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Abstract 
This report presents a formal approach for optimizing the shape of freely supported isotropic 
plates to withstand  air blast loading. Unique difficulties are presented by the nature of short-
duration dynamic loading, viz. transient dynamic response, monitoring of maximum plastic 
strain failure at every point in the panel over time, optimizers that can handle non-differentiable, 
nonconvex and computationally expensive functions, and mesh distortion. LS-DYNA is used as 
the finite element software. The finite element model has been developed to reflect experimental 
test conditions and observed structural response. The goal has been to minimize dynamic 
displacement relative to the fixture, while monitoring plastic strain values, mass, and envelope 
constraints. A Fortran code has been developed to implement the methodology. Sinusoidal basis 
shapes are used to obtain an optimized double-bulge shape.  Importantly, the flat plate is 
associated with a concentration of plastic strain at its center while for the optimized bulge shape, 
the plastic strain is smeared around the support showing greater utilization of material. Results 
show that much superior structural systems can be designed compared to ad-hoc techniques that 
sometimes fail to improve even the baseline design of a flat plate. Change in optimized shape 
with increasing offset in charge location is studied. A methodology for optimizing honeycomb 
sandwich structures is presented, utilizing a novel technique for linking honeycomb core 
geometry with its stress-strain curve. 
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Nomenclature 
x = design variables vector 
xL = lower limit on design variables 
xU

 = upper limit on design variables  
G = vector of x-, y-, z- coordinates of nodes in FE model 
qi  = i th velocity field or trial shape change vector 
w = z- or normal displacement 
εmax = maximum plastic strain at failure for the material 
ε = equivalent plastic strain vector  
M = total mass of the structure  
Mmax = upper limit for the mass of the structure 
t =  thickness of the structure (plate) at any (x, y) location in the plate 
tmin =  Minimum thickness allowed  
z  =  vector of z-coordinate of the nodes  
zU   =  upper limit on z-coordinate 
zL   =  lower limit on  z-coordinate 
(det Jj) =  Jacobian of j th hexahedral element at all the eight nodes 
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1.  Introduction 
This report presents an approach and methodology to optimize the shape of panels to 

mitigate the effect of air blast loading, which comprises of a short duration pressure pulse. 
Unique difficulties are presented by the nature of the blast loading, viz. transient dynamic 
response, modeling the experimental setup with appropriate boundary conditions, monitoring of 
maximum plastic strain failure at every point in the panel over time, and optimizers that can 
handle non-differentiable, nonconvex, and computationally expensive functions.  Much superior 
structural shapes can be designed using a formal  optimization methodology compared to using 
ad-hoc techniques.   

Considerable attention in journals and conferences worldwide has been given to analysis 
of metallic and composite panels, subject to both blast and ballistic loads. Regarding designing 
for impact mitigation, much greater focus has been placed on ballistic impact rather than on 
blast. Very few papers use formal optimization techniques. Publications relating to blast damage 
mitigation are given below.  

This report focuses on shape of isotropic metal plates. Dharaneepathy and Sudhesh [1] 
investigate stiffener patterns on a square plate subject to blast loads modeled using Friedlander’s 
exponential function. While formal optimization was not used to optimize the stiffener patterns, 
they demonstrated that stiffeners do provide significant advantage compared to an unstiffened 
panel of same weight, and that a waffle pattern is not as good as a novel pattern that they 
proposed. Failure was not considered in their study – that is, only deflection was considered. Hou 
et al [2] also consider the effect of stiffener size on blast response. Xue and Hutchinson [3] and 
Fleck and Deshpande [4] compare blast resistance of solid versus sandwich panels (such as 
pyramidal truss core, square honeycomb and folded plate). The plates were considered to be 
infinitely long in one direction and fixed at the ends of the short direction. ABAQUS/Explicit 
was used to model the blast load in Ref. [3] while an approximate analytical approach was used 
in Ref. [4]. Blast in both air and water were included in the comparative study. From certain 
normalized displacement versus impulse graphs, it was concluded that some of the sandwich 
topologies outperformed solid panels of same mass, especially in water. Yen, Skaags and 
Cheeseman [5] present an experimentally validated dynamic analysis procedure utilizing Ls-
Dyna and the ConWep air blast function with shock mitigation materials such as honeycomb or 
foam. The numerical results indicate that significant reduction in the maximum stress amplitude 
propagating within the protected components can be achieved by suitable selection of 
honeycomb material with proper crush strength. Liang, Yang and Wu [6] focused on static 
loading and hence not very relevant in the present context of blast effects where inertia effects 
play a role. Further, their paper ignores material nonlinearity.  Main and Gazonas [7] study the 
effect of an air blast on uniaxial crushing of a cellular sandwich plates. They investigated the 
physics of shock mitigation for different geometries of the cellular core. Icardi and Ferrero [8] 
study optimum fiber orientations in a laminated composite to absorb energy while maintaining 
stiffness. Further details on effectiveness of blast mitigation solutions in a laboratory using the 
Pendulum Test are given in [5, 9, 10]. 

There are instances in the public domain that show the mitigating effects of the shape of 
the plate. For example, United States Patent 7357062 
(http://www.freepatentsonline.com/7357062.html ) shows that V-shape deflects blast waves 
away. We view the V-shape as a bulge towards the charge and belonging to the family of single- 
and double- bulges obtained in this formal optimization study. Our focus is on the development 
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of a methodology that can be applied to the design of any plate, i.e. not just aluminum plates, and 
design for any given amount of blast charge, location and any boundary conditions. 

In contrast with the papers cited above, this report uses formal optimization techniques, 
focuses on solid metal plates, uses Ls-Dyna for simulation and considers plastic strain to failure 
in the metal. The methodology involves integrating  an optimizer with the Ls-Dyna simulation 
code. In Section 2, we formulate the optimization problem. Ls-Dyna finite element modeling of 
blast loading is discussed in Section 3. Material properties are also given in Section 3. Sections 
4-5 contain the shape optimization approach. Computer code development is discussed in 
Section 6, results in Section 7 and conclusions in Section 8. Clear improvement over a flat plate 
is demonstrated. 

 
2.  Problem Definition 

The schematic diagram of the plate used for shape optimization is shown in Fig. 1.  The 
standoff distance of the charge is taken to be 0.4064 m.  It should be noted that plate is just a part 
of a freely supported ‘grip’ assembly used to model the experimental condition as explained in 
the next Section. With reference to Fig. 1, the basic problem addressed in this work can be stated 
as follows: 
 
Given a set of basis shapes which controls the shape and thickness of the plate, a mass limit for 
the structure, plastic strain limits representing fracture strength, a minimum thickness for the 
panel, and a geometric envelope within which the structure must lie , determine the best possible 
combination of these basis shapes that minimizes the deflection (at the first peak in time). 
 
 
 Z X  
 

(0, 0, - d ) 

plate 

charge 

Y 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Baseline Structural Model: Plate dimensions are  
    (1.2192 m x 1.2192 m x 0.024 m),  Standoff distance d = 0.4064 m 
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Utilizing the already described notation, the problem can be formulated as follows.  
minimize  

r
w )(x

                  
(1) 

subject to   
                        εj   ≤  εmax            for each element j  
                      M ≤ Mmax  
                      t ≥ tmin  

                       xL ≤ x ≤ xU 
                       det Jj (x) ≥ 0        for each element j  
                                  zL ≤ z ≤ zU   (envelope)  

 
Important notes regarding the above problem are as follows. 

(i) Euclidean norm of the relative z-displacement of nodes in the plate is taken as the 
objective function (i.e. r = 2 in the objective function definition above). x- and y-
displacements are not significant and are not considered.  The term ‘relative’ is 
explained subsequently. The displacement is a function of time, and value at first 
peak is monitored. 

(ii) Plastic strain, also a function of time, stabilizes after a certain simulation time 
duration. This stabilized value is used in the constraint. 

(iii) M above refers to the combined mass of the assembly (Fig. 2). 
(iv) Thickness is computed from nodal coordinates of the hexahedral elements used in 

the FE model. Element distortion is prevented by computing determinant of 
Jacobian in every element and is forced to stay positive during optimization. The 
Jacobian for each element is computed from element nodal coordinates. 

(v) The focus is on a freely supported plate – the methodology can be readily applied 
to plates with other boundary conditions noting that the optimum shapes may be 
different.  

 
3. Ls-Dyna Modeling Considerations 

Initially, a uniformly thick (i.e. flat) square aluminum plate is considered as a starting 
shape or baseline design. Initial studies were carried out with the baseline design to better 
understand the explicit finite element analysis procedure.  
Boundary conditions study: Various types of boundary conditions along the plate edges were 
studied for a freely supported plate, including one or more ‘fences’ of springs around the edges. 
While the plate on springs is discussed in Section 7, all these modeling attempts produced 
unrealistic plastic strain concentrations at the corners. A grip system or assembly that holds the 
plate was finally adopted owing to best correlation with experimentally observed plate failures 
(Fig. 2).   
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Figure 2. Exploded view of the structure modeled 

The whole assembly is free to move during blast. That is, the assembly is unconstrained, to 
closely simulate blast testing in the field and in pendulum based experiments as noted above. 
Appropriate boundary conditions using contact surfaces are used to model the assembly.  The 
simulation on the baseline (i.e. flat plate) design produces maximum plastic strain at the center of 
the plate as also observed in testing.  Referring to Fig. 2, components of the grip assembly are: 

i) the ‘plate of interest’ (red), made of aluminum. 
ii) a filler plate (blue), also made of aluminum, having same thickness as the edges 

of the plate of interest, necessary for the assembly. 
iii) three rigid plates, whose material properties are not relevant – steel is assumed for 

density, and an artificially very high value for Young’s modulus is used to ensure 
rigidity. Importantly, the circular cover plate (blue) above the plate of interest 
creates peak plastic strain at the center of the flat plate of interest, as this is the 
location where a freely supported flat plate is experimentally observed to fail. 
That is, without this circular cover plate, as with other modeling attempts 
mentioned above such as spring supports, unrealistic pseudo concentrations of 
plastic strains are observed at corners. 

iv) A square portion of the model at the center of plate of interest (red) is taken to be 
the domain of shape optimization. This square portion lies within the circle of the 
cover plate (blue). Thus, shape changes (such as bulges) are introduced in this 
square domain only. The region outside the domain in the plate of interest is flat, 
whose thickness equals that of the surrounding (blue) filler plate. 

 
It is important to get boundary conditions to model reality as the optimum shape will depend on 
it.  To eliminate the rigid body component, the w(x) in the objective function in Eq. (1) is taken 
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to be the ‘relative’ displacement that is obtained by subtracting the nodal displacement at a point 
in the plate from the displacement of a reference point in the rigid grip. 
 
Elements: All components are modeled using 8-noded hexahedral or brick elements. The ‘plate’ 
is thus more a ‘solid’ since brick elements and not shell elements are used.  
 
Mesh sensitivity study: Further, it is desirable to establish a surrogate model that is 
computationally efficient and is accurate enough to capture the response trends correctly for 
iterative optimization. With respect to this problem, the displacement and plastic strain 
predictions are important. Different mesh densities were chosen in this study. A study was 
conducted with different mesh densities ranging from 4862 elements to 51902 elements. It was 
found that peak displacement was not sensitive to mesh refinement, while maximum plastic 
strain was. The FE analysis time for one complete analysis varied between 90 s for the 4862-
element model to 15 min for the 51902-element model when runs were made on a Intel P4-3.6 
GHz machine with 3 GB RAM. The simulation time is taken to be the time required for plastic 
strain to stabilize at a constant value. The coarser FE model was chosen here with appropriately 
reduced plastic strain limit for constraint evaluation in the optimization problem. Upon solution, 
a fine mesh of the optimized shape was used to check that plastic strains were less than actual 
failure limits.   
 
Loading: Blast load exerted is calculated using the ConWep function in Ls-Dyna The inputs for 
*LOAD_BLAST command are equivalent TNT mass, type of blast (surface or air), load curve, 
charge location, and surface identification for which pressure is applied. ConWep calculates the 
appropriate reflected pressure values and then applies these to the appropriate surfaces by taking 
account the angle of incidence of the blast wave.  It should be noted that the loading changes 
with changes in shape of the plate, although this is automatically calculated during each finite 
element analysis. Blast parameters are given in Table 1.  
 

      Table 1. Blast Load Input Data 

Property  Value  
Equivalent mass of TNT  1 kg  
Blast Location  (0.0,0.0,-0.4064) m  

Type of Burst  
Air Blast (Spherical 

Charge)  

 
             
Material model: The to-be-designed plate and the surrounding filler plate are made of 
Aluminum 5083 with the bilinear elastic-plastic material model. Material properties are listed in 
the Table 2. The *MAT_PLASTIC_KINEMATIC input card is used.  
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 Table 2.  Aluminum 5083 Material Properties 

Property  Value  

Mass Density  2700 kg/m
3
  

Young’s Modulus  68.9 GPa  

Poisson’s Ratio  0.33  

Yield Stress  225 GPa  

Tangent Modulus  633 GPa 

Hardening Parameter  1.0 

Failure Strain  0.39 

 
 
 
4.  Shape Optimization Methodology 

Prior to using formal optimization, ad-hoc studies were carried out to generate improved 
shapes. The following designs were studied: 

a) a singly corrugated plate, and 
b) a dimpled (indented) plate, with dimples facing towards and away from the charge, 

respectively. 
These ad-hoc attempts, however, did not produce any reduction in maximum deflection and, 
moreover, lead to rupture levels of plastic strains. Hence, it was decided to use formal 
optimization methodology. 

A square portion of the model at the center of plate is taken to be the domain of shape 
optimization. That is, shapes changes only occur in this region. This ensures that changes in plate 
shape do not result in changes in the grip system (see the circular blue cover plate in Fig. 2). 
However, a thickness change in the design plate has to be matched by an equal thickness change 
in the filler plate for the assembly to function. 

The key equation to implement shape optimization is [11, 12] 

                                                 (2) ∑
=

+=
dvN

i
ioriginal x

1
)( GxG iq

where G is a grid point coordinates vector, representing x-, y-, z- coordinates of all nodes in the 
model. Each xk represents the amplitude of a ‘permissible shape change vector’ or  what is 
commonly called a ‘velocity field’ vector qk. Velocity fields have nothing to do with actual 
velocities of the model under loading. Vectors {qk} are generated outside the iterative 
optimization loop.  Goriginal is the current (flat) shape. Visualization of a {qi} is identical to 
visualization of a displacement field in finite elements: {qk} is multiplied by a magnification 
scalar and added to the current grid to obtain a displaced grid, except that here the displaced grid 
represents a new shape and is called a basis shape. 

The role of the optimizer is to choose x* so that the corresponding shape G(x*) is 
optimum.  As x is iteratively changed by the optimizer, the grid point coordinates G are updated, 
a FE input file is then written and an analysis is carried out to evaluate the various functions in 
the optimization problem. This flow of information may be shown as follows. 
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Optimizer calls with a xk at the kth iteration  construct shape G from Eq. (2)  Ls-Dyna 
analysis   evaluate objective and constraint functions  return to optimizer 
 
Chosen Basis Shapes (or Velocity Fields) 
Sinusoidal velocity fields for the top and bottom surfaces, independently, are chosen based on 
the following equation: 

L
yn

L
xm

Cnmf
ππ

sinsin),( =             (3) 

where C is a suitable normalization factor and m, n are integers taking on values 1,2,3, etc. In 
this report, optimization results are presented for two cases – three design variables (denoted 3-
DV Case) and nine design variables (denoted 9-DV Case). 
 
3-DV Case: m = n = 1. This gives a total of three (3) symmetric basis shapes corresponding to 

q1 ≡ f (1,1)  for the top surface,  
q2 ≡ f (1,1) for the bottom surface,  
q3 = thickness change 

Specifically, q1 represents a bulge in the shape of the top surface while bottom surface is fixed 
(other thru-thickness nodes are moved to preserve equal spacing), q2 represents a bulge on the 
bottom surface while top surface is fixed, and q3 = a thickness change only (that is, middle layer 
of nodes in the plate are fixed while top and bottom surfaces move in opposite directions). Thus, 
the design variable vector is x = [x1 , x2, x3 ]T , and the optimizer tries to determine an optimum 
combination of these three basis shapes. Basis shape corresponding to q1 is illustrated in Fig. 3. 
Note that the bulge can be positive or negative depending on the sign of xi  
 
 

 
 
Figure 3. (a) Basis shape corresponding to top surface bulge, (b) Basis shape as part of the 
full plate, showing the domain for shape optimization  
 
2-DV Case: a special case of the 3-DV case where only q1 and q2 are used. That is, there is no 
change in the plate edge-thickness. However, the thickness in the interior of the plate will be 
non-uniform as these are determined by the relative magnitudes of the bulges created by q1 and 
q2. Note that the plate is modeled using 3-D hexahedral elements and not plate elements. 
 
9-DV Case: m = n = 2. This gives a total of nine (9) basis shapes corresponding to  
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q1 ≡ f (1,1), q2 ≡ f (1,2), q3 ≡ f (2,1), q4 ≡ f (2,2) for the top surface,  
q5 ≡ f (1,1), q6 ≡ f (1,2), q7 ≡ f (2,1), q8 ≡ f (2,2) for the bottom surface,  
q9 = thickness change 

Thus, x is a (9x1) vector. It should be notes that unlike the 3-DV Case above, presence of 
unsymmetric basis shapes may lead to an unsymmetric final optimum shape. 
  
5.  Optimizers 

During computational experiments, it was observed when using a gradient-based 
optimizer, downhill or descent search directions did not always lead to a reduction in the 
objective function even for small steps. The problem was seen to be clearly due to non-
differentiable functions, attributable to the dynamic nature of the response. Hence the use of 
gradient based optimizers is not appropriate. The Differential Evolution (DE) technique has 
proven to be successful [13]. DE is similar to genetic algorithms in some respects such as 
involving a population of designs and having generations of designs. DE requires fewer control 
variables, is robust and is very well designed for parallel computation implementation.  Decision 
parameters of the algorithm are mutation scaling factor and cross over factor for the generation 
of a population during a new generation.  Here, random scaling factor is used for the linear 
crossover combination of best member and older population, for better diversity. Penalty 
approach is used to satisfy the constraints. Quadratic penalty is used for plastic strain, geometric 
and mass constraints, while violation of Jacobian constraint is handled by returning a very high 
function value since finite element analysis cannot be carried out with a distorted mesh. The total 
number of finite element analysis is the product of population size and the number of 
generations.  Since DE is stochastic in nature, different seeds have been tried and the best answer 
based on the minimum objective function value is chosen.  

Other optimizers such as a genetic algorithm have also been used. But the DE code 
performed better for this particular problem. The use of design of experiments (DOE) combined 
with response surface optimization may be another route to take, however, the  nonlinearity of 
the problem will entail several repeated best-fit surfaces followed by optimization within some 
iterative scheme. In any vase, parallelization of the DE optimizer makes it viable to directly 
optimize with accurate Ls-Dyna FE model response. 
 
 
Parallel Computations 

We set the population size equal to ten times the number of design variables. Thus, in the 
9-DV case, population size is 90. With the number of generations set as 40, we have a total of 
3600 finite element analyses or Ls-Dyna runs.  To reduce the total execution time, a simple 
parallelization of the code using MPI calls has been implemented [14]. We used the LION-XC 
cluster at Penn State University. Reduction in the total time compared to execution on a single 
processor workstation makes this optimization approach feasible in the 9-DV case. LION-XC is 
a cluster with each compute node being a dual 3.0-GHz Intel Xeon 3160 (Woodcrest) Dual-Core 
Processors 
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6. Computer Code Development 

A Fortran computer program has been developed to implement the above procedures. 
The main blocks are shown in Fig. 4.  

 

 
 
Figure 4. Flow Diagram of the computer code for shape optimization using Ls-Dyna  
 

 
A key element of the implementation lies in the creation of two types of input files, as discussed 
below. 
 

(A) Input File for Design Optimization contains: 
(i) seed used for DE, 
(ii) generation limit,  
(iii) population size,  
(iv) geometric envelope limits (limits for the z-coordinate of the nodes), 
(v) maximum mass limit, 
(vi) plastic strain limit, 
(vii)  upper and lower limit of design variable, 

(viii)  velocity fields, and  
(ix)  model related inputs. 
 

(B) Input File for FE Analysis (Ls-Dyna) contains: 
(i) charge data, 
(ii) material properties, and 
(iii) nodal coordinates and element connectivity. 

 
Typical values used are given in the Table 3. Note that plastic strain limit is less than the material 
property, to account for the fact that a coarser mesh is being used for optimization (based on the 
discussion in Section 3). Coordinate files are written for every population generated and checked 
for distortion of the mesh. High function value is returned for a distorted mesh, otherwise the Ls-
Dyna solver is invoked. Ls-Dyna writes nodal and element related time history outputs to ASCII 
files called ‘nodout’ and ‘elout’ respectively. Fortran routines are written to open these files and 
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calculate relative displacement values and constraint values which are added to objective 
function as quadratic penalties. Based on the objective function values of all the population 
members and previous generations, best member is selected and stored. After the last generation, 
best member is written to the output file along with max displacement value and values of plastic 
strain. The visualization of the results is through LS-Prepost.  
 

Table 3. Typical values of input parameters used in the input file 

Parameter Value 

Generation limit 20 to 45 
Population size 30 to 200 

Envelope limits (m) 
-0.3 to 1.0    (large) 

-0.1 to 0.14  (small) 

Max mass of assembly 

(kg) 
1890.0 

Plastic strain limit 0.15 

Scaling factor, C in Eq. (2) 0.02 

Seed 1170, 2349 
 
 
 
 
7. Results - Optimized Panel Shapes 

Results using 2-DV, 3-DV and 9-DV (described in Section 4) are presented below 
followed by physical interpretations and some sensitivity studies. Small variations in the 
optimized mass from the limiting value is owing to use of exterior penalty functions in the 
stochastic optimizer. 

 
2-DV Case: Results are presented in Table 4, where the edge-thickness of the plate is held 
constant, using only two velocity fields q1, q2. Since edge-thickness is constant, the surrounding 
filler plate thickness is also unchanged and does not enter into the problem during the iterative 
optimization process. A single-bulge towards the charge is obtained as optimum (Fig. 5). 

Comparing initial and optimized designs, RMS displacement is reduced from 20.51 mm 
to 5.84 mm, corresponding to a 72% improvement. It may be argued that this comparison is not 
accurate as there is a difference due to use of penalty functions in the optimizer initial (baseline) 
mass and optimized mass, viz. between 1872.2 kg and 1899.6 kg (a 1.5% difference). Thus, for a 
more accurate comparison, the optimized plate is also compared to a flat plate of equal mass. 
This has been done by adjusting the plate thickness. The total mass of the structure, is maintained 
at 1899.5 kg, to avoid changes to total baseline impulse, by adjustment of the density of the rigid 
components whose properties are not relevant except with regard to providing a rigid grip to the 
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plate. It is found that RMS displacement is reduced by 67% (compared to 72% quoted for 
baseline),  plastic strain is reduced by 80% (instead of  84%) and impulse is reduced by 13.3% 
(compared to 13.7%). Results for both a large envelope (LE) and a small envelope (SE) are 
presented. The ‘large envelope’ case is slightly better compared to ‘small envelope’ case, as is to 
be expected. Note that the envelope is a user-defined constraint.  
 

Table 4.  Optimum solution for 2-DV with Small and Large Envelope 

Property Initial Flat 

(Baseline) 

Plate 

Optimized  

2-DV  LE 

Optimized  

2-DV SE 

Population Size in DE optimizer  30 30 

Number of Generations in DE  45 45 

Max. relative displacement (mm) 

occurs at 1st peak 

58.43 10.5 14.28 

Objective = RMS displacement, mm 20.51 5.84 7.34 

Max. plastic strain 0.1277 0.021 0.021 

Total mass of structure (kg) 1872.2 1899.6 1903.81 

Total  Z-momentum (kN-sec) 

(i.e. saturated impulse) 

6.254 5.40 5.41 

 
 

 
 

2-DV SE: Side View 

 

 
2-DV SE: Isometric View 

 

 
2-DV LE: Side View 

 

 
2-DV LE: Isometric View 

Figure 5. Final optimum shapes with 2-DV where plate edge thickness unchanged  

(a single bulge towards the  charge) 
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3-DV Case: Three basis shapes are used here.  Initial baseline (flat plate) model and the resulting 
optimum shape of the panel are shown in Figs. 6a and 6b. The optimized shape turns out to be a 
double bulge (Figs. 6b, 7) rather than the single bulge in the 2-DV case.  
 
 

 
 

Figure 6. (a) Baseline design(uniform thickness) , (b) Optimized plate for large  

  envelope case: double bulge 

           
 
 

 
 

Figure 7.  Dimension of the optimal design panel (3-DV large envelope case) 
 
Thickness of the plate of interest outside the shape domain region, which is also the thickness of 
the filler plate, is reduced from 0.0381 m to 0.0241 m with the introduction of bulges on both 
sides to keep mass within limits. The result shown in the figures is for the case ‘large envelope’ 
where geometric envelope limits are fairly large (relaxed) on both sides. Lower envelope limit 
cannot be larger than 0.3m due to presence of the charge. With a reduced envelope limit of (-0.1, 
0.14) m an optimum double bulge is again seen but lies within the envelope. Table 5 summarizes 
the results. The ‘large envelope’ case is slightly better compared to ‘small envelope’ case, as is to 
be expected. In Table 5, both RMS displacement, which is the objective function to be 
minimized, as well as  the maximum displacement are quoted. As was done with the 2-DV case, 
the optimized 3-DV plate is also compared to a flat plate of equal mass. Essentially similar 
reductions are again observed in RMS deflection, plastic strain and impulse and are omitted for 
brevity. Displacement reaches its peak at  t = 1.1 ms. 
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Plastic strain plots for baseline design and optimized design is given in Figs. 8a, 8b. 
Plastic strain is maximum at center for the baseline design, as also observed experimentally, 
while it is around the borders of the domain for the optimized panel (i.e. it is smeared). This 
demonstrates better utilization of material. Maximum relative displacement of optimized designs 
versus baseline design is shown in Fig. 9a. The total impulse responses of optimized designs are 
compared to those of baseline design in Fig 9b.  The saturated impulse value of ‘large envelope’ 
and ‘small envelope’ optimized panel designs are 15.6% and 13.6% smaller compared to 
baseline design, respectively. 
 

Table 5.  Results for baseline design and optimized designs for 3-DV case 

Large Envelope 

(-0.3,1.0)m 

Small Envelope 

(-0.1,0.14)m 
Property 

Baseline 

Design 
Optimized 

Design 
Change 

Optimized 

Design 
Change 

Objective Function (m)  20.51E-03  4.34E-03  78.9%  4.49E-03  78.1%  

Max Relative 

Displacement (m)  
58.43E-03  7.32E-03  87.5%  7.68E-03  86.9%  

Max plastic strain  0.1277  0.01932  84.9%  0.02028  84.1%  

Total Mass (kg)  1872.2  1894.57  (1.2%)  1894.54  (1.2%)  

Saturated impulse, (kg-

m/s)  
 6254.3  5298.62  15.6%  5425.82  13.6%  
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Figure 8a. Plastic strain plot for initial baseline (flat plate) design  

 
 

 
Figure 8b. Plastic strain plot for 3-DV large envelope optimized design 
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Figure 9. (a) Comparison of relative  displacement, (b) Comparison of impulse response 
 
 

Table 6 compares the 3-DV large envelope case to the 2-DV large envelope case. While 
the final masses are a little different, the 3-DV case is better than the 2-DV case even with lesser 
structural mass. 
 

 
Table 6.  Comparison of Optimized Plate and Flat Plate of Equal Mass 

 
Large Envelope Small Envelope 
(-0.3,1.0)m (-0.1,0.14)m Property Flat plate of 

equal mass Optimized 
Design Change Optimized 

Design Change 

Objective Function (m)     1.32E-02 4.34E-03 67.12% 4.49E-03 65.98% 
Max Relative Displacement 
(m)     3.88E-02 7.32E-03 81.15% 7.68E-03 80.23% 

Max plastic strain     0.08739 0.01932 77.89% 0.02028 76.79% 
Total Mass (kg)     1894.5 1894.57 0.00% 1894.54 0.00% 
Saturated impulse, (kg-m/s)     6229.3 5298.62 14.94% 5425.82 12.90% 

 
 
 
Physical Interpretation of Results of 3-DV case: The bottom bulge towards the charge,  
observed in both 2-DV and 3-DV optimized shapes, is likely playing an important role in 
deflecting blast waves away from the panel. The 3-DV result achieves greater reduction 
compared to the 2-DV result  by  adding material to the center while simultaneously thinning the 
plate to keep mass constant, what may be termed a ‘mass effect’. The amount of material added 
can be controlled by the designer by suitably defining the envelope limits. 
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3-DV Optimization of a plate supported on the four edges on springs 

Results for a plate without the grip assembly  and supported on edge springs (mimicking 
a freely supported / lightly clamped conditions) are presented in Table 7. We observe, again, the 
double bulge shape (Fig. 10) and large improvements over the baseline design. However, as 
noted in Section 3, this plate support system was discarded in favor of the grip system presented 
earlier owing to plastic strain concentrations near the corners, inconsistent with experimental 
observations. The purpose of presenting this result is to lend further credibility to the optimized 
shaped obtained above. 
 

Table 7.  Optimum solution of plate with springs with 3-DV 

Property Baseline 

(Flat) 

3DV  

 SE 

3DV 

LE 

Population Size  30 30 

Number of Generations  20 20 

Max. relative displacement (mm) 

occurs at 1st peak 

86.2 31.3 28.2 

Objective = RMS displacement, 

mm 

46.8 23.1 21.8 

Max. plastic strain 0.055 0.126 0.149 

Total mass of structure (kg) 152.9 147.01 149.87 

Total  Z-momentum (kN-sec) 4.93 3.7 3.6 
 
 
 

 

3DV SE  

 
 

3DV LE  

 
Figure 10.  Final optimal shape for plate with spring supports with 3-DV 
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9-DV Case: We now present optimization results with 9 basis shapes. The best shape obtained 
by the optimizer (repeated trials were needed) is shown in Fig. 11, which is again seen to be a 
double bulge, albeit slightly non-symmetric in the 9-DV case owing to the optimizer. 
Comparison with 3-DV Case is given in Table 8 for the small envelope case. Results obtained 
show only marginal improvement over 3-DV Case. The 9-DV Case is a very challenging task for 
any optimizer.  It may still be that a hitherto undetermined unsymmetric sinusoidal shape lies 
within the design space that has a lower objective. However, we have a fair amount of 
confidence in the result obtained below owing to the use of various starting random number 
seeds. Further, optimal shapes that are ‘wavy’, even if discovered in the future,  are hard to 
manufacture and may be very sensitive to charge location. 
 
 

      Table 8.  Comparison of 3DV and 9DV Cases 

Property  3 dv  9 dv  

Objective function value (m)  4.49E-03 4.28E-03 

Max relative displacement (m)  7.68E-03 7.79E-03 

Max plastic strain  0.020282 0.02233 

Total mass of the structure (kg)  1894.54 1895.3 

Impulse (Ns)  5401.41 5313.58 

 
 

 

 
Figure 11. Optimum shape corresponding to 9DV Case 

 

Sensitivity to charge, standoff distance: Limited sensitivity studies were conducted to ensure 
that the optimum shapes did not change with ±5 %  and ±10 %  changes in standoff distance (z-
distance of charge from plate) and also of charge amount (i.e. kg of TNT). For brevity, details 
are not given here, since the optimized shapes and results are similar except for small 
perturbations in values. As the standoff distance decreases, bulge towards the charge was larger 
compared to the amount of bulge on the top face of the panel. With the increases in standoff 
distance, the optimum shape remained same.  
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8. Off-Center Charge Locations 

The optimization is carried out in four ‘steps’, each successively offsetting the charge by a  
distance of L/24 ( L being the length of the plate of interest) along the x-axis from the initial 
center position. The y, z co-ordinates remain the same at 0, -0.4064 m respectively. In each 
subsequent step the previous step’s optimized shape was used as the initial shape. 11 and 7 basis 
shapes are used, respectively, for unsymmetric and symmetric shape variations. Shape morphosis 
as a result of charge off-set is shown in Fig. 12. Step 3 onwards a cavity appears on the bottom 
surface of the plate over the –x-axis. The thickness (bulge) of the plate increases until the mass 
limit is reached. Thereafter a cavity is formed to get more mass above the charge location. The 
C.G. of the plate shifts in the direction of the off-center charge. Figure 13 shows this cavity in 
detail. Table 9 contains the response values. 
 
  

Center Charge              Step 1                Step 2 
 

 
 
 
 
 
 
    
 
 
 
       Step 3            Step 4 
 

Figure 12. Right Profile View of the Optimized Plates with increasing charge offset  
(towards the left, in steps of L/24 from center, L = length of ‘plate of interest’ ) 
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Figure 13.  Cavity appearance in Step 4, at bottom of plate 
 
 

Table 9.  Results with offset charge 
 

Charge Location Objective = RMS  
Relative1 Displacement 

(mm) 

Max 
Plastic 
Strain2 

Total Mass of 
the assembly 

(kg) 
Center 4.48 0.0231 1894.54 

Step 1 (L/24) 4.62 0.0367 1895.52 
Step 2 (L/12) 4.83 0.0361 1891.77 
Step 3 (L/8) 4.91 0.0293 1894.25 
Step 4 (L/6) 5.15 0.0440 1893.00 

 
1Relative Displacement = δ - δfixture at 1st peak 
2 Limit value used is 0.15 

 
A verification study of optimality for offset charges: Owing to the difficulty in using the 
stochastic optimizer on this problem, a coarse verification on optimality is carried out by shifting 
the charge a step backward (along x-axis) and a step forward for each step. It is verified that the 
shape obtained for each step is best for the charge location for which it was optimized. Another 
way of interpreting the results is that for a given charge position the shape optimized for it is 
better than either of the adjacent step shapes. A chart of the verification results is provided below 
in Table 10. 
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Table 10.  Verification study of optimality for offset charges 

  

 
 
 
 
9.  Methodology development for optimization of honeycomb sandwich structure 

Lightweight, high strength and high energy absorbing materials are most suitable for  
protective structures against blast loading. It is well known that metal sandwich plates have 
proved to serve this purpose and honeycomb sandwich material is a suitable option. For 
maximum benefit, different parameters of honeycomb core sandwich metal plate need to be 
optimized. However, modeling  the each cell in the honeycomb core in detail with iterative 
optimization techniques is computationally infeasible. Instead, the viable approach adopted here 
is to replace the honeycomb core with a solid plate with equivalent mechanical properties. A 
novel strategy is developed here to optimize the honeycomb sandwich structure based on two 
concepts: (1) Parameterization of the unit cell in terms of a finite number of design parameters, a 
subset of which are selected as design variables for optimization after carrying out a numerical 
study, and (2) Virtual testing, a novel technique developed here, to link or characterize the 
stress-strain curve as a function of the design variables, paving the way for subsequent 
optimization.   These two concepts are detailed below in the context of air blast mitigation. 

 
Honeycomb core unit cell geometry: The honeycomb core sandwich structure considered here 
consists of three layers: top metal face plate, honeycomb core (Fig. 14), and bottom metal face 
plate. Honeycomb core is characterized by its cell size D, foil thickness t, branch angel α, and 
core thickness h. All these parameters decide its crush strength, which is the key property for 
offering protection against the blast load. In this study we consider the regular hexagon cell core, 
α = 1200, as it gives maximum crush strength [15]. The face plates are characterized by their 
thicknesses, but these enter only at the final stage during optimization of entire structure and are 
not relevant to parametrization of the core. Figure 15 shows the triangular unit cell that has been 
used in this study. Figures 15(b) and 15(c) show the full model and cross section of the model, 
respectively.  
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Figure14.  Schematic view of honeycomb core geometry 
 
 

 

 
 

 
 
 
 
 
 
  
 

(a)                                  (b)                                            (c) 

Figure 15 a - c. Unit cell model of honeycomb core 

  

 
 

Virtual testing of Unit Cell 
A novel strategy, Virtual Testing, is used to characterize the stress-strain curve as a  

function of the design variables, paving the way for a subsequent optimization study The crush 
test is carried out using LS-Dyna. The foil is modeled by quadrilateral Belytschko-Tsay shell 
elements and the adhesive layer of 0.01mm thick at the double wall is modeled using solid brick 
elements. A5052 aluminum alloy is used for the foil in the study. Bilinear isotropic material 
model (Table 11) is used for the foil and the adhesive. Automatic single surface contact is 
applied to the model with sliding and sticking frictional coefficients as 0.2 and 0.3 respectively 
[15]. Figure 16 shows four different stages of crushing of honeycomb core. Buckling of the foil 
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(cyclic folding) starts from near the impact edge and propagates downward as the hammer 
travels. Figure 17 shows the variation of nominal compressive stress with the volumetric strain 
(hammer travel). Compressive stress is defined as the reaction force experienced by the hammer 
divided by the whole cross sectional area and the volumetric strain is calculated by the change in 
core depth divided by its original value. The core resists to buckling until the peak stress point 
and then undergoes cyclic collapse of the foil as the hammer travels. The crush stress is the 
average of the oscillatory stress during the cyclic collapse of the foil. Once the entire core is 
folded, then densification starts resulting in very high compressive stress. The crush stress is a 
vital property which reduces the blast shock transmission by absorbing the energy and hence 
minimizes the damage to life. Although sufficient care is taken while approximating the load 
curve, it is not possible to define the crush start and end strain with great  accurately.  
 

Table 11. Mechanical properties of materials used in the modeling of the unit cell 

Material Density 
(Kg/ m3) 

Young’s 
Modulus (GPa) 

Yield Stress 
(MPa) 

Tangent 
Modulus (GPa) 

Poison’s 
Ratio 

A5052 2680 72 300 50 0.34 
Adhesive 2000 5 30 0 0.3 

Rigid metal 288E5 200 - - 0.24 
 
 

 
 

 
 
 
         

 

 

 

 
 
 
 
 
 
 
 
 

Figure 16. Virtual Testing simulation of gradual crushing of the honeycomb 
core 
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Figure 17.   Load curve and its different parameters of honeycomb core  
 
 
Effect of different test parameters on load curve:  Three different element sizes (Fig. 18) are 
used to study their effect on the load curve. No noticeable change is observed when element size 
is increased from 0.25mm to 0.5mm. Load curve doesn’t shows any visible change (Fig. 19) with 
the change of core depth from 20mm to 50mm. However, at a lower core depth such as 5mm, 
densification starts early. But the crush stress is not affected by the variation of core depth. For 
better design, the core depth should be sufficient enough to allow few cyclic folding of the foil 
during crushing. Figures 20 and 21 shows the effect of the cell size D and foil thickness t on the 
load curve. Crush stress decreases with cell size and increases with foil thickness. Parametric 
study is carried out by varying the cell size and the foil thickness, the element size and the core 
depth are kept constant as 0.4mm and 20mm respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Figure 18: Effect of mesh size on load curve          Figure 19. Effect of core depth on 
load curve 
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     Figure 20. Effect of cell size on load curve        Figure 21.  Effect of foil thickness on load 
curve 

 
 

Parameterization the load curve in terms of design variables: Crush start and end strain 
doesn’t show much change with D and t, hence they can be assumed to be independent. The area 
under the load curve mostly depends upon the value of crush stress and doesn’t change much 
with a small error in determining peak stress, peak strain, crush start and end strain. Peak stress, 
crush stress (Fig. 22) and final stress (Fig. 23) are expressed in terms of dimensionless 
parameter; t/D and trend lines are added. All the curves fit well and the relations match well with 
Ref. [16]. The tensile stress cut off is taken as the average of the final stress and the crush stress. 
With these relations, a load curve can be expressed for a particular value of  D, t. Above analysis 
leads to a load curve shown in Fig. 24 expressed in terms of D, t. 

 
 

 
 
 
 
 
 
 
                                        

                                             

 

 

 

 

                                      Figure 22. Parametric form of crush stress and peak stress 
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                                                 Figure 23. Parametric form of final stress 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    Fig-24: Load curve used for the honeycomb core 
 

 
Analysis of a base line model (without optimization): Figures 25 and 26 shows two types of 
test models of comparable weight. Figure 25 is the model used earlier in the report, for an all-
aluminum structure. No optimization is used here. However, this analysis demonstrates that 
optimization can have significant benefits. Material properties used in the model are shown in 
Table 12. Blast load of 8 kg mass of TNT is applied from a 0.4064m distance from the centre of 
the bottom face of the plate and the results are analyzed.  
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Fig-25: Test model for solid plate                     Fig-26: Test model for honeycomb 
sandwich core 
 

Table 12. Material properties for the model 
 

Material Density 
(Kg/ m3) 

Young’s 
Modulus 

(GPa) 

Yield 
Stress 
(MPa) 

Tangent 
Modulus 

(GPa) 

Poison’s 
Ratio 

Tensile 
Stress Cut 
Off 
(MPa) 

A5083 2700 68.9 225 0.633 0.33 -- 
Honeycomb 
Core 
(A5052) 

54.05 1.28 -- -- 0 6.05 

Steel 4340 8257.85 2080 1010 0.25 0.29 -- 
 
 
Results and discussion of analysis: In the sandwich model, maximum z-displacement and 
effective plastic strain occurs at the bottom face plate (Figs. 27, 28 and Table 13). The blast 
shock transmits to the honeycomb core through the bottom face plate and hence bottom face 
plate undergoes maximum displacement and plastic strain. Most part of the blast shock is 
absorbed by the honeycomb core, as a result of that top face plate is protected (Fig. 29). The 
basic idea of honeycomb core plate design is to protect the structure facing towards the human 
life. The maximum displacement of the top face plate is less than that of plate model by 26%. 
The displacement of the plate in plate model is more oscillating in nature (Fig. 9) where as it is 
very smooth (Fig. 27) in the honeycomb core model, which indicates that major part of the shock 
is absorbed by the honeycomb core. The effective plastic strain of the top and bottom face plate 
(Table 13) is one order less than that of plate model. This is because of the fact that top and 
bottom face plates are loosely constraint due to easily deformable nature of the honeycomb core. 
This low effective plastic strain would give us a larger limit for shape optimization without 
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violating the plastic strain limit. Scope for size and shape optimization of the honeycomb 
sandwich structure is given in Section 10 below. 

 
 

 
 
 
 
 
 
 
 
 

 
 
Figure 27. Max displacement of the face plate   Figure 28. Max effective plastic strain of  
                     face plate 
 

             Table 13. Result summary of both the models 

Model type 1st Peak relative Z-displacement 
(mm) 

Maximum effective plastic 
strain 

Bottom face Top face Bottom face Top face Honeycomb model 
114 43 0.016 0.0057 

Plate model 58 0.124 

 
 
 
 

 
 

Figure 29. Deformation of the honeycomb sandwich at the 1st peak 
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10. Conclusions and Future Research 

Shape optimization of a freely supported solid aluminum panel for air blast load  
mitigation is carried out. Center and off-center charge locations are considered. This research is 
timely as very little work has been done in this area. Ls-Dyna is coupled to a stochastic DE 
optimizer using a modular Fortran code that has been developed. Thus, accurate responses are 
used at all times during optimization. Parallelization of the DE optimizer makes the optimization 
approach viable. The finite element model has been developed to reflect experimental test 
conditions and observed structural response. Two, three, and nine sinusoidal basis shapes are 
chosen, respectively. The optimum shape, a combination of these basis shapes, turns out to be a 
single-bulge toward charge in the 2-DV case likely attributable to a deflection of blast waves. In 
the 3-DV and 9-DV cases, there is a double bulge, where material is added to the center of the 
plate with simultaneous thinning of the plate. This shape may be explained as a combination of 
deflecting the wave and a mass effect.  The shape and results are robust with respect to small 
changes in charge density or standoff distance. A plate on springs, with no grip system also 
results in a double-bulge shape.   

Importantly, at optimum, the plastic strain is smeared, indicating better utilization of the  
material. The panel’s RMS displacement which is the objective function, relative to the fixture, 
is significantly decreased (80% compared to the baseline design, and 67% compared to a flat 
plate of equal mass). Saturated z-impulse decreased by 14%. Maximum plastic strain decreased 
significantly as well (and smeared around the edges) and was well within the limit. Results have 
also been verified using a finer mesh for optimized shapes.  
   A morphosis of optimized shapes for increasing off-set of charge location show that the 
characteristic double bulge shape remains with the bottom bulge shifting with the charge. 
Beyond a certain off-set value, the optimized shape changes in character, where a bottom cavity 
is formed away from the charge in order to get more mass above the charge location. The C.G. of 
the plate shifts in the direction of the off-center charge. 
   Methodology for optimization of honeycomb sandwich structures is developed. 
Geometry parameters describing honeycomb core geometry are linked with the stress-strain 
curve and thereby to Ls-Dyna input parameters, using a novel idea based on virtual testing. Here, 
virtual testing involves crushing a unit cell using Ls-Dyna again. Studies are conducted for 
varying values of core geometry parameters leading to regression formulas that provide the 
needed relationships between geometry and analysis inputs. 
   The task of finding a global optimum in such highly nonlinear, nonconvex and 
computationally expensive functions is challenging and improved optimizers are needed in 
future. The honeycomb optimization methodology developed here needs to be coupled to 
simultaneous size and shape optimization of the composite structure, involving thicknesses of 
face plates and core depth, core geometry, and shape of outer boundary of face plates. The ability 
of the honeycomb core to absorb energy reduces plastic strain in the top face plate away from the 
charge thus leaving significant room for optimization of the sandwich structure. 
   This work lays down a methodology of structural shape optimization against blast 
loading. 
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