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Ocean Data Assimilation Guidance Using 
Uncertainty Forecasts 

E. F. Coelho 
University of Southern Mississippi 

Stennis Space Center, MS 39529 USA 

C. Rowley and G. Jacobs 
Naval Research Laboratory 

Stennis Space Center, MS 39529 USA 

Abstract- This paper discusses preliminary tests on using predicted forecast errors to estimate the impact of observations in correcting 
the Naval Research Laboratory (NRL) tide resolving, high resolution regional version of the Navy Coastal Ocean Model (RNCOM) 
assimilating local observations processed through the NRL Coupled Ocean Data Assimilation (NCODA) system. Since there will always be a 
shortfall of data to constraint all sources of uncertainty there is an obvious advantage to optimally guide observations to reduce model errors 
that could be producing the most negative impacts. The importance of this topic has been further heightened in oceanic applications by the 
advent of Underwater Automated Vehicles (UAVs) that can bring persistent observations but need to be told where to go and when, 
following regular schedules. This works tests a technique named the Ensemble Transform Kalman Filter (ETKF) that can be used to 
automate such adaptive sampling guidance and has been successfully applied for atmospheric modeling optimization. The ETKF uses an 
ensemble of slate-fields from a certain initialization time and rapid low rank solutions of the Kalman filter equations to estimate integrated 
predicted error reduction for selected target ensemble variables, or combinations of variables, over areas and forecast ranges of interest. The 
error estimates are produced through independent RNCOM runs using perturbed forcing and initial conditions constrained at each analysis 
time by new estimates of the analysis errors as provided by NCODA, using a technique named Ensemble Transform (ET). The skills of these 
systems in tracking the RNCOM forecast errors and predicting the reduction in forecast error from a set o possible observations were tested 
using local profile measurements off the East Philippines. Results show areas of larger uncertainty close to the major spatial gradients as 
one could anticipate and a good accuracy of error estimates with an high spread-skill (i.e. ensemble estimates had the ability to correctly 
separate the small ensemble spread well correlated with the smaller observed errors from the larger ensemble spread well correlated with the 
larger observed errors). This consistency is a necessary condition to allow the ETKF to accurately predict the impact of the observations in 
reducing model errors. These ETKF skills were then tested by comparing the vertically averaged predicted temperature corrections based on 
the local measurements with the vertically averaged magnitude of the observed changes between two consecutive forecasts (before and after 
assimilating the data). Results showed the system had skills to accurately predict RNCOM errors and the impact of observation networks in 
reducing the error of model state-variables. 

I.    THE HIGH RESOLUTION NAVY COASTAL OCEAN MODEL 

The relocatable Navy Coastal Ocean Model (RNCOM) is based on a standardized development and an efficient configuration 
management to facilitate transitions of new tools and real-time configurations of regional high resolution (order 1 km) ocean 
predictions [1], The physics and numerical procedures of NCOM are based on the Princeton Ocean Model (POM) and a Sigma/Z- 
level Model (SZM). It solves a three-dimensional, primitive equation, baroclinic, hydrostatic and free surface system using a 
cartesian horizontal grid, a combination of a/z level (i.e. bottom-following/constant depth) vertical grid and implicit treatment of 
the free surface. Horizontal eddy coefficients are calculated based on maximum grid-cell Reynolds number criteria, and vertical 
eddy coefficients are calculated using the Mellor-Yamada Level 2 turbulence closure scheme. For meso-scale real-time 
applications, boundary conditions are taken from an operational run of the global NCOM (GNCOM). The global model 
assimilates satellite altimetry and sea-surface temperature (SST) data using a combination of model analysis and data. Since the 
global NCOM does not include tides, these are explicitly inserted in the RNCOM nests through the boundary conditions and local 
forcing terms. 

The data assimilation is performed using the Navy Coupled Ocean Data Assimilation (NCODA) system [2]. It is based on a 
three-dimensional multivariate optimum-interpolation (MVOI) data assimilation system, that will in the future apply variational 
methods (3DVAR and 4DVAR), cycling in real-time to provide new analysis and model updates of the ocean state variables 
(temperature, salinity, velocity and sea surface height). Additional capabilities built into the system, includ flow-dependent 
background-error correlations and background-error variances that vary in space and evolve from one analysis cycle to the next. It 
also includes a data quality-control system with multivariate analysis using feedback of forecast fields and prediction errors in the 
quality control of new observations. 

Typical runs of these systems use 72 or 96 hours forecast ranges, horizontal grids of 3km resolution and 50 vertical levels, of 
which the upper 30 are sigma layers. The topography is usually taken from the Naval Research Laboratory global 2 minute 
resolution ocean bathymetry data base (NRL DBDB2). Atmospheric forcing usually consists of hourly fields of sea level air 
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pressure, wind stress, solar and long wave radiation, and 2m air temperature and humidity from 15-km resolution Coupled Ocean- 
Atmosphere Modular Prediction System (COAMPS) analysis/forecast runs and interpolated to the ocean model grids. Operational 
runs start daily 24 hours prior to analysis time from a snapshot of the previous run. The first 24 hours are used for the model 
initialization by sequentially adding the increments computed by NCODA (slow insertion of model corrections), such that at the 
analysis time (hour 0) the model fields reproduce the best analysis estimates as delivered by NCODA. Model outputs are then 
post-processed to standard levels and made available through netCDF files. These files can include a full or partial range of 
variables from the native model output. 

The NCODA interpolation problem is formulated as: 

xa-xh=PhH
T(HPbH

r+R)-'fy-H(xh)J (i) 

where x, is the analysis vector, xb is the time dependent background vector, Pb is a time dependent background error 
covariance matrix, H is the observational functional operator, R is the observation error covariance matrix, and y is the 
observation vector at a specific update cycle. The forward model H converts forecast model variable to an observed variable and, 
as used here, is a spatial interpolation of the forecast model grid to the observation location performed in three dimensions. 
Therefore, HPbHT is the background-error covariance between observation locations, and PbH the error covariance between 
observation and grid locations. The quantity {y - H(xb)} is referred to as the innovation vector and x, - xb is the increment (or 
correction) vector. Observations are assimilated close to their measurement times within the update-cycle time window by 
comparison against time-dependent background fields using the first-guess at appropriate time (FGAT) method. The ocean 
variables are analyzed simultaneously in three dimensions such that the observation vector contains all of the synoptic 
temperature, salinity and velocity observations that are within the geographic and time domains of the forecast model grid and 
update cycle. The velocity increments are forced to be in geostrophic balance with the geopotential increments which, in turn, are 
in hydrostatic balance with the temperature and salinity increments. Prior to an analysis the innovation vector is normalized by 
the background error at the observation locations, and after an analysis the increment vector is scaled by the background error at 
the grid locations. 

Typical implementations of NCODA use more than 30 vertical levels, with the background error variances being computed 
from the increments using a recursive filter model with a time constant of 10 days and imposing geostrophic cross-correlations on 
the velocity errors computed from the mass variables. The first baroclinic Rossby radius of deformation is usually selected as the 
local spatial correlation length scale for horizontal interpolations between observations and observations and grid locations. The 
vertical correlation length scale are computed from local background density vertical gradients. The system uses a First Guess at 
Appropriate Time (FGAT) window of 24 hours, usually set as 12 hours around analysis time. When no data is available for long 
periods of time, error variances are relaxed towards climate variability. The NCODA system also includes a complete quality 
control system that assesses the error probability of each individual observation and the final profile. These profile data are then 
processed with the model runs to produce data match-up files that are used to run diagnostics of the model forecast errors and 
ensemble performances. 

For this experiment the RNCOM was run on the domain 15N 113E, 18.3N 121E (see Fig. 1), from 1 March to 4 April 2009. 
The boundary conditions were taken from the Global run of NCOM and atmospheric forcing from the regional 15km COAMPS 
[3] run by the Fleet Numerical Meteorological and Oceanographic 
Center (FNMOC). Tides were introduced at the boundaries and through 
local tidal potentials. The horizontal grid spacing was set at 3km and 
used 50 sigma/z levels in the vertical. Observations from global data 
bases were assimilated over the full period, including satellite altimetry 
and SST. From 17 March to the end of the simulation period there was 
also one glider in the area providing regular profiles and ship 
observations during the period 21-23 March. 

Local dynamics where characterized by the evolution of a cold core 
gyre in the middle-northern portion of the domain, typical in the region 
for this time of the year, intruding westward in depth towards the coast. 
Further south, the temperature fields where more homogeneous and 
stable throughout the simulations period. Overall in the area there was a 
sharp well defined upper layer, with a steep thermocline ranging 
between 50 to 100m depth. The tides in the area were small but still capable of some perturbations of the thermocline within the 
tidal cycles, suggesting a propagation of mild internal tide interfacial modes in the region. 

Model domain run March-April 2009 
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The system responded significantly to the assimilation of local observations as shown in Fig.2. The upper bar plot in this figure 
shows water temperature mean errors (bias) for 19-23 March averaged through out the domain in the upper 400m. The middle 
plot shows the value of the maximum temperature bias error observed in the upper 400m and the lower plot shows the average of 

the profile RMS errors. The larger errors were observed at the 
thermocline levels (50-100m depths) and became smaller after 
21 March after the assimilation of the ship observations. In these 
bar plots the green bars correspond to the comparisons between 
observations and 24-48 hour forecasts (prior to assimilating the 
test data) and use the same observations as the blue bars that 
compare the data with the consecutive run of the model using the 
0-24 hours forecasts after assimilating the independent test data. 
By comparing these two bars we can get a proxy of the impact of 
the observations that were assimilated between the two 
consecutive runs. 

If we define A = *, (BEFORE ASS.) - ei+, (AFTER ASS.), where e: 

corresponds to the forecast mismatch RMS before the 
assimilation of test data and ei+i to the forecast mismatch after 
the assimilation of the data (corresponding to the green and blue 
bars displayed in the lower plot of Fig.2), we can expect the 

daily mean A to be positive during the period shown in the picture 
(i.e. observations had a positive impact in reducing forecast 
errors). The overall mean A was positive (with a 0.04°C average) 
and had an RMS of 0.15°C. This shows the system had a small 

that should be reproduced by the ensemble based error models (e.g. 

HXH •JOi 

Fig. 2 - Comparisons of upper 400m mean 
temperature forecast errors before assimilating test 
data (48 hours forecasts - green bars ) with the 
errors after assimilating test data (24 hours forecasts 
- blue bars). 

but positive response to the assimilation of local observations 
[4], [5]), as it will be expanded in the next sections. 

II.   ERROR MODELING USING THE ENSEMBLE TRANSFORM 

The errors in the RNCOM variable forecasts are determined by multiple sources of uncertainty as detailed in [4]. They are 
associated with the model initialization and boundary conditions, numerical approximations, modeling strategies, impact of 
under-sampling in the assimilation process and unresolved scales. To address the initialization error this work uses the ensemble 
transform (ET) method to produce perturbations at each analysis time following the approach detailed in [5] and [6]. The ET uses 
the best available estimate of analysis error covariance to transform forecast perturbations into analysis perturbations by finding K 
distinct linear combinations of K forecast perturbations. For operational implementations, the NCODA analysis error variance is 
used to renormalize each new ET ensemble. The ET analysis perturbations are then added to the best available analysis (in this 
case produced by the RNCOM-NCODA) to create K initial states. These K initial states are then integrated forward in time using 
the non-linear model to create the next ensemble forecast that will be the starting point for the ET transformation that will 
generate the initial conditions for the subsequent ensemble forecast once the subsequent analysis is available. As such, the ET 
ensemble generation scheme is a cycling scheme with strong similarities to a breeding scheme. This technique does not account 
for additional error sources that could develop during the forecast period through the boundaries and/or through unrepresented 
numerical errors and approximations. 

The RNCOM ensembles also represent the errors due to uncertain atmospheric forcing by using an ensemble of atmospheric 
perturbations and allow each ocean run to have an independent atmospheric forcing, therefore augmenting the domain spanned by 
the the ensemble of initial states. This is done using atmospheric forcing perturbations as detailed in [7], based on spatially- 
varying time shifts of the atmospheric forecast, with a choice of parameters to provide a well developed spread of atmospheric 
perturbations. This method is mostly adequate when predicted atmospheric fields contain the forecast features of interest, but they 
are misplaced in space and time. 

The ensembles resulting from combining the ET and the perturbed atmospheric forcing are then used to predict how 
uncertainties of the ocean fields will evolve in space and time. Typical implementations of ensembles use 40 independent 
members perturbed from a control run that performs the full data assimilation cycle, where each one of the simulations uses 
independent atmospheric forcing and perturbed initial conditions as detailed above. 

For this experiment off the East Philippines, the system was implemented using 32 ensemble members centered around a 
control run assimilating the local data. The ensemble spread of these runs was reset at each running cycle using the NCODA 
analysis error variances. Fig. 3 shows an example of the temperature fields at 50m depth. The map on the left corresponds to the 
temperature estimates at 00:00 of 23 March and the map on the right shows the corresponding ensemble spread (i.e. the standard 
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deviation of the ensemble member temperatures around the ensemble mean). Note regions of larger predicted errors concur with 
the areas of larger gradients and time variability. The layer of 50m corresponds roughly to the upper level of the thermocline and 

was the most dynamic and uncertain through out the 
experiment. Since we have an ensemble population 
larger than 30, using the central limit theorem one can 
assume there will be a normally distributed envelope 
variable that can be estimated by the ensemble (i.e. the 
ensemble members are normally distributed). Based 
on the ensemble spread as shown in the figure for a 
normal distribution and using the number of samples 
equal to 32, we expect the ensemble mean 
temperatures errors to be smaller than 0.7°Cg up to 

Fig. 3 - RNCOM and Ensemble estimates of water temperature at 
50m depth for 00:00 March, 23 2009 

95% when the ensemble spread is 2°C and 0.3°C when 
the ensemble spread is 1°C. This analysis can provide 
an immediate application of the ensemble as a proxy 

error estimate. Fig. 4 shows how the predicted ensemble spread compared with the magnitudes of the 0-24 hour forecast 
mismatches (|ei|). The upper scatter plots show the temperature and salinity ensemble spread vs the observed |e;| for days 17 
March (before the ship data being assimilated) and for 23 March (during ship observations). The maps below each scatter 
diagram show the mean ensemble spread at the analysis time and the white crosses show the locations were data was available 
and used to compute the model mismatches e,. 

Temperature 0-24h Predictions for day 17      Salinity 0-241) Predictions for day 17 
,500   0.4 

Temperature 0-24h Predictions for day 23      Salinity 0-24h Predictions for day 23 
.500 
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Fig. 4 - The upper scatter plots show the TEMPERATURE and SALINITY ensemble spread vs the observed forecast 
errors (c) for days March 17 on the left (before the ship data being assimilated) and for March 23 on the right (last 
day of ship observations). The maps below each scatter diagram show the mean ensemble spread at the analysis time 
and the white crosses show the locations were data was available and used to compute the model mismatches. The 
color of each individual estimate displayed as the small dots corresponds to the depth of the observation, accordingly 
to the color code displayed in the bars on the right (in meters). 

Since ensemble variance is designed to be a predictor of the true variance it is not comparable to single measurements of 
squared model-data mismatches. To account for this the observed squared model mismatches were used to estimate observed 
error variances by ordering the data pairs from smallest ensemble variance to largest ensemble variance and then grouping the 
data pairs into 10 approximately equally populated bins. Within each bin, the bin averaged squared model-data mismatches were 
computed together with the bin-averaged ensemble variance. Since both of these quantities are sample variances, they are 
comparable. In order to keep the state-variable units this binning and averaging was done using the magnitudes of the forecast 
mismatches and the ensemble standard deviation rather than the variances. These quantities are displayed in Fig.4 as the large red 
dots in the scatter diagrams. For the ensemble to be accurate, these large red dots should be aligned along a positive slope and 
ideally along the main diagonal, highlighted as a black line on the plots. The skill is represented by the metric "SprSkil" 
corresponding to the bin correlation changing between 0 and 1. A value of SprSkil=l represents a perfect spread-skill relation and 
values above 0.5 can be considered good ensemble spread-skill (i.e. the ensembles have the ability to correctly separate the small 



ensemble spread values correlated with the smaller observed errors, from the larger ensemble spread values correlated with the 
larger observed forecast errors). Another relevant metric is the mean ratio between measured magnitudes of model-data 
mismatches and ensemble spread, (Err/Std in the plots), which represents the ensemble skill in terms of correctly predicting the 
magnitudes of the errors. Values higher than 1 indicate that the ensemble is under-dispersive (under-predicts the error magnitude 
and error bins are above the diagonal line) and values below 1 indicate that the ensemble is over-dispersive (over predicts forecast 
error magnitudes such that error bins are below the main diagonal). We can see that for temperature the ensemble was over- 
dispersive and under-dispersive for salinity. 

The assimilation of ship observations in days 21-22 March appears to have reduced the ensemble spread in temperature 
(smaller predicted errors) and the ratio Err/Std became closer to 1. For salinity the ensemble spread increased along the sharp 
fronts and became slightly more under-dispersive. The larger differences between the ensemble estimates and the observed 
model-data mismatches were seen between the 50m and 150m isobaths, near the mixed layer depth. 

III. TARGETING OBSERVATIONS TO REDUCE UNCERTAINTIES 

The problem of identifying the best location for deploying mobile observation platforms is often called the adaptive sampling 
or targeting observation problem. The importance of this topic has been heightened in oceanic applications by the advent of 
Autonomous Underwater Vehicles (AUVs). Planning the missions of these platforms includes updating reference way-points on 
regular schedules such that one must solve the adaptive sampling problem before some critical decision time. This work uses the 
Ensemble Transform Kalman Filter (ETKF) technique proposed by [8] and applied by [9] to adaptive sampling in atmospheric 
modeling applications. The ETKF uses the error estimates produced by the ensemble forecast as detailed in the previous section, 
and rapid low rank solutions of the Kalman filter equations to solve the targeting observation problem. The first step of the 
method is to identify the areas of interest inside the simulation domain here named as the target box and a forecast time called a 
verification or target time at which one wishes the adaptive supplemental observations taken at an earlier observation time to 
produce a maximum effect defined by a cost function. For the present example the cost functions to be minimized were the 
ensemble forecast variance (taken as a proxy of the forecast error magnitude) for ocean temperature profiles. 

This technique assumes the analysis error covariance at the observation time can be estimated by K = K { where A^(NxK) is 
the matrix with the ensemble N state-variables forecasts at the observation time and K is the number of ensemble members. 
However, these perturbations should be consistent with the best available guess of the error variance of an analysis made using all 
of the observations apart from the observations that will be targeted. To account for this constraint and as described in [9] a 
Transformation matrix Tr is applied so that, Xr=XfTr. The transformation matrix Tr is computed using the ET technique and a 
guess of the analysis error covariance associated with the routine observations based on the ensemble predicted errors at those 
locations. The transformed perturbations Xr are then used produce a new error covariance Pe

g. For this present study this 
transformation matrix was taken as an identity matrix, hence considering only the impact of observation platforms under the 
assumption that there were no routine data. The posterior analysis error covariance P elkf after assimilating the ith feasible 
deployment of adaptive observations y? will then be given by: 

PeHT 

pf      — pc 8      1 II   pe n\ 
P-*~P'"[H,PX-Rq]

H«P" (> 

where Hq describes the mapping from the model state vector to the observation vector normalized by the inverse square root of 
the observation error covariance R(.   " associated with the rth feasible deployment. 

X'X" 
Using this result, we can now estimate p" = ^_'l where X" is the ensemble state matrix after including the targeted 

observations. The columns of X" can be interpreted as transformed ensemble perturbations such that their covariance gives the 
analysis error covariance at the observation time assuming that the ith deployment of targeted observations had been assimilated 
i.e.: Xa = X'.T,.,.,.,-. where TETKF\s now determined by the eigenvectors and eigenvalues of the projections of the magnitude of 

i ETKF Wo 
the analysis perturbations, corresponding to the possible observations strategies, into H, . As shown in [8], this transform will 
not change along the forecast cycle; therefore the same transform matrix can be applied to the forecast perturbations to estimate 
the error covariance at the verification time P(

v. These results are hereafter used to infer the impact of observations taken at a 
given observations time on the error variance (computed as the standard deviation of X" ) of the selected variables at a later time 
and at specific target locations Hv,. Therefore, the RMS(HV, A' - Hv, A",-) should be a consistent estimator of the RMS(AobMrved). 

To find which of all feasible deployments of targeted observations has a larger impact in minimizing the selected cost function 
(e.g. the ensemble spread of selected variables), one can estimate the reduction in ensemble spread for each feasible grid point of 
the ensemble domain, taken as a single profile measurement, through a range of selected depths (for the present example 0 to 
1000m to simulate a glider profile observation) and display the resulting information in the so-named summary maps as shown 
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Fig. 5 - Summary Maps for T profile error 
reduction showing the relative impact of T-S 
independent observations during the window 
tau=0-24 in reducing the T errors at the sites 
highlighted as red dots, corresponding to where 
observations were made during tau=24-48. 
The white crosses show the places where 
observations were actually made and 
assimilated into the next run during the 
window tau=12-36 

here in Fig.5. Either by inspection or using automated tools to follow the areas of higher gains in both time and space (e.g. [9] and 
[10]), one can choose from the possible deployments those that will produce the most desired effect. To test these maps, target 
locations were selected along the subsequent day observation sites (red dots in the map) such that we can compare the changes in 

ensemble spread to the changes in model data mismatches. The 
summary map displayed in Figure 5 refers to the 23 March run, 
summarizing the suggested observation guidance from 00:00 24 March 
to 00:00 25 March, in reducing the mean temperature profile error over 
the target box at a forecast range of 48 hours after the analysis (i.e. 00:00 
25 March). As anticipated, the area of higher impact in reduction of 
temperature error overlaps with the larger ensemble spread and fronts as 
displayed in Fig.3, that were closer to the target points, suggesting that 
an accurate characterization of the frontal system would be the one to 
reduce most the errors at the testing locations. The white dots show 
where observations actually took place during the observations window 
00:00 24 March 24 to 00:00 25 March. 

To positively validate the summary maps we require that the absolute 
value of the ETKF estimates of the model corrections over the target 
locations, after assimilating the available observations, be consistent 
with the actual forecast error reduction. One way to demonstrate this 
property is to take the actual measured model innovations and use the 
ETKF to predict their impact at the target or verification time, and then 
use other independent data to verify that the model forecast error 
variances were reduced accordingly, as discussed below. For this 
property to happen it will be necessary that the absolute value of the 
differences between the control runs at the verification time, before and 
after assimilating the observations to be consistent (i.e. well correlated) 
with the ETKF estimates at the target time for model corrections, 

through the available observations, up to the dynamic evolution of the ocean-state due to any possible changes in the atmospheric 
forcing and boundary condition. If they are well correlated then one can expect the suggestions provided by the summary maps 
should be also accurate, since the ETKF is consistently predicting the changes in forecast error. For this purpose Fig. 6 shows the 
changes in the forecast fields before and after the assimilation of the data that compare well with the error corrections the ETKF 
predicted based solely on the positions where observations took place, for 23 March. The map on the left shows the difference 
between the 48hours forecast of the run from 23 March with the 00:00 snapshot of the run from 25 March. The main cause for 
differences between these two snapshot (allowing for possible updates in the atmospheric forcing and some small changes in the 
boundary conditions) was the assimilation of 
the data from the locations highlighted as the 
white dots. The vertically averaged predicted 
temperature corrections (the map on the right) 
show patterns comparable to the vertically 
averaged magnitude of the observed changes 
between the two consecutive forecasts 
(before and after assimilating the data). Areas 
where the ETKF analysis predicts larger 
corrections are concurrent with the dynamic 
features associated with the frontal systems 
one would expect to be dynamically 
correlated with the observation sites. On the 
other hand, the observed corrections were 
more localized, as one could expect from the 
MVOI based on pre-set correlation length 
scales. The small area with large observed corrections close to the north boundary and close to 16N 114E seems to have been 
missed by the ETKF, due either to data other than profile assimilation, or to a small ensemble spread prediction at the 
observations time. The good qualitative agreement between these two maps suggests the ETKF was correctly predicting the 
impact of the corrections computed by the NCODA system and inserted into the RNCOM runs. One should note that this 
agreement exists in spite of the fact that the ETKF was applied prior to the actual observation time, used a fraction of the 

OBSERVED FOHECASF DIFFERENCES (EMf) AF VAUDAFIOH TFME FOR DAV 23 TKF FWDICTED TEMF-EAATVAE CORRECTIONS ([»,) AT VAEI0AI1ON TIME FOR DAV 23 

Fig. 6 - Vertically averaged predicted temperature corrections map (on 
the right) and the equivalent vertically averaged magnitude of the 
observed changes between two consecutive forecasts, before and after 
assimilating the data (map on the left). 



ensemble spread as an estimate of the local observed innovation and ensemble-based covariances to estimate the overall 
corrections. The NCODA system uses a different method to compute the correction based on the measured differences between 
the observations and the control run at the observation location and the nearest time, and a multi-variate optimal interpolation 
method (e.g. [2]), with pre-defined correlation length scales (~50km in the present case). Between the two runs for 23 and 25 
March, different atmospheric perturbations and boundary conditions were another source contributing to the observed change in 
the control runs that were not considered by the ETKF. This limitation might be overcome in future systems using fully coupled 
model dynamics and coupled data assimilation, such that ocean observations would reduce the uncertainty of the surface forcing 
and, in principle, account for the uncertainty in surface forcing in a rigorous way. 

A more quantitative comparison between the ETKF predictions and observations of A can be found in Fig.7 as mentioned 
above. The mean magnitudes of the changes in model forecast mismatches are shown as the average values of the large red dot 
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Figure 7 - Scatter diagrams showing the observed model mismatch changes before and after assimilating data ("A") 
vs. the square root of the ETKF predicted changes in model error variance. Colors correspond to the depth in meter 
were comparisons were made according to the colorbar in the right. The diagram in the left shows the magnitude of 
"A" and the plot on the right show the signed "A" such that positive values correspond to decreasing model-data 
mismatches and negative values to increasing mismatches between two consecutive runs and relative to the same test 
observations. 

pixels of the left plot (note that the same binning is here required to compare ensemble variances with local observed model 
mismatches as explained above for Fig.4). This corresponds to a necessary condition for forecast error reduction and is the 
quantity that is directly estimated by the ETKF and used for adaptive sampling guidance. I.e. the ETKF will look for the 
observations that will produce larger changes in model error variance. The good overall correlation between this observed 
quantity and the ETKF predictions (see details below) measured by the parameter SprSkil = 0.98 and the good mean ratio 
between the observed vs predicted values (Err/Std = 0.58), shows the ETKF was accurately tracking these changes in model error 
variance. However, this is not a sufficient condition for model error reduction. Model error reduction will occur only when 
observations are taken at the right places and at the right times and is independent of the ETKF being able to correctly track 
model error variance. The actual forecast error reduction/increase can be estimated by the average of the pixels of the plot on the 
right (signed A), showing the mean change in model forecast error between consecutive forecasts such that if positive the errors 
were getting smaller and if negative the errors were getting larger. As the observations become more efficient in reducing the 
errors for the next run these two plots should converge. This feature can be well seen by using smaller sub-sets of observations, 
selected from the sites estimated to produce the larger impacts in error reduction. The plot in the right shows a poorer correlation 
(SprSkil = 0.61) and a mean ratio of Err/Std = 0.13, and suggests the observations during the period 17 March to 2 April were not 
enough to persistently produce an overall noticeable impact in reducing the model forecast errors as discussed in section I. The 
average value for the RMS(A) was 0.15°C and MEAN(A ) was +0.04°C. The corresponding mean square root of the model error 
variance change as predicted by the ETKF was 0.28Deg. This suggests the ETKF was over predicting the magnitude of the actual 
changes in error variance and that only roughly 30% of the actual changes in error variance were actually producing a forecast 
error reduction. 

In order to see how these changes occur and if the ETKF was accurately separating the larger error variance changes from the 
smaller error variance changes one can note that the large red dots from both plots diagrams were correlated with the predicted 
error variances. Ideally these large red dots should be aligned along the diagonal line, but if aligned along a positive slope line 



they will already show the ETKF was able to distinguish the large error changes from the smaller error changes and consequently 
was able to provide accurate adaptive sampling guidance. These slopes are estimated by the bin correlations and show the Spread- 
Skill relation (SprSkil in the plots). This parameter is positive for both plots showing that the ETKF had good skill in separating 
the errors and that there was on average a positive correlation between the error reductions at the observation sites with the error 
reduction at the validation sites, where the model mismatches were computed, confirming the guidance provided by the ETKF to 
be accurate. 

IV. FINAL REMARKS 

During the spring 2009 a high-resolution NCOM (RNCOM) system was used to produce mean and error fields of meso-scale 
ocean states, northeast of the Philippines. These fields were used to test novel techniques to guide observation assets in reducing 
predicted model errors. The dynamics of the area included a sharp frontal system in the north, intruding colder water southward 
and a mild stable regime in the southern portion of the simulation domain. Atmospheric forcing was stable throughout the test 
period and a mild tidal regime was observed and predicted in the area. After a spin-up period, the daily mean residual prediction 
errors in temperature profiles were typically below 0.75°C, with larger values in the upper and lower limits of the thermocline 
(-50-100m depth), where stratification was stronger. 

An ensemble of RNCOM runs was used to predict the dynamics of the forecast errors of the control simulations. These 
ensemble runs used perturbed initial conditions and perturbed atmospheric forcing as the main sources of uncertainty. At each 
analysis cycle, the initial condition perturbations were re-balanced using the ET technique that guarantees the ensemble error 
covariance at each analysis time to match closely the best estimate of the analyses error variance, as provided by the NCODA 
system after the objective analysis of the available observations. The forecast error predicted from the ensemble runs proved to be 
consistent with the observed forecast errors provided up to the data representation error, with a good spread-skill relation 
displaying a bin correlation always above 0.85. 

The error forecasts produced by the ensemble system were then used to produce maps summarizing the predicted impact of 
each grid point taken as a possible observation site in reducing the errors of temperature profiles over selected sites. The predicted 
relative impact of the available observations assimilated into the model runs agreed well with the observed dynamics in the area 
and on average with model-data mismatches changes. 

Overall, the work presented above showed that some level of predictability of stochastic environmental variables through 
numerical modeling can be achieved by Monte-Carlo methods, producing ensemble-based forecast error estimates along with the 
predicted state variables, using a limited number of ensemble runs. The focus of this effort was to use these estimates in target 
observation problem and to demonstrate the feasibility and anticipated accuracy of the ETKF system within the operational 
systems. It is anticipated that more validation tests will be required to complement this work using other independent data sets for 
validation, larger ensemble populations and different regions and dynamics. These extended analyses will allow further testing of 
the summary maps for operationally relevant variables and scenarios. 
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