ψ ∈ Lp′(Ω; Cper(Y )). We will often use vε 2
⇀ v to denote that (vε) two-scale converges

to v.

If the sequence (vε) is bounded in Lp(Ω) then Lp′(Ω; Cper(Y )) can be replaced by K in
Definition (4.1) (see [19]).

The following are well-known results on two-scale convergence, which can be found in
[19].

Proposition 4.2. If (vε) converges to v in Lp(Ω) then (vε) two-scale converges to ṽ(x, y) =
v(x).

Proposition 4.3. If ψ ∈ K then ψ(x, x
ε
) two-scale converges to ψ(x, y).

Proposition 4.4. Let (vε) be a sequence in Lp(Ω) which two-scale converges to v ∈ Lp(Ω×
Y ). Then ∫

Ω

vε(x)ψ
(
x,
x

ε

)
dx→

∫
Ω×Y

v(x, y)ψ(x, y) dxdy,

for every ψ of the form ψ(x, y) = ψ1(x)ψ2(y), where ψ1 ∈ Lrp′(Ω) and ψ2 ∈ Lr′p′
per (Y ), with

1 ≤ r ≤ ∞ and 1/r + 1/r′ = 1.

Proposition 4.5. Let (vε) be a sequence in Lp(Ω) which two-scale converges to v ∈ Lp(Ω×
Y ). Then as ε→ 0

vε →
∫

Y

v(x, y) dy weakly in Lp(Ω).

Definition 4.1 is motivated by the following compactness result of Nguetseng, see [18].

Theorem 4.6. Let (vε) be a bounded sequence in Lp(Ω). Then there exists a subsequence
and a function v ∈ Lp(Ω× Y ) such that the subsequence two-scale converges to v.

For the time-dependent problems studied in this work, we slightly modify the above two-
scale convergence definition and results to allow for homogenization with a parameter, see
[5, 8]. Here the parameter is denoted by t.

Definition 4.7. A sequence (vε) of functions in Lp(Ω× (0, T )), is said to two-scale converge
to a limit v ∈ Lp(Ω× Y × (0, T )) if, as ε→ 0∫

Ω×(0,T )

vε(x, t)ψ
(
x,
x

ε
, t
)
dxdt→

∫
Ω×Y×(0,T )

v(x, y, t)ψ(x, y, t) dxdydt (4.2)

for all ψ ∈ J .



Bacim Alali and Robert Lipton 22

Theorem 4.8. Let (vε) be a bounded sequence in Lp(Ω× (0, T )). Then there exists a subse-
quence and a function v ∈ Lp(Ω× Y × (0, T )) such that the subsequence two-scale converges
to v.

The proof of this result is essentially the same as the proof of Theorem 4.6. A slight
variation of Theorem 4.8 can be found in [8] and [5].

The following is a direct consequence of Definition 4.7 and the definition of weak conver-
gence.

Proposition 4.9. Let (vε) be a bounded sequence in Lp(Ω× (0, T )) that two-scale converges
to v ∈ Lp(Ω× Y × (0, T )). Then as ε→ 0

vε →
∫

Y

v(x, y, t) dy weakly in Lp(Ω× (0, T )).

Finally, we state the following well-known result on the weak limit of oscillatory periodic
functions, which can be found in [6].

Proposition 4.10. Let h ∈ Lq(Ω) be a Y -periodic function, where 1 ≤ q ≤ ∞. Set hε(x) =
h(x

ε
) for x ∈ Ω. Then as ε→ 0,

hε → h̄ =

∫
Y

h(y) dy weakly in Lq(Ω), (4.3)

if 1 ≤ q <∞, and
hε → h̄ weakly-∗ in L∞(Ω), (4.4)

if q = ∞.

4.2 The Two-Scale Limit Equation

In this section, we use two-scale convergence to identify the limit of (1.10)-(1.12). We observe
that the loading force and initial data given by equations (2.2), (2.9), (2.16), or (2.23), satisfy
the following

b
(
x,
x

ε
, t
)

2
⇀ b(x, y, t), (4.5a)

u0
(
x,
x

ε

)
2
⇀ u0(x, y), (4.5b)

v0
(
x,
x

ε

)
2
⇀ v0(x, y). (4.5c)

We note that from Proposition 3.1(c) and Theorem 4.8 it follows that, up to some subse-

quences, uε 2
⇀ u, u̇ε 2

⇀ u∗, and üε 2
⇀ u∗∗, where u, u∗, and u∗∗ are in Ls([0, T ]; Ls(Ω× Y )3).

We shall see later that u(x, y, t) is uniquely determined by an initial value problem. There-
fore u is independent of the subsequence, and the whole sequence (uε) two-scale converges
to u.
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In order to identify the two-scale limit of (1.10), we multiply both sides by a test function
ψ(x, x

ε
, t), where ψ(x, y, t) is Y -periodic in y and is such that

ψ ∈ C∞
c (R3 × Y × R)3, and integrate on Ω× R+∫

Ω×R+

∂2
t u

ε(x, t) · ψ
(
x,
x

ε
, t
)
dxdt

=

∫
Ω×R+

(
(AL + Aε

S)uε(x, t) + b
(
x,
x

ε
, t
))

· ψ
(
x,
x

ε
, t
)
dxdt

After integrating by parts twice, we obtain∫
Ω×R+

uε(x, t) · ∂2
t ψ
(
x,
x

ε
, t
)
dxdt−

∫
Ω

∂tu
ε(x, 0) · ψ

(
x,
x

ε
, 0
)
dx

+

∫
Ω

uε(x, 0) · ∂tψ
(
x,
x

ε
, 0
)
dx

=

∫
Ω×R+

(
(AL + Aε

S)uε(x, t) + b
(
x,
x

ε
, t
))

· ψ
(
x,
x

ε
, t
)
dxdt

By letting ε→ 0 we obtain∫
Ω×Y×R+

u(x, y, t) · ∂2
t ψ(x, y, t) dxdydt−

∫
Ω×Y

v0(x, y) · ψ(x, y, 0) dxdy

+

∫
Ω×Y

u0(x, y) · ∂tψ(x, y, 0) dxdy

= lim
ε→0

∫
Ω×R+

(AL + Aε
S)uε(x, t) · ψ

(
x,
x

ε
, t
)
dxdt

+

∫
Ω×Y×R+

b(x, y, t) · ψ(x, y, t) dxdydt (4.6)

For i = 1, 2, 3, we extend ui(x, y, t) by periodicity from Ω× Y × (0, T ) to
Ω × R3 × (0, T ). We will use the following lemma to compute the limit on the right hand
side of (4.6).

Lemma 4.11. Let w be in Ls(Ω; Ls
per(Y )3) and define

BLw(x, y) =

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3

(∫
Y

w(x̂, y′) dy′ − w(x, y)

)
dx̂,

BSw(x, y) =

∫
Hδ(y)

α(y, ŷ)
(ŷ − y)⊗ (ŷ − y)

|ŷ − y|3
(w(x, ŷ)− w(x, y)) dŷ.

Then as ε→ 0,

(a) ALu
ε(x, t)

2
⇀ BLu(x, y, t).

Moreover, the operator BL is linear and bounded on Ls(Ω; Ls
per(Y )3).

(b) Aε
Su

ε(x, t)
2
⇀ BSu(x, y, t).

Moreover, the operator BS is linear and bounded on Ls(Ω; Ls
per(Y )3).
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The proof of this lemma is provided at the end of this section.
Using Lemma (4.11) and Lebesgue’s dominated convergence theorem, it follows that

lim
ε→0

∫
Ω×R+

(AL + Aε
S)uε(x, t) · ψ

(
x,
x

ε
, t
)
dxdt

=

∫
Ω×Y×R+

(BL +BS)u(x, y, t) · ψ(x, y, t) dxdydt.

Thus (4.6) becomes∫
Ω×Y×R+

u(x, y, t) · ∂2
t ψ(x, y, t) dxdydt−

∫
Ω×Y

v0(x, y) · ψ(x, y, 0) dxdy

+

∫
Ω×Y

u0(x, y) · ∂tψ(x, y, 0) dxdy

=

∫
Ω×Y×R+

((BL +BS)u(x, y, t) + b(x, y, t)) · ψ(x, y, t) dxdydt (4.7)

We shall see from Lemma 4.13, provided before the end of this section, that u has two
classical partial derivatives with respect to t, for almost every t, and the initial conditions
supplementing (4.7) are given by

u(x, y, 0) = u0(x, y), ∂tu(x, y, 0) = v0(x, y). (4.8)

Thus by integrating by parts twice, equation (4.7) becomes∫
Ω×Y×R+

∂2
t u(x, y, t) · ψ(x, y, t) dxdydt

=

∫
Ω×Y×R+

((BL +BS)u(x, y, t) + b(x, y, t)) · ψ(x, y, t) dxdydt (4.9)

Since this is true for any function ψ ∈ C∞
c (R3×Y ×R)3 for which ψ(x, y, t) is Y -periodic in

y, we obtain that for almost every x, y, and t

∂2
t u(x, y, t) = Bu(x, y, t) + b(x, y, t), (4.10)

where B = BL + BS. It follows from Lemma 4.11 that B is a bounded linear operator on
Ls(Ω; Ls

per(Y )3). Therefore, the initial value problem given by (4.10) and (4.8), interpreted
as a second-order inhomogeneous abstract Cauchy problem defined on Ls(Ω; Ls

per(Y )3), has
a unique solution u ∈ Q.

The following summarizes the results of this section.

Theorem 4.12. Let (uε) be the sequence of solutions of (1.10)-(1.12). Then

uε 2
⇀ u where u ∈ Q is the unique solution of

∂2
t u(x, y, t) =

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3

(∫
Y

u(x̂, y′, t) dy′ − u(x, y, t)

)
dx̂

+

∫
Hδ(y)

α(y, ŷ)
(ŷ − y)⊗ (ŷ − y)

|ŷ − y|3
(u(x, ŷ, t)− u(x, y, t)) dŷ

+ b(x, y, t),

(4.11)
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supplemented with initial conditions

u(x, y, 0) = u0(x, y), (4.12)

∂tu(x, y, 0) = v0(x, y). (4.13)

Lemma 4.13. Let t ∈ [0, T ] and define

g(x, y, t) =

∫ t

0

∫ τ

0

u∗∗(x, y, l) dldτ + tu∗(x, y, 0) + u(x, y, 0). (4.14)

Then g is in Ls(Ω × Y × (0, T ))3, twice differentiable with respect to t almost everywhere,
and satisfies

(a) For almost every x, y, and t, g(x, y, t) = u(x, y, t), ∂tg(x, y, t) = u∗(x, y, t),
and ∂2

t g(x, y, t) = u∗∗(x, y, t).

(b) For almost every x and y

g(x, y, 0) = u(x, y, 0) = u0(x, y),

∂tg(x, y, 0) = u∗(x, y, 0) = v0(x, y).

Proof. Part (a). Let ψ1(x, y) be in C∞
c (Ω×Y )3 and Y -periodic in y, and let φ be in C∞

c (R+).
Then by using integration by parts, we see that∫

Ω×R+

∂tu
ε(x, t) · ψ1

(
x,
x

ε

)
φ(t) dxdt = −

∫
Ω×R+

uε(x, t) · ψ1

(
x,
x

ε

)
φ̇(t) dxdt.

Sending ε to 0 and using the fact that, up to a subsequence, ∂tu
ε 2
⇀ u∗, we obtain∫

Ω×Y×R+

u∗(x, y, t) · ψ1 (x, y)φ(t) dxdydt

= −
∫

Ω×Y×R+

u(x, y, t) · ψ1 (x, y) φ̇(t) dxdydt.

Since this holds for every ψ1 we conclude that∫
R+

u∗(x, y, t)φ(t) dt = −
∫

R+

u(x, y, t)φ̇(t) dt, (4.15)

for almost every x and y and for every φ ∈ C∞
c (R+). Similarly, by using the fact that, up to

a subsequence, ∂2
t u

ε 2
⇀ u∗∗, we see that∫

R+

u∗∗(x, y, t)φ(t) dt =

∫
R+

u(x, y, t)φ̈(t) dt, (4.16)

for almost every x and y and for every φ ∈ C∞
c (R+). We note that from (4.14) it is easy to

see that g is twice differentiable in t almost everywhere and satisfies

∂tg(x, y, t) =

∫ t

0

u∗∗(x, y, τ) dτ + u∗(x, y, 0), (4.17)

∂2
t g(x, y, t) = u∗∗(x, y, t). (4.18)
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We will use these facts together with (4.15) and (4.16) to show that ∂tg = u∗ almost every-
where and g = u almost everywhere.

For φ ∈ C∞
c (R+), we have∫

R+

∂tg(x, y, t)φ̇(t) dt = −
∫

R+

∂2
t g(x, y, t)φ(t) dt

= −
∫

R+

u∗∗(x, y, t)φ(t) dt

= −
∫

R+

u(x, y, t)φ̈(t) dt

=

∫
R+

u∗(x, y, t)φ̇(t) dt

where (4.18) and (4.16) were used in the second and third steps, respectively. Thus we obtain∫
R+

(∂tg(x, y, t)− u∗(x, y, t)) φ̇(t) dt = 0, (4.19)

for every φ ∈ C∞
c (R+). Since ∂tg(x, y, 0) = u∗(x, y, 0), we conclude from (4.19) that

∂tg(x, y, t) = u∗(x, y, t) almost everywhere.
We also have ∫

R+

g(x, y, t)φ̇(t) dt = −
∫

R+

∂tg(x, y, t)φ(t) dt

= −
∫

R+

u∗(x, y, t)φ(t) dt

=

∫
R+

u(x, y, t)φ̇(t) dt

where the fact that ∂tg(x, y, t) = u∗(x, y, t) almost everywhere was used in the second step
and (4.15) was used in the third step. Thus we see that∫

R+

(g(x, y, t)− u(x, y, t)) φ̇(t) dt = 0, (4.20)

for every φ ∈ C∞
c (R+). Since g(x, y, 0) = u(x, y, 0), we conclude from (4.20) that g(x, y, t) =

u(x, y, t) almost everywhere, completing the proof of Part (a).
Part (b). Let ψ(x, y, t) be in C∞

c (Ω × Y × R)3 and Y -periodic in y. Then by using
integration by parts, we see that∫

Ω×R+

∂tu
ε(x, t) · ψ

(
x,
x

ε
, t
)
dxdt = −

∫
Ω×R+

uε(x, t) · ∂tψ
(
x,
x

ε
, t
)
dxdt

−
∫

Ω

uε(x, 0) · ψ
(
x,
x

ε
, 0
)
dx.

Sending ε to 0, we obtain∫
Ω×Y×R+

u∗(x, y, t) · ψ (x, y, t) dxdydt = −
∫

Ω×Y×R+

u(x, y, t) · ∂tψ (x, y, t) dxdydt

−
∫

Ω×Y

u0(x, y) · ψ (x, y, 0) dxdy.

(4.21)
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On the other hand, using Part (a), we see that∫
Ω×Y×R+

u∗(x, y, t) · ψ (x, y, t) dxdydt =

∫
Ω×Y×R+

∂tg(x, y, t) · ψ (x, y, t) dxdydt

= −
∫

Ω×Y×R+

g(x, y, t) · ∂tψ (x, y, t) dxdydt

−
∫

Ω×Y

g(x, y, 0) · ψ (x, y, 0) dxdy

= −
∫

Ω×Y×R+

u(x, y, t) · ∂tψ (x, y, t) dxdydt

−
∫

Ω×Y

u(x, y, 0) · ψ (x, y, 0) dxdy.

(4.22)

From (4.21) and (4.22) we obtain that∫
Ω×Y

(
u0(x, y)− u(x, y, 0)

)
· ψ (x, y, 0) dxdy = 0,

for every ψ. Therefore
u(x, y, 0) = u0(x, y),

almost everywhere. Similarly we can show that

∂tu(x, y, 0) = v0(x, y),

almost everywhere, completing the proof of Part (b).

Proof of Lemma 4.11. Part (a). Since AL = AL,1 − AL,2, we will compute the two-scale
limits of AL,1u

ε and AL,2u
ε, then combine them to show that as ε→ 0,

ALu
ε(x, t)

2
⇀ BLu(x, y, t). (4.23)

Let ψ ∈ C∞
c (R3×Y )3 such that ψ(x, y) is Y -periodic in y, and φ ∈ C∞

c (R+). Then from the
definition of AL,1, equation (3.1), we see that∫

Ω×R+

AL,1u
ε(x, t) · ψ

(
x,
x

ε

)
φ(t) dxdt

=

∫
Ω×R+

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
uε(x̂, t) dx̂ · ψ

(
x,
x

ε

)
φ(t) dxdt,

(4.24)

Since uε(x, t)
2
⇀ u(x, y, t), we obtain using Proposition 4.9 that, as ε→ 0,

uε →
∫

Y

u(x, y, t) dy weakly in Ls(Ω× (0, T ))3. (4.25)
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It follows from (4.25) that, for fixed x,

lim
ε→0

∫
R+

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
uε(x̂, t)φ(t) dx̂dt

=

∫
R+

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3

(∫
Y

u(x̂, y′, t) dy′
)
φ(t) dx̂dt.

(4.26)

We note that by replacing v(x) with uε(x, t) in (3.17), we obtain∣∣∣∣∣
∫

Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
uε(x̂, t) dx̂

∣∣∣∣∣
≤ λmax

(∫
Hδ(x)

1

|x̂− x|s′
dx̂

)1/s′ (∫
Hδ(x)

|uε(x̂, t)|s dx̂
)1/s

≤ λmax

(∫
Hδ(x)

1

|x̂− x|s′
dx̂

)1/s′

‖uε‖L∞([0,T ]; Ls(Ω)3). (4.27)

From Proposition 3.1, ‖uε‖L∞([0,T ]; Ls(Ω)3) is bounded. Thus from (4.26), and (4.27) and by
using Lebesgue’s dominated convergence theorem, we conclude that the convergence of the
sequence of functions in (4.26) is not only point-wise in x convergence but also strong in
Ls(Ω)3. Therefore we can use Proposition 4.2 and (4.26) to evaluate the limit of (4.24) as
ε→ 0. We find that

lim
ε→0

∫
Ω×R+

AL,1u
ε(x, t) · ψ

(
x,
x

ε

)
φ(t) dxdt

=

∫
Ω×R+

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3

(∫
Y

u(x̂, y′, t) dy′
)
dx̂ · ψ

(
x,
x

ε

)
φ(t) dxdt,

(4.28)

Next we evaluate the two-scale limit of AL,2u
ε. We recall from (3.2) that

AL,2u
ε(x, t) =

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
dx̂ uε(x, t), (4.29)

from which immediately follows that as ε→ 0,

AL,2u
ε 2
⇀

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
dx̂ u(x, y, t). (4.30)

Combining equations (4.28) and (4.30), the result (4.23) follows.
The fact that the two operators BL and BS are linear and bounded on the Banach space

Ls(Ω; Ls
per(Y )) can be shown by arguments similar to those used in the proof of Proposition

3.1.
Part (b). Since Aε

S = Aε
S,1 − Aε

S,2, we will compute the two-scale limits of Aε
S,1u

ε and
Aε

S,2u
ε, then combine them to show that as ε→ 0,

Aε
Su

ε(x, t)
2
⇀ BSu(x, y, t). (4.31)
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Let ψ(x, y, t) = ψ2(x)ψ1(y)φ(t), where ψ2 ∈ C∞
c (R3), ψ1 ∈ C∞

per(Y )3, and
φ ∈ C∞

c (R+). Then by using (3.13), replacing v(x) with uε(x, t), we see that∫
Ω×R+

Aε
S,1u

ε(x, t) · ψ
(
x,
x

ε
, t
)
dxdt

=

∫
Ω×R+

∫
Hδ(0)

α
(x
ε
,
x

ε
+ z
) z ⊗ z

|z|3
uε(x+ εz, t) dz · ψ

(
x,
x

ε
, t
)
dxdt.

(4.32)

We recall that α
(

x
ε
, x

ε
+ z
)

is defined by equation (1.5). Without loss of generality, we may
assume that α

(
x
ε
, x

ε
+ z
)

is given by

α
(x
ε
,
x

ε
+ z
)

= χf

(x
ε

)
χf

(x
ε

+ z
)
.

Thus after a change in the order of integration in the right hand side of equation (4.32), we
see that∫

Ω×R+

Aε
S,1u

ε(x, t) · ψ
(
x,
x

ε
, t
)
dxdt

=

∫
Hδ(0)

1

|z|3

∫
Ω×R+

χf

(x
ε

)
χf

(x
ε

+ z
)
uε(x+ εz, t)·z ψ1

(x
ε

)
·z ψ2(x)φ(t) dxdtdz.

(4.33)

Now we focus on evaluating the limit as ε→ 0 of the inner integral in (4.33). By the change
of variables r = x+ εz we obtain∫

Ω×R+

χf

(x
ε

)
χf

(x
ε

+ z
)
uε(x+ εz, t)·z ψ1

(x
ε

)
·z ψ2(x)φ(t) dxdt

=

∫
R3×R+

χΩ(r − εz)χf

(r
ε
− z
)
χf

(r
ε

)
uε(r, t)·z ψ1

(r
ε
− z
)
·z ψ2(r − εz)φ(t) drdt

(4.34)

:= aε(z),

where χΩ denotes the indicator function of Ω. We will show that for z ∈ Hδ(0),

lim
ε→0

aε(z) =

∫
Ω×Y×R+

χf (y − z)χf (y)u(r, y, t)·z ψ1 (y − z)·z ψ2(r)φ(t) drdydt.

(4.35)

To see this, we approximate χΩ by smooth functions ζn such that as n→∞, ζn(r) → χΩ(r)
almost everywhere and ζn → χΩ in Ls′

loc(Ω), with 1/s + 1/s′ = 1. Then by adding and
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subtracting ζn(r − εz) to and from χΩ(r − εz) in (4.34), we obtain that

aε(z) = an,ε
1 (z) + an,ε

2 (z), (4.36)

where,

an,ε
1 (z) :=

∫
R3×R+

(χΩ(r − εz)− ζn(r − εz))×

χf

(r
ε
− z
)
χf

(r
ε

)
uε(r, t)·z ψ1

(r
ε
− z
)
·z ψ2(r − εz)φ(t) drdt, (4.37)

an,ε
2 (z) :=

∫
R3×R+

ζn(r − εz)×

χf

(r
ε
− z
)
χf

(r
ε

)
uε(r, t)·z ψ1

(r
ε
− z
)
·z ψ2(r − εz)φ(t) drdt. (4.38)

From (4.37) and by using Hölder’s inequality, we see that

|an,ε
1 (z)| ≤

(∫
R3

|χΩ(r − εz)− ζn(r − εz)|s
′
dr

)1/s′

×∫
R+

(∫
R3

χf

(r
ε
− z
)
χf

(r
ε

) ∣∣∣uε(r, t)·z ψ1

(r
ε
− z
)
·z ψ2(r − εz)

∣∣∣s dr)1/s

×

φ(t) dt. (4.39)

We note that the second term on the right hand side of (4.39) is bounded above uniformly in
ε. This follows from Hölder’s inequality applied to the inner integral and the fact that (uε)ε>0

is bounded in L∞loc(R+; Ls(Ω)3). On the other hand, by the change of variables r′ = r − εz,
the first term on the right hand side of (4.39) becomes(∫

R3

|χΩ(r′)− ζn(r′)|s
′
dr′
)1/s′

,

which goes to zero as n → ∞. From these two facts and (4.39), we conclude that for all
ε > 0 and z ∈ Hδ(0),

lim
n→∞

an,ε
1 (z) = 0. (4.40)

Now for fixed n, since ζn and ψ2 are smooth functions, we see that as ε → 0, ζn(r −
εz)ψ2(r − εz) → ζn(r)ψ2(r) uniformly. Therefore, we see from (4.38) that

lim
ε→0

an,ε
2 (z)

= lim
ε→0

∫
R3×R+

ζn(r) χf

(r
ε
− z
)
χf

(r
ε

)
uε(r, t)·z ψ1

(r
ε
− z
)
·z ψ2(r)φ(t) drdt

=

∫
R3×Y×R+

ζn(r)χf (y − z)χf (y)u(r, y, t)·z ψ1 (y − z)·z ψ2(r)φ(t) drdydt,

(4.41)
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where in the last step the fact that (uε)ε>0 two-scale converges to u(r, y, t) was used. By
taking the limit as n→∞ in (4.41), we obtain

lim
n→∞

lim
ε→0

an,ε
2 (z)

=

∫
Ω×Y×R+

χf (y − z)χf (y)u(r, y, t)·z ψ1 (y − z)·z ψ2(r)φ(t) drdydt. (4.42)

From (4.40) and (4.42) and since

lim
ε→0

aε(z) = lim
n→∞

lim
ε→0

(an,ε
1 (z) + an,ε

2 (z)),

equation (4.35) follows.
From (4.33) and (4.35), and by using Lebesgue’s dominated convergence theorem, we

obtain

lim
ε→0

∫
Ω×R+

Aε
S,1u

ε(x, t) · ψ
(
x,
x

ε
, t
)
dxdt

=

∫
Hδ(0)

1

|z|3

∫
Ω×Y×R+

χf (y − z)χf (y)u(r, y, t)·z ψ1 (y − z)·z ψ2(r)φ(t) drdydtdz

=

∫
Ω×R+

∫
Hδ(0)

1

|z|3

∫
Y

χf (y − z)χf (y)u(r, y, t)·z ψ1 (y − z)·z dydz ψ2(r)φ(t)drdt,

(4.43)

where we have changed the order of integration in the last step. After shifting the domain
of integration in the inner integral of the right hand side of equation (4.43), we obtain∫

Y

χf (y − z)χf (y)u(r, y, t)·z ψ1 (y − z)·z dy

=

∫
Y−z

χf (y)χf (y + z)u(r, y + z, t)·z ψ1 (y)·z dy

=

∫
Y

χf (y)χf (y + z)u(r, y + z, t)·z ψ1 (y)·z dy, (4.44)

where in the last step the fact that the integrand is Y -periodic in y was used. Substituting
(4.44) in equation (4.43), then by changing the order of integration we obtain

lim
ε→0

∫
Ω×R+

Aε
S,1u

ε(x, t) · ψ
(
x,
x

ε
, t
)
dxdt

=

∫
Ω×R+

∫
Y

∫
Hδ(0)

χf (y)χf (y + z)
z ⊗ z

|z|3
u(r, y + z, t)dz · ψ1(y)dy ψ2(r)φ(t)drdt

=

∫
Ω×Y×R+

∫
Hδ(y)

χf(y)χf (ŷ)
(ŷ − y)⊗ (ŷ − y)

|ŷ − y|3
u(r, ŷ, t)dŷ · ψ(r, y, t) drdydt.

(4.45)

In the last equality the change of variables ŷ = y + z was used.
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Next we evaluate the two-scale limit of Aε
S,2u

ε. Let ψ be a test function in J . Then by
using (3.16), replacing v(x) with uε(x, t), we obtain∫

Ω×R+

Aε
S,2u

ε(x, t) · ψ
(
x,
x

ε
, t
)
dxdt

=

∫
Ω×R+

∫
Hδ(0)

α
(x
ε
,
x

ε
+ z
) z ⊗ z

|z|3
dz uε(x, t) · ψ

(
x,
x

ε
, t
)
dxdt.

(4.46)

The right hand side of (4.46), after changing the order of integration, is equal to∫
Hδ(0)

1

|z|3

∫
Ω×R+

α
(x
ε
,
x

ε
+ z
)
uε(x, t)·z ψ

(
x,
x

ε
, t
)
·z dxdtdz. (4.47)

Using the fact that (uε)ε>0 two-scale converges to u(x, y, t), we see that for
z ∈ Hδ(0),

lim
ε→0

∫
Ω×R+

α
(x
ε
,
x

ε
+ z
)
uε(x, t)·z ψ

(
x,
x

ε
, t
)
·z dxdt

=

∫
Ω×Y×R+

α (y, y + z)u(x, y, t)·z ψ (x, y, t)·z dxdydt. (4.48)

From (4.46), (4.47) and (4.48), and by using Lebesgue’s dominated convergence theorem, we
obtain

lim
ε→0

∫
Ω×R+

Aε
S,2u

ε(x, t) · ψ
(
x,
x

ε
, t
)
dxdt

=

∫
Hδ(0)

1

|z|3

∫
Ω×Y×R+

α (y, y + z)u(x, y, t)·z ψ (x, y, t)·z dxdydtdz

(4.49)

By changing the order of integration and then using the change of variables
ŷ = y + z, we conclude that

lim
ε→0

∫
Ω×R+

Aε
S,2u

ε(x, t) · ψ
(
x,
x

ε
, t
)
dxdt

=

∫
Ω×Y×R+

∫
Hδ(y)

α (y, ŷ)
(ŷ − y)⊗ (ŷ − y)

|ŷ − y|3
dŷ u(x, y, t) · ψ (x, y, t) dxdydt.

(4.50)

Equation (4.31) follows from combining (4.45) and (4.50), completing the proof.

5 The Macroscopic Equation and Downscaling

The aim of this section is to justify the main results of Section 2.
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5.1 Derivation of the Macroscopic Equation

We begin this section with the following observation. Let φ be a function in Ls
per(Y )3. Then∫

Y

∫
Hδ(y)

α(y, ŷ)
(ŷ − y)⊗ (ŷ − y)

|(ŷ − y)|3
(φ(ŷ)− φ(y)) dŷ dy = 0. (5.1)

To see this, we note that using Fubini’s theorem and the assumption that φ is Y -periodic,
the double integral in (5.1) can be written as∫

Y

∫
Hδ(ŷ)

α(y, ŷ)
(ŷ − y)⊗ (ŷ − y)

|(ŷ − y)|3
(φ(ŷ)− φ(y)) dy dŷ

= −
∫

Y

∫
Hδ(ŷ)

α(ŷ, y)
(y − ŷ)⊗ (y − ŷ)

|(y − ŷ)|3
(φ(y)− φ(ŷ)) dy dŷ, (5.2)

where in the last equality we have used the fact α(y, ŷ) = α(ŷ, y). Comparing the double
integral in (5.1) with (5.2) the result follows.

Now let

uH(x, t) =

∫
Y

u(x, y, t) dy.

Then from Proposition 4.9, we have that uH(x, t) is the weak limit of uε(x, t) in Lp(Ω ×
(0, T ))3. To identify the equation that uH solves, we integrate (4.11) over Y to obtain

∂2
t u

H(x, t) =

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
(uH(x̂, t)− uH(x, t)) dx̂

+

∫
Y

∫
Hδ(y)

α(y, ŷ)
(ŷ − y)⊗ (ŷ − y)

|ŷ − y|3
(u(x, ŷ, t)− u(x, y, t)) dŷdy

+

∫
Y

b(x, y, t) dy.

(5.3)

Using (5.1), the second integral on right hand side of (5.3) is equal to zero for all x ∈ Ω and
t ∈ (0, T ). Thus uH solves

∂2
t u

H(x, t) =

∫
Hγ(x)

λ(x̂− x)(x̂− x)⊗ (x̂− x)

|x̂− x|3
(uH(x̂, t)− uH(x, t)) dx̂+

∫
Y

b(x, y, t) dy, (5.4)

supplemented with initial data

uH(x, 0) =

∫
Y

u0(x, y) dy, ∂tu
H(x, 0) =

∫
Y

v0(x, y) dy. (5.5)

The initial value problem (5.4)-(5.5) can be written as the following operator equation in
Ls(Ω)3 

üH(t) = ALu
H(t) + b̄(t), t ∈ [0, T ]

uH(0) = ū0,
u̇H(0) = v̄0.

(5.6)
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where

b̄(x, t) =

∫
Y

b(x, y, t) dy,

ū0(x) =

∫
Y

u0(x, y) dy, and

v̄0(x) =

∫
Y

v0(x, y) dy.

We have seen from the proof of Proposition 3.1 that AL is a bounded linear operator on
Ls(Ω)3, thus uH ∈ C2([0, T ]; Ls(Ω)3) is the unique solution of 5.6.

To complete the proof of Theorems 2.1, 2.3, 2.5, and 2.7, we show that uH is in
C2([0, T ]; C(Ω̄)3), when the initial data ū0 and v̄0 are in C(Ω̄)3, and the loading force b̄ is
in C([0, T ]; C(Ω̄)3). In fact, it suffices to show that the linear operator AL is bounded on
the Banach space of continuous functions C(Ω̄)3 equipped with the uniform norm. So we let
v ∈ C(Ω̄)3 and denote the uniform norm on C(Ω̄)3 by ‖ · ‖C(Ω̄)3 . Then, we recall from (3.5)
that AL = AL,1 + AL,2, where AL,1 and AL,2 can be written as

AL,1v(x) =

∫
Hγ(0)

λ(ξ)
ξ ⊗ ξ

|ξ|3
v(x+ ξ) dξ, (5.7)

AL,2v(x) =

∫
Hγ(0)

λ(ξ)
ξ ⊗ ξ

|ξ|3
dξ v(x), (5.8)

respectively. Taking the norm in (5.7) we see that

‖AL,1v‖C(Ω̄)3 = max
x∈Ω̄

∣∣∣∣∣
∫

Hγ(0)

λ(ξ)
ξ ⊗ ξ

|ξ|3
v(x+ ξ) dξ

∣∣∣∣∣
≤

(
max

ξ∈Hγ(0)
λ(ξ)

)
max
x∈Ω̄

∫
Hγ(0)

1

|ξ|
|v(x+ ξ)| dξ

≤
(

max
ξ∈Hγ(0)

λ(ξ)

) ∫
Hγ(0)

1

|ξ|
dξ ‖v‖C(Ω̄)3 .

Thus AL,1 is bounded on C(Ω̄)3. It is clear that AL,2 is also bounded on C(Ω̄)3, and therefore
AL is bounded completing the argument.

5.2 Justifying the Downscaling Step

In this section we prove Theorems 2.2, 2.4, 2.6, and 2.8. We begin by showing that for fixed
t ∈ (0, T ),

lim
ε→0

∥∥∥uε(x, t)− u
(
x,
x

ε
, t
)∥∥∥

Ls(Ω)3
= 0.
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By shifting the domains of integration, equation (4.11) can be written as follows

∂2
t u(x, y, t) =

∫
Hγ(0)

λ(ξ)
ξ ⊗ ξ

|ξ|3

(∫
Y

u(x+ ξ, y′, t) dy′ − u(x, y, t)

)
dξ

+

∫
Hδ(0)

α(y, y + z)
z ⊗ z

|z|3
(u(x, y + z, t)− u(x, y, t)) dz

+ b(x, y, t).

(5.9)

Since u(x, y, t) is in Q and solves (5.9) with initial conditions (4.12) and (4.13), then u(x, x
ε
, t)

is in C2([0, T ]; Ls(Ω)3) and solves

∂2
t u
(
x,
x

ε
, t
)

=

∫
Hγ(0)

λ(ξ)
ξ ⊗ ξ

|ξ|3

(∫
Y

u(x+ ξ, y′, t) dy′ − u
(
x,
x

ε
, t
))

dξ

+

∫
Hδ(0)

α
(x
ε
,
x

ε
+ z
) z ⊗ z

|z|3
(
u
(
x,
x

ε
+ z, t

)
− u

(
x,
x

ε
, t
))

dz

+ b
(
x,
x

ε
, t
)
,

(5.10)

supplemented with initial conditions

u(x, y, 0) = u0
(
x,
x

ε

)
, (5.11)

∂tu(x, y, 0) = v0
(
x,
x

ε

)
. (5.12)

We let eε(x, t) = uε(x, t) − u(x, x
ε
, t). Then by subtracting (5.10) from (1.10), we find that

eε ∈ C2([0, T ]; Ls(Ω)3) solves

∂2
t e

ε(x, t) = Aεeε(x, t) + dε(x, t), (5.13)

eε(x, 0) = 0, (5.14)

∂te
ε(x, 0) = 0. (5.15)

where Aε is given by (3.7) and dε(x, t) is given by

dε(x, t) = dε
L(x, t) + dε

S(x, t), (5.16)

dε
L(x, t) =

∫
Hγ(0)

λ(ξ)
ξ ⊗ ξ

|ξ|3

(
u

(
x+ ξ,

x+ ξ

ε
, t

)
−
∫

Y

u(x+ ξ, y′, t) dy′
)
dξ,

(5.17)

dε
S(x, t) =

∫
Hδ(0)

α
(x
ε
,
x

ε
+ z
) z ⊗ z

|z|3
(
u
(
x+ εz,

x

ε
+ z, t

)
− u

(
x,
x

ε
+ z, t

))
dz.

(5.18)

Since Aε is bounded, the solution of (5.13)-(5.15) is explicitly given by

eε(x, t) =

∫ t

0

∞∑
n=0

(t− τ)2n+1

(2n+ 1)!
(Aε)ndε(x, τ) dτ.
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Thus

‖eε(·, t)‖Ls(Ω)3 ≤
∫ t

0

∞∑
n=0

(t− τ)2n+1

(2n+ 1)!
‖(Aε)n‖ ‖dε(·, τ)‖Ls(Ω)3 dτ

≤
∫ t

0

1√
M

sinh
(√

M(t− τ)
)
‖dε(·, τ)‖Ls(Ω)3 dτ (5.19)

where in the second inequality we have used the fact that Aε is bounded above by an M > 0
independent of ε.

In the following sections we will show that for t ∈ (0, T ),

lim
ε→0

‖dε(·, t)‖Ls(Ω)3 = 0, (5.20)

for each of the four cases of initial and loading conditions that has been introduced in Section
2. On the other hand, from (5.16)-(5.18) and the fact that u is continuous on [0, T ], it follows
that dε(·, τ) is continuous on [0, t] for t ≤ T . Thus, from equations (5.19) and (5.20), and
Lebesgue’s convergence theorem, we see that

lim
ε→0

‖eε(·, t)‖Ls(Ω)3 = 0,

from which the result follows.
In order to prove (5.20), we will make use of the following observation:

The solution of each cell-problem of Section 2 has zero average over the unit cell. To see
this, we integrate equation (2.5) over Y to obtain

¨̄r(t) =

∫
Y

∫
Hδ(y)

α(y, ŷ)
(ŷ − y)⊗ (ŷ − y)

|(ŷ − y)|3
(r(ŷ, t)− r(y, t)) dŷ dy −K r̄(t), (5.21)

supplemented with initial conditions

r̄(0) = 0, ˙̄r(0) = 0. (5.22)

Using (5.1), the integral on the right hand side of (5.21) is equal to zero for all t ∈ (0, T ).
Thus r̄ solves

¨̄r(t) = −K r̄(t), (5.23)

supplemented with zero initial conditions. Obviously the solution of (5.23) is given by∫
Y

r(y, t) dy = r̄(t) = 0, (5.24)

for all t ∈ (0, T ). Similarly we can show that∫
Y

rj(y, t) dy = r̄j(t) = 0, (5.25)

for all t ∈ (0, T ), where rj is the solution of (2.12), (2.19), or (2.26).



Bacim Alali and Robert Lipton 37

5.2.1 First Case

In this section we complete the proof of Theorem 2.2 by showing that equation (5.20) holds
true when b, u0, and v0 are given by (2.2). We also prove the error estimate (2.8).

Using the fact that r(y, t), the solution of the cell problem (2.5)-(2.6), has zero average
over Y , and by linearity, it is easy to check that uH(x, t) + r(y, t) solves (4.11)-(4.13), where
uH is the solution of (2.3)-(2.4). Thus by uniqueness we conclude that

u(x, y, t) = uH(x, t) + r(y, t). (5.26)

Using this representation of u(x, y, t) and from equations (5.17) and (5.18), we see that
dε

L(x, t) and dε
S(x, t) are now given by

dε
L(x, t) =

∫
Hγ(0)

λ(ξ)
ξ ⊗ ξ

|ξ|3
r

(
x+ ξ

ε
, t

)
dξ, (5.27)

dε
S(x, t) =

∫
Hδ(0)

α
(x
ε
,
x

ε
+ z
) z ⊗ z

|z|3
(
uH(x+ εz, t)− uH(x, t)

)
dz, (5.28)

respectively.
Changing variables of integration, equation (5.27) becomes

dε
L(x, t) =

∫
Hγ(x)

λ(x̂− x)
(x̂− x)⊗ (x̂− x)

|x̂− x|3
r

(
x̂

ε
, t

)
dx̂. (5.29)

Since r(y, t) is Y -periodic in y and from Proposition 4.10, we see that for fixed t, as ε→ 0

r

(
x̂

ε
, t

)
→
∫

Y

r(y, t) dt = 0 weakly in Ls(Ω)3.

Thus from (5.29) we obtain that
lim
ε→0

dε
L(x, t) = 0,

for x ∈ Ω and t ∈ (0, T ). It follows from Lebesgue’s convergence theorem that

lim
ε→0

‖dε
L(·, t)‖Ls(Ω)3 = 0, (5.30)

for t ∈ (0, T ). On the other hand, by taking the Euclidean norm of dε
S(x, t) in (5.28), we

obtain

|dε
S(x, t)| ≤ αmax

∫
Hδ(0)

1

|z|
∣∣uH(x+ εz, t)− uH(x, t)

∣∣ dz, (5.31)

where αmax = max
y,y′∈Y

α(y, y′). Since uH ∈ C2([0, T ]; C(Ω̄)3) (see Section 5.1), it follows that

for x ∈ Ω and t ∈ (0, T )

lim
ε→0

|dε
S(x, t)| = 0. (5.32)
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Thus using Lebesgue’s convergence theorem, we obtain

lim
ε→0

‖dε
S(·, t)‖Ls(Ω)3 = 0, (5.33)

for t ∈ (0, T ). Equation (5.20) follows from equations (5.30) and (5.33).
Now we prove the error estimate (2.8). By setting λ = 0 in equation (2.3), we see that

its solution uH is given explicitly by

uH(x, t) = u0(x) + t v0(x) +

∫ t

0

(t− τ)l(x, τ) dτ. (5.34)

By assumption u0, v0, and l(·, t) are in C0,β(Ω̄). Thus for z ∈ Hδ(0), we see from (5.34) that

|uH(x+ εz, t)− uH(x, t)| ≤ C|εz|β + t C|εz|β +

∫ t

0

(t− τ)C|εz|β dτ

= C

(
1 + t+

t2

2

)
|z|βεβ, (5.35)

for some C > 0. We use this bound in inequality (5.31) to obtain

|dε
S(x, t)| ≤ C

(
1 + t+

t2

2

)
αmax

∫
Hδ(0)

|z|β−1 dz εβ. (5.36)

Since λ = 0 we see from (5.16)-(5.18) that dε = dε
S. Therefore from (5.36), after a simple

calculation, we obtain

‖dε(·, t)‖Ls(Ω)3 ≤ 4πCαmax|Ω|1/s δ
β+2

β + 2

(
1 + t+

t2

2

)
εβ. (5.37)

By using (5.37) to bound ‖dε(·, τ)‖Ls(Ω)3 in (5.19), the error estimate (2.8) follows.

5.2.2 Second Case

In this section we complete the proof of Theorem 2.4 by showing that equation (5.20) holds
true when b, u0, and v0 are given by (2.9). We also prove the error estimate (2.15).

Using the fact that r(y, t), the solution of the cell problem (2.12)-(2.13), has zero average
over Y , and by linearity, it is easy to check that uH(x, t) +

∑3
j=1 r

j(y, t)hj(x) solves (4.11)-

(4.13), where uH is the solution of (2.10)-(2.11). Thus by uniqueness we conclude that

u(x, y, t) = uH(x, t) +
3∑

j=1

rj(y, t)hj(x). (5.38)

Using this representation of u(x, y, t) and from equations (5.17) and (5.18), we see that
dε

L(x, t) is now given by

dε
L(x, t) =

∫
Hγ(0)

λ(ξ)
ξ ⊗ ξ

|ξ|3
3∑

j=1

rj

(
x+ ξ

ε
, t

)
hj(x+ ξ) dξ, (5.39)
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and dε
S(x, t) can be written as

dε
S(x, t) = dε

S,1(x, t) + dε
S,2(x, t), (5.40)

where,

dε
S,1(x, t) =

∫
Hδ(0)

α
(x
ε
,
x

ε
+ z
) z ⊗ z

|z|3
(
uH(x+ εz, t)− uH(x, t)

)
dz, (5.41)

dε
S,2(x, t) =

∫
Hδ(0)

α
(x
ε
,
x

ε
+ z
) z ⊗ z

|z|3
3∑

j=1

rj
(x
ε

+ z, t
)

(hj(x+ εz)− hj(x)) dz.

(5.42)

Applying the methods developed in Section 5.2.1 for (5.30) and (5.33), we can show that
for t ∈ (0, T ),

lim
ε→0

‖dε
L(·, t)‖Ls(Ω)3 = 0, (5.43)

and
lim
ε→0

‖dε
S,1(·, t)‖Ls(Ω)3 = 0. (5.44)

It remains to show that for t ∈ (0, T ),

lim
ε→0

‖dε
S,2(·, t)‖Ls(Ω)3 = 0. (5.45)

From equation (5.42), we see that

|dε
S,2(x, t)| ≤ αmax

∫
Hδ(0)

1

|z|

3∑
j=1

∣∣∣rj
(x
ε

+ z, t
)∣∣∣ |hj(x+ εz)− hj(x)| dz, (5.46)

where αmax = max
y,y′∈Y

α(y, y′). Since 3
2
< s < ∞, we can choose s′, with 3

2
< s′ < ∞, and s′′,

with 1 ≤ s′′ < 3, such that 1/s+ 1/s′ + 1/s′′ = 1. By Hölder’s inequality we obtain

|dε
S,2(x, t)| ≤ αmax

(∫
Hδ(0)

1

|z|s′′
dz

)1/s′′ 3∑
j=1

(∫
Hδ(0)

∣∣∣rj
(x
ε

+ z, t
)∣∣∣s′ dz)1/s′

×
(∫

Hδ(0)

|hj(x+ εz)− hj(x)|s dz
)1/s

. (5.47)

It is easy to see that(∫
Hδ(0)

∣∣∣rj
(x
ε

+ z, t
)∣∣∣s′ dz)1/s′

≤ ‖rj(·, t)‖Ls′ (Ω)3 . (5.48)

Thus from (5.47) and (5.48), and by using the triangle inequality in Ls, we obtain

‖dε
S,2(·, t)‖ ≤ αmax

(∫
Hδ(0)

1

|z|s′′
dz

)1/s′′ 3∑
j=1

‖rj(·, t)‖Ls′ (Ω)3

×
(∫

Ω

∫
Hδ(0)

|hj(x+ εz)− hj(x)|s dz dx
)1/s

. (5.49)
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Since hj is continuous on Ω̄, we obtain from Lebesgue’s convergence theorem that

lim
ε→0

∫
Ω

∫
Hδ(0)

|hj(x+ εz)− hj(x)|s dz dx = 0. (5.50)

Equation (5.45) follows from (5.49) and (5.50). This shows that (5.20) holds true for this
case.

Now we prove the error estimate (2.15). By setting λ = 0 in equation (2.10), we see that
its solution uH is given explicitly by

uH(x, t) =

∫ t

0

(t− τ)F̄ (τ) dτ h(x). (5.51)

By assumption h is in C0,β(Ω̄). Thus for z ∈ Hδ(0), we see from (5.51) that

|uH(x+ εz, t)− uH(x, t)| ≤ C|εz|β
∫ t

0

(t− τ)F̄ (τ) dτ, (5.52)

for some C > 0. Taking the Euclidean norm in both sides of (5.41) and using the bound
(5.52), we see that

|dε
S,1(x, t)| ≤ Cαmax

∫ t

0

(t− τ)F̄ (τ) dτ

∫
Hδ(0)

|z|β−1 dz εβ, (5.53)

and it follows that

‖dε
S,1(·, t)‖Ls(Ω)3 ≤ 4πCαmax|Ω|1/s δ

β+2

β + 2

(∫ t

0

(t− τ)F̄ (τ) dτ

)
εβ. (5.54)

On the other hand from (5.49), after a straight forward calculation, we obtain

‖dε
S,2(·, t)‖Ls(Ω)3 ≤ Cαmax

(
4π

δ3−s′′

3− s′′

)1/s′′ (
4π|Ω| δ

sβ+3

sβ + 3

)1/s 3∑
j=1

‖rj(·, t)‖Ls′ (Ω)3 ε
β.

(5.55)

Since λ = 0 we see that dε = dε
S,1 + dε

S,2. Therefore by combining (5.54) and (5.55) to bound
‖dε(·, τ)‖Ls(Ω)3 in (5.19), the error estimate (2.15) follows.

5.2.3 Third and Fourth Cases

Arguments similar to those presented in Section 5.2.2 show that equation (5.20) holds true
when the loading and initial conditions are given by (2.16) or (2.23). Also, the proofs of the
error estimates (2.22) and (2.29) are similar to the proof of (2.15) provided in Section 5.2.2.
For completeness, we explicitly provide the functions M3(t) and M4(t) of Theorems 2.6 and
2.6, respectively. The function M3(t) is given by

M3(t) =

∫ t

0

1√
M

sinh
(√

M(t− τ)
)
f3(τ) dτ



Bacim Alali and Robert Lipton 41

where

f3(t) = Cαmax|Ω|1/s

(
4π|F̄ | δ

β+2

β + 2
+

(
4π

δ3−s′′

3− s′′

)1/s′′ (
4π

δsβ+3

sβ + 3

)1/s 3∑
j=1

‖rj(·, t)‖Ls′ (Ω)3

)

and rj solves (2.19)-(2.20).
The function M4(t) is given by

M4(t) =

∫ t

0

1√
M

sinh
(√

M(t− τ)
)
f4(τ) dτ

where

f4(t) = Cαmax|Ω|1/s

(
4π|F̄ | δ

β+2

β + 2
t+

(
4π

δ3−s′′

3− s′′

)1/s′′ (
4π

δsβ+3

sβ + 3

)1/s 3∑
j=1

‖rj(·, t)‖Ls′ (Ω)3

)

and rj solves (2.26)-(2.27).
This completes the proofs of Theorems 2.6 and 2.8.

6 Fluctuating Long-Range Bond Model

In this section, we present a new multiscale analysis method for computing the deformation
of fiber-reinforced composites modeled by the peridynamic formulation. This is done for
the Fluctuating Long-Range Bond model described in Section 1.2. The method provides a
computationally inexpensive multiscale numerical method. This is described by Theorem
6.1. A homogenization result for this model is expressed in Theorem 6.2.

We begin by recalling the peridynamic equation of motion for this model. By expanding
αε

L in equation (1.15), then collecting the χε
f terms, we obtain

∂2
t u

ε(x, t) = χε
f (x)

∫
In
δ (x)

(Cf − εCm)
(x̂− x)⊗ (x̂− x)

|x̂− x|2
(uε(x̂, t)− uε(x, t)) dlx̂

+

∫
Hδ(x)

εCm
(x̂− x)⊗ (x̂− x)

|x̂− x|2
(uε(x̂, t)− uε(x, t)) dx̂, (6.1)

where the first integral in (6.1) is a line integral over the set

In
δ (x) = {x̂ ∈ Hδ(x) such that x̂− x is parallel to n}.

The initial conditions supplementing this equation are given by

uε(x, 0) = u0 (x) , (6.2)

∂tu
ε(x, 0) = v0 (x) . (6.3)

The well-posedness of equation (6.1)-(6.3) is provided in Section 6.1 (Proposition 6.4).
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Theorem 6.1 (Downscaling). Let uε ∈ C2([0, T ]; Lp(Ω)3) be the solution
of (6.1)-(6.3), where 1 ≤ p <∞. Then for t ∈ [0, T ],

lim
ε→0

∥∥uε(x, t)−
(
χε

f (x)w(x, t) + u0(x) + tv0(x)
)∥∥

Lp(Ω)3
= 0, (6.4)

where w ∈ C2([0, T ]; Lp(Ω)3) is the solution of

∂2
tw(x, t) =

∫
In
δ (x)

Cf
(x̂− x)⊗ (x̂− x)

|x̂− x|2
(w(x̂, t)− w(x, t)) dlx̂

+

∫
In
δ (x)

Cf
(x̂− x)⊗ (x̂− x)

|x̂− x|2
(u0(x̂) + tv0(x̂)− (u0(x) + tv0(x))) dlx̂

(6.5)

supplemented with the initial conditions

w(x, 0) = 0, (6.6)

∂w(x, 0) = 0. (6.7)

Moreover, for t ∈ [0, T ] the error in (6.4) is estimated by∥∥uε(x, t)−
(
χε

f (x)w(x, t) + u0(x) + tv0(x)
)∥∥

Lp(Ω)3
≤ ε M5(t), (6.8)

where

M5(t) =

(
‖u0‖Lp(Ω)3 cosh

√
Mt+ ‖v0‖Lp(Ω)3

1√
M

sinh
√
Mt

)
,

and where M is a positive constant.

Theorem 6.1 is proved in Section 6.2.
The macroscopic peridynamic equation for this model is given by

∂2
t u

H(x, t) =

∫
In
δ (x)

Cf
(x̂− x)⊗ (x̂− x)

|x̂− x|2
(uH(x̂, t)− uH(x, t)) dlx̂

+ (θf − 1)

∫
In
δ (x)

Cf
(x̂− x)⊗ (x̂− x)

|x̂− x|2
(u0(x̂) + tv0(x̂)− (u0(x) + tv0(x))) dlx̂,

(6.9)

supplemented with initial conditions

uH(x, 0) = u0 (x) , (6.10)

∂tu
H(x, 0) = v0 (x) . (6.11)

Here the macroscopic displacement uH is the weak limit of the sequence of displacements uε.
This is described by the following theorem.



Bacim Alali and Robert Lipton 43

Theorem 6.2 (Homogenization). Let uε ∈ C2([0, T ]; Lp(Ω)3) be the solution
of (6.1)-(6.3), where 1 ≤ p <∞. Then for t ∈ [0, T ], as ε→ 0,

uε(·, t) → uH(·, t) weakly in Lp(Ω)3,

where uH ∈ C2([0, T ]; Lp(Ω)3) is the solution of (6.9)-(6.11). Equivalently, uH can be com-
puted as follows

uH(x, t) = θfw(x, t) + u0(x) + tv0(x), (6.12)

where w solves (6.5)-(6.7).

Theorem 6.2 is proved in Section 6.2.

Remark 6. We observe that the macroscopic peridynamic equation (6.9) has a nonzero
loading force, although the original peridynamic equation (6.1) has no loading force. The
physical interpretation for this phenomenon is not well-understood up to this point.

6.1 Existence and Uniqueness Results

Without loss of generality, we may choose the fiber direction to be parallel to the x1-axis. So
let n = (1, 0, 0). We note that the matrix multiplying (uε(x̂, t)−uε(x, t)) in the first integral
of (6.1) is now given by

(x̂− x)⊗ (x̂− x)

|x̂− x|2
=

 1 0 0
0 0 0
0 0 0


for x̂1 6= x1. Thus equation (6.1), after shifting the domain of integration in the first integral,
becomes

∂2
t u

ε(x, t) = (Cf − εCm)χε
f (x)

∫ δ

−δ

(uε
1(x+ (l, 0, 0), t)− uε

1(x, t)) dl

+

∫
Hδ(x)

εCm
(x̂− x)⊗ (x̂− x)

|x̂− x|2
(uε(x̂, t)− uε(x, t)) dx̂. (6.13)

Let v = (v1, v2, v3) ∈ Lp(Ω)3 with 1 ≤ p <∞. Then we define the following operators

Afv(x) = Cf

∫ δ

−δ

(v1(x+ (l, 0, 0))− v1(x)) dl, (6.14)

Aε
f v(x) = χε

f (x) Afv(x), (6.15)

Amv(x) =

∫
Hδ(x)

Cm
(x̂− x)⊗ (x̂− x)

|x̂− x|2
(v(x̂)− v(x)) dx̂, (6.16)

Aε = Aε
f + ε

(
Am −

Cm

Cf

Aε
f

)
. (6.17)

The initial value problem (6.1)-(6.3) can be written as the following operator equation in
Lp(Ω)3 

üε(t) = Aεuε(t), t ∈ [0, T ]
uε(0) = u0,
u̇ε(0) = v0.

(6.18)

Existence and uniqueness of solution of (6.18) is given by the following proposition.
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Proposition 6.4. Let 1 ≤ p <∞. Then

(a) The operator Aε is linear and uniformly bounded on Lp(Ω)3.

(b) Equation (6.18) has a unique classical solution uε ∈ C2([0, T ]; Lp(Ω)3) which is given
by

uε(t) =
∞∑

n=0

t2n

(2n)!
(Aε)nu0 +

∞∑
n=0

t2n+1

(2n+ 1)!
(Aε)nv0. (6.19)

Proof. Part (a). First, we show that the linear operator Am is bounded on Lp(Ω)3. Let
v ∈ Lp(Ω)3. Then from (6.16), Am can be written as

Am = Cm(Am,1 − Am,2),

where

Am,1v(x) =

∫
Hδ(x)

(x̂− x)⊗ (x̂− x)

|x̂− x|2
v(x̂) dx̂, (6.20)

Am,2v(x) =

∫
Hδ(x)

(x̂− x)⊗ (x̂− x)

|x̂− x|2
dx̂ v(x). (6.21)

From equation (6.20) we see that

‖Am,1v‖p
Lp(Ω)3 ≤

∫
Ω

(∫
Hγ(x)

|v(x̂)| dx̂

)p

dx

≤ |Ω| ‖v‖p
Lp(Ω)3 , (6.22)

where the fact that ‖v‖L1(Ω)3 ≤ ‖v‖Lp(Ω)3 was used in the last step. This shows that Am,1 is
bounded on Lp(Ω)3. The boundedness of Am,2 is clear. Therefore Am is bounded on Lp(Ω)3.

Next we note that Af is bounded on Lp(Ω)3, which is a consequence of Lemma 6.5 given
at the end of this section. Thus it follows from (6.15) that Aε

f is uniformly bounded on
Lp(Ω)3.

Combining these results with equation (6.17), it follows that Aε is uniformly bounded on
Lp(Ω)3, completing the proof of Part (a).

The proof of Part (b) is similar to the proof of Part (b) of Proposition 3.1.

Lemma 6.5. Let v be in Lp(Ω)3, where 1 ≤ p <∞, and define

v̌(x) =

∫ δ

−δ

v(x+ (l, 0, 0)) dl.

Then v̌ is in Lp(Ω)3 and

‖v̌‖Lp(Ω)3 ≤ 2γ ‖v‖Lp(Ω)3 . (6.23)
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Proof. From the definition of v̌ it is easy to see that∫
Ω

|v̌(x)|p dx ≤
∫

Ω

(∫ δ

−δ

|v(x1 + l, x2, x3)| dl
)p

dx1dx2dx3. (6.24)

Using Hölder’s inequality in the inner integral with v ∈ Lp(Ω)3 and 1 ∈ Lp′(Ω)3, where
1/p+ 1/p′ = 1, we obtain∫

Ω

|v̌(x)|p dx ≤ (2δ)p/p′
∫

Ω

∫ δ

−δ

|v(x1 + l, x2, x3)|p dl dx1dx2dx3

= (2δ)p/p′
∫ δ

−δ

∫
Ω

|v(x1 + l, x2, x3)|p dx1dx2dx3dl, (6.25)

by Fubini’s theorem. We extend v to R3 by setting v = 0 outside Ω. Then by the change of
variables x̂1 = x1 + l in the inner integral of (6.25), we obtain∫

Ω

|v(x1 + l, x2, x3)|p dx1 ≤
∫

Ω

|v(x1, x2, x3)|p dx1.

Using this estimate in (6.25), we conclude that∫
Ω

|v̌(x)|p dx ≤ (2δ)p/p′(2δ)

∫
Ω

|v(x)|p dx, (6.26)

and (6.23) follows, completing the proof.

6.2 Multiscale Analysis Using the Semigroups Approach

The aim of this section is to prove Theorems 6.1 and 6.2. Our approach is summarized by
the following steps:

1. Compute the two-scale limit u(x, y, t) of the sequence (uε) using the explicit represen-
tation of uε, equation (6.19). We show that for fixed t ∈ [0, T ], as ε→ 0,

uε(x, t)
2
⇀ u(x, y, t), (6.27)

where u is given by

u(x, y, t) = u0(x) + tv0(x) + χf(y)
∞∑

n=1

t2n

(2n)!
(Af)

nu0(x)

+χf(y)
∞∑

n=1

t2n+1

(2n+ 1)!
(Af)

nv0(x). (6.28)

2. Compute ∂2
t u in (6.28) then use it to identify the two-scale limit equation. We find

that u ∈ C2([0, T ]; Lp(Ω)3) uniquely solves ∂2
t u(x, y, t) = Ãfu(x, y, t) + b(x, y, t),
u(x, y, 0) = u0(x),
∂u(x, y, 0) = v0(x),

(6.29)
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where b is given by
b(x, y, t) = (χf(y)− 1)Af(u

0 + tv0)(x).

Here the operator Ãf is defined as follows. For ṽ ∈ Lp(Ω× Y )3,

Ãfṽ(x, y) = Cf

∫ δ

−δ

(ṽ1(x+ (l, 0, 0), y)− ṽ1(x, y)) dl. (6.30)

3. The macroscopic equation is found by integrating (6.29) over Y . We find that the
macroscopic displacement uH solves

∂2
t u

H(x, t) = Afu
H(x, t) + b̄(x, t),

uH(x, 0) = u0(x),
∂uH(x, 0) = v0(x),

(6.31)

where b̄ is given by
b̄(x, t) = (θf − 1)Af(u

0 + tv0)(x).

Here for fixed t ∈ [0, T ], as ε→ 0,

uε(·, t) → uH(·, t) weakly in Lp(Ω)3. (6.32)

4. The two-scale limit u can also be computed by the following method. This method is
numerically inexpensive.

u(x, y, t) = χf(y)w(x, t) + u0(x) + tv0(x), (6.33)

where w ∈ C2([0, T ]; Lp(Ω)3) solves
∂2

tw(x, t) = Afw(x, t) + Af(u
0 + tv0)(x),

w(x, 0) = 0,
∂w(x, 0) = 0.

(6.34)

It follows from integrating (6.33) over Y that uH can also be computed by

uH(x, t) = θfw(x, t) + u0(x) + tv0(x). (6.35)

5. Extend u by periodicity from Ω × Y × (0, T ) to Ω × R3 × (0, T ). Then we use the
explicit representations of uε and u, equations (6.19) and (6.28), respectively, to show
that for fixed t ∈ [0, T ],

lim
ε→0

∥∥∥uε(x, t)− u
(
x,
x

ε
, t
)∥∥∥

Lp(Ω)3
= 0. (6.36)

Now we justify Steps (1)-(5).

Proof of Step (1). Let v ∈ Lp(Ω)3, where 1 ≤ p <∞. Then we first show that

(Aε
f )

nv(x) = χε
f (x)(Af)

nv(x) for all n ∈ N. (6.37)
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The proof is by induction on n. The formula (6.37) holds for n = 1 by the definition of Aε
f .

Assume that it holds for n = k. Then for n = k + 1,

(Aε
f )

k+1v(x) = χε
f (x)Cf

∫ δ

−δ

(
(Aε

f )
kv1(x+ (l, 0, 0))− (Aε

f )
kv1(x)

)
dl

= χε
f (x)Cf

∫ δ

−δ

(
χε

f (x+ (l, 0, 0))(Af)
kv1(x+ (l, 0, 0))

− χε
f (x)(Af)

kv1(x)
)
dl. (6.38)

Note that since x lies in a fiber if and only if x + (l, 0, 0) lies in the same fiber, then
χε

f (x+ (l, 0, 0)) = χε
f (x). On the other hand (χε

f )
2 = χε

f , thus (6.38) becomes

(Aε
f )

k+1v(x) = χε
f (x)

(
Cf

∫ δ

−δ

(
(Af)

kv1(x+ (l, 0, 0))− (Af)
kv1(x)

)
dl

)
= χε

f (x)(Af)
k+1v(x).

Therefore (6.37) follows. Since (Af)
nv ∈ Lp(Ω), it follows from Propositions 4.3 and 4.4 of

Section 4.1 that

χε
f (x)(Af)

nv(x)
2
⇀ χf(y)(Af)

nv(x). (6.39)

Next we show that

(Aε)nv(x)
2
⇀ χf(y)(Af)

nv(x). (6.40)

To see this, we note that from (6.17), the operator (Aε)n , n ∈ N, can be written in the
following form

(Aε)n = (Aε
f )

n + εDε
n, (6.41)

where the operator Dε
n is bounded on Lp(Ω)3 and satisfies

‖Dε
n‖ < Mn (6.42)

for some M > 0 independent of ε. It follows that for fixed n ∈ N,

lim
ε→0

εDε
nv = 0, in Lp(Ω)3, (6.43)

and thus by Proposition 4.2, the sequence (εDε
nv)ε>0 two-scale converges to 0. Therefore the

result follows by combining (6.41), (6.39), and (6.37).
Now we recall from (6.19) that uε(x, t) is given by

uε(x, t) = u0(x) + tv0(x) +
∞∑

n=1

t2n

(2n)!
(Aε)nu0(x) +

∞∑
n=1

t2n+1

(2n+ 1)!
(Aε)nv0(x).

(6.44)
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Using (6.40), we will show in Section 6.2.1 that for ψ ∈ K,

lim
ε→0

∫
Ω

∞∑
n=1

t2n

(2n)!
(Aε)nu0(x) · ψ

(
x,
x

ε

)
dx

=

∫
Ω

∫
Y

∞∑
n=1

t2n

(2n)!
χf(y)(Af)

nu0(x) · ψ (x, y) dydx, (6.45)

lim
ε→0

∫
Ω

∞∑
n=1

t2n+1

(2n+ 1)!
(Aε)nv0(x) · ψ

(
x,
x

ε

)
dx

=

∫
Ω

∫
Y

∞∑
n=1

t2n+1

(2n+ 1)!
χf(y)(Af)

nv0(x) · ψ (x, y) dydx. (6.46)

It follows from (6.45) and (6.46) that for fixed t ∈ [0, T ], as ε→ 0,

uε(x, t)
2
⇀ u(x, y, t), where u is given by (6.28).

Proof of Step (2). We can see from (6.28) that u ∈ C2([0, T ]; Lp(Ω × Y )3). Then by
taking the second time derivative of both sides (6.28), we obtain

∂2
t u(x, y, t) = χf(y)

∞∑
n=0

t2n

(2n)!
(Af)

n+1u0(x) + χf(y)
∞∑

n=0

t2n+1

(2n+ 1)!
(Af)

n+1v0(x)

= χf(y)Af(u
0 + tv0)(x)

+χf(y)Af

∞∑
n=1

t2n

(2n)!
(Af)

nu0(x) + χf(y)Af

∞∑
n=1

t2n+1

(2n+ 1)!
(Af)

nv0(x)

(6.47)

From (6.28) and the definition of Ãf, given by (6.30), we see that

Ãfu(x, y, t)− Af(u
0 + tv0)(x) = χf(y)Af

∞∑
n=1

t2n

(2n)!
(Af)

nu0(x)

+χf(y)Af

∞∑
n=1

t2n+1

(2n+ 1)!
(Af)

nv0(x) (6.48)

Thus from (6.47) and (6.48) we obtain that

∂2
t u(x, y, t) = Ãfu(x, y, t) + (χf(y)− 1)Af(u

0 + tv0)(x), (6.49)

and hence (6.29) follows. The linear operator Ãf is bounded on Lp(Ω × Y )3. Thus u is the
unique solution of (6.29).

Proof of Step (3). From (6.27) and Proposition 4.9, we obtain that for fixed
t ∈ [0, T ], as ε→ 0,

uε(·, t) →
∫

Y

u(·, y, t) dy weakly in Lp(Ω)3.
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By definition uH(x, t) =
∫

Y
u(x, y, t) dy, thus (6.32) follows. It is clear that (6.31) follows

from integrating (6.29) over Y .

Proof of Step (4). Define

w(x, t) =
∞∑

n=1

t2n

(2n)!
(Af)

nu0(x) +
∞∑

n=1

t2n+1

(2n+ 1)!
(Af)

nv0(x). (6.50)

Combining this equation with (6.28) gives (6.33). On the other hand, equation (6.50) implies
that w ∈ C2([0, T ]; Lp(Ω)3). Thus by taking the second time derivative of both sides of (6.50)
gives

∂2
tw(x, t) =

∞∑
n=0

t2n

(2n)!
(Af)

n+1u0(x) +
∞∑

n=0

t2n+1

(2n+ 1)!
(Af)

n+1v0(x)

= Af(u
0 + tv0)(x) + Af

(
∞∑

n=1

t2n

(2n)!
(Af)

nu0 +
∞∑

n=1

t2n+1

(2n+ 1)!
(Af)

nv0

)
(x)

= Af(u
0 + tv0)(x) + Afw(x, t). (6.51)

Note that from (6.50) it is easy to see that w(x, 0) = 0 and ∂tw(x, 0) = 0. Combining this
fact with (6.51), equation (6.34) follows. The fact that Af is linear and bounded on Lp(Ω)3

implies that w is the unique solution of (6.34).

Proof of Step (5). Extend χf from Y to R3 by periodicity. Then by making the
substitution y = x

ε
in (6.28), we obtain

u
(
x,
x

ε
, t
)

= u0(x) + tv0(x) + χε
f (x)

∞∑
n=1

t2n

(2n)!
(Af)

nu0(x)

+χε
f (x)

∞∑
n=1

t2n+1

(2n+ 1)!
(Af)

nv0(x)

= u0(x) + tv0(x) +
∞∑

n=1

t2n

(2n)!
(Aε

f )
nu0(x)

+
∞∑

n=1

t2n+1

(2n+ 1)!
(Aε

f )
nv0(x), (6.52)

where in the last equality we have used equation (6.37).
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Now we compute the difference uε(x, t)−u(x, x
ε
, t) using equations (6.19) and (6.52). We

see that

uε(x, t)− u
(
x,
x

ε
, t
)

=
∞∑

n=1

t2n

(2n)!
((Aε)n − (Aε

f )
n)u0(x)

+
∞∑

n=1

t2n+1

(2n+ 1)!
((Aε)n − (Aε

f )
n) v0(x)

=
∞∑

n=1

t2n

(2n)!
(εDε

n)u0(x) +
∞∑

n=1

t2n+1

(2n+ 1)!
(εDε

n) v0(x),

(6.53)

where in the last equality we have used equation (6.41). By taking the Lp norm in (6.53)
and by using (6.42), we see that∥∥∥uε(x, t)− u

(
x,
x

ε
, t
)∥∥∥

Lp(Ω)3
≤ ε

∞∑
n=1

t2n

(2n)!
Mn‖u0‖Lp(Ω)3

+ ε
∞∑

n=1

t2n+1

(2n+ 1)!
Mn‖v0‖Lp(Ω)3

= ε

(
‖u0‖Lp(Ω)3 cosh

√
Mt+ ‖v0‖Lp(Ω)3

1√
M

sinh
√
Mt

)
thus (6.36) follows, completing the proof.

6.2.1 Proof of (6.45) and (6.46)

In this section we prove (6.45). Equation (6.46) can be derived similarly.
We begin by the following observation

∞∑
n=1

∫
Ω

∣∣∣∣ t2n

(2n)!
(Aε)nu0(x) · ψ

(
x,
x

ε

)∣∣∣∣ dx <∞. (6.54)

To see this, we use Cauchy-Schwarz inequality to obtain∫
Ω

∣∣∣(Aε)nu0(x) · ψ
(
x,
x

ε

)∣∣∣ dx ≤ ∥∥(Aε)nu0
∥∥

L2(Ω)3

∥∥∥ψ (x, x
ε

)∥∥∥
L2(Ω)3

. (6.55)

From Part (a) of Proposition 6.4, the operator Aε is uniformly bounded on L2(Ω)3. Also, it
is easy to see that∥∥∥ψ (x, x

ε

)∥∥∥
L2(Ω)3

≤ ‖ψ‖L2(Ω;Cper(Y )3) :=

(∫
Ω

sup
y∈Y

|ψ(x, y)|2 dx
)1/2

.

We use these two facts in (6.55) to obtain∫
Ω

∣∣∣(Aε)nu0(x) · ψ
(
x,
x

ε

)∣∣∣ dx ≤Mn
∥∥u0
∥∥

L2(Ω)3
‖ψ‖L2(Ω;Cper(Y )3), (6.56)
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for some M > 0. Therefore

∞∑
n=1

∫
Ω

∣∣∣∣ t2n

(2n)!
(Aε)nu0(x) · ψ

(
x,
x

ε

)∣∣∣∣ dx ≤ ∥∥u0
∥∥

L2(Ω)3
‖ψ‖L2(Ω;Cper(Y )3)

∞∑
n=1

t2n

(2n)!
Mn,

from which (6.54) follows.
Now from (6.54) and by using Lebesgue’s dominated convergence theorem, it is straight-

forward to show that∫
Ω

∞∑
n=1

t2n

(2n)!
(Aε)nu0(x) · ψ

(
x,
x

ε

)
dx =

∞∑
n=1

∫
Ω

t2n

(2n)!
(Aε)nu0(x) · ψ

(
x,
x

ε

)
dx.

(6.57)

For n ∈ N, we define

SN,ε =
N∑

n=1

t2n

(2n)!

∫
Ω

(Aε)nu0(x) · ψ
(
x,
x

ε

)
dx.

Then using (6.40) we see that

lim
ε→0

SN,ε =
N∑

n=1

t2n

(2n)!

∫
Ω×Y

χf(y)(Af)
nu0(x) · ψ (x, y) dxdy, (6.58)

and hence

lim
N→∞

lim
ε→0

SN,ε =
∞∑

n=1

t2n

(2n)!

∫
Ω×Y

χf(y)(Af)
nu0(x) · ψ (x, y) dxdy. (6.59)

Below we will show that the order of the limits in (6.59) can be interchanged, i.e.,

lim
ε→0

lim
N→∞

SN,ε = lim
N→∞

lim
ε→0

SN,ε. (6.60)

Combining this with (6.57) we obtain

lim
ε→0

∫
Ω

∞∑
n=1

t2n

(2n)!
(Aε)nu0(x) · ψ

(
x,
x

ε

)
dx

=
∞∑

n=1

t2n

(2n)!

∫
Ω×Y

χf(y)(Af)
nu0(x) · ψ (x, y) dxdy. (6.61)

Applying arguments similar to those used in obtaining (6.57), we can show that

∞∑
n=1

∫
Ω×Y

t2n

(2n)!
χf(y)(Af)

nu0(x) · ψ (x, y) dxdy

=

∫
Ω×Y

∞∑
n=1

t2n

(2n)!
χf(y)(Af)

nu0(x) · ψ (x, y) dxdy. (6.62)
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From (6.61) and (6.62), the result (6.45) follows.
To complete the proof, it remains to justify (6.60). It is sufficient to show the double

sequence (SN,ε) is Cauchy. So assume that N,L ∈ N such that N ≥ L. Then

|SN,ε − SL,ε| =

∣∣∣∣∣
N∑

n=L+1

t2n

(2n)!

∫
Ω

(Aε)nu0(x) · ψ
(
x,
x

ε

)
dx

∣∣∣∣∣
≤

N∑
n=L+1

t2n

(2n)!

∫
Ω

∣∣∣(Aε)nu0(x) · ψ
(
x,
x

ε

)∣∣∣ dx
≤

∥∥u0
∥∥

L2(Ω)3
‖ψ‖L2(Ω;Cper(Y )3)

N∑
n=L+1

t2n

(2n)!
Mn, (6.63)

where (6.56) was used in the last step. We note that the term
∑N

n=L+1
t2n

(2n)!
Mn in (6.63) can

be made arbitrarily small by choosing large values of N and L. We conclude that for given
ζ > 0, there exists a positive integer K(ζ) such that for N,L > K(ζ) and all ε > 0,

|SN,ε − SL,ε| < ζ. (6.64)

From (6.58) and (6.64), and by using Lemma 6.6 below, it follows that the double sequence
(SN,ε) is Cauchy.

Lemma 6.6. Let (an,k) be a double sequence in Rd, d ∈ N, such that

(a) For each n ∈ N,
lim
k→∞

an,k = ān.

(b) Given ζ > 0, there exists a positive integer N = N(ζ) such that for n, l > N and all
k ∈ N,

|an,k − al,k| < ζ. (6.65)

Then the double sequence (an,k) is Cauchy, and hence convergent.

Proof. Let ζ > 0 and assume that N ∈ N satisfies Part (b). Then consider the sequence
(aN,k)k∈N. It follows from Part (a) that this sequence is convergent, and hence Cauchy. Thus
there exists a positive integer K = K(N, ζ) such that for k,m > K,

|aN,k − aN,m| < ζ. (6.66)

Let J = max{N,K}. Then from (6.65) and (6.66) we obtain that for
n, l, k,m > J ,

|an,k − al,m| ≤ |an,k − aN,k|+ |aN,k − aN,m|+ |aN,m − al,m|
≤ 3ζ,

and therefore the double sequence (an,k) is Cauchy.



Bacim Alali and Robert Lipton 53

References

[1] Allaire, G. (1992). “Homogenization and two-scale convergence.” SIAM Journal on
Mathematical Analysis 23, No. 6, pp. 1482–1518.

[2] Bobaru, F. and Silling, S. A. (2004). “Peridynamic 3D problems of nanofiber networks
and carbon nanotube-reinforced composites.” Materials and Design: Proceedings of
Numiform, American Institute of Physics, pp. 1565 – 1570.

[3] Bobaru, F., Silling, S. A., and Jiang, H. (2005). “Peridynamic fracture and damage
modeling of membranes and nanofiber networks.” Proceedings of the XI International
Conference on Fracture, Turin, Italy, 5748: 1–6.

[4] Bobaru, F., Yang, M, Alves, L. F., Silling, S. A., Askari, E., and Xu, J. (2007). “Con-
vergence, adaptive refinement, and scaling in 1D peridynamics.” [submitted].

[5] Clark, G. W. and Showalter, R.E. (1999). “Two-scale convergence of a model for flow
in a partially fissured medium.” Electronic Journal of Differential Equations 1999, No.
02, pp. 1–20.

[6] Dacorogna, B. (1989). Direct Methods in the Calculus of Variations. Springer-Verlag,
Berlin, New York.

[7] Dayal, K. and Bhattacharya, K. (2006). “Kinetics of phase transformations in the peri-
dynamic formulation of continuum mechanics.” Journal of the Mechanics and Physics
of Solids 54, pp. 1811 - 1842.

[8] E,W. (1992). “Homogenization of linear and nonlinear transport equations.” Commu-
nications on Pure and Applied Mathematics 45, No. 3, pp. 301 - 326.

[9] Emmrich, E. and Weckner, O. (2005). “Analysis and numerical approximation of an
integrodifferential equation modelling non-local effects in linear elasticity.” Mathematics
and Mechanics of Solids, published online first, DOI: 10.1177/1081286505059748.

[10] Emmrich, E. and Weckner, O. (2006). “The peridynamic equation of motion in non-
local elasticity theory.” In: C. A. Mota Soares et al. (eds.), III European Conference
on Computational Mechanics. Solids, Structures and Coupled Problems in Engineering
,Lisbon, , Springer, 19 p.

[11] Emmrich, E. and Weckner, O. (2007). “On the well-posdness of the linear peridynamic
model and its convergence towards the Navier equation of linear elasticity.” [submitted].

[12] Engel, K.-J. and Nagel, R. (2000). One-Parameter Semigroups for Linear Evolution
Equations, Springer- Verlag, New York.

[13] Fattorini, H. O. (1983). The Cauchy Problem. Addison-Wesley. MR 84g:34003

[14] Gerstle, W., Sau, N., and Silling, S. A. (2005). “Peridynamic modeling of plain and re-
inforced concrete structures.” SMiRT18: 18th lnt. Conf. Struct. Mech. React. Technol.,
Beijing.



Bacim Alali and Robert Lipton 54

[15] Kunstmann, P. C. (1999). “Distribution semigroups and abstract Cauchy problems.”
Transactions of the American Mathematical Society 351, No. 2, pp. 837 – 856.

[16] Melnikova, I. V. (1997). “Properties of Lions’s d-semigroups and generalized well-
posedness of the Cauchy Problem.” Functional Analysis and Its Applications 31, No.
3, pp. 167 - 175.

[17] Neubrander, F. (1988). “Integrated semigroups and their application to the abstract
Cauchy problem.” Pacific Journal of Mathematics 135, No. 1, pp. 111 – 157.

[18] Nguetseng, G. (1989). “ A general convergence result for a functional related to the
theory of homogenization.” SIAM Journal on Mathematical Analysis 20, No. 3, pp. 608
- 623.

[19] Lukkassen, D., Nguetseng, G., and Wall, P. (2002). “Two-scale convergence.” Interna-
tional Journal of Pure and Applied Mathematics 2, No. 1, pp. 35–86.

[20] Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential
Equations, Springer Verlag.

[21] Silling, S.A. (2000). “Reformulation of elasticity theory for discontinuities and long-
range forces.” Journal of the Mechanics and Physics of Solids 48, pp. 175 - 209.

[22] Silling, S.A. (2003). “Dynamic fracture modeling with a meshfree peridynamic code.”
In: Bathe KJ, editor. Computational Fluid and Solid Mechanics, Elsevier, Amsterdam,
pp. 641 – 644.

[23] Silling, S.A. and Askari, E. (2004). “Peridynamic modeling of impact damage.” In:
Moody FJ, editor. PVP-Vol. 489, American Society of Mechanical Engineers, New York,
pp. 197 – 205.

[24] Silling, S.A. and Askari, E. (2005). “A meshfree method based on the peridynamic
model of solid mechanics.” Computers & Structures 83 pp. 1526 – 1535.

[25] Silling, S.A. and Bobaru, F. (2005). “Peridynamic modeling of membranes and fibers.”
International Journal of Nonlinear Mechanics 40, pp. 395 – 409.

[26] Silling, S. A., Zimmermann, M., and Abeyaratne, R. (2003). “Deformation of a peridy-
namic bar.” Journal of Elasticity 73 ,pp. 173 – 190.

[27] Weckner, O. and Abeyaratne, R. (2005). “The effect of long-range forces on the dynamics
of a bar.” Journal of Mechanics and Physics of Solids 53, 3, pp. 705 – 728.

[28] Zimmermann, M. (2005). “A continuum theory with long-range forces for solids.” PhD
Thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering.


	Multis2241.pdf
	Multis2241.pdf
	Introduction
	The Peridynamic Formulation of Continuum Mechanics
	Three Peridynamic Models of Fiber-Reinforced Materials

	Multiscale Analysis and the Numerical Scheme for the Short-Range and Long-Range Bond Model
	First Case
	The Macroscopic Equation
	The Cell--Problem
	Downscaling

	Second Case
	The Macroscopic Equation
	The Cell--Problem
	Downscaling

	Third Case
	The Macroscopic Equation
	The Cell--Problem
	Downscaling

	Fourth Case
	The Macroscopic Equation
	The Cell--Problem
	Downscaling


	Existence and Uniqueness Results for the Peridynamic Equation
	Two-Scale Convergence and the Two-Scale Limit Equation
	Two-Scale Convergence
	The Two-Scale Limit Equation

	The Macroscopic Equation and Downscaling
	Derivation of the Macroscopic Equation
	Justifying the Downscaling Step
	First Case
	Second Case
	Third and Fourth Cases


	Fluctuating Long-Range Bond Model
	Existence and Uniqueness Results
	Multiscale Analysis Using the Semigroups Approach
	Proof of (??) and (??)




