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Abstract

A Bayesian probabilistic inferential framework provides a natural and logically consistent
method for source reconstruction that fully utilizes the information provided by a limited
number of noisy concentration data obtained from a network (or, array) of detectors. This
report addresses the application of this framework to the difficult problem of estimating
the parameters of an a priori unknown number of sources, using an array of detectors.
To this purpose, Bayesian probability theory is used to formulate the full joint posterior
probability density function for the number of sources and the parameters (e.g., location,
emission rate, activation and deactivation times) that describe each source. A simulated
annealing algorithm, applied in conjunction with a reversible-jump Markov chain Monte
Carlo technique, is used to draw random samples from the posterior probability density
function. By calculating the marginal posterior probability distribution of the number of
sources from these samples, a maximum a posteriori estimate N̂s for the number of sources
can be obtained, and all samples of source distribution models with exactly N̂s discrete
sources can be used to provide best estimates for the source parameters (along with their
associated uncertainties). The method is validated against a real dispersion experiment
involving various combinations of multiple source releases conducted under a multinational
cooperative FUsing Sensor Information from Observing Networks (FUSION) Field Trial
2007 (FFT-07) undertaken at US Army Dugway Proving Ground (DPG) in September
2007.
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Résumé

Le schéma probabiliste inférentiel bayésien est une méthode naturelle et logiquement con-
stante de reconstruction des sources qui utilise au maximum l’information procurée par
un nombre limité de données de concentration obtenues d’un réseau de détecteurs. Ce
rapport traite d’appliquer ce schéma au problème ardu de l’estimation des paramètres d’un
nombre à priori inconnu de sources à l’aide d’un réseau de détecteurs. C’est dans ce but
qu’on utilise la théorie bayésienne des probabilités pour formuler la fonction de densité
conjointe à postériori pour le nombre de sources et les paramètres (ex. : endroit, taux
d’émission, heures d’activation et de désactivation) qui décrivent chaque source. On utilise
un algorithme recuit simulé appliqué en conjonction avec une technique Monte Carlo par
châıne de Markov à sauts réversibles pour tirer des échantillons au hasard au moyen de la
fonction de probabilité à postériori. En calculant la distribution de probabilité à postériori
du nombre de sources à partir de ces échantillons, on peut obtenir l’estimation du maximum
à postériori N̂s du nombre de sources et on peut utiliser tous les échantillons provenant des
modèles de distribution de sources avec exactement N̂s sources discrètes pour procurer les
meilleures estimations concernant les paramètres des sources (ainsi que les fluctuations qui y
sont reliées). La méthode a été validée par une expérience consistant en une dispersion réelle
comprenant plusieurs combinaisons d’émissions de sources multiples ; cette expérience a été
conduite au moyens d’essais pratiques en 2007 (FFT-07) par les réseaux d’observation de
capteurs d’information FUSION (FUsing Sensor Information from Observing Networks) et
effectués sur le polygone d’essais de l’arme des États-Unis, Army Dugway Proving Ground
(DPG), en septembre 2007.
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Executive summary

Validation of a Sensor-Driven Modeling Paradigm for Multiple
Source Reconstruction with FFT-07 Data

E. Yee; DRDC Suffield TR 2009-040; Defence R&D Canada – Suffield; May 2009.

Background: A critical capability gap in current emergency and retrospective manage-
ment efforts directed at terrorist incidents involving the covert release of chemical, biological
and radiological (CBR) agents into the atmosphere is the ability to determine the number
of sources and, for each of these sources, the location, amount of agent released, and the
time of release, following the detection of an event by a network of CBR sensors. This is
the so-called source reconstruction problem (also referred to as the source characterization
or source inversion problem in various studies). In order to address this capability gap,
a multinational collaborative program for the development of methodologies for source re-
construction, involving the fusion of (usually noisy) CBR concentration measurements from
remote and deployable networks of sensors with model concentration data obtained from
advanced atmospheric dispersion models, has been included as a task under The Technical
Cooperation Program (TTCP), CBR Defence Group Technical Panel 9 (TP-9) on Hazard
Assessment.

Principal results: In this report, we address the problem of source reconstruction for the
difficult case of multiple sources when even the number of sources is unknown a priori. A
new methodology is developed to solve this problem. This methodology provides simulta-
neous estimates for the number of sources and for the parameters (e.g., release location,
emission rate) that characterize each source. The method is successfully validated against
a real dispersion experiment involving various combinations of multiple source releases.
This field experiment was conducted under a multinational cooperative FUsing Sensor
Information from Observing Networks (FUSION) Field Trial 2007 (FFT-07), which was
designed and sponsored by TTCP CBR Defence Group TP-9 and conducted at US Army
Dugway Proving Ground (DPG) in September 2007.

Significance of results: The algorithm described in this report can be used to interpret
agent concentration measurements obtained from an array of CBR detectors in order to
estimate unknown source characteristics and quantify uncertainties in this estimation. The
technique can be used to estimate the location, emission rate and duration of clandestine
CBR agent release(s). Once the sources have been characterized in terms of their vari-
ous descriptive parameters (e.g., release location, emission rate), this information can be
subsequently used with dispersion models to predict the future agent transport in the at-
mospheric environment and to construct toxic corridors with specified confidence levels in
order to support various aspects of the decision-making process for emergency managers
and first responders (civilian and military). The comprehensive source reconstruction tool
developed here provides a general methodology for the fusion of CBR detector data with
model predictions of agent dispersal in the atmosphere. The application of this sensor-driven
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modeling paradigm will undoubtedly result in a more complete situational awareness in the
operational CBR environment. Indeed, the sensor-driven modeling paradigm developed
herein can be integrated potentially into operational warning and reporting (information)
systems that combine automated data acquisition, analysis, source reconstruction, display
and distribution of CBR hazard prediction and associated decision-support products. This
will undoubtedly lead to a greatly improved Common Operating Picture (COP) in the CBR
battlespace.

Future work: The next step is to develop a fully operational implementation of the source
reconstruction capability described in this report and to incorporate this operational ca-
pability into the integrative multiscale urban modeling system implemented in the com-
putational infrastructure at a government operations facility (Environmental Emergency
Response Section at Canadian Meteorological Centre). This multiscale urban modeling
system was developed under a previous Chemical Biological Radiological-Nuclear and Ex-
plosives Research and Technology Initiative (CRTI) Project 02-0093RD and provided an
advanced, high-fidelity, validated, state-of-the-science modeling system for the prediction
of urban flows and the dispersion of CBR agents released into these flows. The success-
ful completion of the future work proposed here will give a government operations facility
the necessary tools to provide a ‘whole-of-government’ (comprehensive) single authoritative
source for expert quality-assured sensor-driven CBR hazard predictions and concomitant
decision-support aids, which will form the basis for making decisions for responding to
and mitigating hazardous release incidents. These products can be used by emergency
managers, planners and first responders (civil and military) in various federal, provincial
and municipal agencies for informed response decision making in both domestic and inter-
national operations, as well as for support to major events of national and international
significance [e.g., Vancouver Winter Olympics, Group of Eight (G8) Summit]. Furthermore,
this development is in direct alignment with Defence R&D Canada’s Science and Technol-
ogy Strategy for a Secure Canada and contributes to the solution of a hard problem in the
defence and security domain to build a reusable major events security capability.
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Sommaire

Validation of a Sensor-Driven Modeling Paradigm for Multiple
Source Reconstruction with FFT-07 Data

E. Yee ; DRDC Suffield TR 2009-040 ; R & D pour la défense Canada – Suffield ; mai
2009.

Contexte : Il existe actuellement une lacune grave en termes de capacités en gestion des
urgences et efforts rétrospectifs contre les incidents terroristes d’émission invisible d’agents
chimiques, biologiques et radiologiques (CBR) dans l’atmosphère. Cette lacune consiste en
l’incapacité à déterminer le nombre de sources et pour chacune de ces sources, le lieu, la
quantité d’ágent émis et l’heure de l’émission, après qu’un réseau de capteurs CBR ait ef-
fectué la détection d’un tel événement. Il s’agit d’un problème de reconstruction des sources
(appelé aussi dans certaines études la caractérisation des sources ou problème d’inversion
des sources). Pour combler cette lacune, on a inclus un programme de collaboration mul-
tinational à la tâche du Programme de coopération technique, Panel 9 (TP-9) du groupe
technique de défense CBR d’évaluation des risques. Ce programme consiste en la fusion de
mesures de concentrations CBR (habituellement bruyantes) provenant de réseaux de cap-
teurs éloignés et pouvant être déployés dont les modèles de données de concentration sont
obtenus à partir de modèles perfectionnés de dispersion atmosphérique.

Résultats principaux : Nous traitons, dans ce rapport, de ce problème de reconstruction
des sources dans les cas difficiles de sources multiples dont le nombre est inconnu a priori.
On a développé une nouvelle méthodologie pour résoudre ce problème ; cette méthodologie
procure des estimations simultanées du nombre de sources et de ses paramètres (ex. : le
lieu d’émission, le taux d’émission) qui caractérisent chaque source. On a réussi à valider
cette méthode en expérimentant sur une dispersion réelle ayant des combinaisons variées de
sources multiples d’émission. Cet expérience sur le terrain a été conduite au moyen d’essais
pratiques, en 2007, (FFT-07) par les réseaux d’observation de capteurs d’information FU-
SION (FUsing Sensor Information from Observing Networks). Ces essais ont été conçus
et parrainés par le Groupe TP-9 de la défense CBR du Programme de coopération tech-
nique. Ils ont été conduits sur le polygone d’essais de l’arme des États-Unis, Army Dugway
Proving Ground (DPG), en septembre 2007.

Portée des résultats : On peut utiliser l’algorithme décrit dans ce rapport pour in-
terpréter les mesures de concentration des agents obtenus d’un réseau de détecteurs CBR
en vue d’estimer les caractéristiques inconnues de la source et quantifier les fluctuations de
cette estimation. On peut utiliser cette technique pour estimer le lieu, le taux et la durée
d’émission d’un agent CBR clandestin ayant été émis. Une fois les sources caractérisées en
termes de paramètres descriptifs variés (ex. : lieux et taux d’émission), l’information peut
être subséquemment utilisée au moyen de modèles de dispersion visant à prédire le transport
futur d’agents dans le milieu atmosphérique et visant à construire des corridors toxiques
ayant des coefficients de confiance en mesure de soutenir certains aspects du processus de
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prise de décisions des gestionnaires des mesures d’urgences et premiers intervenants (civils
et militaires). L’outil de reconstruction complète des sources, mis au point ici, procure une
méthodologie générale pour la fusion des données de détecteurs CBR au moyen de modèles
de prédiction de la dispersion des agents dans l’atmosphère. L’application de ce paradigme
de modèle à base de capteurs résultera sans aucun doute en une reconnaissance situation-
nelle plus complète lors d’opérations dans un environnement CBR. En réalité, ce paradigme
de modèle à base de capteurs, mis au point ici, a le potentiel d’être intégré dans des systèmes
opérationnels d’avertissement et de transmission (de l’information) qui combinent l’acqui-
sition automatisée des données avec les analyses, la reconstruction des sources, l’affichage
et la distribution des prédictions des risques CBR et des produits d’aide à la décision. Ceci
aboutira sans aucun doute à une grande amélioration de l’image commune de la situation
opérationnelle (ICSO) dans l’espace de combat CBR.

Perspectives d’avenir : La prochaine étape est de développer l’implémentation totale
de la capacité de reconstruction des sources, décrite dans ce rapport et d’incorporer cette
capacité opérationnelle au système intégratif de modélisation urbaine à échelles multiples,
implémenté dans l’infrastructure computationnelle des installations opérationnelles gouver-
nementales (Section de réponse aux urgences environnementales du Centre météorologique
canadien). Ce système de modélisation urbain à échelles multiples a déjà été mis au point
par le Projet 02-0093RD de l’Initiative de recherche et de technologie (CRTI) chimique,
biologique, radiologique, nucléaire et explosive ; il s’agit d’un système de modélisation
perfectionné, de haute fidélité, validé et d’une science d’avant garde, visant à prédire
les flots urbains et la dispersion des agents CBR émis dans ces flots. La réalisation des
travaux futurs proposés ici, procurera aux installations opérationnelles gouvernementales,
les outils nécessaires facilitant une source gouvernementale autorisée, unique est globale
(compréhensive) qui fera des prédictions d’une qualité assurée des risques CBR provenant
des capteurs. Ces outils procureront aussi les aides concomitantes qui seront à la base des
prises de décisions ayant trait à la réponse et à l’atténuation des incidents d’émission. Ces
produits pourront être utilisés par les gestionnaires des mesures d’urgences, les planifica-
teurs et les premiers intervenants (civils et militaires) des agences fédérales, provinciales
et municipales qui seront alors en mesure de prendre des décisions éclairées en matière
d’opérations domestiques et internationales ainsi qu’en soutien à des événements impor-
tants de portée nationale et internationale (ex. : les jeux olympiques d’hiver de Vancouver,
le sommet du Groupe des huit (G8)). De plus, ce développement s’aligne directement avec la
Stratégie scientifique et technologique pour un Canada sécuritaire de R&D pour la défense
Canada et contribue à résoudre le problème difficile en matière de défense et de sécurité
consistant à construire une capacité en matière de sécurité des événements importants qui
soit réutilisable.
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1 Introduction

The development of increasingly more sophisticated sensing technologies for the monitoring
of the concentration of hazardous contaminants [e.g., chemical, biological, or radiological
(CBR) agents] released into the turbulent atmosphere has generated interest in utilizing this
information for the reconstruction of the contaminant source responsible for the observed
concentration pattern. More specifically, in public security applications for countering ter-
rorist incidents involving the covert release of a CBR agent in a densely populated urban
centre, a critical requirement is the characterization of the unknown source(s) following
event detection by a network (array) of CBR sensors. These sensors are placed at differ-
ent points in space within a designated region in order to function as detectors/monitors
to provide quantitative measurements of the concentration of various air admixtures of
contaminants.

For example, the Department of Homeland Security (DHS) has deployed (albeit sparse) ar-
rays of biological agent sensors in 31 (with plans to expand to 120) cities across the United
States as part of the BioWatch program [1] in order to provide detection and warning of a
covert bioterrorism event. In the context of homeland security, the BioWatch program has
provided the impetus for recent research efforts directed towards the source reconstruction
problem for determination of the location, emission rate, and other characteristics of un-
known source(s) of contamination. In consequence, a multinational collaborative program
for the development of methodologies for source reconstruction has been included as a task
under The Technical Cooperation Program (TTCP), CBR Group Technical Panel 9 on
Hazard Assessment.

Mathematically, the source reconstruction problem is an inverse problem. Let c(x, t) denote
the instantaneous concentration at location x and time t. The ensemble-mean concentration
C(x, t) ≡ 〈c(x, t)〉 (〈 · 〉 denotes an ensemble-averaging operation) is related to the source
density function S(x, t) through a Volterra integral equation of the first kind (exact source-
receptor relation):

C(x, t) =
∫ t

t0

∫
R3

p(x, t|x′, t′)S(x′, t′) dx′ dt′, (1)

where for simplicity it is assumed implicitly that at the (arbitrary) initial time t0, C(x, t0) =
0. In Eq. (1), p(x, t|x′, t′) ≡ 〈Rκ(x, t|x′, t′)〉 is the kernel function with Rκ determined as
the fundamental solution of an advection-diffusion equation:

∂Rκ

∂t
+ u · ∇Rκ = κ∇2Rκ, (2)

with initial condition Rκ(x, t0|x′, t0) = δ(x−x′) (where δ(x) is the Dirac delta function). In
Eq. (2), u is the instantaneous velocity field which is assumed to be turbulent (and, hence,
random and unpredictable) and κ is the molecular diffusivity which is taken to be constant.
The source reconstruction problem is as follows: given C(x, t) and a specific p(x, t|x′, t′),
what is the source density function S(x′, t′)?
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The right-hand-side (RHS) of Eq. (1) defines a formal operator G as follows:

(GS)(x, t) =
∫ t

t0

∫
R3

p(x, t|x′, t′)S(x′, t′) dx′ dt′, (3)

which allows us to write Eq. (1) in the symbolic form

GS = C. (4)

Formally, the source reconstruction problem can be solved by constructing the inverse
operatorG−1. Unfortunately, this direct mathematical inversion is not possible for a number
of reasons. Firstly, there is no comprehensive theory of turbulence so an exact form of
p(x, t|x′, t′) (and of the operatorG) is not available. Secondly, as a pure integral equation the
problem may have no solutions (singular operator G), and when it does the solutions may
not be uniquely determined. Thirdly, C(x, t) cannot be specified completely and precisely
— measurements of C are available only at a finite number of space-time points and these
measurements are usually noisy suggesting that even if G−1 was known exactly, the presence
of noise in the concentration data may introduce instabilities into the solution. For these
reasons, the source reconstruction problem using incomplete and noisy concentration data
is an ill-posed problem.

A mathematical tool that has been developed for treating instabilities that occur in inverse
problems is regularization [2]. In this approach, the class of admissible solutions for S
is restricted by imposing further constraints on the solution (although frequently these
constraints are somewhat arbitrary and ad-hoc). More specifically, regularization of the
source reconstruction problem involves finding the “best” result from among all those source
distributions that agree with the incomplete and noisy concentration data, by minimizing
a cost functional of the form:

J(S) = ||C −GS||2 + λΦ(S), (5)

where the first term on the RHS of Eq. (5) is a measure of the misfit between the measured
(noisy) concentration C and the model concentration GS (where || · || is some appro-
priately defined norm), Φ(S) is the regularization functional that is used to impose some
constraint on the solution, and λ is a regularizing parameter that imposes a relative weight
(or, importance) between the data and the constraint.

Robertson and Persson [3] and Robertson and Langner [4] minimized Eq. (5) with Φ(S) = 0,
using a four-dimensional (space and time) variational data assimilation method with an
adjoint transport equation, to recover emission rate profiles for an experiment with synthetic
data and for the European Tracer Experiment (ETEX) [5], respectively. Seibert and Stohl
[6] and Seibert [7] use a regularization functional of the form Φ(S) = ||S||2 (which imposes an
upper bound on the “energy” of the source distribution S) to reconstruct the distribution of
emission rates for application to the radionuclide monitoring system implemented under the
Comprehensive Test Ban Treaty (CTBT) [8]. Thomson et al [9] investigated the use of three
different regularization functionals Φ(S) for source reconstruction, with the minimum of the
cost function J(S) obtained using a random search algorithm with simulated annealing.
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The three regularization functionals were an entropy functional, a smoothing functional in
which the source strength in a grid cell is compared to the average of the source strengths
in the neighboring grid cells, and a functional that imposes an upper bound on the total
emission flux. Bocquet [10] used entropy as a regularizer (viz., applied the principle of
maximum entropy on the mean) and solved the resulting constrained minimization of the
cost function by using duality theory to convert the problem to a simpler unconstrained
minimization problem for the Lagrangian multipliers (which were introduced to impose
constraints on the mean to ensure that the model concentration is consistent with the
measured concentration). Finally, Allen et al [11] minimized a misfit measure defined
as the squared differenced between the logarithmic measured and modeled concentration
with Φ(S) = 0. In effect, these investigators assumed that it was known a priori that
the unknown source is a continuous point source with unknown source location (x, y) and
source strength Q, and used a genetic algorithm to select the source location and strength
so as to minimize the misfit measure.

The regularization approach selects a particular source distribution S by minimizing, max-
imizing, or optimizing some form of cost functional. Unfortunately, the reliability of the
inferred S cannot be obtained from any single selection, no matter what optimal properties
in terms of quality and utility this single selection of S purportedly embodies. To deal
with uncertainty (which reflects also the non-uniqueness of solutions for S using incomplete
and noisy concentration data), it is necessary to apply Bayesian probability theory to the
problem, rather than simply apply regularization. To this purpose, a probabilistic approach
using a Bayesian inferential scheme that allowed the uncertainty in the inference for S to
be determined was developed by Yee [12] and demonstrated using Project Prairie Grass
data for dispersion over open terrain. This methodology was further developed, refined,
and generalized in subsequent work: (1) application of the methodology to complex envi-
ronments (dispersion in built-up environments) by Yee [13], Keats et al [14] and Chow et al
[15]; (2) generalization of the methodology to deal with a non-conservative scalar by Keats
et al [16]; and, (3) application of the methodology to source reconstruction for long-range
dispersion on continental scales by Yee et al [17]. Yee [18] generalized the methodology
to the reconstruction of multiple sources when the number of sources was known a priori.
Finally, Yee [19], Yee [20] and Yee [21] developed the theory underlying the application of
a Bayesian probabilistic inferential framework for addressing the problem of source recon-
struction for the difficult case of multiple sources when the number of sources is unknown
a priori. For a general review of source estimation methods for atmospheric dispersion, the
reader is referred to Rao [22].

The aim of this paper is to use some new concentration data, measured by a sensor array
consisting of 100 detectors for releases involving multiple sources, to test the procedure
proposed by Yee [21] for multiple source reconstruction for the case when the number of
sources is unknown a priori.
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2 Bayesian inference for source reconstruction

In this report, we focus on a source distribution S associated with Ns transient point
sources with the k-th source located at a vector position xs,k and with source activation
and deactivation times T k

b and T k
e , respectively, between which the source is releasing

contaminant at a constant emission rate Qk (k = 1, 2, . . . , Ns). This source distribution has
the following explicit form:

S(x, t) =
Ns∑
k=1

Qkδ(x − xs,k)
[H(t− T k

b ) −H(t− T k
e )
]
, (6)

where H( · ) is the Heaviside unit step function. Now, let us assemble the parameters
for this particular source distribution (consisting of Ns transient point sources) into the
following source parameter vector:

θNs ≡ (xs,1, T
1
b , T

1
e , Q1, . . . ,xs,Ns , T

Ns
b , TNs

e , QNs

) ∈ R
6Ns . (7)

Furthermore, let Θ ≡ (Ns, θNs).

The measured mean concentration di,j(i) obtained by a detector at receptor location xdi

and time t(i)dj
is assumed be the sum of a modeled mean concentration signal C(xdi

, t
(i)
dj

; Θ)
and noise ei,j(i) :

di,j(i) = C(xdi
, t

(i)
dj

; Θ) + ei,j(i), i = 1, 2, . . . , Nd and j = 1, 2, . . . , N (i)
t , (8)

where Nd is the number of detectors, N (i)
t is the number of concentration time samples

measured at the i-th detector and

C(xdi
, t

(i)
dj

; Θ) =
∫ T

t0

dt

∫
D⊂R3

dx C(x, t)h(x, t|xdi
, t

(i)
dj

) ≡ 〈〈C|h〉〉(xdi
, t

(i)
dj

), (9)

is the expected (mean) concentration “seen” by the detector at location xdi
and time t(i)dj

,
D × [t0, T ] is the space-time volume enclosing the source distribution S and the detectors,
and C(x, t) is the ensemble-mean concentration determined in accordance to Eq. (1) for
the source distribution S given by Eq. (6). In Eq. (9), h(x, t|xd, td) is the spatial-temporal
filtering function (of x and t) for the mean concentration measurement made by the detector
at location xd and time td with∫ T

t0

dt

∫
D
dx h(x, t|xd, td) = 1. (10)

Note from Eq. (9) that C can be determined as the inner (or scalar) product 〈〈C|h〉〉 of the
mean concentration C and the detector spatial-temporal filtering function h.

To simplify the notation, we rewrite the measurement model of Eq. (8) as follows:

dJ = CJ(Θ) + eJ , J = 1, 2, . . . , N, (11)

4 DRDC Suffield TR 2009-040



where N ≡ ∑Nd
i=1N

(i)
t is the total number of measured concentration data and CJ(Θ) ≡

C(xdi
, t

(i)
dj

; Θ). In Eq. (11), the index J is used to denote the label (i, j(i)) (ordered in some
regular or convenient manner). With this background, the problem of source reconstruction
reduces to the following problem: estimate Ns (number of sources) and θNs (parameters for
each source) or, equivalently, estimate Θ given the concentration data D ≡ (d1, d2, . . . , dN ).

Yee [21] developed a new method based on Bayesian probability theory for the inference
of Θ. The components of the Bayesian inference scheme for source reconstruction are
shown in Figure 1. Bayesian probability theory can be derived from more fundamental
principles starting with the formulation of a small number of requirements that any theory
of plausibility (or inference) ought to verify. These requirements (desiderata) were first
provided by Cox [23], with an eloquent description of the complete development described
by Jaynes [24] in his definitive treatise. Within the context of the source reconstruction
problem formulated above, Bayes’ theorem yields the following result:

p(Θ|D, I) =
p(Θ|I)p(D|Θ, I)

p(D|I) , (12)

where I is the background (contextual) information available in the problem (e.g., model
that defines the mapping from a source distribution S to the concentration C, background
meteorology). The various factors that appear in Eq. (12) have the following interpretation.
Firstly, p(Θ|I) is the prior probability density function (PDF) for a proposition Θ about
the source, predicated on the contextual information specified by I, with “|” denoting
“conditional upon”. The prior PDF encodes all the prior information about the source
before receipt of the concentration data D. Secondly, p(D|Θ, I) is the likelihood function
and is the probability that we observe the concentration data D, when Θ is known exactly
(viz., the source distribution is known). Thirdly, p(D|I) is referred to as the evidence and,
in our case here, is simply a normalization constant. Finally, p(Θ|D, I) is the posterior
PDF for the proposition Θ about the source, in light of the new information introduced
through the newly acquired concentration data D.

We are seeking the posterior PDF p(Θ|D, I), which encodes our inferences about Θ. Because
p(D|I) is simply a normalization constant, the posterior PDF of interest in Eq. (12) can be
specified within a normalization constant as

p(Θ|D, I) ∝ p(Θ|I)p(D|Θ, I). (13)

The problem now reduces to the assignment of p(Θ|I) (prior distribution) and p(D|Θ, I)
(likelihood function).

For the prior distribution, the logical independence of the source parameters is assumed, in
which case p(Θ|I) factorizes as follows:

p(Θ|I) ≡ p
(
Ns, θNs |I

)
= p(Ns|I)

Ns∏
k=1

p(Qk|I)p(xs,k|I)p(T k
b |I)p(T k

e |T k
b , I). (14)

The prior on the number of sources p(Ns|I) is chosen to be a binomial distribution with
parameter p∗ ∈ [0, 1] (binomial rate), and with a domain of definition between Ns,min
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Figure 1: The components of the Bayesian inference scheme for source reconstruction.

(minimum number of sources) and Ns,max (maximum number of sources); viz., p(Ns|I) ∼
B(p∗;Ns,min, Ns,max)1 where the symbol ‘∼’ denotes “is distributed as”. The prior on
emission rate p(Qk|I) for k = 1, 2 . . . , Ns is chosen to be a Bernoulli-uniform mixture:
p(Qk|I) ∼ BU(γ;Qmax) where γ is the probability that the source is turned on (viz.,
Pr{Qk > 0} = γ) and Qmax is an a priori upper bound on the expected emission rate.2

The prior on the source location p(xs,k|I) for k = 1, 2 . . . , Ns is chosen to be uniform
(flat) over the some spatial region D ⊂ R

3, so p(xs,k|I) ∼ U(D). Finally, the priors
on the source activation (on) and deactivation (off) times for the k-th source are chosen
to be uniform over [t0, Tmax] and [T k

b , Tmax], respectively, where Tmax is an upper bound
on the time at which the source was turned on or off (viz., p(T k

b |I) ∼ U([t0, Tmax]) and
p(T k

e |T k
b , I) ∼ U([T k

b , Tmax]) for k = 1, 2, . . . , Ns). Note that the domain of definition for

1The binomial distribution B(p∗; Ns,min, Ns,max) has a probability distribution function defined as follows:

p(Ns|I) =
(Ns,max − Ns,min)!

(Ns − Ns,,min)!(Ns,max − Ns)!
p∗(Ns−Ns,min)(1 − p∗)Ns,max−Ns ,

for Ns = Ns,min, Ns,min + 1, . . . , Ns,max. Note that in this definition, the standard form of the binomial
distribution has been offset by the minimum number of sources Ns,min.

2More specifically, a Bernoulli-uniform mixture model for Qk has the following form:

p(Qk|I) = (1 − γ)δ(Qk) + γI(0,Q∗)(Qk)
/
Q∗,

(k = 1, 2, . . . , Ns) and IA(x) is the indicator function for set A, with IA(x) = 1 if x ∈ A and IA(x) = 0 if
x �∈ A.
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the uniform distribution assigned to p(T k
e |T k

b , I) explicitly encodes the fact that the time
the k-th source is turned off must occur after it has been turned on.

The likelihood function p(D|Θ, I) encodes all the information provided by the concentration
data about the unknown source distribution S. The “noise” component eJ in Eq. (11)
represents the difference (residual) between the measured and modeled (or, predicted) mean
concentration. It is assumed that the only information we have about the noise component
eJ is that it has a known noise power (or variance) σ2

J . The variance σ2
J of this noise can

be decomposed into four basic contributions as discussed by Rao [25] (see Figure 1): (1)
model errors arising from uncertainties in the representation of various physical processes
(e.g., turbulent diffusion) in the dispersion model used to predict C(x, t); (2) input error
arising from uncertainties in the values of model parameters and/or in the specification of
the meteorology used to “drive” the dispersion model; (3) stochastic uncertainty arising
from the turbulent nature of the atmosphere; and, (4) measurement noise inherent in the
concentration detector. In spite of the complexity of the noise structure, application of the
principle of maximum entropy (see Jaynes [24]) to our state of knowledge concerning the
noise, results in the following Gaussian form for the likelihood function:

p(D|Θ, I) =
1∏N

J=1

√
2πσJ

exp
(
−1

2
χ2(Θ)

)
, (15)

where

χ2(Θ) ≡
N∑

J=1

(
dJ − CJ(Θ)

σJ

)2

. (16)

Using the forms for the prior distribution and the likelihood function assigned above, the
posterior distribution of Eq. (13) can be written as follows:

p(Θ|D, I) ≡ p(Ns, θNs |D, I)

∝ 1∏N
J=1

√
2πσJ

exp

(
−1

2

N∑
J=1

(
dJ − CJ(Θ)

σJ

)2
)

× (Ns,max −Ns,min)!
(Ns −Ns,,min)!(Ns,max −Ns)!

p∗(Ns−Ns,min)(1 − p∗)Ns,max−Ns

×
Ns∏
k=1

[
(1 − γ)δ(Qk) + γI(0,Qmax)(Qk)

/
Qmax

]
×ID(xs,k)I(t0,Tmax)(T

k
b )

I(T k
b ,Tmax)(T

k
e )(

Tmax − T k
b

) . (17)

The posterior PDF p(Θ|D, I) embodies the state of knowledge about the source parameters
given the prior information encoded in p(Θ|I) and the newly acquired concentration data
D, the latter of which modulates our prior belief about Θ through the likelihood function
p(D|Θ, I). In consequence, p(Θ|D, I) allows us to estimate all the interesting statistics
about the source parameter Θ. More specifically, the posterior distribution p(Θ|D, I) allows
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one to summarize its information through a few statistics such as location and dispersion
measures which provide quantitative information on the central (or, “best”) value of a
source parameter and the uncertainty associated with this value.

For example, the maximum a posteriori estimate for the number of (discrete) sources can
be obtained from

N̂s = argmax
Ns

p(Ns|D, I), (18)

where p(Ns|D, I) is the (marginal) posterior probability for the number of sources, condi-
tioned on the concentration data and the background information. Given an estimate N̂s

for the number of sources, posterior quantities of interest about θN̂s
involve expectation

values of the following form:

〈ψ(θ
N̂s

)〉 =
∫
ψ(θ

N̂s
)p(N̂s, θN̂s

|D, I) dθ
N̂s
. (19)

In particular, the choice ψ(θN̂s
) = θN̂s

gives the posterior mean of the source parameters,

which can be used as an estimate for these parameters; viz., θ̂N̂s
= 〈θN̂s

〉.

Similarly, the choice ψ(θN̂s
) =

(
θN̂s

− 〈θN̂s
〉)2, gives the posterior variance of the source

parameters, whose square root (or, posterior standard deviation) can be used as a measure
of uncertainty in the estimate for these parameters; viz., σ(θ

N̂s
) =

〈(
θ
N̂s

− 〈θ
N̂s

〉)2〉1/2.
Alternatively, a p% highest posterior distribution (HPD) interval that encloses a source
parameter with p% probability, and constructed so that the lower and upper bounds of
the specified interval are such that the probability density function within the interval is
everywhere larger than outside it, can be used as a uncertainty specification for a source
parameter.

3 Computational framework

This section describes the computational procedures which are used for extracting the source
parameter estimates required for event reconstruction. In this report, the background treat-
ment on the computational methodology is necessarily brief. The reader is referred to Yee
et al [17] and Yee [21] for a more complete description of this topic. There are two major
issues in the computational framework applied to Bayesian inference for source reconstruc-
tion that need to be addressed; namely, (1) a computationally efficient methodology for
the computation of the source-receptor relationship required in the determination of the
likelihood function, and (2) a methodology for sampling from the posterior distribution for
the source parameters.

3.1 Fast computation of source-receptor relationship

To apply the Bayesian inference methodology to source reconstruction, we need to relate the
hypotheses of interest about the unknown source distribution (encoded in Θ) to the available
concentration data dJ measured by the network (or array) of detectors. This requires the
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Figure 2: Commutative diagram illustrating two mathematically equivalent representations
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computation of a modeled (or predicted) concentration CJ as prescribed by Eqs (9) and
(1). This is the source-receptor relationship (realized in terms of an atmospheric dispersion
model) that describes the mapping MSR from the hypothesis space H of source distributions
to the concentration sample space SN of concentration data, so MSR : Θ ∈ H → D ∈ SN

(N is the number of concentration data).

The likelihood function given in Eqs (15) and (16) is not a closed-form expression and its
evaluation is computationally expensive owing to the fact that CJ (J = 1, 2, . . . , N) needs
to be determined for a given source distribution Θ [using Eqs (9) and (1)]. Moreover, a
simulation-based posterior inference using Markov chain Monte Carlo sampling requires a
large number of computations of the source-receptor relationship to be undertaken. In con-
sequence, a fast and efficient technique for performing computations of the source-receptor
relationship (for any given source distribution Θ) is required for the rapid sampling of the
posterior distribution. To this purpose, Keats et al [14] and Yee et al [17] described a
computationally efficient methodology for determination of the source-receptor relationship
using an adjoint representation for this relationship.

Figure 2 illustrates two mathematically equivalent (dual) representations for the source-
receptor relationship MSR. If we interpret the source distribution S (which we encode
as Θ) as a vector in V (vector space of source functions), then we can construct a vector
(function) C∗ which is dual (or conjugate) to S belonging to the dual vector space V ∗ (or,
conjugate concentration function space). This vector space is identified to be the space of
all linear functionals C∗ : V → R. There is a one-to-one correspondence between the vector
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S ∈ V and the dual vector C∗ ∈ V ∗, and this correspondence can be defined through the
scalar product 〈〈C∗|S〉〉 that pairs S with C∗.3

Similarly, C and h [see Eq. (9)] can be interpreted as dual (or conjugate) vectors lying
in the concentration function space U and detector function space U∗, respectively, with
U∗ being the dual vector space to U with the one-to-one correspondence between ele-
ments of these two spaces defined through the scalar product 〈〈h|C〉〉 with C ∈ U and
h ∈ U∗. More interestingly, C can be paired with its dual h and C∗ can be paired with
its dual S such that the duality relationship 〈〈C|h〉〉 = 〈〈h|C〉〉 = 〈〈C∗|S〉〉 is exactly sat-
isfied. Now, S can be related to C through the mapping G (viz., C = G(S) ≡ GS)
which corresponds to the direct (source-oriented) representation of the source-receptor re-
lationship. However, a mathematically equivalent representation of the source-receptor
relationship can be formulated by relating h to C∗ through the adjoint mapping G∗ (viz.,
C∗ = G∗(h) ≡ G∗h)4 with G∗ explicitly constructed so that the duality relation is exactly
satisfied: 〈〈C∗|S〉〉 = 〈〈G∗h|S〉〉 = 〈〈h|GS〉〉 = 〈〈h|C〉〉 = 〈〈C|h〉〉, for any source S ∈ V and any
receptor h ∈ U∗. This is the dual (receptor-oriented) representation for the source-receptor
relationship.

In more concrete terms, the dual (adjoint) representation of the source-receptor relationship
given in Eq. (9) can be expressed explicitly as follows:

C(xdi
, t

(i)
dj

; Θ) ≡
∫ T

t0

dt

∫
D
dx C(x, t)h(x, t|xdi

, t
(i)
dj

) ≡ 〈〈C|h〉〉(xdi
, t

(i)
dj

)

=

T∫
−∞

dt′
∫
D
dx′ C∗(x′, t′|xdi

, t
(i)
dj

)
S(x′, t′)

≡ 〈〈C∗|S〉〉(xdi
, t

(i)
dj

), (20)

where C∗(x′, t′|xdi
, t

(i)
dj

) is an adjunct (dual) “concentration” at space-time point (x′, t′)

associated with the sensor concentration data at location xdi
and time t(i)dj

. In the source-
oriented approach, the computation of CJ using Eqs (9) and (1) requires the determination
of C(x, t). The latter quantity requires the specification of the kernel function p(x, t|x′, t′).
Unfortunately, we have nothing approaching a comprehensive theory of turbulent diffusion
and, as a consequence, there are no known exact solutions for p(x, t|x′, t′) for the case of
complex turbulent flows (e.g., atmospheric flows). Approximations for the kernel function
p(x, t|x′, t′) can be obtained using either an Eulerian or Lagrangian description of atmo-
spheric diffusion.

In this report, we will use a first-order Lagrangian stochastic (LS) trajectory simulation
method to approximate p(x, t|x′, t′) (and thence, C(x, t)). To this purpose, we consider

3In fact, the scalar product 〈〈C∗|S〉〉 can be interpreted as an explicit mathematical representation for
collection of all linear functionals C∗ : V → R that can be defined on V .

4In functional analysis, a linear operator G∗ : U∗ → V ∗ is called the dual or pull-back of the linear
operator G : V → U if 〈〈G∗h|S〉〉 = 〈〈h|GS〉〉, ∀S ∈ V, h ∈ U∗.
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Thomson’s [26] model for inhomogeneous Gaussian turbulence, where the forward incre-
ments of the velocity U(t) ≡ (Ui(t)) and position X(t) ≡ (Xi(t)) (i = 1, 2, 3) of a marked
fluid element (particle) are given by the following stochastic differential equation:5

dX(t) = U(t) dt,

dU(t) = a(X(t),U(t), t) dt +
(
C0ε(X(t), t)

)1/2
dW(t), (21)

where ε is the turbulence kinetic energy (TKE) dissipation rate, C0 is the Kolmogorov
“universal” constant, dW(t) ≡ (dWi(t)) are the increments of a vector-valued (three-
dimensional) Wiener process, and a ≡ (ai) is the drift coefficient vector which assumes
the following form:

ai = −1
2
(
C0ε
)
Γ−1

ik

(
uk − Uk

)
+
φi

PE
, (22)

where

φi

PE
≡ 1

2
∂Γil

∂xl
+
∂U i

∂t
+ U l

∂U i

∂xl

+
(

1
2
Γ−1

lj

[
∂Γil

∂t
+ Um

∂Γil

∂xm

]
+
∂U i

∂xj

)(
uj − U j

)
+

1
2
Γ−1

lj

∂Γil

∂xk

(
uj − U j

)(
uk − Uk

)
. (23)

Here, U i is the mean Eulerian velocity, Γij ≡ (ui − U i)(uj − U j) is the Reynolds stress
tensor (where an overline is used to denote an ensemble average), and PE is the background
(Eulerian) velocity PDF (which is implicitly assumed here to possess a Gaussian form). In
this source-oriented approach, marked particles with initial space-time coordinates (xi, ti)
are sampled from a space-time density function that is proportional to the source distribu-
tion S(x, t), and the forward-time trajectories of these tagged fluid particles are computed
using Eqs (21) to (23) for t > ti (where ti is the initial time at which a tagged particle was
released from S(x, t)). The displacement statistics of these particles are used to determine
C(x, t).

For source reconstruction, we use the receptor-oriented approach described by Eq. (20) for
the efficient calculation of CJ , which requires the determination of the adjunct (or dual)
concentration C∗(x′, t′|xdJ

, tdJ

)
. To this purpose, it was shown by Thomson [26] and Flesch

et al [27] that the following backward-time Lagrangian trajectory simulation model is the
dual to the forward-time Lagrangian trajectory simulation model given by Eqs (21) to (23):

dXb(t′) = Ub(t′) dt′,

dUb(t′) = ab(Xb(t′),Ub(t′), t′) dt′ +
(
C0ε(Xb(t′), t′)

)1/2
dW(t′), (24)

with
ab

i =
1
2
(
C0ε
)
Γ−1

ik

(
uk − Uk

)
+

φi

PE
. (25)

5The forward increments of the marked particle position and velocity are defined as dX(t) ≡ X(t+ dt)−
X(t) and dU(t) ≡ U(t + dt) − U(t), respectively, with dt > 0.
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In Eq. (24), dXb(t′) ≡ Xb(t′)−Xb(t′− dt′) and dUb(t′) ≡ Ub(t′)−Ub(t′− dt′) (dt′ > 0) are
the backward increments of the position Xb(t′) and velocity Ub(t′) of a marked particle at
time t′ along a backward-time trajectory. In this receptor-oriented (dual) approach, marked
particles with final space-time coordinates are sampled from a space-time density function
that is proportional to the sensor response function h(x′, t′|xd, td) [at the detector space-
time location (xd, td)], and the backward-time trajectories of these tagged fluid particles are
computed using Eqs (24) and (25) for t′ < tf (where tf is the final time at which a tagged
particle was released from h(x′, t′|xd, td)). The displacement statistics of these particles are
used to determine C∗(x′, t′|xd, td).

Substituting Eq. (6) into Eq. (9), the model concentration “seen” by the detector at space-
time point (xdi

, t
(i)
dj

) is given explicitly as follows:

CJ(Θ) ≡ C(xdi
, t

(i)
dj

; Θ) =
Ns∑
k=1

Qk

∫ min(T,T k
e )

T k
b

C∗(xs,k, ts|xdi
, t

(i)
dj

) dts. (26)

It should be noted that the computation of CJ(Θ) can be obtained for any source distribu-
tion S (encoded as the parameter vector Θ), without having to re-compute C∗. Indeed, it
should be emphasized that because C∗ does not depend on the source distribution, it can
be pre-calculated using the backward-time LS trajectory simulation model for each avail-
able detector space-time location, and this pre-calculated C∗ can be used in Eq. (26) for a
computationally efficient determination of CJ(Θ) (J = 1, 2, . . . , N) required for the rapid
evaluation of the likelihood function p(D|Θ, I).

3.2 Markov chain Monte Carlo sampling

All the information arising from the application of Bayesian probability theory to the
problem of source reconstruction is embodied in the posterior PDF of the parameters
Θ ≡ (Ns, θNs) ∈ R

6Ns+1 [see Eq. (17)] that define the source distribution S. The posterior
quantities of interest are expectation values with a generic form given by Eq. (19), which
involves an integration of the product of an arbitrary function ψ(θNs) and p(Ns, θNs |D, I)
(for a fixed value of Ns) over a subset of the parameter space involving θNs ∈ R

6Ns . Un-
fortunately, in potentially high-dimensional spaces (Ns � 1), a numerical integration of
Eq. (19) involving the evaluation of the integrand on some grid in the θNs-space would be
prohibitively expensive (and indeed, even for the case Ns = 1 implying θNs ∈ R

6, the “curse
of dimensionality” renders the quadrature practically infeasible).

One method for overcoming this “curse of dimensionality” is given by the application of
Markov chain Monte Carlo (MCMC) algorithms for posterior sampling (see Gilks et al [28]
and Gelman et al [29]). To this purpose, Yee [21] described the formulation of a reversible-
jump MCMC (RJMCMC) algorithm applied with parallel tempering for generating samples
from the posterior distribution p(Θ|D, I) ≡ p(Ns, θNs |D, I) given by Eq. (17). As a con-
sequence, only the important details of the algorithm that are required to understand the
following Bayesian analysis of field trial data will be presented here.
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The objective of MCMC sampling is to construct an auxiliary Markov chain whose sta-
tionary (or, invariant) distribution is the posterior distribution p(Θ|D, I) of the source
parameters Θ ≡ (Ns, θNs). The difficulty in the construction of the Markov chain in the
current application resides in the fact that number of sources Ns in unknown a priori,
so the dimension of the hypothesis (or, parameter) space is unknown (viz., θNs ∈ R

6Ns

with Ns unknown). More specifically, with reference to the posterior distribution p(Θ|D, I)
given by Eq. (17), it is necessary to consider (Ns,max −Ns,min +1) candidate models for the
source distribution S and associated with each of these candidate models is a posterior dis-
tribution p(Ns, θNs |D, I) depending upon an unknown parameter vector θNs ∈ R

Ns where
Ns ∈ {Ns,min, Ns,min +1, . . . , Ns,max

}
is a model indicator that defines the dimension (6Ns)

of the hypothesis (parameter) space. In order to allow changes in the dimensionality of the
model, a reversible-jump MCMC algorithm is used to construct the Markov chain for Θ.
The formalization of RJMCMC algorithms for dealing with variable dimension models has
been described by Green [30].

Consider a Markov chain with “state” vector {Θ(t)} ≡ {N (t)
s , θ

N
(t)
s
} (t = 0, 1, 2, . . .) that is

constructed so that its stationary distribution coincides with p(Θ|D, I) given by Eq. (17).
After convergence of the Markov chain to its stationary distribution, the samples drawn from
this chain can be used to estimate any posterior statistic of interest. The construction of
the Markov chain uses a RJMCMC algorithm in which the MCMC moves are separated into
two categories; namely, propagation moves which do not change the dimensionality of the
source distribution and trans-dimensional jump moves which change the source distribution
by ±1 discrete source (source atom). In the current application, the trans-dimensional jump
move changes the dimensionality of the hypothesis space by ±6 (as each source atom in
Eq. (6) involves six degrees of freedom).

For the dimension-conserving moves, we partition the parameter vector θNs (Ns fixed) as fol-
lows: θNs = (θ1, θ2) where θ1 ≡ (Q1, Q2, . . . , QNs) ∈ R

Ns and θ2 = (xs,1, T
1
b , T

1
e , . . . ,xs,Ns ,-

TNs
b , TNs

e ) ∈ R
5Ns . The parameters associated with θ1 are linearly related to the model

concentration data, as is evident from Eq. (26). For these parameters, a Gibbs sampler is
used for the update (propagation) move. More specifically, the Gibbs sampler updatesQk as
a direct draw from the univariate full conditional posterior distribution p(Qk|θ1

−k, θ
2,D, I)

where θ1
−k is the vector θ1 with its k-th component removed (k = 1, 2, . . . , Ns). From

Eq. (17), it can be shown that the full conditional posterior distribution for Qk assumes
a simple Bernoulli-Gaussian (truncated) distribution which can be sampled from directly
(see Yee [21]).

The remaining parameters in θ2 (e.g., source location, source on time, source off time)
are related non-linearly to the model concentration. In consequence, the Gibbs sampler
cannot be used to update these parameters owing to the fact that the full conditional
posterior distribution for these parameters cannot be determined analytically. Furthermore,
even if this distribution can be determined analytically, it would correspond to a non-
standard probability distribution from which it is not easy (straightforward) to draw a
random sample. For these reasons, the Metropolis-Hastings (M-H) sampler is used to update
the parameters in θ2. To this purpose, we update θ2

l ∈ θ2 (l = 1, 2 . . . , 5Ns) by randomly
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sampling a new candidate θ2′
l from a proposal distribution that is taken to be a mixture of

Gaussian distributions, each with mean θ2
l and different variances β2

l . The variances in this
mixture of Gaussian distributions are chosen typically to cover several orders of magnitude.
For the M-H steps here, we used a mixture consisting of seven Gaussian distributions with
the base standard deviation βl for a particular parameter θ2

l taken to be equal to 0.01
times the ‘length’ of the domain of definition for that parameter (assigned using the prior
distribution), with the remaining six standard deviations chosen to be equal to 0.1, 0.2, 0.5,
2, 5, and 10 times the base standard deviation. The M-H acceptance probability for this
update move for θ2

l is evaluated. If the move is accepted, the new candidate θ2′
l is taken

to be the updated value for this parameter; otherwise, the original value θ2
l becomes the

updated value for this parameter (viz., the Markov chain does not move in the θ2
l -subspace).

The dimension-changing moves that modify the source distribution by ±1 source atom
(and the dimensionality of the hypothesis space by ±6) are provided by: (1) a creation
move C that results in the addition of a single source atom, so Θ′ = (Ns + 1, θNs+1) ≡
C(Θ) = C((Ns, θNs)) where Θ′ ∈ R

1+6Ns+6; and, (2) an annihilation move C† that involves
the removal of a single existing source atom from the current source distribution, so Θ′ =
(Ns − 1, θNs−1) ≡ C†(Θ) = C†((Ns, θNs)) where Θ′ ∈ R

1+6Ns−6. If a creation move C
is selected, the “coordinates” of the new source atom are obtained by drawing random
samples from a proposal density that is chosen to be the prior density for each coordinate.
On the other hand, if an annihilation (reverse) move C† is selected, a source atom in the
current source distribution is randomly picked and removed. The acceptance probability
for the creation move C or the annihilation move C† is similar to that for a M-H algorithm
involving only dimension-conserving moves, with the exception of a term involving the
Jacobian of the transformation C or C†. From this viewpoint, the RJMCMC is simply a
generalized M-H sampler for the hypothesis space that includes the dimensionality of the
space as an additional parameter to be sampled. Finally, the probabilities for creation
and annihilation moves are chosen as follows: pNs

C = 0 for Ns = Ns,max and pNs

C† = 0 for
Ns = Ns,min; otherwise,

pNs
C =

1
2

min
{

1,
p(Ns + 1|I)
p(Ns|I)

}
,

pNs+1
C† =

1
2

min
{

1,
p(Ns|I)

p(Ns + 1|I)
}
. (27)

To summarize, the Markov chain consists of a sequence of states Θ(t) (t = 0, 1, 2, . . .)
resulting from individual updates consisting of three basic moves: (1) MC,C† involving the
creation of a source atom at a random location, or annihilation of an existing source atom
with probabilities pC and pC† , respectively; (2) M1 involving updates of the emission rates
of the source atoms using Gibbs sampling; and, (3) M2 involving updates of the location,
source on time and source off time of the source atoms using M-H sampling. The state
vector Θ(t−1) of the Markov chain at iteration t− 1 is updated to the state vector Θ(t) at
iteration t using the following procedure:

1. Specify values for (Ns,min, Ns,max, Qmax, Tmax, t0, γ, p
∗) which define p(Θ|I).
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2. Choose an initial state Θ(0) for the Markov chain by sampling from p(Θ|I).
3. For t ∈ {1, 2, . . . , tupper}, conduct the following sequence of moves:

Θ(t−1)
MC,C†−−−−→ Θ�

M1−−→ Θ��
M2−−→ Θ(t), (28)

where Θ� and Θ�� denote some intermediate transition states between iterations t− 1 and
t.

To improve the “speed” with which a Markov chain traverses the hypothesis space (or,
to increase the mixing rate of the chain in the hypothesis space), Yee [21] implemented a
form of parallel tempering based on a Metropolis-coupled MCMC algorithm described by
Geyer [31]. In this approach, r Markov chains are run in parallel, each with a different
stationary distribution. These chains are run simultaneously, but occasionally a proposal
is made to swap the states of two randomly selected chains. In consequence, the states in
the “ladder” of Markov chains can swap positions with a certain acceptance probability as
each chain equilibrates. The family of interrelated stationary distributions, corresponding
to this “ladder” of r Markov chains, is chosen to have the following form:

pi(Θ|D, I) ∝ p(Θ|I)pλi(D|Θ, I), i = 1, 2, . . . , r, (29)

where λi ∈ [0, 1] (i = 1, 2, . . . , r) is an increasing sequence (viz., λi < λj for i < j) with
λ1 ≡ 0 and λr ≡ 1. Note that each distribution in Eq. (29) involves a tempering parameter λ
which is used to raise the likelihood to the λ power to give a modified posterior proportional
to p(Θ|I)pλ(D|Θ, I). When λ = 0, the likelihood function is switched off and the modified
posterior distribution reduces exactly to the prior distribution. On the other hand, when
λ = 1 the modified posterior distribution is exactly the posterior that we wish to sample
from. In between these two extremes, with λ ∈ (0, 1), the effects of the concentration
data D are introduced gradually through the modified (or “softened”) likelihood function
pλ(D|Θ, I).

In this study, rather than use a parallel tempering scheme, we employ a related (and
simpler) simulated annealing scheme to facilitate chain mobility in the hypothesis space.
In this scheme, we consider an ensemble of Nmem (typically between 50 and 200) of source
distributions (or, source molecules) that have been randomly drawn from the modified
posterior pλ(Θ|D, I) ∝ p(Θ|I)pλ(D|Θ, I). These samples will be labelled Θk(λ), with λ ∈
[0, 1] (k = 1, 2, . . . , Nmem). Note that p0(Θ|D, I) = p(Θ|I) (prior distribution of Θ) and
p1(Θ|D, I) = p(Θ|D, I) (posterior distribution of Θ). In this framework, it is useful to
interpret the tempering parameter λ as an inverse temperature parameter T (so, λ = 1/T ),
with λ ∈ [0, 1] implying T ∈ [1,∞]. The posterior distribution p1(Θ|D, I) corresponds
to the temperature T = 1, whereas the modified pλ(Θ|D, I) (λ ∈ [0, 1)) corresponds to
“heating” the posterior distribution to a temperature T = 1/λ > 1 which results in a
flattening of the distribution.

When the stochastic sampling scheme begins and λ = 0 (infinite temperature), we randomly
draw Nmem source molecules Θk(0) (k = 1, 2 . . . , Nmem) from p0(Θ|D, I) (prior distribution);
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viz., Θk(0) ∼ p(Θ|I).6 Given an ensemble ofNmem source molecules Θk(λ) that has achieved
equilibrium (at temperature T = 1/λ) with respect to the modified posterior pλ(Θ|D, I),7
an ensemble of Nmem source molecules Θk(λ+ δλ) that is consistent with pλ+δλ(Θ|D, I) (at
the reduced temperature T = 1/(λ + δλ), δλ > 0) can be obtained by using the weighted
resampling method (see Gamerman and Lopes [32]) applied to Θk(λ) (k = 1, 2, . . . , Nmem).
To this purpose, each source molecule Θk(λ) is assigned an importance weight wk as follows:

wk =
pλ+δλ(Θk(λ)|D, I)
pλ(Θk(λ)|D, I) ×

⎛⎝Nmem∑
j=1

wj

⎞⎠−1

= pδλ(D|Θk(λ), I) ×
⎛⎝Nmem∑

j=1

wj

⎞⎠−1

, (30)

for k = 1, 2, . . . , Nmem. Next, a resample is drawn from the discrete distribution concen-
trated at the sample of source molecules {Θk(λ)}Nmem

k=1 from pλ(Θ|D, I) with respective
weights {wk}Nmem

k=1 . In other words, the resampling step here involves generating a new
set {Θk∗}Nmem

k∗=1 by resampling (with replacement) Nmem times from the set {Θk(λ)}Nmem
k=1

so that Pr{Θk∗ = Θk(λ)} = wk. This resample can be interpreted as an ensemble of
source molecules Θk∗ (k∗ = 1, 2, . . . , Nmem) that is drawn from the modified posterior
pλ+δλ(Θ|D, I).

There are many ways to implement this resampling (with replacement) from {Θk(λ)}Nmem
k=1 ,

but in this report we use the systematic resampling scheme described by Kitagawa [33].
This scheme requires O(Nmem) time to execute and minimizes the Monte Carlo vari-
ation in the resample. The basic operations for this scheme can be described briefly
as follows. A vector (n1, n2, . . . , nNmem) of copies of the source molecules Θk(λ) (k =
1, 2 . . . , Nmem) is obtained by computing a vector (ρ1, ρ2, . . . , ρNmem) of the cumulative sums
of Nmem(w1, w2, . . . , wNmem), generating a random draw u ∼ U([0, 1]), and determining nk

(k = 1, 2, . . . , Nmem) from

nk = �ρk + u� − �ρk−1 + u�, k = 2, 3, . . . , Nmem − 1,
n1 = �ρ1 + u�, nNmem = �ρNmem−1 + u�, (31)

where � · � denotes the “integer part of”. After resampling, the weights for each member of
the resample are reset to wk = 1/Nmem (viz., an equal weight is assigned to each member
of the resample). After each resampling step to give an ensemble of Nmem source molecules
Θk(λ+ δλ) that is in equilibrium at temperature T = 1/(λ+ δλ) (approximately or better)
with respect to pλ+δλ(Θ|D, I), we apply Nr (typically 25) Markov chain transitions Tλ+δλ to
each member of the ensemble obtained from the resampling operation. These Markov chain
transitions utilize the update scheme given by Eq. (28) and leave pλ+δλ(Θ|D, I) invariant.

6The prior distribution p(Θ|I) is composed of standard probability distributions for which independent
sampling is easy.

7This simply implies that {Θk(λ)}Nmem
k=1 can be interpreted as an ensemble of source molecules drawn

from pλ(Θ|D, I).

16 DRDC Suffield TR 2009-040



An annealing schedule for λ ∈ [0, 1] is required for the simulated annealing. In this report,
we applied simulated annealing with 200 values of λ uniformly spaced in the interval [0, 0.05]
and 400 values of λ geometrically spaced in the interval (0.05, 1]. This gentle annealing
schedule allows the ensemble of Nmem source molecules to transition slowly through a series
of quasi-equilibrium states from the prior distribution (λ = 0, or infinite temperature) at one
end of the annealing schedule to the posterior distribution (λ = 1, or unit temperature) at
the other end of the schedule. When λ = 1, the annealing phase is complete and probabilistic
exploration of the hypothesis space proceeds (for each of the Nmem source molecules in the
ensemble) in accordance to the scheme summarized in Eq. (28). The annealing phase of the
scheme, corresponding to values of λ ∈ [0, 1), is associated with the burn-in phase of the
algorithm. When λ = 1, the MCMC algorithm has reached an equilibrium, at which point
the probabilistic exploration corresponding to the sampling from the posterior distribution
p(Θ|D, I) begins. These samples drawn from the posterior distribution can be used to
make inferences about all characteristics of the source parameters (e.g., posterior means,
variances, HPD intervals).

Interestingly, the simulated annealing phase of the proposed scheme can be used to esti-
mate the normalization constant (or, evidence) Z ≡ p(D|I) for the posterior distribution
p(Θ|D, I) [see Eq. (12)]. To accomplish this objective, we use an approach referred to as
thermodynamic integration (see, von der Linden [34]), which has its origins in the problem of
the evaluation of partition functions in statistical mechanics familiar to physicists. Briefly,
thermodynamic integration focusses on the modified evidence Z(λ) defined as follows:

Z(λ) ≡
∫
p(Θ|I)pλ(D|Θ, I) dΘ, (32)

which can be seen to be simply the normalization constant (evidence) corresponding to the
modified posterior pλ(Θ|D, I). Obviously, Z(0) = 1 because the prior p(Θ|I) is normalized
and Z(1) = Z is the desired normalization constant (evidence) for the posterior p(Θ|D, I).
Taking the logarithmic derivative of Eq. (32) with respect to λ, and re-arranging yields

ln[Z(1)] − ln[Z(0)] = ln[Z(1)] =
∫ 1

0

〈
ln[p(D|Θ, I)]〉

λ
dλ, (33)

where 〈 · 〉λ denotes the mathematical expectation operation with respect to the modified
posterior pλ(Θ|D, I).
Additionally, the computation of Z(λ) allows the determination of the information (gain)
corresponding to the receipt of the concentration data D and the updating of our state of
knowledge concerning the (unknown) source S (encoded as Θ) from the prior distribution
p(Θ|I) to the posterior distribution p(Θ|D, I). This information gain (amount of useful
information about Θ embodied in D) is given by the Kullback-Leibler divergence DKL(λ)
at λ = 1 [viz., by DKL(1)] where DKL(λ) is defined as follows (Cover and Thomas [35]):

DKL(λ) ≡
∫

ln
(
pλ(Θ|D, I)
p(Θ|I)

)
pλ(Θ|D, I) dΘ

= λ

∫
ln
[
p(D|Θ, I)]pλ(Θ|D, I) dΘ − ln[Z(λ)]

∫
pλ(Θ|D, I) dΘ

= λ
〈
ln[p(D|Θ, I)]〉

λ
− ln[Z(λ)], (34)
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on using the fact that pλ(Θ|D, I) = p(Θ|I)pλ(D|Θ, I)/Z(λ). The Kullback-Leibler diver-
gence defined in Eq. (34) for λ = 1 is simply the negative of the entropy (negentropy) of
the posterior relative to the prior and, as such, is the information gain provided by the re-
ceipt of the concentration data D. More specifically, the information gain “compresses” the
posterior relative to the prior so that DKL(1) can simply be interpreted as the logarithm of
the volumetric factor by which the prior has been compressed to become the posterior (the
greater this compression, the greater is the information gain provided by the concentration
data).

4 FUSION Field Trial 2007 (FFT-07)

The FUsing Sensor Information from Observing Networks (FUSION) Field Trial 2007
(FFT-07) was conducted to obtain research-grade concentration data from a network (or
array) of fast-response detectors resulting from releases of a passive tracer from single and
multiple sources. The scientific objective of this field campaign was to acquire a compre-
hensive meteorological and dispersion dataset that can be used to validate methodologies
developed for source reconstruction. Details of the instrumentation deployed and the exper-
iments conducted in FFT-07 are given in Storwold [36], so only a brief summary of FFT-07
will be presented here. In particular, only the relevant details of the experiments that are
required for the interpretation of the results in this report are emphasized.

The experiments in FFT-07 were carried out in September 2007 at Tower Grid on US Army
Dugway Proving Ground, Utah about 2 km west of Camel Back Ridge on the Great Salt
Lake Desert. The terrain was flat, uniform, and homogeneous with short grass interspersed
with low shrubs that are between 0.25 to 0.75 m in height, providing an upwind fetch that
is uniform and unobstructed for 5 km or more in a wide sector. The test elevation site
was 1330 m above mean sea level, and the terrain gradually rises towards the southeast
by about 1 m over horizontal distances of about 2000 m. The easterly through southerly
drainage flows that predominate during the early morning hours at the site originate on the
higher terrain to the southeast and are channeled by Camel Back Ridge.

In all the experiments, the tracer gas used was propylene (C3H6) which was chosen be-
cause of its low toxicity, relatively high vapor pressure (938 kPa at 21◦C), and low ion-
ization potential (9.73 eV), hence giving the concentration detectors good sensitivity. The
concentration detectors used were fast-response digital photo-ionization (dPID) detectors
manufactured commercially by Aurora Scientific Inc. (Aurora, Ontario, Canada). These
detectors give a frequency response of 50 Hz with a sensitivity of about 0.025 parts per mil-
lion (ppm) by volume of propylene. The detectors were calibrated regularly over their entire
operating range using a specially designed calibration unit mounted in a small rack. This
unit allowed the user to mix gas from propylene calibration gas cylinders with air to gener-
ate a user-selectable gas concentration. A least-squares regression fit of the calibration data
to a second-order polynomial, c = a0 +a1V +a2V

2, provided an overall calibration for each
detector, where V is the analog-to-digital (A/D) output of the detector, c is the absolute
propylene concentration (ppm), and ai (i = 0, 1, 2) are the fitted calibration constants.

18 DRDC Suffield TR 2009-040



In the experiments, a plume was formed in the atmospheric surface layer by releasing
propylene from one or more (up to a maximum of four) purpose-designed gas dissemination
systems (see Chandler [37]). The system consisted of up to four propylene cylinders con-
nected in parallel and immersed in a warm-water bath. A regulator was connected to the
outlet of the cylinders to ensure a constant downstream pressure, and a flexible hose was
used to connect the regulator to the inlet fitting of the mass flow controller. This controller
was used to set, control, and measure the flow through the dissemination system. The con-
troller allowed a constant gas flow rate to be maintained at a user-selected reference level
between 10 and 250 l min−1. A quick-release connector mated the outlet of the mass flow
controller to the dissemination hose, which was connected to the base of the disseminator,
a section of 40 PVC (polyvinyl chloride) pipe 1 m in length and 0.05 m in diameter.

The network (or array) of concentration detectors used in FFT-07 is shown in Figure 3. A
total of 100 dPIDs (indicated by the filled squares in Figure 3) was arranged in a staggered
configuration consisting of 10 rows of 10 detectors. The rows of detectors were spaced 50 m
apart. The spacing between detectors along each row was 50 m. The (x, y) local coordinate
system that will be used here is shown in Figure 3. The direction corresponding to the
negative x-axis (referred to as grid north) of the array is oriented 25◦ west of north to take
advantage of the prevailing wind direction at the test site in the sector from south-south-
west to south-east. Winds incident on the array of detectors from this sector resulted in
a flat and homogeneous upwind fetch of more than 10 km. Note that x is the lengthwise
distance from the windward edge (grid south edge) of the array and y is the spanwise
distance from the grid west edge of the array. The overall length (along the x-direction)
and width (along the y-direction) of the detector array were 450 m and 475 m, respectively.
Finally, the z (vertical) coordinate is defined so z = 0 is the ground surface.

For ease of reference, the rows of the detector array will be numbered from 1 to 10, with
row 1 forming the grid north edge of the array (at x = −450 m) and row 10 forming the
grid south edge of the array (at x = 0 m). Along row i of the array (i = 1, 2, . . . , 10), the
dPID detectors are numbered as 10(i − 1) + j (j = 1, 2, . . . , 10), where the j index of the
detector increases from grid west to grid east. Consequently, in this numbering scheme for
detectors, detector number 91 [first detector (j = 1) in row 10 (i = 10)] is located at the
origin of the local (x, y) coordinate system. For geo-referencing purposes, it is noted that
this location corresponds to the following geodetic coordinates: 40.0923◦ N latitude and
112.9757◦ W longitude. The concentration detectors along the ten sampling lines in the
array were placed at a height, zd, of 2.0 m.

In the experiments used for the current analysis, propylene gas was released continuously
over a period of 10 min from one or more source locations (up to four) at a height, zs, of
2.0 m. The four source locations (labelled 1 to 4 in Figure 3) are as follows: (1) source
1 is at (xs, ys) = (33.0, 171.0) m; source 2 is at (xs, ys) = (33.8, 240.7) m; source 3 is at
(xs, ys) = (30.0, 312.9) m; and, source 4 is at (xs, ys) = (26.0, 384.4) m. Unfortunately, for
these experiments, only the mass flow controller for source 3 functioned properly. The mass
flow controllers for sources 1, 2 and 4 failed to properly regulate the flow owing to the fact
that the impurities in the low-grade of propylene used for these experiments contaminated
the sensor and electronic circuitry in these controllers. Consequently, the control signals
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Figure 3: A schematic diagram of the geometry of the network (or, array) of concentration
detectors (dPIDs) used in FFT-07. The locations of the 100 detectors (filled squares) and
four sources (filled circles) are shown.

that were used to set the valve to regulate the flow rate in these controllers failed to function
correctly.

Three-dimensional (3-D) sonic anemometers (R. M. Young, Model 81000) were arranged
on three 32-m lattice towers along a transect parallel to the x-axis and midline of the
concentration detector array. These three towers were located at the center of the detector
array at (x, y) = (−225.0, 237.5) m (or, grid center) and at positions 750.0 m upwind
and downwind of grid center at (x, y) = (525.0, 237.5) m and (x, y) = (−975.0, 237.5) m,
respectively. Each of these towers was instrumented with five 3-D sonic anemometers at
the 2-, 4-, 8-, 16-, and 32-m levels. The sonic anemometer data were recorded at 10 Hz.

An estimate of the momentum roughness length, z0, was determined from mean wind
profiles measured under near-neutral stratification (for which the mean wind speed variation
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with height can be represented by a semi-logarithmic relation). An estimate of z0 = 1.3±0.2
cm was obtained from the 3-D sonic anemometry data on the upwind tower at (x, y) =
(525.0, 237.5) m, as an average over 35 periods (each with a 10-minute sampling time) with
the magnitude of the Obukhov length L from the 3-D sonic anemometer at 2-m height
exceeding 500 m (viz., |L| > 500 m at z = 2 m).

Table 1: Summary of turbulence statistics measured with a 3-D sonic anemometer at the
2-m level on the upwind tower. Here, S2 is the horizontal mean wind speed at the 2-m
level, α is the mean wind direction, u∗ is the friction velocity, L is the Obukhov length,
and σi (i ≡ u, v, w) are the standard deviations of the fluctuating wind velocity in the three
coordinate directions (alongwind, crosswind, and vertical, respectively).

Trial S2 α u∗ L σu/u∗ σv/u∗ σw/u∗
(m s−1) (deg) (m s−1) (m) (-) (-) (-)

I 2.60 142.3 0.418 10.7 2.18 1.62 1.17
II 3.00 138.9 0.183 15.4 2.36 1.72 1.23
III 3.61 155.1 0.282 −27.3 2.33 1.86 1.10

The mean wind and turbulence statistics data for three experiments used to test the source
reconstruction methodology are given in Table 1. Here, the wind components are calculated
in a rotated coordinate system with the alongwind (u), crosswind (v), and vertical (w) com-
ponents, aligned along the x′-, y′-, and z-directions, respectively. The standard deviations
of the fluctuating wind in these three coordinate directions are denoted σu, σv, and σw,
respectively. Measurements of the mean horizontal wind speed S2 ≡ (ū2 + v̄2

)1/2 and mean
wind direction α, obtained from the 3-D sonic anemometer at the 2-m level on the upwind
tower, are summarized in Table 1 for these three experiments. The mean wind direction
corresponding to a wind from the +x-axis direction (see Figure 3) will be denoted in the
usual compass convention as α = 155◦ (and is associated with a wind direction from grid
south). This mean wind direction corresponds to normal incidence on the detector array
(viz., the direction is perpendicular to the sampling lines of detectors along the y-axis).
For simplicity, α′ will denote the deviation of the mean wind direction from α = 155◦ (or,
normal incidence). The Obukhov length L was estimated as

L = − u3∗T
kvgw′T ′ , (35)

where T = T + T ′ is the sonic temperature (which can be decomposed into a mean value
T and fluctuation therefrom), u∗ is the friction velocity at the surface, kv ≈ 0.4 is the
von Karman constant, and g is the acceleration due to gravity. The friction velocity was
estimated as follows:

u∗ =
[
(u′w′)2 + (v′w′)2

]1/4
. (36)
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5 Application to FFT-07 data

In this section, we apply the source reconstruction algorithm to the three dispersion data
sets identified in Table 1. Trials I, II and III correspond to one- three- and four-source
examples.

In all three examples, the backward-time LS model given by Eqs (24) and (25) was used
to determine CJ(Θ) from Eq. (26). This model was applied to short-range dispersion in
the atmospheric surface layer over a level and unobstructed terrain. The mean wind and
turbulence statistics for the three examples were assumed to be horizontally homogeneous
and stationary, with the relevant flow statistics for these examples summarized in Table 1.
The backward-time LS model was applied with the Kolmogorov constant C0 = 4.8, a
value which was recommended by Wilson et al [38] from a calibration of the model against
concentration data obtained from Project Prairie Grass.

The wind flow and turbulence statistics parameterization for the LS model are prescribed
based on standard surface-layer relationships from Monin-Obukhov theory and summarized
in the Appendix of Yee [21]. These relationships have been modified slightly so as to be
consistent with the measured values of σu/u∗, σv/u∗ and σw/u∗ (at the surface) compiled
in Table 1 for the three trials. Finally, the three surface-layer parameters z0, u∗ and L
required for the wind statistics parameterization have been either reported in main text of
Section 4 or summarized in Table 1.

All the examples in this report involve continuously emitting sources and, as a consequence,
T k

b → −∞ and T k
e → ∞ in Eqs (6) and (26) [k = 1, 2, . . . , Ns]. As a consequence, the

relevant source parameters are as follows: Θ = (Ns,xs1, Q1, . . . ,xsNs , QNs). Furthermore,
it is assumed that the height of the sources above ground level (zs = 2.0 m) is known a
priori, so the only unknown location parameters are (xs, ys) of the sources in the horizontal
plane. In view of these assumptions, the adjunct concentration C∗(xs|xd) in Eq. (26) can
be pre-calculated for one detector position xd (for the known source height zs) in any given
trial, with the adjunct concentration C∗ (considered as a function of xs) at all other detector
positions obtained by a simple translation of C∗(xs|xd) in the horizontal (x, y) plane.

5.1 Trial I: one-source example

For this example, the source corresponding to source 3 (see Figure 3) was turned on. The
(constant) emission rate from this source was Q = 2.8 g s−1. The source-detector config-
uration for this example is depicted in Figure 4. Only six detectors (shown by the filled
blue squares in Figure 4) in the array (viz., detector numbers 25, 36, 46, 56, 66, and 77)
were used for the source reconstruction. For this example, the mean wind direction was
α′ = 155◦ − α = 12.7◦ away from normal incidence to the detector array.

It is assumed that the number of sources is known a priori (viz., this knowledge formed
part of the background information I) for this example. To this end, Ns,min = Ns,max = 1.8

8Note that the value of the hyperparameter p∗ that characterizes the binomial prior for Ns in this example
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Figure 4: In Trial I, one source located upwind of the array of detectors was turned on. The
solid dot shows the location of this source. Squares show the location of the detectors in
the array: open and filled squares indicate that the detector at the given location is missing
and present, respectively, in the array. A filled blue square marks the detectors that were
used for the source reconstruction.

The other parameters needed to define the prior distribution p(Θ|I) for this example are
chosen as follows: Qmax = 100 g s−1; γ = 1.0; and D = [0, 100]× [0, 500] providing the prior
bounds on the source location in the (x, y)-plane. Recall that the (x, y) coordinate system
used here is chosen as shown in Figure 4.

After the initial simulated annealing phase was completed using Nmem = 50 members of
an ensemble of source distributions (originally, randomly drawn from the prior distribution
p(Θ|I) for λ = 0), the MCMC algorithm was run for an additional 1,000 iterations for each
member of the ensemble, giving a total of 50,000 samples of source distributions (encoded as
Θ) obtained from the posterior distribution p(Θ|D, I) during the probabilistic exploration
phase (λ = 1) of the algorithm. The marginal distributions for the source location (xs, ys)
and the emission rate Q ≡ qs obtained from these 50,000 samples are shown in Figure 5.
The actual source location was (xs, ys) = (30.0, 312.9) m and the emission rate was Q = 2.8
g s−1. The analysis of the samples gave the following estimates for the source parameters
expressed as a posterior mean value and standard deviation (s.d.) and the boundary (lower

is irrelevant, owing to the fact that p(Ns|I) ≡ 1 (Ns ∈ [Ns,min, Ns,max]) for Ns,min = Ns,max = 1.
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Figure 5: The marginal posterior histograms for the source location (xs, ys) and for the
emission rate qs obtained for Trial I. The vertical solid lines mark the true values of the
source parameters and the vertical dashed lines mark the best estimates of the source
parameters obtained from the posterior mean.

and upper) of the 95% HPD interval: x̂s = 19.9 ± 11.6 m (0.0, 40.5) m; ŷs = 311.2 ± 1.3 m
(309.0, 313.6) m; and, q̂s = 3.9 ± 0.6 g s−1 (2.7, 5.1) g s−1. Although the information
embodied in the six concentration detectors allowed the crosswind position ys of the source
to be well determined, this information only weakly constrained the alongwind position xs

of the source which is estimated with a large uncertainty. As a consequence, there is also a
large uncertainty in the determination of the source emission rate. Indeed, the information
gain (provided by the concentration data) for this example was determined to be only
DKL(1) = 10.2 natural units (nits) [see Eq. (34)].

5.2 Trial II: three-source example

For Trial II, three sources were turned on upwind of the detector array as shown in Figure 6.
These sources correspond to sources 2, 3 and 4 shown in Figure 3. The emission rate Q from
source 3 was known to be 3.8 g s−1, whereas the emission rates for sources 2 and 4 were not
known in this example owing to the fact that the mass flow controllers for these two sources
malfunctioned because of their contamination by the impurities in the propylene cylinders
connected to them. The source reconstruction for this example will be attempted using 37
detectors in the array, which have been marked using a filled blue square in Figure 6. In
this trial, the mean wind direction had an obliquity angle with respect to the normal to the
detector array of α′ = 155◦ − α = 16.1◦.
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Figure 6: In Trial II, three sources located upwind of the array of detectors were turned
on. The solid dots show the locations of the three sources. Squares show the location of
the detectors in the array: open and filled squares indicate that the detector at the given
location is missing and present, respectively, in the array. A filled blue square marks the
detectors that were used for the source reconstruction.

For this example, we assume that the number of sources Ns is unknown a priori. Further-
more, it is assumed that an exact upper bound on the maximum number of possible sources
is available. In consequence, for our specification of the binomial prior for Ns, we choose
Ns,min = 1 and Ns,max = 4, with p∗ = 1/3.9 As in the first example, the hyperparameters
Qmax and γ that define the Bernoulli-uniform prior for the emission rate Q, are initialized
to 100.0 g s−1 and 0.25, respectively. The prior bounds on the (xs, ys) location of each of
the unknown sources are given by D = [0, 100] × [0, 500].

We applied our source reconstruction algorithm to this example. The simulated annealing
phase of the algorithm was initiated (at λ = 0) withNmem = 50 different source distributions
S (encoded as Θ) drawn randomly from the prior distribution p(Θ|I). A sequence of
modified posterior distributions with λ ∈ (0, 1] and the associated annealing schedule as
described in Section 3.2 was used in the simulated annealing phase. After the termination
of this phase with λ = 1, a further 1000 iterations of the RJMCMC procedure were applied

9This choice for p(Ns|I) implies that the expected number of sources in the domain is 〈Ns〉 = Ns,min +
(Ns,max − Ns,min)p∗ = 2. In consequence, the prior distribution for Ns favors the wrong choice for the
number of sources in this example.

DRDC Suffield TR 2009-040 25



1 2 3 4
0

0.2

0.4

0.6

0.8

1

Number of sources,  N
 s

Pr
ob

ab
ili

ty
,  

p 
( 

N
s )

 Probability distribution of  N
s

Figure 7: The posterior distribution for the number of sources, p(Ns) ≡ p(Ns|D, I), for
Trial II estimated using 50,000 samples obtained from the probabilistic exploration phase
of the stochastic sampling algorithm.

to each of the Nmem = 50 members of the ensemble of source distributions to give 50,000
samples of source distributions drawn from the posterior distribution p(Θ|D, I) during the
probabilistic exploration phase of the algorithm.

Figure 7 displays the posterior probability distribution for the number of sources p(Ns) ≡
p(Ns|D, I) for this example. The most probable number of sources is Ns = 3, and this
coincides with the correct number of sources. In consequence, our maximum a posteriori
estimate for the number of discrete sources present in Trial II is N̂s = 3 [cf. Eq. (18)], and
this choice is favoured with a probability of about 0.82. It is important to emphasize that
samples with Ns = 4 discrete sources were also drawn from the posterior distribution during
the probabilistic exploration phase of the algorithm. However, it turns out that with the
prior specification γ ≡ Pr{Qk > 0} = 0.25 (k = Ns,min, Ns,min + 1, . . . , Ns,max), many of the
samples obtained with Ns = 4 had one of the discrete sources turned off (so, the emission
rate Q = 0 for this source). For the case of a four-source sample, but with one of the sources
turned off (with the result that this source does not contribute to the model concentration
“seen” by the detectors in the array), we classify the source distribution sample here as
having three discrete sources rather than four. This convention for the determination of
the number of discrete sources, associated with a sample of a source distribution model,
was used in the construction of Figure 7.

Given the fact that our best estimate for the number of sources is N̂s = 3, we can now
estimate the source parameters (xs, ys, qs) corresponding to each of these three discrete
sources. Towards this objective, we first extract all samples of source distributions drawn
from the posterior distribution p(Θ|D, I) having exactly three sources (viz., we choose
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Figure 8: Inference of the discrete source parameters obtained from samples drawn from
the posterior distribution p(Θ|D, I) having exactly three discrete sources. (a) Samples from
the posterior distribution having three discrete sources projected onto the (xs, ys) subspace.
(b,c,d) Histograms for the three parameters, namely alongwind location xs, crosswind lo-
cation ys, and emission rate qs that characterize sources 2, 3, and 4 (cf. Figure 3). In
each frame, the solid vertical line indicates the true value of the parameter (if known) and
the dashed vertical line corresponds to the best estimate of the parameter obtained as the
posterior mean of the marginal posterior distribution for the parameter.

all sample indices t such that Θ(t) has a first component that satisfies Ns = 3 for t =
1, 2, . . . , 50000). Figure 8(a) displays samples corresponding to Ns = 3, projected onto the
(xs, ys) subspace. From this figure, we can identify three clusters of points that determine
the locations of the three discrete sources. Observe that the concentration data D constrain
the crosswind positions ys of the three sources, but there is considerable uncertainty in the
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determination of the alongwind positions xs of the sources (which is especially acute for the
source located at the largest value of ys).

Table 2: The posterior mean, posterior standard deviation, and lower and upper bounds
of the 95% HPD interval of the parameters xs,k (m), ys,k (m), and qs,k (g s−1) for k =
1, 2, and 3 calculated from samples of source distribution models with Ns = 3 (the latter
corresponding to the most probable number of sources in the domain as inferred from
Figure 7).

Parameter Mean Standard Deviation 95% HPD Actual
k = 1

xs (m) 30.7 9.3 (11.0, 47.5) 33.8
ys (m) 239.0 2.7 (233.5, 243.5) 240.7

qs (g s−1) 7.4 0.7 (5.96, 8.81) −
k = 2

xs (m) 30.7 6.2 (18.6, 41.6) 30.0
ys (m) 313.1 2.3 (308.5, 317.2) 312.9

qs (g s−1) 4.1 0.5 (3.1, 5.1) 3.8
k = 3

xs (m) 37.5 19.8 (0.8, 73.0) 26.0
ys (m) 388.3 5.7 (379.0, 399.3) 384.4

qs (g s−1) 6.5 1.0 (4.8, 8.9) −

An important issue in the interpretation of the results is the identifiability problem that
arises owing to the fact that the posterior distribution of Θ is invariant under a reordering
(or, relabelling) of the identifiers used for each discrete source in the source distribution
model [cf. Eq. (17)]. More specifically, it can be seen that p(Θ|D, I) is invariant under a
permutation of the discrete source identifier k. However, from Figure 8(a), it is evident that
we can uniquely identify the discrete sources in a source distribution model if we impose
an ordering constraint on the ys,k-locations of the three sources so that ys,1 < ys,2 < ys,3.
Furthermore, comparing Figures 3 and 8(a), it can be seen that after relabelling the discrete
sources of each source distribution model in accordance to this ordering constraint, the
sources at ys,1, ys,2 and ys,3 are associated with sources 2, 3 and 4, respectively. Figures 8(b),
(c) and (d) display the histograms of the alongwind position xs, crosswind position ys and
emission rate qs of the three identified sources, using the same label for the sources as
provided in Figure 3. The posterior mean and standard deviation, as well as the 95%
HPD interval of the discrete source parameters for each of the three identified sources are
summarized in Table 2. Note that sources 2 (k = 1) and 4 (k = 3), whose emission rates
were not regulated owing to the failure of the mass flow controllers connected to these
sources, appear to have higher emission rates than source 3 (k = 2) whose emission rate
was properly regulated. Indeed, the measured emission rate from source 3 for Trial II was
Q = 3.8 g s−1, which compares well with the posterior mean estimate for this emission rate
given in Table 2 (for k = 2). Finally, the information gain provided by the concentration
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Figure 9: In Trial III, four sources located upwind of the array of detectors were turned
on. The solid dots show the locations of the four sources. Squares show the location of
the detectors in the array: open and filled squares indicate that the detector at the given
location is missing and present, respectively, in the array. A filled blue square marks the
detectors that were used for the source reconstruction (Case 1).

data for this example was found to be DKL(1) = 35.2 nits.

5.3 Trial III: four-source example

5.3.1 Case 1: 62 detectors

This example involves four continuously emitting sources. In case 1, the detectors used for
the source reconstruction algorithm are shown in Figure 9. As can be seen from this figure,
this case involves the use of 62 detectors in the array for source inversion. All the detec-
tors in the array that measured a significantly non-zero mean concentration were used for
the reconstruction, as well as a number of detectors for which the measured mean concen-
tration was nominally zero (viz., over the sampling time for the trial, the instantaneous
concentration did not exceed the detection threshold concentration). In this example,
the mean wind direction was normally incident to the detector array; more specifically,
α′ = 155◦ − α = −0.1◦ away from normal incidence to the detector array (cf. Table 1).
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Figure 10: Trace plot (top) of the number of discrete sources Ns in the source distribution
model samples drawn from p(Θ|D, I) during the probabilistic exploration phase of the
stochastic sampling algorithm for Trial III (62 detectors used for source reconstruction),
and the corresponding posterior distribution for the number of sources, p(Ns) ≡ p(Ns|D, I).
In the trace plot, the number of samples displayed has been decimated by a factor of 10.

The proposed stochastic sampling algorithm randomly initializes all unknown source pa-
rameters in accordance to the prior distribution p(Θ|D). In this example (unlike the case
dealt with in Trial II above), it is assumed that we do not have a prior knowledge of the max-
imum number of available sources used in FFT-07. As a consequence, we choose Ns,min = 1
and Ns,max = 8, with p∗ = 1/7 in the specification of p(Ns|I) implying that the expected
number of sources is 〈Ns〉 = 2. In consequence, our initial specification for the prior dis-
tribution of Ns favors the wrong choice for the actual number of sources. The remaining
hyperparameters defining p(Θ|D) are chosen as follows: γ = 0.25 and Qmax = 100.0 g s−1

for specification of the prior for the emission rate Q; and, D = [0, 100] × [0, 500] m which
is used to define the prior bounds for the location (xs, ys) of any source. An ensemble of
Nmem = 50 members of source distribution models Θ were drawn from p(Θ|D) and used
for the simulated annealing phase of the MCMC algorithm. After λ = 1 was achieved,
1000 further iterations of the RJMCMC algorithm were applied to each of these source
distribution model members during the probabilistic exploration phase of the algorithm to
give 50,000 samples of source distribution models drawn from the posterior distribution
p(Θ|D, I).
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Figure 10 (top) shows a trace plot for the number of discrete sources in a source distribution
model against the sample (or, iteration) number. From this plot, it can be seen that after
the initial burn-in phase of the stochastic sampling algorithm (simulated annealing phase),
the samples of source distribution models drawn from p(Θ|D, I) during the probabilistic
exploration phase generally mixes well over Ns. In particular, annihilation moves for models
from Ns = 4 to 3 do not occur. However, dimension-changing moves involving transitions
from Ns = 4 to 5 (and, vice-versa), as well as higher-order transitions (e.g., from Ns = 6
to 7 and its reverse) are seen to occur. Even so, it is seen that the transitions to large
values of Ns (e.g., Ns ≈ Ns,max) are rare and short-lived. Figure 10 (bottom) displays the
marginal posterior distribution p(Ns) ≡ p(Ns|D, I) for the number of sources. Note that
the most probable number of sources for Trial III is 4 (N̂s = 4), which is favoured with a
probability of about 0.6. The most probable value for Ns in this case coincides with the
correct number of sources Ns = 4. This result is obtained in spite of the fact that the
prior distribution for Ns was initialized with p∗ = 1/7 (with an a priori expected number
of sources 〈Ns〉 = 2), implying that the algorithm is not sensitive to this hyperparameter.
The information embodied in the concentration data was sufficient to move the stochastic
simulations towards the more complex model with Ns = 4 source atoms.

Figure 11(a) displays samples of all source distribution models drawn from the posterior
distribution p(Θ|D, I) with Ns = 4. Note that there are four clusters of points, with the
centroids of each of these clusters coinciding (approximately or better) with the true location
of the four sources (see Figure 3). It is evident that the concentration data D constrain
the ys-locations of the four sources, but the xs-locations of these sources are subject to
greater uncertainty. An examination of Figure 11(a) suggests that identifiability of the
sources can be obtained by ordering the discrete sources of each source distribution model
on the ys-coordinate. More specifically, the label k for each discrete source in a source
distribution model sample are reordered so that the ys,k-locations of the discrete sources
verify ys,1 < ys,2 < ys,3 < ys,4. With this relabelling of discrete sources, the index k for
a source follows the labelling of sources given by Figure 3. Figure 11(b) shows traces of
the source parameters associated with each discrete source of the source distribution model
samples (with Ns = 4), after the relabelling of the discrete sources. As can be seen from
this figure, the ys-locations of the discrete sources are well separated, but the xs-locations
and emission rates qs of the discrete sources are very similar and significantly overlap one
another.

Figure 12 shows the marginal posterior distribution (histogram) of the parameters xs, ys

and qs for each of the four discrete sources identified in Figure 11. The posterior mean and
standard deviation, as well as the lower and upper bounds for the 95% HPD interval, for
each of these four identified discrete sources are summarized in Table 3. For this example, it
is seen that generally the estimates for the source parameters are quite good and, certainly,
the true values of the parameters (when these are known) lie within the stated errors.

An examination of Table 3 shows that the emission rates for the three unregulated sources
(viz., sources 1, 2, and 4) generally are larger than that for the regulated source (viz., source
3). More specifically, measurements of the emission rate from source 3 for Trial III yielded
Q = 3.8 g s−1, which agrees with the estimated value given in Table 3 for this source of
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Figure 11: (a) Density plot consisting of samples of source distribution models obtained for
Ns = 4 projected onto the (xs, ys) subspace. (b) Trace plots of source parameter estimates
against sample (or, iteration) number, after relabelling of discrete sources (+ (blue): k = 1;
◦ (black): k = 2; � (green): k = 3; � (red): k = 4). In the trace plots, the number of
samples has been decimated by a factor of 100.

q̂s = 4.1 ± 0.4 g s−1. As in the previous examples, the localization of the source in the
xs-direction (alongwind) is generally poorer than that in the ys-direction (crosswind). It
can be seen that the crosswind locations of the sources can be determined with an accuracy
of about ±1 m (standard deviation), but the alongwind locations of the sources can only
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Figure 12: Inference of the discrete source parameters obtained from samples drawn from the
posterior distribution p(Θ|D, I) having exactly four discrete sources. (a,b,c,d) Histograms
for the three parameters, namely alongwind location xs, crosswind location ys, and emission
rate qs that characterize sources 1, 2, 3, and 4 (cf. Figure 3). In each frame, the solid
vertical line indicates the true value of the parameter (if known) and the dashed vertical
line corresponds to the best estimate of the parameter obtained as the posterior mean of
the marginal posterior distribution for the parameter.

be determined with an accuracy of about ±5 m (standard deviation). This appears to be
true in this example, except for source 2 whose alongwind location is determined to an
accuracy of about ±2 m (standard deviation). The reason for the increased accuracy in the
determination of the alongwind location of source 2 stems from the fact that only detector
96 (along line 10) – see Figure 9 – measured a significantly non-zero mean concentration and
this concentration was due solely to the emission from source 2. The information content
embodied in this detector allowed the alongwind location of source 2 to be inferred with
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Table 3: The posterior mean, posterior standard deviation, and lower and upper bounds of
the 95% HPD interval of the parameters xs,k (m), ys,k (m), and qs,k (g s−1) for k = 1, 2,
3, and 4 calculated from samples of source distribution models with Ns = 4 for Case 1 (the
latter corresponding to the most probable number of sources in the domain as inferred from
Figure 10).

Parameter Mean Standard Deviation 95% HPD Actual
k = 1

xs (m) 34.0 6.0 (22.8, 45.9) 33.0
ys (m) 170.9 0.8 (169.3, 172.5) 171.0

qs (g s−1) 8.2 0.6 (7.0, 9.4) −
k = 2

xs (m) 33.8 1.6 (30.5, 37.0) 33.8
ys (m) 240.5 0.4 (239.8, 241.5) 240.7

qs (g s−1) 7.1 0.6 (5.9, 8.4) −
k = 3

xs (m) 23.7 5.2 (13.1, 32.1) 30.0
ys (m) 313.4 0.9 (311.8, 315.2) 312.9

qs (g s−1) 4.1 0.4 (3.3, 4.9) 3.8
k = 4

xs (m) 25.6 4.3 (17.5, 33.8) 26.0
ys (m) 384.5 0.7 (383.2, 385.8) 384.4

qs (g s−1) 6.1 0.5 (5.2, 7.0) −

greater accuracy than the other three sources. Finally, for this example, the information gain
obtained from the concentration data D was found to be DKL(1) = 52.5 nits, implying that
the information contained in the concentration data allowed the “posterior volume” of the
hypothesis space (volume of hypothesis space of reasonably large plausibility after receipt
of the concentration data) to decrease by a factor of exp(DKL(1)) ≈ 6.3 × 1022 relative to
the “prior volume” of the hypothesis space (volume of hypothesis space of reasonably large
plausibility before the receipt of the concentration data).

5.3.2 Case 2: 45 detectors

In case 2 of the example of four continuously emitting sources (Trial III), we consider the use
of 45 detectors (shown in Figure 13) in the array for source reconstruction. In contrast to
Case 1, all the detectors on sampling lines 8, 9 and 10 (viz., the three sampling lines closest
to the emitting sources) have been removed. The stochastic sampling algorithm was applied
to the concentration data obtained from the remaining 45 detectors, using exactly the same
hyperparameters for the prior distribution p(Θ|I) as described previously for Case 1. The
simulated annealing phase was applied to an ensemble of Nmem = 50 members of source
distribution models Θ drawn from p(Θ|I). After the termination of the simulated annealing
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Figure 13: In Trial III, four sources located upwind of the array of detectors were turned
on. The solid dots show the locations of the four sources. Squares show the location of
the detectors in the array: open and filled squares indicate that the detector at the given
location is missing and present, respectively, in the array. A filled blue square marks the
detectors that were used for the source reconstruction (Case 2).

phase, the RJMCMC algorithm was run for 1000 iterations on the Nmem = 50 members of
the ensemble (associated with the inverse temperature λ = 1) to generate 50,000 samples
of source distribution models drawn from the posterior distribution p(Θ|D, I) (during the
probabilistic exploration phase).

Figure 14 exhibits a histogram of the number of sources Ns for this case, obtained from
the 50,000 samples of source distribution models drawn from p(Θ|D, I). The RJMCMC
simulations settle in a distribution which slightly favors Ns = 5 sources. However, the
hypotheses Ns = 4 and 6 are equally (approximately or better) probable, albeit with a
smaller probability than the hypothesis Ns = 5. The results of Figure 14 would suggest
that the most probable number of source in Trial III is N̂s = 5 (which turns out to be
incorrect).

Next, let us extract all samples of source distribution models having exactly Ns = 5 discrete
sources. Figure 15(a) displays these samples projected onto the (xs, ys) plane. There are
four prominent “streaks” roughly parallel to the xs-axis, and the narrowness of these streaks
usefully constrain the locations of four discrete sources in the ys-direction. The length of
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Figure 14: The posterior distribution for the number of sources, p(Ns) ≡ p(Ns|D, I), for
Trial III (Case 2) estimated using 50,000 samples obtained from the probabilistic exploration
phase of the stochastic sampling algorithm.

the streaks imply that the xs-locations of these sources are only weakly constrained by the
concentration data D (viz., there is significant uncertainty in the xs-locations of the four
identified sources). In addition to the four streaks of points, there is a diffuse cloud of points
in the (xs, ys)-plane associated with the location of the fifth discrete source in the source
distribution model samples. Note that these points appear to be randomly scattered in the
(xs, ys)-plane, implying that the concentration data D do not contain information that can
usefully constrain the location of this fifth discrete source.

Figure 15(b) exhibits the marginal posterior distributions for the source parameters corre-
sponding to the samples of source distribution models with Ns = 5 discrete sources. Note
that the histogram for ys exhibits four modes whose locations coincide (approximately or
better) with the ys-locations of the four sources present in Trial III. The histogram for xs

has a single mode at xs ≈ 25 m which corresponds roughly to the xs-locations of the four
sources, but this marginal posterior distribution is very broad indicating a large uncertainty
in the determination of the alongwind locations of the sources. Finally, the histogram for
qs is bimodal. There are broad modes at qs ≈ 0 g s−1 and at ≈ 7 g s−1. The latter mode is
associated with the four emitting sources identified in the histogram for ys. The mode with
emission rate near zero is associated with the fifth discrete source, and it is seen that the
emission rate from this source is small. Indeed, the concentration contributed by this fifth
source is generally smaller than the uncertainty in the specification of the concentration
data D. This simply implies that this source is not usefully constrained by the available
concentration data for this case, and may simply correspond to an extraneous source.

Even though Figure 14 suggests that the most probable number of sources is N̂s = 5, the
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Figure 15: (a) Density plot consisting of samples of source distribution models obtained for
Ns = 5 projected onto the (xs, ys) subspace. (b) Histogram of the alongwind location xs,
crosswind location ys, and emission rate qs of the discrete sources obtained from samples of
source distribution models with Ns = 5. The vertical line(s) in each panel marks the true
value of the source parameter (if known).

analysis of the samples of source distribution models with Ns = 5 discrete sources (see
Figure 15) suggests that only four of these sources are usefully constrained by the con-
centration data D. Of course, there may have been one or more additional sources than
those identified in Figure 15, but if the concentration data do not constrain these additional
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Figure 16: Inference of the discrete source parameters obtained from samples drawn from the
posterior distribution p(Θ|D, I) having exactly four discrete sources. (a,b,c,d) Histograms
for the three parameters, namely alongwind location xs, crosswind location ys, and emission
rate qs that characterize sources 1, 2, 3, and 4 (cf. Figure 3). In each frame, the solid
vertical line indicates the true value of the parameter (if known) and the dashed vertical
line corresponds to the best estimate of the parameter obtained as the posterior mean of
the marginal posterior distribution for the parameter.

sources, then no useful inferences can be made about them. As a consequence, it is useful to
extract all samples of source distribution models with Ns = 4 discrete sources, and use this
information to infer the source parameters for the four sources identified in Figure 15. To-
wards this objective, Figure 16 displays the histograms of the source parameters {xs, ys, qs}
constructed from all samples with Ns = 4 [after relabelling the discrete sources for each
sample so that their ys,k locations are ordered as ys,1 < ys,2 < ys,3 < ys,4 — an ordering
constraint that is obvious to impose after a perusal of Figure 15(b)].
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Table 4: The posterior mean, posterior standard deviation, and lower and upper bounds of
the 95% HPD interval of the parameters xs,k (m), ys,k (m), and qs,k (g s−1) for k = 1, 2, 3,
and 4 calculated from samples of source distribution models with Ns = 4 for Case 2.

Parameter Mean Standard Deviation 95% HPD Actual
k = 1

xs (m) 46.7 23.7 (3.0, 90.2) 33.0
ys (m) 170.3 2.6 (165.2, 175.3) 171.0

qs (g s−1) 8.5 1.0 (6.6, 10.6) −
k = 2

xs (m) 35.3 22.9 (0.0, 80.7) 33.8
ys (m) 239.4 2.9 (233.6, 244.8) 240.7

qs (g s−1) 6.8 0.9 (4.0, 8.6) −
k = 3

xs (m) 50.1 26.4 (6.4, 98.8) 30.0
ys (m) 312.2 3.8 (304.5, 319.2) 312.9

qs (g s−1) 4.5 0.8 (3.1, 6.1) 3.8
k = 4

xs (m) 20.6 10.3 (0.4, 38.8) 26.0
ys (m) 385.6 2.2 (381.1, 389.8) 384.4

qs (g s−1) 5.8 0.6 (4.6, 7.0) −

Table 4 summarizes the posterior mean and standard deviation, as well as the lower and
upper bounds for the 95% HPD interval of the source parameters, for each of the four
discrete sources. The estimated values for the crosswind locations of the four sources agree
well with the true crosswind locations, albeit the uncertainties in these inferred locations
are now about three times as large as those for Case 1. The estimates of the alongwind
locations of three of the four sources are quite good, although the uncertainties in these
estimates are large. An examination of Figure 16(c) and Table 4 for k = 3 indicates that the
available concentration data D for Case 2 does not constrain the xs-location for Source 3.
Indeed, from Figure 16(c), it can be seen that the marginal posterior distribution of xs for
Source 3 is almost a uniform distribution over its domain of definition (and, hence, almost
identical to the marginal prior distribution of xs for Source 3). The posterior mean value
of qs for Source 3 overestimates the true value of the emission rate (Q = 3.8 g s−1). Even
so, the true emission rate here is contained within the one standard deviation uncertainty
interval for this parameter. Finally, for Case 2, the information gain provided by the
concentration data D was found to be DKL(1) = 39.2 nits for Case 2 (which is 13 nits less
information gain than provided by the concentration data for Case 1). Viewed in another
way, the concentration data available on the last three sampling lines (which were used for
the source reconstruction for Case 1, but not for Case 2) provided 13 nits of additional
information, and this information allowed the posterior “volume” in the hypothesis space
for Case 1 to be reduced by a factor of exp(13) ≈ 4.4×105 relative to the posterior “volume”
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in the hypothesis space for Case 2.

6 Conclusions

In the report, we have developed and tested an innovative Bayesian method for source
reconstruction for the difficult case when the number of sources is unknown a priori. More
specifically, Bayesian probability theory was applied to formulate a posterior distribution for
the number of sources and for the parameters that characterize each of these sources (e.g.,
location, emission rate, time of release, etc.). The evaluation of this posterior distribution in
order to extract its features of interest is realized using an efficient computational technology
described in Yee [21]. The computational algorithm uses simulated annealing for the burn-in
phase and a reversible-jump MCMC method for the probabilistic exploration phase.

The source reconstruction methodology has been successfully validated against a real dis-
persion experiment involving various combinations of multiple source releases (FFT-07),
with measurements of the resulting concentration field obtained from an array of 100 detec-
tors. In particular, three different trials were used to test the methodology: namely, Trial I
was used to test the source reconstruction methodology for the case in which the number of
sources is known a priori; Trial II was used to test the source reconstruction methodology
for the case in which the number of sources is unknown a priori, but the maximum possible
number of sources is known (four in this case); and, Trial III was used to test the source
reconstruction methodology for the case in which the number of sources is unknown a pri-
ori, and the maximum number of possible sources is not available. For Trial III, the effect
of reducing the number of detectors on the quality of the inference was investigated. These
various examples illustrate the effectiveness of the proposed source reconstruction method-
ology and demonstrate the reliable determination of the number of sources and estimation
of the source parameters (along with the associated uncertainties) corresponding to each of
the identified sources.

There are several possible extensions to this work. A number of the field experiments con-
ducted in FFT-07 involved the presence of a spurious additive background in the concentra-
tion measured on the detector array. It would be useful to extend the source reconstruction
methodology to treat an unrecognized spurious source of signal. This may require the de-
velopment of a rational procedure within the Bayesian framework that would allow the
proper separation of the true concentration signal from an underlying background (whose
source may be unknown). The various contributions to the noise term in our model of the
mean concentration observations were simply lumped together and it was assumed that
a noise scale parameter (or standard deviation) associated with the aggregate error was
known. Of course, apparent inconsistencies in the inference may arise from an incorrect
estimate of the uncertainty of this aggregate error. It would be useful to generalize the
methodology to treat the possible uncertainty in the specification of the standard deviation
for the aggregate error.
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