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ABSTRACT 

The use of Multi-model Super-Ensembles (SE) which optimally combine different models, has been shown to 
significantly improve atmospheric weather and climate predictions. In the highly dynamic coastal ocean, the 
presence of small-scales processes, the lack of real-time data, and the limited skill of operational models at 
the meso-scale have so far limited the application of SE methods. Here, we report results from state-of-the- 
art super-ensemble techniques in which SEPTR (a trawl-resistant bottom mounted instrument platform 
transmitting data in near real-time) temperature profile data are combined with outputs from eight ocean 
models run in a coastal area during the Dynamics of the Adriatic in Real-Time (DART) experiment in 2006. 
New Kalman filter and particle filter based SE methods, which allow for dynamic evolution of weights and 
associated uncertainty, are compared to standard SE techniques and numerical models. Results show that 
dynamic SE are able to significantly improve prediction skill. In particular, the particle filter SE copes with 
non-Gaussian error statistics and provides robust and reduced uncertainty estimates. 

© 2009 Elsevier B.V. All rights reserved. 

1. Introduction 

An increasing number of models are routinely providing opera- 
tional (atmospheric) weather forecasts and climate predictions. The 
use of model ensembles has become an important method of 
investigating dispersion problems (Calmarini et al., 2004), tracking 
individual model errors (for example from initial and boundary 
conditions, numerical discretization, turbulence closure), increasing 
forecast skill, and reducing uncertainties (Lermusiaux, 1999; Lermu- 
siaux et al.. 2006) in highly dynamic and complex environments where 
predictability is limited (Lorenz, 1963; Roe and Baker, 2007). Model 
biases are challenging to remove in short-term forecasts but may be 
addressed by statistical tools. The multi-model Super-Ensemble (SE) 

* Corresponding author. 
F-mail address: rixenipnurc.nalo.int (M. Rixen). 

0924-7963/$ - see front matter © 2009 Elsevier B.V. All rights reserved. 
doi:10.1016'j.jmarsys.2009.01.014 

technique (Krishnamurti et al., 1999), which uses an optimised 
combination of an ensemble of models has previously been demon- 
strated to improve weather, seasonal and interannual forecast skill in 
atmospheric (Shin and Krishnamurti, 2003a,b; Yun et al., 2005) and 
ocean (Rixen and Ferreira-Coelho, 2006, 2007; Rixen et al.. 2008, 
2009-this issue; Logutov and Robinson, 2005) models over simple- 
ensemble and bias-removed ensemble means. SE methods (Williford 
et al„ 2003) have been further improved by the use of dynamic (Shin 
and Krishnamurti, 2003a), regularization (Yun et al., 2003), non-linear 
(Rixen and Ferreira-Coelho. 2007) and probabilistic (Rajagopalan 
et al., 2002) techniques. These methods all aim at finding a com- 
bination of models that optimally agrees with reference data over a 
training period (the hindcast); this combination is subsequently used 
to produce a SE forecast. A critical aspect for all SE methods is therefore 
whether the regression solution is capable of extrapolation in time and 
is applicable to future events. In other words, the learning should be 
adequate to provide generalization skills. 
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Operational implementation of SE in the atmosphere has been 
quite straightforward due to the reliability of observational data 
streams and the robustness of the models. However, in the ocean, the 
lack of long real-time data time series - especially in heavily fished 
areas - and a limited suite of operational models have so far limited 
the application of such promising techniques. 

The use of SE methods for coastal ocean prediction was explored 
during two Dynamics of the Adriatic in Real-Time (DART06A in winter 
and DART06B in summer) inter-disciplinary and multi-institutional 
experiments carried out in 2006 near the Gargano Peninsula and in 
the central Adriatic Sea (Mediterranean Sea), areas with intense 
navigation and fishing activity (e.g. Cushman-Roisin et al., 2001; 
Burrage et al., 2009-this issue). The purpose of these experiments was 
to assess ocean monitoring and prediction skill (Taylor, 2001; 
Robinson et al., 2002) in highly dynamic areas. The project specifically 
focused on small-scale processes resulting from instabilities of the 
Western Adriatic Current (WAC), which flows southward along the 
Italian coast. This area, like many coastal areas, is subject to intense 
mesoscale activity (Fig. 1). The time-scales of eddies, fronts and 
filaments are typically of the order of a few hours to a day. Other 
processes, e.g. the non-linear interactions of the instabilities with 
internal waves and tides, make operational forecasting in the area 
even more complex and challenging. Results presented hereafter refer 
to the B75 mooring (SEPTR 104) during the summer experiment. 

2. Methods 

With the exception of the simple ensemble mean method, the 
fusion of the different models by elaborate and reliable SE techniques 
require independent observations. 

The delivery of real-time observations was ensured by the SEPTR 
(Perkins et al., 2000; Crandi etal., 2005), a bottom-mounted platform in 
a trawl-resistant configuration (Fig. 1), equipped with an Acoustic 
Doppler Current Profiler (ADCP) and a winch-controlled profiling unit 

fitted with Conductivity Temperature Depth (CTD), wave, and optical 
sensors. Data were transmitted through a GLOBALSTAR link every 6 h 
after profiling the water column. In practice not all of the data were 
successfully received in near-real time and thus the SE methods were 
applied to the full data set after recovery rather than the more limited 
and patchy real-time data set. However, future improvements to SEPTR 
technology will be focused on improving data transmission and 
hopefully make future near-real time applications more practical. The 
collection of models from the various home institutions and those run 
onboard RA^ ALLIANCE was ensured through continuous mirroring of the 
NURC and RA' ALLIANCE FTP servers over a dedicated, high-bandwidth 
satellite-link system (a standard 2-way SATCOM connection comple- 
mented by a Digital Video Broadcasting System asymmetric link). 

Eight different medium- to high-resolution ocean models (Fig. 2, 
see details of the model implementations in Appendix A) were run in 
the framework of DART. These models exhibited different skills, 
dynamic responses, and biases, as a result of their different physical 
assumptions and configurations (numerical discretization, initial and 
boundary conditions, atmospheric forcing, data assimilation, turbu- 
lence closure schemes and sub-grid scale parameterizations). This 
diversity offered a good opportunity to test SE methods. 

The high spatio-temporal variability of prediction skill makes the 
application of ensemble techniques difficult in the ocean. Naive 
averaging (i.e., ensemble mean, hereinafter ENSMEAN) exhibits poor 
skill and calls for methods with increased complexity to cope with 
biases (i.e., a mean of models corrected for their respective biases, 
hereinafter ENSMEANUNBIASED) or perform collective bias correction 
(i.e. a least-square linear regression between the data and the models, 
hereinafter LINREG) (Krishnamurti et al., 1999). To allow a dynamic 
evolution of model combinations, a Kalman filter (hereinafter KAL- 
MAN) (Kalman, 1960) can be used; this assumes that the weight 
statistics follow a normal distribution. The full Kalman filter has been 
implemented here without additional hypotheses. The sequential 
importance resampling filter (hereinafter PARTICLE) (van Leetiwen. 
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Fig. 2. Time series of temperature ("C) versus depth (m) at mooring B75 from the eight ocean models (see Appendix A) and SEFTR 104 real-time data. 
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2003) was also tested to challenge the assumption of the weights having 
a Gaussian distribution (see additional details in Appendix B). For both 
KALMAN and PARTICLE, the a priori error statistics were optimised by 
cross-validation, yielding observational errors of 0.2 °C (including 
sensor errors and unmeasured scales) and SE model weight errors of 
0.05 (this corresponds roughly to a change in weights of 20%/day). 

All these methods may be complemented with additional 'tricks' 
(Rixen and Ferreira-Coelho, 2007): 1) normalizing the models and data 
for better numerical conditioning (NORM suffix), 2) adding a synthetic 
model (predicting 1 all the time) to allow for a constant or dynamic bias 
to be removed (forall SE methods: LINREG, KALMAN, PARTICLE), and 3) 
a regularization using empirical orthogonal functions (EOF suffix) by 
retaining only the dominant modes represented in the models (95% of 
the variance in the present study). Method 3) avoids collinearities 
between the models (which may generate numerical problems); hence 
it usually significantly improves generalization skills. 

All the methods are computed at every single depth, yielding 
different weights at different depths. Additionally, dynamic methods 
use time-evolving weights, initialized with the LINREG solution. It 
should be noted that observations that are assimilated by numerical 
models could be assimilated in the SE as well, although this was not 
considered in the present work. 

3. Results 

The results focus on 24-hour predictions of temperature with a 
learning period starting 16 August 2006 and an evaluation period 
from 4 to 9 September 2006. For a given 'present' time, past data are 
used for the learning phase (linear regression, Kalman filter or particle 
filter data assimilation). Future data are used for verification. 

The time series of temperature from SEPTR 104 at mooring B75 show 
a gradual cooling of the surface and deepening of the thermocline during 
a major cooling event occurring in early September (Fig. 2). Qualitatively, 
all models were able to reproduce the general patterns identified in the 

SEPTR data. Quantitatively (Figs. 3 and 4), the models exhibit various 
kinds of errors including systematic biases, amplitude and phase errors, 
offsets in the thermocline depth, strength and response of the ther- 
mocline, discrepancies in the penetration of mixing events, anomalous 
under or over-heating at the surface, and weak temporal variability. 

It can be noticed from Fig. 3 that errors for the different Super- 
Ensemble solutions decrease with increased complexity from the classic 
ENSMEAN and ENSMEANUNBIASED to LINREG, KALMAN, and PARTICLE 
complemented by regularization. The ENSMEAN, although reducing 
somewhat the errors at the bottom and surface is unable to correct the 
large errors at the level of the thermocline because it is incapable of 
integrating the data information. The ENSMEANUNBIASED allows for a 
substantial correction of the errors. The errors are further reduced by the 
LINREG and by dynamic methods as KALMAN_NORM_EOF and PARTI- 
CLE_NORM_EOF. The EOF regularization, when retaining 95% of the 
variance, typically 'compresses' the 8 models down to 2 to 6 normal 
modes, thus highlighting the fact that some of the models are closely 
correlated. The resulting number of modes varies with depth and is 
usually higher near the thermocline. RMS errors (Fig. 4) have been 
reduced from a range of 1.35-3.21 °C for the individual models to less 
than 0.51-0.53 °C for the dynamic methods with regularization. The 
corresponding biases (0.02-2.15 °C) have, in most cases, been reduced to 
less than 0.14 °C and the correlations increased from 0.86-O.96 to 0.99. 
The signal energy discrepancies have similarly reduced from 0.12-1.95 to 
0.23. The overall skill (Taylor. 2001), which takes into account both the 
difference in the signal standard deviation and the correlation of the 
signal (0 being the lowest skill and 1 the highest) has been increased from 
0.53-0.90 to 0.98, i.e., by at least 8% as a conservative estimate. This 
suggests that the signal energy of the prediction and the truth are in good 
agreement and that the prediction is also better correlated to the truth. 

Ensemble methods may provide improved prediction skill but 
also offer as a by-product an estimate of the associated uncertain- 
ty (i.e. the confidence interval) at marginal cost (see additional 
details in Appendix B). For operational purposes, overestimation or 

04Sep    05Sep    06Sep    07Sep    08Sep    09Sep      04Sep    05Sep    06Sep    07Sep    08Sep    09Sep 

-2-10123 

Fig. 3. Time series of 24-hour temperature (°C) forecast errors versus depth (m) for 6 consecutive days of individual models and super-ensemble predictions. From left to right and top to 
bottom: the 8 individual models. ENSMEAN, ENSMEANUNBIASED. UNREG_NORM, UNREC_NORM_EOF. KALMAN_NORM, KALMAN_NORM_EOF. PARnClE_NORM and PARTICLE..NORM_EOF. 
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1 

Fig. 4. Error statistics of 24-hour temperature (°C) forecast. From left to right and top to bottom: root mean square error, correlation, bias, signal standard deviation difference and 
skill for the 8 different individual models (left) and SE models (right) of Fig. 3. 

underestimation of the uncertainty can be a serious issue. Decision 

makers could ignore a valuable prediction that is assigned too much 
uncertainty or be over-confident of a prediction that is assigned too 
little uncertainty. Narrowing down the confidence interval for the 

predictions while minimizing these types of failures is hence of great 
value to the end-user. 

Fig. 5 illustrates the time series of the different uncertainty 
predictions for a 99.7% confidence interval (or 3 standard deviations) 
and an a posteriori verification of the quality of these estimates. The 
mean ENSMEAN uncertainty is 4.09 °C, as a result of the wide spread of 

the individual models. By injecting SEPTR data, the SE methods narrow 
down the uncertainty estimates to mean values of 2.21 °C for the 
ENSMEANUNBIASED, 3.64 °C for LINREG NORM, 2.05 °C for L1NREC- 

NORM_EOF, 1.67 °C for the KALMAN.NORIvLEOF and 1.01 °C for the 

PART1CLE_N0RM_E0F. Compared to the KALMAN.NORIvLEOF (which 
assumes Gaussian error statistics), the non-Gaussian capability of the 

particle filter allows error estimate reduction by a further 40%. 
Uncertainty within each day increases for dynamic methods as a result 

of the intrinsic uncertainty of the forecast-model weights (hence the 
discontinuity at the end of the 24 h forecast period because of the 

running 'present time' window). A posteriori verification as to whether 
the ground truth is within the prediction-uncertainty range demon- 
strates that the failure rate is around 3% for ENSMEAN and ENSMEA- 
NUNBIASED. For linear regression methods and KALMAN NORM, the 
failure rate is 0% due to the overestimation of the error estimate and less 
than 1% for the remaining SE methods. 
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~~m                                   "• 
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Fig. 5. Time series of uncertainty and a posteriori verification of 24-hour temperature forecast (°C) versus depth (m): (left) uncertainty (99.7$ confidence interval); (right) 
corresponding a posteriori check if observed values is not within the 99.7* confidence interval (black). 
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For longer lead times (not shown), the advantage of complex 
dynamic methods becomes less obvious. For a 36-hour forecast, the 
particle filter and Kalman filter methods still show better error statistics. 
At 48 h and beyond, the linear regression and unbiased ensemble mean 
provide better results. It should be stressed however that for a forecast 
range of 24-72 h almost all the SE methods show better statistics than 
any of the individual models. It is expected that the SE will directly 
benefit from continuous improvements on individual models skills. 

4. Conclusions 

Our results support the concept of 'self-modifying' models (Dee, 
1995; Lermusiaux, 2007). The SE methods outperform the individual 
models on several error measures. Skill improves with increased method 
complexity on 24-hour forecasts. Dynamic, non-Gaussian and regular- 
ized SE techniques exhibit better skill and lower uncertainty. Accurate 
predictions and reliable uncertainty estimates are equally valuable 
products for decision makers. Setting aside the SEPTR data transmission 
issue, operational implementation of the various methods is straightfor- 
ward. We have shown that, at marginal cost, the unique approach fusing 
operational predictions and real-time data from the SEPTR bottom- 
mounted platform in the trawl-resistant configuration offers a new 
paradigm for improved predictions and reliable error estimates for a 
potentially wide range of environmental parameters in shallow waters. 
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Appendix A. Description of the numerical models used in the 
super-ensemble 

Al. AdriaROMS. ROMS2kmVl and ROMS2kmV2 

AdriaROMS is the operational ocean forecast system for the Adriatic 
Sea running at ARPA-SIM (http://www.arpa.emr.it/sim/7mare). It is 
based on the Regional Ocean Modelling System (ROMS, detailed kernel 
description is in Shchepetkin and McWilliams, 2005). This Adriatic 
configuration has a variable horizontal resolution, ranging from 3 km in 
the north Adriatic to -10 km in the south, with 20 s-coordinates levels. 
Surface forcing is provided by the Limited Area Model Italy (LAM1, local 
implementation of the model LM, Steppeler et al., 2003), a non- 
hydrostatic numerical weather prediction model with 7 km horizontal 
resolution. MFS data (Tonani et al., 2008) are used at the open boundary 
to the south with superimposed four major tidal harmonics (S2, M2,01, 
Kl), from the work of Cushman-Roisin and Naimie (2002) following 
Flather (1976). Forty-eight rivers (and springs) are included, using 
monthly climatological value from Raicich (1994). Persistence of the 
daily discharge measured one day previously is used for the Po river. 
Additional details can be found in Chiggiato and Oddo (2008). 

ROMS has been run also in hindcast mode, with a different 
configuration and a finer grid compared to AdriaROMS. The horizontal 
resolution is 2 km overall the basin, with 20 s-coordinate levels on the 
vertical. The model has been spun up from a rest state defined by 
objective analysis of URANIA CTD casts collected in January 2006 
(courtesy of COS CNR-ISAC, Rome) alone (ROMS2kmV2 - version 2), or 
an objective analysis of URANIA data merged with winter climatological 
data (Artegiani et al., 1997) as background (ROMS2kmVl version 1). 
ROMS2km makes use of an MPDATA family advection scheme (Margolin 
and Smolarkiewicz, 1998) for tracers, third order upstream scheme 

(Shchepetkin and McWilliams, 1998) for momentum, with weak 
background diffusivity and no viscosity. The generic length scale 
turbulence closure model is used for vertical mixing (as implemented 
by Warner et al., 2005). A density jacobian with spline reconstruction of 
the vertical profiles is used for the pressure gradient (Shchepetkin and 
McWilliams, 2003). Surface forcing is provided by LAMI with turbulent 
fluxes computed following Fairall et al. (2003) and evaporation- 
precipitation flux included. At the southern open boundary, tracers 
coming from the climatological dataset MEDATLAS are prescribed with 
relaxation-radiation and four superimposed major tidal harmonics (S2, 
M2, 01, Kl), from the work of Cushman-Roisin and Naimie (2002) 
following Flather (1976). Forty-eight rivers (and springs) are included, 
using monthly climatological value from Raicich (1994), except for the 
Po river for which daily observed discharge values were used. 

A.2. HOPS 

The Harvard Ocean Prediction System (HOPS) (Lozano et al., 1996) 
implementation has a resolution of 3 km and 21 sigma vertical levels. 
Air-sea fluxes are taken from the Limited Area Model Italy (LAMI). 
Open boundaries are set for Otranto and the Po river (considered as a 
channel); Orlanski radiation conditions for temperature, salinity and 
velocity, and specific boundary conditions (Spall and Robinson, 1990) 
for transport stream function and vorticity were used. A constant flux 
of 1000 m3/sec was set for the Po river. The model uses a rigid lid and 
does not include tides. The turbulence closure follows Pacanowski and 
Philander (1981). Initial conditions are derived from the AREG-5 km 
(Oddo et al., 2006) hindcast daily average on 2 August 2006. 
Temperature and salinity data collected by R/V Dallaporta and R/V 
Alliance (14-27 August) and derived geostrophic velocities were 
intermittently assimilated via Optimal Interpolation (Robinson et al., 
1998) integrated with the MED2 summer climatology in areas not 
covered by data in the Southern Adriatic Sea. 

A3. NCOM 

NCOM and its setup for the Adriatic are described in Martin et al. 
(2006). The domain consists of the entire Adriatic Sea and includes 
the Strait of Otranto and a small part of the northern Ionian Sea. The 
horizontal grid resolution is 1020 m. The vertical grid consists of 32 
total layers, with 22 sigma layers used from the surface down to a 
depth of 291 m and level coordinates used below 291 m. Daily 
boundary conditions were taken from hindcasts and forecasts of a 
global model (Barron et al., 2004). Tidal forcing was provided for eight 
constituents using tidal elevation and depth-averaged normal and 
tangential velocities at the open boundaries from the Oregon State 
University tidal databases. Tidal potential forcing was used in the 
interior. Atmospheric forcing was obtained from the Aire Limitee 
Adaptation Dynamique development InterNational (ALADIN) atmo- 
spheric model run by the Croatian Meteorological and Hydrological 
Service. The NCOM sea surface temperature (SST) was relaxed 
towards a satellite SST analysis. River and runoff inflows for the 
Adriatic were taken from the monthly climatological database of 
Raicich (1994), except for the Po river for which daily observed 
discharge values were used (courtesy of ARPA-SIM Emilia Romagna). 

A.4. MFS. AREG-5 km. AREG-2 km 

The Italian National Institute for Geophysics and Volcanology 
(INGV) provided data from three operational ocean forecasting 
systems, namely the Adriatic REGional forecasting system, AREG, 
with horizontal resolution of 5 and 2 km (http://gnoo.bo.ingv.it/afs/) 
and data from the Mediterranean ocean Forecasting System, MFS 
(http://gnoo.bo.ingv.it/mfs/). Table A1 shows the major features of the 
three forecasting systems. Additional details can be found in Oddo et al. 
(2005, 2006) and Tonani et al. (2008). 
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Table At 
Implementation details of the set of three INCV forecasting systems used in the framework of the DART06 experiment. 

Name AREC -5 km AREG-2 km MFS 

Code POM TOM OPA 

Resolution dx.dy.dz 
Air-sea boundary conditions 

Lateral boundary conditions 

Tides included 
Turbulence closure 
Initial conditions and/or data assimilation 

-2 km (31 sigma) 
Interactively computed from operational 
ECMWF 0.5' 6 h 

From MFS operational output Clinutological 
river Raicich (1994), daily observed Po 
(courtesy of ARPA-SIM) 
No tide-free surface 
Mellor and Yamada (1982) 
1-1-1999 from climatological run. No assimilation 

-2 km (31 sigma) 

1-1-1999 from MFS interannual run 
No assimilation 

-6.5 km (72 zeta) 

Atlantic closed No rivers 

No tide - filtered free surface 
KPP (Large etal., 1994) 
1-1-1997 climatology SOFA data 
assimilation De Mey et al. (2002) 
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