
Journal of Machine Learning Research 10 (2009) 2777-2836 Submitted 2/09; Revised 8/09; Published 12/09

Cautious Collective Classification

Luke K. McDowell LMCDOWEL@USNA.EDU

Department of Computer Science
U.S. Naval Academy
Annapolis, MD 21402, USA

Kalyan Moy Gupta KALYAN .GUPTA@KNEXUSRESEARCH.COM

Knexus Research Corporation
Springfield, VA 22153, USA

David W. Aha DAVID .AHA @NRL.NAVY.MIL

Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory (Code 5514)
Washington, DC 20375, USA

Editor: Michael Collins

Abstract

Many collective classification (CC) algorithms have been shown to increase accuracy when in-
stances are interrelated. However, CC algorithms must be carefully applied because their use of
estimated labels can in some cases decrease accuracy. In this article, we show that managing this
label uncertainty throughcautiousalgorithmic behavior is essential to achieving maximal, robust
performance. First, we describecautious inferenceand explain how four well-known families of
CC algorithms can be parameterized to use varying degrees of such caution. Second, we introduce
cautious learningand show how it can be used to improve the performance of almost any CC al-
gorithm, with or without cautious inference. We then evaluate cautious inference and learning for
the four collective inference families, with three local classifiers and a range of both synthetic and
real-world data. We find that cautious learning and cautious inference typically outperform less
cautious approaches. In addition, we identify the data characteristics that predict more substantial
performance differences. Our results reveal thatthe degree of caution used usually has a larger im-
pact on performance than the choice of the underlying inference algorithm. Together, these results
identify the most appropriate CC algorithms to use for particular task characteristics and explain
multiple conflicting findings from prior CC research.

Keywords: collective inference, statistical relational learning, approximate probabilistic infer-
ence, networked data, cautious inference

1. Introduction

Traditional methods for supervised learning assume that the instances to be classified are indepen-
dent of each other. However, in many classification tasks, instances can be related. For example,
hyperlinked web pages are more likely to have the same class label than unlinked pages. Such
autocorrelation (correlation of class labels among interrelated instances) exists in a wide variety
of data (Neville and Jensen, 2007; Macskassy and Provost, 2007), including situations where the
relationships are implicit (e.g., email messages between two people are likely to share topics).

c©2009 Luke K. McDowell, Kalyan Moy Gupta, and David W. Aha.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Cautious Collective Classification

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology,77 Massachusetts
Avenue,Cambridge,MA,02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

60

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

MCDOWELL , GUPTA AND AHA

Collective classification (CC) is a method for jointly classifying related instances. To do so,
CC methods employ acollective inferencealgorithm that exploits dependencies between instances
(e.g., autocorrelation), enabling CC to often attain higher accuracies than traditional methods when
instances are interrelated (Neville and Jensen, 2000; Taskar et al., 2002; Jensen et al., 2004; Sen
et al., 2008). Several algorithms have been used for collective inference, including relaxation label-
ing (Chakrabarti et al., 1998), the iterative classification algorithm (ICA) (Lu and Getoor, 2003a),
loopy belief propagation (LBP) (Taskar et al., 2002), Gibbs sampling (Gibbs) (Jensen et al., 2004),
and variants of the weighted-vote relational neighbor algorithm (wvRN) (Macskassy and Provost,
2007).

During testing, all collective inference algorithms exploit relational features based on uncertain
estimation of class labels. This test-time label uncertainty can diminish accuracy due to two related
effects. First, an incorrectly predicted label during testing may negatively influence the predictions
of its linked neighbors, possibly leading to cascading inference errors (cf., Neville and Jensen,
2008). Second, the training process may learn a poor model for test-time inference, because of the
disparity between the training scenario (where labels are known and certain) and the test scenario
(where labels are estimated and hence possibly incorrect). As a result, while CC has many potential
advantages, in some cases CC’s label uncertainty may actually cause accuracy to decrease compared
to non-relational approaches (Neville and Jensen, 2007; Sen and Getoor, 2006; Sen et al., 2008).

In this article, we argue that managing this test-time label uncertainty through “cautious” al-
gorithmic behavior is essential to achieving maximal, robust performance. We describe two com-
plementary cautious strategies. Each addresses the fundamental problem of label uncertainty, but
separately targets the two manifestations of the problem described above. First,cautious infer-
enceis an inference process that attends to the uncertainty of its intermediate label predictions.
For example, existing algorithms such asGibbsor LBPaccomplish cautious inference by sampling
from or directly reasoning with the estimated label distributions. These techniques are cautious
because they prevent less certain label estimates from having substantial influence on subsequent
estimations. Alternatively, we show how variants of a simpler algorithm,ICA, can perform cautious
inference by appropriately favoring more certain information. Second,cautious learningrefers to a
training process that ameliorates the aforementioned train/test disparity. In particular, we introduce
PLUL (Parameter Learning for Uncertain Labels), which uses standard cross-validation techniques,
but in a way that is new for CC and that leads to significant performance advantages. In particu-
lar, PLUL is cautious because it prevents the algorithm from learning a model from the (correctly
labeled) training set that overestimates how useful relational features will be when computed with
uncertain labels from the test set.

We consider four frequently-studied families of CC algorithms:ICA, Gibbs,LBP, andwvRN.
For each family, we describe algorithms that use varying degrees of cautious inference and explain
how they all (except for the relational-onlywvRN) can also exploit cautious learning via PLUL.
We then evaluate the variants of these four families, with and without PLUL, over a wide range of
synthetic and real-world data sets. To broaden the evidence for our results, we evaluate three local
classifiers that are used by some of the CC algorithms, and also compare against a non-relational
baseline.

While recent CC studies describe complementary results and make some related comparisons,
they omit important variations that we consider here (see Section 3). Moreover, the scope and/or
methodology of previous studies leaves several important questions unanswered. For instance,
Gibbs is often regarded as one of the most accurate inference algorithms, and has been shown

2778

CAUTIOUS COLLECTIVE CLASSIFICATION

to work well for CC (Jensen et al., 2004; Neville and Jensen, 2007). If so, why did Sen et al.
(2008) find no significant difference betweenGibbsand the much less sophisticatedICA? Second,
we earlier reported thatICAC (a cautious variant ofICA) outperforms bothGibbsandICA on three
real-world data sets (McDowell et al., 2007a). Why wouldICAC outperformGibbs, and for what
data characteristics areICAC’s gains significant? We answer these questions and more in Section 8.

We hypothesize thatcautious CC algorithms will outperform more aggressive CC approaches
when there exists a high probability of an “incorrect relational inference”, which we define as a pre-
diction error that is due to reasoning with relational features (i.e., an error that does not occur when
relational features are removed). Two kinds of data characteristics increase the likelihood of such
errors. First, when the data characteristics lead to lower overall classification accuracy (e.g., when
the non-relational attributes are not highly predictive), then the computed relational feature values
will be less reliable. Second, when a typical relational link is highly predictive (e.g., as occurs when
the data exhibits highrelational autocorrelation), then the potential effect of any incorrect predic-
tion is magnified. As the magnitude of either of these data set characteristics increases, cautious
algorithms should outperform more aggressive algorithms by an increasing amount.

Our contributions are as follows. First, we describe cautious inference and how four commonly-
used families of existing CC inference algorithms can exhibit more or less caution. Second, we
introduce cautious learning and explain how it can help compensate for the train/test disparity that
occurs when a CC algorithm uses estimated class labels during testing. Third, we identify the data
characteristics for which these cautious techniques should outperform more aggressive approaches,
as introduced in the preceding paragraph and discussed in more detail in Section 6. Our experi-
mental results confirm that cautious approaches typically do outperform less cautious variants, and
that these effects grow larger when there is a greater probability of incorrect relational inference.
Moreover, our results reveal that in most casesthe degree of caution used has a larger impact on
performance than the choice of the underlying inference algorithm. In particular, the cautious algo-
rithms perform very similarly, regardless of whetherICAC or Gibbsor LBP is used, although our
results also confirm that, for some data characteristics, inference withLBP performs comparatively
poorly. These results suggest that in many cases the higher computational complexity ofGibbsand
LBP is unnecessary, and that the much fasterICAC should be used instead. Finally, our results and
analysis enable us to answer the previously mentioned questions regarding CC.

The next two sections summarize collective classification and related work. Section 4 then
explains why CC needs to be cautious and describes cautious inference and learning in more detail.
In Section 5, we describe how caution can be specifically used by the four families of CC inference
algorithms. Section 6 then describes our methodology and hypotheses. Section 7 presents our
results, which we discuss in Section 8. We conclude in Section 9.

2. Collective Classification: Description and Problem Definition

In this section, we first motivate and define collective classification (CC). We then describe different
approaches to CC, different CC tasks, and our assumptions for this article.

2.1 Problem Statement and Example

In many domains, relations exist among instances (e.g., among hyperlinked web pages, social net-
work members, co-cited publications). These relations may be helpful for classification tasks, such

2779

MCDOWELL , GUPTA AND AHA

as predicting the topic of a publication or the group membership of a person (Koller et al., 2007).
More formally, we consider the following task (based on Macskassy and Provost, 2006):

Definition 1 (Classification of Graph-based Data) Assume we are given a graph G= (V,E,X,Y,C)
where V is a set of nodes, E is set of (possibly directed) edges, each~xi ∈ X is an attribute vector for
node vi ∈V, each Yi ∈Y is a label variable for vi , and C is the set of possible labels. Assume further
that we are given a set of “known” values YK for nodes VK ⊂V, so that YK = {yi |vi ∈VK}. Then the
task is to infer YU , the values of Yi for the remaining nodes with “unknown” values (VU = V−VK),
or a probability distribution over those values.1

For example, consider the task of predicting whether a web page belongs to a professor or a stu-
dent. Conventional supervised learning approaches ignore the link relations and classify each page
using attributes derived from its content (e.g., words present in the page). We refer to this approach
asnon-relational classification. In contrast, a technique forrelational classificationwould explicitly
use the links to construct additional relational features for classification (e.g., for each page, includ-
ing as features the words from hyperlinked pages). This additional information can potentially in-
crease classification accuracy, though may sometimes decrease accuracy as well (Chakrabarti et al.,
1998). Alternatively, even greater (and usually more reliable) increases can occur when the class
labelsof the linked pages are used instead to derive relevant relational features (Jensen et al., 2004).
However, using features based on these labels is challenging, because some or all of the labels are
initially unknown, and thus typically must be estimated and then iteratively refined in some way.
This process of jointly inferring the labels of interrelated nodes is known ascollective classification
(CC).

Figure 1 summarizes an example execution of a simple CC algorithm,ICA, applied to the binary
web page classification task. Each step in the sequence displays a graph of four nodes, where each
node denotes a web page, and hyperlinks among them. Each node has a class labelyi ; the set of
possible class labels isC = {P,S}, denotingprofessorsandstudents, respectively. Three nodes have
unknownlabels (VU = {v1,v2,v4}) and one node has aknownlabel (VK = {v3}). In the initial state
(step A), no labelyi has yet been estimated for the nodes inVU , so each is set tomissing(indicated
by a question mark). Each node has three binary attributes (represented by~xi). Nodes inVU also
have two relational features (one per class), represented by the vector~fi . Each feature denotes the
number of linked nodes (ignoring link direction) that have a particular class label.

In step B, some classifier (not shown) estimates class labels for nodes inVU using only the (non-
relational) attributes. These labels, along with the known labely3, are used in step C to compute
the relational feature value vectors. For instance, in step C,~f2 = (1 2) becausev2 links to nodes
with one currentP label and two currentS labels. In step D, a classifier re-estimates the labels using
both attributes and relational features, which changes the predicted label ofv2. In step E, relational
feature values are re-computed using the new labels. Steps D and E then repeat until a termination
criterion is satisfied (e.g., convergence, number of iterations).

This example exhibits how relational value uncertainty occurs with CC. For instance, the feature
vector~f1 is (1 0) in step C but later becomes(0 1). Thus, intermediate predictions use uncertain
label estimates, motivating the need to cautiously use such estimates.

1. VK may be empty. In addition, a separate training graph may be provided; see Section 2.3.

2780

CAUTIOUS COLLECTIVE CLASSIFICATION

��� ������� 	���

� � �

��

��
�

��
�
�

�

���

� � �

��

��
�

��
�
�

�

���

� � �

��

��
�

��
�
�

�

����

� � �

��

��
�

��
�
�

�

���

����

 �� !��""�#$ %&"
 ���'�(&�
")��$�

� � �

��

��
�

��
�
�

�

*���

� � �

��

��
�

��
�
�

�

*���

� � �

��

��
�

��
�
�

�

����

� � �

��

��
�

��
�
�

�

����

����

!�� !)+,&�
 '
�� #
��&'
 -��&
"

� � �

� �

��

��
�

��
�
�

�

.���

� � �

� /

��

��
�

��
�
�

�

.���

� � �

��

��
�

��
�
�

�

����

� � �

� �

��

��
�

��
�
�

�

0���

����

1�� !��""�#$ %&"
 ���'"� 2 '
�� #
��"��

� � �

3 4

��

��
�

��
�
�

�

.���

� � �

3 5

��

��
�

��
�
�

�

����

� � �

��

��
�

��
�
�

�

����

� � �

3 3

��

��
�

��
�
�

�

0���

����

6�� 7
89)+,&�
 '
�� #
��� -��&
"

� � �

� �

��

��
�

��
�
�

�

.���

� � �

3 5

��

��
�

��
�
�

�

0���

� � �

��

��
�

��
�
�

�

����

� � �

� /

��

��
�

��
�
�

�

0���

����

%'
,
�� "�
," 1 ��: 6����

Figure 1: Example operation ofICA, a simple CC algorithm. Each step (A thru E) shows a graph of
4 linked nodes (i.e., web pages). “Known” values are are shown in white text on a black
background; this includes all attribute values~xi and the class labely3 for v3. Estimated
values are shown instead with a white background.

2.2 Algorithms for Collective Inference

For some collective inference tasks, exact methods such as junction trees (Huang and Darwiche,
1996) or variable elimination (Zhang and Poole, 1996) can be applied. However, these methods
may be prohibitively expensive to use (e.g., summing over the remaining variable configurations is
intractable for modest-sized graphs). Some research has focused on methods that further factorize
the variables, and then apply an exact procedure such as belief propagation (Neville and Jensen,
2005), min-cut partition (Barzilay and Lapata, 2005), or methods for solving quadratic and linear
programs (Triebel et al., 2007). In this article, we consider only approximate collective inference
methods.

We consider three primary types of approximate collective inference algorithms, borrowing
some terminology from Sen et al. (2008):

• Local classifier-based methods.For these methods, inference is an iterative process whereby
a local classifierpredicts labels for each node inVU using both attributes and relational fea-
tures (derived from the current label predictions), and then acollective inferencealgorithm
recomputes the class labels, which will be used in the next iteration. Examples of this type
of CC algorithm includeICA (used in the example above) andGibbs. Local classifiers that
have been used include Naive Bayes (Jensen et al., 2004), relational probability trees (Neville
et al., 2003a), k-nearest neighbor (McDowell et al., 2007b), and logistic regression (Sen et al.,
2008). Typically, a supervised learner induces the local classifier from the training set using
both attributes and relational features.

2781

MCDOWELL , GUPTA AND AHA

• Global formulation-based methods. These methods train a classifier that seeks to opti-
mize one global objective function, often based on a Markov random field (Dobrushin, 1968;
Besag, 1974). As above, the classifier uses both attributes and relational features for infer-
ence. Examples of these algorithms include loopy belief propagation and relaxation labeling.
These do not use a separate local classifier; instead, the entire algorithm is used for both train-
ing (e.g., to learn the clique potentials) and inference. See Taskar et al. (2002) and Sen et al.
(2008) for more details.

• Relational-only methods.Recently, Macskassy and Provost (2007) demonstrated that, when
some labels are known (i.e.,|VK |> 0), algorithms that useonly relational information can in
some cases perform very well. We consider several variants of the algorithm they described,
wvRNRL (weighted-vote relational neighbor, with relaxation labeling). This algorithm com-
putes a new label distribution for a node by averaging the current distributions of its neighbors.
It does not require any training.

With local classifier methods, learning the classifier can often be done in a single pass over the
data, does not require running collective inference, and in fact is independent of the collective infer-
ence procedure that will be used. In contrast, for global methods the local classifier and inference
algorithm are effectively unified. As a result, learning for a global method requires committing to
and actually executing a specific inference algorithm, and thus can be much slower than with a local
classifier-based method.

All of these algorithms jointly classify interrelated nodes using some iterative process. Those
that propagate from one iteration to the next a single label for each node are calledhard-labeling
methods. Methods that instead propagate a probability distribution over the possible class labels
are calledsoft-labelingmethods (cf., Galstyan and Cohen, 2007). All of the local classifier-based
methods that we examine are hard-labeling methods.2 Soft-labeling methods, such as variants of
relaxation labeling, are also possible but require that the local classifier be able to reason directly
with label distributions, which is more complex than the label aggregation for features typically
done with approaches likeICA or Gibbs. Section 6.6 provides more detail on these features.

2.3 Task Definitions and Focus

Collective classification has been applied to two types of inference tasks, namely theout-of-sample
task, whereVK is empty, and thein-sample task, whereVK is not empty. Both types of tasks
may emerge in real-world situations (Neville and Jensen, 2005). Prior work on out-of-sample tasks
(Neville and Jensen, 2000; Taskar et al., 2002; Sen and Getoor, 2006) assume that the algorithm is
also provided with a training graphGTr that is disjoint from the test graphG. For instance, a model
may be learned over the web-graph for one institution, and tested on the web-graph of another.

For in-sample tasks, where some labels inG are known, CC can be applied to the single graph
G (Macskassy and Provost, 2007; McDowell et al., 2007a; Sen et al., 2008; Gallagher et al., 2008);
within-networkclassification (Macskassy and Provost, 2006) involves training on the subsetGK ⊂G
with known labels, and testing by running inference over the entire graph. This task simulates, for
example, fraud detection in a single large telecommunication network where some entities/nodes are

2. We could also considerwvRNRL, which is a soft-labeling method, to be a local classifier-based method, albeit a
simple one that ignores attributes and does no learning. However, for explication we list relational-only methods as a
separate category in the list above because our results will show they often have rather different performance trends.

2782

CAUTIOUS COLLECTIVE CLASSIFICATION

known to be fraudulent. Another in-sample task (Neville and Jensen, 2007; Bilgic and Getoor, 2008;
Neville and Jensen, 2008) assumes a separate training graphGTr, where a model is learned from
GTr and inference is performed over the test graphG, which includes both labeled and unlabeled
nodes. For both tasks, predictive accuracy is measured only for the unlabeled nodes.

In Section 6, we will address three types of tasks (i.e., out-of-sample, sparse in-sample, and
dense in-sample). This is similar to the set of tasks addressed in some previous evaluations (e.g.,
Neville and Jensen, 2007, 2008; Bilgic and Getoor, 2008) and subsumes some others (e.g., Neville
and Jensen, 2000; Taskar et al., 2002; Sen and Getoor, 2006). We will not directly address the
within-network task, but the algorithmic trends observed from our in-sample evaluations should be
similar.3

2.4 Assumptions and Limitations

In this broad investigation on the utility of caution in collective classification, we make several
simplifying assumptions. First, we assume data is obtained passively rather than actively (Rattigan
et al., 2007; Bilgic and Getoor, 2008). Second, we assume that nodes are homogeneous (e.g., all
represent the same kind of object) rather than heterogeneous (Neville et al., 2003a; Neville and
Jensen, 2007). Third, we assume that links are not missing, and need not be inferred (Bilgic and
Getoor, 2008). Finally, we do not attempt to increase autocorrelation via techniques such as link
addition (Gallagher et al., 2008), clustering (Neville and Jensen, 2005), or problem transformation
(Tian et al., 2006; Triebel et al., 2007).

Our example in Figure 1 employs a simple relational feature (i.e., that counts the number of
linked nodes with a specific class label). However, several other types of relations exist. For ex-
ample, Gallagher and Eliassi-Rad (2008) describe a topology of feature types, including structural
features that are independent of node labels (e.g., the number of linked neighbors of a given node).
We focus on only three simple types of relational features (see Section 6.6), and leave broader in-
vestigations for future work. Likewise, for CC algorithms that learn, we assume that training is
performed just once, which differs from some prior work where the learned model is updated in
each iteration (Lu and Getoor, 2003b; Gurel and Kersting, 2005).

3. Related Work

Besag (1986) originally described the “Iterated Conditional Modes” (ICM) algorithm, which is a
version of theICA algorithm that we consider. Several researchers have reported that employ-
ing inter-instance relations in CC algorithms can significantly increase predictive accuracy (e.g.,
Chakrabarti et al., 1998; Neville and Jensen, 2000; Taskar et al., 2002; Lu and Getoor, 2003a).
Furthermore, these algorithms have performed well on a variety of tasks, such as identifying secu-
rities fraud (Neville et al., 2005), ranking suspicious entities (Macskassy and Provost, 2005), and
annotating semantic web services (Heß and Kushmerick, 2004).

In each iteration, a CC algorithm predicts a class label (or a class distribution) for each node and
uses it to determine the next iteration’s predictions. Although using label predictions from linked
nodes (instead of using the larger number of attributes from linked nodes) encapsulates the influence
of a linked node and simplifies learning (Jensen et al., 2004), it can be problematic. For example,

3. Indeed, we performed additional experiments where we reproduced the synthetic data of Sen et al. (2008), but then
transformed the task from their within-network variant to a variant that uses a separate graph for training (as done in
this article), and obtained results similar to those they reported.

2783

MCDOWELL , GUPTA AND AHA

iterating with incorrectly predicted labels can propagate and amplify errors (Neville and Jensen,
2007; Sen and Getoor, 2006; Sen et al., 2008), diminishing or even reducing accuracy compared
to non-relational approaches. In this article, we examine the data characteristics (and algorithmic
interactions) for which these issues are most serious and explain how cautious approaches can ame-
liorate them.

The performance of CC compared to non-relational learners depends greatly on the data char-
acteristics. First, for CC to improve performance, the data must exhibitrelational autocorrelation
(Jensen et al., 2004; Neville and Jensen, 2005; Macskassy and Provost, 2007; Rattigan et al., 2007;
Sen et al., 2008), which is correlation among the labels of related instances (Jensen and Neville,
2002). Complex correlations can be exploited by some CC algorithms, capturing for instance the
notion “Professors primarily have out-links to Students.” In contrast, the simplest kind of corre-
lation ishomophily(McPherson et al., 2001), in which links tend to connect nodes with the same
label. To facilitate replication, Appendix A defines homophily more formally.

A second data characteristic that can influence CC performance isattribute predictiveness. For
example, if the attributes are far less predictive than the selected relational features, then CC algo-
rithms should perform comparatively well vs. traditional algorithms (Jensen et al., 2004). Third,
link densityplays a role (Jensen and Neville, 2002; Neville and Jensen, 2005; Sen et al., 2008); if
there are few relations among the instances, then collective classification may offer little benefit.
Alternatively, algorithms such asLBP are known to perform poorly when link density is very high
(Sen and Getoor, 2006). Fourth, an important factor is thelabeled proportion(the proportion of test
nodes that have known labels). In particular, if some node labels are known (|VK |> 0), these labels
may help prevent CC estimation errors from cascading. In addition, if a substantial number of la-
bels are known, simpler relational-only algorithms may be the most effective. Although additional
data characteristics exist that can influence the performance of CC algorithms, such asdegree of
disparity(Jensen et al., 2003) andassortativity(Newman, 2003; Macskassy, 2007), we concentrate
on these four in our later evaluations.

Compared to this article, prior studies provide complementary results and make some relevant
comparisons, but do not examine important variations that we consider here. For instance, Jensen
et al. (2004) only investigate a single collective inference algorithm, and Macskassy and Provost
(2007) focus on relational-only (univariate) algorithms. Sen et al. (2008) assess several algorithms
on real and synthetic data, but do not examine the impact of attribute predictiveness or labeled pro-
portion. Likewise, Neville and Jensen (2007) evaluate synthetic and real data, but vary data char-
acteristics (autocorrelation and labeled proportion) for only the synthetic data, do not considerICA,
and considerLBP only for the synthetic data. In addition, only one of these prior studies (Neville
and Jensen, 2000) evaluates an algorithm related toICAC, which is a simple cautious variant ofICA
that we show has promising performance. Moreover, these studies did not compare algorithms that
vary only in their degree of cautious inference, or use cautious learning.

4. Types of Caution in CC and Why Caution is Important

Section 3 described how collective classification exploits label predictions to try to increase ac-
curacy, but how iterating with incorrectly predicted labels can sometimes propagate and amplify
errors. To address this problem, we recently proposed the use of cautious inference for CC (Mc-
Dowell et al., 2007a). We defined an inference algorithm to be cautious if it sought to “explicitly
identify and preferentially exploit the more certain relational information.” In addition, we ex-

2784

CAUTIOUS COLLECTIVE CLASSIFICATION

plained that a variant ofICA that we here callICAC is cautious because it selectively ignores class
labels that were predicted with less confidence by the local classifier. Previously, Neville and Jensen
(2000) introduced a simpler version4 of ICAC but compared it only with non-relational classifiers.
We showed thatICAC can outperformICA andGibbs, but did not identify the data conditions under
which such gains hold.

In this article, we expand our original notion of caution in two ways. First, we broaden our
idea ofcautious inferenceto encompass several other existing CC inference techniques that seek
the same goal (managing prediction uncertainty). Recognizing the behavioral similarities between
these different algorithms helps us to better assess the strengths and weaknesses of each algorithm
for a particular data set. Second, we introducecautious learning, a technique that ameliorates
prediction uncertainty even before inference is applied, which can substantially increase accuracy.
Below we detail these two types of caution.

• A CC algorithm exhibitscautious inferenceif its inference process attends to the uncertainty
of its intermediate label predictions. Usually, this uncertainty is approximated via the pos-
terior probabilities associated with each predicted label. For instance, a CC algorithm may
exercise cautious inference by favoring predicted information that has less uncertainty (higher
confidence). This is the approach taken byICAC, which uses only the most certain labels at
the beginning of its operation, then gradually incorporates less certain predictions in later it-
erations. Alternatively, instead of always selecting the most likely class label for each node
(like ICA andICAC), Gibbsre-samples the label of each node based on its estimated distribu-
tion. This re-sampling leads to more stochastic variability (and less influence) for nodes with
less certain predictions. Finally, soft-labeling algorithms likeLBP, relaxation labeling, and
wvRNRL directly reason with the estimated label distributions. For instance,wvRNRL averages
the estimated distributions of a node’s linked neighbors, which gives more influence to more
certain predictions.

• A CC algorithm exhibitscautious learning if its training process is influenced by recogniz-
ing the disparity between the training set (where labels are known and certain) and the test
scenario (where labels may be estimated and hence incorrect). In particular, a relational fea-
ture may appear to be highly predictive of the class when examining the training set (e.g., to
learn conditional probabilities or feature weights), yet its use may actually decrease accuracy
if its value is often incorrect during testing. In response, one approach is to ensure that appro-
priate training parameters are cross-validated using the actual testing conditions (e.g., with
estimated test labels). We use PLUL to achieve this goal.

The next section describes how these general ideas can be applied. Later, our experimental
results demonstrate when they lead to significant performance improvements.

5. Applying Cautious Inference and Learning to Collective Classification

The previous section described two types of caution for CC. Each attempts to alleviate potential
estimation errors in labels during collective inference. Cautious inference and cautious learning
can often be combined, and at least one is used or is applicable to every CC algorithm known to

4. Their algorithm is likeICAC, except that it does not consider how to favor “known” labels fromVK .

2785

MCDOWELL , GUPTA AND AHA

us. In this section, we provide examples of how both types can be applied by describing specific
CC algorithms that exploit cautious inference (Sections 5.1-5.4), and by describing how PLUL can
complement these algorithms with cautious learning (Section 5.5). Section 5.6 then discusses the
computational complexity of these algorithms.

We describe and evaluate four families of CC inference algorithms:ICA, Gibbs, LBP, and
wvRN.5 Among local classifier-based algorithms, we choseICA andGibbsbecause both have been
frequently studied and often perform well. As a representative global formulation-based algorithm,
we choseLBP instead of relaxation labeling because previous studies (Sen and Getoor, 2007; Sen
et al., 2008) found similar performance, with in some cases a slight edge forLBP. Finally, we select
wvRN because it is a good relational-only baseline for CC evaluations (Macskassy and Provost,
2007).

Table 1 summarizes the four CC families that we consider. Within each family, each variant use
more cautious inference than the variant listed below it. Cautious variants of standard algorithms
are given a “C” subscript (e.g.,ICAC), while non-cautious variants of standard algorithms are given
a “NC” subscript (e.g.,GibbsNC). For the latter case, our intent is not to demonstrate large perfor-
mance “gains” for a standard algorithm vs. a new non-cautious variant, but to isolate the impact of
a particular cautious algorithmic behavior on performance. While the result may not be a theoret-
ically coherent algorithm (e.g.,GibbsNC, unlike Gibbs, is not a MCMC algorithm), in every case
the resultant algorithmdoesperform well under data set situations where caution is not critical (see
Section 7). Thus, comparing the performance of the cautious vs. non-cautious variants allows us to
investigate the data characteristics for which cautious behavior is more important.6

5.1 ICA Family of Algorithms

Figure 2 displays pseudocode forICA, ICAC, andICAKn, depending on the setting of the parameter
AlgType. We describe each in turn.

5.1.1 ICA

In Figure 2, step 1 is a “bootstrap” step that predicts the class labelyi of each node inVU using
only attributes (con fi records the confidence of this prediction, butICA ignores this information).
The algorithm then iterates (step 2). During each iteration,ICA selects all available labels (step 3),
computes the relational features’ values based on these labels (step 4), and then re-predicts the class
label of each node using both attributes and relational features (step 5). After iterating, hopefully to
convergence, step 6 returns the final set of estimated class labels.

Types of Caution Used:Steps 3-4 ofICA use all available labels for feature computation (including
estimated, possibly incorrect labels) and step 5 picks the single most likely label for each node based
on the new predictions. In these steps, uncertainty in the predictions is ignored. Thus,ICA does not

5. Technically,wvRNby itself is a local classifier, not an inference algorithm, but for brevity we refer to the family of
algorithms based on this classifier (such aswvRNRL) aswvRN.

6. Section 7 shows that the non-cautious variantsICA, GibbsNC, andLBPNC perform similarly to each other. Thus, our
empirical results would change little if we compared all of the cautious algorithms against the more standardICA.
However, the results forGibbsandLBP would then concern performance differences between distinct algorithms,
due to conjectured but unconfirmed differences in algorithmic properties. By instead comparingGibbsvs.GibbsNC
andLBP vs.LBPNC, we more precisely demonstrate that the cautious algorithms benefit from specifically identified
cautious behaviors.

2786

CAUTIOUS COLLECTIVE CLASSIFICATION

Name Cautious Inf.? Key Features Type Evaluated by?

Local classifier-based methods that iteratively classify nodes, yielding a final graph state

ICAC Favors more
conf. labels

Relational features depend only on
“more confident” estimated labels;
later iterations loosen confidence
threshold.

Hard Neville and Jensen (2000);
McDowell et al. (2007a)

ICAKn Favors known
labels

First iteration: rel. features depend
only on known labels. Later iterations:
use all labels.

Hard McDowell et al. (2007a)

ICA Not cautious Always use all labels, known and esti-
mated.

Hard Lu and Getoor (2003a); Sen
and Getoor (2006); Mc-
Dowell et al. (2007a,b)

Local classifier-based algorithms that compute conditional probabilities for each node

Gibbs Samples from
estimated
distribution

At each step, classifies usingall neigh-
bor labels, then samples new la-
bels from the resultant distributions.
Records new labels to produce final
marginal statistics.

Hard Jensen et al. (2004); Neville
and Jensen (2007); Sen et al.
(2008)

GibbsNC Not cautious Like Gibbs, but always pick most
likely label instead of sampling.

Hard None, but very similar to
ICA.

Global formulation algorithms based on loopy belief propagation (LBP)

LBP Reasons with
estimated
distribution

Passes continuous-valued messages
between linked neighbors until con-
vergence.

Soft Taskar et al. (2002); Neville
and Jensen (2007); Sen et al.
(2008)

LBPNC Not cautious Like LBP, but each node always
chooses single most likely label to use
for next round of messages.

Hard —

Relational-only algorithms

wvRNRL Reasons with
estimated
distribution

Computes new distribution by aver-
aging neighbors’ label distributions;
combines old and new distributions
via relaxation labeling.

Soft Macskassy and Provost
(2007); Gallagher et al.
(2008)

wvRNICA+C Favors nodes
closer to known
labels

Initializes nodes inVU to missing.
Computes most likely label by averag-
ing neighbors’ labels, ignoringmiss-
ing labels.

Hard Macskassy and Provost
(2007); similar to Galstyan
and Cohen (2007)

wvRNICA+NC Not cautious Like wvRNICA+C, but no missingla-
bels are used. Instead, initialize nodes
in VU by sampling from the prior label
distribution.

Hard —

Table 1: The ten collective inference algorithms considered in this article, divided into four fami-
lies. Hard/soft refers to hard-labeling and soft-labeling (see Section 2.2).

perform cautious inference. However, it may exploit cautious learning to learn the classifier models
that are used for inference (MA andMAR).

5.1.2 ICAC

In steps 3-4 of Figure 2,ICA assumes that the estimated node labels are all equally likely to be
correct. WhenAlgTypeinstead selectsICAC, the inference becomes more cautious by only con-
sidering more certain estimated labels. Specifically, step 3 “commits” intoY′ only the bestm of

2787

MCDOWELL , GUPTA AND AHA

ICA classify(V,E,X,YK ,MAR,MA,n,AlgType)=
// V=nodes,E=edges,X=attribute vectors,YK=labels of known nodes (YK = {yi |vi ∈VK})
// MAR=local classifier (uses attributes and relations),MA=classifier that uses only attributes
// n=# of iterations,AlgType=ICAC, ICAKn, or ICA

1 for eachnodevi ∈VU do // Bootstrap: estimate labelyi for each node
(yi ,con fi)←MA(~xi) // using attributes only

2 for h = 0 to n do

3 // Select node labels to use for computing relational feature values, store inY′

if (AlgType= ICAC) // For ICAC: use known andm most confident
m← |VU | · (h/n) // estimated labels, gradually increasem
Y′←YK ∪{yi |vi ∈VU ∧ rank(con fi)≤m}

else if(h = 0) and (AlgType= ICAKn)
Y′←YK // For ICAKn(first iteration): useonlyknown labels

else // For ICAKn (after first iteration) andICA: useall
Y′←YK ∪{yi |vi ∈VU} // labels (known and estimated)

4 for eachnodevi ∈VU do
~fi ← calcRelatFeats(V,E,Y′) // Compute feature values, using labels selected above

5 for eachnodevi ∈VU do // Re-predict most likely label, using attributes
(yi ,con fi)←MAR(~xi , ~fi) // and relational features

6 return {yi |vi ∈VU} // Return predicted class label for each node

Figure 2: Algorithm forICA family of algorithms. We usen = 10 iterations.

the current estimated labels; other labels are consideredmissingand thus ignored in the next step.
Step 4 computes the relational features using only the committed labels, and step 5 classifies using
this information. Step 3 gradually increases the fraction of estimated labels that are committed per
iteration (e.g., ifn=10, from 0%, 10%, 20%,..., up to 100%). Node label assignments committed in
an iterationh are not necessarily committed again in iterationh+1 (and may in fact change).

ICAC requires some kind of confidence measure (con fi in Figure 2) to determine the “best”mof
the current label assignments (those with the highest confidence “rank”). We adopt the approach of
Neville and Jensen (2000) and use the posterior probability of the most likely class for each nodei as
con fi . In exploratory experiments, we found that alternative measures (e.g., probability difference
of the top two classes) produced similar results.
Types of Caution Used:ICAC favors more confident information by ignoring nodes whose labels
are estimated with lower confidence. Step 3 executes this preference, which affects the algorithm
in several ways. First, omitting the estimated labels for some nodes causes the relational feature
value computation in step 4 to ignore those less certain labels. Since this computation favors more
reliable label assignments, subsequent assignments should also be more reliable. Second, if any
node links only to nodes withmissinglabels, then the computed value of the relational features for
that node will also bemissing; Section 6.5 describes how the classifier in Step 5 handles this case.
Third, recall that a realistic CC scenario’s test set may have links to nodes with known labels; these
nodes, represented byVK , provide the “most certain” labels and thus may aid classification.ICAC

exploitsonly these labels for iterationh = 0. In this case, step 3 ignores all estimated labels (every
estimate forVU), but step 4 can still compute some relational feature values based on known labels

2788

CAUTIOUS COLLECTIVE CLASSIFICATION

Gibbs classify(V,E,X,YK ,MAR,MA,n,nB,C,AlgType)=
// V=nodes,E=edges,X=attribute vectors,YK=labels of known nodes (YK = {yi |vi ∈VK})
// MAR=local classifier (uses attributes and relations),MA=classifier that uses only attributes
// n=# of iterations,nB= “burn-in” iters.,C=set of class labels,AlgType=Gibbsor GibbsNC

1 for eachnodevi ∈VU do // Bootstrap: estimate label probs.~bi
~bi ←MA(~xi) // for each node, using attributes only

2 for eachnodevi ∈VU do // Initialize statistics
for eachc∈C

stats[i][c]← 0

3 for h = 1 to n do // Repeat forn iterations

for eachnodevi ∈VU do
4 switch (AlgType):

case(Gibbs): yi ← sampleDist(~bi) // Sample next label from distribution
case(GibbsNC): yi ← argmaxc∈C bi(c) // Or, pick most likely label from dist.

5 if (h > nB) stats[i, yi]← stats[i, yi]+1 // Record stats. on chosen label

6 Y′←YK ∪{yi |vi ∈VU} // Compute feature values, using known
for eachnodevi ∈VU do // labels and labels chosen in step 4

~fi ← computeRelatFeatures(V,E,Y′)

7 for eachnodevi ∈VU do // Re-estimate label probs., using
~bi ←MAR(~xi , ~fi) // attributes and relational features

8 return stats // Return marginal stats. for each node

Figure 3: Algorithm for Gibbs sampling. Thousands of iterations are typically needed.

from VK . Thus, the known labels influence the first classification in step 5, before any estimated
labels are used, and in subsequent iterations. Finally,ICAC can also benefit from PLUL.

5.1.3 ICAKn

The above discussion highlighted two different effects fromICAC: favoring more confident esti-
mated labels vs. favoring known labels fromVK . An interesting variant is to favor the known labels
in the first iteration (just likeICAC), but then use all labels for subsequent iterations (just likeICA).
We call this algorithmICAKn (“ICA+Known”).
Types of Caution Used:ICAKn favors only known nodes. It is thus more cautious thanICA, but
less cautious thanICAC. It can also benefit from cautious learning via PLUL.

5.2 Gibbs Family of Algorithms

Figure 3 displays pseudocode for Gibbs sampling (Gibbs) and the non-cautious variantGibbsNC.
We describe each in turn.

5.2.1 Gibbs

In Figure 3, step 1 (bootstrapping) is identical to step 1 of theICA algorithms, except that for each
nodevi the classifier must output a distribution~xi containing the likelihood of each class, not just

2789

MCDOWELL , GUPTA AND AHA

the most likely class. Step 2 initializes the statistics that will be used to compute the marginal class
probabilities for each node. In step 4, within the loop, the algorithm probabilistically samples the
current class label distribution of each node and assigns a single labelyi based on this distribution.
This label is also recorded in the statistics during Step 5 (after the firstnB iterations are ignored for
“burn-in”). Step 6 then selects all labels (known labels and those just sampled) and uses them to
compute the relational features’ values. Step 7 re-estimates the posterior class label probabilities
given these relational features. The process then repeats. When the process terminates, the statistics
recorded in step 5 approximate the marginal distribution of class labels, and are returned by step 8.
Types of Caution Used:Like ICAC, Gibbsis cautious in its use of estimated labels, but in a different
way. In particular,ICAC exercises caution in step 3 by ignoring (at least for some iterations) labels
that have lower confidence. In contrast,Gibbsexercises caution by sampling, in step 4, values from
each node’s predicted label distribution—causing nodes with lower prediction confidence to reflect
that uncertainty via higher fluctuation in their assigned labels, yielding less predictive influence on
their neighbors. Gibbs can also benefit from cautious learning via PLUL.

We expectGibbsto perform better thanICAC, since it makes use of more information, but this
requires careful confirmation. In addition,Gibbsis considerably more time intensive thanICAC or
ICA (see Section 5.6).

5.2.2 GibbsNC

GibbsNC is identical toGibbsexcept that instead of sampling in step 4, it always selects the most
likely label. This change makesGibbsNC deterministic (unlikeGibbs), and makesGibbsNC behave
almost identically toICA. In particular, observe that after any number of iterationsh (1≤ h≤ n),
ICA and GibbsNC will have precisely the same set of current label assignments for every node.
However,ICA’s result is the final set of label assignments, whereasGibbsNC’s result is the marginal
statistics computed from these time-varying assignments. For a given data set, ifICA converges to
an an unchanging set of label assignments, then for sufficiently largen GibbsNC’s final result (in
terms of accuracy) will be identical toICA’s. If, however, some nodes’ labels continue to oscillate
with ICA, thenICA andGibbsNC will have different results for some of those nodes.
Types of Caution Used: Just like ICA, GibbsNC uses all available labels for relational feature
computation, and always picks the single most likely label based on the new predictions. Thus,
GibbsNC does not perform cautious inference, though it can benefit from cautious learning to learn
the classifiersMA andMAR.

5.3 LBP Family of Algorithms

This section describes loopy belief propagation (LBP) and the non-cautious variantLBPNC.

5.3.1 LBP

LBP has been a frequently studied technique for performing approximate inference, and has been
used both in early work on CC (Taskar et al., 2002) and in more recent evaluations (Sen and Getoor,
2006; Neville and Jensen, 2007; Sen et al., 2008). Most works that studyLBP for CC treat the
entire graph, including attributes, as a pairwise Markov random field (e.g., Sen and Getoor, 2006;
Sen et al., 2008) and then justifyLBP as an example of a variational method (cf., Yedidia et al.,
2000). The basic inference algorithm is derived from belief propagation (Pearl, 1988), but applied
to graphs with cycles (McEliece et al., 1998; Murphy et al., 1999).

2790

CAUTIOUS COLLECTIVE CLASSIFICATION

LBP performs inference via passing messages from node to node. In particular,mi→ j(c) repre-
sents nodevi ’s assessment of how likely it is that nodev j has a true label of classc. In addition,
φi(c) represents the “non-relational evidence” (e.g., based only on attributes) forvi having classc,
andψi j (c′,c) represents the “compatibility function” which describes how likely two nodes of class
c andc′ are linked together (in terms of Markov networks, this represents the potential functions
defined by the pairwise cliques of linked class nodes). Given these two sets of functions, Yedidia
et al. (2000) show the belief that nodei has classc can be calculated as follows:

bi(c) = αφi(c) ∏
k∈Ni

mk→i(c) (1)

whereα is a normalizing factor to ensure that∑c∈C bi(c) = 1 andNi is the neighborhood function
defined as:

Ni = {v j |∃(vi ,v j) ∈ E} .

The messages themselves are computed recursively as:

m′i→ j(c) = α ∑
c′∈C

(

φi(c
′)ψi j (c

′,c) ∏
k∈Ni\ j

mk→i(c
′)

)

. (2)

Observe that the message fromi to j incorporates the beliefs of all the neighbors ofi (Ni) except j
itself. m′i→ j(c) is the “new” value ofmi→ j(c) to be used in the next iteration.

For CC, we need a model that generalizes from the training nodes to the test nodes. The above
equations do not provide this, since they have node-specific potential functions (i.e.,ψi j is specific
to nodesi and j). Fortunately, we can represent each potential function as a log-linear combination
of generalizable features, as commonly done for such Markov networks (e.g., Della Pietra et al.,
1997; McCallum et al., 2000a). More specifically for CC, Taskar et al. (2002) used a log-linear
combination of functions that indicate the presence or absence of particular attributes or other fea-
tures. Several papers (e.g., Sen and Getoor, 2006; Sen et al., 2008) have described a general model
on how to accomplish this, but do not completely explain how to perform the computation. For a
slight loss in generality (e.g., assuming that our nodes are represented by a simple attribute vector),
we now describe how to performLBP for CC on an undirected graph. In particular, letNA be the
number of attributes,Dh be the domain of attributeh, andwc,h,k be a learned weight indicating how
strongly a value ofk for attributeh indicates that a given node has classc. In addition, letfi(h,k)=1
iff the hth attribute of nodei is k (i.e.,xih = k). Then

φi(c) = exp

(

∑
h∈{1..NA}

∑
k∈Dh

exp(wc,h,k) fi(h,k))

)

which is a special case of logistic regression. We likewise define similar learned weights of the
form wc,c′ that indicate how likely a node with labelc is linked to a node with labelc′, yielding the
compatibility function

ψi j (c,c′) = exp(wc,c′) .

2791

MCDOWELL , GUPTA AND AHA

LBP classify(V,E,X,YK ,w,C,N,AlgType)=
// V=nodes,E=edges,X=attribute vectors,YK=labels of known nodes (YK = {yi |vi ∈VK})
// w=learned params.,C=set of class labels,N=neighborhood funct.,AlgType=LBPor LBPNC

1 for each (vi ,v j) ∈ E such thatv j ∈VU do // Initialize all messages
for eachc∈C do

if (vi ∈VK) // If class is known (yi), set message to its
mi→ j(c)← α ·exp(wyi ,c) // final, class-specific value

else // Otherwise, message starts with same value
mi→ j(c)← α // for every class, but will vary later

2 while (messages are still changing)

3 for each (vi ,v j) ∈ E such thatv j ∈VU do // Perform message passing
for eachc∈C do

m′i→ j(c)← α∑c′∈C

(

φi(c′)exp(wc′,c)∏k∈Ni\ j mk→i(c′)
)

4 for each (vi ,v j) ∈ E such thatv j ∈VU do
if (AlgType= LBP) // For LBP, copy new messages for use in

mi→ j(c)←m′i→ j(c) // next iteration
else

c′← argmaxc∈C(m′i→ j(c)) // For LBPNC, select most likely label for node
for eachc∈C do // Treat selected label the same as a “known”

mi→ j(c)← exp(wc′,c) // label for use in the next iteration

5 for eachnodevi ∈VU do // Compute final beliefs
for eachc∈C do

bi(c)← αφi(c)∏k∈Ni
mk→i(c)

6 return {~bi} // Return final beliefs

Figure 4: Algorithm for loopy belief propagation (LBP).α is a normalization factor.

As desired, the compatibility function is now independent of specific node identifiers, that is, it
depends only upon the class labelsc andc′, not i and j. We use conjugate gradient descent to learn
the weights (cf., Taskar et al., 2002; Neville and Jensen, 2007; Sen et al., 2008).

Finally, we must consider how to handle messages from nodes with a “known” class label.
Suppose nodevi has known classyi . This is equivalent to having a node where the non-relational
evidenceφi(c) = 1 if c is yi and zero otherwise. Sinceyi is known, nodevi is not influenced by its
neighbors. In that case, using Equation 2 (with an empty neighborhood for the product) yields:

mi→ j(c) = α ∑
c′∈C

φi(c
′)ψi j (c

′,c) = α ·ψi j (yi ,c) = α ·exp(wyi ,c) . (3)

Given these formulas, we can now present the complete algorithm in Figure 4. In Step 1, the
messages are initialized, using Equation 3 ifvi is a known node; otherwise, each value is set toα
(creating a uniform distribution). Steps 2-4 performs message passing until convergence, based on
Equation 2. Finally, step 5 computes the final beliefs using Equation 1 and step 6 returns the results.
Types of Caution Used:Like Gibbs,LBP exercises caution by reasoning based on the estimated
label uncertainty, but in a different manner. Instead of sampling from the estimated distribution,
LBP in step 3 directly updates its beliefs using all of its current beliefs, so that the new beliefs
reflect the underlying uncertainty of the old beliefs. In particular, this uncertainty is expressed

2792

CAUTIOUS COLLECTIVE CLASSIFICATION

WVRN RL classify(V,YK ,n,C,~bprior ,N,Γ)=
// V=nodes,YK=labels of known nodes (YK = {yi |vi ∈VK}), n=# of iterations
// C=set of class labels,~bprior=class priors,N=neighborhood funct.,Γ=decay factor

1 for eachnodevi ∈VK do // Create belief vector for each known label
~bi ←makeBelie f sFromKnownClass(|C|,yi) // (all zeros except at index for classyi)

for eachnodevi ∈VU do // Create initial beliefs for unknown labels
~bi ←~bprior // (using class priors as initial setting)

2 for h = 0 to n do // Iteratively re-compute beliefs

3 for eachnodevi ∈VU do // Compute new distribution for each node
~b′ i ← 1

|Ni |
∑v j∈Ni

~b j // by averaging neighbors’ distributions

4 for eachnodevi ∈VU do // Perform simulated annealing
~bi ← Γh~b′ i +(1−Γh)~bi

5 return {~bi |vi ∈VU} // Return belief distribution for each node

Figure 5: Algorithm forwvRNRL. Based on Macskassy and Provost (2007), we usen = 100 itera-
tions with a decay factor ofΓ = 0.99.

by the continuous-valued numbers that represent each messagemi→ j . LBP can also benefit from
cautious learning with PLUL; in this case, PLUL influences thewc,h,k andwc,c′ weights that are
learned (see Section 6.4).

5.3.2 LBPNC

LBPNC is identical toLBP except that after the new messages are computed in step 3, in step 4
LBPNC picks the single most likely labelc′ to represent the message fromvi to v j . LBPNC then treats
c′ as equivalent to a “known” labelyi for vi and re-computes the appropriate messagemi→ j(c) using
Equation 3.
Types of Caution Used:Like ICA andGibbsNC, LBPNC is non-cautious because it uses all available
labels for relational feature computation and always picks the single most likely label based on the
new predictions. In essence, the “pick most likely” step transforms the soft-labelingLBPalgorithm
into the hard-labelingLBPNC algorithm, removing cautious inference just as the “pick most likely”
step did forGibbsNC. However,LBPNC, like LBP, can still benefit from cautious learning with
PLUL.

5.4 wvRN Family of Algorithms

Figure 5 displays pseudocode forwvRNRL, a soft-labeling algorithm. For simplicity, we present the
related, hard-labeling variantswvRNICA+C andwvRNICA+NC separately in Figure 6. Each of these is
a relational-only algorithm; Section 7.9 will discuss variants that incorporate attribute information.

5.4.1 wvRNRL

wvRNRL(Weighted-Vote Relational Neighbor, with relaxation labeling) is a relational-only CC al-
gorithm that Macskassy and Provost (2007) argued should be considered as a baseline for all CC

2793

MCDOWELL , GUPTA AND AHA

WVRN ICA classify(V,YK ,n,C,~bprior ,N,AlgType)=
// V=nodes,YK=labels of known nodes (YK = {yi |vi ∈VK}), n=# of iters.,C=class labels
//~bprior=class priors,N=neighborhood function,AlgType=wvRNICA+C or wvRNICA+NC

1 for eachnodevi ∈VU do
switch (AlgType): // Set initial value for unknown labels...

case(wvRNICA+C): yi ←
′?′ // ...start labels asmissing

case(wvRNICA+NC): yi ← sampleDist(~bprior) // ...or sample label from class priors

2 for h = 0 to n do // Iteratively re-label the nodes

3 for eachnodevi ∈VU do
N′i ←{v j ∈ Ni |y j 6=

′?′ } // Find all non-missingneighbors
if (|N′i |> 0) // New label is the most common label

y′i ← argmaxc∈C | {v j ∈ N′i |y j = c} | // amongst those neighbors
elsey′i = yi // If no such neighbors, keep same label

4 for eachnodevi ∈VU do // After all new labels are computed,
yi ← y′i // update to store the new labels

5 return {yi |vi ∈VU} // Return est. class label for each node

Figure 6: Algorithm forwvRNICA+C andwvRNICA+NC. This is a “hard labeling” version ofwvRNRL;
each of the 5 steps corresponds to the same numbered step in Figure 5. We usen = 100
iterations.

evaluations. At each iteration, each nodei updates its estimated class distribution by averaging the
current distributions of each of its linked neighbors.wvRNRL ignores all attributes (non-relational
features). Thus,wvRNRL is useful only if the test set links to some nodes with known labels to
“seed” the inference process. Macskassy and Provost showed that this simple algorithm can work
well if the nodes exhibit strong homophily and enough labels are known.

Step 1 ofwvRNRL (Figure 5) initializes a belief vector for every node, using the known labels
for nodes inVK , and a class prior distribution for nodes inVU . For each node, step 3 averages the
current distributions of its neighbors, while step 4 performs simulated annealing to ensure conver-
gence. Step 5 returns the final beliefs. For simplicity, we omit edge weights from the algorithm’s
description, since our experiments do not use them.
Types of Caution Used:SincewvRNRL computes directly with the estimated label distributions, it
exercises cautious inference in the same manner asLBP. However, unlike the other CC algorithms,
it does not learn from a training set, and thus cautious learning with PLUL does not apply.

5.4.2 wvRNICA+C AND wvRNICA+NC

Figure 6 presents a hard-labeling alternative towvRNRL. Each of the five steps mirror the corre-
sponding step in the description ofwvRNRL. In particular, for nodevi , step 3 computes the most
common label among the neighbors ofvi (the hard-labeling equivalent of averaging the distribu-
tions), and step 4 commits the new labels without annealing.

However, with a hard-labeling algorithm, the initial labels for each node become very important.
The simplest approach would be to initialize every node to have the most common label from the
prior distribution. However, that approach could easily produce interlinked regions of labels that

2794

CAUTIOUS COLLECTIVE CLASSIFICATION

that were incorrect but highly self-consistent; leading to errors even when many known labels were
provided. Instead, Macskassy and Provost (2007) suggest initializing each nodevi ∈VU to missing
(indicated in Figure 6 by a question mark), a value that is ignored during calculations. They call the
resulting algorithm wvRN-ICA; here we refer to it aswvRNICA+C. A missinglabel remains for node
vi after iterationh if during that iteration every neighbor ofvi was alsomissing.

Alternatively, a simpler algorithm is to always compute with all neighbor labels (do not initialize
any tomissing), but initialize each label inVU by sampling from the prior distribution. We call this
algorithmwvRNICA+NC. This process is the hard-labeling analogue ofwvRNRL’s approach: instead
of initializing eachnode with the prior distribution, withwvRNICA+NC sampling initializes theentire
setso that it represents, in aggregate, the prior distribution.

Types of Caution Used:wvRNICA+NC always uses the estimated label of every node, without regard
for how certain that estimate is. Thus, it does not exhibit cautious inference. However,wvRNICA+C

does exhibit cautious inference, although this effect was not discussed by prior work with this
algorithm. In particular, during the first iterationwvRNICA+C uses only the certain labels fromYK ,
since all nodes inYU are markedmissing. These known labels are used to estimate labels for every
node inVU that is directly adjacent to some node inVK . In subsequent iterations,wvRNICA+C

uses both labels fromYK and labels fromYU that have been estimated so far. However, the labels
estimated so far are likely to be more reliable than later estimations, since the former labels are
from nodes that were closer to at least one known label. Thus, in a manner similar toICAC’s
gradual commitment of labels based on confidence,wvRNICA+C gradually incorporates more and
more estimated labels into its computation, where more confident labels (those closer to known
nodes) are incorporated sooner. This effect causeswvRNICA+C to exploit estimated labels more
cautiously.

5.5 Parameter Learning for Uncertain Labels (PLUL)

CC algorithms typically train a local classifier on a fully-labeled training set, then use that local
classifier with some collective inference algorithm to classify the test set. Unfortunately, this results
in asymmetric training and test phases: since all labels are known in the training phase, the learning
process sees no uncertainty in relational feature values, unlike the reality of testing. Moreover,
the classifier’s training is unaffected by the type of collective inference algorithm used, and how
(if at all) that collective algorithm attempts to compensate for the uncertainty of estimated labels
during testing. Consequently, the learned classifier may tend to produce poor estimates of important
parameters related to the relational features (e.g., feature weights, conditional probabilities). Even
for CC algorithms that do not use a local classifier, but instead take a global approach that learns
over the entire training graph (as withLBPand relaxation labeling), the same fundamental problem
occurs: if autocorrelation is present, then parameters learned over the fully labeled training set tend
to overstate the usefulness of relational features for testing, where estimated labels must be used.

To address these problems, we developed PLUL (Parameter Learning for Uncertain Labels).
PLUL is based on standard cross-validation techniques for performing automated parameter tuning
(e.g., Kohavi and John, 1997). The key novelty is not in the cross-validation mechanism, but in the
selection ofwhichparameters should be tuned andwhy. To use PLUL, we must first select or create
an appropriate parameter that controls the amount of impact that relational features have on the
resultant classifications. In principle, PLUL could search a multi-dimensional parameter space, but
for tractability we select a single parameter that affects all relational features. For instance, when

2795

MCDOWELL , GUPTA AND AHA

PLUL learn (CCtype,P, l p,VTr,ETr,XTr,YTr,VH ,EH ,XH ,YH)=
// CCtype=CC alg. to use,P=set of parameter values to consider,l p=labeled proportion to use
// VTr,ETr,XTr,YTr = vertices, edges, attributes, and labels from training graph
// VH ,EH ,XH ,YH = vertices, edges, attributes, and labels from holdout graph

1 Y′H = keepSomeLabels(l p,YH) // Randomly selectlp% of labels to keep; discard others

2 bestParam← /0 // Initialize variables to track best parameter so far
bestAcc←−1

3 for each p∈ P do // Iterate over every parameter value

4 // Learn complete CC classifier from fully-labeled training data, influenced byp
cc= learn CC classi f ier(CCtype,VTr,ETr,XTr,YTr, p)

5 // Run CC on holdout graph (with some known labelsY′H) and evaluate accuracy
acc← executeCC in f erence(cc,VH ,EH ,XH ,Y′H)

6 // Remember this parameter if it’s the best so far
if (acc> bestAcc)

bestParam← p
bestAcc← acc

7 return bestParam // Return best parameter found over the holdout graph

Figure 7: Algorithm for Parameter Learning for Uncertain Labels (PLUL).The holdout graph is
derived from the original training data and is disjoint from the graph that is used later for
testing.

using a k-nearest-neighbor rule as the local classifier, we employ PLUL to adjust the weightwR of
relational features in the node similarity function. PLUL performs automated tuning by repeatedly
evaluating different values of the selected parameter, as used by the local classifier, together with
the collective inference algorithm (or the entire learned model forLBP). For each parameter value,
accuracy is evaluated on a holdout set (a subset of the training set). PLUL then selects the parameter
value that yields the best accuracy to use for testing.

Figure 7 summarizes these key steps of PLUL and some additional details. First, note that
proper use of PLUL requires a holdout set that reflects the test set conditions. Thus, step 1 of the
algorithm removes some or all of the labels from the holdout set, leaving only the same percentage
of labels (lp%) that are expected in the test set. Second, running CC inference with a new parameter
value may require re-learning the local classifier (forICA or Gibbs) or the entire learned model (for
LBP). This is shown in step 4 of Figure 7. Alternatively, for Naive Bayes or k-nearest-neighbor
local classifiers, the existing classifier can simply be updated to reflect the new parameter value.

We expect PLUL’s utility to vary based upon the fraction of known labels (lp) that are available
to the test set. If there are few such labels, there is more discrepancy between the training and test
environments, and hence more need to apply PLUL. However, if there are many such labels, then
PLUL may not be useful.

Because almost all CC algorithms learn parameters based in some way on relational features,
PLUL is widely applicable. In particular, Table 2 shows how we select an appropriate relational
parameter to apply PLUL for different CC algorithms. The top of the table describes how to apply
PLUL to a local classifier that is designed to be used with a CC algorithm likeICA or Gibbs. The

2796

CAUTIOUS COLLECTIVE CLASSIFICATION

Local Classifier (or CC
algorithm)

Parameter set by PLUL (per re-
lational feature)

Values tested by PLUL (default in
bold)

Naive Bayes (NB) Hyperparameterα for Dirichlet
prior

1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096

Logistic Regression (LR) Varianceσ2 of Gaussian prior 5, 10, 20, 40, 80, 160, 320, 640,
1280, 2560, 512

k-Nearest Neighbor (kNN) WeightwR 0.01, 0.03, 0.0625, 0.125, 0.25, 0.5,
0.75,1.0, 2.0

LBP Varianceσ2 of Gaussian prior 5, 10, 20, 100, 200, 1000, 10000,
100000, 1000000

Table 2: The classifiers (NB, LR, and kNN) and CC algorithm (LBP) used in our experiments for
which PLUL can be applied to improve performance. The second column lists the key
relational parameters that we identified for PLUL to learn, while the last column shows
the values that PLUL considers in its cross-validation.

last row demonstrates how it can instead be applied to a global algorithm likeLBP. For instance, for
the NB classifier, most previous research has used either no prior or a simple Laplacian (“add one”)
prior for each conditional probability. By instead using a Dirichlet prior (Heckerman, 1999), we can
adjust the “hyperparameter”α of the prior for each relational feature. Larger values ofα translate to
less extreme conditional probabilities, thus tempering the impact of relational features. For the kNN
classifier, reducing the weight of relational features has a similar net effect. For the LR classifier
and theLBP algorithm, both techniques involve iterative MAP estimation. Increasing the value
of the variance of the Gaussian prior for relational features causes the corresponding parameter to
“fit” less closely to the training data, again making the algorithm more cautious in its use of such
relational features.

While the core mechanism of PLUL—cross-validation tuning—is common, techniques like
PLUL to explicitly compensate for the bias incurred from training on a fully-labeled set while
testing using estimated labels have not been previously used for CC. A possible exception is Lu and
Getoor (2003a), who appear to have used a similar technique to tune a relational parameter, but,
in contrast to this work, they did not discuss its need, the specific procedure, or the performance
impact.

PLUL attempts to compensate for the bias incurred from training on the correctly-labeled train-
ing set. Alternatively, Kou and Cohen (2007) describe a “stacked model” that learns based on
estimated, rather than true labels. While the original goal of this stacked approach was to produce a
more time-efficient algorithm, Fast and Jensen (2008) recently demonstrated that this technique, by
eliminating the bias between training and testing, does indeed reduce “inference bias.” This reduced
bias enables the stacked models to perform comparably to Gibbs sampling, even though the stacked
model is a simpler, non-iterative algorithm that consequently has higher learning bias. Interestingly,
Fast and Jensen (2008) note that the stacked model performs an “implicit weighting of local and
relational features,” as with PLUL. The stacked model accomplishes this by varying the learning
and inference procedure, whereas PLUL modifies only the learning procedure, and thus works with
any inference algorithm that relies on a learned model.

2797

MCDOWELL , GUPTA AND AHA

5.6 Computational Complexity and the Cost of Caution

For learning and inference, all of the CC algorithms (variants ofICA, Gibbs, wvRN, andLBP)
use space that is linear in the number of nodes/instances (NI). ICA and Gibbs have significant
similarities, so we consider their time complexity first. For these two algorithms, the dominant
computation costs for inference stem from the time to compute relational features and the time to
classify each node with the local classifier. Typically, nodes are connected to a small number of
other instances, so the first cost isO(NI) per iteration. For the second cost, the time per iteration is
O(NI) for NB and LR, andO(N2

I) for kNN. However, the number of iterations varies significantly.
Based on previous work (Neville and Jensen, 2000; McDowell et al., 2007a), we setn = 10 for
variants ofICA; more iterations did not improve performance. In contrast,Gibbstypically requires
thousandsof iterations.

Adding or removing cautious inference toICA andGibbsdoes not significantly change their
time complexity. In particular,GibbsNC has the same complexity asGibbs. ICAC introduces an
additional cost, compared toICA, of O(NI logNI) per iteration to sort the nodes by confidence.
However, in practice classification time usually dominates. Therefore, the overall computational
cost per iteration for all variants ofICA andGibbsare roughly the same, but the larger number of
iterations for variants ofGibbsmakes them much more time-expensive thanICA, ICAKn, or ICAC.

LBPdoes not explicitly compute relational features, but its main loop iterates over all neighbors
of each node, thus again yielding a cost ofO(NI) per iteration under the same assumptions as
above. We found thatLBP inference was comparable in cost to that ofICA, which agrees with
Sen and Getoor (2007). However, training theLBP classifier is much more expensive than training
the other algorithms.ICA andGibbsonly require training the local classifier, which involves zero
to one passes over the data for kNN and NB, and a relatively simple optimization for LR. On the
other hand, trainingLBPwith conjugate gradient requires executingLBP inference many times. We
found this training to be at least an order of magnitude slower than the other algorithms, as also
reported by Sen and Getoor (2007).LBPNC has the same theoretical and practical time results as
LBP.

wvRN is the simplest CC algorithm, since it requires no feature computation and the key step
of each iteration is a simple average over the neighbors of each node. As with previous algorithms,
assuming a small number of neighbors for each node yields a total time per iteration ofO(NI). Prior
work (Macskassy and Provost, 2007) suggested using a somewhat larger number of iterations (100)
than withICA. Nonetheless, in practicewvRN’s simplicity makes it the fastest algorithm.

Finally, all of the algorithms, except forwvRN, can be augmented with cautious learning via
PLUL. Executing PLUL requires repeatedly running the CC algorithm with different values of the
selected parameter. We used 9-13 different parameter values, and hence the cost of PLUL vs. not
using PLUL is about one order of magnitude.

6. Evaluation Methodology

This section describes our hypotheses and the method that we use to evaluate them.

6.1 Hypotheses

Table 3 summarizes our five hypotheses. As described in Section 1, we expect cautious behaviors
to be more important when there is a higher probability of incorrect relational inference. Thus, each

2798

CAUTIOUS COLLECTIVE CLASSIFICATION

Data characteristic Type of caution Hypothesis: relative gain of caution
considered will increase as value of characteristic...

Autocorrelation Inference ...increases (H1)
Attribute predictiveness Inference ...decreases (H2)
Link density Inference ...decreases (H3)
Labeled proportion Inference ...decreases (H4)

Labeled proportion Learning ...decreases (H5)

Table 3: The five hypotheses that we investigate.

hypothesis varies one data characteristic that impacts the likelihood of such errors. In particular,
hypotheses H1-H4 vary a data characteristic to measure the impact of cautious inference, which
Section 7 will evaluate for different pairs of cautious and non-cautious inference algorithms. We
define the “relative gain of cautious inference” as the difference between the accuracies of two such
algorithms (e.g.,Gibbsvs. GibbsNC). Hypothesis H5 also varies a data characteristic, but does so
to measure the “relative gain of cautious learning” (i.e., comparing performance with vs. without
PLUL).

• H1: The relative gain of cautious inference increases with increasing autocorrelation.
Larger autocorrelation implies that relations are more predictive, and will be learned as such
by the classifier. This magnifies the impact that an error in a predicted label can have on
linked nodes. Therefore, we expect cautious inference algorithms to improve classification
by a greater margin in such cases.

• H2: The relative gain of cautious inference increases with decreasing attribute predic-
tiveness (ap). Decreasedap implies a greater potential of errors/uncertainty in the predicted
labels. The effect of cautiously using uncertain labels should be greater in such cases.

• H3: The relative gain of cautious inference increases with decreasing link density (ld).
When the number of links is high, a single mispredicted label has relatively little impact on
its neighbors. As the number of links decreases, however, a single misprediction can cause
larger relational feature uncertainty, increasing the need for caution.

• H4: The relative gain of cautious inference increases with decreasing labeled proportion
(lp). When lp is high, only a few of each node’s neighbors have estimated labels (most are
known with certainty). Consequently, there is less uncertainty in relational feature values, and
less need to use estimated labels cautiously.

• H5: The relative gain of cautious learning with PLUL increases with decreasing labeled
proportion(lp). As with H4, whenlp is high there is less uncertainty in the relational features.
Thus there is less disparity between the fully correct training set (where classifier parameters
were learned) and the test set. Consequently, we expect PLUL, which compensates for any
such disparity, to matter less whenlp is high.

6.2 Tasks

We will evaluate three general tasks (see Section 2.3):

2799

MCDOWELL , GUPTA AND AHA

Parameter Abbrev. Values tested (defaults in bold)
Nodes per graph NI 250
Number of class labels NC 5
Number of attributes NA 10
Degree of homophily dh 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,0.7, 0.8, 0.9
Link density ld 0.1,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
Attribute predictiveness ap 0.1, 0.2, 0.3, 0.4, 0.5,0.6, 0.7, 0.8, 0.9
Labeled proportion lp 0%, 10%, 20%, 40%,50%, 60%, 80%

Table 4: Synthetic data parameters. Defaults were chosen based on averages from Cora and Cite-
seer, two commonly studied data sets for CC.

1. Out-of-sample task: Here the test set does not contain or link to any known nodes, as with
Neville and Jensen (2000), Taskar et al. (2002), and Sen and Getoor (2006).

2. Sparse in-sample task:Here some of the test nodes, but only a few, have known labels
(we use 10%). We focus particularly on this task, because some researchers argue that it
is the most realistic scenario, since often networks are large, and acquiring known labels is
expensive (Bilgic and Getoor, 2008). This was the primary scenario considered by the recent
work of McDowell et al. (2007a,b), Bilgic and Getoor (2008), and Gallagher et al. (2008).

3. Dense in-sample task:Here a substantial number of test nodes may have known labels (we
use 50%). This task was the one recently evaluated by Sen et al. (2008).

6.3 Data

We evaluate the hypotheses over both synthetic and real-world data sets, which we describe below.
We use the synthetic data to highlight how different data characteristics affect the relative gain of
cautious behaviors, then the real-world data sets to validate these findings.

6.3.1 SYNTHETIC DATA

We use a synthetic data generator (see Table 4) with two components: a Graph Generator and an
Attribute Generator. The Graph Generator has four inputs:NI (the number of nodes/instances),NC

(the number of classes),ld (the link density), anddh (the degree of homophily). For each link,
dh controls the probability that the linked nodes have the same class label; higher values yield
higher autocorrelation (see Appendix A for details). The final number of links is approximately
NI/(1− ld), and the final link degrees follow a power law distribution, which is common in real
networks (Bollob́as et al., 2003). The Graph Generator is identical to that used by Sen et al. (2008);
see that article for more detail.

To make this a practical study, we chose default parameter values that mimic characteristics of
two frequently studied CC data sets, Cora and Citeseer (McDowell et al., 2007a; Neville and Jensen,
2007; Sen et al., 2008). In particular,NC=5 classes and Table 4 shows additional default values. We
choseNI =250 nodes, a smaller value than with Cora/Citeseer, to reduce CC execution time, but
larger values did not change the performance trends.

2800

CAUTIOUS COLLECTIVE CLASSIFICATION

The Attribute Generator generates 10 (NA) binary attributes. Our design for it is motivated by our
observations of common CC data sets. We found that, unlike synthetic models used in prior studies,
different attributes vary in their utility for class prediction. To simulate this, we associate each
attributeh with a particular classcm, wherem= h mod NC, and vary the strength of each attribute’s
predictiveness based on the value ofh. In particular, for nodevi with classyi , the probability that
vi ’s hth attributexih has value 1 depends upon the classyi as follows:

P(xih = 1|yi = ck) =

0.15+(ap−0.15)· h
NA−1 if k = h mod NC

0.1 if k = (h−1) mod NC

0.05 if k = (h+1) mod NC

0.02 otherwise.

The first line indicates that, whenyi (= ck) is the class associated with attributeh (i.e., k =
h mod NC), thenP(xih = 1|yi = ck) ranges from 0.15 forh = 0 to ap (a constant representing the
strength of attribute predictiveness) forh = 9. As a result, each of the five classes has two attributes
associated with that class, but some classes have associated attributes that are more useful for pre-
diction. However,xih may also be 1 whenyi is some other class besides an “associated class”; the
next three lines encode this class ambiguity. This ambiguity/noise is based on our observations of
Cora and Citeseer and is similar to the binomial distribution used by Sen et al. (2008).

Finally, we use a parameter for test set generation calledlp (labeled proportion), which is the
proportion of test nodes with known labels. We use default values oflp=0%, lp=10%, andlp=50%
for the three tasks defined in Section 6.2. Nodes to be labeled are selected uniformly at random
from the test set until the desired value oflp is reached. In contrast, some real data sets are likely
to exhibit non-uniform clustering of known nodes. We conjecture that such data sets will have a
smaller “effective”lp, since each known node will have, on average, fewer direct connections to
unknown nodes. For instance, a data set withlp=10% may behave more like a data set withlp=5%
where the labels are more uniformly distributed. Such effects should be examined in future work.

6.3.2 “REAL-WORLD” DATA SETS

We consider the following five “real-world” data sets (see Table 5). “Real-world” is a somewhat
subjective term; however, all of the data sets are based on naturally arising networks and have been
used in some form for previous research on relational learning.

1. Cora (McCallum et al., 2000b): A collection of machine learning publications categorized
into seven classes. The relational links are (directed) citations.

2. Citeseer (Lu and Getoor, 2003a):A collection of research publications drawn from Cite-
Seer. The relational links are (directed) citations.

3. WebKB (Craven et al., 1998): A collection of web pages from four computer science de-
partments categorized into six classes (Faculty, Student, Staff, Course, ResearchProject, or
Other). “Other” is problematic because it is too general, representing 74% of the pages. Like
Taskar et al. (2002), we discarded all “Other” pages that did not have at least three outgoing
links, yielding a total of 1541 instances of which 30% are Other. The relational links are the
(directed) hyperlinks among these pages.

2801

MCDOWELL , GUPTA AND AHA

Cora CiteSeer WebKB HepTH Terror
Characteristics of entire graph
Instances/nodes 2708 3312 1541 2194 645
Attributes (non-relat. feats.) available 1433 3703 100 387 106
Attributes used (max) 100 100 100 100 100
Attributes used (default) 20 20 40 40 2
Link/relation directedness directed directed directed directed undirected
Type of relational features used in,out in,out in,out,co in,out linksto
Class labels 7 6 6 7 6
Total relational features used 14 12 18 14 6
Links per node 3.9 2.7 5.8(64.6) 8.9 9.8
Autocorrelation 0.88 0.83 0.30(0.53) 0.54 0.16

Characteristics of each test set (on average)
Instances/nodes 400 400 335-469 300 150
Number of folds 5 5 4 5 3
Links per node 2.7 2.7 5.7(61.0) 4.3 12.3
Approx. link density 0.23 0.23 0.64(0.97) 0.53 0.79
Autocorrelation 0.85 0.84 0.38(0.53) 0.64 0.24
Label consistency 0.78 0.75 0.21(0.90) 0.61 0.56
Approximate homophily 0.74 0.70 0.05(0.88) 0.54 0.47

Table 5: Summary of the five real-world data sets used.in andout features compute separate values
based on incoming or outgoing links, whilelinksto features make no such distinction.co
features are based on virtual co-citation links; nodes A and B are linked via aco link if
there exists some node C with outgoing links to both A and B. For WebKB, the first statistic
listed is computed ignoring co-links, while the statistic in parentheses is computed using
onlyco-links. Label consistency is the percentage of links connecting nodes with the same
label; Appendix A defines this and approximate homophily. Section 6.9 describes the
“default” number of attributes used.

4. HepTH: A collection of journal articles in the field of theoretical high-energy physics, de-
rived from the Proximity Hep-Th database (http://kdl.cs.umass.edu/data/hepth). The original
data set did not have any single class label, but some pages were classified into topic sub-
types. Among pages with one such subtype, we selected all articles belonging to the six
most common subtypes, yielding 1404 articles. To create a more connected graph, we also
selected all articles with a date after 2001 that linked to at least two of the 1404 pre-selected
articles. There were 790 such articles, which we treated as having a class label of “Other.”
The relational links are the (directed) citations among all 2194 articles.

5. Terror (Zhao et al., 2006): A collection of terrorist incidents, drawn from the Profile in Ter-
ror project (http://profilesinterror.mindswap.org). The incidents are non-uniformly distributed
into six categories: Bombing (44%), WeaponAttack (38%), Kidnapping (14%), Arson (2%),
NBCRAttack (1%), and OtherAttack (1%). The relational links indicate (undirected) geo-
graphical co-location.

These data sets are intended to demonstrate CC performance on a range of data characteristics.
For instance, CC would be expected to be very helpful for Cora and CiteSeer, where autocorrelation
is high, but not very helpful for Terror.

2802

CAUTIOUS COLLECTIVE CLASSIFICATION

6.4 CC Algorithms

We evaluate the ten algorithms listed in Table 1, plusContent Only(CO), a non-relational baseline
that uses only attributes. For each of the four main sections in Table 1, there is one non-cautious
variant (ICA,GibbsNC, LBPNC, andwvRNICA+NC) and one or two cautious variants (ICAC, ICAKn,
Gibbs,LBP,wvRNRL, andwvRNICA+C). ThewvRNalgorithms also serve as a collective, relational-
only baseline.

Based on previous work (Neville and Jensen, 2000; McDowell et al., 2007a), theICA-based
algorithms usedn = 10 iterations; more iterations did not improve performance. ForGibbs, we
used 1500 iterations, with a random restart every 300 iterations, and ignored the first 100 iterations
after a restart for burn-in. Additional iterations did not improve performance.GibbsNC converged
in far fewer iterations because it does not sample and is deterministic; we usedn = 50.

ForLBP, we assumed that each parameter was a priori independent and had a zero-mean Gaus-
sian prior with a default uniform prior variance ofσ2 = 10, which is similar to the values reported
in previous work (e.g., Sen and Getoor 2006; Neville and Jensen 2007). We used MAP estimation
to estimate these parameters based on conjugate gradient.σ2 controls how tightly the parameters fit
to the training data; Table 2 shows the alternative values ofσ2 considered by PLUL to constrain this
fitting for the relational parameters.

6.5 Classifiers

To account for possible variations in overall CC performance trends due to the effect of the un-
derlying classifier, we tested three local classifiers with each CC algorithm wherever applicable
(this excludesLBP andwvRN). Section 5.5 already described, for each classifier, the key relational
feature whose value is learned by PLUL; we now provide more detail on each classifier and its
application of PLUL.

The first classifier is Naive Bayes (NB). PLUL was used to learnα for the Dirichlet prior of
each relational feature. The second classifier is Logistic Regression (LR). We used MAP estimation
with Gaussian priors to learn the parameters for LR; PLUL learned an appropriate varianceσ2 for
the prior of each relational feature. The final classifier is k-Nearest Neighbor (kNN); we usedk=11.
When computing similarity, attributes were assigned a weight of 1. PLUL learned the weightwR

for each relational feature. Weighted similarity was used for voting.
For each classifier, Table 2 shows the specific values considered by PLUL. The “default” value

shown (e.g.,α = 1.0 for NB) was used in two ways. First, the default was used as the parameter
value for all attributes. Second, the default was used for a manual setting for the parameter value
for all relational features when PLUL is not being used. When PLUL was used, the learned value
was used instead for the relational features.

The ICAC algorithm requires a classifier that can ignoremissingrelational feature values. kNN
and NB can do this easily: kNN by dropping the feature from the similarity calculation and NB
by skipping the feature in probability computation. For LR, however, dealing with missing values
is a current research topic (e.g., Fung and Wrobel 1989), with typical techniques including mean
value substitution or multiple imputation. However, for CC the situation is less complex than the
more general case, because missing values occur only for the test set, only for relational features,
and typically only when all neighbors of a node have missing labels. Thus, we can learn several
LR classifiers: one that uses all relational features, and one for each combination of features that
may be missing simultaneously (for our data, this is at most 4). Experimentally, we found this

2803

MCDOWELL , GUPTA AND AHA

to perform better than mean value substitution, though the difference was slight because missing
values were rare. These results are consistent with those of Saar-Tsechansky and Provost (2007) on
non-relational data. Section 7.8 discusses this effect in more detail.

6.6 Node Representation

Each node is represented by a set of (non-relational) attributes and relational features. Algorithms
based onLBP andwvRN reason directly with each individual link, and their algorithms thus di-
rectly define the effective relational features used. Approaches based onICA andGibbs, however,
use some kind of aggregation function to compute their relational feature values. We first describe
the possible aggregation functions for these features, then separately describe the complete repre-
sentation for the synthetic and real data.

6.6.1 RELATIONAL FEATURESCONSIDERED

We considered three different types of relational features:

• Count: This type represents the number of neighbors that belong to a particular class. For
each nodei, there is one such featurefi(c)per class label c. The value offi(c)=Neighborsi(c),
which is the number of nodes linked to nodei that have a known or current estimated label of
c. For instance, in step C of Figure 1,f2(P) = 1 and f2(S) = 2.

• Proportion: This feature is like “count”, except that the feature value represents the propor-
tion of neighbors that have a particular label, rather than the raw number of such neighbors.
For this feature,fi(c) =Neighborsi(c)/Neighborsi(∗), whereNeighborsi(∗) is the number of
nodes linked to nodei that have any current label (known or estimated, but, forICAC, exclud-
ing those nodes whose label was set tomissingbecause of low confidence). IfNeighborsi(∗)
is zero, thenfi(c) is set tomissing.For example, if proportion features were being used, then
the feature values for step C of Figure 1 would bef2(P) = 1/3 andf2(S) = 2/3.

• Multiset: Proportion and count features aggregate the labels of a node’s neighborhood to
produce a single numerical value for each possible label. During inference, this aggregate
value is then compared against the mean value from the training set (with NB or LR), or
compared against the aggregate values for nodes in the training set (with kNN). In contrast, a
“multiset” feature uses a single multiset to represent the current labels of a node’s neighbors.
For instance, if multiset features were used, then for step C of Figure 1,f2 = {P,S,S}. This
has the same information content as with count features, but can be exploited differently by
some local classifiers. In particular, during NB inference, each label in the multiset (excluding
missinglabels) is separately used to update the conditional probability that a node has true
label c. This is the “independent value” approach introduced by Neville et al. (2003b) and
used by Neville and Jensen (2007). However, this approach does not directly apply to LR or
kNN.

6.6.2 SYNTHETIC DATA NODE REPRESENTATION

Each node is represented by ten binary attributes and some relational features. Because represen-
tation choices can affect how well a CC algorithm handles the uncertainty of estimated labels, for
each local classifier-based algorithm we considered count and proportion relational features, as well

2804

CAUTIOUS COLLECTIVE CLASSIFICATION

as multiset features when using NB. For each trial, we evaluated the two or three possible types of
relational features with cross-validation (evaluating accuracy on the holdout set), then selected the
feature type with the highest accuracy to use for testing. When PLUL was used, PLUL was also
applied to each feature type; the best performance (on the holdout set) reported by PLUL for each
feature type was then used for this feature selection. Section 7.8 describes which feature types were
chosen most often for each local classifier. Since there are 5 class labels for the synthetic data and
links are undirected, there were 5 relational features when using count or proportion features, and 1
relational feature (whose value is a multiset) when using multiset.

6.6.3 REAL-WORLD DATA NODE REPRESENTATION

For all five data sets we used binary attributes that indicated the presence or absence of a particular
word. For WebKB, these words were from the body of each HTML page; we selected the 100
most frequent such words, which was all that was available in our version of the data set. For
symmetry, and because adding more words had a small impact on performance, we likewise set
up the remaining data sets to select 100 words as attributes. For Cora and CiteSeer, these words
were taken from the body of the publications; as with previous work (McDowell et al., 2007a) we
selected the 100 words with the highest information gain in the training set to use. For Terror, the
words come from hand-written descriptions of each incident provided with the data set; we selected
the first 100 of the 106 available attributes. For HepTH, we selected, based on information gain, the
100 highest-scoring words from the article title or the name of the corresponding journal.

For relational features, we again considered the proportion, multiset, and count features, and
selected the best feature type using cross-validation as described above. All of the data sets except
Terror had directed links. For these data sets, we computed separate relational feature values based
on incoming and outgoing links. In addition, previous work has shown WebKB to have much
stronger autocorrelation based on co-citation links than on direct links (see Table 5). However,
using such links can sometimes be problematic. Thus, we evaluate two data sets: “WebKB” and
“WebKB+co”. For WebKB, algorithms use in and out links (“direct” links). For WebKB+co,
algorithms use in, out, and co-links, exceptwvRNuses only co-links, as suggested by Macskassy
and Provost (2007) (see Section 7.6).

6.7 Training/Test Splits Generation

For the synthetic data, we generate training, holdout, and test graphs that are disjoint. Likewise, for
WebKB, the data was already divided into four splits (one for each department) that can be used for
cross-validation.

For the other real data sets, we must manually construct training and test splits from the original
graph. Sen et al. (2008) suggest a technique based on snowball sampling that involves picking
a random starting node and iteratively growing a split around that node, where the class of the
next node to be selected is sampled from the overall class distribution. However, we found that
low graph connectivity often prevented the algorithm from producing a final subgraph whose class
distribution resembled the whole graph’s. Instead, we created the following technique,similarity-
driven snowball sampling: given the whole graphG, pick a random starting node and add it to the
split G1. At each step, consider thefrontier F of G1 (all those nodes not inG1 that link to some node
in G1). Among all labelsc that exist inF , select the class labelc′ such that adding some node of
labelc′ to G1 would maximize the similarity (inverse Euclidean distance) of the class distributions

2805

MCDOWELL , GUPTA AND AHA

of G1 andG. Given thisc′, randomly select some node inF of classc′ and add it toG1. Repeat this
random selection and insertion untilG1 is of the desired size.

We run this algorithm in parallel forNS different subgraphs, usingNS different seeds, and permit
each node to be inserted into only one subgraph. This results inNS disjoint splits that have similar
class distributions and that can be used forNS-fold cross validation. We setNS= 5 for Cora, Citeseer,
and HepTH, andNS = 3 for the smaller Terror.

Table 5 shows some of the characteristics of the generated test sets vs. the original, complete
graphs. In general, the autocorrelation and number of links per node are similar, indicating that the
sampling procedure did not dramatically change the average characteristics of the graph. While the
splitting procedure effectively removes links, the average degree of the test sets may still be greater
than with the original graph if high-degree subsets of the original are selected.

6.8 Test Procedure

We first consider the synthetic data. For each control condition (i.e., data generated with a combina-
tion of dh,ap, ld, andlp values, see Table 4) we ran 25 random trials. For each trial, we generated
training, holdout, and test data sets of 250 nodes each. All training is performed on the fully la-
beled training set. The holdout set, when not used for PLUL, was merged with the training set. We
measured classification accuracy on the test set, excluding all nodes with “known” labels.

For the real-world data sets, each experiment involves using all of the relational features shown
in Table 5 and a fixed number of attributes (NA). We varyNA from 2 to 100 (recall that for all data
sets 100 attributes were selected for experimentation). For each setting ofNA, we performNS-fold
cross-validation, whereNS is 3, 4, or 5, depending on the data set. Each one of these 3 to 5 trials is
associated with one subgraph (the test set), and the remaining 2-4 subgraphs comprise the training
set. We then apply PLUL by training on half of the training set and using the other half as the
holdout set. After PLUL selects the best parameter setting, we re-train on the whole training set and
evaluate accuracy on the test set. If PLUL is not used, training likewise uses the whole training set.

We report results with accuracy in order to ease comprehension of the results and to facilitate
comparison with some of the most relevant related work (e.g., Sen et al., 2008; Macskassy and
Provost, 2007). Results with area under the ROC curve (AUC) for the majority class demonstrated
similar trends.

6.9 Statistical Analysis

We conducted two distinct types of analysis. First, to compare algorithms for a single control
condition, we used a one-tailed paired t-test accepted at the 95% confidence level. For every such
test each “test point” is the accuracy over a single trial’s test graph. For example, for the synthetic
data there are 25 trials for each control condition, and thus a single t-test compares 25 pairs of
accuracies (e.g.,ICAC vs. ICA). In all cases the test graphs used by these t-tests are disjoint, for
both the synthetic and the real data.

Second, we performed linear regression slope tests. In particular, for hypotheses H1-H4, we
compared two algorithms (e.g.,ICAC vs. ICA) for each independent variableX (e.g.,ld) as follows:
For each trial, we computed the difference in the algorithms’ classification accuracies (e.g., for the
synthetic data, 225 such differences for 25 trials and 9 values ofld). We performed linear regression
(Y = a+bX), where the accuracy difference is the dependent variableY andX is the independent
variable (e.g.,ld). The estimated value of slopeb, when non-zero, indicates an increasing (+)

2806

CAUTIOUS COLLECTIVE CLASSIFICATION

or decreasing (−) trend. Regression produces ap value associated with the slope that indicates the
significance level for hypothesis testing; we accept whenp< 0.05. For hypothesis H5, the equations
are the same but we compare a single CC algorithm with and without PLUL.

For the synthetic data, the analysis is straight-forward and we use the data generation parameters
dh,ap, ld, andlp as the independent variable for regression. Analysis for the real data sets requires
more explanation. For instance, each computed subgraph of a data set has similar autocorrelation,
so regression for H1 (where autocorrelation is theX value) cannot be performed on a single data
set. Instead, we combine the trials of all the real data sets into one analysis, where the indepen-
dent variable is the measured autocorrelation of the corresponding data set (we include WebKB,
but exclude WebKB+co because it’s not clear how to compute its autocorrelation with direct links
combined with co-citation links). In addition, our results show that when attribute predictiveness
is high, there is less need for caution. Thus, to prevent any interactions between autocorrelation
and caution from being obscured by high attribute predictiveness, we use fewer than 100 attributes
for these experiments. In particular, for each data set we evaluated the baselineCO algorithm with
varying numbers of attributesNA, and selected the number that yields an average accuracy closest
to 50%. Table 5 shows the resulting default number of attributes for each data set.

For H2 (attribute predictiveness), we can directly vary the number of attributes, so we can
perform regression for each data set separately. However, attribute predictiveness is typically not a
linear function of the number of attributes. Thus, for H2 we perform regression where the dependent
variable is the accuracy ofCO for each trial (as a surrogate for attribute predictiveness).

We do not directly evaluate H3 for the real data sets (see Section 7).

For H4 and H5 (varying labeled proportion), we directly varylp, so we can compute separate
results for each data set. Moreover,lp is suitable for direct use as the dependent variable. As with
H1, we use the default number of attributes for each data set in order to avoid having high attribute
predictiveness obscure the interaction of caution andlp. We omit nonsensical points (e.g.,wvRN
whenlp=0%) from all of the analyses.

Finally, for each hypothesis we also perform apooled analysis. For the synthetic data, this
involves pooling the results of all the cautious CC algorithms, then performing the slope regression
test. For the real-world data, we pool the results across both the CC algorithms and each of the real
data sets. In addition, to account for differences in the data sets, we perform a multiple regression
analysis that includes autocorrelation as one of the input variables (except for H1). In particular, we
fit the data to the lineY = a+b1X1 +b2X2, whereX1 is the variable in question (e.g.,lp for H4 or
H5) andX2 is the autocorrelation of the data set. TheX2 term factors out differences due only to
autocorrelation, thus making the other trends more clear. The p-value corresponding tob1 is then
used for hypothesis testing.

6.10 Implementation Validation

To validate the implementation of our algorithms, we replicated three different synthetic data gen-
erators: those used by Sen and Getoor (2006), Neville and Jensen (2007), and Sen et al. (2008).
We then replicated some of the experiments from these papers. While several of our CC algorithm
variants were not evaluated in any of these earlier papers, we were able to compare results forICA,
Gibbs, andLBP, with the LR and NB classifiers as appropriate, and found very consistent results.
Section 8.4 discusses one exception.

2807

MCDOWELL , GUPTA AND AHA

LBP is the most challenging algorithm to implement and to get to converge. To deal with
such problems, Sen et al. (2008) seededLBP’s learning process with weights learned fromICA.
Alternatively, we found that seeding with values estimated from empirical counts over the data,
combined with limiting the maximum step size of the search to prevent oscillation, worked well.
With these enhancements,LBP achieved equivalent accuracy to that reported by Sen and Getoor
(2006), and, when PLUL was applied, significantly improved it for the cases of high homophily
and link density (whereLBP’s accuracy had been very poor). In contrast, we found thatLBP could
replicate the performance of Sen et al. (2008), but that in this case PLUL had little effect. Section 8.4
explains the data characteristics of that study (effectively highlp) that led to this result.

7. Evaluation Results

This section presents our experimental results. Section 7.1 presents a summary of the results, Sec-
tion 7.2 explains how we present the detailed results, and subsequent sections discuss these detailed
results for each hypothesis. We focus on the sparse in-sample task, sowe accept a hypothesis if it
is confirmed, for thelp=10% case, by the pooled analysis on both the synthetic data and the real-
world data. Hypotheses H4-H5 involve varyinglp; here we accept the hypothesis if confirmed on
both the synthetic and real data.

When a local classifier is needed, all results below use NB by default. We found that NB’s
performance was better or equivalent to that of LR and kNN in almost every case (see Section 8.4),
for both the synthetic and real data sets, and that using LR or kNN led to very similar performance
trends. Below we mention some of the results for LR and kNN; see the online appendix for more
detail. In addition, PLUL is used everywhere unless otherwise specified; see analysis and motivation
in Section 7.7.

7.1 Summary of Results

Tables 6-8 summarize our overall results for hypotheses H1-H5. Each table presents results for the
synthetic data on the left and (where applicable) for the real data sets on the right. Each reported
value represents the estimated slope of the line measuring the difference between a cautious and a
non-cautious CC algorithm as the corresponding x-parameter (e.g., autocorrelation) is varied (see
Section 6.9). Only values that were statistically different from zero are reported; otherwise a dash
is shown. Bold values indicate a significant slope that supports the corresponding hypothesis. For
instance, H2 predicted that caution becomes more important as attribute predictivenessdecreases
(a negative slope). Thus, Table 7 shows a minus sign for the expected slope and all significant,
negative slopes are shown in bold. Where possible, we show separate results for the out-of-sample,
sparse in-sample, and dense in-sample tasks (usinglp = 0%, 10%, and 50%). However, to simplify
the table the real-world data results for H2 are shown only withlp=10%; Section 7.4 describes other
results.

The tables show strong support for hypotheses H1, H2, and H4. In particular, we accept H1, H2,
and H4 because the pooled analyses find significant slopes in the expected direction; non-pooled re-
sults also demonstrate consistent support. Thus, the data support the claims that each cautious infer-
ence algorithm outperforms7 its non-cautious variant by increasing amounts when autocorrelation

7. Technically, the slope results don’t by themselves show that the cautiousalgorithms “outperform” the non-cautious
algorithms—only that the relative performance of the cautious algorithms is improving in the hypothesized direction.

2808

CAUTIOUS COLLECTIVE CLASSIFICATION

Syn. data Real-world data

Exp
ec

te
d

slo
pe lp=

0%
lp=

10
%

lp=
50

%

lp=
0%

lp=
10

%

lp=
50

%

H1: auto-correlation
ICAC vs. ICA + +0.13 +0.13 +0.03 — +0.27 +0.15
ICAKn vs. ICA + n.a. +0.04 +0.02 n.a. +0.15 +0.13
Gibbsvs.GibbsNC + +0.18 +0.15 +0.03 +0.27 +0.25 +0.15
LBPvs.LBPNC + +0.10 +0.08 — — — —
wvRNRL vs.wvRNICA+NC + n.a. +0.43 — n.a. +0.41 +0.07
wvRNICA+C vs.wvRNICA+NC + n.a. +0.40 — n.a. +0.67 +0.10
Pooled + +0.13 +0.21 +0.01 +0.13 +0.30 +0.11

Table 6: Summary of results for hypothesis H1. All values shown represent a slope that is signifi-
cantly different from zero; values in bold support H1. For H1, at a givenl p value all data
sets (except WebKB+co) are used to compute a single slope value by treating the auto-
correlation of the data set as theX value. All algorithms used PLUL where applicable.
“n.a.” indicates that the algorithm doesn’t make sense atlp=0%.

Syn. data Real-world data (lp = 10%)

Exp
ec

te
d

slo
pe lp=

0%
lp=

10
%

lp=
50

%

Cor
a

Cite
See

r

Hep
TH

W
eb

KB+c
o

W
eb

KB

Te
rro

r

H2: attribute predictiveness
ICAC vs. ICA - -0.10 -0.25 -0.12 -0.60 -0.61 -0.29 — — —
ICAKn vs. ICA - n.a. -0.06 -0.08 -0.14 — -0.16 — — —
Gibbsvs.GibbsNC - -0.09 -0.27 -0.14 -0.44 -0.50 — — — —
LBP vs.LBPNC - -0.12 -0.28 -0.05 -0.46 -0.35 — n.c. -0.29 —
Pooled - -0.10 -0.22 -0.10 -0.23(over all real data and CC algs.)

H3: link density
ICAC vs. ICA - -0.08 -0.09 -0.03
ICAKn vs. ICA - n.a. +0.06-0.02
Gibbsvs.GibbsNC - -0.09 -0.07 -0.04 (not evaluated)
LBP vs.LBPNC - +0.12 -0.23 -0.04
wvRNRL vs.wvRNICA+NC - n.a. -0.18 -0.05
wvRNICA+C vs.wvRNICA+NC - n.a. 0.11 -0.03
Pooled - — -0.07 -0.04

Table 7: Summary of results for hypotheses H2 and H3. As before, all values shown represent a
slope that is significantly different from zero; values in bold support the corresponding
hypothesis. All algorithms used PLUL where applicable. “n.c.” indicates whereLBP did
not converge.

is higher (H1), attribute predictiveness is lower (H2), and/or the labeled proportion is lower (H4).
In addition, the data show consistent interactions among these factors. In particular, the strength of

However, the raw accuracies do show consistent performance gains for the cautious algorithms, so in this context the
slope results do show the cautious algorithms outperforming the others by increasing amounts.

2809

MCDOWELL , GUPTA AND AHA

Syn. data Real-world data

Exp
ec

te
d

slo
pe Cor

a
Cite

See
r

Hep
TH

W
eb

KB+c
o

W
eb

KB

Te
rro

r

H4: labeled proportion (comparing cautious vs. non-cautious algorithm)

ICAC vs. ICA - -0.09 -0.11 -0.14 -0.05 — —- —
ICAKn vs. ICA - -0.02 -0.06 — -0.05 -0.29 — —
Gibbsvs.GibbsNC - -0.11 -0.14 -0.13 0.05 0.28 — —
LBPvs.LBPNC - -0.05 — — — n.c. — —
wvRNRL vs.wvRNICA+NC - -0.28 -0.37 -0.39 -0.18 — —- —
wvRNICA+C vs.wvRNICA+NC - -0.27 -0.36 -0.32 -0.15 -0.31 — +0.28
Pooled - -0.12 -0.07(over all real data and CC algs.)

H5: labeled proportion (comparing with PLUL vs. without PLUL)

ICAC - -0.02 — — — — — —
ICAKn - -0.01 — — -0.02 — — —
ICA - — — — — -0.18 — —
Gibbs - -0.02 — — -0.04 — -0.07 —
LBP - -0.03 — — — n.c. — —
Pooled - -0.02 -0.01(over all real data and CC algs.)

Table 8: Summary of results for hypotheses H4 and H5, which both vary the labeled proportion
(l p). As before, all values shown represent a slope that is significantly different from zero;
values in bold support the corresponding hypothesis. For H4, all algorithms used PLUL
where applicable.

the dependence (the magnitude of the slope) generally decreases as the labeled proportion increases
from 10% to 50% (Section 7.4 discusses the differences betweenlp=0% and 10% in more detail).

Table 7 shows weaker support for H3 (cautious inference gain increases as link density de-
creases). H3 is supported by most of the synthetic data cases and by the pooled analysis forlp=10%
andlp=50%, but the magnitude of the slopes indicates a weaker effect. Moreover, Section 7.5 exam-
ines these results more closely and proposes that a more appropriate hypothesis would state that the
cautious inference gain is greatest when link density is moderate. This conclusion is also tentatively
supported by a per-node degree analysis of the real data.

Table 8 also shows weaker support for H5. The synthetic data results supported H5 for every
algorithm exceptICA. In addition, for 18 of the 29 possible cases shown for the real data sets,
the computed slope was negative, as predicted by H5. However, the magnitude of these slopes
indicate a weaker effect than with H1, H2, or H4. This decreased magnitude, in conjunction with
the smaller number of trials for the real data, leads to only 4 of those 18 slopes reaching statistical
significance. Nonetheless, by combining trials across algorithms and data sets, the pooled analysis
does find significant (but small) negative slopes for both the synthetic and real data, so we accept
H5. This indicates, as expected, that cautious learning with PLUL is most important whenlp is
small; Section 7.7 also demonstrates that in this case PLUL can provide substantial performance
gains.

2810

CAUTIOUS COLLECTIVE CLASSIFICATION

In addition to these results for each hypothesis, regarding relative performance trends as data
characteristics vary, our results also show statistically significant differences between the cautious
and non-cautious algorithms for at least some of the data conditions. These differences are con-
sistent with the accepted hypotheses. For instance, using the default synthetic data characteristics,
each cautious algorithm showed a significant performance gain over its non-cautious variant, and
the amount of this gain increased as autocorrelation increased, attribute predictiveness decreased,
or labeled proportion decreased.

7.2 Explanation of Results Presentation

In the following sections, we present several figures that compare CC algorithmic performance. In
these figures some controllable parameter is the x-axis and the y-axis is the resultant accuracy for a
given algorithmic variant, averaged over all trials. For instance, Figure 8 plots accuracy vs. the de-
gree of homophily (dh). Each figure compares cautious and non-cautious variants of a particular CC
algorithm: ICA, Gibbs,LBP, orwvRN. In addition, for the CC algorithms that use a local classifier
(ICA andGibbs), we often include results for the non-relational algorithmCO for comparison.

In each section below, we use these results to describe two kinds of analysis. First, we accept
or reject a hypothesis, based on the pooled regression slope test. This analysis confirms or fails to
confirm that the importance of the cautious techniquesdoes changein the expected direction as some
data parameter varies, but does not evaluatehow importantthe cautious techniques are in improving
performance. To answer the latter question, we report on a second analysis that evaluates, using
paired t-tests, whether the cautious techniques perform significantly better than the non-cautious
alternatives (see Section 6.9).

Each figure has embedded statistical information corresponding to some of these t-tests. In
particular, each non-cautious CC variant is plotted with a×marker, while cautious CC variants are
plotted with a triangle (where multiple cautious variants exist, two triangle orientations are used:▽
and△). For a particular x-value, if the plotted triangle is filled in (solid color), then that cautious
variant had accuracy that was significantly different from the accuracyof the corresponding non-
cautious variant. Hollow triangles instead indicate no significant difference. This notation doesnot
directly indicate other significance comparisons (e.g., between the two cautious variantsICAC and
ICAKn); where necessary we describe such results in the text. For example, in Figure 8, the graph in
the third column of the first row (LBPat lp=0%) shows thatLBP significantly outperformsLBPNC

whendh=0.6 (note the filled triangle). However, fordh=0.5,LBP’s small gain is not statistically
significant (hollow triangle).

Whenlp=0%, ICAKn is equivalent toICA, so results forICAKn are not shown. Also,LBP with
WebKB+co did not converge due to the very high number of links, so results for that case are not
considered (cf., Taskar et al., 2002).

7.3 Result 1: The Relative Gain of Cautious Inference Increases with Increasing
Autocorrelation

Table 6 reports that for H1, for the sparse in-sample task (lp=10%), the pooled regression analyses
found all significant positive values for the slopeB. Thus, we accept H1. In addition, all the non-
pooled analyses found significant positive values. The only exception wasLBPon the real data sets,
which had a positive, non-significant slope (b= +0.03).

2811

MCDOWELL , GUPTA AND AHA

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Degree of homophily (dh)

lp=0%

ICAC
ICA
CO

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

Degree of homophily (dh)

lp=0%

Gibbs
GibbsNC
CO

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

Degree of homophily (dh)

lp=0%

LBP
LBPNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Degree of homophily (dh)

lp=0%

WVRNRL
WVRNICA+C
WVRNICA+NC

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Degree of homophily (dh)

lp=10%

ICAC
ICAKn
ICA
CO

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

Degree of homophily (dh)

lp=10%

Gibbs
GibbsNC
CO

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

Degree of homophily (dh)

lp=10%

LBP
LBPNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Degree of homophily (dh)

lp=10%

WVRNRL
WVRNICA+C
WVRNICA+NC

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Degree of homophily (dh)

lp=50%

ICAC
ICAKn
ICA
CO

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

Degree of homophily (dh)

lp=50%

Gibbs
GibbsNC
CO

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

Degree of homophily (dh)

lp=50%

LBP
LBPNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Degree of homophily (dh)

lp=50%

WVRNRL
WVRNICA+C
WVRNICA+NC

Figure 8: Results for the synthetic data as the degree of homophily (dh) varies. Section 7.2 ex-
plains how filled triangles indicate statistical significance. Some of the gains are small
but consistent, leading to significance, as in the bottom right graph.

For lp=0% andlp=50%, the pooled analyses and most individual analyses show the same posi-
tive slopes (on the real data forICAC vs. ICA at lp=0%, the slope wasb= +0.11, but the p-value was
just over the significance threshold), as we also found with LR and kNN. The reduced significance
and magnitude of the slopes whenlp=50% is also consistent with our expectations, since the overall
importance of caution should decrease aslp increases (see hypotheses H4 and H5). Section 7.4
explains more for thelp=0% case.

Figure 8 shows detailed performance trends for the synthetic data. Here each column presents
results for different variants of a single CC algorithm (ICA, Gibbs,LBP, andwvRN), and each row
shows results for a different value oflp. The x-axis varies homophily (which directly increases
autocorrelation) and the y-axis reports average accuracy.

This figure confirms that when homophily is very low, CC offers little gain, and thus the cau-
tious variants perform equivalently to the non-cautious variants (and, except forwvRN, to the non-

2812

CAUTIOUS COLLECTIVE CLASSIFICATION

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Attribute predictiveness (ap)

lp=0%

ICAC
ICA
CO

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

Attribute predictiveness (ap)

lp=0%

Gibbs
GibbsNC
CO

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

Attribute predictiveness (ap)

lp=0%

LBP
LBPNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Attribute predictiveness (ap)

lp=0%

WVRNRL
WVRNICA+C
WVRNICA+NC

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Attribute predictiveness (ap)

lp=10%

ICAC
ICAKn
ICA
CO

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

Attribute predictiveness (ap)

lp=10%

Gibbs
GibbsNC
CO

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

Attribute predictiveness (ap)

lp=10%

LBP
LBPNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Attribute predictiveness (ap)

lp=10%

WVRNRL
WVRNICA+C
WVRNICA+NC

Figure 9: Results for the synthetic data as attribute predictiveness (ap) varies.

relational baselineCO). As the strength of relational influence (as well as the potential for incorrect
relational inference) increases with higher homophily, the relative gain of the cautious methods in-
creases substantially (e.g., atlp=10%, gains for NB-based algorithms rise from 4-5% atdh=0.5 to
9-12% atdh=0.9). The gains from caution are statistically significant in most cases whendh≥0.3.
Results with LR and kNN show very similar trends (see online appendix).

Figure 8 also confirms that aslp increases, the cautious and non-cautious variants perform more
similarly. However, even forlp=50%, the cautious variants maintain a significant, though smaller,
advantage. In the other results discussed below, the same trend of very similar performances at
lp=50% was evident. Likewise, the graphs forlp=0% are similar to those forlp=10%. Thus, we
defer most results forlp=0% or 50% to the online appendix.

7.4 Result 2: The Relative Gain of Cautious Inference Increases as Attribute Predictiveness
(ap) Decreases

Table 7 reports that, forlp=10%, the regression analyses found all significant negative slopes (as
expected) for the synthetic data. Likewise, in almost all cases we found significant negative slopes
for the real data sets that have substantial autocorrelation (Cora, Citeseer, HepTH, and WebKB+co),
except for WebKB+co (which had very erratic performance with all the algorithms). We accept H2,
because the pooled analysis found negative slopes atlp=10% for both synthetic and real data; this
result also holds atlp=0% and 50%.

Figure 9 shows detailed performance trends for the synthetic data as the x-axis variesap. For
instance, forlp=10%, when the attribute predictiveness (ap) is 0.6 (the default),ICAC andGibbs
outperform their non-cautious variants by 6-7%. However, asap decreases to 0.2, label uncertainty

2813

MCDOWELL , GUPTA AND AHA

increases (as evidenced by the drop forCO), causing the relative gain of caution to increase to 20%.
LBPshows very similar results.

Results forlp=0% are mostly similar, but with an interesting twist. In this case, the relative
gain of cautious CC increases asapdecreases, as withlp=10%. However, this gain peaks atap=0.2
or 0.3, then declines asap continues to decrease. When attribute predictiveness is very low, and
there are no known labels to help seed the inference (i.e.,lp=0%), then even the cautious algorithms
have difficulty exploiting relational information, and achieve accuracy only moderately above the
baselineCO. However, even in this case the cautious algorithms maintain some small, statistically
significant advantage over the their non-cautious variants (which atap=0.1 do little better thanCO).
Also, observe thatICAC, Gibbs, andLBP all improve substantially for thelp=10% case (compared
to lp=0%), even though onlyICAC explicitly favors the provided known labels in its inference
process. In this case, using caution appears to be the important performance factor, regardless of
what specific behavior provides that caution.

Figures 10 and 11 provide similar results for the real data sets withlp=10%, where the x-axis
is now the number of attributes used, which correlates with overall attribute predictiveness. In
general, the trends shown are similar to those already observed for the synthetic data. In particular,
the graphs for Cora, Citeseer, HepTH, and WebKB all follow the same pattern: cautious algorithms
outperform non-cautious algorithms more when the number of attributes is low (and cautiousICAC

outperforms the somewhat cautiousICAKn). Consistent with H1, the magnitude of these gains varies
with autocorrelation: larger for Cora and Citeseer, smaller for HepTH and WebKB, and non-existent
for Terror (where autocorrelation is very weak).

There are two exceptions to the similarities of these results with the synthetic data. First, for
some data setsGibbsand/orLBPperform noticeably worse thanICAC; we discuss this separately in
Section 8.1. Second, WebKB+co shows fairly erratic performance for all algorithms exceptICAKn.
In general, the co-citation links used by WebKB+co appear to be very informative (peak accuracy
is much higher than with WebKB), but also potentially misleading. This may be a function of the
WebKB graph structure: Table 5 shows that co-citation links have a very high label consistency
of 0.90 (implying that classifiers will learn a strong relational dependence), but this may be biased
by the presence of some very high degree nodes. During learning the co-citation links may appear
very informative on average, but this strong dependency may lead to mispredictions for low-degree
nodes, leading to the observed erratic behavior.

We now briefly return to the slope analysis of Table 7. For the synthetic data, the negative slopes
for H2 are significant in all cases, but generally largest forlp=10%. This behavior is consistent with
our previously discussed analyses of the synthetic data: whenlp=0%, the performance of cautious
algorithms for very lowap is diminished, thus producing a smaller slope magnitude than when
lp=10%. On the other hand, the more general observation that caution is less useful whenlp is high
explains why the magnitude of the slopes is less forlp=50% than forlp=10%. We found similar
trends for the real-world data sets: while Table 7 shows significant negative slopes for H2 for most
cases (excluding the erratic WebKB+co and the low autocorrelation Terror) whenlp=10%, results
(not shown) withlp=0% or 50% indicate slopes of reduced magnitude and/or slopes that do not
reach statistical significance. However, in both cases the pooled analysis still indicates significant
negative slopes for H2 (-0.05 forlp=0% and -0.13 forlp=50%).

2814

CAUTIOUS COLLECTIVE CLASSIFICATION

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2 5 10 20 40 60 80 100

A
cc

ur
ac

y

Number of attributes

Cora; lp=10%

ICAC
ICAKn
ICA
CO

2 5 10 20 40 60 80 100

Number of attributes

Cora; lp=10%

Gibbs
GibbsNC
CO

2 5 10 20 40 60 80 100

Number of attributes

Cora; lp=10%

LBP
LBPNC

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2 5 10 20 40 60 80 100

A
cc

ur
ac

y

Number of attributes

Citeseer; lp=10%

ICAC
ICAKn
ICA
CO

2 5 10 20 40 60 80 100

Number of attributes

Citeseer; lp=10%

Gibbs
GibbsNC
CO

2 5 10 20 40 60 80 100

Number of attributes

Citeseer; lp=10%

LBP
LBPNC

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2 5 10 20 40 60 80 100

A
cc

ur
ac

y

Number of attributes

HepTH; lp=10%

ICAC
ICAKn
ICA
CO

2 5 10 20 40 60 80 100

Number of attributes

HepTH; lp=10%

Gibbs
GibbsNC
CO

2 5 10 20 40 60 80 100

Number of attributes

HepTH; lp=10%

LBP
LBPNC

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2 5 10 20 40 60 80 100

A
cc

ur
ac

y

Number of attributes

Terror; lp=10%

ICAC
ICAKn
ICA
CO

2 5 10 20 40 60 80 100

Number of attributes

Terror; lp=10%

Gibbs
GibbsNC
CO

2 5 10 20 40 60 80 100

Number of attributes

Terror; lp=10%

LBP
LBPNC

Figure 10: Results for four of the real data sets as the number of attributes isvaried. The x-axis
is not to scale; this is to improve readability and to yield a more linear curve for the
baselineCO algorithm, thus facilitating comparison with Figure 9. Because there are
only 3-5 trials for the real data, high variance sometimes causes substantial gains to not
be statistically significant.

7.5 Result 3: The More Cautious Algorithms Outperform Non-Cautious Algorithms when
Link Density (ld) is Moderate, But Have Mixed Results Whenld is High

For the synthetic data, the results in Table 7 support H3 for all algorithms whenlp=50%, for most
algorithms whenlp=10%, and for only two algorithms whenlp=0%. The pooled analysis finds,

2815

MCDOWELL , GUPTA AND AHA

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2 5 10 20 40 60 80 100

A
cc

ur
ac

y

Number of attributes

WebKB+co (direct and co links); lp=10%

ICAC
ICAKn
ICA
CO

2 5 10 20 40 60 80 100

Number of attributes

WebKB+co (direct and co links); lp=10%

Gibbs
GibbsNC
CO

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2 5 10 20 40 60 80 100

A
cc

ur
ac

y

Number of attributes

WebKB (only direct links); lp=10%

ICAC
ICAKn
ICA
CO

2 5 10 20 40 60 80 100

Number of attributes

WebKB (only direct links); lp=10%

Gibbs
GibbsNC
CO

2 5 10 20 40 60 80 100

Number of attributes

WebKB (only direct links); lp=10%

LBP
LBPNC

Figure 11: Results for the WebKB data sets as the number of attributes is varied. With WebKB+co,
LBPdid not converge, so results are not shown.

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Link density (ld)

lp=10%

ICAC
ICAKn
ICA

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

Link density (ld)

lp=10%

Gibbs
GibbsNC

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

Link density (ld)

lp=10%

LBP
LBPNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Link density (ld)

lp=10%

WVRNRL
WVRNICA+C
WVRNICA+NC

Figure 12: Results for the synthetic data as link density (ld) varies.

as expected, significant negative slopes forlp=10% andlp=50%. However, without corresponding
pooled results for the real data, we cannot accept H3. Moreover, the results we present below will
suggest a revision to H3.

Figure 12 shows the results asld is varied, forlp=10%. Whenld is low to moderate (up to
ld=0.6), the cautious algorithms consistently and significantly outperform their non-cautious vari-
ants. We had hypothesized that this advantage would decrease as link density increased, because
when the link graph is dense, the relational features are relatively unaffected by a few incorrect
labels, and thus using such labels cautiously matter less; Figure 12 generally reflects this trend. In
some cases the non-cautious algorithm even outperforms the cautious algorithm at very highld. For
instance, atld=0.9 ICA outperforms the more cautiousICAC (though not significantly). At such
high link density, simply using all available information withICA may work better thanICAC’s

2816

CAUTIOUS COLLECTIVE CLASSIFICATION

cautious but partial use of estimated labels—provided that accuracy is high enough that errors are
few. In separate experiments we confirmed that if the attribute predictiveness (and thus accuracy)
was lower,ICAC maintained it’s advantage overICA even whenld was very high.

While these results generally indicate, as expected, that the gain from caution decreases asld
becomes high, closer examination indicates that this gain from caution peaks not at very lowld, but
at moderateld. In particular, the gain from caution peaks whenld is 0.2 or 0.3 forICAC, ICAKn,
or Gibbs, and whenld is 0.6 forwvRNRL andwvRNICA+C. In hindsight, this effect makes sense: as
the number of links decrease, there is less relational influence, and thus less probability of incorrect
relational influence, so caution matters less. Another effect is that with fewer links, there are fewer
opportunities for a cautious algorithm to favor one node’s predictions over another’s.

To further analyze these trends, we turn to the real data. We did not attempt to directly vary the
link density of the real data sets, because it’s not clear how to realistically add links to an existing
data set, as would be necessary to create a reasonable range of link densities for experimentation.
However, Table 9 examines our previous results for the real data sets, showing the amount of cau-
tious gain broken down by the link degree of each node. This approach does not directly correlate
to varying the overall link density, so our conclusions are tentative, but it does provide some insight.
We focus primarily onICAC; trends with other algorithms were similar.

The results support our previous conjectures. In particular, the cautious gain generally decreases
for the highest link degrees, even going negative in some cases. Moreover, in most cases the cautious
gain also decreases for the lowest link degrees, resulting in a peak for the cautious gain (shown in
bold if present) at moderate link degrees. These effects generally hold true for the synthetic data
and for the real data sets that have substantial autocorrelation.

We now return to Figure 12 to consider a few possible exceptions. First, withLBP, accuracy
decreases with increasingld, is erratic, and is sometimes better withLBPNC than withLBP. This is
not surprising: the short graph cycles caused by highld produces great problems forLBP (e.g., Sen
and Getoor, 2006; Sen et al., 2008). Even theseLBPaccuracies are much better than those achieved
without PLUL (see Section 7.7).

Second, two of the cautious algorithms (ICAKn andwvRNICA+C) performed unexpectedly well,
continuing to significantly outperform the non-cautious variants (and even alternative cautious vari-
ants) at very high link density. Interestingly, these effects also occur with WebKB+co (see Fig-
ures 11 and 14), which has by far the highest link density of the real data sets.8 In addition, the
superior performance ofICAKn at highld remains even when the local classifier is changed to LR
or kNN (see Figure 19 in the online appendix). We suspect thatICAKn’s advantage arises because it
both achieves a better starting point thanICA (by favoring known labels in its first iteration) and ex-
ploits more information thanICAC (by using all estimated labels in subsequent iterations—and when
ld is high using a few erroneous labels doesn’t harm performance). ForwvRNICA+C, its advantage
over wvRNRL must arise from the key algorithmic difference: sincewvRNICA+C is a hard-labeling
algorithm, it gives all labeled nodes equal weight in the neighborhood average that determines the
next label for a node. When link density is high, relying on this simple average may be better than
wvRNRL’s soft-labeling estimation, which implicitly gives more weight to nodes with more extreme

8. At first, these strong performances seem to conflict with Macskassy and Provost (2007), who generally findwvRNRL
outperformswvRNICA+C. However, two-thirds of their data sets are variants of WebKB, but where all “Other”
pages have been removed from the classification task. This change makes the classification problem easier, and thus
may explain the discrepancy. In addition, on the only other data set used in that work and this article (Cora), our
performance trends are very similar.

2817

MCDOWELL , GUPTA AND AHA

Degree 1-2 Degree 3-5 Degree 6-10 Degree 11-20

Synthetic data, using NB+ICAC

lp= 0% 5.5% 8.2 % 13.8% 8.2%
lp=10% 5.2% 9.7 % 8.6% 10.6%
lp=50% 2.2% 4.6 % 8.9% 7.3%
Average 4.3% 7.5 % 10.4% 8.7%

Synthetic data, using NB+Gibbs
lp= 0% 8.5% 13.6 % 18.6% 15.4%
lp=10% 6.3% 9.7% 12.7% 10.6%
lp=50% 2.5% 3.6% 7.4% 5.3%
Average 5.7% 9.0% 12.9% 10.5%

Real data with substantial autocorrelation, using NB+ICAC

Cora 7.9% 10.9% 10.5% -4.8%
Citeseer 15.8% 20.5% 14.6% -8.3%
WebKB+co 8.3% 9.8% 12.8% 10.0%
HepTH 1.2% -4.3% 3.3% 4.0%
Average 8.3% 9.2% 10.3% 0.2%

Other real data sets, using NB+ICAC

WebKB 5.8% 1.5% -4.8% -6.0%
Terror 2.4% -5.7% 0.0% 0.0%

Table 9: Per-node degree results showing the amount of gain from caution(ICAC vs. ICA or Gibbs
vs. GibbsNC). Each value indicates the average accuracy gain from caution for all nodes
in the test set within the given link degree range (nodes with degree greater than 20 were
rare, and ignored for simplicity). Within each row, a value is in bold if it represents a clear
peak, with monotonically decreasing accuracies to both the left and right of that value.
The synthetic data used the default settings. The real data sets used the default number of
attributes andlp=10%.

estimated distributions. In both cases, however, extendingld to even more extreme values (e.g.,
ld=0.95) does confirm the overall trend of the amount of cautious gain decreasing at highld.

As expected, we found that these performance differences disappeared when many known labels
were provided. In particular, at high link density andlp=50%, there were only small differences
betweenICAC, ICAKn, andICA, or betweenwvRNRL, wvRNICA+C, andwvRNICA+NC. In addition,
when PLUL was used, evenLBPandLBPNC performed on par withICAC andGibbswhenlp=50%,
despite the challenges ofLBPwith high ld.

Overall, our results suggest that a more appropriate rendering of H3 should indicate thatthe
relative gain from caution will peak at some moderate value ofld, with the precise value depending
on the CC algorithm and the other data conditions. We leave confirmation of this revised hypothesis
to future work.

7.6 Result 4: The Relative Gain of Cautious Inference Increases as the Labeled Proportion
(lp) Decreases

Table 8 reports that, aslp varies, the regression analyses found all significant negative slopes (as
expected) for the synthetic data. Likewise, in almost all cases we found significant negative slopes

2818

CAUTIOUS COLLECTIVE CLASSIFICATION

 0.7

 0.8

 0.9

0% 20% 40% 60% 80%

A
cc

ur
ac

y

Labeled proportion (lp)

ICAC
ICAKn
ICA

 0.7

 0.8

 0.9

0% 20% 40% 60% 80%

Labeled proportion (lp)

Gibbs
GibbsNC

 0.7

 0.8

 0.9

0% 20% 40% 60% 80%

Labeled proportion (lp)

LBP
LBPNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0% 20% 40% 60% 80%

Labeled proportion (lp)

WVRNRL
WVRNICA+C
WVRNICA+NC

Figure 13: Results for the synthetic data as the labeled proportion (lp) varies.

for the real data sets with substantial autocorrelation (all except Terror and WebKB). We accept H4,
because the pooled analyses find all negative, significant slopes.

For the real data, the exceptions to H4’s stated trend were primarily WebKB+co, which had
very erratic performance with all the algorithms, and WebKB, where none of the slopes attained
statistical significance. In addition,LBP had highly variable behavior so that only for Citeseer did
the slope approach statistical significance (p = .053, just over the threshold).

Figure 13, for the synthetic data, shows the performance of the cautious and non-cautious algo-
rithms converging aslp increases. The cautious algorithms maintain a significant advantage until
lp=80%. Observe thatICAKn’s curve lies between that of the more cautiousICAC and the non-
cautiousICA, while wvRNRL andwvRNICA+C obtain the same results with their two different ap-
proaches to caution.

Figure 14 shows results for the real data sets aslp is varied. This figure show results only
for wvRN, since results were previously presented for the other algorithms for varying numbers of
attributes, and thelp graphs don’t add additional insight for those algorithms.

The results in Figure 14 mirror those of the synthetic data, with a few exceptions. First,
wvRNICA+C does poorly on Terror, perhaps because of the low autocorrelation. Second, with We-
bKB+co,wvRNICA+C outperformswvRNRL whenlp is low, though the gains are not quite significant;
this effect was discussed in Section 7.5. Finally, the accuracy ofwvRNfor WebKB goesdownwith
increasinglp. WebKB with just direct links has some autocorrelation but very low label consistency
(see Table 5), because each node tends to link in certain patterns to nodes with adifferent label
from itself (cf., Macskassy and Provost, 2007). Algorithms based onwvRNassume homophily, not
such more complex forms of autocorrelation. Consequently, increasinglp only serves to reduce
accuracy below the majority class baseline. RunningwvRNwith only co-citation links, as done for
WebKB+co, works much better.

7.7 Result 5: The Relative Gain of Cautious Learning With PLUL Increases as the Labeled
Proportion (lp) Decreases

The previous results compared cautious vs. non-cautious variants of a particular CC algorithm, in
all cases using PLUL. We now justify the use of PLUL and examine its impact.

The bottom of Table 8 shows the regression slope results for H5, where the x-axis varies the
labeled proportion (lp), and each table row compares a single CC algorithmic variant when using
PLUL vs. not using PLUL. As expected, the slope analysis found all significant negative slopes for

2819

MCDOWELL , GUPTA AND AHA

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0% 20% 40% 60% 80%

A
cc

ur
ac

y

Labeled proportion (lp)

Cora

WVRNRL
WVRNICA+C
WVRNICA+NC

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0% 20% 40% 60% 80%

A
cc

ur
ac

y

Labeled proportion (lp)

Citeseer

WVRNRL
WVRNICA+C
WVRNICA+NC

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0% 20% 40% 60% 80%

A
cc

ur
ac

y

Labeled proportion (lp)

HepTH

WVRNRL
WVRNICA+C
WVRNICA+NC

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0% 20% 40% 60% 80%

A
cc

ur
ac

y

Labeled proportion (lp)

Terror

WVRNRL
WVRNICA+C
WVRNICA+NC

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0% 20% 40% 60% 80%

A
cc

ur
ac

y

Labeled proportion (lp)

WebKB (only co-links)

WVRNRL
WVRNICA+C
WVRNICA+NC

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0% 20% 40% 60% 80%

A
cc

ur
ac

y

Labeled proportion (lp)

WebKB (only direct links)

WVRNRL
WVRNICA+C
WVRNICA+NC

Figure 14: Results for variants ofwvRNon the real data sets, aslp is varied. For the first WebKB
results,wvRNusesonly co-citation links (unlike previous results with other algorithms,
where WebKB+co used direct links and co-links together; see Section 6.6.3). Recall
that filled triangles indicate statistical significance, but only for comparing the cautious
variant (here,wvRNRL or wvRNICA+C) vs. the non-cautious variant (wvRNICA+NC).

the synthetic data (with one exception where the p-value was close to the threshold), although the
magnitude of the slopes suggests a weak trend. For the real data sets, while 18 of the 29 possible
slopes were in the expected direction, only 4 of these slopes were statistically significant (recall that
the real data sets have available only 3-5 trials, making significance harder to achieve). However,
pooling the results across the data sets and algorithms yields a significant negative slope for both
the synthetic and real data, so we accept H5.

Thus, while the effect (aslp varies) is smaller than with previous hypotheses, H5 indicates the
PLUL provides the most gain whenlp is small. To measure the magnitude of this gain, Table 10
shows the impact of PLUL whenlp=0%. Each row shows the results for a different collective
algorithm. Results are given for each algorithm both with and without PLUL, along with the overall
gain from PLUL. Because PLUL interacts closely with the local classifier, we show results here for
NB, LR, and kNN for the CC algorithms that use a local classifier.COandwvRNare unaffected by
PLUL, and thus are not shown.

In general, we found that PLUL improved performance, sometimes substantially, but the data
regions where such substantial gains occur vary by classifier and/or CC algorithm. For instance,
Column A of Table 10 shows results for the default synthetic data settings. Here, PLUL improves
performance for almost all algorithms. In particular, the gains range from -0.3% to 10.8%, with an
average of 4.0%, and are significant in 9 of the 14 cases. Column B shows results where the attribute
predictiveness is 0.3 (instead of the default 0.6). In this case, the gains due to PLUL are almost

2820

CAUTIOUS COLLECTIVE CLASSIFICATION

A.) Default settings B.) Low attr. predictiveness C.) High link density

With PLUL? PLUL With PLUL? PLUL With PLUL? PLUL
Yes No Gain Yes No Gain Yes No Gain

Using the NB local classifier
ICAC 78.9 77.8 1.1 58.2 52.5 5.7 80.6 72.0 8.6
ICA 72.3 72.6 -0.3 47.7 46.8 0.9 77.0 75.4 1.6
Gibbs 81.8 81.5 0.3 60.6 55.9 4.7 80.8 79.2 1.6
GibbsNC 71.8 71.1 0.7 46.7 46.0 0.7 76.4 74.2 2.2
Using the LR local classifier
ICAC 78.6 74.1 4.5 56.8 43.2 13.6 82.9 73.9 9.0
ICA 70.8 68.5 2.3 48.5 44.4 4.1 70.8 72.5 -1.7
Gibbs 76.5 72.9 3.6 52.3 50.8 1.5 77.6 77.8 -0.2
GibbsNC 70.3 65.3 5.0 48.4 43.2 5.2 71.4 71.3 0.1
Using the kNN local classifier
ICAC 74.1 69.0 5.1 51.4 39.2 12.2 78.5 65.4 13.1
ICA 71.7 64.2 7.5 48.4 41.0 7.4 75.2 74.7 0.5
Gibbs 73.9 70.0 3.9 54.4 48.1 6.3 80.3 79.7 0.6
GibbsNC 71.7 61.3 10.4 47.7 38.9 8.8 75.0 74.0 1.0
UsingLBP
LBP 77.8 76.4 1.4 55.7 27.9 27.8 69.7 21.5 48.2
LBPNC 73.9 63.1 10.8 45.5 24.4 21.1 54.3 31.2 23.1

Table 10: Impact of PLUL on accuracy with the synthetic data, for CC algorithms where PLUL
applies, atlp=0%. Gains in bold are statisticaly significant.

all larger, ranging from 0.7% to 27.8% (average of 8.6%), and are significant in 11 of 14 cases.
These results are consistent with H2: when attributes are less predictive of the class label, cautious
techniques, including PLUL, become more important. Finally, column C shows results where the
link density is now 0.7 (instead of the default 0.2); here the gains due to PLUL are more varied.
For ICAC, PLUL remains important and matters even more than with the default data settings. We
conjecture that this is because with so many links, relational influence can spread very quickly in
the graph, and thus the PLUL process is very important to ensuring thatICAC’s confidence measure
selects the most reliable predictions during the first few iterations. Indeed, whenlp is instead set
to 10% (thus providing more certain estimates for the early iterations), PLUL became much less
important forICAC. LBP has known issues with high link density, but PLUL helps substantially to
ameliorate them. For the other algorithms, the increased link density leads to PLUL having a minor
impact, consistent with H3.

Table 11 shows similar results for the real data sets, where results for all six data sets have
been pooled together. Since we cannot directly vary link density, we instead show results with two
conditions. On the left is the “fewer attributes” case; here each data set uses its default number
of attributes, as explained in Section 6.9. On the right is the case where each data set uses 100
attributes.

Compared to results with the synthetic data, Table 11 shows less evidence for the effectiveness
of PLUL with the real data sets. While all algorithms show a gain from using PLUL, only about
half of the gains are statistically significant. To explain, consider that PLUL works best when the

2821

MCDOWELL , GUPTA AND AHA

Fewer attributes(default) More attributes(100)

With PLUL? PLUL With PLUL? PLUL
Yes No Gain Yes No Gain

ICAC 56.8 56.1 0.7 68.6 68.1 0.5
ICA 54.5 52.3 2.2 65.7 64.9 0.8
Gibbs 53.5 50.1 3.4 67.0 66.1 0.9
GibbsNC 55.5 53.0 2.5 66.5 65.6 0.9
LBP 49.9 44.3 5.6 65.2 58.4 6.8
LBPNC 46.0 42.1 3.9 63.5 56.4 7.1

Table 11: Accuracy results showing the impact of using PLUL with the real data. Each value shows
results pooled over the six real data sets, atlp=0%, using NB where applicable. Gains in
bold are statistically significant.

holdout set used for learning is most similar to the test set. With the synthetic data, such similarity
is likely, because the two graphs are generated from the same distribution. However, with the real
data, splitting an arbitrary graph into multiple subgraphs, even while seeking to maintain similar
class distributions, may nonetheless produce subgraphs with important differences (e.g., in auto-
correlation), leading to sub-optimal parameter choices by PLUL. Future work is needed to explore
these issues.

Nonetheless, the evidence suggests that in most cases for the real and synthetic data PLUL
improves performance. Moreover, for every algorithm there was some type of data for which not
using PLUL led to very poor performance. Thus, applying PLUL in all of our other experiments
seemed advisable for maximizing performance and for ensuring the most equitable comparisons.

7.8 Choice of Relational Feature Types

Section 6.6 described how each trial selected a type of relational feature to use. For completeness,
Table 12 summarizes how often each type of feature was chosen. In general, the best feature type (as
chosen by cross-validation) varied based on the local classifier used and the data conditions. How-
ever, Table 12 shows that for NB, multiset features were dominant, especially for the more cautious
algorithms (chosen 76-96% of the time forICAC andGibbs). With kNN, proportion features were
dominant, while with LR count features were chosen most often but proportion features were also
fairly common, especially with highld. These results suggest that an analyst should most likely use
multiset with NB, use proportion with kNN, and consider the data conditions to select a feature type
for LR.

The superiority of multiset features, when they were applicable, is interesting because they are
“cautious” features that simply ignore nodes with no known or predicted label (see Section 6.6.1).
Likewise, Section 6.5 reported that LR withICAC performed best when missing feature values
were ignored (by using a separate classifier trained without the missing features). These results
are consistent with Saar-Tsechansky and Provost (2007), who found (for non-relational data) this
“reduced-feature model” approach to be superior to commonly used approaches based on imputa-
tion. For a non-relational setting, their results thus demonstrate the superiority of a more “cautious”
approach to handling missing values during testing. For relational domains, we could imagine tak-
ing this idea of ignoring missing/estimated values even further, e.g., using a classifier that ignored

2822

CAUTIOUS COLLECTIVE CLASSIFICATION

A.) ICAC B.) ICA C.) Gibbs

Mult. Count Prop. Mult. Count Prop. Mult. Count Prop.

Synthetic data, using the NB local classifier
Default 96% 0% 4% 72% 0% 28% 100% 0% 0%
Low ap 88% 0% 12% 20% 4% 76% 92% 0% 8%
High ld 48% 0% 52% 80% 0% 20% 96% 0% 4%
Average 77% 0% 23% 57% 1% 41% 96% 0% 4%

Synthetic data, using the LR local classifier
Default n.a. 92% 8% n.a. 80% 20% n.a. 80% 20%
Low ap n.a. 52% 48% n.a. 60% 40% n.a. 68% 32%
High ld n.a. 80% 20% n.a. 52% 48% n.a. 48% 52%
Average n.a. 75% 25% n.a. 64% 36% n.a. 65% 35%

Synthetic data, using the kNN local classifier
Default n.a. 0% 100% n.a. 0% 100% n.a. 0% 100%
Low ap n.a. 0% 100% n.a. 12% 88% n.a. 0% 100%
High ld n.a. 0% 100% n.a. 0% 100% n.a. 0% 100%
Average n.a. 0% 100% n.a. 4% 96% n.a. 0% 100%

Real data, using the NB local classifier
Cora 97.5% 2.5% 0.0% 70.0% 17.5% 12.5% 100.0% 0.0% 0.0%
Citeseer 92.5% 2.5% 5.0% 57.5% 32.5% 10.0% 100.0% 0.0% 0.0%
WebKB+co 84.4% 0.0% 15.6% 65.6% 34.4% 0.0% 71.9% 12.5% 15.6%
WebKB 53.1% 40.6% 6.3% 31.3% 56.3% 12.5% 75.0% 21.9% 3.1%
HepTH 85.0% 12.5% 2.5% 62.5% 25.0% 12.5% 70.0% 27.5% 2.5%
Terror 50.0% 8.3% 41.7% 50.0% 25.0% 25.0% 41.7% 16.7% 41.7%
Average 77.1% 11.1% 11.8% 56.1% 31.8% 12.1% 76.4% 13.1% 10.5%

Table 12: The relational feature type (multiset, count, or proportion) chosen by cross-validation.
For the synthetic data, results are shown with the default settings, with low attribute
predictiveness (ap=0.3), and with high link density (ld=0.7). For the real data, results are
shown averaged across all the data points shown in Figures 10 and 11.

the estimated label of a linked node but instead directly used its non-relational features. However,
Jensen et al. (2004) demonstrated that such an approach is generally inferior to the approaches we
consider in this article (label-based features with collective inference), because of the much larger
number of model parameters that must be learned for the former case.

7.9 Variants of wvRN

Most prior research involvingwvRNhas usedwvRNRL, the variant suggested as a relational-only
baseline by Macskassy and Provost (2007). However, algorithms based onwvRNneed not necessar-
ily be relational-only. For instance, Macskassy (2007) described a technique for adding additional
links to the graph between nodes that appeared similar based on their attributes. Alternatively, we
could imagine, forwvRNRL, initializing each node’s predicted label probabilities based upon the
output of an attribute-only local classifier (instead of using class priors as done in Figure 5). Unfor-
tunately, this idea does not work well for a “soft” algorithm such aswvRNRL, because after iterating
many times the current state is almost completely determined by the known labels, independent

2823

MCDOWELL , GUPTA AND AHA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Degree of homophily (dh)

lp=0%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Degree of homophily (dh)

lp=10%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Degree of homophily (dh)

lp=50%

ICAC
ICA
WVRNseed
WVRNRL
CO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Attribute predictiveness (ap)

lp=0%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Attribute predictiveness (ap)

lp=10%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Attribute predictiveness (ap)

lp=50%

ICAC
ICA
WVRNseed
WVRNRL
CO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Link density (ld)

lp=0%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Link density (ld)

lp=10%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Link density (ld)

lp=50%

ICAC
ICA
WVRNseed
WVRNRL
CO

Figure 15: Results for the synthetic data wherewvRNseed is added for comparison. Because of the
multiple possible comparisons, filled triangles are not used here to indicate statistical
significance.

of the starting state (Macskassy and Provost, 2005). While in principle this problem could be ad-
dressed via learning an appropriate decay parameterΓ and stopping point, this forfeits much of the
simplicity of wvRN.

In contrast towvRNRL, with a hard-labeling algorithm such aswvRNICA+C, the initial conditions
do matter. In particular, we evaluatedwvRNseed, an algorithm that behaves just likewvRNICA+C, ex-
cept that each node’s predicted label is initialized to the most likely label predicted by an attribute-
only NB classifier. Non-relational information thus “seeds” the inference process but is then not
explicitly used again. To the best of our knowledge, this algorithm has not been previously consid-
ered for CC.

Figure 15 shows a variety of results for the synthetic data; results with the real data showed
similar trends. Overall,wvRNseedoutperformswvRNRL (especially whenlp is low), which is to be
expected sincewvRNseeduses more information.wvRNseedgenerally underperformsICAC, which

2824

CAUTIOUS COLLECTIVE CLASSIFICATION

is also to be expected sinceICAC both uses predicted labels cautiously (whilewvRNseed treats all
predictions equally) and continues to use both attribute and relational information after the first iter-
ation. The differences withICAC are largest whendh is low (wherewvRN’s homophily assumption
is violated) or when attribute predictiveness is high (sincewvRNseeduses the attributes only at ini-
tialization). However,wvRNseedoutperforms all of the other shown algorithms when link density is
high. This case is analogous to the results withICAKn from Section 7.5: if accuracy and link density
are high (and homophily is present), then caution with relational information may not be necessary,
and this case shows that continuing to use non-relational information after initialization may also
not be necessary. Overall, the results indicate thatwvRNseed is not likely to be a strong contender
as a general purpose CC algorithm, but they do demonstrate an effective way to add non-relational
information towvRN-based algorithms.

7.10 Impact of the Default Values for Synthetic Data Generation

The synthetic data evaluated above was generated with the default parameters described in Table 4.
Conceivably, our choice of default values could have an important effect on the results. While our
evaluation of multiple real data sets has already helped to validate the synthetic data results, we also
carried out an extensive exploration with other default values. For instance, when varyingld, we
experimented with all combinations ofap={0.4, 0.6, 0.8},dh={0.5, 0.7, 0.9}, andlp={0%, 10%,
50%}. For tractability, we only evaluated variants ofICA, since the above results show thatICAC

produced the best or nearly the best results for all synthetic and real data sets, and that other cautious
algorithms usually behaved likeICAC.

The trends were highly consistent with the results we report and agree with our accepted hy-
potheses. For instance, if the defaultap is very high, the results for varyingdh showed a much
smaller slope for the relative impact of cautiousICAC vs ICA. The only default value that notice-
ably changed any result was already reported in Section 7.5: whenap was small (e.g., 0.4), the
unusual advantage ofICA over ICAC observed at very highld disappeared. Thus, we believe the
trends in our results are robust over a wide range of data characteristics.

8. Discussion

In this section we compare results with different families of algorithms, examine the overall effec-
tiveness of caution, and use our results to explain the findings of some previous research.

8.1 Comparisons Across Algorithmic Families

Section 7 focused on comparing cautious vs. non-cautious variants within the same algorithmic
family. We now briefly compare across these families. We focus on the algorithms that have been
most frequently used in previous work:ICA, Gibbs,LBP, andwvRNRL. We also include the less
studiedICAC, since our results show that it has very strong performance. We report specific results
for lp=10%; comparisons were similar forlp=0%, while all of the algorithms perform very similarly
whenlp=50%.

wvRNRL’s performance depends on homophily, link density, andlp. In our study,wvRNRL was
thus competitive with the other CC algorithms when homophily and/orlp was high, or when the
attributes were not very predictive. On the other hand,wvRNRL requires that some labels are known

2825

MCDOWELL , GUPTA AND AHA

in the test set, so it is not applicable whenlp=0% (the out-of-sample task).wvRNseedwould be an
alternative.

For the synthetic data, the cautious algorithmsICAC, Gibbs, andLBP had remarkably similar
performance. Among the three,Gibbshad a small but sometimes significant performance advan-
tage. For instance, across the results for varyingdh at lp=10% shown in Figure 8,Gibbsoutper-
formed ICAC by an average of 1.0% (significantly fordh≥0.6) andLBP by an average of 0.7%
(significantly for 0.4≤dh≤0.7). NeitherICAC nor LBP had consistent, significant gains over the
other, except that bothGibbsandICAC had substantial, significant gains overLBP when attribute
strength was very low (gains of 5-8%) or when link density was high (gains of 14-25%). However,
all three algorithms did have substantial, significant gains vs.ICA, except for whendhwas very low
or whenld was very high. For instance, across the variousdh levels,GibbsoutperformedICA by
0.9-11.2% (all significantly) except for a loss of 0.1% atdh=0.1. Thus, based on the synthetic data
results,ICAC, Gibbs, andLBPusually achieve similar accuracies, despite their use of very different
approaches to caution.

On the real data sets,ICAC, Gibbs, andLBP likewise performed similarly. However, there are
two kinds of differences that should be noted. First, there were a few data sets on whichLBPand/or
Gibbsperformed noticeably worse thanICAC. In particular,Gibbshas poor performance on HepTH
and WebKB+co. In both cases, this is likely due to issues of high link density (WebKB has very
many co-citation links; HepTH has fewer links but some nodes have very high degree). High link
density can lead to extreme probabilities, whereGibbs is known to perform poorly. While this
was not a particular problem with the synthetic data (perhaps because the training and test graphs
were more similar), NB is well known for producing polarized probabilities in some cases. PLUL
does help, for instance, improving performance on HepTH and WebKB+co by an average of 4%
and 15%, respectively, in Figures 10 and 11. Nonetheless, performance withGibbs lags that of
ICAC or ICA, which are not so influenced by extreme probabilities. We experimented with more
and/or longerGibbschains but this did not improve performance. However, this is one case where
the LR classifier performed better than NB: it appears to produce less polarized probabilities than
NB, leading to improved performance withGibbs(see Figures 24 and 27 in the online appendix).
Similarly, LBP, which struggles with high link density, also has problems with HepTH (and likely
would have low performance with WebKB+co, had it ever converged) and with Cora. Its difficulty
with Cora is surprising and possibly indicates that the conjugate gradient training did not perform
adequately, despite our attempts (cf., Sen et al., 2008). However,LBPdid perform well on Citeseer,
which has similar characteristics.

Second, in contrast to the small advantage forGibbson the synthetic data, for the real dataICAC

holds a small advantage. For instance, in Figure 10,ICAC outperformsGibbson average by 1% for
Cora and 2.4% for Citeseer, though not significantly. For HepTH and WebKB+co, whereGibbshad
trouble, the gains averaged 5.4% and 21.0%, respectively, and were significant for HepTH when
the number of attributes was small.ICAC was also robust: it was the only algorithm to outperform
ICA on average for every real data set considered. Moreover, using results pooled over all six data
sets,ICAC had moderate gains vs.ICA, Gibbs,LBP, andwvRNRL, both at the default number of
attributes (where the gains were significant) and using 100 attributes for each data set. Comparing
to just GibbsandLBP, ICAC had a pooled gain of 4.9% and 7.8%, respectively, with the default
number of attributes, and 1.8% and 4.5%, respectively, with 100 attributes.

2826

CAUTIOUS COLLECTIVE CLASSIFICATION

8.2 Cautious Behavior as a Predictor of Performance

The previous section identified some of the situations in which the algorithms performed similarly
or differently. However, if we exclude the extreme data conditions such as very low attribute predic-
tiveness or high link density, a more remarkable finding emerges:the amount of cautious inference
used by an algorithm strongly predicts its relative performance. This finding is especially inter-
esting because the precise type of cautious inference seems to matter little. On both the synthetic
and the real data sets, in most casesICAC, Gibbs, andLBP perform alike, while the non-cautious
ICA, GibbsNC, andLBPNC also perform similarly to each other (and at lower accuracy levels than
the cautious algorithms). However, when many test labels are known (highlp), the need for caution
decreases, and the differences between these two groups greatly diminish.

This effect can also be seen in other CC variants. For instance,wvRNRL andwvRNICA+C perform
similarly, despite their very different approaches to caution, and they both outperform the non-
cautiouswvRNICA+NC. Likewise, in almost every case the somewhat-cautiousICAKn attained an
accuracy between that of the more cautionsICAC and the non-cautiousICA.

Thus, the amount of cautious inference seems to be the biggest factor differentiating those algo-
rithms that use attributes, much more so than whether some kind ofICA or Gibbsor LBP is used.
Likewise, when attributes are not used, as with the variants ofwvRN, caution also appears to be the
largest factor in predicting relative performance.

8.3 Limitations of Cautious Inference

While our results show that the cautious use of relational information can significantly boost perfor-
mance, adding more caution to an algorithm is not always beneficial. In particular, the most extreme
form of relational caution is to not use any relational information (i.e.,CO), but that is seldom op-
timal. Instead, an algorithm must seek to cautiously avoid errors from noisy predictions while still
leveraging informative relations.

To illustrate these effects, Figure 16 shows accuracy results for three synthetic data conditions:
low attribute predictiveness (ap=0.3), the default settings, and high link density (ld=0.9). Here the x-
axis indicates the algorithm used, with the amount of relational caution used increasing to the right.
We focus on variants ofICA, but add three new algorithms for further analysis.ICA70 is just like
ICAC, except that it stops after it has “committed” and used the most certain 70% of the predicted
labels (i.e., after the iteration whenh= 7 in Figure 2).ICA30 andICA0 likewise stop after accepting
and using 30% and 0% of the predicted labels, respectively. Note thatICA0 is identical toICAKn

during the very first iteration (when both use only the “known” labels for relational features), but
thatICA0 stops after that iteration, whileICAKn continues for 10 more iterations, using all available
predictions during those iterations.

For the default and low attribute predictiveness data conditions, the trends are very similar:
amongstICA, ICAKn, andICAC, the most cautiousICAC performs best. Adding more caution to
ICAC, however, consistently decreases performance, asICA70, ICA30, andICA0 use less and less
relational information, until the lowest performance is found with the non-relationalCO. These
results make sense: for this data, relational linksare informative, so completely ignoring any (or
all) of them is non-optimal. Indeed, using all of them without any caution (ICA) is much better than
cautiously ignoring all relations (CO), but the cautious algorithm that eventually uses all relations
(ICAC) performs best. Note that this property of (eventually) using all available relational informa-

2827

MCDOWELL , GUPTA AND AHA

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

ICA ICAKn ICAC ICA70 ICA30 ICA0 CO

A
cc

ur
ac

y

(less cautious) (more cautious)

High ld
Default
Low ap

Figure 16: Accuracy as a function of the amount of relational caution used. ICA70, ICA30, and
ICA0 are (even more cautious) variants ofICAC that stop iterating before some of the
less certain relational information has been used.

tion is true of all of the more cautious algorithms that we considered in this article (ICAC, Gibbs,
LBP,wvRNRL, andwvRNICA+C).

The high link density case provides an interesting contrast. Here the general shape of the curve
is similar, but the peak performance is observed withICAKn, not with the more cautiousICAC. This
effect was already discussed in Section 7.5: if the baseline accuracy is high and there are many
links, simply using all available information after the first iteration is best. Similarly, for situations
where caution is not very important (e.g., whenlp is high), the curve would show similar results for
ICA, ICAKn, andICAC. Thus, in most cases being cautious with relational information is best, but
the algorithm should eventually use all available information (relational and non-relational), and in
some cases using more caution may be less important or even harmful.

8.4 Explanation of Prior Results

Our investigation enables us to explain the questions from Section 1, among others:

1. Why did Sen et al. (2008) find no consistent difference betweenGibbsand ICA? In con-
trast, Gibbs had worked well in other work, and in this article we found thatGibbs (and
ICAC) often significantly increases accuracy vs.ICA. However, our results and careful study
of Sen et al.’s methodology explains the discrepancy: to generate the test set, they used a
snowball sampling method that we found produces an effective labeled proportion (lp) of at
least 0.5—a region where the use of caution has little impact. Also, their study did not vary
attribute predictiveness, which we show is a significant factor in the relative performance of
more cautious CC algorithms.

2. Why did McDowell et al. (2007a) find that ICAC significantly outperforms Gibbs, even
though attribute predictiveness was high, while here we find thatGibbs performs on

2828

CAUTIOUS COLLECTIVE CLASSIFICATION

par or better than ICAC in such cases?To investigate, we re-ran our experiments from our
earlier paper, but with two variations informed by our now-refined understanding of CC. First,
we used PLUL with both the NB and kNN classifiers. Second, we changed the NB classifier
to use multiset relational features (instead of proportion), which use more information and
which Section 7.8 shows is the feature of choice when using NB (it didn’t apply for kNN).
With these enhancements,Gibbs’s relative performance improved, so thatICAC andGibbs
both significantly outperformedICA, but the results forGibbsandICAC did not significantly
differ. Thus, more careful learning and representation choices resolves the discrepancy. This
also suggests that not using PLUL could potentially have an important effect on performance
comparisons. As an additional example, Sen and Getoor (2006) experimented with a wide
range of link densities but did not use a technique like PLUL; our results suggest that using
PLUL could have significantly improved their results withLBP for high ld.

3. Why did Galstyan and Cohen (2007) find that a soft-labeling version ofwvRN fails to
consistently outperform a hard “label propagation” (LP) version? Most authors have ex-
pected that, for relational-only classification, the soft-labeling algorithm that directly reasons
with probabilities (thus exercising cautious inference) should outperform a hard-labeling ver-
sion that only reasons with the single most likely label for each linked node. However, closer
examination of their LP algorithm reveals that it includes elements of caution. In particular,
after each iteration, LP labels a non-known node only if the estimated score for that node is
among thehighestof any such nodes. Thus, in a way similar towvRNICA+C, nodes that are
closest to known nodes are labeled first, and the algorithm effectively favors label information
that was either known or is closer to other known nodes. This cautious behavior enables LP
to be competitive with (and sometimes outperform) the soft-labeling algorithm.

4. Why did Sen et al. (2008) find thatICA and Gibbsperform better with LR than with NB,
while we find the reverse?We replicated the synthetic data of their paper, and reproduced
their results. A key point, however, is that Sen et al. used count relational features for both
NB and LR, while we used cross-validation on a holdout set to select the best relational
feature type (see Section 6.6). This procedure predominantly selected multiset features for
NB (see Section 7.8), which we found in separate experiments to consistently improve NB
performance compared to using count features. Consequently, in our results CC algorithms
that use NB almost always outperformed those that use LR. While not a focus of our work,
such differences can be seen in Table 10. The superior performance of multiset features also
confirms the finding of Neville et al. (2003b).

5. When will cautious algorithms outperform their aggressive variants?We found that us-
ing more cautious CC frequently and sometimes dramatically increased accuracy. In gen-
eral, cautious CC performs comparatively well whenever relational inference errors are more
likely. These errors occur more frequently when there is more uncertainty in the estimated
relational feature values (e.g., when the attribute predictiveness is low) or when the effect of
any such uncertainty is magnified (e.g., when autocorrelation is high). In some cases, such as
when the test set links to many known labels (highlp), using a more cautious CC algorithm
may be unnecessary. However, in many cases (and with most previous work)lp is small or
zero, and thus caution may be important.

2829

MCDOWELL , GUPTA AND AHA

9. Conclusion

Collective classification’s greatest strength—making inferences based on the inferred labels of re-
lated nodes—can also be a significant weakness, since this use of uncertain labels may reduce ac-
curacy when the estimates are incorrect. In this article, we demonstrated that managing this estima-
tion uncertainty through “cautious” algorithmic behavior is essential to achieving maximal, robust
performance. We showed how varying degrees of cautious inference could be manifested in four
different collective inference families, and explained how to use cautious learning with PLUL to
further improve performance. Our experimental results with both synthetic and real-world data sets
showed that cautious algorithms did outperform their non-cautious variants. By exploring a wide
range of data, we identified some data characteristics for which this performance advantage grew
larger. In particular, cautious behavior is especially important when there is a higher probability of
incorrect relational inference—which occurs when autocorrelation is higher, when link density is
moderate, and/or when attribute predictiveness or the labeled proportion is lower. In addition, our
study enabled us to answer several important questions from previous work.

Across a wide range of data, we found that an algorithm’s degree of caution was a significant
predictor of relative performance—in most cases a more important one than the specific collective
inference algorithm used. This reinforces the fundamental importance of cautious behavior for CC.
However, the cautious CC algorithms were not always comparable.Gibbsand (especially)LBP
sometimes struggled (e.g., when the data had high link density). In contrast,ICAC was a very
reliable performer and almost always had maximal or near-maximal performance, especially for the
real-world data. This finding is interesting because this article is the first to considerICAC in depth.
Moreover,ICAC is a simple modification toICA, making it much more time-efficient thanGibbsor
LBP. This suggests thatICAC is a strong contender for general CC tasks, and should be used as a
baseline for future CC performance comparisons.

Regarding cautious learning, we found that PLUL generally increased accuracy, sometimes
substantially. Parameter tuning is known to be important for learning non-relational classifiers.
We show that it can be especially critical for CC due to CC’s reliance on uncertain labels during
testing. For example, further results showed that for the synthetic data when link density was high,
Gibbs+NB with a naiveα (prior hyperparameter) of 1.0 attained 99% of the accuracy attainable
with anyα—if most test labels were known (e.g.,lp=80%). However, whenlp=0% this strategy’s
accuracy was just 61% of optimal. Using PLUL to setα instead increased accuracy. In addition, our
results in Section 7.7 showed PLUL helping both cautious and non-cautious inference algorithms.
Thus, using PLUL for cautious learning improves performance, and adding cautious inference helps
even more.

Future work is needed to compare the algorithms considered here with alternative methods,
such as Markov Logic Networks (Richardson and Domingos, 2006) and the “ghost edge” approach
of Gallagher et al. (2008), and to compare PLUL to the alternative “stacked models” discussed in
Section 5.5. In addition, further studies to consider the effect of training set size, noise in the known
labels, and link uncertainty would be useful. Finally, techniques are needed to further improve the
performance of cautious inference on data with high link density or other extreme conditions.

2830

CAUTIOUS COLLECTIVE CLASSIFICATION

Acknowledgments

Thanks to Doug Downey, Lise Getoor, David Jensen, and Sofus Macskassy for helpful comments
on this work, to Prithviraj Sen for the Cora and Citeseer data sets, to Jennifer Neville for helpful
discussions and for code that implements LBP, and to Prithviraj Sen and Mustafa Bilgic for clari-
fications on their work. Thanks also to the anonymous reviewers for many helpful comments that
helped to improve this article. Luke McDowell’s funding for this research was partly supported
by the U.S. Naval Academy Cooperative Program for Scientific Interchange, which is a compo-
nent of NRL’s General Laboratory Scientific Interchange Program. Portions of this analysis were
conducted using Proximity, an open-source software environment developed by the Knowledge Dis-
covery Laboratory at the University of Massachusetts Amherst (http://kdl.cs.umass.edu/proximity/).
The HepTH data was derived from the Proximity HEP-Th database, which is based on data from the
arXiv archive and the Stanford Linear Accelerator Center SPIRES-HEP database provided for the
2003 KDD Cup competition, with additional preparation performed by the Knowledge Discovery
Lab.

Appendix A. Measuring the Strength of Relational Dependence

Data sets used for CC are often measured for their autocorrelation. Alternatively,label consistency
is the percentage of links connecting nodes with the same label. A closely related measure is the
degree of homophily(dh) used by Sen et al. (2008). To see the difference, suppose that a data set
has five labels that occur with equal frequency. Sen et al. argue that, ifdh is zero, the target of a link
from a node labeledA should be to another node labeledA 20% of the time (random chance), not
0% of the time (Sen, 2008). Thus, for a uniform class distribution, the actual probability of a link
connecting two nodesi and j of the same label is defined as:

label consistency= P(yi = y j |(i, j) ∈ E) = dh+
1−dh
|C|

. (4)

To facilitate comparison, we adopt this definition to generate synthetic data with varying levels
of dh. However, for real data sets, we can only directly compute label consistency. Thus, to facili-
tate comparison we also computeapproximate homophilyfrom the measured label consistency by
assuming a uniform distribution of labels and solving fordhusing Equation 4.

Appendix B. Information on Additional Results

In Section 7, we omitted some results for alternate local classifiers (LR and kNN) and/or alternate
settings oflp, since they did not noticeably change our reported trends. These results are available
in an online appendix that accompanies this article on the JMLR website.

References

Regina Barzilay and Mirella Lapata. Collective content selection for concept-to-text generation.
In Proceedings of the Human Language Technology Conference and Conference on Empirical
Methods in Natural Language Processing (HLT/EMNLP), pages 331–338, 2005.

2831

MCDOWELL , GUPTA AND AHA

Julian Besag. On the statistical analysis of dirty pictures.Journal of the Royal Statistical Society,
48(3):259–302, 1986.

Julian Besag. Spatial interaction and the statistical analysis of lattice systems.Journal of the Royal
Statistical Society, 36(2):192–236, 1974.

Mustafa Bilgic and Lise Getoor. Effective label acquisition for collective classification. InPro-
ceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 43–51, 2008.

Béla Bollob́as, Christian Borgs, Jennifer Chayes, and Oliver Riordan. Directed scale-free graphs. In
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
132–139, 2003.

Soumen Chakrabarti, Byron Dom, and Piotr Indyk. Enhanced hypertext categorization using hyper-
links. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 307–318, 1998.

Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. McCallum, Tom M. Mitchell, Kamal
Nigam, and Séan Slattery. Learning to extract symbolic knowledge from the World Wide Web.
In Proceedings of the 15th Conference of the American Association for Artificial Intelligence
(AAAI), pages 509–516, 1998.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.

Roland L. Dobrushin. The description of a random field by means of conditional probabilities and
conditions of its regularity.Theory of Probability and its Applications, 13(2):197–224, 1968.

Andrew Fast and David Jensen. Why stacked models perform effective collective classification. In
Proceedings of the IEEE International Conference on Data Mining (ICDM), 2008.

Karen Yuen Fung and Barbara A. Wrobel. The treatment of missing values in logistic regression.
Biometrical Journal, 31(1):35–47, 1989.

Brian Gallagher and Tina Eliassi-Rad. Leveraging label-independent features for classification in
sparsely labeled networks: An empirical study. InProceedings of the 2nd Workshop on Social
Network Mining and Analysis at the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2008.

Brian Gallagher, Hanghang Tong, Tina Eliassi-Rad, and Christos Faloutsos. Using ghost edges for
classification in sparsely labeled networks. InProceeding of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 256–264, 2008.

Aram Galstyan and Paul R. Cohen. Empirical comparison of “hard” and “soft” label propagation
for relational classification. InProceedings of the 17th International Conference on Inductive
Logic Programming (ILP), pages 98–111, 2007.

Tayfun Gurel and Kristian Kersting. On the trade-off betweeen iterative classification and collective
classification: first experimental results. InWorking Notes of the 3rd International ECML/PKDD
Workshop on Mining Graphs, Trees, and Sequences, 2005.

2832

CAUTIOUS COLLECTIVE CLASSIFICATION

David Heckerman. A tutorial on learning with bayesian networks. In M. Jordan, editor,Learning
in Graphical Models. MIT Press, 1999.

Andreas Heß and Nicholas Kushmerick. Iterative ensemble classification for relational data: A case
study of semantic web services. InProceedings of the 15th European Conference on Machine
Learning (ECML), pages 156–167, 2004.

Cecil Huang and Adnan Darwiche. Inference in belief networks: A procedural guide.International
Journal of Approximate Reasoning, 15(3):225–263, 1996.

David Jensen and Jennifer Neville. Linkage and autocorrelation cause feature selection bias in
relational learning. InProceedings of the 19th International Conference on Machine Learning
(ICML), pages 259–266, 2002.

David Jensen, Jennifer Neville, and Michael Hay. Avoiding bias when aggregating relational data
with degree disparity. InProceedings of the 20th International Conference on Machine Learning
(ICML), pages 274–281, 2003.

David Jensen, Jennifer Neville, and Brian Gallagher. Why collective inference improves relational
classification. InProceedings of the 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 593–598, 2004.

Ron Kohavi and George H. John. Wrappers for feature subset selection.Artifical Intelligence, 97
(1-2):273–324, 1997.

Daphne Koller, Nir Friedman, Lise Getoor, and Benjamin Taskar. Graphical models in a nutshell. In
L. Getoor and B. Taskar, editors,An Introduction to Statistical Relational Learning. MIT Press,
2007.

Zhenzhen Kou and William W. Cohen. Stacked graphical models for efficient inference in Markov
Random Fields. InProceedings of the 7th SIAM International Conference on Data Mining
(SDM), pages 533–538, 2007.

Qing Lu and Lise Getoor. Link-based classification. InProceedings of the 20th International
Conference on Machine Learning (ICML), pages 496–503, 2003a.

Qing Lu and Lise Getoor. Link-based classification using labeled and unlabeled data. InProceed-
ings of the Workshop on the Continuum from Labeled to Unlabeled data at the 20th International
Conference on Machine Learning (ICML), 2003b.

Sofus A. Macskassy. Improving learning in networked data by combining explicit and mined links.
In Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pages 590–595, 2007.

Sofus A. Macskassy and Foster Provost. Suspicion scoring based on guilt-by-association, collective
inference, and focused data access. InProceedings of the International Conference on Intelli-
gence Analysis, 2005.

Sofus A. Macskassy and Foster Provost. Classification in networked data: A toolkit and a univariate
case study.Journal of Machine Learning Research, 8:935–983, 2007.

2833

MCDOWELL , GUPTA AND AHA

Sofus A. Macskassy and Foster Provost. A brief survey of machine learning methods for classifica-
tion in networked data and an application to suspicion scoring. InProceedings of the Workshop on
Statistical Network Analysis at the 23rd International Conference on Machine Learning (ICML),
2006.

Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Maximum entropy markov models
for information extraction and segmentation. InProceedings of the 17th International Conference
on Machine Learning, pages 591–598, 2000a.

Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the construc-
tion of internet portals with machine learning.Information Retrieval, 3:127–163, 2000b.

Luke K. McDowell, Kalyan Moy Gupta, and David W. Aha. Cautious inference in collective classi-
fication. InProceedings of the 22nd AAAI Conference on Artificial Intelligence, pages 596–601,
2007a.

Luke K. McDowell, Kalyan Moy Gupta, and David W. Aha. Case-based collective classification. In
Proceedings of the 20th International Florida Artificial Intelligence Research Society Conference
(FLAIRS), pages 399–404, 2007b.

Robert J. McEliece, David J. C. MacKay, and Jung-Fu Cheng. Turbo decoding as an instance of
Pearl’s “belief propagation” algorithm.IEEE Journal on Selected Areas in Communications, 16
(2):140–152, 1998.

Miller McPherson, Lynn Smith-Lovin, and James M. Cook. Birds of a feather: Homophily in social
networks.Annual Review of Sociology, 27:415–444, 2001.

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for approximate
inference: An empirical study. InProceedings of the 15th Conference on Uncertainty in Artificial
Intelligence, pages 467–475, 1999.

Jennifer Neville and David Jensen. A bias/variance decomposition for models using collective
inference.Machine Learning Journal, 73(1):87–106, 2008.

Jennifer Neville and David Jensen. Iterative classification in relational data. InProceedings of the
Workshop on Learning Statistical Models from Relational Data at the 17th National Conference
on Artificial Intelligence (AAAI), pages 13–20, 2000.

Jennifer Neville and David Jensen. Leveraging relational autocorrelation with latent group models.
In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM), pages 170–
177, 2005.

Jennifer Neville and David Jensen. Relational dependency networks.Journal of Machine Learning
Research, 8:653–692, 2007.

Jennifer Neville, David Jensen, Lisa Friedland, and Michael Hay. Learning relational probability
trees. InProceedings of the 9th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 625–630, 2003a.

2834

CAUTIOUS COLLECTIVE CLASSIFICATION

Jennifer Neville, David Jensen, and Brian Gallagher. Simple estimators for relational bayesian
classifiers. InProceedings of the Third IEEE International Conference on Data Mining (ICDM),
pages 609–612, 2003b.

Jennifer Neville,Özg̈ur Simsek, David Jensen, John Komoroske, Kelly Palmer, and Henry G. Gold-
berg. Using relational knowledge discovery to prevent securities fraud. InProceedings of the
11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
449–458, 2005.

Mark E. Newman. Mixing patterns in networks.Physical Review E, 67(2):026126, 2003.

Judea Pearl.Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

Matthew J. Rattigan, Marc Maier, David Jensen, Bin Wu, Xin Pei, JianBin Tan, and Yi Wang:.
Exploiting network structure for active inference in collective classification. InProceedings of the
Workshop on Mining Graphs and Complex Structures at the 7th IEEE International Conference
on Data Mining (ICDM), pages 429–434, 2007.

Matthew Richardson and Pedro Domingos. Markov logic networks.Machine Learning, 62(1-2):
107–136, 2006.

Maytal Saar-Tsechansky and Foster Provost. Handling missing values when applying classification
models.Journal of Machine Learning Research, 8(Jul):1623–1657, 2007.

Prithviraj Sen. Personal communication, 2008.

Prithviraj Sen and Lise Getoor. Empirical comparison of approximate inference algorithms for
networked data. InProceedings of the Workshop on Open Problems in Statistical Relational
Learning at the 23rd International Conference on Machine Learning (ICML), 2006.

Prithviraj Sen and Lise Getoor. Link-based classification. Technical Report CS-TR-4858, University
of Maryland, College Park, MD, February 2007.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classification in network data.AI Magazine, Special Issue on AI and Networks, 29(3):
93–106, 2008.

Ben Taskar, Pieter Abbeel, and Daphne Koller. Discriminative probalistic models for relational
data. InProceedings of the 18th Conference on Uncertainity in Artificial Intelligence (UAI),
pages 485–492, 2002.

YongHong Tian, Tiejun Huang, and Wen Gao. Latent linkage semantic kernels for collective clas-
sification of link data.Journal of Intelligent Information Systems, 26(3):269–301, 2006.

Rudolph Triebel, Richard Schmidt, Oscar Martinez Mozos, and Wolfram Burgard. Instance-based
AMN classification for improved object recognition in 2D and 3D laser range data. InProceed-
ings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), pages 2225–
2230, 2007.

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalized belief propagation.Advances
in Neural Information Processing Systems (NIPS), 13:689–695, 2000.

2835

MCDOWELL , GUPTA AND AHA

Nevin Lianwen Zhang and David Poole. Exploiting causal independence in bayesian network in-
ference.Journal of Artificial Intelligence Research, 5:301–328, 1996.

Bin Zhao, Prithviraj Sen, and Lise Getoor. Event classification and relationship labeling in affiliation
networks. InProceedings of the Workshop on Statistical Network Analysis (SNA) at the 23rd
International Conference on Machine Learning (ICML), 2006.

2836

