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ONR Technical Report

Executive Summary

In this quarter our development work has been emphasized on expanding functionalities. In system development
aspect, details in 2x1 MISO and wideband coherent receiver are reported. In addition, some related theoretical work
done in this period is reported too. The technologies and experience gained from this project are benefiting and will
continue to drive our researches in UWB MIMO, waveform diversity, wideband RF frontend, and Windband digital
beamforming.
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Part I

System Development



Chapter 1

System Improvement Work

1.1 Experimental Results of 2-by-1 Ultra-Wideband MISO Radio Testbed

In the last quarter, A 2-by-1 MISO system has been built, the system was tested and experimental results are achieved.

Figure 1.1 shows the system architecture, where there are two transmit channels at transmitter side and only one
receive channel at reeeiver side. As the most powerful deviee for parallel signal proeessing, FPGA plays a eritieal
role in the system, all waveform algorithms will be implemented in FPGA. The two digital outputs with both I
and Q phase from the FPGA board will be sent to two identieal dual ehannel digital-to-analog eonverter (DAC)
boards, which are capable of 1Gsamplcs/sec and 14 bits of preeision. The reeeiver is energy detection based as a
low-eomplexity reeeption technique which eliminates the necd for channcl estimation and preeise synehronization.

The reeeiver eurrently being used is energy deteetion based. In this experiment, we only aim to observe thc peak
detected with the benefition MISO system versus SISO system, so the modulated data will not be transmittcd from
FPGA, just the time reversal waveforms be transmitted from the dual eore D/A eonverter, beeause each ecore need
to handle one channel, so the waveforms will be only I-phase based or Q-phase based, this will inevitably eause the
in-balance of wireless ehannel information.

1.1.1 Experiment Results

The main challenge is to make sure the synchronization of the two different hardware chains, which means the
waveform should be generated from the two transmitter antennas at the same time. In reality, this synchronization is
extrcmely hard to synehronize if the time reversal waveforms are got from time domain.

So the experiment is to verify the MISO UWB testbed through mcasuring the channel impulse response (CIR) in
frequency domain and using time reversal waveforms [I,2]. The system configuration is like Fig.1 deseribed in [1],
where a set of measurements has been eondueted in a lab/offiee area whieh is a typieal indoor environment with
chairs, desks, book shelves and equipments. Antennas used in the testbed are omni-direetional ones and the height
of both transmitter and receiver antennas are set to 1.5 meters. The distance between transmitter and receiver is 5
meters, and distanee between two transmitter antennas are 0.8 meters. A veetor network analyzer (VNA) sweeps
a frequeney with the range from 3.5GHz to 4.5GHz with I MHz resolution. Figure 1.2 shows c¢hannel 1’s transfer
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4 CHAPTER I. SYSTEM IMPROVEMENT WORK

function and the corresponding baseband CIR. Figure 1.3 shows channcl 2’s transfcr function and the corresponding
baseband CIR. Time reversal waveforms are exploited as the transmitted signals. The received waveforms after
the RF board are shown in Figure 1.4 captured by the Tektronix DPO72004 oscilloscope. It’s easily observed that
the pcak amplitude of the 2-by-1 MISO system is almost doubled than thc counter-part of the SISO systcm, which
means the energy gain is about 3dB. The excellent consistency between the analytical results and the cxperimcntal
result shows the testbed works properly.

1.2 Real Time Waveform Loading

Waveform loading from PC to FPGA has been developed and implemented, it enables the testbed to change transmit
waveforms at run-time.

This waveform loading functions comes from the requirement of wideband beam-forming design and implemcnta-
tion, where filtering is a key function in digital design and the filter coefficients need to be updated frequently, so the
real-time waveform loading from PC computer to digital unit FPGA becomes necessary.

The communicate between the FPGA chip and PC computer is by USB cable and UART protocol. The FPGA board
we are using in the testbed’s transmitter side is Xilinx Virtex-5 ML550 board, it bears a USB connector and a USB-
to-UART conversion chip on board, the architecture is shown as Figure 1.5,where the chip used is Cypress CP2102,
avery popular USB-to-UART chip. The CP2102 is a highly-integrated USB-to-UART Bridge Controller providing a
simple solution for updating RS-232 designs to USB using a minimum of components and PCB space. The CP2102
includes a USB 2.0 full-speed function controller, USB transceiver, oscillator, EEPROM, and asynchronous serial
data bus (UART) with full modem control signals.

The Universal Asynchronous Receiver Transmitter (UART) is thc most widely used serial data communication
circuit ever, it is a serial communication protocol, only 2 wires are need to to establish the communication link.
UARTs allow full duplex communication over serial communication links as RS232. The basic functions of a UART
are a microprocessor interface, double buffering of transmitter data, frame generation, parity generation, parallel to
scrial conversion, double buffering of receiver data, parity checking, serial to parallcl conversion. The frame format
of used by UARTS is a low start bit, 5-8 data bits, optional parity bit, and 1 or 2 stop bits. The framc format for data
transmitted/received by a UART is given in Figure 1.6. It consists of a high idle state of the line. A character is from
5-8 data bits. The start bit is Low and the single stop bit is High.

On the computer side, there is a client software used to generate the frame format and transmit the data via one of
the four Com port on the computer.First the driver for CP2102 need to be installed on computer, it makes a USB
port as a virtual COM port, so to the computer side,it communicates with FPGA via COM port, to FPGA board sidc,
it communicate with computer via USB port, then it convert the USB signal to UART signal. Then the FPGA will
receive UART signal from computer and decode it to the original waveform information by FPGA processing.

Our main work is FPGA coding for receiving the UART signal and process it. As the frame structure shows,a
character is from 5-8 bits, we are currently using 8 bits. The UART architecturc in our design is shown as Figure 1.7,
it consist three main functional blocks: Baud rate generator, receiver and transmittcr. the baud rate is sct to 57600.

The transmitted data bits from COM port of the computer are captured by Logical analyzer is as shows in Figure
1.8. FPGA results for decoding the UART data is shown in Figure 1.9.
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Figure 1.4: The received waveforms after the RF board using time reversal waveform. (a) Only antenna | is trans-
mitting. (b) Only antenna 2 is transmitting. (c) Antenna 1 and antenna 2 are both transmitting.
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Chapter 2

Wideband Multichannel Coherent Receiver
Design

2.1 Background

The multichannel reeeiver is a building eore for any MIMO system in cither communication or radar. Espeeially
from military perspeetive, there has been a eritical and constant need for enhanced multichannel reeeivers for array
and radar applications. More channels and bandwidth are requircd, while lcss power consumption, lower cost, and
smaller sizes are expeeted. There 1s also a trend that the reeeivers are more and more digital, thanks to the advanee in
semieconduetor technologies. Having seen so mueh progress in hardware, espeeially, dramatie increase of sampling
rate in digital proeessing, newer type of reeeivers taking advantages of all possible new coneepts and most advanced
ecomponents/devices are expeected. A variety of available technologics have to be considered and compromising has
to be made among a large number of faetors.

2.2 Overall Architecture

[lustrated in Fig.I is a high level reeeiver architecture containing three funectional bloeks: analog frontend (tuner),
digitizer and digital backend. In e¢hoosing the sampling rate and determining digital computational load, we will
attempt to be a little aggressive, expecting that digital processing power will increase while thc cost will drop
continuously. There are a number of options in seleeting a digital proeessing platform. We prefer to use an array of
high performanee FPGAs such as Xilinx Virtex-5 or Virtex-6 series. This type of digital signal proeessing platform
is particularly attracting for advanced digital reeeiver prototyping.

2.3 Analog Frontend (Tuner)

In general there are two popular options for radio frontend architeeture: heterodyne (or superheterodyne) and zero-
IF (or direet-eonversion, homodyne) arehiteetures. The heterodyne architeeture has better performance if eompared

9




10 CHAPTER 2. WIDEBAND MULTICHANNEL COHERENT RECEIVER DESIGN

with the other, and therefore it has been the most popular reeeiver arehiteeture sine it was invented by Edwin H.
Armstrong in 1918. On the other hand, although the concept of zero-IF reception was first proposed by FM.
Colebrook as early as in 1924 (6 years before the heterodyne reeeiver was invented), it was not until 1947 that
it was put into practice, the first applieation being measurements in telephony. Since 90’s, zero-IF arehiteeture
has been especially promoted in software defined radio (SDR) eommunity. Compared with the traditional reeeiver
architeeture, its main advantages are the following:

(1) The problcm of image rejection 1s overeome, so that the reeeiver presclection portion is simplified and frequeney
planning is unnecessary.

(3) The fact that most signal processing is done at low frequeneies implies using LPFs as channel-seleet filters.

(4) Amplification is mainly at the baseband stage, hence power is saved. In gcneral, a zero-IF reeeiver eontains less
hardware and has very high level of integration.

While being attractive, the zero-IF reeeiver arehiteeture has many drawbacks: DC offset, 1/Q imbalanee (or mis-
matching) with analog quadrature downconverter, even-order distortion, self-mixing, 1/f (or clicker) noise, and loeal
oseillator (LO) leakage. In order to eombine the advantages of both the heterodyne and zero-IF arehiteetures, a
low-IF reeeiver arehitecture was proposed in later 90’s. This architecture indced keeps a high level of integration
and eliminates most of the drawbaeks assoeiated with the zero-IF receivers, but it introduces image rejection require-
ment. When the RF frequencies are lower than 2 GHz (HF, VHF, UHF and L bands), the rather low IF frequency
image rejeetion is diffieult to implement and image rejeetion mixer techniqucs are required instead of an imagc re-
jeetion filter. In praetical image rejection mixers, the amplitude and phase mismatches between I and Q channels are
ultimate limitation of the image rejeetion ratio {3]. In addition, designing and implementing ultra wideband image
rcjection mixers is extremely difficult.

Although the low-IF strueture has many advantages, it may not be feasible For UWB applications, duc to thc limi-
tation of the digitizer’s sampling rate. The zero-IF strueture will be the first choice at present. In the future, low-IF

ean be eonsidered if the digitizer’s sampling rate signifieantly inereases or the signal bandwidth is much less than
500 MHz.

2.4 Automatic Gain Control (AGC)

We proposc to achieve the dynamie range through both RF and IF stages. Although the 52-dB dynamie range
can be provided solely by the IF stage, variable amplifieation at the both stages has a few advantages: the overall
dynamie range inereases, and RF signal reduetion ean ease EMC issue and prevent the system from self-oseillating.
There are not many off-the-shelf products of variable-gain amplifiers (VGAs) with GHz bandwidth. One RF VGA
option is to combine an X-band amplifier with a wideband digital attenuator. If seleeting Analog Deviees ADL5330
to build IF stage, the IF VGA itself ean provide a 60-dB dynamie range. This double loop AGC requires more
peripheral eontrol eireuits than single-loop AGC, but it is not neeessary to have dedieated eontrol eireuits for each

Multichannel Multichannel
RF input baseband output

:—|—I> . :J]> Digital :1]>
Tuner Digitizer backend

Figurc 2.1: High level multichannel reeeiver arehitecture.
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Figure 2.2: Proposed multichannel receiver architecture that can support both zero-IF and low-IF configurations.

channel. If all channels share a single double-loop AGC controller, the complexity contributed by the AGC part is
very limited. The ADL5330 needs an analog signal to control the gain, and the control circuit can be implemented
using a low-sampling D/A followed by a power booster and divider unit.

2.5 Digitizer Architecture

2.6 Sundance 4 channels digitizer system with FPGA processing

In last quarterly report, the digitizer selection has been briefly introduced. Finally, we chosc the product SMT702
from Sundance,Inc to build the UWB multi-channels system.

The SMT702 is a PXI Express Peripheral Module (3U), which integrates two 3 Gsps 8-bit ADCs, a clock circuitry,
2 banks of 1GByte DDR2 Memory each and a Xilinx Virtex5 LX110T-3 FPGA, undcr the 3U format. The good
ncws for this product is it can be standalone and with a number of general 1/0s. Figure 2.3 shows the picture and
diagram of SMT702.

Figure 2.4 shows the 4-channels system architecture consists of 5 SMT702 boards, each channel with both I phase
and Q phase channel, each channel capable of handling 3Gsps sampling. In this architecture, the Sundance SHB
cables will be used to connect all the boards.

The SMT702 is a PXI Express (opt. Hybrid) Peripheral Module (3U), which integrates two fast 8-bit ADCs, a clock
circuitry, 2 banks of DDR2 Memory and a Virtex5 Xilinx FPGA, undcr the 3U format.

The PXle specification integrates PCI Express signaling into the PXI standard for more backplane bandwidth. It
also enhances PXI timing and synchronization features by incorporating a 100MHz differential reference clock and
triggers. The SMT702 can also integrate the standard 32-bit PXI signaling as an option.
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100MHz PXle Raf

Figure 2.3: SMT702 board picture and functional diagram.




2.6. SUNDANCE 4 CHANNELS DIGITIZER SYSTEM WITH FPGA PROCESSING

Figure 2.4: Wideband beamforming architecture wiht S SMT702 high speed digitizers.
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Both ADC chips are identical and can produce 3 Giga-samples per second each, with an 8-bit resolution. The
manufacturer is National Semiconductor and the part number is ADC083000. Analog-to-Digital convcrters arc
clocked by circuitry based on a PLL coupled with a VCO in order to generate a low-jitter signal. The full bandwidth
1s 3GHz. Each ADC integrates settings such as offsct and scale factor, which makes thc pair of ADC suitable to be
combincd together in order to make a 6GSPS single Analog to Digital converter. This will bc subject to a spccific
application note.

An on-board PLL+VCO chip ensure a stable fixed sampling frequency (maximum rate), in order for thc board to
be used as a digitizer without the need of external clock signal. The PLL will be able to lock its internal VCO
either on the 100MHz PXI express reference, on the 10MHz PXI refercnce or on an external refercnce signal. The
sampling clock for the converters can be either coming from the PLL+VCO chip (fixed frequency of 1.5ghz) or
from an external source. The chip used is a National Semiconductor part: LMX2531LQ1500. The rcference clock
selected is also output on a connector in order to pass it to an other module.

The Virtex5 FPGA is responsible for controlling all interfaces, including PXI1 (32-bit) and PXle (up to 8 lancs not
all PXT Express controllcr support 8 lane), as well as routing samples. The FPGA fitted on thc SMT702 is part of
the Virtex-5 familly from Xilinx, XCSVLX110T-3 (fastest speed grade available).

Two DDR2 memory banks are accessible by the FPGA in order to store data on thc fly. An SHB conncctor is
available in order to transfer data/samples to an other Sundance module (SMt712 for instancc). All analog connectors
on the front panel are SMA.,

For software development, the SMT7026 is an efficient, rcady to usc, host side intcrfacc for the SMT702. It allows
us to control the SMT702 from the host as well as to exchange data bctween the host. It can configurc the FPGA
from the Host, transfer data from the SMT702 to the Host and cven provide a C++ typc interface to the FPGA
module. A screen shot of the SMT7026 is shown as Figurc 2.5.
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Figurc 2.5: A screen capture of SMT7026 for SMT702 digitizer when sampling.




Chapter 3

Theoretical Work

3.1 Wideband Waveform Optimization for Multiple Input Single Output Cogni-
tive Radio with Practical Consideration

3.1.1 Introduction

Wavcform design or optimization is a key research issue in the eurrent wireless ecommuniecation system, the radar
system and the sensing or image system. Waveform should be designed according to the different requirements and
objectives of system performanee. For example, the waveform should be designed to carry more information to the
receiver in terms of eapaeity. If the energy deteetor is employed at the receiver, the waveform should bc optimized
such that the energy of the signal in the integration window at the receiver should be maximized [4] [5] [6] [7].
For navigation and geoloeation, the ultra short waveform should be used to inerease the resolution. For multi-
target identifieation, the waveform should be designed so that the radar returns ean bring more information baek. In
elutter dominant environment, maximizing the target energy and minimizing the elutter energy should be considered.
In electronie warfare, anti-jamming is the important task for the outecome of the warfare. Though eurrently anti-
jamming is performed at the reeciver, if the transmitter knows some kind of information about the jamming at the
reeeiver, for example, the second order statisties about jamming, the transmitter can elaborately dcsign the waveform
and help reeeiver to eancel the jamming signal or save the energy.

In the context of cognitive radio, waveform design or optimization gives us more flexibilities to design radio, whieh
ean eoexist with other eognitive radios and primary radios. From eognitive radio’s point of view, speetral mask
constraint at the transmitter and the interference caneellation at the reeeiver should be seriously considered for
waveform design or optimization, in addition to the traditional communication objeetives and eonstraints. Speetral
mask constraint is imposed on the transmitted waveform such that eognitive radio has no interfercnce to primary
radio. At the same time the arbitrary noteh filter is implemented at the reeeiver to eaneel the interferenee from
primary radio to eognitive radio.

Multiple Input Single Output (MISO) system considered in this seetion is one kind of multi-antenna system in whieh
there are multiple antennas at the transmitter and one antenna at the reeeiver. MISO system can explore the spatial
diversity and exeeute the beamforming to focus energy on the dcsired direction or point and avoid interferenee to
other radio systems. It is well known that waveform and spatially diverse eapabilities are made possible today due
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Figure 3.1: System architecture.
to the advent of lightweight digital programming wavcform generator [8] or arbitrary waveform generator.

This section deals with wideband waveform optimization for MISO cognitive radio. Cauchy—Schwarz inequality-
based iterative method and Semidefinite Programming (SDP)-based iterativc method are exploited to take care of
wideband waveform design. Both of them can give the optimal solutions [7]. Different designed waveforms arc to
be applied to different antennas. But these waveforms are optimized jointly in order to match the diffcrent spatial
channels based on the objective of the system performance. SDP-based signal processing is becoming morc and
morc popular rccently. It can be applied to control theory, statistics, circuit dcsign, graph thcory and so on. The
reasons for this is (1) more and more practical problems can be formulated as SDP; (2) most interior-point methods
for linear programming have been generalized to SDP [9]; (3) nowadays thc computational capability is increased
greatly and SDP can be solved in real-time. Meanwhile, reduction in transmitted peak power and quantization is
still very desirable, being concerned about the implementation complexity and power consumption. Thus, Peak-to-
Average Power Ratio (PAPR) and binary waveform design are taken into account as the practical considerations in
the context of MISO cognitive radio.

3.1.2 Wideband Waveform Optimization Using Cauchy —Schwarz Inequality-based Iterative Method

The system architecture considered in this section 1s shown in Figure 3.1. Wc limit our discussion to a single pair
of cognitive radios scenario. There are N antennas at the transmitter and one antenna at the receiver. On-off keying
(OOK) modulation is used for transmission. Thus the transmitted signal at the transmitter antenna 7 is,

sn(t)= Y dipa(t—iTy) (3.1

j=—00

whcre T}, is the bit duration, p,(t) is the transmitted bit waveform defined over [0, T},| at the transmitter antenna n
and d; € {0,1} is j-th transmitted bit. Without loss of generality, the minimal propagation delay is assumed to be
zero. The energy of transmittcd waveforms is E,,

N T
> / P2 (t)df = E, (3.2)
n=1 0
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The received noise-polluted signal at the output of low noisc amplifier (LNA) is,

N
r(t) = hp (1) ® sn (8) + 1 (t)
n=1
o0 N
= Z deIn (t~JTp) +n(t) (3.3)

j=-o0 n=1

where h,, (t),t € [0,T}] is the multipath impulse responsc that takes into account the effcct of channel impulsc
response, the RF front-ends in the transceivers such as power amplifier, LNA and arbitrary notch filter as well as
antennas between the transmitter antenna n and the receiver antenna. h,(t) is available at the transmitter [10] [11].

fOT" h2 (t)dt = E,;. “®” denotes convolution operation. n(t) is AWGN. x,(t) is the rcceived noiseless bit-1"
waveform defined as

Tn(t) = ha(t) ® pa(t) (3.4)

def . .
Wec further assume that T, > T, + T, = T,,1.e. no existencc of ISI.

If the waveforms at different transmitter antennas are assumcd to be synehronized, the k-th decision statistic is,

>0 N
r(kThy+to) = Y d; Y zn (kTy+to — jT) +n(t)
j=—cx n=1
N
di Y xn (to) + 1 (2) (3.5)
n=1
N
In order to maximize the system performance, > x, (to) should bc maximized. Thus the optimization problem can

n=1
be formulated as follows to get the optimal waveforms p,, (),
"
maximize Y. z, (to)
n=1
subject to

N

N

Zl fo' i (t)dt < E,
=

0<to<Tp

(3.6)

An iterative method is proposcd here to give the optimal solution to thc optimization problem (3.6). This method is
a computationally efficient algorithm. For simplicity in the following presentation, ¢ is assumed to bc zcro, which
will not degrade the optimum of the solution if such solution cxists.

N
() = Do, 5 () (3.7)
n=1
From inverse Fourier transform,
-Tnf(f) =hnf (f)pnf(f) (3.8)
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and
N

2r(f) = hng (f) Pag (f) (3.9)

n=1

where .7 (f), hnys (f) and py,¢ (f) are the frequency domain represcntations of r,,(t), hn(t) and p,,(t) respectively.
x4(f) is frequency domain representation of x(t). Thus,

a(0)="Y"=.(0) (3.10)

n=1

and, N
rn(O)=/_ Tnyg () df (3.11)

If there is no spectral mask constraint, then according to thc Cauchy —Schwarz inequality,

N
20 = 3 [ g (Dpas (s
n=1Y"%

N o0 o
lhng (D1Pdf [ |pug (F)* df
S sk [ i

Z/ [P g (NI df\Z/ \Pnf (f)l df

IA

IA

/

= EPZEnh (3.12)
\ n=1

when p,s (f) = ahpy (f) forall f and n, two cqualities are obtained.

Ep

o =
JZI Ihnf f) df

(3.13)

In this case, p, (t) = ah, (—t), which means the optimal waveform p,(¢) is the corresponding time reversed
multipath impulse response h,, ().

If there is spectral mask constraint, then the following optimization problem will become morc complicated,

maximize r (0)
subjecf to

n=1

|Pnf(f). Scnf(f)

where ¢, ¢( f) represcnts the arbitrary spectral mask constraint at the transmittcr antenna n.

Because p,,s(f) is the complex value, the phase and the modulus of p,, ¢( f) should be determined.
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Meanwhile, N
I(()):/ x5 (f)df (3.15) 1

and,

N ) ) )
s (f) = Z lhng ()] |Png () (I2r(arg(hng () +arg(pns(£))) (3.16)

n=1

where the angular component of the complex value is arg ().

For the real value signal z(t),

zs(f) =27 (= f) (3.17)
where “x” denotes conjugate operation. Thus,
v
i (~f) = Z b (F)] 1Png (F)] e—I2r(arg(hns(f))+arg(pns(f))) (3.18)
n=1
and x4 (f) + x¢(—f) is equal to
N \
> Ihag ()l s (f)] cos(2m (arg (hns (£)) + arg (pug () (3.19)
n=1

If hng(f) and |pnys (f)| are given for all f and n, maximization of z(0) is equivalent to,

arg (hns (f)) + arg (pny (f)) =0 (3.20)

which means the angular component of p,¢( f) 1s the negative angular ecomponent of h,¢( f).

The optimization problem (3.14) can be simplified as,

N
maximize Y [*° |hns (f)] |pns () df
n=1

subject to

N (3.21)
> [ZIpns (DI df < By
n=
[Prs (NP < enp () |
Because,
lhng (H)] = hng (=) (3.22)
Prg ()l = Ipng (= £ (3.23)
|eng (N = |eng (=) (3.24)
for all f and n. Thus uniformly discrete frequeney points fo, ..., fas are considered in the optimization problem
(3.21). Meanwhile, fy corresponds to the DC component and fi, ..., fas correspond to the positive frequeney
components.
Define column vectors hy, hyy, ..., hyy,
hy = [h{; hj; - hy,)’ (3.25)
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_ lhng (fim1)] i =1 .
(h"f)i‘{ V2|hng (fict)] i =20 M 41 (3.26)

where “T” denotes transpose operation.

Define column vectors py, Py, - - » PNJ,
ps=[pl pl; - phT (3.27)
lpnf (fi-)l,i=1
o - ! 3.28
(Pny); { V2|pns (fic1)l,i=2,..., M +1 (3.25)

Define column vectors ¢y, ¢y, .. ., Cnf,

cy=lciyely - cffl” (3.29)
= Vl("7lf(fi—1)|~i=1
(ns); = { 2ens Fim) i =2,... . M +1 (3.30)

Thus, the discrete version of the optimization problem (3.21) is shown below,

maximize h?p J
subject to

Ipsll; < Ep
0<ps<ecy

(3.31)

An iterative method (Algorithm I) is shown as follows to give the optimal solution P to the optimization problem
(3.31), which was proposed in [7] and isextended to waveform design in the context of MISO cognitive radio:

1. Initialization: P = E,, and p} is set to be all-0 column vector.
2. Solve the following optimization problem to get thc optimal q; using Cauchy —Schwarz incquality.

maximize h’fq 1
subject to (3.32)
lasls < P

3. Find 4, such that (q}) _is the maximal value in the set {(q}) ' ‘(q}) > (cf)j } If {i} = 0, then the method
i J J
is terminated and p} := p} + qj. Otherwise go to stcp 4.

4. Set (p})i = (cy);-

5. P:=P-— (cf)? and set (hy), to zero. If ||hf||§ is equal to zero, then the method is terminated. Otherwise go to
step 2.

When p} 1s obtained for the optimization problem (3.31), from Eq. (3.20), Eq. (3.27) and Eq. (3.28), the optimal
Pnys(f) and the corresponding p,(t) can be smoothly achieved.
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3.1.3 Wideband Waveform Optimization Using SDP-based Iterative method

The pn(t) and the h,(t) are uniformly sampled at Nyquist rate. Assume the sampling period is T,. T,,/T, = N,
and N, is assumed to be even, T},/T; = Nj. p,(t) and hy(t) are represented by pp;, @ = 0,1,..., Ny and hpi, 1 =

0,1,...,] N}, respectively.
Define,
Pn = [pnO Pn1 - pn'\ip]r (3.33)
and
hn = [han, Angv,-1) -+ hno)” (3.34)
N N
If N, = Nj, then Y x5, (to) can be equivalentto Y hlp,. Define,
n=1 n=1
p=[p{ p; - PAIT (3.35)
and
h= [l h] ... n}|7 (3.36)
Thus,
\ .
> hlp,=h'p (3.37)
n=1

Maximization of h”p is the same as maximization of (th) as long as h' p is equal to or greater than zero.

(0'p)* = (h'p)" (n'p)
- p'hh'p
= trace (hh” pp”)
trace (HP) (3.38)
where H = hh” and P = pp”. P should be rank-1 positive semidefinite matrix. However, rank constraint is non-

convex eonstraint, which will be omitted in the following optimization problems. Thus the optimization objeetive in
the optimization problem (3.14) ean be reformulated as,

maximize trace (HP) (3.39)
Meanwhile,
Ipl; = p'p
= trace (pp’)
= trace (P) (3.40)

Thus the energy constraint in the optimization problem (3.14) can be reformulated as,

trace (P) < E, (3.41)
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For cognitive radio, there is a spectral mask constraint for the transmitted waveform. Based on the previous discus-
sion, py, is assumed to be the transmitted waveform, and F is the discrete-time Fourier transform operator, thus the
frequency domain representation of p,, is,

P/n = Fp, (3.42)
where py, is a complex value vector. If the i-th row of F is f;, then each complex value in py,, can be represented
by,

. Ny |
(pfn)z‘,l = fipn.i = 1.2.,....—5— +1 (3.43)
Define, .
Fi=flﬂfi.i=1.2.....%+1 (3.44)

T
Given the spectral mask constraint in terms of power spectral density ¢,, = [(',.1 Cng - € l'li-u] , SO

2 2
|(pfn)1‘,1 |fz‘pn!
- prl;f‘}Hf‘Lpn
- PZFiPn
. 1\'1)
< cm,z=1.2,...,—é— +1 (3.45)
where || is the modulus of the complex value.
Dcfinc selection matrix S,, € RVp+DX(Np+1)N
1L j=i+(Np+1)(n—1)
(Sn)i,j - { 0. else (3.46)
So,
Pn = Snp (3.47)
and
3 T
’(pfn)iyl = p,Fipn
= p'S{F:Sup
= trace (STF;S,pp”)
= trace (SZFiSnP) (3.48)

The optimization problem (3.14) can be reformulated as SDP based on (3.39), (3.41), (3.45) and (3.48),

maximize trace (HP)
subject to
trace (P) < E,

49
trace (SIF;S,P) < cp; 82
= 1,2,...,'—\"5il
n=12,...N
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If the optimal solution P* to the optimization problem (3.49) is the rank-1 matrix, then thc optimal waveforms can
be obtained from the dominant eigen-vector of P*. Otherwise, £, in the optimization problcm (3.49) should bc
decreased to get thc rank-1 optimal solution P* to satisfy all the other constraints.

An SDP-based iterative method (Algorithm II) is proposed to get the rank-1 optimal solution P*:

1. Initialization of E,,.

2. Solve the optimization problem (3.49) and get thc optimal solution P*.

3. If the ratio of dominant eigen-value of P* to trace (P*) is less than 0.99, then sct E, to be trace (P*) and go to
step 2. Otherwise, the method is terminated.

The optimal waveforms can be obtained from the dominant eigen-vcctor of P*, the dominant eigen-value of P* and
Eq. (3.35).

3.1.4 Waveform Design with Practical Considerations
Peak-to-Average Power Ratio

PAPR is one of major conccrns in waveform design. Bccausc of nonlinearity caused by nonlinear devices such as
Digital-to-Analog Converter (DAC) and Power Amplifier (PA), maximal transmitted power has to be backed up,
resulting in inefficient utilization. PAPR in OFDM has been well studied. In this scction, PAPR is handled undcr a
unified optimization framework. It is defined as,

PAPR = % (3.50)
IPnl3 /(N +1)

wherc

IPnlloe = max (|pnol s [Pral .-+, [Pan,|) (3.51)

If the denominator of Eq. (3.50) is omitted, reducing PAPR is equivalent to setting thc uppcr bound for | p,.|| ..
The bound constraint ||p,|/,, < by, can also be written as,

~bp < pri < bp,i=0,1,....N, (3.52)
which can be further simplified as,
pE < (ba)?,i=0,1,...,N, (3.53)

Define selection vector s,,; € RM*(NVpt 1)V,

(sm)ljz{ (1) i=it N+ 1)(n-1) .

else

So,

Pni = Sn:P (3.55)
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and

Phi = Pa

(Sm'P)Z

(niP)" (sn:P)

P’ SLiSnp

= trace (szl‘lsnippT)

= trace (sI;s,;P) (3.56)

The optimization problem (3.14) or the optimization problem (3.49) together with PAPR consideration ean be pre-
sented as SDP,

maximize trace (HP)

subject to

trace (P) < E,

trace (SZF,;SnP) < Cns (3.57)
trace (sT:s,,;P) < by,

i=1.2,... et

n=12,...N

Similarly, if the optimal solution P* to the optimization problem (3.57) is the rank-1 matrix, then the optimal
waveforms can be obtained from the dominant cigen-vector of P*. Otherwise, E, in the optimization problem
(3.57) should be decreased to get the rank-1 optimal solution P* to satisfy all the other constraints.

An SDP-based iterative method (Algorithm III) is proposed to get the rank-1 optimal solution P*:
1. Initialization of E,,.
2. Solve the optimization problem (3.57) and get the optimal solution P*.

3. If the ratio of dominant eigen-value of P* to trace (P*) is less than 0.99, then set E), to be trace (P*) and go to
step 2. Otherwise, the method is terminated.

The optimal waveforms can be obtained from the dominant eigen-vector of P~, the dominant eigen-value of P* and
Eq. (3.35).

Binary Waveform

If the transmitted waveform is constrained to the binary waveform because of the hardware limitation or imple-
mentation simplieity, or equivalently if p2, = (V_,,ljrpTW’ then The optimization problem (3.14) or the optimization
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problem (3.49) together with binary waveform design ean be formulated as SDP,

maximize trace (HP)

subject to

trace (P) == E,

trace (STF;S,P) < ¢y ‘ (3.58)
trace (s1;s,,P) == 7T,P+PTW

i=1,2,... el

n=12...N

. . o T o E. 3 5
How.ever, the C(?nstra.unts trgm (P) ==E, a.nd tra(‘.e (sI;sniP) = mﬁ)—N usually bring non-rank-1 optimal
solution P* or invalid solution, i.e. no feasible region for the optimization problem beeause of the eonstraints,
to the optimization problem (3.58). Thus the equality eonstraints are relaxed to the inequality eonstraints and the
optimization problem (3.58) is relaxed to,

maximize trace (HP)

subject to

trace (P) < E,

trace (SZFiSnP) < cni (3.59)

5 . Ep
trace (s, P) < by

i=1,2,..., 24
n=12,...N

However, such relaxation forees us to verify the feasibility of the optimal solution P* to the optimization bproblcm

(3.59). If the dominant eigen-value of P* is the same as ), which means trace (s;s,,P) is equal to wrnn for
P

all < and n, then the optimal solution P* is feasible and the optimal binary waveforms ean be obtained from the
dominant eigen-veetor of P* and the dominant eigen-value of P*. Otherwise, E, in the optimization problem (3.59)
should be deereased.

An SDP-based iterative method (Algorithm V) is proposed to get the rank-1 optimal solution P*:

1. Initialization of E,.

2. Solve the optimization problem (3.59) and get the optimal solution P*.

3. If the ratio of dominant eigen-value of P* to E, is less than 0.9999, then set £, to be trace (P*) and go to step
2. Otherwise, the method is terminated.

The optimal waveforms ean be obtained from the dominant eigen-veetor of P*, the dominant eigen-value of P* and
Eq. (3.35).

3.1.5 Numerical Results

The following setting has been used in generating numerieal results: T, = 1ns, Ty, = 100ns, T, = 100ns; E, is
set to be 1 as the initial value; the number of transmitter antennas N is equal to 2. Multipath impulse responses
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represented in the frequency domain between transmitter antennas and receiver antenna are shown in Fig. 3.2. The
nulling part from 2900 H 2 to 390M Hz in Fig. 3.2 emulates the effect of arbitrary notch filter at the receiver, which
means there is interference from primary radio in this kind of notched frequency band. All the SDPs presented in
this section are solved by the CVX tool [12] [13].

0.6

e Channel 1 n
= Channel 2 .

Magnitude
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Figure 3.2: Multipath impulse responses represented in the frequency domain between transmittcr antennas and
receiver antenna.

Fig. 3.3 and Fig. 3.4 show designed optimal waveforms represented in frequency domain for two antennas re-
spectively using Cauchy —Schwarz inequality-based iterative method (Algorithm I) and SDP-based iterative method
(Algorithm II). The two methods give the same optimal solutions. Obtained from the designcd optimal wavcforms,
there are no powers allocated to the notched frequency band for two transmitter antennas. The powcrs allocated
to the notched frequency band can not bring any benefit to the performance. Meanwhile, all the spcctral mask
constraints are satisfied.
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Figure 3.3: Designed waveform reprcsented in frequency domain for channel 1.

Fig. 3.5 and Fig. 3.6 show designed optimal waveforms represented in frequency domain for two antennas respec-
tively with PAPR consideration. Fig. 3.7 and Fig. 3.8 show designed optimal waveforms in correspondingly time
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Figure 3.4: Designed waveform represented in frequency domain for channel 2.

domain for two antennas respectively. In this case, by is set to be 0.1 and by is set to bc 0.12. Because of the
waveform shape constraints in the time domain, for the designed optimal waveforms, therc arc still some powers
allocated to the notched frequency band for two transmitter antennas. This amount of power can not be saved in

order to keep the specific shapes of waveforms in the time domain. Meanwhile, all the spectral mask constraints and
PAPR constraints are satisfied.
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Figure 3.5: Designed waveform with PAPR consideration represented in frequency domain for channcl 1.

Fig. 3.9 and Fig. 3.10 show designed optimal binary waveforms representcd in frequency domain for two antennas
respectively. Fig. 3.11 and Fig. 3.12 show designed optimal binary waveforms in correspondingly timc domain for
two antennas respcctively. Fig. 3.13 shows the convergence of energy gaps between E, and the dominant cigen-
value of P* with the number of iterations. When the dominant eigen-value of P* approachcs E, very well, the
optimal solution to the optimization problem (3.58) is obtained.




28 CHAPTER 3. THEORETICAL WORK

Channel 2

= = = Channel

wi== Waveform SDP

w— Spectral Mask |
| et s —

I
[ |
I
I

o P P~

o 100 200 300 400 500
Frequence (MHz)

Figure 3.6: Designed waveform with PAPR consideration represented in frequency domain for channcl 2.
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Figure 3.7: Designed waveform with PAPR consideration in time domain for channel 1.

3.1.6 Discussion

This section deals with wideband waveform optimization for MISO cognitive radio. Wideband waveforms are
designed according to the optimization objective with the considerations of spectral mask constraint at thc transmittcr
and the influence of arbitrary notch filter at the receiver. Meanwhile, PAPR and binary waveform design are also
taken into account as the practical considerations in the context of MISO cognitive radio. The method of this section
can be easily extended to the passband waveform design, where the individual oscillator for each antenna can be tied
together to achieve coherency [8].
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Figure 3.8: Designed waveform with PAPR eonsideration in time domain for channel 2.
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Figure 3.9: Designed binary waveform represented in frequency domain for channel 1.
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Figure 3.10: Designed binary waveform represented in frequency domain for channel 2.
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Figure 3.11: Designed binary waveform in time domain for channel 1.
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Figure 3.12: Designed binary waveform in time domain for channel 2.
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