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Abstract

A unifying framework for the design and operation of networked coordinated systems has been researched
with developments focusing on application in the management of autonomous vehicles which are subject
to large external disturbances, such as wind gusts. The benchmark problem is the use of intervehicle
communication and active control to effect collision avoidance in multi-vehicle systems with significant
environmental disturbances. The central aim of the work was to combine constrained optimal control,
achieved via so-called Model Predictive Control methods, with limited capacity communication link resource
assignment to achieve collision avoidance with a nominal fleet formation and a specified level of external
disturbances. The core results concern the use of the covariance or quantified uncertainty of the estimate
of the other vehicles’ positions as the link between communications resource assignment – more bits of
communications means more accurate position estimates – and collision avoidance requirements – close
vehicles in the formation require more accurate position information to avoid collision. A computational
tool is derived. The work has been presented at AFRL.

1 Introduction

The work performed under this grant has concentrated on the joint analysis of communication and control
in achieving collision avoidance of multiple autonomous vehicles when afflicted with significant environmental
disturbances due to wind gusts for example. A mathematically strongly related problem is that of congestion
control in computer networks, where the vehicles are replaced by network nodes, a collision represents overflowing
the buffer of a down-stream node, intervehicle communication is interpreted as internode communication via,
say, resource management packets, and the disturbances are due to the variability of traffic demands on the
network. The collision avoidance problem will proide the core example of this report, although the results apply
mutatis mutandis to the network congestion problem, which is an indication of the fundamental nature of the
results.

In multiple vehicle active collision avoidance under disturbances, one uses the other vehicles’ positions or pre-
dicted positions as constraints on future controlled motions. Thus, the underlying technology of the work is
Model Predictive Control, which is a computational approach using constrained optimization to achieve con-
strained closed-loop control with strong connections between the optimization problem and closed-loop system
behavior. Model Predictive Control has been an area of considerable technical interest for over twenty years in
the control community because of its capacity to handle constraints. It is, however, formulated fundamentally
as a full-state feedback problem. That is, there is no obvious provision for inaccurate knowledge of the state of
all the vehicles. One of the contributions of this and preceding work of this team has been the incorporation of
state estimates into Model Predictive Control [YB05].

The other core discipline underpinning the work is that of state estimation or Kalman filtering. Here the central
estimation problem is for vehicle i to estimate and then predict ahead in time the position of vehicle j from
limited data communicated from vehicle j over a dedicated communication channel. The central contribution
from this work has been to tie quantitatively and computably the assignment of capacity to this channel to the
eventual covariance of the subsequent state estimate and predictions. This can then be incorporated directly
into the feasibility of the constrained Model Predictive Control problem. Indeed, as shown in [KYB08], this
feasibility can be included into the single optimization problem of communications bandwidth assignment.

The approach to collision avoidance of constrained optimization provides further avenues for development of
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feasible solutions of rendezvous problems and approach to formations from large initial separations. The central
contribution of the work undertaken under this grant has been this adoption of constrained optimization into
this context and the inclusion of stochastic uncertainty.

2 Model Predictive Control with State Estimates

Model Predictive Control (MPC) is an approach to feedback control design which is able to incorporate con-
straints. There are two powerful ideas which lie at the heart of the subject.

• At each discrete sample time n, a constrained open-loop (i.e. no feedback) control problem is solved N
time steps into the future, to time n + N , from the current system state value xn. This produces an
open-loop control sequence {un(xn), un+1(xn), . . . , un+N−1(xn)} for N steps from the current time. The
open-loop nature of the solution means that all the sequence of control values is a function of the current
state, xn, as is made explicit in the notation. Because the control solution is an explicit constrained
optimization over these un+j(xn) values, it is computationally tractable. Had a closed-loop solution,
un+j(xn+j), been sought, this would have been in general intractable. However, of this open-loop solution,
{ut(xt), ut+1(xt), . . . , un+N−1(xn)}, only the first control sample, un(xn), is applied and then, starting
from the resultant system state value, xn+1, one re-solves the same N -step constrained optimization to
arrive at the next open-loop control solution sequence {un+1(xn+1), un+2(xn+1), . . . , un+N (xn+1)} from
which only the first control solution, un+1(xn+1), is applied. Thus, a repeated solution of computationally
tractable constrained open-loop control problems yields effectively a closed-loop control sequence of first
steps, un+j(xn+j).

• The desirable closed-loop controlled system properties of asymptotic stability – a moot question for a
finite-time open-loop control problem – and guaranteed future feasibility of the sequence of open-loop
solutions from the corresponding MPC-controlled initial states, xn+j , may be inferred from the open-loop
solutions by suitable choice of the terminal state constraints of the MPC constrained optimization. In
particular, choosing the open-loop terminal state constraint at time t to be xn+N = 0 implies that the
closed-loop MPC solution will be asymptotically stabilizing. Thus, properties of the closed-loop controlled
system may be inferred from the statement of the open-loop problems. This property is traced back to
Keerthi and Gilbert [KG88].

The archetypal deterministic MPC problem is as follows.

min
u

J(N,xn, un+N−1
n ) = xT

n+NPNxn+N

+
N−1∑
i=0

(xT
n+iQixn+i + uT

n+iRiun+i),

subject to : xn+i+1 = f(xn+i, un+i),
xn+i ∈ Xi, (i = 1 . . . N),
un+i ∈ Ui, (i = 0, . . . , N − 1).

The minimization commences at time n from initial state value xn and yields the N -step solution sequence for
time n, un+N−1

n = {un, un+1, . . . , un+N−1}. The output equations and constraints can be accommodated in
this formulation, since the output depends explicitly only on the state and input. The constraints are, in order,
the system dynamics, the state constraints along the N -step time horizon, and the control constraints.

It is clear from this statement of MPC that these control laws un+j(xn+j) are explicitly dependent on the
availability of the full system state, xn+j , from measurements. This is often not the case and the full measure-
ment needs to be replaced by a state estimate produced by, say, a Kalman filter driven from available output
measurements. In the context of coordinated controlled systems, such as fleets of autonomous vehicles, there
are several immediate observations.



• Non-collision requirements are obvious state constraints in vehicle control.

• The ‘state’ of a multiple vehicle fleet is the aggregation of all of the individual states of the vehicles. If
environmental disturbances are impinging on each of the vehicles, then the predictable components of
these disturbances also form part of each vehicle’s extended state vector.

• In order to form the centralized (effectively the all-knowing air traffic controller) control solution for all
the vehicles, all of these component substates need to be known at the centralized place. This requires
explicit communication from the sensors on each of the vehicles.

• For decentralized, local control solutions, pairs of vehicles will need to communicate their local state
information to each other to compute their collision avoiding controls.

• The ability of a vehicle to know its own state is limited by the accuracy of its sensors of position, ve-
locity, and disturbance knowledge. The ability to know another vehicle’s state is further limited by the
communication resource assigned to that communication, nominally the bit rate.

• Accordingly, self-state values and other-state values are necessarily inexact and need to be replaced by
state estimates. The MPC control law needs to be adjusted to accommodate these inaccuracies. We
distinguish two separate kinds of state estimators; self-state estimators of the vehicle’s own state, and
cross-estimators of other vehicles’ states.

• The quantification of uncertainty or inaccuracy in state estimates is normally probabilistic in nature and
is captured by second order statistics via the covariance function.

In probabilistic terms, the original MPC problem to be solved at vehicle j may be replaced by

min
u

J(N, x̂j
n, un+N−1

n ) = x̂jT
n+NPN x̂j

n+N

+
N−1∑
i=0

(x̂jT
n+iQix̂n+i + uT

n+iRiun+i),

subject to : x̂j
n+i+1 = f(x̂j

n+i, un+i),

x̂j
n+i ∈ X′

i, (i = 1 . . . N),

un+i ∈ Ui, (i = 0, . . . , N − 1).

P
(
|ŷj

n+i − ŷ`
j,n+i| < α

)
< ε. (1)

Here: the actual vehicle-disturbance state and position is replaced by their self-estimates x̂j
n+i and ŷj

n+1; the
other vehicle-disturbance state and position is replaced by their local cross-estimates x̂`

j,n+i and ŷ`
j,n+1; and the

non-collision constraint that the positions be separated by a fixed amount α is replaced with a probabilistic
statement of separation with high probability 1− ε. Since the estimates x̂j

n+i and x̂`
j,n+i are all that is available

at vehicle j, this has translated the original MPC problem to a feasible form.

In the case that the dynamics are linear and the probability distributions gaussian, the probabilistic non-collision
constraint, P

(
|ŷj

n+i − ŷ`
j,n+i| < α

)
< ε, may be transformed into a deterministic form.

Lemma 1 ([KYB08]). Assume that all estimation errors are gaussian with self- and cross- covariances given by
Σi

n+j and Σ`
i,n+j respectively. Denote the dimension of the position vector, yn+i = Cxn+i, by d and denote the

cumulative distribution function of the χ2 density with d degrees of freedom by Ψd(·). Consider the probabilistic
no-collision constraint (1) with weighting matrix M > 0,

P
(∣∣yi

n+j − y`
n+j

∣∣
M

< α
)

< ε, (2)

and define the value β to be any value satisfying

Ψd(β2) ≥ 1− ε. (3)



Then, with
P `

i,j = C
(
Σi

n+j|n + Σ`
i,n+j|n

)
CT ,

satisfaction of the probabilistic no-collision constraint is implied by∣∣∣ŷi
n+j|n − ŷ`

i,n+j|n

∣∣∣
M

> α + β

√
λmax

(
P `

i,j

1
2 MP `

i,j

1
2

)
. (4)

This is one of the key technical observations of the research. This is Lemma 1 from [KYB08]. The central
achievement is the translation of the probabilistic statement concerning the unknown states into a deterministic
statement about the known state estimates. The covariances of the estimates, Σ, enter as the pivot of this
transformation. Accordingly, the management of communication resources is formulated as in terms of the
specification of covariances of cross-estimates, since the greater the communication resource the smaller the
estimate covariance.

For a specific vehicle target fleet formation, where vehicles i and ` are given prescribed nominal (undisturbed)
positions yi

? and y`
?, then the non-collision constraint becomes a constraint on the estimate covariances. This

constraint is based on the operational requirement that under the action of disturbances the constraints are
usually inactive. This restriction on the estimate covariance is a function of the formation geometry positions
and the underlying disturbance field.

Lemma 2 ([KYB08]). The (i, `) no-collision constraint is usually inactive provided the cross-estimator covari-
ance satisfies

P `
i,j = C

(
Σi

n+j|n + Σ`
i,n+j|n

)
CT ≤

∣∣yi
? − y`

?

∣∣2 − α2

β2
M−1,

CΣ`
i,n+j|nCT ≤

∣∣yi
? − y`

?

∣∣2 − α2

β2
M−1 − CΣi

n+j|nCT . (5)

3 Communications modeling and assignment

With this statement of the design requirement for the cross-estimator (5), which we state succinctly as Σ` < W,
the next stage is to interpret this in terms of the implied specifications on communications between vehicles.
The details of this process are the province of [KYB08], but which we rapidly summarize here.

The core idea is that the communications bit-rate assignment causes quantization errors on the transmitted self-
state estimate and future control values sent from vehicle ` to vehicle i and used as the basis of a future prediction
of position as part of the non-collision constraint. If a value is truncated to β bits, then the quantization error
is white and uniformly distributed between (−2−β , 2−β) times the dimension of the underlying area of interest.
The associated covariance is simply computed. This ties covariance to communications bit rate.

To add some further unexplained detail from [KYB08], the following equations describe the evolution of the
cross-estimator of the vehicle-disturbance state of vehicle ` as computed at vehicle i in the case of linear vehicle



and disturbance dynamics.[
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i,n|n

]
=

[
(I −K)Ax̃`

i,n−1|n−1 − (I −K)Bνi,`
2,n + (I −K)w`

n−1 −Kx̃`
n|n −Kνi,`

1,n

ηi,`
k + νi,`

2...N+1,n

]
(6)

=
[
(I −K)A 0

0 0

][
x̃`

i,n−1|n−1

Ũ`
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The stationary covariance calculation of this augmented system is

P = APAT + G1QGT
1 + G2

[
Rx 0
0 Ru

]
GT

2 + G3Σ`GT
3 , (8)

where Q = cov(
[
wn−1

ηn−1

]
). Here ηi,`

1,n is the quantization noise of the transmission of the current self-state estimate

from ` to i and ηi,`
2,n to ηi,`

N+1,n are the quantization errors of the transmission of the control values. From (8), it
is clear that the stationary covariance of the state is a simple function of these quantization error covariances.
The value K is the Kalman filter gain of the cross-estimator.

If we denote the bit-rate assigned to the state value as mi,`
x and that assigned to the control as mi,`

u then we
have the following theorem from [KYB08].

Theorem 1. Any solution {P = Y −1,K = PY K,mj
x,mj

u} to the following set of Linear Matrix Inequalities,

Y Y (I −K)A Y (I −K) Y K Y K Y (I −K)B
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KT Y 0 0 Σ`−1 0 0
KT Y 0 0 0 diag{1 + ln 12 + 2mj

x ln 2} 0
BT (I −K)T Y 0 0 0 0 diag{1 + ln 12 + 2mj

u ln 2}

 > 0,

(9)
J∑
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mj
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(
W C
CT Y
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> 0, (11)

where L is the total bit-rate resource and W = |yi
?−y`

?|2−α2

β2 M−1−CΣi
k+j|kCT , yields a simultaneous solution for

steady-state cross-estimator covariance P , cross-estimator filter gain matrix K, and communication bit rates
mj

x and mj
u.

The thrust of this section is to point out that the determination of communication bit rate assignments is incor-
porated into the analysis using simple tools from Kalman filtering and computational techniques which are part
of standard packages, such as matlab. The connection to non-collision constraints and Model Predictive Control
is via the covariance limit (11). This linkage between control constraints and communications requirements with
computational tools is the primary contribution of this research project.
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Figure 1: [KZB08] Two vehicle trajectories (Vehicle 1 solid line, Vehicle 2 dotted line) under wind gusts with
collision avoidance and control constraints. Axes indicate positions and curve are trajectories parametrized by
time with times indicated. The upper curve shows the commencement of the gust with the vehicles at their
target positions through to the gust’s acme and the lower plot the dénouement and controlled return to position.

4 Further developments

The development of these theoretical and computational connections between control, constraints, disturbances,
and communications resource assignment are most easily developed and understood in the linear gaussian case,
where the methods are explicit and non-conservative. In more realistic scenarios of nonlinear systems (which is
implicit in constrained control), the approach still provides guidance and computational tools. Indeed, compu-
tations contained in the paper [KZB08] illustrate the closeness of the approximation in a nonlinear environment
with realistic wind-gust disturbances. The two-dimensional collision-avoiding constrained trajectories for two
vehicles under significant wind-gusts in shown in Figure 1.

The analytical approach has been centered on the stationary case, where the vehicles are moving about fixed
target locations in a formation and being disturbed by statistically stationary external forces. For the problem
of rendezvous, where a fleet of vehicles is required to enter a formation from distant locations without collision,
the Model Predictive Framework still provides access to tools but the feasibility of the methods requires more



technical machinery. This is presented in [KB07, KB08, KB09] with the latter two references describing the use
of Control Lyapunov Functions to permit MPC to improve control performance over finite horizons.

The reliance of these approaches on communications as the sole means of estimating other vehicles’ positions
fails to incorporate the use of active sensors, such as radar. However, the framework of estimate covariance
management admits a simple inclusion of sensor information. Indeed, much of the study of radar systems
is itself based on management of position and velocity estimate covariances. The fusion of multiple sources
of information via covariance computation is well studied field. Very recent work, not part of this grant but
following from it, has focused on making these statements precise. In the situation of dynamically varying
vehicle formation geometries, such as detection and then inclusion of a new vehicle into a formation, these
sensor-and-communication based methods are shown to work simply. Additionally, ideas from cellular phone
systems concerning control and traffic channels, call admission, etc, have provided elegant approaches to vehicle
inclusion and departure as well as to obstacle avoidance and evasion. This work is ongoing.

5 AFRL visit

Efforts to promulgate the research supported by this grant have been publication in a number of journal and
conference papers and a book chapter; see Appendix. The work was presented and discussed at some length
during a visit of the Principal Investigator to the Air Force Research Laboratories in Dayton OH in June, 2009.
The host was Dr Derek Kingston.

6 References

[KG88] S. S. Keerthi and E. G. Gilbert, “Optimal infinite-horizon feedback laws for a general class of con-
strained discrete-time systems: stability and moving-horizon approximations,” Journal of Optimization
Theory and Applications, vol 57, pp 265-293, 1988.

[YB05] Jun Yan and R.R. Bitmead, “Incorporating state estimation into model predictive control and its
application to network traffic control,” Automatica, vol 41, pp. 595-604, 2005.

The communications resource assignment is formulated as a routine constrained optimization calculation using
Linear Matrix Inequalities. If a feasible solution exists, it yields the communications bit-rate allocation between
vehicles, Kalman filtering estimator gains, and limiting covariance values.

7 Theses arising from this work

Two UCSD theses contain the bulk of the work.

Jun Yan, Constrained Model Predictive Control, State Estimation and Coordination, University of
California, San Diego, April 2006.

This thesis, supported by an NSF grant, includes the early developments of including state estimates, with their
attendant uncertainty quantified by the covariance, into Model Predictive Control. The predominant target
problem is that of network congestion control.



Keunmo Kang, Information in Coordinated System Control, University of California, San Diego,
September 2008.

This thesis, supported in its entirety by this AFOSR grant, develops a number of themes from the covariance-
based adjustment to constraints presented by Yan. These include; the formulation of the communications
resource assignment for static vehicle formations, approaches for the guaranteed feasibility of initial rendezvous
to the target formation based on polytopic uncertainty sets, and stable transition to formation from large
separation based on Control Lyapunov Functions.

Additionally, Masters student David Zhang was involved in the development of a comprehensive simulation of
the methods with realistic wind gusts and coordination between two vehicles with the minimal communication
rates. This work was presented in [KZB08].

8 Publications arising from this grant

[KYB05] Keunmo Kang, Jun Yan and R.R. Bitmead, “Communication Design for Coordinated Control with a
Non-Standard Information Structure,” 44th IEEE Conference on Decision & Control – European Control
Conference, Seville, pp. 7078-7083, December 2005.

[BYK06] R.R. Bitmead, Jun Yan and Keunmo Kang, “Constrained Control & Communications Resource As-
signment in Coordinated Systems,” International Control Conference, Glasgow UK, August 2006. (Ple-
nary address).

[KYB06] Keunmo Kang, Jun Yan and R.R. Bitmead, “Communication Resources for Disturbance Rejection
in Coordinated Vehicle Control,” 45th IEEE Conference on Decision and Control, San Diego, December
2006.

[KB07] K. Kang and R.R. Bitmead, “Online Reference Computation for Feasible Model Predictive Control,”
46th IEEE Conference on Decision and Control, New Orleans LA, December 2007.

[KZB08] K. Kang, D.D. Zhang and R.R. Bitmead, “Disturbance Rejection Control in Coordinated Systems,”
17th IFAC World Congress, Seoul Korea, July 2008.

[KB08] K. Kang and R.R. Bitmead, “Contraction Based Model Predictive Control,” International Workshop
on Assessment and Future Directions of Nonlinear Model Predictive Control, Pavia Italy, September 2008.

[KB09] K.Kang and R.R. Bitmead, “Model Predictive Control with Control Lyapunov Function Support,” in
Nonlinear Model Predictive Control: towards new challenging applications, Lecture Notes in Control &
Information Sciences, vol. 384, L. Magni, D.M. Raimondo and F. Allgöwer (eds), Springer-Verlag, Berlin,
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