
1

Route Optimization for Multiple Searchers

J.O. Royset and H. Sato
Operations Research Department, Naval Postgraduate School

Monterey, California, USA

September 4, 2009

Abstract. We consider a discrete time-and-space route-optimization problem, across a fi-

nite time horizon, in which multiple searchers seek to detect one or more probabilistically

moving targets. The paper formulates a novel convex mixed-integer nonlinear program for

this problem that generalizes earlier models to situations with multiple targets, searcher

deconfliction, and target- and location-dependent search effectiveness. We present two so-

lution approaches, one based on the cutting-plane method and the other on linearization.

These approaches result in the first practical, exact algorithms for solving this important

problem, which arises broadly in military, rescue, law enforcement, and border patrol op-

erations. The cutting-plane approach solves many realistically sized problem instances in

few minutes, while existing branch-and-bound algorithms fail. A specialized cut improves

solution times by 50% in difficult problem instances. The approach based on linearization,

which is applicable in important special cases, may further reduce solution times with one or

two orders of magnitude. The solution times for the cutting-plane approach tend to remain

constant as the number of searchers grows. In part, then, we overcome the difficulty that

earlier solution methods have with many searchers.

Subject Classifications: Military operations research, search and surveillance, route plan-

ning, mixed-integer nonlinear programming.

Area of review: Military and Homeland Security.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
04 SEP 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Route Optimization for Multiple Searchers

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Operations Research
Department,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
in review

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

42

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

We consider a discrete-time route-optimization problem, denoted SP, in which multiple,

fully cooperating searchers and one or more probabilistically moving targets operate in an

environment consisting of a finite set of cells. In the case of a single target, the searchers

seek to minimize the probability of not detecting the target across a time horizon. In the

presence of multiple targets, the searchers adopt a worst-case approach and aim to minimize

the probability of not detecting the target with the largest nondetection probability. The

searchers are subject to constraints on route continuity, may require some travel time to

move from one cell to another, and may need to maintain a minimum distance between each

other to avoid interference. The searchers are imperfect and may not detect a target present

in a cell subject to search. However, we ignore the possibility of false positive reports of

targets.

SP arises broadly in military, rescue, law enforcement, and border patrol operations. In

military operations, the searchers may be manned or unmanned aircraft looking for suspected

individuals or downed pilots in an area of interest. Park rangers may search for lost hikers.

In a damaged or burning building, fire fighters and ground robots may search for trapped

individuals. Law enforcement officers may act as searchers when looking for criminals. Near

national borders, the searchers are border patrols seeking illegal immigrants. The searchers

may also be Coast Guard cutters and helicopters scanning the ocean for ship wrecks and

smugglers. We adopt the traditional terminology (see, e.g., [33, 31]) and refer to the objects

being looked for as “targets,” even though the searchers may not wish those objects any

harm. Often in these applications, the targets are unaware of the searchers’ routes or are

unable to take advantage of such information. Hence, it is realistic to assume that the targets

move between cells according to some known probability distribution that is independent

of the searchers’ routes; see Section 2 for details. This assumption is also found in, e.g.,

[29, 9, 33, 17] and we adopt it throughout this paper. The possibility of a target intelligently

adapting to the searchers’ routes is beyond the scope of the paper.

2

The situations described above may involve just a few searchers. However, with the tech-

nological improvement of autonomous systems and sensors, planners now frequently need to

optimally route many searchers. (We refer to [25] for an overview of recent advances in the

area of autonomous aerial systems and [20] for an introduction to the U.S. Department of

Defense’s effort to utilize a large number of autonomous systems for reconnaissance, infor-

mation gathering, and search and rescue operations.) Effective manual planning for a few

human-controlled searchers is difficulty (see for example p.7-7 in [33]) and, of course, even

more difficult for a large number of autonomous systems. In fact, [20], p. 164, states that

“Many recognize the potential of robotics/unmanned systems in military opera-

tions; yet few understand how to employ them effectively. Computer generated

modeling and simulation tools are extremely valuable in an attempt to generate

both operational concepts for tactics, techniques and procedures (TTP) as well

as technical requirements to enable those procedures.”

Solutions of SP recommend effective routes for the searchers that help planners to better

utilize their assets, provide input to control units of autonomous systems, and possibly save

lives, for example, in search and rescue operations. The U.S Coast Guard’s tactical decision

aid CASP and the U.S. Navy’s NODESTAR both utilize solutions of special instances of SP

obtained by heuristics (see Chapter 7 in [33]).

Previous studies have focused on single-searcher and single-target instances of SP; see

[26] for a comprehensive review of papers up to 1991; [17, 28], and references therein, cover

more recent work. The most efficient exact algorithms for such instances of SP appear to be

specialized branch-and-bound algorithms. These algorithms obtain bounds by replacing, in

effect, the probability of detection with the expected number of detections [7, 32, 17, 28].

In principle, such specialized branch-and-bound algorithms are also applicable to in-

stances of SP with multiple searchers [7, 27]. However, when applied to realistically sized

instances with more than two searchers, they tend to require excess computer memory and

prohibitive solution times [27]. This has motivated the development of heuristics for SP,

3

and related problems, such as local search and genetic algorithms [7] as well as the cross-

entropy method [27]. Other heuristic algorithms rely on approximations of probabilities

by expectations [7], myopic optimization with a receding-horizon [7, 12, 35, 23], sequential

optimization of each searcher [29, 35, 13], and decentralized optimization by each searcher

[3, 36, 35]. Of these studies, only [36, 35] deal with multiple targets, and then, only in the

context of heuristics. Hence, there is a need to model multi-searcher instances of SP and to

provide exact algorithms for their solution.

This paper formulates a novel convex mixed-integer nonlinear program (MINLP) for

SP. The program generalizes the formulation in [29] to multiple targets. It also appears to

be the first to prevent interference between searchers (i.e., to “deconflict” searchers) in this

context and to account for the fact that a searcher’s effectiveness may depend on the target,

the time of search, and the searcher’s previous location. The latter generalization provides

an important practical advantage as it reduces the need for fine time discretizations when

modeling real-world search missions.

We present two solution approaches to MINLP resulting in the first practical, exact al-

gorithms for SP with multiple searchers. One approach based on the cutting-plane method

(see, e.g., [15, 8, 34]), leads to fast solutions for many realistically sized problem instances

for which existing branch-and-bound algorithms fail. For difficult instances of SP, we im-

prove solution times further with a specialized cut. The other approach is based on novel,

equivalent linearizations of MINLP available in important special cases. Optimal solutions

of the linearizations are often easily obtained by standard mixed-integer linear programming

solvers leading to further reduction in solution times by one to two orders of magnitude.

Poor scalability of algorithms as the number of searchers grows is of major concern when

solving SP and related problems and has led to the development of heuristic algorithms (see,

e.g., [35, 13, 27]). The cutting-plane approach scales well as the solution times tend to remain

constant as the number of searchers grows. We therefore overcome, in part, the difficulty of

solving problem instances with many searchers.

The remainder of the paper is outlined as follows. The next section defines SP precisely.

4

Section 3 derives mathematical programming formulations of SP and its linearizations. In

Section 4, we present algorithms and numerical results, with particular focus on an important

special case involving a single target.

2 Problem Statement

2.1 Searchers, Targets, and their Environment

We let the area of interest (AOI) be discretized into a finite set of cells C = {1, . . . , C}, and

let the time horizon be discretized into a finite set of time periods T0 = {0} ∪ T , where

T = {1, 2, ..., T}. Search for targets takes place during time periods t ∈ T , with t = 0

representing the time period prior to start of the search. There are K independent targets

present in the AOI with each target k ∈ K = {1, 2, ..., K} occupying one cell in each time

period. The quantity ωk,t ∈ C denotes the (random) cell that target k occupies during time

period t ∈ T . The vector of cells ωk = (ωk,1, ωk,2, . . . , ωk,T) denotes a possible path for

target k, and qk(ωk) denotes the given probability that target k takes that path. The set Ωk

denotes the collection of all possible paths for target k with positive probability qk(ωk). In

practice, the data Ωk and qk(ωk) are generated using Monte Carlo sampling from (complex)

target motion models (as in U.S. Coast Guard’s decision aid CASP) or defined implicitly

by Markov transition matrices (as in the case of U.S. Navy’s decision aid NODESTAR); see

Chapter 7 in [33]. This paper considers both ways of specifying target movement and refers

to the former way as a conditional target model and to the latter way as a Markovian target

model. In Sections 3 and 4, we see that it is not necessary to explicitly enumerate all possible

target paths in the case of a Markovian target model.

It is trivial to extend the current framework to situations with targets that may not

be present in the AOI and targets that enter and leave the AOI during the time horizon.

However, we do not examine that situation further.

There are L classes of searchers, with each class l ∈ L = {1, 2, ..., L} containing Jl

identical searchers. During each time period t ∈ T0, each searcher occupies a cell or is in

transit between cells. When occupying a cell c, a searcher of class l may select to move to

5

any cell “adjacent” to c as defined by the forward star Fl(c) ⊂ C. We also let Rl(c) ⊂ C
denote the reverse star of cell c, which represents the set of cells from which a searcher of

class l can reach cell c in one move. By convention, c ∈ Fl(c) and c ∈ Rl(c). A searcher of

class l requires dl,c,c′ time periods to move from cell c to cell c′ ∈ Fl(c) and to search cell c′

for one time period. Since the time to search the “destination” cell c′ is included in dl,c,c′ ,

dl,c,c′ ≥ 1 for all l, c, c′ and dl,c,c′ = 1 only if the time to move from c to c′ is zero.

Searchers may interfere with each other and could be required to maintain a minimum

internal distance. We let nc be the maximum number of searchers allowed to occupy cell c

during any one time period t ∈ T . Moreover, for each possible move between to cells for

a searcher, we define a corresponding set of incompatible moves between cells that would

cause interference if carried out by another searcher. Specifically, if a searcher of class l moves

from cell c to cell c′ starting in time period t, then the set D(l, c, c′, t) gives all quadruples

of searcher classes, cell pairs, and time periods that are incompatible with that searcher’s

move. We refer to these restrictions as deconfliction constraints.

We let Xl,c,c′,t denote the number of searchers of class l that occupy cell c in time period

t ∈ T0 and that move to cell c′ next, and let X denote the vector with components Xl,c,c′,t,

l ∈ L, c, c′ ∈ C, and t ∈ T0. We refer to X as a search plan.

2.2 Sensor Model

We assume that each searcher is equipped with one imperfect sensor. Each time period t ∈ T
in which a searcher occupies a cell, the searcher’s sensor takes one “look” in the cell for each

target. When a searcher is in transit between cells, the sensor is inactive. The probability

that one look for a target in a cell detects the target, given that the target currently occupies

the cell, may depend on the searcher class (is it a high- or low-quality searcher?), the target’s

characteristic (is it shiny or camouflaged?), the cell (is it forested or open?) and time of day

(is it bright mid-day or dark midnight?). Specifically, if target k and a searcher of class l

occupy cell c in time period t and c′ is the searcher’s previous cell, then the probability that

the searcher’s look during time period t detects the target is gl,c′,c,t,k ∈ (0, 1). We refer to

6

this probability as the glimpse-detection probability.

We note that the glimpse-detection probability depends on the searcher’s previous lo-

cation. This dependence may arise if adjusting search pattern and/or altitude, refocusing

a sensor, and becoming familiar with a new cell have a significant detrimental effect on the

searcher’s capability to detect a target. In addition, this dependance allows us to account

indirectly for small transit times (much less than the length of a time period) between cells

by reducing the glimpse-detection probability from its nominal value if the searcher just

moved into a cell. For example, suppose that the real-world travel time from cell c′ to c

is one minute. To model this situation (approximately), we would normally require a time

period of (approximately) one-minute duration. However, this may result in a large number

of time periods and long computing times. Alternatively, we can define a longer time period,

say 10 minutes, and let the glimpse-detection probability in cell c be somewhat reduced if a

searcher’s previous cell were c′ as compared to if it were c. This will reflect the fact that a

searcher coming from cell c′ has only nine minutes to search c compared to 10 minutes if the

searcher had already been present in c. Hence, we avoid adopting a fine time discretization

with resulting high computational cost.

We assume that all the searchers’ looks are independent. Hence, given search plan X,

the probability that no searcher detects target k in cell c in time period t, given that target

k occupies cell c at that time, equals

∏

l∈L

∏

c′∈Rl(c)

(1− gl,c′,c,t,k)
Xl,c′,c,t−dl,c′,c (1)

= exp


−∑

l∈L

∑

c′∈Rl(c)

αl,c′,c,t,kXl,c′,c,t−dl,c′,c


 , (2)

where for all l ∈ L, c ∈ C, c′ ∈ Rl(c), t ∈ T , and k ∈ K,

αl,c′,c,t,k = − ln(1− gl,c′,c,t,k) (3)

is the detection rate. While the glimpse-detection probability may be difficult to estimate

directly without extensive field testing, the detection rate can often be related to a searcher’s

speed and sensor range, the size of the cell, and the length of the time period; for example

7

see p. 2-1 in [33].

SP seeks to minimize, by choice of a search plan X, the probability of not detecting

the target with the largest nondetection probability during the time horizon. The choice

of search plan is subject to the route constraints induced by the forward and reverse stars

Fl(c) and Rl(c), deconfliction constraints given by nc and D(l, c, c′, t), and the given initial

condition that xl,c,0 searchers of class l occupy cell c in time period 0.

3 Models of Search Problem

In this section, we formulate SP, in complete generality, as a convex MINLP. Since the

model is nonlinear, we anticipate relatively long solution times for standard MINLP solvers

(e.g., Bonmin [6], DICOPT [11]). Hence, a main focus of this paper is to develop solution

approaches that utilize structure present in important classes of problem instances. Conse-

quently, we go on to construct two linear models for classes of problem instances involving

homogenous searchers and a single target.

This section first states the nonlinear model of SP and second deals with the lineariza-

tions for special classes. The section ends with a discussion of linearization of the full

nonlinear model.

3.1 Nonlinear Model of SP

We state SP as a convex MINLP, generalizing the formulation in [29] to account for multiple

targets and deconfliction constraints as well as glimpse-detection probabilities that may

depend on the target, the time of search, and a searcher’s previous location. The resulting

program takes the following form.

Model SPX:

Indices
c, c′, c′′, c′′′ cells (c, c′, c′′, c′′′ ∈ C = {1, . . . , C}).
t, t′ time periods (t, t′ ∈ T0 = {0} ∪ T , T = {1, ..., T}).
l, l′ searcher class (l, l′ ∈ L = {1, ..., L}).
k target (k ∈ K = {1, ..., K}).
ωk path of target k (ωk ∈ Ωk).

8

Sets
Fl(c) ⊆ C forward star of cell c for searcher of class l.
Rl(c) ⊆ C reverse star of cell c for searcher of class l.
D(l, c, c′, t) set of quadruples (l′, c′′, c′′′, t′) incompatible with a searcher

of class l that moves from c to c′ starting in time period t.

Parameters
αl,c′,c,t,k detection rate in cell c in time period t against target k for a

searcher of class l when the searcher previously occupied c′.
ζc,t(ωk) 1 if cell c is on target path ωk in time period t, otherwise 0.
xl,c,0 number of searchers of class l that occupy cell c in time

period 0.
Jl number of searchers of class l.
qk(ωk) probability that target k takes path ωk.
dl,c,c′ number of time periods needed for a searcher of class l to

move directly from cell c to cell c′ and search c′.
nc maximum number of searchers that occupy cell c in a time

period.

Decision Variables
Xl,c,c′,t number of searchers of class l that occupy cell c in time

period t and that move to cell c′ next. (X denotes the
vector with components Xl,c,c′,t, l ∈ L, c, c′ ∈ C, t ∈ T0.)

Yc,t,k auxiliary variable representing “search effort” in cell c
against target k in time period t. (Yk denotes
the vector with components Yc,t,k, c ∈ C, t ∈ T .)

Functions
fk(Yk) nondetection probability of target k

=
∑

ωk∈Ωk

qk(ωk) exp


− ∑

c,t∈T
ζc,t(ωk)Yc,t,k


 . (4)

Formulation

min
X,Yk,k∈K

max
k

fk(Yk) (5)

s.t.
∑

c′∈Rl(c)

Xl,c′,c,t−dl,c′,c =
∑

c′∈Fl(c)

Xl,c,c′,t ∀ l, c, t ∈ T (6)

∑

c′∈Fl(c)

Xl,c,c′,0 = xl,c,0 ∀ l, c (7)

∑

l∈L

∑

c′∈Rl(c)

αl,c′,c,t,kXl,c′,c,t−dl,c′,c = Yc,t,k ∀ c, t ∈ T , k (8)

∑

l∈L

∑

c′∈Rl(c)

Xl,c′,c,t−dl,c′,c ≤ nc ∀ c, t ∈ T (9)

9

Xl,c,c′,t + Xl′,c′′,c′′′,t′ ≤ 1 ∀ l, c, c′ ∈ Fl(c), t, (10)

∀ (l′, c′′, c′′′, t′) ∈ D(l, c, c′, t)

Xl,c,c′,t ∈ {0, 1, 2, ..., Jl} ∀ l, c, c′, t (11)

Yc,t,k ≥ 0 ∀ c, t ∈ T , k. (12)

The decision variable Yc,t,k could be eliminated by substitution using (8), but is included

for notational simplicity. We obtain the nondetection probability for target k in (4) from (2)

by application of the total probability theorem and the fact that detection in cell c in time

period t can occur only if the target occupies that cell at that time. The objective function

(5) aims to minimize the largest nondetection probability. The objective function of SPX

is convex and the nondetection probabilities fk(Yk), k ∈ K, are convex and continuously

differentiable. In problem instances with a large number of possible target paths, calculation

of fk(Yk) using (4) is expensive. However, a Markovian target model permits a more efficient

way of computing fk(Yk), which we present and exploit in Sections 4.2 and 4.3. Consequently,

SPX is applicable for both conditional and Markovian target models.

Constraints (6) and (7) ensure route continuity and define initial conditions for the

searchers, respectively. Deconfliction constraints (9) and (10) limit the number of searchers

that can occupy cell c to at most nc in any time period t ∈ T and exclude moves in conflict

with each other, respectively. We observe that SPX prescribes the “best” search plan prior

to detection of the first target. It is beyond the scope of the paper to plan for events after

the first detection. We discuss the solution of SPX in Sections 3.3 and 4.3, but first deal

with important special cases.

3.2 Linearizations of SPX for Homogeneous Searchers and Single Target

We now consider special classes of instances of SPX involving homogeneous searchers and

a single target, which allow us to construct two equivalent linear models. For simplicity we

also exclude deconfliction constraints. We discuss the merits of extending these linearizations

to the general SPX in Section 3.3. Specifically, SPX with one searcher class (i.e., L = 1),

one target (i.e., K = 1), a constant detection rate over all cells and time periods, and no

10

deconfliction constraints takes the following form. In this case, we drop the subscripts k and

l.

Model SP1:

Indices
c, c′ cells (c, c′ ∈ C = {1, . . . , C}).
t time periods (t ∈ T0 = {0} ∪ T , T = {1, ..., T}).
ω path of target (ω ∈ Ω).

Sets
F(c) ⊆ C forward star of cell c for a searcher.
R(c) ⊆ C reverse star of cell c for a searcher.

Parameters
α detection rate for a searcher.
ζc,t(ω) 1 if cell c is on target path ω in time period t, otherwise 0.
xc,0 number of searchers that occupy cell c in time period 0.
J number of searchers.
q(ω) probability that target takes path ω.
dc,c′ number of time periods needed for a searcher to move

directly from cell c to cell c′ and search c′.

Decision Variables
Xc,c′,t number of searchers that occupy cell c in time period t

and that move to cell c′ next. (X denotes the vector with
components Xc,c′,t, c, c

′ ∈ C, t ∈ T0.)
Zc,t number of searchers that occupy cell c in time period t.

(Z denotes the vector with components Zc,t, c ∈ C, t ∈ T .)

Functions
f(Z) nondetection probability of target

=
∑

ω∈Ω

q(ω) exp


− ∑

c,t∈T
ζc,t(ω)αZc,t


 . (13)

Formulation

min
X,Z

f(Z) (14)

s.t.
∑

c′∈R(c)

Xc′,c,t−dc′,c =
∑

c′∈F(c)

Xc,c′,t ∀ c, t ∈ T (15)

∑

c′∈F(c)

Xc,c′,0 = xc,0 ∀ c (16)

∑

c′∈R(c)

Xc′,c,t−dc′,c = Zc,t ∀ c, t ∈ T (17)

11

Xc,c′,t ≥ 0 ∀ c, c′, t (18)

Zc,t ∈ {0, 1, 2, ..., J} ∀ c, t ∈ T (19)

The objective function and constraints in SP1 are specializations of those in SPX with

minor changes caused by the new auxiliary integer variable Zc,t which effectively equals Yc,t,k

divided by α. Hence, the objective function now involves αZc,t instead of Yc,t,k. We utilize

the integrality of Zc,t in the following linearization as well as in construction of cutting planes

in Section 4.1. We refer to Z as a search plan.

We next derive two linearizations of SP1. The first linearization is applicable in the

case of a conditional target model with a moderate number of possible target paths. The

second linearization is limited to the situation with a Markovian target model. We deal with

the two linearizations in turn.

The objective function in SP1 is a finite sum of exponential functions over all possible

target paths; see (13). Each exponential function has as argument an integer multiple of α

between 0 and JT , where J is the number of searchers. Hence, the objective function in

SP1 can equivalently be represented by piecewise linear functions. This observation leads

to the first linearization of SP1.

Model SP1-L:

Indices
As in SP1.
i number of looks on a target path (i = 0, 1, ..., JT).

Sets and Parameters
As in SP1.

Decision Variables
As in SP1.
Uω auxiliary variable representing nondetection probability

given target path ω.

Formulation

min
∑

ω∈Ω

q(ω)Uω (20)

s.t. e−iα(1 + i− ie−α) +
1

α
e−iα(e−α − 1)

∑

c,t∈T
ζc,t(ω)αZc,t ≤ Uω ∀ ω, i (21)

12

(15)− (19)

SP1-L is a mixed-integer linear program. Constraints (21) ensure that the optimal

solution results in a value of Uω that is exactly the conditional nondetection probability

given that the target follows path ω. The other constraints are identical to those in SP1.

The number of constraints and variables in SP1-L grows linearly in the number of possible

target paths and, hence, the formulation becomes difficult to solve for large number of such

paths. This motivates a second linearization of SP1.

The second linearization of SP1, denoted SP1-LM, assumes a Markovian target model

where the target at time t ∈ T moves according to a transition probability matrix Γt with

elements γc,c′,t, c, c′ ∈ C. Specifically, γc,c′,t is the probability that a target occupying cell c

in time period t occupies cell c′ in time period t + 1. As we see below, it is not necessary to

enumerate all possible target paths in the case of a Markovian target model.

We derive SP1-LM from SP1 by introducing an “information state” Pc,t which equals

the probability that the target occupies cell c in time period t and that the target has not

been detected prior to t. Given this information state and a search plan with j searchers

occupying cell c in time period t, the probability of detection in cell c in time period t and

no prior detection, is simply

Pc,t(1− e−jαc,t), (22)

where αc,t is the detection rate of each searcher in cell c in time period t.

Suppose that a search plan is described by the binary variables Vc,t,j, which is 1 if j

searchers occupy cell c in time period t and is 0 otherwise. Then, the probability of detection

over the full time horizon becomes

∑

t∈T

∑
c

Pc,t(1− e−αc,t

∑J

j=1
jVc,t,j). (23)

The information state Pc,t depends on the search plan as follows. Clearly, Pc,1 = pc, the

probability that the target occupies cell c initially. Moreover, it follows from the definition

of Pc,t and the assumption of a Markovian target model that

Pc,t+1 =
∑

c′
γc′,c,tPc′,te

−αc′,t
∑J

j=1
jVc′,t,j (24)

13

for all c ∈ C and t = 1, 2, ..., T − 1. While the expressions (23) and (24) are nonlinear, they

can be linearized as shown in the following formulation.

Model SP1-LM:

Indices
c, c′ cells (c, c′ ∈ C = {1, . . . , C}).
t time periods (t ∈ T0 = {0} ∪ T , T = {1, ..., T}).
j number of searchers in a cell (j ∈ J = {1, . . . , J}).

Sets
As in SP1.

Parameters
αc,t detection rate in cell c in time period t for any searcher.
xc,0 number of searchers that occupy cell c in time period 0.
dc,c′ number of time periods needed for a searcher to move

directly from cell c to cell c′ and search c′.
γc,c′,t probability that a target that occupies cell c in time period t

occupies cell c′ in time period t + 1.
pc probability that the target occupies cell c in time period 1.
qc,t probability that the target occupies cell c in time period t,

i.e., qc,t =
∑

c′ qc′,t−1γc′,c,t−1, t = 2, 3, ..., T , qc,1 = pc.

Decision Variables
Pc,t probability that the target occupies cell c in time period t

and target not detected prior to t.
Qc,t,j auxiliary variable that equals Pc,t(1− e−jαc,t) if Vc,t,j = 1

and otherwise 0.
Vc,t,j 1 if there are j searchers that occupy cell c in time period t

and otherwise 0.
Wc,t auxiliary variable that equals Pc,te

−jαc,t if Vc,t,j = 1
and otherwise Pc,t.

Xc,c′,t number of searchers that occupy cell c in time period t and that
move to cell c′ next.

Formulation

min 1− ∑

t∈T

∑
c

∑

j

Qc,t,j (25)

s.t. Qc,t,j ≤ qc,t(1− e−jαc,t)Vc,t,j ∀ c, t ∈ T , j (26)

Qc,t,j ≤ (1− e−jαc,t)Pc,t ∀ c, t ∈ T , j (27)

Pc,t+1 =
∑

c′
γc′,c,tWc′,t ∀ c, t = 1, 2, ..., T − 1 (28)

Wc,t ≤ Pc,t ∀ c, t ∈ T (29)

14

Wc,t ≤ e−jαc,tPc,t + qc,t(1− e−jαc,t)(1− Vc,t,j) ∀ c, t ∈ T , j (30)

Pc,1 = pc ∀ c (31)

Pc,t ≤ qc,t ∀ c, t (32)

∑

c′∈R(c)

Xc′,c,t−dc′,c =
∑

j

jVc,t,j ∀ c, t ∈ T (33)

∑

j

Vc,t,j ≤ 1 ∀ c, t ∈ T (34)

(15), (16)

Pc,t ≥ 0 ∀ c, t ∈ T (35)

Qc,t,j ≥ 0 ∀ c, t ∈ T , j (36)

Vc,t,j ∈ {0, 1} ∀ c, t ∈ T , j (37)

Wc,t ≥ 0 ∀ c, t ∈ T (38)

Xc,c′,t ≥ 0 ∀ c, c′, t (39)

The objective function (25) in SP1-LM gives the probability of nondetection; its cor-

rectness follows from (23). However, since (23) is nonlinear, we linearize it using the auxiliary

variable Qc,t,j, which equals Pc,t(1−e−jαc,t) if Vc,t,j = 1 and equals 0 otherwise. This lineariza-

tion is accomplished using constraints (26) and (27). This is a “big-M” type of formulation

(see, for example, [22], pp. 642-643) where, in theory, any constant at least as large as Pc,t

would suffice in front of (1−e−jαc,t) in (26). Recall that Pc,t is the probability that the target

occupies cell c in time period t and target not detected prior to t. Moreover, recall that qc,t

is the probability that the target occupies cell c in time period t. Hence, qc,t ≥ Pc,t for all

c, t. Consequently, we set the “big-M” in (26) to qc,t. We also use qc,t to bound the range of

Pc,t in (32).

The evolution of the information state is also nonlinear; see (24). In SP1-LM, we

linearize that expression by means of the auxiliary variable Wc,t and constraints (28)-(30).

Note that Wc,t equals Pc,te
−jαc,t if Vc,t,j = 1 and equals Pc,t otherwise. The initial target

location is accounted for in (31). Constraints (33) and (34) relate Xc,c′,t to the binary

variable Vc,t,j.

15

3.3 Linearizations of the General SPX

SP1-L, which linearizes SP1 in the case of a conditional target model, generalizes easily

to a linear model equivalent to SPX if all detection rates αl,c′,c,t,k in SPX are rational

numbers. In that case, all detection rates SPX can be expressed as an integer multiple of

a number, say, α. Hence, Yc,t,k could be expressed as α times an auxiliary integer variable.

Similar to the approach leading to SP1-L, the exponential terms in fk(Yk) could then be

expressed by piecewise-linear functions. Standard techniques for linearizing piecewise-linear

functions would then lead to a mixed-integer linear program. If αl,c′,c,t,k differs substantially

across different elements of L, C, T , and K, α would need to be relatively small. Hence,

the piecewise-linear functions may involve a large number of pieces and the resulting mixed-

integer program may be large.

Under the same assumption on the detection rates and given a Markovian target model,

SP1-LM generalizes to a linear model equivalent to SPX through a redefinition of j. While

j gives the number of searchers occupying a cell during one time period in SP1-LM, the

new linear model would require j to represent αtotal/α, where αtotal denotes the sum of the

detection rates of all searchers occupying a cell in a time period. This sum may be larger

than the number of searchers occupying the cell as each searcher would have a detection

rate of ξα, where ξ is a positive integer. Since this linearization effectively assigns a binary

variable to each possible value of the “search effort” in a cell, the resulting mixed-integer

linear program may become large.

In view of the above discussion, we see that linearizations of SPX tend to be of rea-

sonable size and practical value when all detection rates αl,c′,c,t,k can be expressed as small

integer multiples of α. For example, this is the case when all detection rates equals 1 · α
for some α > 0 as in SP1. In the next section, we focus on SP1-L and SP1-LM for this

important class of instances, but also consider the solution of the full SPX by means of a

cutting-plane algorithm.

16

4 Algorithms and Numerical Results

This section discusses the solution of SPX, with particular focus on SP1 as linearizations

appear especially attractive in that case. In addition to linearizations, we also consider the

cutting-plane method (see, e.g., [15, 8, 34]) as applied to SPX and SP1, and present a

specialized, strengthened cutting plane for SP1. First, we consider SP1 in the case of a

conditional target model with a moderate number of possible target paths. In practice, this

situation occurs when the paths are generated by Monte Carlo sampling from a (complex)

motion model. The U.S. Coast Guard’s decision aid CASP generates target paths in this

manner. Second, we examine SP1 in the case of a Markovian target model. The Markovian

assumption is adopted in practice, for example by the U.S. Navy’s decision aid NODESTAR,

as well as in the literature [32, 17]. We refer to Chapter 7 in [33] for further details about

target motion models. Third, we solve SPX using a cutting-plane algorithm for the case

with a Markovian target model. The algorithm is also applicable in the case of a conditional

target model, but we do not examine that situation in detail.

4.1 Solution of SP1 and SP1-L for a Conditional Target Model

This section develops a specialized cutting plane for SP1 and compares the performance of

the resulting cutting-plane algorithms with those corresponding to the solution of SP1 and

SP1-L by standard solvers.

The standard cutting-plane algorithm for convex (mixed-integer) programs sequentially

builds and minimizes successively better piecewise-linear approximations of a convex func-

tion; see, e.g., [15, 8, 34] and the recent review [2]. For completeness and ease of reference,

we next state our implementation of the standard cutting-plane algorithm. Below, we need

the partial derivatives

∂f(Z)

∂Zc,t

= −α
∑

ω∈Ω

q(ω)ζc,t(ω) exp


− ∑

c′,t′∈T
ζc′,t′(ω)αZc′,t′


 . (40)

Algorithm 1 (Obtains near-optimal solutions of SP1)

Data. Relative optimality tolerances δ, δi ≥ 0, i = 0, 1, 2,

17

Step 0. Set the lower bound, ξ, on the optimal value of SP1 to 0; set the upper bound, ξ,

on the optimal value of SP1 to 1; and set i = 1 and Z1 = 0.

Step 1. Calculate f(Zi) and ∇f(Zi). If f(Zi) < ξ, then set ξ = f(Zi).

Step 2. If ξ − ξ ≤ δξ, then stop.

Step 3. Solve

Pi : min ξ (41)

s.t. f(Zj) +∇f(Zj)′(Z − Zj) ≤ ξ ∀ j = 1, 2, ..., i (42)

(15)− (19)

to near optimality. That is, determine a lower bound ξi+1 and a feasible solution

(ξ
i+1

, Z i+1, X i+1) of Pi such that ξ
i+1 − ξi+1 ≤ δiξ

i+1.

Step 4. If ξi+1 > ξ, then set ξ = ξi+1.

Step 5. If ξ − ξ ≤ δξ, then stop. Else, replace i by i + 1, and go to Step 1.

We note that Algorithm 1 is guaranteed to solve SP1 to optimality if δ = 0 and δi = 0

for all i. Fixing δi > 0 (i.e., accepting near-optimal solutions of Pi) does not guarantee

convergence, but does improve computational speed. To balance convergence and speed, we

allow for small positive δi and adopt the simple safeguard of replacing δi by δi/2 if a previous

solution is repeated. This approach prevents Algorithm 1 from jamming at a nonoptimal

solution.

The cutting plane (42) can be strengthened by taking advantage of the special structure

of f(Z) and the fact that Zc,t is integer. The strengthened cut uses finite differences of the

objective function f(Z) by considering the perturbation from Zc,t to Zc,t + 1 while keeping

all other variables fixed. Theorem 1 formalizes this discussion, using ∆c,t to denote a CT -

dimensional binary vector in which component in position (c, t) is 1 and the other components

are all 0.

18

Theorem 1 For any CT -dimensional nonnegative integer vectors Z and Ẑ,

f(Ẑ) +
∑

c,t∈T
(f(Ẑ + ∆c,t)− f(Ẑ))(Zc,t − Ẑc,t) ≤ f(Z). (43)

Proof. Let aω be a CT -dimensional vector defined by components ζc,t(ω)α and bω =

− ln q(ω). Then, aω ≥ 0 and bω ≥ 0. Hence, f(Z) =
∑

ω fω(Z), where fω(Z) = exp(−aωZ −
bω), and the result holds if fω(Ẑ) +

∑
c,t∈T (fω(Ẑ + 4c,t) − fω(Ẑ))(Zc,t − Ẑc,t) ≤ fω(Z) for

all ω. Consequently, we need to show that fω(Ẑ)[1 +
∑

c,t∈T (exp(−αω
c,t) − 1)(Zc,t − Ẑc,t) −

exp(−aω(Z − Ẑ))] ≤ 0 for an arbitrary target path ω ∈ Ω. Let β = exp(−α), and let N
denote the set of the cell-time pairs (c, t) ∈ C ×T such that ζc,t(ω) = 1 (i.e., such that cell c

is on path ω in time period t). Now, we only need to show that φ(β) = (1− β)k + βk ≥ 1,

where k =
∑

(c,t)∈N (Zc,t− Ẑc,t). We find that dφ(β)/dβ = 0 for β = 1. Hence, it follows from

convexity of φ(·) on (0,∞) that φ(·) has a minimum value of 1 for any k. This completes

the proof.

We observe that the assumption of constant detection rate α in SP1 is critical for the

validity of Theorem 1 as the following counterexample illustrates.

Consider a two-cell problem instance with C = 2, T = 2, and a single target path

w = (1, 2), i.e., the target occupies cells one and two in time periods one and two, respectively.

Suppose that Ẑ = (Ẑ11, Ẑ12, Ẑ21, Ẑ22) = (0, 0, 1, 1) and Z = (Z11, Z12, Z21, Z22) = (1, 1, 0, 0).

If the detection rate is the same in cells 1 and 2, then it is easily shown that equality holds

in (43). Hence, (43) is satisfied as expected. However, if the detection rate is 2 in cell one

and 1 in cell two, then the right-hand side of (43) equals exp(−2) ≈ 0.13 and the left-hand

side equals exp(−3)− exp(−2) + exp(−1) ≈ 0.28. Hence, (43) does not hold in this case.

We refer to the cut of Theorem 1 as a secant cut, and to Algorithm 1 with (42) replaced

by

f(Zj) +
∑

c,t∈T
(f(Zj + ∆c,t)− f(Zj))(Zc,t − Zj

c,t) ≤ ξ ∀ j = 1, 2, ..., i (44)

as Algorithm 2.

We have also examined the used of submodular cuts ([19], p. 710), but find them weak.

19

Indeed, they lead to a cutting-plane algorithm that is 10 to 100 times slower than Algorithm

2. (New results in [1] strengthen those cuts and may result in a faster algorithm. We do not

pursue that topic here, however.)

We consider a third variation of the cutting-plane algorithm where the continuous re-

laxation of Pi is solved for a set of initial iterations after which Pi is solved. This version

is motivated by the fact that a large number of cuts can be obtained quickly by solving the

continuous relaxation of Pi. (See [30] for a similar idea.) In this version of the cutting-plane

algorithm, called Algorithm 3, (44) is used when Zi+1 is integer valued and (42) is used

otherwise.

We implement Algorithms 1-3 as well as the models SPX, SP1, SP1-L, and SP1-

LM in the General Algebraic Modeling System (GAMS) Distribution 22.9 [10] on a laptop

computer with 1.0 GB of RAM and 2.16 GHz processor running Windows XP. The mixed-

integer linear programs Pi and SP1-L are solved (approximately) using CPLEX 11.2 [14]

with default options.

We find that solution times of Algorithms 1-3 are reduced significantly when we only

require a near-optimal solution of Pi rather than an optimal solution. Hence, we normally

run Algorithms 1 and 2 with δ1 = 0 and δi = min{0.03, gi/3} for i ≥ 2, where gi = (ξ− ξ)/ξ

is computed after Step 1 of iteration i. However, we use δi = min{0.03, gi/3, δi−1/2} if X i is a

repetition of a previous solution. For Algorithm 3, we set δi = 0 if the continuous relaxation

of Pi is solved and otherwise follow Algorithms 1 and 2. The continuous relaxation is solved

until either gi ≤ 10−3 is achieved or a user-defined maximum time is consumed. At that

point, Algorithm 3 starts solving Pi. We use 10 minutes as the maximum time, which works

well in our tests.

We compare Algorithms 1-3 to the mixed-integer nonlinear programming solvers Bonmin

[6] and DICOPT [11] as implemented in GAMS. DICOPT is essentially identical to Algorithm

1 with δi = 0 for all i and an initial solution of the continuous relaxation of SP1. DICOPT

uses CPLEX 11.2 to solve mixed-integer linear programs and MINOS 5.51 [18] for nonlinear

programs. We use default options in DICOPT with exception of “stop 1,” “maxcycles 1e4,”

20

and “epsmip 1e-5,” which prevent premature termination.

Bonmin is implemented with open-source solvers Ipopt and Cbc for nonlinear programs

and mixed-integer linear programs, respectively, see [5]. We allow multiple solve attempts for

Ipopt (option “num retry unsolved random point” is set to 100), but otherwise use default

options for Bonmin. We examine all available algorithms in Bonmin: BB, OA, QG, Hyb,

and ECP. Option BB is a branch-and-bound algorithm based on continuous relaxation of the

MINLP. Hence, at each node in the branch-and-bound tree a nonlinear program is solved.

(This approach was examined in [9] in the case of a single searcher.) Option OA and Ecp are

essentially identical to DICOPT when applied to SP1, but with other solvers for nonlinear

programs and mixed-integer linear programs. Option QG is an implementation of the branch-

and-cut algorithm in [21]. Option Hyb combines QG and OA. DICOPT, Algorithm 1, and

Bonmin, with OA, QG, Hyb, and ECP, use a tangent cut of the form (42), while Algorithm

2 uses the secant cut (44). The excessive memory requirement of specialized branch-and-

bound algorithms using bounds based on expected number of detections [7, 27] prohibits

their testing on problem instance of interest in this paper [27].

The calculation times reported below are the CPU times required by the solvers (“re-

source usage” in GAMS) for DICOPT, Bonmin, and CPLEX (for SP1-L). For Algorithms

1-3, calculation time is the total time required including cut-generation (Step 1), model

generation (Step 3), and mixed-integer linear program solver time (Step 3). Since GAMS

handles cut generation in Step 1 and repeated model generation (Step 3) rather inefficiently,

the fraction of the total calculation time used by CPLEX on Pi is typically in the range

0.65-0.95, with the lower-end values dominant for larger problem instances. Hence, the cal-

culation times reported for Algorithms 1-3 can be improved, possibly substantially, with a

more efficient implementation.

We test algorithms and models on problem instances that are essentially multi-searcher

generalizations of those used in [17, 28]. Specifically, we consider a square AOI with C = 25,

49, 81, 121, 169, or 225 cells. Cells are numbered from left to right and from top to bottom.

Hence, cell 1 is in the upper-left corner and cell C is in the lower-right corner of the AOI.

21

After each time period, a searcher remains in its current cell or moves to a cell directly above,

below, left, or right of the current cell, if such a cell exists; a target moves similarly. Hence,

the forward and reverse stars of most cells consist of five cells, except on the boundary of the

AOI. For all allowable cells dc,c′ = 1. The time horizon T = 7, 8, ..., 15. These time horizons

allow the searchers to have at least a moderate chance to detect the targets. Typically, the

optimal nondetection probabilities are in the range 0.4 to 0.8.

We adopt a conditional target model and randomly generate |Ω| possible target paths

using a Markov chain with a transition probability matrix defined as follows. The probability

of the target remaining in a cell from one time period to the next, denoted ρ, is 0.6, with

the probability of moving to any of the other allowable cells being equal. We use |Ω| = 1000

unless stated otherwise. The detection rate of all searchers is α = −3(ln 0.4)/J , where J is

the number of searchers in the problem instance. This choice of detection rate makes one

searcher in a one-searcher instance as capable as ten searchers occupying the same cell in a

ten-searcher instance. Moreover, if J = 3, then this detection rate gives a glimpse-detection

probability of 0.6. All searchers occupy cell 1 in time period 0 and, hence, can search cell

1, 2, and
√

C + 1 in time period 1. The target is initially located in the center of the AOI,

i.e., pc = 1 if c =
√

C(
√

C − 1)/2 + (
√

C − 1)/2 + 1 and pc = 0 otherwise. These problem

parameters are similar to the ones in [17, 28]. Testing not reported here shows that solution

times are comparable for values of ρ and glimpse detection probability in the range [0.1, 0.9].

We define the relative optimality gap to be (ξ− ξ)/ξ for Algorithms 1-3 and comparable

expressions for the other algorithms. Table 1 shows such gaps after 900 seconds of calculation

time for instances of SP1 and SP1-L as described above with J = 3, C = 81, and a varying

number of time periods. The time in seconds to reach optimality is reported in brackets

when zero gap is achieved within 900 seconds. When an algorithm fails to return a feasible

solution or a nonzero lower bound, we label it “failed.”

Bonmin with option BB fails in all tests because no feasible solution is found; see Col-

umn 3 of Table 1. These results indicate that simple branch-and-bound algorithms are not

particular efficient for SP1. In contrast, cutting-plane algorithms (i.e., all algorithms in

22

Algorithms
T DICOPT BB OA QG Hyb Ecp CPLEX Algo. 1 Algo. 2 Algo. 3
7 0.0034 failed 0.0315 0.0315 0 [49] 0.0315 0 [0] 0 [51] 0 [26] 0 [77]
8 0.0161 failed 0.0806 0.0806 0 [368] 0.0806 0 [1] 0 [253] 0 [86] 0 [216]
9 0.0247 failed 0.0219 0.0221 0.3002 0.3002 0 [1] 0.0147 0 [337] 0 [866]
10 0.0384 failed 0.4050 0.4050 0.4050 0.4050 0 [12] 0.0786 0.0246 0.0335
11 0.0592 failed 0.0525 0.6838 0.1315 0.0600 0 [35] 0.1664 0.0681 0.0628
12 0.0868 failed 0.8555 0.8555 0.8555 0.8555 0 [174] 0.2175 0.1159 0.0983
13 0.1052 failed 0.1521 1.3821 1.3821 1.3821 0.0094 0.2968 0.1497 0.1425
14 0.1465 failed 1.1606 1.1606 0.2022 1.1606 0.0411 0.4586 0.2085 0.2142
15 0.1630 failed 0.2933 0.9287 0.3463 0.9948 0.0650 0.5790 0.2711 0.2697

Table 1: Relative optimality gap (ξ − ξ)/ξ for different algorithms after 900 seconds of calculation
time on SP1 or SP1-L with three searchers, 81 cells, and a varying time horizon T . The time in
seconds to reach optimality is reported in brackets when zero gap is achieved within 900 seconds.
When an algorithm fails to return a feasible solution or a nonzero lower bound, we label it “failed.”

Table 1 with exception of CPLEX and “BB”) perform better. We observe that Bonmin,

with cutting-plane based options OA, QG, Hyb, and Ecp, occasionally terminates prior to

900 seconds due to inconsistent performance of the open-source solvers.

Algorithms
T DICOPT BB OA QG Hyb Ecp CPLEX Algo. 1 Algo. 2 Algo. 3
7 0.0007 failed 0.0347 0.0347 0.0347 0.0347 0 [4] 0 [120] 0 [143] 0 [137]
8 0.0008 failed 0.0654 0.0654 0 [782] 0 [200] 0 [7] 0.0003 0 [345] 0 [361]
9 0.0010 failed 0.0218 0.3002 0.0034 0.1811 0 [12] 0.0024 0.0020 0.0008
10 0.0037 failed 0.2243 0.2243 0.0379 0.1053 0 [20] 0.0043 0.0041 0.0040
11 0.0036 failed 0.1028 0.0858 0.8304 0.8304 0 [531] 0.0151 0.0124 0.0155
12 0.0049 failed 0.8026 0.8026 0.8026 0.8026 0.0007 0.0356 0.0321 0.0343
13 0.0101 failed 1.0302 1.0303 0.7304 0.7304 0.0008 0.0488 0.0425 0.0475
14 0.0327 failed 0.3311 0.9813 0.9813 0.9813 failed 0.0920 0.0719 0.0755
15 0.0193 failed 0.2846 1.1157 0.3039 1.0446 failed 0.1385 0.1178 0.1179

Table 2: Relative optimality gaps. Same problem instances and parameters as in Table 1 but with
15 searchers.

The solution of SP1-L by CPLEX is by far the most efficient approach; see Column 8

of Table 1. Table 1 also illustrates the benefit of the secant cut (44) in Algorithm 2 over the

tangent cut (42) in Algorithm 1. Typically, compared to Algorithm 1, Algorithm 2 reduces

the solution time, or the optimality gap remaining after a fixed amount of calculation time,

by a factor of two. Algorithm 3 appears to be comparable to Algorithm 2, but sometimes a

little faster on harder problem instances. We also note that DICOPT is substantially slower

than Algorithm 2 on smaller instances, but gains the advantage over Algorithm 2 as problem

23

size increases. The main reason for this effect is the increase in overhead associated with our

implementation of Algorithm 2 as problem size increases. In the largest example (see the last

row of Table 1), DICOPT carries out 101 major iterations in 900 seconds while Algorithm

2 manages only 43 iterations. However, the work per iteration should be less for Algorithm

2 (which obtains near-optimal solution of Pi) than for DICOPT (which obtains optimal

solutions of its master problems). These observations illustrates the substantial overhead

associated with our implementation of Algorithm 2 as well as the strength of the secant cut

in Algorithm 2 over the tangent cut used in DICOPT.

Algorithms
|Ω| DICOPT CPLEX Algo. 2

1000 0.0161 0 [1] 0 [86]
2000 0.0189 0 [10] 0 [270]
4000 0.0251 0 [48] 0 [888]
8000 0.0268 0 [177] 0.0080
16000 0.0246 0 [806] 0.0254
32000 0.0269 failed 0.0402

Table 3: Relative optimality gap for different algorithms after 900 seconds of calculation time on
SP1 (columns 2 and 4) or SP1-L (column 3) with three searchers, 81 cells, time horizon 8, and
varying number of possible target paths |Ω|. The time in seconds to reach optimality is reported
in brackets when zero gap is achieved within 900 seconds. When an algorithm fails to return a
feasible solution or a nonzero lower bound, we label it “failed.”

Table 2 reports relative optimality gaps for the same cases as in Table 1 but with J = 15.

The advantage of the secant cut (44) of Algorithm 2 as compared to the tangent cut (42)

of Algorithm 1 is still typically present. The effect, however, is much reduced as Zc,t may

now be moderately large integers and finite differences are close to the corresponding partial

derivatives. We find that the solution of SP1-L by CPLEX is faster than the alternatives

as long as SP1-L is not too large. SP1-L has (JT + 1)|Ω| linearization constraints, which,

after reductions, result in a reduced mixed-integer linear program with 145,039 rows, 3,777

columns, and 1,142,886 nonzero elements for T = 14. CPLEX fails to find a feasible solution

within the time limit of 900 seconds for this problem instance and the one with T = 15.

We examine further the effect of large instances of SP1-L in Table 3. That table reports

relative optimality gaps as the number of possible target paths |Ω| grows. We see again that

24

Algorithms
C DICOPT CPLEX Algo. 2 Algo. 3
25 0.2152 0.0327 0.2412 0.1595
49 0.0927 0 [210] 0.1215 0.1026
81 0.0396 0 [13] 0.0246 0.0372
121 0.0138 0 [3] 0 [451] 0.0001
169 0.0056 0 [1] 0 [167] 0 [336]
225 0 [6] 0 [0] 0 [106] 0 [157]

Table 4: Relative optimality gap for different algorithms after 900 seconds of calculation time on
SP1 or SP1-L with three searchers, varying number of cells, and time horizon 10. The time in
seconds to reach optimality is reported in brackets when zero gap is achieved within 900 seconds.

Algorithms
C DICOPT CPLEX Algo. 2 Algo. 3
25 0.5271 0.2069 2.8603 0.6393
49 0.2505 0.1015 0.3954 0.4191
81 0.1626 0.0650 0.2711 0.3067
121 0.1212 0.0191 0.1704 0.1820
169 0.0676 0 [104] 0.0984 0.1292
225 0.0207 0 [8] 0.0312 0.0456

Table 5: Relative optimality gap for problem instances as in Table 4, but with time horizon 15.

the solution of SP1-L by CPLEX is clearly the fastest approach as long as the number of

possible target paths is moderate. In the instances examined, 16000 target paths define the

break point. We also observe that Algorithm 2 significantly outperforms DICOPT unless

the number of possible target paths is large. In such cases, the overhead associated with our

implementation of Algorithm 2 becomes substantial. For |Ω| = 32000, DICOPT manages to

carry out 87 major iterations in 900 seconds and reaches an optimality gap of 0.0269, while

Algorithm 2 completes only 10 iterations but still reaches a gap of 0.0402. This indicates

again the strength of the secant cut used in Algorithm 2 as compared to the tangent cut

used in DICOPT.

Table 4 displays the optimality gaps for the same problem instances and parameters as

in Table 1, but for a varying number of cells. We again use |Ω| = 1000 possible target paths.

Interestingly, problem instances with more cells are easier to solve than those with fewer

cells. This effect results from the fact that a large number of cells makes the search more

difficult as each possible target path is searched only a relatively small number of times.

Hence, the nondetection probability tends to be large and the corresponding cuts (42) and

25

(44) have relatively large negative coefficients. This implies strong cuts in DICOPT and

Algorithms 1-3, as well as relatively few active constraints in (21). This effect was also

eluded to in [9] for the case of a single searcher. As a result, problem instances with 225 cells

solve in just few seconds for short and moderate time horizons. Table 4 shows that CPLEX

is less influenced by the effect than the algorithms based on cutting planes. Moreover, in

cases with weak cuts (see the smaller problem instances in Table 4) solving the continuous

relaxation of Pi, as done in Algorithm 3, appears beneficial. Table 5 show similar results to

those of Table 4, but with a longer time horizon.

Algorithms
J DICOPT CPLEX Algo. 2 Algo. 3
1 0.1367 0 [5] 0 [177] 0 [550]
2 0.1041 0 [13] 0.0288 0.0743
3 0.0384 0 [12] 0.0246 0.0335
4 0.0271 0 [19] 0.0253 0.0277
5 0.0160 0 [24] 0.0231 0.0203
6 0.0115 0 [34] 0.0157 0.0149
8 0.0079 0 [67] 0.0108 0.0105
10 0.0087 0 [63] 0.0086 0.0084
15 0.0037 0 [20] 0.0041 0.0040
20 0.0017 0 [32] 0.0031 0.0040
30 0.0016 0 [580] 0.0032 0.0042
50 0.0015 0.0000 0.0037 0.0039

Table 6: Relative optimality gap for different algorithms after 900 seconds of calculation time on
SP1 or SP1-L with varying number of searchers, 81 cells, and time horizon 10. The time in seconds
to reach optimality is reported in brackets when zero gap is achieved within 900 seconds.

We next examine the effect of increasing number of searchers. Tables 6 and 7 report

optimality gaps for 1-50 searchers for T = 10 and T = 15, respectively. Again, CPLEX

outperforms the other algorithms, except when J > 8 and T = 15. Moreover, optimality

gaps tend to decrease as the number of searchers increases. This results from the fact that

the continuous relaxations of Pi and SP1-L are stronger for more searchers because the

number of searchers in a cell may be a moderately larger integer in those cases. (Note that

with more searchers there is a tendency of multiple searchers occupying the same cell at the

same time.) From Tables 6 and 7 and the fact that there are fast specialized branch-and-

bound algorithms available for single searcher problems (see [28]), we conclude that problem

26

Algorithms
J DICOPT CPLEX Algo. 2 Algo. 3
1 0.7047 0 [304] 0.2283 0.3554
2 0.2801 0.0850 0.3935 0.4659
3 0.1630 0.0650 0.2711 0.2697
4 0.0908 0.0385 0.1741 0.1968
5 0.0712 0.0258 0.1396 0.1709
6 0.0663 0 0129 0.1240 0.1591
8 0.0403 0.0092 0.1112 0.1408
10 0.0499 failed 0.1015 0.1246
15 0.0193 failed 0.1178 0.1179
20 0.1693 failed 0.1257 0.1344
30 0.0093 failed 0.1259 0.1251
50 0.7720 failed 0.1383 0.1346

Table 7: Relative optimality gap as in Table 6 but with time horizon 15. When an algorithm fails
to return a feasible solution or a nonzero lower bound, we label it “failed.”

instances with 2-5 searchers tend to be the most difficult to solve.

While solving SP1-L using CPLEX may be the preferred solution approach in most

problem instances above, the approach fails in cases with a large number of possible target

paths (see Table 3). Hence, we next consider the situation with an extremely large number

of possible target paths, but add the assumption of a Markovian target model.

4.2 Solution of SP1 and SP1-LM for a Markovian Target Model

This section empirically compares the efficiency of solving SP1 for a Markovian target model

by means of Algorithm 2, with that of solving the equivalent linearized model SP1-LM by

means of CPLEX. We have examined several cutting-plane algorithms for solving SP1, but

here only report the results of Algorithm 2, as they are typically the best. We note, however,

that the optimality gaps obtained by Algorithm 2 are typically half of those of Algorithm 1

in the case of few searchers. Hence, the secant cut (44) remains superior to the tangent cut

(42).

A good cutting-plane algorithm requires efficient means for evaluating f(Z), ∇f(Z), as

well as the finite difference in (44) even for large |Ω|. Since the expressions (13) and (40) use

all possible target paths ω ∈ Ω, they are not useful in practice when |Ω| is large. Brown [4]

introduces alternative, but equivalent expressions for f(Z) and ∇f(Z) that utilize the fact

27

that the target movement follows a Markovian target model. We repeat those expressions

here with a slight generalization to the case of a time-dependent Markov transition matrix

and argue how they lead to a simple expression for the finite differences used in (44).

Given a search plan Z, let rc,t(Z) be the probability that the target occupies cell c in

time period t and that it is not detected in time periods 1, 2, ..., t − 1, and let sc,t(Z)

denote the probability that the target is not detected in time periods t + 1, t + 2, ..., T

given that it occupies cell c in time period t. Let rt(Z) = [r1,t(Z), r2,t(Z), . . . , rC,t(Z)], and

let st(Z) = [s1,t(Z), s2,t(Z), . . . , sC,t(Z)]. We define rc,1(Z) = pc and sc,T (Z) = 1 for any cell

c ∈ C. Thus, rt(Z) and st(Z) may be calculated recursively by

rt(Z) = [r1,t−1(Z) exp(−αZ1,t−1), . . . , rC,t−1(Z) exp(−αZC,t−1)]Γt−1, (45)

and

st(Z) = [s1,t+1(Z) exp(−αZ1,t+1), . . . , sC,t+1(Z) exp(−αZC,t+1)]Γ
′
t, (46)

where Γ′t denotes the transpose matrix of Γt. In this notation, for any t ∈ T , we find that

f(Z) =
∑

c∈C
rc,t(Z) exp(−αZc,t)sc,t(Z), (47)

and components of ∇f(Z) are

∂f(Z)

∂Zc,t

= −αrc,t(Z) exp(−αZc,t)sc,t(Z). (48)

The calculation of finite differences f(Z + ∆c,t)− f(Z) follows similarly:

f(Z + ∆c,t)− f(Z)

=
∑

c′∈C
rc′,t(Z)[exp(−αZc′,t − α∆c,t)− exp(−αZc′,t)]sc′,t(Z)

= rc,t(Z)[exp(−α(Zc,t + 1))− exp(−αZc,t)]sc,t(Z). (49)

Thus, f(Z), its gradient, and finite difference can be evaluated with moderate computational

effort. We utilize (47) and (49) in Algorithm 2 in the following computational tests on the

same problems instances as in Section 4.1 and with the same computational environment.

28

However, we now consider all possible target paths induced by the Markov chain defined in

Section 4.1.

We solve SP1-LM using CPLEX, with default options except for branching direction

(up first, i.e., brdir 1) and the use of disjunctive cuts (disjcuts 3), which was found to

generally perform slightly better then the default options. Columns 2 and 3 of Table 8 show

relative optimality gaps for CPLEX and Algorithm 2 after 900 seconds on problem instances

with three searchers. CPLEX performs significantly better when T ≤ 10. For larger T , the

big-M formulation of SP1-LM leads to weak relaxations and long run times. Columns 4

and 5 of Table 8 display analogous results for J = 15. These instances of SP1-LM become

large, and CPLEX competes poorly with Algorithm 2.

J = 3 Searchers J = 15 Searchers
T CPLEX Algo. 2 CPLEX Algo. 2
7 0 [0] 0 [7] 0.0000 0 [13]
8 0 [1] 0 [80] 0.2055 0.0002
9 0 [7] 0 [203] 9.4739 0.0021
10 0 [172] 0.0287 failed 0.0043
11 0.1650 0.0729 failed 0.0075
12 0.4964 0.1158 failed 0.0106
13 1.1479 0.1528 failed 0.0274
14 2.7033 0.1737 failed 0.0599
15 21.4129 0.2356 failed 0.0866

Table 8: Relative optimality gap for different algorithms after 900 seconds of calculation time on
SP1 or SP1-LM with three and 15 searchers, 81 cells, and a varying time horizon T . The time in
seconds to reach optimality is reported in brackets when zero gap is achieved within 900 seconds.
When an algorithm fails to return a feasible solution or a nonzero lower bound, we label it “failed.”

The effect of number of searchers, J , is further examined in Table 9. As when |Ω| is

moderate (see Tables 6 and 7), Algorithm 2 tends to obtain near-optimal solutions faster

as J grows. In contrast, SP1-LM becomes increasingly harder to solve as J increases and

the resulting model becomes larger. Hence, the two approaches are complimentary: four

searchers represents a “cross-over point” above which Algorithm 2 has a clear advantage and

below which the solution of SP1-LM prevails.

Table 10 examines the effect of number of cells, C. As in Tables 4 and 5, larger number

of cells improves the strength of the cuts in Algorithm 2 and reduces the optimality gaps. A

29

Algorithms
J CPLEX Algo. 2
1 0 [1] 0 [97]
2 0 [12] 0.0287
3 0 [172] 0.0287
4 0.1189 0.0320
5 0.3246 0.0227
10 failed 0.0074
15 failed 0.0043

Table 9: Relative optimality gap for different algorithms after 900 seconds of calculation time on
SP1 or SP1-L with varying number of searchers, 81 cells, and time horizon 10. The time in seconds
to reach optimality is reported in brackets when zero gap is achieved within 900 seconds. When an
algorithm fails to return a feasible solution or a nonzero lower bound, we label it “failed.”

comparable strengthening of the continuous relaxation of SP1-LM occurs as the number of

cells increases. This allows the solution of large problem instances with a Markovian target

model in seconds for small and moderate T .

Algorithms
C CPLEX Algo. 2
25 failed 0.2630
49 0.6450 0.1244
81 0 [172] 0.0287
121 0 [10] 0 [15]
169 0 [1] 0 [31]
225 0 [1] 0 [20]

Table 10: Relative optimality gap for different algorithms after 900 seconds of calculation time on
SP1 or SP1-LM with three searchers, varying cells, and time horizon 10. The time in seconds to
reach optimality is reported in brackets when zero gap is achieved within 900 seconds. When an
algorithm fails to return a feasible solution or a nonzero lower bound, we label it “failed.”

4.3 Solution of SPX

We now return to the general SPX with inhomogeneous searchers, deconfliction constraints,

and multiple targets. As discussed in Section 3.3, it is straightforward to construct linear

models of SPX. However, such models tend to be extremely large and we therefore focus

on a cutting-plane algorithm. We let “Algorithm 4” denote the extension of Algorithm 1 to

SPX. Algorithm 4 is essentially identical to Algorithm 1, except that the following problem

is solved during the i-th iteration instead of Pi:

PXi : min ξ (50)

30

Time period 0

Figure 1: Area of interest with diamonds indicating initial location for moving targets, asterisks
indicating difficult-to-search cells, and circles indicating initial locations of searchers. The number
of searchers is proportional to the radius of a circle.

s.t.fk(Y
j) +∇fk(Y

j)′(Y − Y j) ≤ ξ ∀ k, j = 1, 2, ..., i (51)

(6)− (12).

Moreover, since each target in SPX moves independently, fk(Yk) and ∇fk(Yk) are com-

putable by extensions of (47) and (48). We also extended Algorithm 2 to SPX using an

approach similar to the one described in Section 3.3. The resulting algorithm is faster than

Algorithm 4 only if few searchers are present and all detection rates can be expressed as

small integer multiples of a positive constant. Hence, below we focus on Algorithm 4.

We apply Algorithm 4 to problem instances with C = 81 similar to the instances ex-

amined in Sections 4.1-4.2; see Figure 1. Cells are numbered as before. We consider four

targets that follow Markovian target models. At time period one, one target occupies each

of the cells 5, 15, 20, and 66 (marked with diamonds in Figure 1). After each time period,

a target remains in its current cell or move to a cell directly above, below, left, or right of

the current cell if such a cell exists. The probabilities of a target remaining in a cell from

31

one time period to the next is 0.4, 0.3, 0.2, and 0.1, respectively, for the four targets; the

probability of moving to any of the other allowable cells is equal. Hence, the target that

initially occupies cell 5 moves slowly, the target that initially occupies cell 66 moves quickly,

and the other two targets move at intermediate speeds.

We consider two classes of airborne searchers and set the travel time dl,c,c′=max{1,
round(δc,c′/νl)}, where round(a) is the nearest integer to a, δc,c′ is the distance between c

and c′ measured in the Euclidean distance between the center of the cells, and νl is the speed

of searchers of class l; ν1 = 1, ν2 = 2 cells per time period. Moreover, we let the forward stars

Fl(c) = F1(c) ∪ F2
l (c), l = 1, 2, where F1(c) equals the set consisting of c and the four cells

sharing a side with c, if they exist, and F2
l (c) equals the set of all cells c′ with dl,c,c′ ∈ [3, 5],

if they exist. Hence, a searcher can after a time period either proceed and search “locally”

(i.e., select a cell in F1(c)) or transit for several time periods to a distant cell (i.e., select a

cell in F2
l (c)). The reverse stars Rl(c), l = 1, 2, are defined similarly.

Number of Glimpse-detection probability
searchers Searcher Class 1 Searcher Class 2

Scenario J1 J2 c = c′ c 6= c′ c = c′* c 6= c′* c = c′ c 6= c′ c = c′* c 6= c′*
1 2 1 0.50 0.29 0.29 0.16 0.29 0.16 0.16 0.09
2 4 2 0.50 0.29 0.29 0.16 0.29 0.16 0.16 0.09
3 20 10 0.07 0.03 0.03 0.02 0.03 0.02 0.02 0.01

Table 11: Scenarios defining problem instances of SPX. Columns marked with c = c′ (c 6= c′) give
glimpse-detection probability for a searcher that occupy (not occupy) the current cell previously.
An asterisk indicates a column with glimpse-detection probability for difficult-to-search cells; see
Figure 1.

We consider three scenarios with variable glimpse-detection probability and number of

searchers as summarized in Table 11. In scenario 1, two searchers of class 1 occupy cell 1

in time period 0 and one searcher of class 2 initially occupies cell 81. The glimpse-detection

probability of a searcher of the first class is 0.50 if the searcher occupied the current cell in

the last time period (c = c′), but the searcher’s detection rate is reduced with a factor 0.5 if

the searcher just moved into the cell (c 6= c′). In view of (3), this implies a glimpse-detection

probability of 0.29; see Table 11. This reduction accounts for the effect, which we have

observed in field experiments with actual UAVs [16, 24], that a searcher often wastes some

32

search time transiting from one cell to another even if the cells are adjacent. Using the model

flexibility of SPX, we incorporate this effect without resorting to a fine time discretization.

When a searcher occupies one of the cells marked with an asterisk in Figure 1, all de-

tection rates are reduced by a factor of 0.5. These cells represent areas with poor search

conditions and consequently low detection rates. This results in a glimpse-detection prob-

ability of 0.29 when c = c′ and 0.16 when c 6= c′. For the class-2 searcher, the detection

rate is reduced with a factor of 0.5 compared to class 1 in all situations, with resulting

glimpse-detection rates given in Table 11.

Scenario 2 is identical to scenario 1 except it has four class-1 searchers and two class-2

searchers. Scenario 3 is identical to scenario 1 except that there are 20 class-1 searchers and

10 class-2 searchers, and the detection rate is reduced with a factor of 0.1 in all situations.

The last row of Table 11 gives the resulting glimpse-detection probabilities. We note that

the collective search effort (i.e., total detection rate) of the searchers in scenario 3 is therefore

identical to that of those in scenario 1. Scenario 3, however, allows more flexibility as the

search effort can be spread more widely.

We consider both the situation with and without deconfliction constraints (9) and (10).

In these scenarios, deconfliction amounts to ensuring that at most one searcher occupies a

cell each time period and that a searcher is not allowed to move from a cell c to an adjacent

cell c′ ∈ F1(c) when another searcher makes the opposite move from c′ to c. We assume that

transit to a distance cell (i.e., a cell c′ ∈ F2
l (c)) takes place by flying at high altitude, while

search is carried out at low altitude. In SPX, we incorporate these constraints by setting

nc = 1 for all c and D(l, c, c′, t)={(l′, c′′, c′′′, t′) | l′ ∈ L, c′′ = c′, c′′′ = c, t′ = t} whenever

c′ ∈ F1(c), c′ 6= c and otherwise D(l, c, c′, t)=∅. Since searchers transiting between distance

cells can be separated easily by altitude, we allow the routes of such searchers to cross each

other as well as to cross over searchers occupying cells.

Table 12 shows lower and upper bounds on the optimal value of SPX as well as the

corresponding relative optimality gaps after 15 and 60 minutes of calculation time of Algo-

rithm 4 for these scenarios with T = 8, 10, and 12. Columns 4 and 5 present the results

33

No deconfliction Deconfliction
After After After After

Scenario T Measure 15 min 60 min 15 min 60 min
Lower bound 0.8514 0.8577 0.8519 0.8578

1 8 Upper bound 0.8741 0.8663 0.8726 0.8663
Relative gap 0.0267 0.0100 0.0244 0.0099
Lower bound 0.7191 0.7267 0.7214 0.7310

2 8 Upper bound 0.7521 0.7521 0.7736 0.7598
Relative gap 0.0458 0.0349 0.0724 0.0395
Lower bound 0.8367 0.8370 0.8875

3 8 Upper bound 0.8374 0.8370 0.8875
Relative gap 0.0008 0.0000 0 [390]
Lower bound 0.7773 0.7958 0.7809 0.8005

1 10 Upper bound 0.8330 0.8330 0.8423 0.8423
Relative gap 0.0716 0.0467 0.0786 0.0523
Lower bound 0.6263 0.6345 0.6279 0.6364

2 10 Upper bound 0.7097 0.7033 0.7107 0.7107
Relative gap 0.1333 0.1083 0.1319 0.1168
Lower bound 0.7877 0.7879 0.8400 0.8402

3 10 Upper bound 0.7894 0.7894 0.8408 0.8405
Relative gap 0.0022 0.0019 0.0010 0.0004
Lower bound 0.7258 0.7419 0.7273 0.7415

1 12 Upper bound 0.8181 0.8181 0.8149 0.8149
Relative gap 0.1271 0.1027 0.1205 0.0991
Lower bound 0.5433 0.5537 0.5427 0.5506

2 12 Upper bound 0.6750 0.6637 0.6544 0.6544
Relative gap 0.2425 0.1987 0.2057 0.1886
Lower bound 0.7446 0.7450 0.7970 0.7974

3 12 Upper bound 0.7479 0.7469 0.7994 0.7986
Relative gap 0.0044 0.0026 0.0031 0.0015

Table 12: Lower and upper bounds on the optimal value of SPX as well as relative optimality
gaps after 15 and 60 minutes of calculation times of Algorithm 4 for scenarios 1-3 with and without
deconfliction constraints. The time in seconds to reach optimality is reported in brackets when zero
gap is achieved within 60 minutes.

34

Time period 8

Figure 2: Optimal searcher location during time period 8 for scenario 3, T = 8, and no deconflic-
tion constraints. The radius of a circle is proportional to the number of searchers occupying the
corresponding cell during time period 8 (cells 4, 7, 12, 14, 16, 20, 24, 38, 55, 66, 67, and 75 contain
1, 2, 1, 3, 4, 1, 3, 1, 4, 7, 2, and 1 searchers, respectively). Diamonds indicate initial location for
moving targets and asterisks indicate difficult-to-search cells.

for the case with no deconfliction constraints, while columns 6 and 7 include deconfliction

constraints. As in the case of Algorithms 1-3, Algorithm 4 solves problem instances with

more searchers (as in scenario 3) quicker than those with fewer searchers (as in scenario 1).

We also find longer time horizons to be more difficult, again primarily due to the weaker

cuts in the case of smaller nondetection probabilities.

Deconfliction constraints restrict SPX and result in an increase in the optimal value.

In scenarios 1 and 2, the change is small due to the relatively low number of searchers.

Deconfliction constraints increase the optimal value with about 0.05 in scenario 3 where 30

searchers are present. Hence, deconfliction constraints effectively force the searchers to give

up 0.05 in probability of detection.

Figure 2 illustrates the optimal location of searchers in time period 8 for scenario 3,

T = 8, and no deconfliction constraints. The radius of a circle is proportional to the number

35

Time period 8

Figure 3: Optimal searcher location during time period 8 for scenario 3, T = 8, and deconfliction
constraints. A dot indicates one searcher.

of searchers located in the corresponding cell during time period 8 (cells 4, 7, 12, 14, 16, 20,

24, 38, 55, 66, 67, and 75 contain 1, 2, 1, 3, 4, 1, 3, 1, 4, 7, 2, and 1 searchers, respectively).

We observe that multiple searchers focus on a relatively small number of cells with high

probability of containing targets. This tendency is also present in earlier time periods. In

fact, the ten searchers initially occupying the bottom-right corner of the AOI (see Figure

1) ignore cells near their initial location, make a long-distance move to the nearest target

(cell 66), and, due to their high speed, arrive there for search in time period 3. Seven

of the ten searchers remain in cell 66 for the remaining time periods to avoid the lower

detection rate associated with moving to another cell. Three searchers fan out to adjacent

cells, but noticeably avoid the difficult-to-search cells marked with asterisks in Figure 2. The

20 searchers starting in the upper-left corner (see Figure 1) spread more widely, even tackle

difficult-to-search cells, but remain somewhat clustered.

Figure 3 shows the optimal location of searchers in time period 8 as in Figure 2, but in

the case with deconfliction constraints. Now, each cell allows at most one searcher and the

36

searchers are forced to spread out. As seen from row 10 in Table 12, spreading the effort is

less effective and the optimal value increases from 0.8370 to 0.8875.

No deconfliction Deconfliction
T UB Rel. gap UB Rel. gap
10 0.7894 0.0019 0.8405 0.0004
14 0.7093 0.0038 0.7600 0.0016
18 0.6433 0.0063 0.6906 0.0023
22 0.5869 0.0117 0.6292 0.0021
26 0.5393 0.0225 0.5755 0.0041
30 0.5126 0.0865 0.5266 0.0053
34 0.4755 0.1171 0.4833 0.0093
38 0.4473 0.1811 0.4452 0.0222
42 0.4102 0.2337 0.4114 0.0598

Table 13: Upper bounds (UB) on the optimal value of SPX as well as relative optimality gaps
after 60 minutes of calculation times of Algorithm 4 for scenario 3 with varying T , and with and
without deconfliction constraints.

Table 13 further examines the upper bounds (UB) on the optimal value of SPX and

corresponding relative optimality gaps in scenario 3 as T increases. As in Table 12, we find a

worsening in solution quality after 60 minutes of calculation time as T increases. However, the

increase is moderate and essentially insignificant for the case with deconfliction constraints.

We are able to obtain near-optimal solutions even for long time horizons. Interestingly,

deconfliction constraints reduce optimality gaps in these instances even though they increase

the model size.

5 Conclusions

This paper has presented models and algorithms for a discrete-time route-optimization prob-

lem, denoted SP, where multiple searchers and one or more probabilistically moving targets

operate on a finite set of cells. We have formulated a novel convex mixed-integer nonlinear

program (MINLP) for SP that considers searcher deconfliction, time of search, and target-

and location-dependent search effectiveness. MINLP allows modeling of real-world situations

not previously considered including those with many searchers.

We propose two solution approaches for the MINLP that result in the first practical,

exact algorithms for SP. One approach is based on the cutting-plane method and leads to

37

near-optimal solutions with 5% relative optimality gap in less than 15 minutes of calculation

time for problem instances with three searchers, 81 cells, and 10 time periods. We enhance

the approach by developing a specialized secant cut that reduces the solution time with a

factor of two in direct comparisons with a standard tangent cut on difficult instances of the

MINLP. In all problem instances examined, existing branch-and-bound algorithms either fail

to find a feasible solution within 15 minutes or require memory in excess of one gigabytes.

The other approach is based on two novel linearizations of the MINLP available in

important special cases involving a single target. In the case of a moderate number of

possible target paths, a linearization is easily solved by standard solvers when the number

of searchers is less than 10. This leads to reduction in solution times with one or two orders

of magnitude when compared to the cutting-plane approach and, for example, allows the

solution of a problem instance with three searchers, 81 cells, and 10 time periods in 12

seconds. In the case of a target moving according to a Markov chain, the solution times for

solving a linearization of MINLP is longer but an instance with three searchers, 81 cells, and

10 time periods is still solved to optimality in less than three minutes.

The cutting-plane approach, and to a less extent the linearization approach, scale well

as the number of searchers grows. Empirically, we observe that the cutting-plane approach

exhibits an approximately constant solution time to reach near-optimality as the number

of searchers grows. This enables the computation of near-optimal solutions of problem

instances with up to 50 searchers in less than 15 minutes. In a realistic scenario involving

30 searchers divided in two classes with different speed and sensor quality, four targets of

variable characteristics, deconfliction constraints, 81 inhomogeneous cells, and a long time

horizon of 38 periods, we obtain a 3% near-optimal solution in 30 minutes. Hence, we

overcome, in part, the difficulty of solving problem instances with many searchers.

Problem instances remain challenging when they have two or more classes of searchers,

each with only a few searchers, and when long time horizons lead to low nondetection prob-

abilities. A heuristic allocation of searchers to nonoverlapping subareas may be a practical

approach in the first situation and a rolling-time horizon and/or fix-and-relax optimization

38

may heuristically address the second situation. However, fast solution of these classes of

instances of SP remains a goal for future research.

Acknowledgement

The first author acknowledges financial support from the Office of Naval Research under

grant N0001409AF00002. The authors thank Distinguished Professor R. Kevin Wood, Naval

Postgraduate School, for valuable advice during the course of this study and Professor Moshe

Kress, Naval Postgraduate School, for commenting on a draft of the paper.

References

[1] S. Ahmed and A. Atamturk. Maximizing a class of submodular utility functions.

www.optimization-online.org, 2009. (Last accessed 10 July 2009).

[2] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuejols, I.E. Grossmann, C.D. Laird, J. Lee,

A. Lodi, F. Margot, N. Sawaya, and A. Wachter. An algorithmic framework for convex

mixed integer nonlinear programs. Discrete Optimization, 5:186–204, 2008.

[3] F. Bourgult, T. Furukawa, and H. F. Durrant-Whyte. Coordinated decentralized search

for a lost target in a bayesian world. In Proceedings of the 2003 IEEE/RSJ International

Conference on Intelligence and Systems, pages 48–53, Las Vegas, Nevada, 2003.

[4] S. S. Brown. Optimal search for a moving target in discrete time and space. Operations

Research, 28(6):1275–1289, 1980.

[5] COIN-OR. http://www.coin-or.org/ (last accessed 10 June 2009).

[6] COIN-OR. Bonmin web page. http://www.coin-or.org/Bonmin/ (last accessed 10 June

2009).

[7] R.F. Dell, J.N. Eagle, G.H.A. Martins, and A.G. Santos. Using multiple searchers in

constrained-path, moving-target search problems. Naval Research Logistics, 43:463–480,

1996.

39

[8] M. A. Duran and I. E. Grossmann. An outer-approximation algorithm for a class of

mixed-integer nonlinear programs. Mathematical Programming, 36:307–339, 1986.

[9] J.N. Eagle and J.R. Yee. An optimal branch and bound procedure for the constrained

path, moving target search problem. Operations Research, 38:110–114, 1990.

[10] GAMS. GAMS Distribution 22.9. GAMS Development Corporation, Washington, DC,

2008. http://www.gams.com (last accessed 22 December 2008).

[11] I. E. Grossmann, J. Viswanathan, A. Vecchietti, R. Raman, and E. Kalvelagen.

DICOPT user manual. GAMS Development Corporation, Washington, DC, 2008.

http://www.gams.com (last accessed 22 December 2008).

[12] D. A. Grundel. Constrained search for a moving target. In Proceedings of the 2005

International Symposium on Collaborative Technologies and Systems, pages 327–332,

St. Louis, Missouri, 2005.

[13] G. Hollinger and S. Singh. Proofs and experiments in scalable, near-optimal search by

multiple robots. In Proceedings of Robotics: Science and Systems Conference, Zurich,

Switzerland, 2008. Available at http://www.roboticsproceedings.org/ (last accessed 10

July 2009).

[14] ILOG. CPLEX 11.2 Documentation. ILOG, Inc., Mountain View, California, 2008.

http://www.cplex.com (last accessed 22 December 2008).

[15] J. E. Kelley. The cutting plane method for solving convex programs. Journal of the

Society for Industrial and Applied Mathematics, 8:703–712, 1960.

[16] M. Kress and J. O. Royset. Aerial search optimization model (ASOM) for UAVs in

special operations. Military Operations Research, 13(1):23–33, 2008.

[17] H. Lau, S. Huang, and G. Dissanayake. Discounted mean bound for the optimal searcher

path problem with non-uniform travel times. European Journal of Operational Research,

190(2):383–397, 2008.

40

[18] B. Murtagh and M. Saunders. MINOS 5.5 User’s guide. Technical Report SOL-86-20R,

System Optimization Laboratory, Stanford University, Stanford, California, 1998.

[19] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. Wiley,

New York, New York, 1988.

[20] U.S. Department of Defense. Fy2009-2034 unmanned systems integrated roadmap.

Available at: www.acq.osd.mil/uas/docs/UMSIntegratedRoadmap2009.pdf (last ac-

cessed 1 September 2009).

[21] I. Quesada and I.E. Grossmann. An LP/NLP based branch and bound algorithm for

convex MINLP optimization problems. Computers & Chemical Engineering, 18:563–

578, 1992.

[22] R. L. Rardin. Optimization in operations research. Prentice Hall, Upper Saddle River,

New Jersey, 1998.

[23] J. R. Riehl, G. E. Collins, and J. P. Hespanha. Cooperative graph-based model predictive

search. In Proceedings of 46th IEEE Conference on Decision and Control, pages 2998–

3004, New Orleans, Louisiana, 2007.

[24] J. O. Royset and D. N. Reber. Optimizing routing of unmanned aerial systems

for the interdiction of improvised explosive devices. In review, 2009. Available at

http://faculty.nps.edu/joroyset/roysetpa.htm (last accessed 23 July 2009).

[25] A. Ryan, M. Zennaro, A. Howell, R. Sengupta, and J. K. Hedrick. An overview of emerg-

ing results in cooperative UAV control. In Proceedings of the 43rd IEEE Conference on

Decision and Control, pages 602–607, Atlantis, Bahamas, 2004.

[26] M. G. Monticino S. J. Benkoski and J. R. Weisinger. A survey of the search theory

literature. Naval Research Logistics, 38:469–494, 1991.

[27] H. Sato. Path optimization for single and multiple searchers: models and algorithms.

Phd thesis, Naval Postgraduate School, Monterey, California, 2008.

41

[28] H. Sato and J.O. Royset. Path optimization for the resource-constrained searcher. In

review, 2009. Available at http://faculty.nps.edu/joroyset/roysetpa.htm (last accessed

23 July 2009).

[29] T. J. Stewart. Search for a moving target when searcher motion is restricted. Computers

& operations research, 6(3):129–140, 1979.

[30] C. Still and T. Westerlund. Solving convex MINLP optimization problems using a

sequential cutting plane algorithm. Computational Optimization and Applications,

34(1):63–83, 2006.

[31] L. D. Stone. Theory of Optimal Search. Informs, Hanover, Maryland, 2. edition, 2004.

[32] A. R. Washburn. Branch and bound methods for a search problem. Naval Research

Logistics, 45:243–257, 1998.

[33] A. R. Washburn. Search and Detection. INFORMS, Linthicum, Maryland, 4. edition,

2002.

[34] T. Westerlund and F. Pettersson. An extended cutting plane method for solving convex

MINLP problems. Computers & Chemical Engineering, 19:131–136, 1995.

[35] E. Wong, F. Bourgault, and T. Furukawa. Multi-vehicle Bayesian search for multiple

lost targets. In Proceedings of the 2005 IEEE Internationl Conference on Robotics and

Automation, pages 3169–3174, Barcelona, Spain, 2005.

[36] Y. Yang, A.A. Minai, and M. M. Polycarpou. Decentralized cooperative search by

networks uavs in an uncertain environment. In Proceedings of the 2004 American Control

Conference, pages 5558–5563, Boston, Massachusetts, 2004.

42

