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(1)  Objectives:   Most complex networks, such as the World Wide Web, grow over time, and 

such growth is usually characterized by highly distributed phenomena. However, the 
complexity and distributed nature of those networks does not imply that its growth is 
chaotic or unpredictable. Just as natural scientists discover laws and create models for 
their fields, so one can , in principle, find empirical regularities and develop explanatory 
accounts of changes in the network. In the case of the World Wide Web, such predictive 
knowledge would be valuable for anticipating computing needs, social trends,   and 
market opportunities.  
We can now obtain digital traces of human social interaction with time stamp 

information in a wide variety of on-line settings, such as Blog (Weblog) communications, 
email exchanges, etc.. Such social interaction can be naturally represented as a large-scale 
social network that grows over time, where nodes (vertices) correspond to people or some 
social entities, and links (edges) correspond to social interaction between them. Clearly 
these growing social networks reflect complex social structures and distributed social 
trends. Thus, it seems worth an effort to attempt to find empirical regularities and develop 
explanatory accounts of changes in the social networks. Namely, such attempts would be 
valuable for understanding social structures and trends, and inspiring us the discovery of 
new knowledge and insights into underlying social interaction. We extensively carry out 
research on computational methods for the discovery of knowledge from growing social 
networks. 

 
(2)  Status of effort:   We have uncovered that probabilistic models of information diffusion 

processes over social networks play an essential role for the discovery of knowledge. Thus, 
we carried out research on mathematical models for enabling us to explain, control and 
visualize wider variety of information diffusion processes. Especially, it is highly 
expected that this kind of mathematical studies using large-scale networks such as a blog 
communication network can bridge a gap between empirical social networks analyses and 
fundamental mathematics. In the first year, we derived a very efficient method for 
minimizing the propagation of undesirable things by blocking a limited number of links in 
a network. In addition, we developed an effective visualization method for understanding 
a complex network, in particular its dynamical aspect such as information diffusion 
process. Furthermore, we proposed a new scheme for empirical study to explore the 
behavioral characteristics of representative information diffusion models. In the second 
year, we developed an effective method for ranking influential nodes in complex social 
networks by estimating diffusion probabilities from observed information diffusion data 
using the popular independent cascade (IC) model. In addition, we derived a very efficient 
method for discovering the influential nodes in a social network under the 
susceptible/infected/susceptible (SIS) model. Furthermore, we proposed a new method for 
learning continuous-time information diffusion model for social behavioral data analysis. 

 
(3)  Abstract:   First, we addressed the problem of minimizing the propagation of undesirable 

things, such as computer viruses or malicious rumors, by blocking a limited number of 
links in a network, a converse problem to the influence maximization problem of finding 
the most influential nodes in a social network for information diffusion. This 
minimization problem is another approach to the problem of preventing the spread of 
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information. We derived a method for efficiently finding a good approximate solution to 
this problem based on a naturally greedy strategy. Using large real networks, we 
demonstrated experimentally that the proposed method significantly outperforms 
conventional link-removal methods. We also showed that unlike the strategy of removing 
nodes, blocking links between nodes with high out-degrees is not necessarily effective. 

  Second, we addressed the problem of effective visualization for understanding a complex 
network, in particular its dynamical aspect such as information diffusion process. Existing 
node embedding methods are all based solely on the network topology and sometimes 
produce counter-intuitive visualization. We developed a new node embedding method 
based on conditional probability that explicitly addresses diffusion process using either 
the IC (Independent Cascade) or LT (Linear Threshold) models as a cross-entropy 
minimization problem, together with two label assignment strategies that can be 
simultaneously adopted. Numerical experiments were performed on two large real 
networks, one represented by a directed graph and the other by an undirected graph. The 
results clearly demonstrated the advantage of the developed method over conventional 
spring model and topology-based cross-entropy methods, especially for the case of 
directed networks. 

  Third, we attempted to answer a question "What does information diffusion model tell 
about social network structure?" To this end, we proposed a new scheme for empirical 
study to explore the behavioral characteristics of representative information diffusion 
models such as the IC model and the LT  model on large networks with different 
community structure.  To change community structure, we first construct a GR 
(Generalized Random) network from an originally observed network by randomly 
rewiring links of the original network without changing the degree of each node.  Then we 
plot the expected number of influenced nodes based on an information diffusion model 
with respect to the degree of each information source node. Using large real networks, we 
empirically found that our proposal scheme uncovered a number of new insights. Most 
importantly, we showed that community structure more strongly affects information 
diffusion processes of the IC model than those of the LT model. Moreover, by visualizing 
these networks, we gave some evidence that our claims are reasonable. 

  Forth, we addressed the problem of ranking influential nodes in complex social networks 
by estimating diffusion probabilities from observed information diffusion data using the 
IC model. For this purpose we formulated the likelihood for information diffusion data 
which is a set of time sequence data of active nodes and propose an iterative method to 
search for the probabilities that maximizes this likelihood. We apply this to two real world 
social networks in the simplest setting where the probability is uniform for all the links, 
and show that the accuracy of the probability estimation is outstandingly good, and further 
show that the proposed method can predict the high ranked influential nodes much more 
accurately than the well studied conventional four heuristic methods. 

  Fifth, we addressed the problem of efficiently discovering the influential nodes in a social 
network under the SIS model, a diffusion model where nodes are allowed to be activated 
multiple times. The computational complexity drastically increases because of this 
multiple activation property. We solved this problem by constructing a layered graph from 
the original social network with each layer added on top as the time proceeds, and 
applying the bond percolation with pruning and burnout strategies. We experimentally 
demonstrated that the proposed method gives much better solutions than the conventional 
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methods that are solely based on the notion of centrality for social network analysis using 
two large-scale real-world networks (a blog network and a wikipedia network). We further 
showed that the computational complexity of the proposed method is much smaller than 
the conventional naive probabilistic simulation method by a theoretical analysis and 
confirm this by experimentation. The properties of the influential nodes discovered were 
substantially different from those identified by the centrality-based heuristic methods. 

  Finally, we addressed the problem of estimating the parameters for a continuous time 
delay independent cascade (CTIC) model, a more realistic model for information diffusion 
in complex social network, from the observed information diffusion data. For this purpose 
we formulated the rigorous likelihood to obtain the observed data and propose an iterative 
method to obtain the parameters (time-delay and diffusion) by maximizing this likelihood. 
We applied this method first to the problem of ranking influential nodes using the network 
structure taken from two real world web datasets and showed that the proposed method 
can predict the high ranked influential nodes much more accurately than the well studied 
conventional four heuristic methods, and second to the problem of evaluating how 
different topics propagate in different ways using a real world blog data and showed that 
there are indeed differences in the propagation speed among different topics. 
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Community Analysis of Influential Nodes for Information Diffusion
on a Social Network

Masahiro Kimura, Kazumasa Yamakawa, Kazumi Saito, and Hiroshi Motoda

Abstract— We consider the problem of finding influential
nodes for information diffusion on a social network under
the independent cascade model. It is known that the greedy
algorithm can give a good approximate solution for the prob-
lem. Aiming to obtain efficient methods for finding better
approximate solutions, we explore what structual feature of
the underlying network is relevant to the greedy solution that is
the approximate solution by the greedy algorithm. We focus on
the SR-community strucutre, and analyze the greedy solution
in terms of the SR-community structure. Using real large
social networks, we experimentally demonstrate that the SR-
community structure can be more strongly correlated with the
greedy solution than the community structure introduced by
Newman and Leicht.

I. I NTRODUCTION

Recently, considerable attention has been devoted to social
network analysis [9], [14], [1], [2], [8], [13], [7], since the
rise of the Internet and the World Wide Web has enabled us
to collect real large social networks. Here, a social network
is the network of relationships and interactions among social
entities such as individuals, organizations and groups. Ex-
amples include blog networks, collaboration networks, and
email networks.

A social network plays an important role for the spread of
information since a piece of information can propagate from
one node to another node through a link on the network
in the form of “word-of-mouth” communication [3]. Thus,
it is an important research issue to find influential nodes
for information diffusion on a social network in terms of
sociology and “viral marketing”. In fact, researchers [5], [6]
have recently studied a combinatorial optimization problem
called theinfluence maximization problemon a network un-
der theindependent cascade (IC) modelthat is a widely-used
fundamental probabilistic model of information diffusion.
Here, the influence maximization problem of sizek is the
problem of extracting a set ofk nodes to target for initial
activation such that it yields the largest expected spread of
information, wherek is a given positive integer. Kempeet

Masahiro Kimura is with the Department of Electronics and Informat-
ics, Faculty of Science and Technology, Ryukoku University, Otsu 520-
2194, Japan (phone: +81 77 543 7406; fax: +81 77 543 7749; email:
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Graduate School of Science and Technology, Ryukoku University, Otsu 520-
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Hiroshi Motoda is with the Institute of Scientific and Industrial Research,
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al. [5] experimentally showed on large collaboration net-
works that the greedy algorithm can give a good approximate
solution for the influence maximization problem under the
IC model. We refer to the approximate solution obtained
by the greedy algorithm as thegreedy solution. Using an
analysis framework based on submodular functions, Kempe
et al. [5] mathematically proved a performance guarantee of
the greedy solution. Moreover, Kimuraet al. [6] presented
a method of efficiently estimating the greedy solution on
the basis of bond percolation and graph theory. However,
it is desirable to construct efficient methods of obtaining
better approximate solutions for the influence maximization
problem on a network under the IC model. Towards this aim,
it is important to understand what structural feature of the
underlying network is correlated with the greedy solution.

As a structual feature of a given network, we focus on the
SR-community structureU = 〈Um; m = 1, 2, 3, · · · 〉 [15]
that is a sequence of densely connected sets of nodes in
the network. Here, themth SR-communityUm is defined as
the set of nodes in the network that maximizes the average
number of links within it after removing all the links within
Uj , (j = 0, · · · , m − 1), whereU0 is the empty set∅. In
this paper, we analyze the greedy solution for the influence
maximization problem under the IC model in terms of the
SR-community structureU . For the influence maximization
problem of sizek, we extract the minimal sequence of SR-
communities inU , Uk = 〈Um; m = 1, · · · , Mk〉, such that
it covers the greedy solution, and investigate the similar-
ity between the set of nodes influenced by each nodevi

in the greedy solution and the SR-community inUk that
corresponds to the nodevi. On the basis of this manner, we
quantify the strength of the correlation between the greedy
solution and the SR-community struture. Using real large
social networks, we experimentally demonstrate that unlike
the community structure introduced by Newman and Leicht
[12], the SR-community structure can be strongly correlated
wirh the greedy solution.

II. I NFLUENTIAL NODES FORINFORMATION DIFFUSION

Throughout this paper, we consider a social network
represented by an undirected graph, and discuss the spread of
a certain information through the network under the IC model
by regarding those undirected links as bidirectional ones. We
call nodesactive if they have accepted the information.

A. Independent Cascade Model

We define the IC model. In this model, the diffusion
process unfolds in discrete time-stepst ≥ 0, and it is



assumed that nodes can switch from being inactive to being
active, but cannot switch from being active to being inactive.
Given an initial setX of active nodes, we assume that the
nodes inX have first become active at step0, and all the
other nodes are inactive at step0. We specify a real value
βu,v ∈ [0, 1] for each directed link(u, v) in advance. Here,
βu,v is referred to as thepropagation probabilitythrough
link (u, v).

When an initial setX of active nodes is given, the
diffusion process proceeds in the following way. When node
u first becomes active at stept, it is given a single chance
to activate each currently inactive neighborv, and succeeds
with probability βu,v. If u succeeds, thenv will become
active at stept + 1. If multiple parents ofv first become
active at stept, then their activation attempts are sequenced
in an arbitrary order, but performed at stept. Whether or not
u succeeds, it cannot make any further attempts to activate
v in subsequent rounds. The process terminates if no more
activations are possible.

For an initial active setX , let σ(X) denote the expected
number of active nodes at the end of the random process in
the IC model. We callσ(X) the influence degreeof initial
active setX .

B. Influence Maximization Problem

We consider the influence maximization problem of size
k under the IC mode. LetS be the set of all the nodes
in the network. The problem is defined as follows: Given
a positive integerk, find a setX∗

k of k nodes to target for
initial activation such thatσ(X∗

k ) ≥ σ(Y ) for any setY of
k nodes. To approximately solve this optimization problem,
we consider the following greedy algorithm:

1) SetX ← ∅.
2) for i = 1 to k do
3) Choose a nodevi ∈ V maximizingσ(X ∪ {v}),

(v ∈ S \X).
4) SetX ← X ∪ {vi}.
5) end for

Let Sk denote the set ofk nodes obtained by this algorithm.
We callSk thegreedy solutionof the influence maximization
problem of sizek.

Using large collaboration networks, Kempeet al. [5]
experimetally demonstrated that the greedy solutionSk out-
performs the approximate solutios obtained by the high-
degree and centrality heuristics that are commonly used in
the sociology literature. It is also known that

σ(Sk) ≥

(
1−

1

e

)
σ(X∗

k ),

that is, a performance guarantee of the greedy solutionSk

is obtained [5]. For any initial active setX , a good estimate
of σ(X) was conventionally obtained by simulating the
random process of the IC model many times. Thus, any
straightforward method to estimate the greedy solutionSk

needed a large amount of computation on a large network.
However, Kimuraet al. [6] gave an efficient method for

estimatingSk on the basis of bond percolation and graph
theory. In this paper, using their method, we estimate the
greedy solutionSk.

III. SR-COMMUNITY STRUCTURE

In this section, we define the SR-community structure, and
describe a method for efficiently estimating it according to
the work of Saitoet al. [15].

A. Definition

Let A be the adjacency matrix of a network, and let

S = {1, · · · , N}

be the set of all the nodes in the network. Namely, each
(i, j)-element of the adjacency matrix, denoted byA(i, j),
is set to1 if there exists a link (edge) between nodesi and
j; otherwise0. In this paper, we focus on undirected graphs
without self-connections, i.e.,A(i, j) = A(j, i), A(i, i) = 0,
(i, j = 1, · · · , N). For any subset of nodes,T ⊂ S, we can
definethe average number of links withinT as follows:

G(T ) =
1

2

∑

i∈T

∑

j∈T

A(i, j)

|T |
, (1)

where|T | stands for the number of elements inT . First, let
U1 denote the subset ofS that maximizes the average number
of links within it (see, (1)). Next, for the network constructed
through removing all the links withinU1 from the original
network, letU2 denote the subset ofS that maximizes the
average number of links within it (see, (1)). Next, for the
network constructed thorugh removing all the links withinU1

andU2 from the original network, letU3 denote the subset of
S that maximizes the average number of links within it (see,
(1)). By repeatedly performing these procedures, we define
the sequence of subsets ofS,

U = 〈Um; m = 1, 2, 3, · · · 〉.

Here,U is called theSR-community structureof the orig-
inal network, and eachUm is referred to as themth SR-
community. Note that the SR-community structureU repre-
sents a structual feature of the network.

In the case of a large network, any straightforward method
for detecting the SR-community structure is likely to suffer
from combinatorial explosion. To cope with such a large
network, we employ the method presented by Saitoet
al. [15].

B. Relaxation problem

For a subsetT of S , we define anN dimensional indicator
vectorq by settingq(i) = 1 if i ∈ T ; otherwiseq(i) = 0.
Then we can rewrite (1) as follows:

G(q) =
1

2

qTAq

qT q
, (2)

where qT stands for a transposed vector ofq. Now we
consider a relaxation problem by lettingq take continuous
values. Then, according to the Rayleigh-Ritz theorem [4],



the solution of maximizingG(q) is given by the principal
eigenvectorq∗ of the adjacency matrixA.

In order to obtain the eigenvectorq∗, we employ the
following procedure based on the power iteration [4].

E1. Initialize q(0) = (1, · · · , 1)T , and setτ ← 1;
E2. Calculateq̃ = Aq(τ−1) andq(t) = q̃/ maxi q̃i;
E3. Terminate ifmaxi |q(τ)(i)− q(τ−1)(i)| < ε;
E4. Setτ ← τ + 1, and return toE2..

Here a small positive parameterε controls the termination
condition, and we can obtain the final solution asq∗ = q(τ)

after its termination. Since all the elements ofA and q(0)

have non-negative values, we can guarantee that all the
elements of̃q also have non-negative values after any number
of iterations. Moreover, due to the scaling operation inE2,
we can guarantee that0 ≤ q(τ)(i) ≤ 1 for anyτ andi. Thus
we consider that the above formulation gives one of desirable
relaxation solutions to the original problem.

C. Quantization problem

By ranking nodes according to the values of eigenvector el-
ements, we can obtain a list of nodes,R = [r(1), · · · , r(N)],
wherer(i) stands for a mapping from ranks to nodes. Note
that q∗(r(i)) ≥ q∗(r(i + 1)) for any i. By considering a set
of the toph nodes,

T (h) = {r(i) : i = 1, · · · , h}, (3)

we can calculate the average number of links withinT (h)
as follows:

G(h) =
h−1∑

i=1

h∑

j=i+1

A(r(i), r(j))

h
. (4)

In our method, instead of directly solving (1), we compute
a node setT (h∗), whereh∗ maximizes (4).

In order to efficiently calculateh∗, we utilize the following
update formula:

G(h + 1) = G(h) +
∆(h + 1)−G(h)

h + 1
, (5)

where∆(h + 1) stands for the increment by adding node
r(h + 1), calculated by

∆(h + 1) =

h∑

j=1

A(r(j), r(h + 1)). (6)

Note thatG(1) = 0. The above procedure can be summarized
as follows.

F1. Computer(i) by sorting elements ofq∗;
F2. CalculateG(2), · · · , G(N) by using (5) and (6);
F3. OutputT (h∗) such thath∗ = argmaxh G(h);

D. Detection algorithm

By repeatedly performing the above procedures,M times,
we can detectM densely connected portions for a given
network as follows.

G1. Repeat the following steps form = 1 to M ;
G2. Calculateq∗

m usingE1 to E4;

G3. CalculateT ∗
m usingF1 to F3;

G4. SetA(i, j) = 0 if i, j ∈ T ∗
m.

Here, the numberM of communities is determined by a
user. We estimate themth SR-communityUm asT ∗

m for any
integerm with 1 ≤ m ≤M .

IV. COMMUNITY ANALYSIS OF INFLUENTIAL NODES

For a given network, we consider the influence maximiza-
tion problem of sizek under the IC model. LetSk = {vi; i =
1, · · · , k} be the greedy solution, and letU = 〈Um; m =
1, 2, 3, · · · 〉 be the SR-community structure of the network.
We analyze the greedy solutionSk in terms of the SR-
community structureU .

First, we extract the minimal sequence of SR-communities
in U such that it covers the greedy solutionSk,

Uk = 〈Um; m = 1, · · · , Mk〉,

that is,Mk is the minimal integerM satisfying

M⋃

m=1

Um ⊃ Sk.

Note thatUk can be regarded as a rough approximation to
the greedy solutionSk. We callMk theSR-covering number
of the greedy solutionSk. For anyvi ∈ Sk, let α(vi) denote
the minimal integerm satisfyingUm ∋ vi. Uα(vi) is reffered
to as the SR-community that corresponds to the nodevi.

Next, for anyvi ∈ Sk and a real valuep ∈ [0, 1], we
consider theinfluence setH(vi, p) of vi with probability p.
Here, H(vi, p) is the set of nodesv in the network such
that when{vi} is the initial active set, the probability that
v is active at the end of the diffusion process under the IC
model is more thanp. Note thatvi ∈ H(vi, p) ⊂ H(vi, p

′)
if 0 ≤ p′ ≤ p ≤ 1.

We investigate the correlation between the greedy solution
Sk and the SR-community structureU . In terms of F -
measure, we quantify the similarity between an influence
setH(vi, p) of each nodevi in the greedy solutionSk and
the SR-communityUα(vi) that correspond tovi, that is, we
measure how close the setsH(vi, p) andUα(vi) are by

F0(p; vi) = 200

∣∣H(vi, p) ∩ Uα(vi)

∣∣
|H(vi, p)|+

∣∣Uα(vi)

∣∣ . (7)

Moreover, we quantify the strength of the correlation be-
tween the greedy solutionSk and the SR-community struc-
tureU as follows:

F (k) =
1

k

k∑

i=1

F1(vi), (8)

where

F1(vi) = max
0≤p≤1

F0(p; vi), (i = 1, · · · , k).



V. EXPERIMENTAL EVALUATION

Using real large networks, we experimentally evaluate the
strength of the correlation between the greedy solution of
the influence maximization problem under the IC model and
the SR-community structure. LetSk = {v1, · · · , vk} be the
greedy solution for the influence maximization problem of
sizek.

A. Network Datasets

In the evaluation experiments, we should desirably use
large networks that exhibit many of the key features of real
social networks. Here, we report on the experimental results
for two different datasets of such real networks.

First, we employed a trackback network of blogs, since
a piece of information can propagate from one blog author
to another blog author through a trackback. Since bloggers
discuss various topics and establish mutual communications
by putting trackbacks on each other’s blogs, we regarded a
link created by a trackback as a biderectional link for simplic-
ity. By tracing ten steps ahead the trackbacks from the blog
of the theme “JR Fukuchiyama Line Derailment Collision”
in the site “goo”1, we collected a large connected trackback
network in May, 2005. This network was an undirected graph
of 12, 047 nodes and39, 960 links. This network showed
the so-called “power-law” degree distribution that most real
large networks exhibit. Here, the degree distribution is the
distribution of the number of links for every node. We refer
to this network data asthe blog network dataset.

Next, we employed a network of people that was derived
from the “list of people” within Japanese Wikipedia. Specif-
ically, we extracted the maximal connected component of
the undirected graph obtained by linking two people in the
“list of people” if they co-occur in six or more Wikipedia
pages. We refer to this network data asthe Wikipedia network
dataset. Here, the total numbers of nodes and links were
9, 481 and122, 522, respectively.

Newman and Park [11] observed that social networks
represented as undirected graphs generally have the following
two statistical properties unlike non-social networks. First,
they show positive correlations between the degrees of ad-
jacent nodes. Second, they have much higer values of the
clustering coefficientthan the correspondingconfiguration
models(i.e., random network models). Here, the clustering
coefficientC for an undirected graph is defined by

C =
3× number of triangles on the graph
number of connected triples of nodes

,

where a “triangle” means a set of three nodes each of which
is connected to each of the others, and a “connected triple”
means a node connected directly to an unordered pair of
others. Note that in terms of sociology,C measures the
probability that two of your friends will also be friends of
one another. Given a degree distribution, the corresponding
configuration model of random network is defined as the

1http://blog.goo.ne.jp/usertheme/

ensemble of all possible graphs that possess the degree dis-
tribution, with each having equal weight. The value ofC for
the configuration model can be exactly calculated [10]. For
the Wikipedia network, the value ofC of the corresponding
configuration model was0.046, while the actual measured
value ofC was0.39. Moreover, the degrees of adjacent nodes
were positively correlated for the Wikipedia network dataset.
Therefore, we consider that the Wikipedia network dataset
can be used as an example of social network.

B. A Comparison Method

In order to quantitatively evaluate the strength of the
correlation between the greedy solution for the influence
maximization problem under the IC model and the SR-
community structure, we employ the community structure
obtined by the method of Newman and Leicht [12] as a
baseline.

Given an integerk, the method of Newman and Leicht [12]
divides the setS = {1, · · · , N} of nodes in the network into
k communities, that is,k disjoint subsets ofS, according
to some probabilistic mixture model that is a probabilistic
mixture of multinomial distributions. More specifically, their
method is as follows: First, a probabilistic generative model
for network is given. Namely, the probability that a network
with adjacency matirixA appears is defiend by

P (A |λ, θ) =

N∏

n=1

P (A(n, :) |λ, θ),

whereA(n, :) denotes thenth row vector ofA,

λ = {λℓ; ℓ = 1, · · · , k},

θ = {θℓ,j; ℓ = 1, · · · , k, j = 1, · · · , N}

are sets of parameters, and

P (A(n, :) |λ, θ) =

k∑

ℓ=1

λℓP (A(n, :) | ℓ, θ),

P (A(n, :) | ℓ, θ) ∝
N∏

j=1

(θℓ,j)
A(n,j)

,

for ℓ = 1, · · · , k andn, j = 1, · · · , N . Here, eachλℓ is the
mixture weight (prior probability) of theℓth community, and

λℓ > 0, (ℓ = 1, · · · , k),

k∑

ℓ=1

λℓ = 1.

Also, eachθℓ,j is the probability that thejth node connects
with a node beloging to theℓth community, and

θℓ,j > 0,
N∑

j=1

θℓ,j = 1,

for ℓ = 1, · · · , k and j = 1, · · · , N . By performing the
maximal likelihood estimation using the EM algorithm, we
estimate the values ofλ andθ. Then, applying Bayes’ rule,
we define the community labelℓ∗(n) for each noden as

ℓ∗(n) = arg max
1≤ℓ≤k

P (ℓ |A(n, :), λ, θ).



For the greedy solutionSk = {v1, · · · , vk}, we detect the
set ofk communities,

Zk = {Z1, · · · , Zk},

by using the method of Newman and Leicht. For everyvi, we
defineγ(vi) by the conditionZγ(vi) ∋ vi. In the same way
as the SR-community structure, we quantify the strength of
the correlation betweenSk andZk by F (k) (see, (8)). Here,
we modify the definition ofF (k) through changing each
F0(p; vi) (see, (7)) to

F0(p; vi) = 200

∣∣H(vi, p) ∩ Zγ(vi)

∣∣
|H(vi, p)|+

∣∣Zγ(vi)

∣∣ .

C. Experimental Settings

In our experiments, we assigned a uniform probabilityβ to
the propagation probabilityβu,v for any directed link(u, v)
of the network. As investigate by Leskovecet al. [7], it seems
that large cascades of information diffusion happen rarely.
Thus, we examined the IC model with relatively smallβ
according to Kempeat al. [5].

We estimated the greedy solutionSk = {v1, · · · , vk} using
the method of Kimuraet al. [6] with the parameter value
10, 000. Here, the parameter represents the number of bond
percolation processes for estimating the influence degree
σ(X) of a given initial active setX . Also, we estimated the
influence setH(vi, p) of nodevi with probabilityp through
300, 000 simulations of the IC model.

D. Experimental Results

We describe the results for the experiments using the blog
network dataset and the Wikipedia network dataset.
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Fig. 1. SR-covering numberMk of greedy solutionSk on the blog network
dataset.

Figures 1 and 2 plot the SR-covering numberMk of the
greedy solutionSk with respect tok on the blog network
dataset and the Wikipedia network dataset, respectively. For
almost allk, we observe that the larger the value of prop-
agation probabilityβ is, the larger the SR-covering number
Mk of Sk is.
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Fig. 2. SR-covering numberMk of greedy solutionSk on the Wikipedia
network dataset.
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Fig. 3. StrengthF (k) of correlation with greedy solutionSk on the blog
network dataset (β = 5%).
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Fig. 4. StrengthF (k) of correlation with greedy solutionSk on the blog
network dataset (β = 10%).
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Fig. 5. StrengthF (k) of correlation with greedy solutionSk on the
Wikipedia network dataset (β = 1%).
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Fig. 6. StrengthF (k) of correlation with greedy solutionSk on the
Wikipedia network dataset (β = 5%).

Figures 3, 4, 5, and 6 plot the strengthF (k) of correlation
with the greedy solutionSk with respect tok, (2 ≤ k ≤ 30).
In Figures 3, 4, 5, and 6, the circles indicate the strength
of the correlation between the greedy solution and the SR-
community structure (SR), and the squares indicate the
strength of the correlation between the greedy solution and
the community structure obtained by the method of Newman
and Leicht (NL). Figures 3 and 4 show the results for the
blog network dataset, and Figures 5 and 6 show the results
for the Wikipedia network dataset. These results imply that
for the IC model with relatively small propagation probability
β, the SR-community structure can be more strongly corre-
lated with the greedy solution than the community structure
introduced by Newman and Leicht.

VI. CONCLUDING REMARKS

Aiming to obtain efficient methods for finding better ap-
proximate solutions for the influence maximization problem
on a social network under the IC model, we have explored

what structual feature of the undelying network is correlated
with the greedy solution. We have focused on the SR-
community structure of the network, and analyzed the greedy
solution in terms of the SR-community structure. Using real
large social networks including a blog network, we have
experimentally demonstrated that in comparison with the
community structure introduced by Newman and Leicht, the
SR-community structure can be strongly correlated with the
greedy solution.

On the other hand, extensive verification of this proposi-
tion with various real social networks remains an important
task. However, we have already made substantial progress,
and we are encouraged by our initial results.
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Abstract

We address the problem of minimizing the propagation of un-
desirable things, such as computer viruses or malicious ru-
mors, by blocking a limited number of links in a network, a
dual problem to the influence maximization problem of find-
ing the most influential nodes in a social network for infor-
mation diffusion. This minimization problem is another ap-
proach to the problem of preventing the spread of contamina-
tion by removing nodes in a network. We propose a method
for efficiently finding a good approximate solution to this
problem based on a naturally greedy strategy. Using large real
networks, we demonstrate experimentally that the proposed
method significantly outperforms conventional link-removal
methods. We also show that unlike the strategy of removing
nodes, blocking links between nodes with high out-degrees is
not necessarily effective.

Introduction

Considerable attention has recently been devoted to inves-
tigating the structure and function of various networks in-
cluding computer networks, social networks and the World
Wide Web (Newman 2003). From a functional point of view,
networks can mediate diffusion of various things such as in-
novation and topics. However, undesirable things can also
spread through networks. For example, computer viruses
can spread through computer networks and email networks,
and malicious rumors can spread through social networks
among individuals. Thus, developing effective strategies for
preventing the spread of undesirable things through a net-
work is an important research issue. Previous work studied
strategies for reducing the spread size by removing nodes
from a network. It has been shown in particular that the
strategy of removing nodes in decreasing order of out-degree
can often be effective (Albert, Jeong, and Barabási 2000;
Broder et al. 2000; Callaway et al. 2000; Newman, For-
rest, and Balthrop 2002). Here notice that removal of nodes
by necessity involves removal of links. Namely, the task
of removing links is more fundamental than that of remov-
ing nodes. Therefore, preventing the spread of undesirable
things by removing links from the underlying network is an
important problem.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In contrast, finding influential nodes that are effective
for the spread of information through a social network
is also an important research issue in terms of sociology
and “viral marketing” (Domingos and Richardson 2001;
Richardson and Domingos 2002; Gruhl et al. 2004). Thus,
researchers (Kempe, Kleinberg, and Tardos 2003; Kimura,
Saito, and Nakano 2007) have recently studied a combina-
torial optimization problem called the influence maximiza-
tion problem on a network under the independent cascade
(IC) model, a widely-used fundamental probabilistic model
of information diffusion. Here, the influence maximization
problem is the problem of extracting a set of k nodes to tar-
get for initial activation such that it yields the largest ex-
pected spread of information, where k is a given positive
integer. Note also that the IC model can be identified with
the so-called susceptible/infective/recoverd (SIR) model for
the spread of disease in a network (Gruhl et al. 2004).

The problem we address in this paper is a dual problem to
the influence maximization problem. The problem is to min-
imize the spread of undesirable things by blocking a limited
number of links in a network. More specifically, when some
undesirable thing starts with any node and diffuses through
the network under the IC model, we consider finding a set
of k links such that the resulting network by blocking those
links minimizes the expected contamination area of the un-
desirable thing, where k is a given positive integer. We refer
to this combinatorial optimization problem as the contam-
ination minimization problem. For this problem, we pro-
pose a novel method for efficiently finding a good approx-
imate solution on the basis of a naturally greedy strategy.
Using large real networks including a blog network, we ex-
perimentally demonstrate that the proposed method signif-
icantly outperforms link-removal heuristics that rely on the
well-studied notions of betweenness and out-degree. In par-
ticular, we show that unlike the case of removing nodes,
blocking links between nodes with high out-degrees is not
necessarily effective for our problem.

Problem Formulation

In this paper, we address the problem of minimizing the
spread of undesirable things such as computer viruses and
malicious rumors in a network represented by a directed
graph G = (V,E). Here, V and E (⊂ V × V ) are the sets
of all the nodes and links in the network, respectively. We



assume the IC model to be a mathematical model for the
diffusion process of some undesirable thing in the network,
and investigate the contamination minimization problem on
G. We call nodes active if they have been contaminated by
the undesirable thing.

Independent Cascade Model

We define the IC model on graph G according to the work
of Kempe, Kleinberg, and Tardos (2003).

In the IC model, the diffusion process unfolds in discrete
time-steps t ≥ 0, and it is assumed that nodes can switch
their states only from inactive to active, but not from active
to inactive. Given an initial active node v, we assume that
the node v has first become active at time-step 0, and all the
other nodes are inactive at time-step 0. We specify a real
value p with 0 < p < 1 in advance. Here, p is referred
to as the propagation probability through a link. The diffu-
sion process proceeds from the initial active node v in the
following way. When a node u first becomes active at time-
step t, it is given a single chance to activate each currently
inactive child node w, and succeeds with probability p. If u
succeeds, then w will become active at time-step t + 1. If
multiple parent nodes of w first become active at time-step
t, then their activation attempts are sequenced in an arbi-
trary order, but all performed at time-step t. Whether or not
u succeeds, it cannot make any further attempts to activate
w in subsequent rounds. The process terminates if no more
activations are possible.

For an initial active node v, let σ(v;G) denote the ex-
pected number of active nodes at the end of the random pro-
cess of the IC model on G. We call σ(v;G) the influence
degree of node v in graph G.

Contamination Minimization Problem

Now, we give a mathematical definition of the contamination
minimization problem on graph G = (V,E). For prevent-
ing the undesirable thing from spreading through the net-
work under the IC model, we aim to minimize the expected
contamination area (that is, the expected number of active
nodes) by appropriately removing a fixed number of links.

First, we define the contamination degree c(G) of graph
G as the average of influence degrees of all the nodes in G,
that is,

c(G) =
1

|V |

∑

v∈V

σ(v;G). (1)

Here, |A| stands for the number of elements of a set A. For
any link e ∈ E, let G(e) denote the graph (V , E \ {e}).
We refer to G(e) as the graph constructed by blocking e in
G. Similarly, for any D ⊂ E, let G(D) denote the graph
(V , E \ D). We refer to G(D) as the graph constructed by
blocking D in G. We define the contamination minimization
problem on graph G as follows: Given a positive integer k
with k < |E|, find a subset D∗ of E with |D∗| = k such that
c(G(D∗)) ≤ c(G(D)) for any D ⊂ E with |D| = k.

For a large network, any straightforward method for ex-
actly solving the contamination minimization problem suf-
fers from combinatorial explosion. Therefore, we consider
approximately solving the problem.

Proposed Method
We propose a method for efficiently finding a good approx-
imate solution to the contamination minimization problem
on graph G = (V,E). Let k be the number of links to be
blocked in this problem.

Geedy Algorithm

We approximately solve the contamination minimization
problem on G = (V,E) by the following greedy algorithm:

1. Set D0 ← ∅.

2. Set E0 ← E.

3. Set G0 ← G.

4. for i = 0 to k − 1 do

5. Choose a link e∗ ∈ Ei minimizing c(Gi(e)), (e ∈ Ei).

6. Set Di+1 ← Di ∪ {e∗}.

7. Set Ei+1 ← Ei \ {e∗}.

8. Set Gi+1 ← (V,Ei+1).

9. end for

Here, Dk is the set of links blocked, and represents the ap-
proximate solution obtained by this algorithm. Gk is the
graph constructed by blocking Dk in graph G, that is, Gk =
G(Dk).

To implement this greedy algorithm, we need a method
for calculating {c(Gi(e)); e ∈ Ei} in Step 5 of the algo-
rithm. However, the IC model is a stochastic process model,
and it is an open question to exactly calcluate influence de-
grees by an efficient method (Kempe, Kleinberg, and Tar-
dos 2003). Therefore, we develop a method for estimating
{c(Gi(e)); e ∈ Ei}.

Kimura, Saito, and Nakano (2007) presented the bond
percolation method that efficiently estimates the influence

degrees {σ(v; G̃); v ∈ V } for any directed graph G̃ =

(V, Ẽ). Thus, we can estimate c(Gi(e)) for each e ∈ Ei

by straightforwardly applying the bond percolation method.
However, |Ei| becomes very large for a large network un-
less i is very large. Therefore, we propose a method that can
estimate {c(Gi(e)); e ∈ Ei} in a more efficient manner on
the basis of the bond percolation method.

Bond Percolation Method

First, we revisit the bond percolation method (Kimura, Saito,
and Nakano 2007). Here, we consider estimating the influ-
ence degrees {σ(v;Gi); v ∈ V } for the IC model with prop-
agation probability p in graph Gi = (V,Ei).

It is known that the IC model is equivalent to the bond
percolation process that independently declares every link
of Gi to be “occupied” with probability p (Newman 2003).
Let M be a sufficiently large positive integer. We perform
the bond percolation process M times, and sample a set of
M graphs constructed by the occupied links,

{Gi
m = (V,Ei

m); m = 1, · · · ,M} .

Then, we can approximate the influence degree σ(v;Gi) by

σ(v;Gi) ≃
1

M

M∑

m=1

|F(v;Gi
m)| .



Here, for any directed graph G̃ = (V, Ẽ), F(v; G̃) denotes
the set of all the nodes that are reachable from node v in the
graph. We say that node u is reachable from node v if there
is a path from u to v along the links in the graph. Let

V =
⋃

u∈U(Gi
m)

S(u;Gi
m)

be the strongly connected component (SCC) decomposition
of graph Gi

m, where S(u;Gi
m) denotes the SCC of Gi

m

that contains node u, and U(Gi
m) stands for a set of all the

representative nodes for the SCCs of Gi
m. The bond per-

colation method performs the SCC decomposition of each
Gi

m, and estimates all the influence degrees {σ(v;Gi);
v ∈ V } in Gi as follows:

σ(v;Gi) =
1

M

M∑

m=1

|F(u;Gi
m)| , (v ∈ S(u;Gi

m)) , (2)

where u ∈ U(Gi
m).

Estimation Method

We are now in a position to give a method for efficiently
estimating {c(Gi(e)); e ∈ Ei} in Step 5 of the greedy algo-
rithm. We develop such an estimation method on the basis
of the bond percolation method.

For any directed graph G̃ = (V, Ẽ), we define ϕ(G̃) by

ϕ(G̃) =
1

|V |

∑

v∈V

∣∣∣F(v; G̃)
∣∣∣ . (3)

Using the bond percolation method, we consider estimating
the contamination degree c(Gi) of the graph Gi = (V,Ei).
Then, by Equations (1), (2) and (3), we can estimate c(Gi)
as

c(Gi) =
1

M

M∑

m=1

ϕ(Gi
m). (4)

Here, note that ϕ(Gi
m) is calculated by

ϕ(Gi
m) =

1

|V |

∑

u∈U(Gi
m)

|F(u;Gi
m)| |S(u;Gi

m)| . (5)

We assume that M is sufficiently large. Then, by the inde-
pendence of the bond percolation process, we can estimate
c(Gi(e)) for every e ∈ Ei as

c(Gi(e)) =
1

|Mi(e)|

∑

m∈Mi(e)

ϕ(Gi
m), (6)

where Gi
m = (V,Ei

m), and

Mi(e) = {m ∈ {1, · · · ,M}; e /∈ Ei
m} .

We efficiently estimate {c(Gi(e)); e ∈ Ei} by Equations (5)
and (6) without applying the bond percolation method for
every e ∈ Ei. Namely, the proposed method can achieve a
great deal of reduction in computational cost compared with
the coventional bond percolation method.

Experimental Evaluation
Using two large real networks, we experimentally evaluated
the performance of the proposed method.

Network Datasets

First, we employed a trackback network of blogs because
a piece of information can propagate from one blog au-
thor to another blog author through a trackback. Since
bloggers discuss various topics and establish mutual com-
munications by putting trackbacks on each other’s blogs,
we regarded a link created by a trackback as a biderec-
tional link for simplicity. By tracing up to ten steps
back in the trackbacks from the blog of the theme “JR
Fukuchiyama Line Derailment Collision” in the site “goo”
(http://blog.goo.ne.jp/usertheme/), we col-
lected a large connected trackback network in May, 2005.
This network was a directed graph of 12, 047 nodes and
79, 920 links. We refer to this network data as the blog net-
work.

Next, we employed a network of people that was de-
rived from the “list of people” within Japanese Wikipedia.
Specifically, we extracted the maximal connected compo-
nent of the undirected graph obtained by linking two peo-
ple in the “list of people” if they co-occur in six or more
Wikipedia pages, and constructed a directed graph regard-
ing those undirected links as bidirectional ones. We refer
to this network data as the Wikipedia network. Here, the
total numbers of nodes and directed links were 9, 481 and
245, 044, respectively.

Note here that these two networks are strongly connected.

Experimental Settings

The IC model has the propagation probability p as a param-
eter. So we determine the typical values of p for the blog
and Wikipedia networks, and use them in the experiments.
Let us consider the bond percolation process corresponding
to the IC model with propagation probability p in graph G
= (V,E). Let S be the expected fraction of the maximal
SCC in the network constructed by occupied links. S is a
function of p, and as the value of p decreases, the value of
S decreases. In other words, as the value of p decreases, the
original graph G gradually fragments into small clusters un-
der the corresponding bond percolation process. Figures 1
and 2 show the network fragmentation curves for the blog
and Wikipedia networks, respectively. Here, we estimated
S as follows:

S =
1

M

M∑

m=1

max
u∈U(Gi

m)
|S(u;Gi

m)|,

where M = 10000. We focus on the point p∗ at which the
average rate dS/dp of change of S attains the maximum, and
regard it as the typical value of p for the network. Note that
p∗ is a critical point of dS/dp, and defines one of the features
intrinsic to the network. From Figures 1 and 2, we estimated
p∗ to be p∗ = 0.2 for the blog network and p∗ = 0.03 for
the Wikipedia network.

For the proposed method, we need to specify the num-
ber M of performing the bond percolation process. In the
experiments, we used M = 10000.
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Figure 1: Fragmentation of the blog network for the IC
model. The fraction S of the maximal SCC as a function
of the propagation probablity p.

Comparison Methods

We compared the proposed method with two heuristics
based on the well-studied notions of betweenness and out-
degree in the field of complex network theory, as well as the
crude baseline of blocking links at random. We refer to the
method of blocking links uniformly at random as the ran-
dom method.

The betweenness score bG̃(e) of a link e in a directed

graph G̃ = (V, Ẽ) is defined as follows:

bG̃(e) =
∑

u,v∈V

nG̃(e;u, v)

NG̃(u, v)
,

where NG̃(u, v) denotes the number of the shortest paths

from node u to node v in G̃, and nG̃(e;u, v) denotes
the number of those paths that pass e. Here, we set
nG̃(e;u, v)/NG̃(u, v) = 0 if NG̃(u, v) = 0. Newman and
Girvan (2004) successfully extracted community structure in
a network using the following link-removal algorithm based
on betweeness:

1. Calculate betweenness scores for all links in the network.

2. Find the link with the highest score and remove it from
the network.

3. Recalculate betweenness scores for all remaining links.

4. Repeat from Step 2.

In particular, the notion of betweenness can be interpreted in
terms of signals traveling through a network. If signals travel
from source nodes to destination nodes along the shortest
paths in a network, and all nodes send signals at the same
constant rate to all others, then the betweenness score of a
link is a measure of the rate at which signals pass along the
link. Thus, we naively expect that blocking the links with the
highest betweenness score can be effective for preventing
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Figure 2: Fragmentation of the Wikipedia network for the
IC model. The fraction S of the maximal SCC as a function
of the propagation probablity p. The upper and lower frames
show the network fragmentation curves for the whole range
of p and the range of 0.01 ≤ p ≤ 0.09, respectively.

the spread of contamination in the network. Therefore, we
apply the method of Newman and Girvan (2004) to the con-
tamination minimization problem. We refer to this method
as the betweenness method.

On the other hand, previous work has shown that simply
removing nodes in order of decreasing out-degrees works
well for preventing the spread of contamination in most real
networks (Albert, Jeong, and Barabási 2000; Broder et al.
2000; Callaway et al. 2000; Newman, Forrest, and Balthrop
2002). Here, the out-degree d(v) of a node v means the
number of outgoing links from the node v. Thus, blocking
links between nodes with high out-degrees looks promising
for the contamination minimization problem. Therefore, as
a comparsion method, we employ the method of recursively
blocking links e = [u, v] from u to v in decreasing order of

their scores d(e),

d(e) = d(u) d(v).

We refer to this method as the out-degree method.

Experimental Results

We evaluated the performance of the proposed method and
compare it with that of the betweenness, out-degree and
random methods. Clearly, the performance of a method
for solving the contamination minimization problem can be
evaluated in terms of contamination degree c. We used the
value of c (see Equations (4) and (5)) that is estimated by the
bond percolation method with M = 10000.

Figures 3 and 4 show the contamination degree c of the
resulting network as a function of the number k of links
blocked for the blog network, where the circles, triangles,
diamonds and squares indicate the results for the proposed,
betweenness, out-degree and random methods, respectively.
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Figure 3: Performance comparison between the proposed
and betweenness methods in the blog network for the IC
model with p = 0.2.

In Figure 4, the dashed line indicates the contamination de-
gree of the network obtained by the proposed method for
k = 100. From Figures 3 and 4, we first see that the
proposed method outperformed the betweenness, out-degree
and random methods for the blog network. By taking into
account the definition (1) of contamination degree, we can
mention from Figure 3 that the proposed method decreased
the expected number of nodes contaminated from about 980
nodes to about 580 nodes by blocking appropriate 100 links
for the blog network. Here note that blocking 100 links
means blocking about 0.13% of the links in the blog net-
work. Thus, we find from Figure 3 that by appropriately
blocking about 0.13% of the links in the blog network, the
proposed and betweenness methods decreased contamina-
tion degree by about 41% and 30%, respectively. Hence,
we can deduce that the proposed method was effective, and
also outperformed the betweennes method by over 10% at
k = 100 for the blog network. Moreover, we find from Fig-
ure 4 that blocking 100 links by using the proposed method
was the same as blocking over 10000 links by using the out-
degree and random methods for the blog network in effect.
Namely, we can deduce that the proposed method was 100
times more effective than the out-degree and random meth-
ods at k = 100 for the blog network.

Figures 5 and 6 display the contamination degree c of the
resulting network as a function of the number k of links
blocked for the Wikipedia network. Here, as in Figures 3
and 4, the circles, triangles, diamonds and squares indicate
the results for the proposed, betweenness, out-degree and
random methods, respectively. In Figure 6, the dashed line
indicates the contamination degree of the network obtained
by the proposed method for k = 300. We also see from
Figures 5 and 6 that the proposed method outperformed
the betweenness, out-degree and random methods for the
Wikipedia network. In particualr, we observe from Figure 5
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Figure 4: Performance comparison of the proposed method
for k = 100 with the out-degree and random methods in the
blog network for the IC model with p = 0.2.

that as the value of k increased, the performance difference
between the proposed and betweenness methods gradually
increased. Note here that blocking 300 links means blocking
about 0.12% of the links in the Wikipedia network. Thus,
we find from Figure 5 that by appropriately blocking about
0.12% of the links in the Wikipedia network, the proposed
and betweenness methods decreased contamination degree
by about 26% and 16%, respectively. Hence, we can de-
duce that the proposed method was effective, and also out-
performed the betweennes method by about 10% at k = 300
for the Wikipedia network. Moreover, we find from Fig-
ure 6 that blocking 300 links by using the proposed method
was the same as blocking about 30000 links by using the
out-degree and random methods for the Wikipedia network.
Namely, we can deduce that the proposed method was effec-
tive about 100 times as much as the out-degree and random
methods at k = 300 for the Wikipedia network.

These results imply that the proposed method works ef-
fectively as expected, and significantly outperforms the con-
ventional link-removal heuristics, that is, the betweenness,
out-degree and random methods. This shows that a signifi-
cantly better link-blocking strategy for reducing the spread
size of contamination can be obtained by explicitly incor-
porating the diffusion dynamics of contamination in a net-
work, rather than relying solely on structual properties of
the graph.

We note from Figures 4 and 6 that the out-degree method
was almost the same as or worse than the random method
in performance. In the task of removing nodes from a net-
work, the out-degree heuristic has been effective since many
links can be blocked at the same time by removing nodes
with high out-degrees. However, we find that in the task of
blocking a limited number of links, the strategy of blocking
links between nodes with high out-degrees is not necessarily
effective.
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Figure 5: Performance comparison between the proposed
and betweenness methods in the Wikipedia network for the
IC model with p = 0.03.

Conclusion

In an attempt to minimize the spread of undesirable things
by blocking links in a network, we have considered the con-
tamination minimization problem, a dual problem to the in-
fluence maximization problem for social networks. This
minimization problem is another approach to the problem of
preventing the spread of contamination by removing nodes
in a network, We have proposed a novel method for effi-
ciently finding a good approximate solution to this problem
on the basis of the greedy algorithm and the bond perco-
lation method. Using large-scale blog and Wikipedia net-
works, we have experimentally demonstrated that the pro-
posed method effectively works, and also significantly out-
performs the conventional link-removal heuristics based on
the betweenness and out-degree. Moreover, we have found
that unlike the task of removing nodes, the strategy of block-
ing links between nodes with high out-degrees is not neces-
sarily effective for our problem.
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Abstract. Effective visualization is vital for understanding a complex network,
in particular its dynamical aspect such as information diffusion process. Existing
node embedding methods are all based solely on the network topology and some-
times produce counter-intuitive visualization. A new node embedding method
based on conditional probability is proposed that explicitly addresses diffusion
process using either the IC or LT models as a cross-entropy minimization prob-
lem, together with two label assignment strategies that can be simultaneously
adopted. Numerical experiments were performed on two large real networks, one
represented by a directed graph and the other by an undirected graph. The results
clearly demonstrate the advantage of the proposed methods over conventional
spring model and topology-based cross-entropy methods, especially for the case
of directed networks.

1 Introduction

Analysis of the structure and function of complex networks, such as social, computer
and biochemical networks, has been a hot research subject with considerable atten-
tion [10]. A network can play an important role as a medium for the spread of various
information. For example, innovation, hot topics and even malicious rumors can prop-
agate through social networks among individuals, and computer viruses can diffuse
through email networks. Previous work addressed the problem of tracking the propa-
gation patterns of topics through network spaces [5, 1], and studied effective “vacci-
nation” strategies for preventing the spread of computer viruses through networks [11,
2]. Widely-used fundamental probabilistic models of information diffusion through net-
works are the independent cascade (IC) model and the linear threshold (LT) model [8,
5]. Researchers have recently investigated the problem of finding a limited number of
influential nodes that are effective for the spread of information through a network un-
der these models [8, 9]. In these studies, understanding the flow of information through
networks is an important research issue.
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This paper focuses on the problem of visualizing the information diffusion process,
which is vital for understanding its characteristic over a complex network. Existing node
embedding methods such as spring model method [7] and cross entropy method [14] are
solely based on the network topology. They do not take account how information dif-
fuses across the network. Thus, it often happens that the visualized information flow do
not match our intuitive understanding, e.g., abrupt information flow gaps, inconsistency
between the nodes distance and the reachability of information, irregular pattern of in-
formation spread, etc. This sometimes happens when visualizing the diffusion process
for a network represented by a directed graph.

Thus, it is important that node embedding explicitly reflects the diffusion process
to produce more natural visualization. We have devised a new node embedding method
that incorporates conditional probability of information diffusion between two nodes, a
target source node where the information is initially issued and a non-target influenced
node where the information has been received via intermediate nodes. Our postulation is
that good visualization should satisfy the two conditions: path continuity, i.e. any infor-
mation diffusion path is continuous and path separability, i.e. each different information
diffusion path is clearly separated from each other. To this end, the above node embed-
ding is coupled with two label assignment strategies, one with emphasis on influence of
initially activated nodes, and the other on degree of information reachability.

Extensive numerical experiments were performed on two large real networks, one
generated from a large connected trackback network of blog data, resulting in a di-
rected graph of 12, 047 nodes and 53, 315 links, and the other, a network of people,
generated from a list of people within a Japanese Wikipedia, resulting in an undirected
graph of 9, 481 nodes and 245, 044 links. The results clearly indicate that the proposed
probabilistic visualization method satisfies the above two conditions and demonstrate
its advantage over the well-known conventional methods: spring model and topology-
based cross-entropy methods, especially for the case of a directed network. The method
appeals well to our intuitive understanding of information diffusion process.

2 Information Diffusion Models

We mathematically model the spread of information through a directed network G =
(V, E) under the IC or LT model, where V and E (⊂ V × V) stands for the sets of all the
nodes and links, respectively. We call nodes active if they have been influenced with
the information. In these models, the diffusion process unfolds in discrete time-steps
t ≥ 0, and it is assumed that nodes can switch their states only from inactive to active,
but not from active to inactive. Given an initial set S of active nodes, we assume that the
nodes in S have first become active at time-step 0, and all the other nodes are inactive
at time-step 0.

2.1 Independent Cascade Model

We define the IC model. In this model, for each directed link (u, v), we specify a real
value βu,v with 0 < βu,v < 1 in advance. Here βu,v is referred to as the propagation
probability through link (u, v). The diffusion process proceeds from a given initial active
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set S in the following way. When a node u first becomes active at time-step t, it is
given a single chance to activate each currently inactive child node v, and succeeds with
probability βu,v. If u succeeds, then v will become active at time-step t + 1. If multiple
parent nodes of v first become active at time-step t, then their activation attempts are
sequenced in an arbitrary order, but all performed at time-step t. Whether or not u
succeeds, it cannot make any further attempts to activate v in subsequent rounds. The
process terminates if no more activations are possible.

For an initial active set S , let ϕ(S ) denote the number of active nodes at the end of
the random process for the IC model. Note that ϕ(S ) is a random variable. Let σ(S )
denote the expected value of ϕ(S ). We call σ(S ) the influence degree of S .

2.2 Linear Threshold Model

We define the LT model. In this model, for every node v ∈ V , we specify, in advance, a
weight ωu,v (> 0) from its parent node u such that

∑
u∈Γ(v)

ωu,v ≤ 1,

where Γ(v) = {u ∈ V; (u, v) ∈ E}. The diffusion process from a given initial active set
S proceeds according to the following randomized rule. First, for any node v ∈ V , a
threshold θv is chosen uniformly at random from the interval [0, 1]. At time-step t, an
inactive node v is influenced by each of its active parent nodes, u, according to weight
ωu,v. If the total weight from active parent nodes of v is at least threshold θv, that is,

∑
u∈Γt(v)

ωu,v ≥ θv,

then v will become active at time-step t+1. Here, Γt(v) stands for the set of all the parent
nodes of v that are active at time-step t. The process terminates if no more activations
are possible.

The LT model is also a probabilistic model associated with the uniform distribution
on [0, 1]|V |. Similarly to the IC model, we define a random variable ϕ(S ) and its expected
value σ(S ) for the LT model.

2.3 Influence Maximization Problem

Let K be a given positive integer with K < |V |. We consider the problem of finding a set
of K nodes to target for initial activation such that it yields the largest expected spread
of information through network G under the IC or LT model. The problem is referred
to as the influence maximization problem, and mathematically defined as follows: Find
a subset S ∗ of V with |S ∗| = K such that σ(S ∗) ≥ σ(S ) for every S ⊂ V with |S | = K.

For a large network, any straightforward method for exactly solving the influence
maximization problem suffers from combinatorial explosion. Therefore, we approxi-
mately solve this problem. Here, UK = {u1, · · · , uK} is the set of K nodes to target for
initial activation, and represents the approximate solution obtained by this algorithm.
We refer to UK as the greedy solution.



4 Kazumi Saito, Masahiro Kimura, and Hiroshi Motoda

Using large collaboration networks, Kempe et al. [8] experimentally demonstrated
that the greedy algorithm significantly outperforms node-selection heuristics that rely
on the well-studied notions of degree centrality and distance centrality in the sociology
literature. Moreover, the quality of UK is guaranteed:

σ (UK) ≥
(
1 − 1

e

)
σ

(
S ∗K

)
,

where S ∗K stands for the exact solution to this problem.
To implement the greedy algorithm, we need a method for calculating {σ(Uk ∪ {v});

v ∈ V \Uk} for 1 ≤ k ≤ K. However, it is an open question to exactly calculate influence
degrees by an efficient method for the IC or LT model [8]. Kimura et al. [9] presented
the bond percolation method that efficiently estimates influence degrees {σ(Uk ∪ {v});
v ∈ V \ Uk}. Therefore, we estimate the greedy solution UK using their method.

3 Visualization Method

We especially focus on visualizing the information diffusion process from the target
nodes selected to be a solution of the influence maximization problem. To this end,
we propose a visualization method that has the following characteristics: 1) utilizing
the target nodes as a set of pivot objects for visualization, 2) applying a probabilistic
algorithm for embedding all the nodes in the networks into an Euclidean space, and
3) varying appearance of the embedded nodes on the basis of two label assignment
strategies. In what follows, we describe some details of the probabilistic embedding
algorithm and the label assignment strategies.

3.1 Probabilistic Embedding Algorithm

Let UK = {uk : 1 ≤ k ≤ K} ⊂ V be a set of target nodes, which maximizes an
expected number of influenced nodes in the network based on an information diffusion
model such as IC or LT. Let vn � UK be a non-target node in the network, then we
can consider the conditional probability pk,n = p(vn|uk) that a node vn is influenced
when one target node uk alone is set to an initial information source. Here note that
we can regard pk,n as a binomial probability with respect to a pair of nodes uk and vn.
In our visualization approach, we attempt to produce embedding of the nodes so as
to preserve the relationships expressed as the conditional probabilities for all pairs of
target and non-target nodes in the network. We refer to this visualization strategy as the
conditional probability embedding (CE) algorithm.

Objective Function Let {xk : 1 ≤ k ≤ K} and {yn : 1 ≤ n ≤ N} be the embedding
positions of the corresponding K target nodes and N = |V |−K non-target nodes in an M
dimensional Euclidean space. Hereafter, the xk and yn are called target and non-target
vectors, respectively. As usual, we define the Euclidean distance between xk and yn as
follows:

dk,n = ‖xk − yn‖2 =
M∑

m=1

(xk,m − yn,m)2.
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Here, we introduce a monotonic decreasing function ρ(s) ∈ [0, 1] with respect to s ≥ 0,
where ρ(0) = 1 and ρ(∞) = 0.

Since ρ(dk,n) can also be regarded as a binomial probability with respect to xk and
yn, we can introduce a cross-entropy (cost) function between pk,n and ρ(dk,n) as follows:

Ek,n = −pk,n ln ρ(dk,n) − (1 − pk,n) ln(1 − ρ(dk,n)).

Since Ek,n is minimized when ρ(dk,n) = pk,n, this minimization with respect to xk and yn

is consistent with our problem setting. In this paper, we employ a function of the form

ρ(s) = exp
(
− s

2

)

as the monotonic decreasing function, but note that our approach is not restricted to this
form. Then, the total cost function (objective function) can be defined as follows:

E = 1
2

N∑
n=1

K∑
k=1

pk,ndk,n −
N∑

n=1

K∑
k=1

(1 − pk,n) ln(1 − ρ(dk,n)). (1)

Namely, our approach is formalized as a minimization problem of the objective function
defined in (1) with respect to {xk : 1 ≤ k ≤ K} and {yn : 1 ≤ n ≤ N}.

Learning Algorithm As the basic structure of our learning algorithms, we adopt a
coordinate strategy just like the EM (Expectation-Maximization) algorithm. First, we
adjust the target vectors, so as to minimize the objective function by freezing the non-
target vectors, and then, we adjust the non-target vectors by freezing the target vectors.
These two steps are repeated until convergence is obtained.

In the former minimization step for the CE algorithm, we need to calculate the
derivative of the objective function with respect to xn as follows:

Exk =
∂E
∂xk
=

N∑
n=1

pk,n − ρ(dk,n)
1 − ρ(dk,n)

(xk − yn). (2)

Since xk′ (k′ � k) disappears in (2), we can update xk without considering the other
target vectors. In the latter minimization step for the CE algorithm, we need to calculate
the following derivative,

Eyn =
∂E
∂yn
=

K∑
k=1

pk,n − ρ(dk,n)
1 − ρ(dk,n)

(yn − xk).

In this case, we update yn by freezing the other non-target vectors. Overall, our algo-
rithm can be summarized as follows:

1. Initialize vectors x1, · · · , xK and y1, · · · , yN .
2. Calculate gradient vectors Ex1 , · · · ,ExK .
3. Update target vectors x1, · · · , xK .
4. Calculate gradient vectors Ey1 , · · · ,EyN .
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5. Update non-target vectors y1, · · · , yN .
6. Stop if maxk,n{‖Exk‖, ‖Eyn‖} < ε.
7. Return to 2.

Here, a small positive value ε controls the termination condition.

3.2 Label Assignment Strategies

In an attempt to effectively understand information diffusion process, we propose two
label assignment strategies, on which the appearance of the embedded target and non-
target nodes depends. The first strategy assigns labels to non-target nodes according to
the standard Bayes decision rule.

l1(vn) = arg max
1≤k≤K

{pk,n}

It is obvious that this decision naturally reflects influence of the target nodes. Note
that the target node identification number k corresponds to the order determined by the
greedy method, i.e., l1(uk) = k.

In the second strategy, we introduce the following probability quantization by noting
0 ≤ max1≤k≤K {pk,n} ≤ 1,

l2(vn) =
[
− logb max

1≤k≤K
{pk,n}

]
+ 1,

where [x] returns the greatest integer not greater than x, and b stands for the base of
logarithm. To each node belonging to Z = {vn : max1≤k≤K{pk,n} = 0}, we assign as the
label the maximum number determined by the nodes not belonging to Z. We believe
that this quantization reasonably reflects the degree of information reachability. Here
note that l2(uk) = 1 because it always becomes active at time step t = 0. These labels
are further mapped to colors scales according to some monotonic mapping functions.

4 Experimental Evaluation

4.1 Network Data

In our experiments, we employed two sets of real networks used in [9], which exhibit
many of the key features of social networks. We describe the details of these network
data.

The first one is a trackback network of blogs. Blogs are personal on-line diaries
managed by easy-to-use software packages, and have rapidly spread through the World
Wide Web [5]. Bloggers (i.e., blog authors) discuss various topics by using trackbacks.
Thus, a piece of information can propagate from one blogger to another blogger through
a trackback. We exploited the blog “Theme salon of blogs” in the site “goo” 2, where a
blogger can recruit trackbacks of other bloggers by registering an interesting theme.
By tracing up to ten steps back in the trackbacks from the blog of the theme “JR

2 http://blog.goo.ne.jp/usertheme/
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Fukuchiyama Line Derailment Collision”, we collected a large connected trackback
network in May, 2005. The resulting network had 12, 047 nodes and 53, 315 directed
links, which features the so-called “power-law” distributions for the out-degree and in-
degree that most real large networks exhibit. We refer to this network data as the blog
network.

The second one is a network of people that was derived from the “list of people”
within Japanese Wikipedia. Specifically, we extracted the maximal connected compo-
nent of the undirected graph obtained by linking two people in the “list of people” if
they co-occur in six or more Wikipedia pages. The undirected graph is represented by
an equivalent directed graph by regarding undirected links as bidirectional ones3. The
resulting network had 9, 481 nodes and 245, 044 directed links. We refer to this network
data as the Wikipedia network.

Newman and Park [12] observed that social networks represented as undirected
graphs generally have the following two statistical properties that are different from
non-social networks. First, they show positive correlations between the degrees of ad-
jacent nodes. Second, they have much higher values of the clustering coefficient C than
the corresponding configuration models (i.e., random network models). For the undi-
rected graph of the Wikipedia network, the value of C of the corresponding configura-
tion model was 0.046, while the actual measured value of C was 0.39, and the degrees
of adjacent nodes were positively correlated. Therefore, the Wikipedia network has the
key features of social networks.

4.2 Experimental Settings

In the IC model, we assigned a uniform probability β to the propagation probability
βu,v for any directed link (u, v) of a network, that is, βu,v = β. We, first, determine the
typical value of β for the blog network, and use it in the experiments. It is known that
the IC model is equivalent to the bond percolation process that independently declares
every link of the network to be “occupied” with probability β [10]. Let J denote the
expected fraction of the maximal strongly connected component (SCC) in the network
constructed by the occupied links. Note that J is an increasing function of β. We focus
on the point β∗ at which the average rate of change of J, dJ/dβ, attains the maximum,
and regard it as the typical value of β for the network. Note that β∗ is a critical point
of dJ/dβ, and defines one of the features intrinsic to the network. Figure 1 plots J as a
function of β. Here, we estimated J using the bond percolation method with the same
parameter value as below [9]. From this figure we experimentally estimated β∗ to be 0.2
for the blog network. In the same way, we experimentally estimated β∗ to be 0.05 for
the Wikipedia network.

In the LT model, we uniformly set weights as follows. For any node v of a network,
the weight ωu,v from a parent node u ∈ Γ(v) is given by ωu,v = 1/|Γ(v)|.

Once these parameters were set, we estimated the greedy solution UK = {u1, · · · , uK}
of targets and the conditional probabilities {pk,n; 1 ≤ k ≤ K, 1 ≤ n ≤ N} using the bond
percolation method with the parameter value 10, 000 [9]. Here, the parameter represents

3 For simplicity, we call a graph with bi-directional links an undirected graph
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Fig. 1: The fraction J of the maximal SCC as a function of the propagation probability β

the number of bond percolation processes for estimating the influence degree σ(S ) of a
given initial active set S .

4.3 Brief Description of Other Visualization Methods used for Comparison

We have compared the proposed method with the two well known methods: spring
model method [7] and standard cross-entropy method [14].

Spring model method assumes that there is a hypothetical spring between each con-
nected node pair and locates nodes such that the distance of each node pair is closest to
its minimum path length at equilibrium. Mathematically it is formulated as minimizing
(3).

K(x) =
|V |−1∑
u=1

|V |∑
v=u+1

αu,v
(
gu,v − ||xu − xv||)2, (3)

where gu,v is the minimum path length between node u and node v, and αu,v is a spring
constant which is normally set to 1/(2g2

u,v). Standard cross-entropy method first defines
a similarity ρ(||xu − xv||2) = exp(−||xu − xv||2/2) between the embedding coordinates xu

and xv and uses the corresponding element au,v of the adjacency matrix as a measure of
distance between the node pair, and tries to minimize the total cross entropy between
these two. Mathematically it is formulated as minimizing (4).

C(x) =
|V |−1∑
u=1

|V |∑
v=u+1

{
−au,v log ρ(||xu − xv||2) − (1 − au,v) log(1 − ρ(||xu − xv||2))

}
, (4)

Here, note that we used the same function ρ as before.
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As is clear from the above formulation, both methods are completely based on graph
topology. They are both non-linear optimization problem and easily solved by a stan-
dard coordinate descent method. Here note that the applicability of the spring model
method and cross-entropy method is basically limitted to undirected networks. Thus, in
order to obtain the embedding results by using these methods we neglected the direction
in the directed blog network and regarded it as undirected one.

4.4 Experimental Results

Two label assignment strategies are independent to each other. They can be used ei-
ther separately or simultaneously. Here, we used a color mapping to both, and thus,
use them separately. The visualization results are shown in four figures, each with six
network figures. In each of these four figures, the left three show the results of the first
visualization strategy (method 1) and the right three the results of the second visualiza-
tion strategy (method 2), and the top two show the results of the proposed method (CE
algorithm), the middle two the results of spring model and the bottom two the results
of the topology-based cross entropy method. The first two figures (Figs. 2 and 3) cor-
responds to the results of blog network and the last two (Figs. 4 and 5) the results of
Wikipedia network. For each, the results of the IC model comes first, followed by the
results of the LT model.

The most influential top ten nodes are chosen as the target nodes, and the rest are all
non-target nodes. In the first visualization strategy, the color of a non-target node indi-
cates which target node is most influential to the node, whereas in the second visualiza-
tion strategy, it indicates how easily the information diffuses from the most influential
target node to reach the node. Note that a non-target node is influenced by multiple tar-
get nodes probabilistically, but here the target with the highest conditional probability
is chosen. Thus, the most influential target node is determined for each non-target node.

Observation of the results of the proposed method (Figs. 2a, 2b, 3a, 3b, 4a, 4b, 5a,
and 5b) indicates that the proposed method has the following desirable characteristics:
1) the target nodes tend to be allocated separately from each other, and from each tar-
get node, 2) the non-target nodes that are most affected by the same target node are
laid out forming a band and 3) the reachability changes continuously from the highest
at the target node to the lowest at the other end of the band. From this observation, it
is confirmed that the two conditions we postulated are satisfied for the both diffusion
models. Observation 2) above, however, needs further clarification. Note that our vi-
sualization does not necessarily cause the information diffusion to neighboring nodes
to be in the form of a line in the embedded space. For example, if there is only one
source (K=1), the information would diffuse concentrically. A node in general receives
information from multiple sources. The fact that the embedding result forms a line, on
the contrary, reveals an important characteristic that little information is coming from
the other sources for the networks we analyzed.

In the proposed method, non-target nodes that are readily influenced are easily iden-
tified, whereas those that are rarely influenced are placed together. Overlapping of the
color well explains the relationship between each target and a non-target node. For ex-
ample, in Figures 3a and 3b it is easily observed that the effect of the target nodes
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5, 2 on non-target nodes interferes with the three bands that are spread from the tar-
get nodes 8, 3, 10, and non-target nodes overlap as they move away from the target
nodes, demonstrating that a simple two-dimensional visualization facilitates how dif-
ferent node groups overlap and how the information flows from different target nodes
interfere each other. The same observation applies for the target nodes 6, 1, 9, 7. On
the contrary, the target node 4 has its own effect separately. A similar argument is pos-
sible for relationship within target nodes. For example, in Figures 2a target nodes 4,
5, 6, 8 are located in relatively near positions compared with the other target nodes.
It is crucial to abstract and visualize the essence of information diffusion by deleting
the unnecessary details (node to node diffusion). A good explanation for the overlap
like the above is not possible by other visualization methods. Further, the visualization
results of both IC and LT models are spatially well balanced. In addition, there are no
significant differences on the results of visualization between the directed network and
undirected network. Both are equally good.

Observation of the results of the spring model (Figs. 2c, 2d, 3c, 3d, 4c, 4d, 5c, and
5d) and the topology-based cross entropy method (Figs. 2e, 2f, 3e, 3f, 4e, 4f, 5e, and 5f)
reveals the followings. The clear difference of these from the proposed method is that it
is not that easy to locate the target nodes. This is true, in particular, for the spring model.
It is slightly easier for the standard cross-entropy method because the target nodes are
placed in the cluster centers, but clusters often overlap, which makes visualization less
understandable. It is also noted that those nodes with high reachability, i.e., nodes with
red, which should be placed separately due to the influence of different target nodes
are placed in mixture. Further, unlike the proposed method, there is clear difference
between the IC model and the LT model. In the IC model, we can easily recognize non-
target nodes with high reachability, which cover a large portion of the network, whereas
in the LT model, such nodes covering only a small portion are almost invisible in the
network. In contrast, we can easily pick up such non-target nodes with high reachability
even for the LT model in the proposed method.

We observe that the standard cross-entropy method is in general better than the
spring model method in terms of the clarity of separability. The standard cross-entropy
method does better for the IC model than for the LT model, and is comparable to the
proposed method in terms of the clarity of reachability. However, the results of the
standard cross-entropy method (e.g., Fig. 2f) are unintuitive, where the high reacha-
bility non-target nodes are placed away from the target nodes, and some target node
forms several isolated clusters. We believe that this point is an intrinsic limitation of the
standard cross-entropy method.

The concept of our visualization is based on the notion that how the information
diffuses should primarily determine how the visualization is made, irrespective of the
graph topology. We observe that the visualization which is based solely on the topol-
ogy has intrinsic limitation when we deal with a huge network from the point of both
computational complexity (e.g., the spring model does not work for a network with mil-
lions nodes) and understandability. Overall, we can conclude that the proposed method
provides better visualization which is more intuitive and easily understandable.
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5 Related Work and Discussion

As defined earlier, let K and N be the numbers of target and non-target nodes in a
network. Then the computational complexity of our embedding method amounts to
O(NK), where we assume the number of learning iterations and the embedding di-
mension to be constants. This reduced complexity greatly expands the applicability of
our method over the other representative network embedding methods, e.g., the spring
model method [7] and the standard cross-entropy method [14], both of which require
the computational complexity of O(N2) under the setting that K � N.

In view of computational complexity, our visualization method is closely related to
those conventional methods, such as FastMap or Landmark Multidimensional Scaling
(LMDS), which are based on the Nyström approximation [13]. Typically, these meth-
ods randomly select a set of pivot (or landmark) objects, then produce the embedding
results so as to preserve relationships between all pairs of pivot and non-pivot objects.
In contrast, our method selects target (pivot) nodes based on the information diffusion
models.

Our method adopts the basic idea of the probabilistic embedding algorithms includ-
ing Parametric Embedding (PE) [6] and Neural Gas Cross-Entropy (NG-CE) [4]. The
PE method attempts to uncover classification structures by use of posterior probabili-
ties, while the NG-CE method is restricted to visualize the codebooks of the neural gas
model. Our purpose, on the other hand, is to effectively visualize information diffusion
process. The two visualization strategies we proposed match this aim.

We are not the first to try to visualize the information diffusion process. Adar and
Adamic [1] presented a visualization system that tracks the flow of URL through blogs.
However, same as above, their visualization method did not incorporate an information
diffusion model. Further, they laid out only a small number of nodes in a tree structure,
and it is unlikely that their approach scales up to a large network.

Finally we should emphasize that unlike most representative embedding methods
for networks [3], our visualization method is applicable to large-scale directed graphs
while incorporating the effect of information diffusion models. In this paper, however,
we also performed our experiments using the undirected (bi-directional) Wikipedia net-
work. This is because we wanted to include favorable evaluation for the comparison
methods. As noted earlier, we cannot directly apply the conventional embedding meth-
ods to directed graphs without some topology modification such as link addition or
deletion.

6 Conclusion

We proposed an innovative probabilistic visualization method to help understand com-
plex network. The node embedding scheme in the method, formulated as a model-based
cross-entropy minimization problem, explicitly take account of information diffusion
process, and therfore, the resulting visualization is more intuitive and easier to under-
stand than the state-of-art approaches such as the spring model method and the standard
cross-entropy method. Our method is efficient enough to be applied to large networks.
The experiments performed on a large blog network (directed) and a large Wikipedia
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network (undirected) clearly demonstrate the advantage of the proposed method. The
proposed method is confirmed to satisfy both path continuity and path separability con-
ditions which are the important requirement for the visualization to be understandable.
Our future work includes the extension of the proposed approach to the visualization of
growing networks.
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4. Estévez, P. A., Figueroa, C. J., & Saito, K. (2005). Cross-entropy embedding of high-
dimensional data using the neural gas model. Neural Networks, 18, 727–737.

5. Gruhl, D., Guha, R., Liben-Nowell, D., & Tomkins, A. (2004). Information diffusion through
blogspace. Proceedings of the 13th International World Wide Web Conference (pp. 107–117).

6. Iwata, T., Saito, K., Ueda, N., Stromsten, S., Griffiths, T. L., & Tenenbaum, J. B. (2007).
Parametric embedding for class visualization. Neural Computation, 19, 2536–2556.

7. Kamada, K., & Kawai, S. (1989). An algorithm for drawing general undirected graph. In-
formation Processing Letters, 31, 7–15.

8. Kempe, D., Kleinberg, J., & Tardos, E. (2003). Maximizing the spread of influence through
a social network. Proceedings of the 9th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (pp. 137–146).

9. Kimura, M., Saito, K., & Nakano, R. (2007). Extracting influential nodes for information
diffusion on a social network. Proceedings of the 22nd AAAI Conference on Artificial Intel-
ligence (pp. 1371–1376).

10. Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review,
45, 167–256.

11. Newman, M. E. J., Forrest, S., & Balthrop, J. (2002). Email networks and the spread of
computer viruses. Physical Review E, 66, 035101.

12. Newman, M. E. J. & Park, J. (2003). Why social networks are different from other types of
networks. Physical Review E, 68, 036122.

13. Platt, J. C. (2005). Fastmap, metricmap, and landmark mds are all nyström algorithms.
Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics (pp.
261–268).

14. Yamada, T., Saito, K., & Ueda, N. (2003). Cross-entropy directed embedding of network
data. Proceedings of the 20th International Conference on Machine Learning (pp. 832–839).



Effective Visualization of Information Diffusion Process over Complex Networks 13

101010101010101010
999999999

888888888

777777777

666666666

555555555

444444444

333333333

222222222

111111111

(a) Proposed method 1

101010101010101010
999999999

888888888

777777777

666666666

555555555

444444444

333333333

222222222

111111111

(b) Proposed method 2

101010101010101010
999999999888888888777777777
666666666

555555555 444444444 333333333222222222

111111111

(c) Spring model method 1

101010101010101010
999999999888888888777777777
666666666

555555555 444444444 333333333222222222

111111111

(d) Spring model method 2

101010101010101010

999999999

888888888777777777
666666666

555555555
444444444

333333333

222222222

111111111

(e) Toplogy-based cross-entropy method 1

101010101010101010

999999999

888888888777777777
666666666

555555555
444444444

333333333

222222222

111111111

(f) Toplogy-based cross-entropy method 2

(g) Class-label assignment

1 2 3 4 5 6 7 8 9 10 11

(h) Color-map assignment

Fig. 2: Visualization of IC model for blog network
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Fig. 3: Visualization of LT model for blog network
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Fig. 4: Visualization of IC model for Wikipedia network
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Fig. 5: Visualization of LT model for Wikipedia network
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Abstract. We address the problem of minimizing the spread of undesirable things,
such as computer viruses and malicious rumors, by blocking a limited number of
links in a network. This optimization problem called the contamination minimiza-
tion problem is, not only yet another approach to the problem of preventing the
spread of contamination by removing nodes in a network, but also a problem that
is converse to the influence maximization problem of finding the most influen-
tial nodes in a social network for information diffusion. We adapted the method
which we developed for the independent cascade model, known for a model for
the spread of epidemic disease, to the contamination minimization problem un-
der the linear threshold model, a model known for the propagation of innovation
which is considerably different in nature. Using large real networks, we demon-
strate experimentally that the proposed method significantly outperforms conven-
tional link-removal methods.

1 Introduction

Networks can mediate diffusion of various things such as innovation and topics. How-
ever, undesirable things can also spread through networks. For example, computer
viruses can spread through computer networks and email networks, and malicious ru-
mors can spread through social networks among individuals. Thus, developing effective
strategies for preventing the spread of undesirable things through a network is an im-
portant research issue. Previous work studied strategies for reducing the spread size by
removing nodes from a network. It has been shown in particular that the strategy of
removing nodes in decreasing order of out-degree can often be effective [1, 2, 3]. Here
notice that removal of nodes by necessity involves removal of links. Namely, the task of
removing links is more fundamental than that of removing nodes. Therefore, prevent-
ing the spread of contamination by blocking links from the underlying network is an
important problem.

In contrast, finding a limted number of influential nodes that are effective for the
spread of information through a social network is also an important research issue in
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terms of sociology and “viral marketing” [4, 5, 6]. Widely-used fundamental proba-
bilistic models of information diffusion through networks are theindependent cascade
(IC) modeland thelinear threshold (LT) model[7, 6]. Researchers have recently stud-
ied a combinatorial optimization problem called theinfluence maximization problemon
a network under these models [7, 8]. Here, the influence maximization problem is the
problem of extracting a set ofk nodes to target for initial activation such that it yields
the largest expected spread of information, wherek is a given positive integer. Note also
that the IC and LT models are fundamental models of contamination diffusion process
on networks [6].

The problem we address in this paper is a problem that is converse to the influence
maximization problem. The problem is to minimize the spread of contamination by
blocking a limited number of links in a network. More specifically, when some unde-
sirable thing starts with any node and diffuses through the network, we consider find-
ing a set ofk links such that the resulting network by blocking those links minimizes
the expected contamination area of the undesirable thing, wherek is a given positive
integer. This combinatorial optimization problem is referred to as thecontamination
minimization problem[9]. For the contamination minimization problem under the IC
model, Kimura, Saito and Motoda [9] presented a method for efficiently finding a good
approximate solution on the basis of a naturally greedy strategy.

In this paper, we propose a method for efficiently finding a good approximate so-
lution to the contamination minimization problem under the LT model by adapting the
greedy method developed for the problem under the IC model. Note here that the IC and
LT models considerably differ in quality. First, the LT model is originally a model for
the propagation of innovation through the network, while the IC model can be identified
with theSIR model[10] for the spread of epidemic disease in the network. Moreover,
the LT model is viewed as a probabilistic model defined on some continous space, while
the IC model is viewed as that on some finite set (i,e., a discrete space) [7, 8]. There-
fore, the effectiveness of the greedy method for the problem under the LT model is not
self-evident. To compare methods of solving the problem for various networks in per-
formance, we newly introduce thecontamination reduction rateas a performance mea-
sure. Using large real social networks, we experimentally demonstrate that the proposed
method significantly outperforms link-removal heuristics that rely on the well-studied
notions of betweenness and out-degree in the field of complex network theory.

2 Problem Formulation

In this paper, we address the problem of minimizing the spread of some undesirable
thing in a network represented by a directed graphG = (V,E). Here,V andE (⊂ V ×
V) are the sets of all the nodes and links in the network, respectively. We assume the
LT model to be a mathematical model for the diffusion process of this undesirable thing
in the network, and investigate the contamination minimization problem onG. We call
nodesactiveif they have been contaminated by the undesirable thing.

2.1 Linear Threshold Model

We define thelinear threshold (LT) modelon graphG according to [7].
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In this model, for any nodev ∈ V, we specify, in advance, aweightωu,v (> 0) from
its parent nodeu such that

∑
u∈Γ(v)ωu,v ≤ 1, whereΓ(v) is the set of all the parent nodes

of v, Γ(v) = {u ∈ V; (u,v) ∈ E}. The diffusion process from a given initial set of active
nodes proceeds according to the following randomized rule. First, for any nodev ∈ V,
a thresholdθv is chosen uniformly at random from the interval [0,1]. At time-stept, an
inactive nodev is influenced by each of its active parent nodes,u according to weight
ωu,v. If the total weight from active parent nodes ofv is at least thresholdθv, that is,∑

u∈Γt(v)ωu,v ≥ θv, thenv will become active at time-stept + 1. Here,Γt(v) stands for the
set of all the parent nodes ofv that are active at time-stept. The process terminates if
no more activations are possible.

Note that the thresholdθv models the tendency of nodev to adopt the information
when its parent nodes do. Note also that the LT model is a probabilistic model associated
with the uniform distribution on [0,1]|V|. Thus, the LT model is viewed as a probabilistic
model on the continous space [0,1]|V|. Here,|A| stands for the number of elements of a
setA.

For an initial active nodev, letσ(v;G) denote the expected number of active nodes
at the end of the random process of the LT model onG. We callσ(v;G) the influence
degreeof nodev in graphG.

2.2 Contamination Minimization Problem

Now, we give a mathematical definition of the contamination minimization problem on
graphG = (V,E).

First, we define thecontamination degree c(G) of graphG as the average of influ-
ence degrees of all the nodes inG, that is,

c(G) =
1
|V|

∑

v∈V
σ(v;G). (1)

For any linke ∈ E, letG(e) denote the graph (V, E \ {e}). We refer toG(e) as the graph
constructed byblocking ein G. Similarly, for anyD ⊂ E, letG(D) denote the graph (V,
E \ D). We refer toG(D) as the graph constructed byblocking D in G. We define the
contamination minimization problemon graphG as follows: Given a positive integerk
with k < |E|, find a subsetD∗ of E with |D∗| = k such thatc(G(D∗)) ≤ c(G(D)) for any
D ⊂ E with |D| = k.

For a large network, any straightforward method for exactly solving the contami-
nation minimization problem suffers from combinatorial explosion. Therefore, we con-
sider approximately solving the problem.

3 Proposed Method

We propose a method for efficiently finding a good approximate solution to the contam-
ination minimization problem on graphG = (V,E). We consider adapting the method
which we developed for the IC model to the contamination minimization problem under
the LT model which is considerably different in nature. Letk be the number of links to
be blocked in this problem.
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3.1 Geedy Algorithm

We approximately solve the contamination minimization problem onG = (V,E) by the
following greedy algorithm:

1. SetD0← ∅.
2. SetE0← E.
3. SetG0← G.
4. for i = 0 tok− 1 do
5. Choose a linke∗ ∈ Ei minimizingc(Gi(e)), (e∈ Ei).
6. SetDi+1 ← Di ∪ {e∗}.
7. SetEi+1 ← Ei \ {e∗}.
8. SetGi+1 ← (V,Ei+1).
9. end for

Here,Dk is the set of links blocked, and represents the approximate solution obtained
by this algorithm.Gk is the graph constructed by blockingDk in graphG, that is,Gk =

G(Dk).
To implement this greedy algorithm, we need a method for calculating{c(Gi(e));

e ∈ Ei} in Step 5 of the algorithm. However, the LT model is a stochastic process
model, and it is an open question to exactly calcluate influence degrees by an efficient
method [7]. Therefore, we develop a method for estimating{c(Gi(e));e ∈ Ei}.

Kimura, Saito, and Nakano [8] presented the bond percolation method that effi-
ciently estimates the influence degrees{σ(v;G̃); v ∈ Ṽ} for any directed graph̃G =

(Ṽ, Ẽ). Thus, we can estimatec(Gi(e)) for eache ∈ Ei by straightforwardly applying
the bond percolation method. However,|Ei | becomes very large for a large network un-
lessi is very large. Therefore, we propose a method that can estimate{c(Gi(e)); e ∈ Ei}
in a more efficient manner on the basis of the bond percolation method.

3.2 Estimation Based on Bond Percolation Method

It is known that the LT model is equivalent to the following bond percolation process
[7]: For anyv ∈ V, we pick at most one of the incoming links tov by selecting link
(u,v) with probabilityωu,v and selecting no link with probability 1−∑

u∈Γ(v)ωu,v. Then,
we declare the picked links to be “occupied” and the other links to be “unoccupied”.
Note here that the equivalent bond percolation process for the LT model is considerably
different from that of IC model.

In the bond percolation method [8], we efficiently estimate the influence degrees
{σ(v;Gi); v ∈ V} in the following way. LetM be a sufficiently large positive inte-
ger. We perform the bond percolation processM times, and sample a set ofM graphs,
{Gi

m = (V,Ei
m); m = 1, · · · , M}, constructed by the occupied links. Then, using the

strongly connected decomposition of eachGm
i , we efficiently estimate the influence de-

grees{σ(v;Gi); v ∈ V} as

σ(v;Gi) =
1
M

M∑

m=1

|F (v;Gi
m)|, (v ∈ V), (2)
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(see [8] in detail). Here,F (v;Gi
m) denotes the set of all the nodes that arereachable

from nodev in the graphGi
m. We say that nodeu is reachable from nodev if there is a

path fromu to v along the links in the graph.
We are now in a position to give a method for efficiently estimating{c(Gi(e));e ∈ Ei}

in Step 5 of the greedy algorithm. For the LT model, the weights{ωu,v}must be specified
in advance. We uniformly set the weights as follows: For any nodev ∈ V, the weight
ωu,v from a parent nodeu ∈ Γ(v) is given by

ωu,v =
1

|Γ(v)|+ 1
.

Herenote that
∑

u∈Γ(v)ωu,v < 1 for anyv ∈ V, that is, there exists a chance such that
nodev cannot become active even if all the parent nodes ofv are active. Then, on the
basis of Equations (1) and (2), and the independence of the bond percolation process,
we estimate{c(Gi(e));e ∈ Ei} by

c (Gi(e)) =
1

|Mi(e)|
∑

m∈Mi (e)

1
|V|

∑

v∈V
F (v;Gi

m), (e ∈ Ei)

without applying the bond percolation method for everye ∈ Ei , whereMi(e) = {m ∈
{1, · · · ,M}; e < Ei

m}. Namely, the proposed method can achieve a great deal of reduc-
tion in computational cost compared with the coventional bond percolation method.

4 Experimental Evaluation

4.1 Experimental Settings

In our experiments, we employed two sets of large real networks used in [9], the blog
and Wikipedia networks, which exhibit many of the key features of social networks.
These are bidirectional networks. The blog network had 12,047 nodes and 79,920 di-
rected links, and the Wikipedia network had 9,481 nodes and 245,044 directed links.

For the proposed method, we need to specify the numberM of performing the bond
percolation process. In the experiments, we usedM = 10,000 according to [8].

4.2 Comparison Methods

We compared the proposed method with two heuristics based on the well-studied no-
tions of betweenness and out-degree in the field of complex network theory.

Thebetweenness score bG̃(e) of a linke in a directed graph̃G = (Ṽ, Ẽ) is defined as
follows: bG̃(e) =

∑
u,v∈Ṽ nG̃(e;u,v)/NG̃(u,v), whereNG̃(u,v) denotes the number of the

shortest paths from nodeu to nodev in G̃, andnG̃(e;u,v) denotes the number of those
shortest paths that passe. Here, we setnG̃(e;u,v)/NG̃(u,v) = 0 if NG̃(u,v) = 0. Newman
and Girvan [11] successfully extracted community structure in a network using the
following link-removal algorithm based on betweeness:

1. Calculate betweenness scores for all links in the network.
2. Find the link with the highest score and remove it from the network.
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3. Recalculate betweenness scores for all remaining links.
4. Repeat from Step 2.

In particular, the notion of betweenness can be interpreted in terms of signals traveling
through a network. If signals travel from source nodes to destination nodes along the
shortest paths in a network, and all nodes send signals at the same constant rate to all
others, then the betweenness score of a link is a measure of the rate at which signals
pass along the link. Thus, we naively expect that blocking the links with the highest
betweenness score can be effective for preventing the spread of contamination in the
network. Therefore, we apply the method of Newman and Girvan [11] to the contami-
nation minimization problem. We refer to this method as thebetweenness method.

On the other hand, previous work has shown that simply removing nodes in order of
decreasingout-degreesworks well for preventing the spread of contamination in most
real networks [1, 2, 3]. Here, the out-degree of a nodev means the number of outgoing
links from the nodev. Therefore, as a comparsion method, we consider the straigh-
forward application of this node removal method. Namely, we employ the method of
choosing nodes in decreasing order of out-degree and blocking simultaneously all the
links attached to the chosen nodes. We refer to this method as theout-degree method.
Note that the out-degree method can not be applied for all values ofk to the contamina-
tion minimization problem of blockingk links.

4.3 Experimental Results

We evaluated the performance of the proposed method and compared it with that of the
betweenness and out-degree methods. Clearly, the performance of a method for solving
the contamination minimization problem can be evaluated in terms of thecontamination
reduction rate CRRthat is defined as follows:

CRR = 100
c(G) − c(G′)

c(G)
,

whereG′ standsfor a solution graph constructed by blocking a specified number of
links from the original graphG. We estimated the value ofc by the bond percolation
method withM = 10,000 (see Equations (1) and (2)), and computed the value ofCRR.

Figures 1 and 2 show the contamination reduction rateCRRof the resulting net-
work as a function of thefraction of links blocked, FLB, for the blog and Wikipedia
networks, respectively. Here, the circles, triangles and diamonds indicate the results
for the proposed, betweenness and out-degree methods, respectively. In the right fig-
ures of Figures 1 and 2, the dashed line indicates the contamination reduction rate of
the network obtained by the proposed method when the number of links blocked,k, is
500. Here note thatk = 500 meansFLB = 0.63% andFLB = 0.20% in the blog and
Wikipedia networks, respectively. We see that the proposed method outperformed the
betweenness and out-degree methods for both the blog and the Wikipedaia networks.

These results imply that the proposed method works effectively as expected, and sig-
nificantly outperforms the conventional link-removal heuristics, that is, the betweenness
and out-degree methods. This shows that a significantly better link-blocking strategy for
reducing the spread size of contamination can be obtained by explicitly incorporating
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Fig. 1: Performance comparison of the proposed method with the betweenness and out-degree
methods in the blog network.
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Fig. 2: Performance comparison of the proposed method with the betweenness and out-degree
methods in the Wikipedia network.

the diffusion dynamics of contamination in a network, rather than relying solely on
structual properties of the graph.

In the task of removing nodes from a network, the out-degree heuristic has been
effective since many links can be blocked at the same time by removing nodes with
high out-degrees. However, we find that in the task of blocking a limited number of
links, the strategy of blocking all the links attached to nodes with high out-degrees is
not necessarily effective.

5 Conclusion

In an attempt to minimize the spread of undesirable things, such as computer viruses
and malicious rumors, by blocking a limited number of links in a network, we have
invesitigated the contamination minimization problem for the LT model that is a fun-
damental diffusion model on a network. This minimization problem is, not only yet
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another approach to the problem of preventing the spread of contamination by remov-
ing nodes in a network, but also a problem that is converse to the influece maximization
problem of finding the most influential nodes in a social network for information diffu-
sion. We have adapted the method which we developed for the IC model, known for a
model for the spread of epidemic disease, to the contamination minimization problem
under the LT model, a model known for the propagation of innovation which is con-
siderably different in nature. Using large-scale blog and Wikipedia networks, we have
experimentally demonstrated that the proposed method effectively works, and also sig-
nificantly outperforms the conventional link-removal heuristics based on the between-
ness and out-degree.
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Abstract. In this paper, we attempt to answer a question ”What does an informa-
tion diffusion model tell about social network structure?” To this end, we propose
a new scheme for empirical study to explore the behavioral characteristics of rep-
resentative information diffusion models such as the IC (Independent Cascade)
model and the LT (Linear Threshold) model on large networks with different
community structure. To change community structure, we first construct a GR
(Generalized Random) network from an originally observed network. Here GR
networks are constructed just by randomly rewiring links of the original network
without changing the degree of each node. Then we plot the expected number
of influenced nodes based on an information diffusion model with respect to the
degree of each information source node. Using large real networks, we empiri-
cally found that our proposal scheme uncovered a number of new insights. Most
importantly, we show that community structure more strongly affects information
diffusion processes of the IC model than those of the LT model. Moreover, by vi-
sualizing these networks, we give some evidence that our claims are reasonable.

1 Introduction

We can now obtain digital traces of human social interaction with some relating topics
in a wide variety of on-line settings, like Blog (Weblog) communications, email ex-
changes and so on. Such social interaction can be naturally represented as a large-scale
social network, where nodes (vertices) correspond to people or some social entities,
and links (edges) correspond to social interaction between them. Clearly these social
networks reflect complex social structures and distributed social trends. Thus, it seems
worth putting some effort in attempting to find empirical regularities and develop ex-
planatory accounts of basic functions in the social networks. Such attempts would be
valuable for understanding social structures and trends, and inspiring us to lead to the
discovery of new knowledge and insights underlying social interaction.
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A social network can also play an important role as a medium for the spread of
various information [7]. For example, innovation, hot topics and even malicious rumors
can propagate through social networks among individuals, and computer viruses can
diffuse through email networks. Previous work addressed the problem of tracking the
propagation patterns of topics through network spaces [3, 1], and studied effective “vac-
cination” strategies for preventing the spread of computer viruses through networks [8,
2]. Widely-used ufundamental probabilistic models of information diffusion through
networks are theindependent cascade (IC) modeland thelinear threshold (LT) model
[4, 3]. Researchers have recently investigated the problem of finding a limited number
of influential nodes that are effective for the spread of information through a network
under these models [4, 5]. Moreover, the influence maximization problem has recently
been extended to general influence control problems such as a contamination minimiza-
tion problem [6].

To deepen our understanding of social networks and accelerating study on infor-
mation diffusion models, we attempt to answer a question ”What does an information
diffusion model tell about social network structure?” We except that such attempts de-
rive some improved methods for solving a number of problems based on information
diffusion models such as the influence maximization problem [5]. In this paper, we
propose a new scheme for emperical study to explore the behavioral characteristics of
representative information diffusion models such as the IC model and the LT model on
large networks with different community structure. We perform extensive numerical ex-
periments on two large real networks, one generated from a large connected trackback
network of blog data, resulting in a directed graph of 12,047 nodes and 79,920 links,
and the other, a network of people, generated from a list of people within a Japanese
Wikipedia, resulting in an undirected graph of 9,481 nodes and 245,044 links. Through
these experiments, we show that our proposed scheme could uncover a number of new
insights on information diffusion processes of the IC model and the LT model.

2 Information Diff usion Models

We mathematically model the spread of information through a directed networkG =
(V,E) under the IC or LT model, whereV andE (⊂ V × V) stands for the sets of all the
nodes and links, respectively. We call nodesactive if they have been influenced with
the information. In these models, the diffusion process unfolds in discrete time-steps
t ≥ 0, and it is assumed that nodes can switch their states only from inactive to active,
but not from active to inactive. Given an initial setS of active nodes, we assume that the
nodes inS have first become active at time-step 0, and all the other nodes are inactive
at time-step 0.

2.1 Independent Cascade Model

We define the IC model. In this model, for each directed link (u,v), we specify a real
valueβu,v with 0 < βu,v < 1 in advance. Hereβu,v is referred to as thepropagation
probability through link (u,v). The diffusion process proceeds from a given initial active
set S in the following way. When a nodeu first becomes active at time-stept, it is



WhatDoes an Information Diffusion Model Tell about Social Network Structure? 3

given a single chance to activate each currently inactive child nodev, and succeeds with
probabilityβu,v. If u succeeds, thenv will become active at time-stept + 1. If multiple
parent nodes ofv first become active at time-stept, then their activation attempts are
sequenced in an arbitrary order, but all performed at time-stept. Whether or notu
succeeds, it cannot make any further attempts to activatev in subsequent rounds. The
process terminates if no more activations are possible.

For an initial active setS, let φ(S) denote the number of active nodes at the end of
the random process for the IC model. Note thatφ(S) is a random variable. Letσ(S)
denote the expected value ofφ(S). We callσ(S) the influence degreeof S.

2.2 Linear Threshold Model

We define the LT model. In this model, for every nodev ∈ V, we specify, in advance, a
weightωu,v (> 0) from its parent nodeu such that∑

u∈Γ(v)

ωu,v ≤ 1,

whereΓ(v) = {u ∈ V; (u,v) ∈ E}. The diffusion process from a given initial active set
S proceeds according to the following randomized rule. First, for any nodev ∈ V, a
thresholdθv is chosen uniformly at random from the interval [0,1]. At time-stept, an
inactive nodev is influenced by each of its active parent nodes,u, according to weight
ωu,v. If the total weight from active parent nodes ofv is at least thresholdθv, that is,∑

u∈Γt(v)

ωu,v ≥ θv,

thenv will become active at time-stept+1. Here,Γt(v) stands for the set of all the parent
nodes ofv that are active at time-stept. The process terminates if no more activations
are possible.

The LT model is also a probabilistic model associated with the uniform distribution
on [0,1]|V|. Similarly to the IC model, we define a random variableφ(S) and its expected
valueσ(S) for the LT model.

2.3 Bond Percolation Method

First, we revisit the bond percolation method [5]. Here, we consider estimating the
influence degrees{σ(v; G); v ∈ V} for the IC model with propagation probabilityp in
graphG = (V,E). For simplicity we assigned a uniform valuep for βu,v.

It is known that the IC model is equivalent to the bond percolation process that
independently declares every link ofG to be “occupied” with probabilityp [7].

It is known that the LT model is equivalent to the following bond percolation process
[4]: For anyv ∈ V, we pick at most one of the incoming links tov by selecting link
(u,v) with probabilityωu,v and selecting no link with probability 1−∑

u∈Γ(v) ωu,v. Then,
we declare the picked links to be “occupied” and the other links to be “unoccupied”.
Note here that the equivalent bond percolation process for the LT model is considerably
different from that of IC model.
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Let M be a sufficiently large positive integer. We perform the bond percolation pro-
cessM times, and sample a set ofM graphs constructed by the occupied links,

{Gm = (V,Em); m= 1, · · · ,M} .

Then, we can approximate the influence degreeσ(v;G) by

σ(v;G) ≃ 1
M

M∑
m=1

|F (v;Gm)| .

Here,for any directed graph̃G = (V, Ẽ), F (v;G̃) denotes the set of all the nodes that
arereachablefrom nodev in the graph. We say that nodeu is reachable from nodev if
there is a path fromu to v along the links in the graph. Let

V =
∪

u∈U(Gm)

S(u; Gm)

be the strongly connected component (SCC) decomposition of graphGm, whereS(u;Gm)
denotes the SCC ofGm that contains nodeu, andU(Gm) stands for a set of all the rep-
resentative nodes for the SCCs ofGm. The bond percolation method performs the SCC
decomposition of eachGm, and estimates all the influence degrees{σ(v;G); v ∈ V} in
G as follows:

σ(v;G) =
1
M

M∑
m=1

|F (u;Gm)| , (v ∈ S(u;Gm)) , (1)

whereu ∈ U(Gm).

3 Proposed Scheme for Experimental Study

We technically describe our proposed scheme for empirical study to explore the behav-
ioral characteristics of representative information diffusion models on large networks
different community structure. In addition, we present a method for visualizing such
networks in terms of community structure. Hereafter, the degree of a nodev, denoted
by deg(v), means the number of links connecting from or to the nodev.

3.1 Affection of Community Structure

As mentioned earlier, our scheme consists of two parts. Namely, to change community
structure, we first construct a GR (generalized random) network from an originally
observed network. Here GR networks are constructed just by randomly rewiring links
of the original network without changing the degree of each node [7]. Then we plot the
influence degree based on an information diffusion model with respect to the degree of
each information source node.

First we describe the method for constructing a GR network. By arbitrary ordering
all links in a given original network, we can prepare a link listLE = (e1, · · · ,e|E|).
Recall that each directed link consists of an ordered pair offrom-part andto-part nodes,
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i.e., e = (u,v). Thus, we can produce two node lists from the listLE, that is, thefrom-
part node listLF and theto-part node listLT . Clearly the frequency of each nodev
appearing inLF (or LT) is equivalent to the out (or in) degree of the nodev. Therefore,
by randomly reordering the node listLT , then concatenating it with the other node list
LF , we can produce a link list for a GR network. More specifically, letL′T be a shuffled
node list, and we denote thei-th order element of a listL by L(i), then the link list of
the GR network isL′E = ((LF(1),L′T(1)), · · · , (LF(|E|), L′T(|E|))). Here note that to fairly
compare the GR network with original one in terms of influence degree, we excluded
some types of shuffled node lists, each of which produces a GR network with self-links
of some node or multiple-links between any two nodes.

By using the bond percolation method described in the previous section, we can
efficiently obtain the influence degreeσ(v) for each nodev. Thus we can straightfor-
wardly plot each pair ofdeg(v) andσ(v). Moreover, to examine their tendency of nodes
with the same degreeδ, we also plot the average influence degreeµ(δ) calculated by

µ(δ) =
1

|{v : deg(v)= δ}
∑

{v:deg(v)=δ}
σ(v). (2)

Clearly we can guess that nodes with larger degrees influence many other nodes in any
information diffusion models, but we consider that it is worth examining its curves in
more details.

3.2 Visualization of Community Structure

In order to intuitively grasp the original and GR networks in terms of community struc-
ture, we present a visualization method that is based on the cross-entropy algorithm
[11] for network embedding, and thek-core notion [10] for label assignment.

First we describe the network embedding problem. Let{xv : v ∈ V} be the embed-
ding positions of the corresponding|V| nodes in anR dimensional Euclidean space. As
usual, we define the Euclidean distance betweenxu andxw as follows:

du,w = ∥xu − xw∥2 =
R∑

r=1

(xu,r − xw,l)
2.

Here we introduce a monotonic decreasing functionρ(s) ∈ [0,1] with respect tos≥ 0,
whereρ(0) = 1 andρ(∞) = 0. Let au,w ∈ {0,1} be an adjacency information between
two nodesu andw, indicating whether their exist a link between them (au,w = 1) or
not (au,w = 0). Then we can introduce a cross-entropy (cost) function betweenau,w and
ρ(du,w) as follows:

Eu,w = −au,w ln ρ(du,w) − (1− au,w) ln(1− ρ(dv,w)).

SinceEu,w is minimized whenρ(du,w) = au,w, this minimization with respect toxu andxw

basically coincides with our problem setting. In this paper, we employρ(s)= exp(−s/2)
as the monotonic decreasing function. Then the total cost function (objective function)
can be defined as follows:

E = 1
2

∑
u∈V

∑
w∈V

au,wdu,w −
∑
u∈V

∑
w∈V

(1− au,w) ln(1− ρ(du,w)). (3)
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Namely the cross-entropy algorithm minimizes the objective function defined in (3)
with respect to{xv : v ∈ V}.

Next we explain thek-core notion. For a given nodev in the networkG = (VG,EG),
we denoteAG(v) as a set ofadjacent nodesof v as follows:

AG(v) = {w : {v,w} ∈ EG} ∪ {u : {u,v} ∈ EG}.

A subnetworkC(k) of G is calledk-coreif each node inC(k) has more than or equal tok
adjacent nodes inC(k). More specifically, we can definek-core subnetwork as follows.
For a given orderk, thek-core is a subnetworkC(k) = (VC(k),EC(k)) consisting of the
following node setVC(k) ⊂ VG and link setVC(k) ⊂ VG:

VC(k) = {v : |AC(k)(v)| ≥ k}, EC(k) = {e : e⊂ VC(k)}.

Here according to our purpose, we focus on the subnetwork of maximum size with this
property as ak-core subnetworkC(k).

Finally we describe the label assignment strategy. As a rough necessary condition,
we assume that each community over a network includes a higher orderk-core as its
part. Here we consider that a candidate for such higher core order is greater than the
average degree calculated byd = |E|/|V|. Then we can summarize our visualization
method as follows: after embedding a given network into anR (typically R= 2) dimen-
sional Euclidean space by use of the cross-entropy algorithm, our visualization method
plots each node position by changing the appearance of nodes belonging to its ([d]+1)-
coresubnetwork. Here note that [d] denotes the greatest integer smaller thand. By this
visualization method, we can expect to roughly grasp community structure of a given
network.

4 Experimental Evaluation

4.1 Network Data

In our experiments, we employed two sets of real networks used in [5], which exhibit
many of the key features of social networks as shown later. We describe the details of
these network data.

The first one is a trackback network of blogs. Blogs are personal on-line diaries
managed by easy-to-use software packages, and have rapidly spread through the World
Wide Web [3]. Bloggers (i.e., blog authors) discuss various topics by using trackbacks.
Thus, a piece of information can propagate from one blogger to another blogger through
a trackback. We exploited the blog “Theme salon of blogs” in the site “goo”2, where a
blogger can recruit trackbacks of other bloggers by registering an interesting theme.
By tracing up to ten steps back in the trackbacks from the blog of the theme “JR
Fukuchiyama Line Derailment Collision”, we collected a large connected trackback
network in May, 2005. The resulting network had 12, 047 nodes and 79,920 directed
links, which features the so-called “power-law” distributions for the out-degree and in-
degree that most real large networks exhibit. We refer to this network data as the blog
network.

2 http://blog.goo.ne.jp/usertheme/
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The second one is a network of people that was derived from the “list of people”
within Japanese Wikipedia. Specifically, we extracted the maximal connected compo-
nent of the undirected graph obtained by linking two people in the “list of people” if
they co-occur in six or more Wikipedia pages. The undirected graph is represented by
an equivalent directed graph by regarding undirected links as bidirectional ones3. The
resulting network had 9,481 nodes and 245,044 directed links. We refer to this network
data as the Wikipedia network.

4.2 Characteristics of Network Data

Newman and Park [9] observed that social networks represented as undirected graphs
generally have the following two statistical properties that are different from non-social
networks. First, they show positive correlations between the degrees of adjacent nodes.
Second, they have much higher values of theclustering coefficient Cthan the corre-
spondingconfiguration modeldefined as the ensemble of GR networks. Here, the clus-
tering coefficientC for an undirected network is defined by

C =
1
|V|

∑
u∈V

|{(v ∈ V,w ∈ V) : v , w,w ∈ AG(v)}|
|AG(u)|(|AG(u)| − 1)

.

Another widely-used statistical measure of network is the average length of shortest
paths between any two nodes defined by

L =
1

|V|(|V| − 1)

∑
u,v

l(u, v).

wherel(u, v) denotes the shortest path length between nodesu andv. In terms of infor-
mation diffusion processes, whenL becomes smaller the probability that any informa-
tion source nodes can activate the other nodes, becomes larger in general.

Table 1 shows the basic statistics of the blog and Wikipedia networks, together with
their GR networks. We can see that the measured value ofC for the original blog net-
work is substantially larger than that of the GR blog network, and the measured value
of L for the original blog network is somehow larger than that of the GR blog network
indicating that there exisit communities. We can observe a similar tendency for the
Wikipedia networks. Note that we have already confirmed for the original Wikipedia
network that the degrees of adjacent nodes were positively correlated, although we de-
rived the network from Japanese Wikipedia. Therefore, we can say that the Wikipedia
network has the key features of social networks.

4.3 Experimental Settings

We describe our experimental settings of the IC and LT models. In the IC model, we
assigned a uniform probabilityβ to the propagation probabilityβu,v for any directed
link (u,v) of a network, that is,βu,v = β. As ourβ setting, we employed a reciprocal

3 For simplicity, we call a graph with bi-directional links an undirected graph
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Table 1: Basic statistics of networks.

network |V| |E| C L
originalblog 12,047 79,920 0.26197 8.17456

GR blog 12,047 79,920 0.00523 4.24140
original Wikipedia 9,481 245,044 0.55182 4.69761

GR Wikipedea 9,481 245,044 0.04061 3.12848

of the average degree, i.e.,β = |V|/|E|. The resulting propagation probability for the
original and GR blog networks wasβ = 0.1507, andβ = 0.0387 for the original and
GR Wikipedia networks. Incidentally, these values were reasonably close to those used
in former study, i.e.,β = 0.2 for the blog networks andβ = 0.03 for the Wikipedia
networks were used in the former experiments [6].

In the LT model, we uniformly set weights as follows. For any nodev of a net-
work, the weightωu,v from a parent nodeu ∈ Γ(v) is given byωu,v = 1/|Γ(v)|. This
experimental setting is exactly the same as the one performed in [5].

For the proposed method, we need to specify the numberM of performing the bond
percolation process. In the experiments, we usedM = 10,000 [5]. Recall that the pa-
rameterM represents the number of bond percolation processes for estimating the in-
fluence degreeσ(v) of a given initial active nodev. In our preliminary experiments, we
have already confirmed that the influence degree of each node for these networks with
M = 10,000 are comparable to those withM = 300,000.

4.4 Experimental Results Using Blog Network

Figure 1a shows the influence degree based on the IC model with respect to the degree
of each information source node over the original blog network, Figure 1b shows those
of the IC model over the GR blog network, Figure 1c shows those of the LT model
over the original Wikipedia network, and Figure 1d shows those of the LT model over
the GR Wilipedia netwok. Here the red dots and blue circles respectively stand for the
levels of the influence degree of individual nodes and their averages for the nodes with
the same degree.

In view of the difference between the information diffusion models, we can clearly
see that although nodes with larger degrees influenced many other nodes in both of the
IC and LT models, their average curves exhibit opposite curvatures as shown in these
results. In addition, we can observe that the influence degree of the individual nodes
based on the IC model have quite large variances compared with those of the LT model.

In view of the difference between the original and GR networks, we can see that
compared with the original networks, the levels of the influence degree were somewhat
larger in the GR networks. We consider that this is because the averages of shortest path
lengths became substantially larger than those of the GR networks, especially for the IC
model. In the case of the LT model over the GR network (Figure 1d), we can observe
that the influence degree was almost uniquely determined by the degree of each node.
As the most remarkable point, in the case of the IC model, we can observe a number
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of lateral lines composed of the individual influence degree over the original networks
(Figure 1a), but these lines disappeared over the GR networks (Figure 1b).
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Fig. 1: Comparison of information diffusion processes using blog network

4.5 Experimental Results Using Wikipedia Network

Figure 2 shows the same experimental results using the Wikipedia networks. From these
results, we can derive arguments similar to those of the blog networks. Thus we consider
that our arguments were substantially strengthen by these experiments.

We summarize the main points below. 1) Nodes with larger degrees influenced many
other nodes, but their average curves of the IC and LT models exhibited opposite curva-
tures; 2) The levels of the influence degree over the GR networks were somewhat larger
than those of the original networks in both of the IC and LT models; 3) The influence
degree was almost uniquely determined by the degree of each node in the case of LT
model using the GR network (Figure 2d); and 4) A number of lateral lines composed
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of the individual influence degree appeared in the case of IC model using the original
network (Figure 2a).
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Fig. 2: Comparison of information diffusion processes using wikipedia network

4.6 Community Structure Analysis

Figure 3 shows our visualization results. Here, in the case of the blog networks, since
the average degree wasd = 6.6340,we represented the nodes belonging to the 7-
core subnetwork by red points, and others by blue points. Similarly, in the case of the
Wikipedia networks, since the average degree wasd = 25.8458,we represented the
nodes belonging to the 26-core subnetwork by red points, and others by blue points.
These visualization results show that the nodes of higher core order are scattered here
and there in the original networks (Figures 3a and 3c), while those nodes are concen-
trated near the center in the GR network (Figures 3b and 3d). This clearly indicates that
the transformation to GR networks changes community structure from distributed to
lumped ones.
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Since the main difference between the original and GR networks are their com-
munity structure, we consider that a number of lateral lines appeared in the original
networks using the IC model (Figures 1a and 2a), are closely related to distributed
community structure of social networks. On the other hand, we cannot observe such
remarkable characteristics for the LT model (Figures 1b and 2b). In consequence, we
can say that community structure more strongly affects information diffusion processes
of the IC model than those of the LT model.

(a)Original blog Network (b) GR blog Network

(c) Original wikipedia Networ (d) GR wikipedia Network

Fig. 3: Visualization of Networks

5 Conclusion

In this paper, we proposed a new scheme for empirical study to explore the behavioral
characteristics of representative information diffusion models such as the Independent
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Cascade model and the Linear Threshold model on large networks with different com-
munity structure. The proposed scheme consists of tow parts, i.e., GR (generalized ran-
dom) network construction from an originally observed network, and plotting of the in-
fluence degree of each node based on an information diffusion model. Using large real
networks, we empirically found that our proposal scheme uncovers a number of new
insights. Most importantly, we showed that community structure more strongly affects
information diffusion processes of the IC model than those of the LT model. Our future
work includes the analysis of relationships between community structure and informa-
tion diffusion models by using a wide variety of social networks. We are also planing to
perform further experiments by elaborating probability settings to information diffusion
models.
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We address the problem of minimizing the propagation of undesirable things, such as computer

viruses or malicious rumors, by blocking a limited number of links in a network, which is converse
to the influence maximization problem in which the most influential nodes for information diffu-

sion is searched in a social network. This minimization problem is more fundamental than the
problem of preventing the spread of contamination by removing nodes in a network. We introduce

two definitions for the contamination degree of a network, accordingly define two contamination

minimization problems, and propose methods for efficiently finding good approximate solutions to
these problems on the basis of a naturally greedy strategy. Using large social networks, we experi-

mentally demonstrate that the proposed methods outperform conventional link-removal methods.

We also show that unlike the case of blocking a limited number of nodes, the strategy of removing
nodes with high out-degrees is not necessarily effective for these problems.
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1. INTRODUCTION

Considerable attention has recently been devoted to investigating the structure and
function of various networks including computer networks, social networks and the
World Wide Web [Newman 2003]. From a functional point of view, networks can
mediate diffusion of various things such as innovation and topics. However, unde-
sirable things can also spread through networks. For example, computer viruses
can spread through computer networks and email networks, and malicious rumors
can spread through social networks among individuals. Thus, developing effective
strategies for preventing the spread of undesirable things through a network is an
important research issue. Previous work studied strategies for reducing the spread
size by removing nodes from a network. It has been shown in particular that the
strategy of removing nodes in decreasing order of out-degree can often be effective
[Albert et al. 2000; Broder et al. 2000; Callaway et al. 2000; Newman et al. 2002].
Here notice that removal of nodes by necessity involves removal of links. Namely,
the task of removing links is more fundamental than that of removing nodes, and
this is the problem we address in the paper.
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In contrast, finding influential nodes that are effective for the spread of infor-

mation through a social network is also an important research issue in terms of
sociology and “viral marketing” [Domingos and Richardson 2001; Richardson and
Domingos 2002; Gruhl et al. 2004]. Recent studies include attempts to solve a
combinatorial optimization problem called the influence maximization problem on
a network under the independent cascade (IC) model, a widely-used fundamental
probabilistic model of information diffusion[Kempe et al. 2003; Kimura et al. 2007].
Here, the influence maximization problem is the problem of extracting a set of K
nodes to target for initial activation such that it yields the largest expected spread
of information, where K is a given positive integer. Note also that the IC model
can be identified with the so-called susceptible/infective/recovered (SIR) model for
the spread of disease in a network [Gruhl et al. 2004].

As we see, what we address in this paper is a problem that is converse to the
influence maximization problem. The problem is to minimize the spread of unde-
sirable things by blocking a limited number of links in a network. More specifically,
we consider, when some undesirable thing starts with any node and diffuses through
the network under the IC model, finding a set of K links such that the resulting net-
work obtained by blocking those links minimizes the contamination degree for the
undesirable thing, where K is a given positive integer. We refer to this combinato-
rial optimization problem as a contamination minimization problem. We introduce
two definitions for the contamination degree of a network; the average contami-
nation degree and the worst contamination degree. According to these definitions,
we formalize two contamination minimization problems; the average contamination
minimization problem and the worst contamination minimization problem. The
former aims to minimize the expected number of contaminated nodes (i.e., the av-
erage case), and the latter aims to minimize the maximum number of contaminated
nodes (i.e., the worst case).

We presented in [Kimura et al. 2008] a method for efficiently finding a good
approximate solution on the basis of a naturally greedy strategy for the average
contamination minimization problem. In this paper, we explain the method in
more detail, and propose a novel method for efficiently finding a good approxi-
mate solution on the basis of the same greedy strategy for the worst contamination
minimization problem.

Furthermore, for both the average and the worst contamination minimization
problems, we compare the proposed methods with a naive greedy strategy in terms
of computational complexity, and show that the proposed methods can achieve
a great deal of reduction in computational cost. We also present strategies for
making the proposed methods computationally more efficient in practice. Finally,
using large real networks that exhibit many of the key features of social networks,
we experimentally demonstrate that the proposed methods outperform link-removal
heuristics that rely on the well-studied notions of betweenness and out-degree in
the field of complex network theory. In particular, we show that unlike the case
of blocking a limited number of nodes, the strategy of removing nodes with high
out-degrees is not necessarily effective for our problems.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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2. INFORMATION DIFFUSION MODEL

We assume the IC model to be a mathematical model for the diffusion process
of some undesirable thing on a network. We call nodes active if they have been
contaminated by the undesirable thing.

Let G = (V, E) be a directed network, where V and E (⊂ V × V ) stand for
the sets of all the nodes and (directed) links, respectively. Throughout this paper,
a network means a directed network, a link means a directed link, and we also
call a network a graph. According to the work of Kempe et al. [2003], we define
the IC model on graph G, and recall a mathematical definition of the influence
maximization problem for the IC model on graph G.

2.1 Independent Cascade Model

First, we define the IC model on graph G. In the IC model, the diffusion process
unfolds in discrete time-steps t ≥ 0, and it is assumed that nodes can switch their
states only from inactive to active, but not from active to inactive. Given an initial
set A of active nodes, we assume that the nodes in A have first become active at
time-step 0, and all the other nodes are inactive at time-step 0. For every e ∈ E,
we specify a real value pe with 0 < pe < 1 in advance. Here, pe is referred to as the
propagation probability through link e.

The diffusion process proceeds from a given initial active set A in the following
way. When a node u first becomes active at time-step t, it is given a single chance
to activate each currently inactive child node w, and succeeds with probability pe,
where e = (u,w) ∈ E. Here, for a link e′ = (u′, w′) ∈ E, nodes u′ and w′ are called
the parent and child nodes of w′ and u′, respectively. If u succeeds, then w will
become active at time-step t + 1. If multiple parent nodes of w first become active
at time-step t, then their activation attempts are sequenced in an arbitrary order,
but all performed at time-step t. Whether or not u succeeds, it cannot make any
further attempts to activate w in subsequent rounds. The process terminates if no
more activations are possible.

For an initial active set A, let ϕ(A;G) denote the number of active nodes at the
end of the random process for the IC model on G. Note that ϕ(A;G) is a random
variable. Let σ(A;G) denote the expected value of ϕ(A;G). We call σ(A;G) the
influence degree of node set A on graph G. When A is in particular equal to a
set of single node {v}, we simply denote σ(A;G) by σ(v;G), and call σ(v;G) the
influence degree of node v on graph G.

2.2 Influence Maximization Problem

Next, we recall a mathematical definition of the influence maximization problem
on a network. Here, we consider maximizing the spread of desirable information
through graph G = (V, E). Let K be a given positive integer with K < |V |. Here,
|X| stands for the number of elements of a set X. The influence maximization
problem on G for the IC model is defined as follows: Find a subset A∗ of V with
|A∗| = K such that σ(A∗;G) ≥ σ(A;G) for every A ⊂ V with |A| = K.
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3. PROBLEM FORMULATION

We assume that some undesirable thing starts with any node in a network and
diffuses through the network under the IC model. For preventing it from spread-
ing through the network, we aim to minimize the contamination degree for the
undesirable thing by appropriately removing a fixed number of links. Here, the
contamination degree of a network is a measure of how badly the undesirable thing
will contaminate the network. We give two definitions for contamination degree,
and mathematically formalize two contamination minimization problems on a net-
work.

3.1 Contamination Degree

For any graph G = (V, E), we introduce two definitions for contamination degree
of G.

3.1.1 Average Contamination Degree. We define the average contamination de-
gree c0(G) of graph G as the average of influence degrees of all the nodes in G,

c0(G) =
1
|V |

∑

v∈V

σ(v;G). (1)

3.1.2 Worst Contamination Degree. We define the worst contamination degree
c+(G) of graph G as the maximum of influence degrees of all the nodes in G,

c+(G) = max
v∈V

σ(v;G). (2)

3.2 Contamination Minimization Problem

According to the above definitions of contamination degree, we mathematically
define the contamination minimization problems on a network, which are converse
to the influence maximization problem on the network.

For any graph G = (V, E), we denote by c(G) both the average contamination
degree c0(G) and the worst contamination degree c+(G). For any link e ∈ E, let
G(e) denote the graph (V , E \ {e}). We refer to G(e) as the graph constructed by
blocking e in G. Similarly, for any D ⊂ E, let G(D) denote the graph (V , E \ D).
We refer to G(D) as the graph constructed by blocking D in G.

We define the contamination minimization problems on a graph G = (V, E) as
follows: Given a positive integer K with K < |E|, find a subset D∗ of E with
|D∗| = K such that c(G(D∗)) ≤ c(G(D)) for any D ⊂ E with |D| = K. The
contamination minimization problem for c = c0 is referred to as the average con-
tamination minimization problem, and the contamination minimization problem for
c = c+ is referred to as the worst contamination minimization problem.

For a large network, any straightforward method for exactly solving the contam-
ination minimization problems suffers from combinatorial explosion. Therefore, we
consider approximately solving the problems.

4. PROPOSED METHOD

We propose methods for efficiently finding good approximate solutions to our con-
tamination minimization problems. Let K be the number of links to be blocked in
the problems.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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4.1 Greedy Algorithm

We approximately solve the contamination minimization problems on a given graph
G0 = (V0, E0) by the following greedy algorithm:

A1. Initialize a subset D of E0 as D ← ∅.
A2. Initialize a graph G = (V, E) as V ← V0 and E ← E0.
A3. Choose a link e∗ ∈ E minimizing c(G(e)), (e ∈ E).
A4. Update D as D ← D ∪ {e∗}.
A5. Update G = (V, E) as E ← E \ {e∗}.
A6. Return to Step A3 if |D| < K.
A7. Set DK ← D.
A8. Set GK ← G.

Here, DK is the set of links blocked, and represents the approximate solution ob-
tained by this algorithm. We refer DK to as the greedy solution. GK is the graph
constructed by blocking DK in the graph G0, that is, GK = G0(DK).

To implement this greedy algorithm, we need methods for calculating

e∗ = arg min
e∈E

c(G(e)) (3)

for a given graph G = (V, E) in Step A3 of the algorithm. The IC model is a
stochastic process model, and it is an open question to exactly calculate influence
degrees by an efficient method [Kempe et al. 2003]. Therefore, we must develop
methods for efficiently estimating {c(G(e)); e ∈ E} for graph G = (V, E).

Kimura et al. [2007] presented the bond percolation method that efficiently esti-
mates the influence degrees {σ(v; G̃); v ∈ Ṽ } for any graph G̃ = (Ṽ , Ẽ). Thus, in
the greedy algorithm, we can estimate c(G(e)) for each e ∈ E by applying the bond
percolation method for the graph G(e) and using Equations (1) or (2). Namely,
we can simply estimate the greedy solution DK by implementing Step A3 of the
greedy algorithm as follows:

(1) Estimate {c(G(e)); e ∈ E} by straightforwardly performing the bond percola-
tion method |E| times.

(2) Find e∗ ∈ E such that c(G(e∗)) ≤ c(G(e)) for any e ∈ E.

We refer this strategy to as the naive greedy strategy. However, |E| becomes very
large for a large network in the greedy algorithm unless K is very large. Namely,
the naive greedy strategy is not practical for large networks. Therefore, we propose
more efficient methods for estimating e∗ ∈ E satisfying Equation (3) on the basis
of the bond percolation method.

4.2 Bond Percolation Method

First, we revisit the bond percolation method [Kimura et al. 2007]. Here, we con-
sider estimating the influence degrees {σ(v;G); v ∈ V } for the IC model with
propagation probabilities {pe; e ∈ E} on a graph G = (V, E).

The bond percolation process with occupation probabilities {pe; e ∈ E} on graph G
is the random process in which each link e ∈ E is independently declared “occupied”
with probability pe. Note that in terms of information diffusion on a network, the
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occupied links represent the links through which the information propagates, and
the unoccupied links represent the links through which the information does not
propagate. For a positive integer M , we perform the bond percolation process M
times, and sample a set of M graphs constructed by the occupied links,

{Gm = (V, Em); m = 1, · · · ,M} .

For any v ∈ V , we define s(v;G,M) by

s(v;G,M) =
1
M

M∑
m=1

|F (v;Gm)| . (4)

Here, for any graph G̃ = (Ṽ , Ẽ) and any node v ∈ Ṽ , F (v; G̃) stands for the set of
all the nodes that are reachable from node v on graph G̃. We say that node u is
reachable from node v on graph G̃ if there is a path from u to v along the links on
graph G̃.

It is known [Newman 2003] that the IC model with propagation probabilities
{pe; e ∈ E} on graph G can be exactly mapped onto the bond percolation process
with occupation probabilities {pe; e ∈ E} on graph G, and the influence degree
σ(v;G) of node v ∈ V can well be approximated by s(v;G,M),

σ(v;G) ' s(v;G,M), (v ∈ V ), (5)

if M is sufficiently large. We decompose each graph Gm into the strongly connected
components (SCCs) as follows:

V =
Jm⋃

j=1

SCC(um
j ;Gm), (6)

where Jm is the number of the strongly connected components of graph Gm, each
um

j is an element of V , and SCC(um
j ;Gm) denotes the SCC of graph Gm that

contains node um
j . Note that

|F (v;Gm)| = ∣∣F (um
j ;Gm)

∣∣ , if v ∈ SCC(um
j ;Gm). (7)

Thus, by calculating {|F (um
j ;Gm)|; j = 1, · · · , Jm} in advance and using Equa-

tion (7), we efficiently calculate |F (v;Gm)| for all v ∈ V . Once we have {|F (v;Gm)|;
v ∈ V, m = 1, · · · ,M}, we can calculate s(v;G,M) for all v ∈ V from Equation (4).

Namely, the bond percolation method estimates all the influence degrees {σ(v;G);
v ∈ V } on graph G as follows: It first specifies the value of integer M , calculates
s(v;G,M) for all v ∈ V by performing the above procedure, and estimates σ(v;G)
for all v ∈ V by using Equation (5).

4.3 Estimation Method

Now, we give methods for efficiently estimating e∗ ∈ E satisfying Equation (3) for
a given graph G = (V, E) to implement Step A3 of the greedy algorithm for the
average and the worst contamination minimization problems.

First, we perform the bond percolation process M times on graph G = (V, E),
and sample a set of M graphs constructed by the occupied links,

{Gm = (V, Em); m = 1, · · · ,M} ,

ACM Journal Name, Vol. V, No. N, Month 20YY.
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where M is a given positive integer. Next, we calculate

BM (e) = {m ∈ {1, · · · ,M}; e /∈ Em} , (e ∈ E). (8)

Note that BM (e) represents the subset of the M trials for the bond percolation
process on graph G such that e is not an occupied link.

Here, we consider performing the bond percolation process |BM (e)| times on the
graph G(e) = (V, E \ {e}) for any e ∈ E, and sampling a set of |BM (e)| graphs
constructed by the occupied links,

{G(e)m; m = 1, · · · , |BM (e)|} .

We assume that M is large enough so that |BM (e)| is also sufficiently large. Then,
by Equation (5), we have

σ(v;G(e)) ' s (v;G(e), |BM (e)|) , (v ∈ V ). (9)

Note from Equation (4) that

s (v;G(e), |BM (e)|) =
1

|BM (e)|
|BM (e)|∑

m=1

|F (v;G(e)m)| , (v ∈ V ). (10)

In order to efficiently estimate {c(G(e)); e ∈ E} without applying the bond
percolation method on the graph G(e) for every e ∈ E, we alternatively calculate

sM (v, e) =
1

|BM (e)|
∑

m∈BM (e)

|F (v;Gm)|, (v ∈ V, e ∈ E), (11)

for the graph G on the basis of the bond percolation method. Since each link of
graph G is independently declared “occupied” in the bond percolation process, we
can obtain the following theorem from Equations (8), (9), (10) and (11).

Theorem 4.1. Let G = (V, E) be a graph. For every v ∈ V and e ∈ E, we have

sM (v, e) → σ(v;G(e))

as M →∞.

From Theorem 4.1, we can apply the approximation

σ(v;G(e)) ' sM (v, e), (v ∈ V, e ∈ E), (12)

for a sufficiently large M . Therefore, by Equations (1) and (2), we propose esti-
mating e∗ ∈ E satisfying Equation (3) for a given graph G = (V, E) as follows:

e∗ = arg min
e∈E

(
1
|V |

∑

v∈V

sM (v, e)

)
(13)

for the average contamination minimization problem (i.e., c = c0), and

e∗ = arg min
e∈E

(
max
v∈V

sM (v, e)
)

(14)

for the worst contamination minimization problem (i.e., c = c+). Notice that for
the proposed method, the value of M is specified in advance.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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4.4 Computational Complexity and Implementational Strategy

For both the average and the worst contamination minimization problems, we com-
pare the proposed methods with the naive greedy strategy in terms of computa-
tional complexity. We focus on the computational complexity of estimating e∗ ∈ E
satisfying Equation (3) for a given graph G = (V, E).

Let Q be the expected computational complexity for calculating the values of
{s(v;G, 1); v ∈ V } on graph G = (V, E) on the basis of the bond percolation
method (see, Equation (4)). Then, the expected computational complexity of the
proposed method for calculating {sM (v, e); v ∈ V , e ∈ E} amounts to MQ, since
the values of {|F (v;Gm)|; v ∈ V , m = 1, · · · ,M} are calculated on the basis of the
bond percolation method (see, Equations (4) and (11)). Note that for any e ∈ E,
calculating {sM (v, e); v ∈ V } for the proposed methods corresponds to estimat-
ing c(G(e)) through |BM (e)| trials of the bond percolation process on graph G(e)
(see, Equation (11)). For the naive greedy strategy, we consider estimating c(G(e))
through |BM (e)| trials of the bond percolation process on graph G(e) (see, Equa-
tions (9) and (10)). Then, in order to estimate the values of {c(G(e); e ∈ E}, the
naive greedy strategy requires the computational complexity of Q

∑
e∈E |BM (e)|.

Here we assumed that the computational complexities of s(v;G, 1) and s(v;G(e), 1)
are the same because |E| is sufficiently large in general. By noting that the expected
value of |BM (e)| is (1− pe)M , the expected computational complexity of the naive
greedy strategy for estimating {c(G(e); e ∈ E} becomes MQ

∑
e∈E(1− pe). Thus,

we can see that the proposed methods are
∑

e∈E(1−pe) times faster than the naive
greedy strategy on average. For instance, when the number of links is 100, 000 and
each propagation probability pe for the IC model is a uniform probability p = 0.2,
the value of

∑
e∈E(1 − pe) is 80, 000. Namely, the proposed methods can achieve

a great deal of reduction in computational cost, compared with the naive greedy
strategy.

Furthermore, the following strategies can be used to efficiently find e∗ ∈ E satis-
fying Equations (13) or (14) for a given graph G = (V, E) in actual practice.

First, as for the worst contamination minimization problem, we apply the idea of
lazy evaluations for marginal increments of a submodular function by Leskovec et al.
[2007]. More specifically, we efficiently calculate Equation (14) by appropriately
pruning the evaluations for {sM (v, e); v ∈ V , e ∈ E}. By Equations (4) and (11),
we have

M s(v;G,M) = |BM (e)| sM (v, e) +
∑

m∈{1,···,M}\BM (e)

|F (v;Gm)|

for any v ∈ V and e ∈ E. Thus, we can derive the following upper bound with
respect to sM (v, e):

M

|BM (e)|s(v;G,M) ≥ sM (v, e), (v ∈ V, e ∈ E). (15)

We arbitrarily fix a link e ∈ E. Then, we first sort all the nodes {v ∈ V }
of graph G by the value Ms(v;G,M)/|BM (e)| in descending order as follows:
〈vi; i = 1, · · · , |V |〉. We next calculate the value of sM (v, e) in this order, until
the current maximum value sM (v∗i , e) exceeds the value Ms(vi+1;G,M)/|BM (e)|
for the head vi+1 of the remaining nodes. By Equation (15), this pruning guar-
ACM Journal Name, Vol. V, No. N, Month 20YY.
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antees that the current maximum value attains the maximum without necessarily
evaluating sM (v, e) for all v ∈ V . In our experiments, the computational efficiency
was greatly improved by using this strategy, just as reported in [Leskovec et al.
2007].

Next, as for the average contamination minimization problem, we efficiently cal-
culate Equation (13) without evaluating the value of sM (v, e) for every pair of node
v and link e. Our strategy is to exploit the relation

1
|V |

∑

v∈V

sM (v, e) =
1

|BM (e)|
∑

m∈BM (e)

1
|V |

∑

v∈V

|F (v;Gm)|, (v ∈ V, e ∈ E), (16)

(see, Equation (11)). More specifically, we evaluate
∑

v∈V |F (v;Gm)/|V | for each
m on the basis of the bond percolation method in advance (see, Equations (6) and
(7)), and then calculate Equation (13) by evaluating

∑
v∈V sM (v, e) for every e ∈ E

using Equation (16).

5. EXPERIMENTAL EVALUATION

Using two large real networks that exhibit many of the key features of social net-
works, we experimentally evaluated the performance of the proposed method.

5.1 Network Data

First, we employed a trackback network of blogs because a piece of information can
propagate from one blog author to another blog author through a trackback. Since
bloggers (i.e., blog authors) discuss various topics and establish mutual communi-
cations by putting trackbacks on each other’s blogs, we regarded a link created by a
trackback as a bidirectional link. By tracing up to ten steps back in the trackbacks
from the blog of the theme “JR Fukuchiyama Line Derailment Collision” in the
site “goo” 1, we collected a large connected trackback network in May, 2005. The
resulting network was a directed graph of 12, 047 nodes and 79, 920 links, which
features the so-called “power-law” degree distribution that most large real networks
exhibit (see, Figure 1). Here, the degree distribution is the distribution of the num-
ber of undirected links for every node. We refer to this network data as the blog
network.

Next, we employed a network of people that was derived from the “list of peo-
ple” within Japanese Wikipedia. Specifically, we extracted the maximal connected
component of the undirected graph obtained by linking two people in the “list of
people” if they co-occur in six or more Wikipedia pages, and constructed a directed
graph regarding those undirected links as bidirectional ones. We refer to this net-
work data as the Wikipedia network. Here, the total numbers of nodes and directed
links were 9, 481 and 245, 044, respectively. The network also showed the power-law
degree distribution (see, Figure 2).

Newman and Park [2003] observed that social networks represented as undirected
graphs generally have the following two statistical properties that are different from
non-social networks. First, they show positive correlations between the degrees of
adjacent nodes. Second, they have much higher values of the clustering coefficient

1http://blog.goo.ne.jp/usertheme/
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Fig. 1. The degree distribution for the blog network.
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Fig. 2. The degree distribution for the Wikipedia network.

CC than the corresponding configuration models (i.e., random network models).
Here, the clustering coefficient CC for an undirected graph is defined by

CC =
3× number of triangles on the graph
number of connected triples of nodes

,

where a “triangle” means a set of three nodes each of which is connected to each
other, and a “connected triple” means a node connected directly to unordered other
pair nodes. For the undirected graph of the Wikipedia network, the value of CC of
the corresponding configuration model was 0.046, while the actual measured value
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 3. The degree correlation for the Wikipedia network.

of CC was 0.39. Namely, the undirected graph of the Wikipedia network had a
much higher value of the clustering coefficient than the corresponding configuration
model. Moreover, we can see from Figure 3 that the Wikipedia network had weakly
positive degree correlation. Therefore, we believe that the Wikipedia network is a
typical example of a large real social network represented by an undirected graph,
and can be used as the network data to evaluate the performance of the proposed
method.

5.2 Experimental Settings

For the bond percolation method, we need to specify the number M of performing
the bond percolation process. It is reported [Kimura et al. 2007] that setting the
value of M at several thousand is good enough for estimating influence degrees for
the blog and Wikipedia networks. The following is the basis of assessing the value
of M in the experiments in this paper. We estimated the average and the worst
contamination degrees for the two networks with M = 8, 000 and M = 300, 000,
where we assigned a uniform probability p to each propagation probability pe for the
IC model (how the value of p is determined for each network is described in detail in
the next paragraph). The difference in the estimated average contamination degree
for M = 8, 000 and M = 300, 000 was about 0.01% for the blog network and 0.02%
for the Wikipedia network. Also, the corresponding difference in the estimated
worst contamination degree was about 0.02% for the blog network and 0.01% for the
Wikipedia network. Thus, we concluded that the estimated contamination degrees
for these networks with M = 8, 000 are comparable to those with M = 300, 000.
By considering the assigned values of the propagation probabilities, we decided to
use M = 10, 000 through the experiments.

Because we assigned a uniform probability p to the propagation probability pe

for any directed link e of a network, the IC model had a single parameter p, and
we determined the typical value of p for each of the blog and Wikipedia networks,
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Fig. 4. Fragmentation of the blog network for the IC model. The fraction H of the maximal SCC

as a function of the propagation probability p.
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Fig. 5. Fragmentation of the Wikipedia network for the IC model. The fraction H of the maximal

SCC as a function of the propagation probability p. The upper and lower frames show the network
fragmentation curves for the whole range of p and the range of 0.01 ≤ p ≤ 0.09, respectively.

and used them in the experiments. Let us consider the bond percolation process
corresponding to the IC model with propagation probability p on a graph G =
(V, E). Let H be the expected fraction of the maximal SCC in the network con-
structed by occupied links. H is a function of p, and as the value of p decreases,
the value of H decreases. In other words, as the value of p decreases, the original
graph G gradually fragments into small clusters under the corresponding bond per-
ACM Journal Name, Vol. V, No. N, Month 20YY.
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colation process. Figures 4 and 5 show the network fragmentation curves for the
blog and Wikipedia networks, respectively. Note that H → 1 as p → 1 since the
blog and Wikipedia networks are strongly connected. Here, given the value of p,
we estimated H as follows (see, Equation (6)):

H =
1

M |V |
M∑

m=1

max
1≤j≤Jm

|SCC(um
j ;Gm)|,

where M = 10, 000. We focus on the point p∗ at which the average rate dH/dp of
change of H attains the maximum, and regard it as the typical value of p for the
network. Note that p∗ is a critical point of dH/dp, and defines one of the features
intrinsic to the network. From Figures 4 and 5, we estimated p∗ to be p∗ = 0.2 for
the blog network and p∗ = 0.03 for the Wikipedia network.

5.3 Comparison Methods

We compared the proposed method with three other heuristic methods. Two of
them are based on the well-studied notions of betweenness and out-degree in the
field of complex network theory and the other one is the crude baseline of block-
ing links randomly. We refer to these methods as betweenness method, out-degree
method and random method, respectively.

5.3.1 Betweenness Method. The betweenness score bG(e) of a link e in a graph
G = (V, E) is defined as follows:

bG(e) =
∑

u,v∈V

nG(e;u, v)
NG(u, v)

,

where NG(u, v) denotes the number of the shortest paths from node u to node
v on graph G, and nG(e;u, v) denotes the number of those paths that pass e.
Here, we set nG(e;u, v)/NG(u, v) = 0 if NG(u, v) = 0. Newman and Girvan [2004]
successfully extracted community structure in a network using the following link-
removal algorithm based on betweenness:

B1. Calculate betweenness scores for all links in the network.
B2. Find the link with the highest score and remove it from the network.
B3. Recalculate betweenness scores for all remaining links.
B4. Repeat from Step B2.

In particular, the notion of betweenness can be interpreted in terms of signals
traveling through a network. If signals travel from source nodes to destination
nodes along the shortest paths in a network, and all nodes send signals at the same
constant rate to all others, then the betweenness score of a link is a measure of the
rate at which signals pass along the link. Thus, we naively expect that blocking the
links with the highest betweenness score can be effective for preventing the spread
of contamination in the network. Therefore, we apply the method of Newman and
Girvan [2004] to the contamination minimization problems.

5.3.2 Out-degree Methods. Previous work has shown that simply removing nodes
in order of decreasing out-degrees works well for preventing the spread of contam-
ination in most real networks [Albert et al. 2000; Broder et al. 2000; Callaway
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et al. 2000; Newman et al. 2002]. Here, the out-degree d(v) of a node v means the
number of outgoing links from the node v. Therefore, as a comparison method,
we consider the straightforward application of this node removal method. Namely,
we employ the method of choosing nodes in decreasing order of out-degree and
blocking simultaneously all the links attached to the chosen nodes. We refer to
this method as the node out-degree method. Note that the node out-degree method
cannot be applied for all values of positive integer K (≤ |E|) to the contamination
minimization problems of blocking K links.

We also consider the method of blocking links between nodes with high out-
degrees as an alternative comparison method. We define the link out-degree d(e)
of a link e = (u, v) from node u to node v by

d(e) = d(u) d(v),

and recursively block links in decreasing order of link out-degree. We refer to this
method as the link out-degree method.

5.4 Experimental Results

We evaluated the performance of the proposed method and compared it with that of
the betweenness, the node out-degree, the link out-degree and the random methods.
Clearly, the performance can be evaluated by the average contamination degree c0

and the worst contamination degree c+. We estimated these values by using the
bond percolation method with M = 10, 000, that is,

c0(GK) =
1
|V |

∑

v∈V

s(v;GK ,M),

c+(GK) = max
v∈V

s(v;GK ,M),

(see, Equation (4)), where M = 10, 000. Note that this evaluation is done separately
from the approximation used to search for the link to be deleted, i.e., Equation (11).

5.4.1 Average Contamination Minimization Problem. Figures 6 and 7 show the
average contamination degree c0 as a function of the number K of links blocked
for the blog network and Figures 8 and 9 show the corresponding results for the
Wikipedia network. In these figures the circles, squares, diamonds, triangles and
crosses indicate the results for the proposed, the betweenness, the node out-degree,
the link out-degree and the random methods, respectively. For each dataset, there
are two figures, one comparing the proposed method with the betweenness method
and the other comparing the proposed method at a fixed value of K = 500 with
the node out-degree, the link out-degree and the random methods.

First, note that the average contamination degree c0 at K = 0 is 976 for the blog
network and 403 for the Wikipedia network, which is 8.2% and 4.2% respectively.
The average contamination degree as defined by Equation (1) is less than 10%. The
fact that this value for Wikipedia network is about half of that of the blog network
is explained by the smaller value of p for the Wikipedia network with the difference
in network sizes considered. As expected the proposed method performs the best
and the betweenness method follows. The other three methods are much worse
than these two in the networks used.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 6. Performance comparison between the proposed and the betweenness methods in the blog

network for the average contamination minimization problem.
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Fig. 7. Performance comparison of the proposed method at K = 500 with the node out-degree,

the link out-degree and the random methods in the blog network for the average contamination
minimization problem.

The number of links blocked: K = 500 corresponds to 0.63% of the total links for
the blog network and 0.2% for the Wikipedia network. Inversely, 0.2% of the total
links corresponds to 163 links for the blog network. The average contamination
degree at 0.2% link block, i.e., K = 163 for the blog network and K = 500 for the
Wikipedia network is 495 and 243 for the proposed method, which is equivalent
to 49% and 40% reduction in the degree, respectively, and 607 and 306 for the
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Fig. 8. Performance comparison between the proposed and the betweenness methods in the

Wikipedia network for the average contamination minimization problem.
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Fig. 9. Performance comparison of the proposed method at K = 500 with the node out-degree, the

link out-degree and the random methods in the Wikipedia network for the average contamination
minimization problem.

betweenness method, which is equivalent to 38% and 24% reduction in the degree,
respectively. The difference between the two methods is 11% for the blog network
and 16% for the Wikipedia network, respectively. The average contamination de-
gree at 0.63% link block for the blog network, i.e., K = 500 is 267 for the proposed
method and 303 for the betweenness method, which is equivalent to 73% and 69%
reduction in the degree, respectively, and the difference between the two methods
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 10. Performance comparison between the proposed and betweenness methods in the blog

network for the worst contamination minimization problem.

is 4%.
Differently from the above, the proposed method as well as the betweenness

method outperform by far the other three methods (the node out-degree, the link
out-degree and the random) for both the blog and the Wikipedia networks. Blocking
500 links by the proposed methods is equivalent to blocking more than 10,000 links
for the blog network and 20,000 links for the Wikipedia network by the other three
methods, meaning that the proposed method is 20 to 40 times more effective.

5.4.2 Worst Contamination Minimization Problem. Figures 10 and 11 show the
worst contamination degree c+ as a function of the number K of links blocked for
the blog network, and Figures 12 and 13 show the corresponding results for the
Wikipedia network. The meaning of the symbols in captions and the layout of the
figures are the same as before.

First note that the worst contamination degree c+ at K = 0 is 3218 for the blog
network and 1929 for the Wikipedia network, which is 27% and 20% respectively.
They are about 3 and 5 times larger than the average contamination degrees. The
difference of the values between the two networks is consistent with the average
contamination case. The overall performance difference among the four methods is
also consistent with the average contamination case.

The worst contamination degree at 0.2% link block, i.e., K = 163 for the blog
network and K = 500 for the Wikipedia is 1763 and 1177 for the proposed method,
which is equivalent to 45% and 39% reduction in the degree, respectively, and
2455 and 1700 for the betweenness method, which is equivalent to 24% and 12%
reduction in the degree, respectively. The difference between the two methods is
21% for the blog network and 27% for the Wikipedia network, respectively. The
worst contamination degree at 0.63% link block for the blog network, i.e., K = 500
is 1045 for the proposed method and 1193 for the betweenness method, which is
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Fig. 11. Performance comparison of the proposed method for K = 500 with the node out-degree,

link out-degree and random methods in the blog network for the worst contamination minimization
problem.
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Fig. 12. Performance comparison between the proposed and betweenness methods in the
Wikipedia network for the worst contamination minimization problem.

equivalent to 78% and 63% reduction in the degree, respectively, and the difference
between the two methods is 15%.

Again differently from the above, the proposed method as well as the betweenness
method outperform by far the other three methods (the node out-degree, the link
out-degree and the random) for both the blog and the Wikipedia networks. Blocking
500 links by the proposed method is equivalent to blocking more than 10,000 links
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 13. Performance comparison of the proposed method for K = 500 with the node out-

degree, link out-degree and random methods in the Wikipedia network for the worst contamination
minimization problem.

for the blog network and 30,000 links by the other three methods, meaning that
the proposed method is 20 to 60 times more effective.

5.4.3 Discussion. These results imply that the proposed method works effec-
tively as expected, and outperforms the conventional link-removal heuristics. There
is no big difference in the comparative performance results between the two net-
works. For both of them, the betweenness method performs reasonably well but
the other three methods (the node out-degree, the link out-degree and the random)
perform very poorly. There is no out-degree myth observed.

Of course how each of the conventional link-heuristics performs depends on the
characteristics of the network structure. In general a network consists of multiple
communities, and the members of each community are tightly connected and the
members of different communities are less tightly connected. Thus, it is reasonable
to assume that blocking the links between the different communities is effective
in suppressing the contaminant to diffuse from one community to others. This is
particularly true when there is a small number of nodes that play a key role of
connecting different communities. Blocking these small number of paths is quite
effective. The fact that the betweenness method performed reasonably well implies
that the networks we analyzed may have this type of community structure. On
the other hand, if the network is hierarchically structured, blocking the nodes,
equivalently blocking the links attached to them, in the upper hierarchy should be
quite effective. The fact that the node out-degree method does not do well suggests
that there may not be such a structure in the networks we analyzed. Among
the poorly performing three methods, the link out-degree method performs most
poorly. It performs worse than the random methods for the blog network. This
would indicate that it is mainly blocking the links within the communities.
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With all these different factors affecting the performance of each method taken,

the proposed method exhibits its strength of explicitly minimizing the contamina-
tion by considering the dynamics of information diffusion process, thereby making
its performance less sensitive to the structure of the network.

Considering the fact that all the methods can eventually block the contamination
when all of the links are blocked, it is important to have a method which is effective
when the number of links to be blocked is limited to be small, and the proposed
method has this property. It is noticeable that blocking only 0.2% of the links by
the proposed method can reduce the contamination by nearly 50%.

We have devised two measures: the average contamination degree and the worst
contamination degree. It is expected that the performance difference between the
proposed method and the betweenness method is larger for the latter than the
former, and the results is consistent. Our formulation does not assume the origins
of contamination to be known and fixed. If they are known in advance, the problem
is much easier computationally.

6. CONCLUSION

Just as good things, e.g., innovation, important topics, etc. spread through a net-
work and bring positive affects to people, undesirable things, Äe.g., computer virus,
malicious rumors, etc. also spread and affect people badly. We addressed the prob-
lem of minimizing the spread of undesirable things by blocking links in a social
network, which is converse to the influence maximization problem for the same
network. In particular, we have considered two contamination minimization prob-
lems, one minimizing the average contamination degree and the other minimizing
the worst (maximum) contamination degree. We chose to block “links” rather than
“nodes” because deleting nodes necessitates deleting links, but not vice versa.

We have proposed novel methods for efficiently finding good approximate solu-
tions to these problems on the basis of a naturally greedy algorithm and the bond
percolation method. Using large-scale blog and Wikipedia networks, we have ex-
perimentally demonstrated that the proposed method works effectively, and also
outperforms the conventional link-removal heuristics. The betweenness method
performed reasonably well but the out-degree methods performed very poorly al-
most as badly as the random method. No out-degree myth was observed for the
networks we analyzed. The performance of the link-removal heuristics is strongly
affected by the network structure, but the proposed method shows that it is im-
portant to explicitly minimize the contamination by considering the dynamics of
information diffusion process, which would make the performance less sensitive to
the structure of the network.
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Abstract We address the problem of ranking influential nodes in complex social
networks by estimating diffusion probabilities from observed information diffusion
data using the popular independent cascade (IC) model. For this purpose we for-
mulate the likelihood for information diffusion data which is a set of time sequence
data of active nodes and propose an iterative method to search for the probabilities
that maximizes this likelihood. We apply this to two real world social networks in
the simplest setting where the probability is uniform for all the links, and show that
the accuracy of the probability is outstandingly good, and further show that the pro-
posed method can predict the high ranked influential nodes much more accurately
than the well studied conventional four heuristic methods.

1 Introduction

Innovation, hot topics and even malicious rumors can propagate through social net-
works among people in the form of so-called “word-of-mouth” communications.
The rise of the Internet and the World Wide Web accelerates the creation of vari-
ous large-scale social networks. Therefore, considerable attention has recently been
devoted to social networks as an important medium for the spread of information.

Previous work addressed the problem of tracking the propagation patterns of
topics or influence through blogspace [1, 5, 10], and studied strategies for removing
nodes to prevent the spread of some undesriable information through a network, for
example, the spread of a computer virus through an email network [2, 11]. A widely-
used fundamental probabilistic model of information diffusion through a network is
theindependent cascade (IC) model[6, 5]. Using this model, the problem of finding
a limited number of nodes that are effective for the spread of information [6, 8] have
been extensively investigated. This combinatorial optimization problem is called the
influence maximization problem. This problem was also investigated in a different
setting (a descriptive probabilistic model of interaction) [4, 13]. Further, yet another
problem of minimizing the spread of undesirable information by blocking a limited
number of links in a network [9] has recently been addressed. In this paper, we also
explore information diffusion phenomena for the IC model in a given network.



Overall, finding influential nodes in a social network is one of the most central
problems in the field of social network analysis. There exist several methods for
ranking nodes on the basis of the network structure [15]. We also address this prob-
lem, but from a different angle. We propose a method for extracting influential nodes
by ranking nodes in terms ofinfluence degreesfor the IC model on the basis of the
observed data of information diffusion in the network. The IC model is equipped
with parameters. More specifically, thediffusion probabilitymust be specified for
each link in the network in advance. We estimate the probabilities so that the like-
lihood of obtaining the observed set of information diffusion data is maximized by
an iterative algorithm (EM algorithm). Using two real world networks: the blog and
Wikipedia networks, we first evaluate the accuracy of the diffusion probabilities and
then use the estimated model to find the influential nodes and compare the results
with the ground truth as well as the results that are obtained by using four strategies,
each with a different heuristic, showing that the proposed method far outperforms
the conventional methods.

The rest of the paper is organized as follows. The proposed method is formulated
as a machine learning problem in section 2, and the experimental results together
with the experimental settings are given in section 3, followed by some discussion
of how the probabilities affect the influential nodes in section 4. We conclude this
paper by summarizing our findings in section 5.

2 Proposed Method

2.1 Problem Formulation and Extraction Method

For a given directed network (or equivalently graph)G = (V,E), let V be a set of
nodes (or vertices) andE a set of links (or edges), where we denote each link by
e= (v,w) ∈ E andv 6= w, meaning there exists a directed link from a nodev to a
nodew. For each nodev in the networkG, we denoteF(v) as a set of child nodes
of v as follows:F(v) = {w;(v,w)∈ E}. Similarly, we denoteB(v) as a set of parent
nodes ofv as follows:B(v) = {u;(u,v)∈ E}.

In the IC model, for each directed linke= (v,w), we specify a real valuepv,w

with 0 < pv,w < 1 in advance. Herepv,w is referred to as thediffusion probabilityof
link (v,w). The diffusion process proceeds from a given initial active setD(0) in the
following way. When a nodev first becomes active at time-stept, it is given a single
chance to activate each currently inactive child nodew, and succeeds with proba-
bility pv,w. If v succeeds, thenw will become active at time-stept + 1. If multiple
parent nodes ofw first become active at time-stept, then their activation attempts
are sequenced in an arbitrary order, but all performed at time-stept. Whether or not
v succeeds, it cannot make any further attempts to activatew in subsequent rounds.
The process terminates if no more activations are possible.
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For a given set of diffusion probabilities,Θ = {pv,w;(v,w) ∈ E}, and an initial
active nodev, we define theinfluence degree, denoted byσ(v;Θ), as the expected
number of active nodes. Our problem of finding influential nodes is formulated as a
node ranking problem based on the influence degreeσ(v;Θ0), whereΘ0 means a set
of the true diffusion probabilities. In practice settings, however, the true diffusion
probability setΘ0 is not available. Thus, we consider to utilize their probabilities
Θ̂ estimated from past information diffusion histories observed as sets of active
nodes. Then we need to evaluate the ranking similarity between two sorted node
lists according toσ(v;Θ0) andσ(v;Θ̂).

2.2 Probability Estimation Method

Let D = D(0)∪D(1)∪·· ·∪D(T) be an information diffusion result, whereD(t) is
the set of nodes that have become active at timet. Whenv∈ D(t) andw∈ D(t +1)
∩ F(v) hold for some linke = (v,w), it is possible that the nodev succeeded in
activating the nodew via the linke. However, since we should consider possibilities
that some other nodesv′ ∈ D(t)∩B(w) also succeeded in activating the nodew, we
need to calculate the probability that the nodew becomes active at timet + 1 as
follows: P(w;t +1) = 1− ∏v∈B(w)∩D(t)(1− pv,w). Here note that ifw∈ D(t +1), it
is guaranteed thatD(t)∩B(w) 6= /0.

We setC(t) = D(0)∪ ·· ·∪D(t). Note thatC(t) is the set of active nodes at time
t. Whenv∈ D(t) andw∈ F(v)\C(t +1) hold, we know that the nodev definitely
failed to activate the nodew via the linke. Clearly, whenv∈ D(t) andw∈ F(v)∩
C(t) hold, as well asv 6∈ D, no information is available about the trial with respect
to the linke= (v,w). Therefore, we can define the likelihood function with respect
to Θ = {pv,w} as follows:

L (Θ ;D)=
T−1

∏
t=0

∏
w∈D(t+1)

(
1− ∏

v∈B(w)∩D(t)
(1− pv,w)

)
T

∏
t=0

∏
v∈D(t)

∏
w∈F(v)\C(t+1)

(1−pv,w).

Let {Dm;1≤ m≤ M} be an observed data set ofM independent information
diffusion results. Then we can define the following objective function with respect
to Θ :

J (Θ) =
M

∑
m=1

logL (Θ ;Dm). (1)

Thus, our problem is to obtain the set of information diffusion probabilitiesΘ ,
which maximizes Equation (1). For this estimation problem, we have already pro-
posed an estimation method based on the Expectation-Maximization algorithm in
order to stably obtain its solutions [14].

In order to evaluate fundamental abilities of our method, in this paper, we con-
sider the simplest case that all links have the same diffusion probabilityp. Note
that this problem setting has been widely adopted in many previous experiments



[6, 8, 9], and the formulation is valid for more general cases in which there is no
such restriction.

3 Experiments

3.1 Experimental Settings

We employed two sets of large real networks used in [9], the blog and Wikipedia
networks, which exhibit many of the key features of social networks. These are
bidirectional networks. The blog network had 12,047 nodes and 79,920 directed
links, and the Wikipedia network had 9,481 nodes and 245,044 directed links. As
stated before, in our preliminary experiments, we assumed the simplest case where
the diffusion probability is uniform throughout the network, and set the valuep as
follows: p = 0.1 for the blog network andp = 0.01 for the Wikipedia network.
We evaluated the influence degrees{σ(v); v ∈ V} using the method of [8] with
the parameter value 10,000, where the parameter represents the number of bond
percolation processes (we do not describe the method here due to the page limit).
The average value and the standard deviation of the influence degrees was 87.5 and
131 for the blog network, and 8.14 and 18.4 for the Wikipedia network.

In the learning stage, a training sample was an information diffusion pathD =
D(0)∪D(1)∪ ·· · ∪D(T) which is a sequence of the active nodes starting from a
randomly selected initial active node. We usedM training samples for learning the
propagation probability, whereM is a parameter.

3.2 Comparison Methods

We compared the proposed method with four heuristics from social network analysis
with respect to the predictive capability of high ranked influential nodes.

First, “degree centrality”, “closeness centrality”, and “betweenness centrality”
are commonly used as influence measure in sociology [15], where the degree of
nodev is defined as the number of links attached tov, the closeness of nodev is
defined as the reciprocal of the average distance betweenv and other nodes in the
network, and the betweenness of nodev is defined as the total number of shortest
paths between pairs of nodes that pass throughv.

We also consider measuring the influence of each node by its “authoritativeness”
obtained by the “PageRank” method [3], since this is a well known method for
identifying authoritative or influential pages in a hyperlink network of web pages.
This method has a parameterε; when we view it as a model of a random web
surfer,ε corresponds to the probability with which a surfer jumps to a page picked
uniformly at random [12]. In our experiments, we used a typical setting ofε = 0.15.
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3.3 Experimental Results

First, we examined the learning performance of propagation probability by the pro-
posed method. Letp0 be the true value of propagation probability, and let ˆp be the
value of propagation probability estimated by the proposed method. We evaluated
the learning performance in terms of the error rateE = |p0− p̂|/p0.

Table 1 Learing performance of propagation probability.

Results for the blog network
M E
20 0.036(0.024)
40 0.018(0.014)
60 0.016(0.007)
80 0.009(0.006)
100 0.006(0.004)

Resultsfor the Wikipedia network
M E
20 0.138(0.081)
40 0.109(0.066)
60 0.080(0.041)
80 0.047(0.018)
100 0.021(0.013)

Table 1 shows the average value ofE and the standard deviation in parenthesis for
the number of training samples,M, where we performed the same experiment five
times independently. Our algorithm can converge to the true value efficiently when
there is a reasonable amount of training data. The results are better for a larger value
of diffusion probability. The results demonstrate the effectiveness of the proposed
method.
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Fig. 1 Performance comparison in extracting influential nodes for the blog network.

Next, in terms of ranking for extracting influential nodes from the network
G = (V,E), we compared the proposed method with the out-degree, the between-
ness, the closeness, and the PageRank methods. For any positive integerr (≤ |V|),
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Fig. 2 Performance comparison in extracting influential nodes for the Wikipedia network.

let L0(r) be the true set of topr nodes, and letL(r) be the set of topr nodes for a
given ranking method. We evaluated the performance of the ranking method by the
ranking similarity F(r) at rankr, whereF(r) is defined byF(r) = |L0(r)∩L(r)|/r.
We focused on ranking similarities at high ranks since we are interested in extracting
influential nodes. Figures 1 and 2 show the results for the blog and the Wikipedia
networks, respectively. Here, circles, triangles, diamonds, squares, and asterisks in-
dicate ranking similarityF(r) as a function of rankr for the proposed, the out-
degree, the betweenness, the closeness, and the PageRank methods, respectively.
For the proposed method, we plotted the average value ofF(r) at r for five ex-
perimental results in the case ofM = 100. The proposed method gives far better
results than the other heuristic based methods for the both networks demonstrating
the effectiveness of the proposed method.

4 Discussion

We consider that our proposed ranking method presents a novel concept of cen-
trality based on the information diffusion model, i.e.,the IC model. Actually, Fig-
ures 1 and 2 show that nodes identified as higher ranked by our method are sub-
stantially different from those by each of the conventional methods. This means that
our method enables a new type of social network analysis if past information diffu-
sion data are available. Of course, it is beyond controversy that each conventional
method has its own merit and usage, and our method is an addition to them which
has a different merit in terms of information diffusion.

Here, we do some simple analysis of explaining why it is important to know
the diffusion probability in finding the influential nodes. If the probability does not
affect the ranking, we don’t care about its absolute value. However, a simple anal-
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Fig. 3 An example of network.

ysis reveals that it does affect the node ranking. Note thatσ(v;p) is a monotoni-
cally increasing non negative function ofp if v’s out degree is non zero. Assume
that there are two such nodesv and w that have the following graph structures:
(v,v1),(v,v2),(v,v3)∈E and(w,w1),(w,w2),(w1,w3),(w2,w3)∈E (see Fig. 3). The
maximum influential degree is 3 for the both nodesv andw. The expected values
are easily calculated [7] asσ(v;p) = 3p, andσ(w;p) = 2p+ (1− (1− p2)2) =
2p + 2p2 − p4. Thus, σ(v;p)− σ(w;p) = p(1− p)(1− p− p2). From this, if
p < (−1+

√
5)/2,σ(v;p) > σ(w;p). Otherwise,σ(v;p)≤ σ(w;p). Intuitively, as

p gets larger, the influential probability of the nodes reachable in two steps from the
starting node becomes larger than that of the nodes reachable in one step, and thus,
w that has child nodes in two steps downward has a larger influential degree. Since
in general there are many subnetworks like these within a network, it is important
to estimate the diffusion probabilities as accurately as possible. We believe that the
methods proposed in this paper would contribute to various types of social network
analyses.

We note that the analysis we showed in this paper is the simplest case where
p takes a single value for all the links inE. However, the method is very general.
In a more realistic setting we can divideE into subsetsE1,E2, ...,EN and assign
a different valuepn for all the links in eachEn. For example, we may divide the
nodes into two groups: those that strongly influence others and those not, or we may
divide the nodes into another two groups: those that are easily influenced by others
and those not. We can further divide the nodes into multiple groups. If there is some
background knowledge about the node grouping, our method can make the best
use of it, one of the characteristics of the artificial intelligence approach. Obtaining
such background knowledge is also an important research topic in the knowledge
discovery from social networks.

5 Conclusion

We addressed the problem of ranking influential nodes in complex social networks,
given the network topology and the observation data of information diffusion. We



formulatedhow to estimate the diffusion probability of each link from the past infor-
mation diffusion histories observed as sets of active nodes using the popular infor-
mation diffusion model,IC modelas a likelihood maximization problem and derived
an efficient iterative EM method to solve it. The results we obtained by applying to
two real world networks in the simplest setting where the probability is uniform
throughout each network show that 1) the method can estimate the probability accu-
rately when there is enough number of observation sequence data that can be used
for training and 2) the ranking of influential nodes predicted by the method far out-
performs the other well known heuristic based methods (degree centrality, closeness
centrality, betweenness centrality, and authoritativeness).

Acknowledgements This work was partly supported by Asian Office of Aerospace Research and
Development, Air Force Office of Scientific Research, U.S. Air Force Research Laboratory under
Grant No. AOARD-08-4027, and JSPS Grant-in-Aid for Scientific Research (C) (No. 20500147).

References

1. Adar E, Adamic L (2005) Tracking information epidemics in blogspace. In: WI’05 207–214
2. Albert R, Jeong H, Barab́asi A L (2000) Error and attack tolerance of complex networks.

Nature 406:378–382
3. Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. In:

WWW’98 107–117
4. Domingos P, Richardson M (2001) Mining the network value of customers. In: KDD’01 57–

66
5. Gruhl D, Guha R, Liben-Nowell D, Tomkins A (2004) Information diffusion through

blogspace. In: WWW’04 107–117
6. Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social

network. In: KDD’03 137–146
7. Kimura M, Saito K (2006) Tractable models for information diffusion in social networks. In:

PKDD’06 259–271
8. Kimura M, Saito K, Nakano R (2007) Extracting influential nodes for information diffusion

on a social network. In: AAAI’07 1371–1376
9. Kimura M, Saito K, Motoda H (2008) Minimizing the spread of contamination by blocking

links in a network. In: AAAI’08 1175–1180
10. Leskovec J, Adamic L, Huberman B A (2006) The dynamics of viral marketing. In: EC’06

228–237
11. Newman M E J, Forrest S, Balthrop J (2002) Email networks and the spread of computer

viruses. Phys Rev E 66:035101
12. Ng A Y, Zheng A X, Jordan M I (2001) Link analysis, eigenvectors and stability. In: IJCAI’01

903–901
13. Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In:

KDD’02 61–70
14. Saito K, Nakano R, Kimura M (2008) Prediction of information diffusion probabilities for

independent cascade model. In: KES’08 67–75
15. Wasserman S, Faust K (1994) Social network analysis. Cambridge University Press, Cam-

bridge, UK



Efficient Estimation of Influence Functions for SIS Model on Social Networks∗

Masahiro Kimura

Department of Electronics and

Informatics

Ryukoku University

kimura@rins.ryukoku.ac.jp

Kazumi Saito

School of Administration and

Informatics

University of Shizuoka

k-saito@u-shizuoka-ken.ac.jp

Hiroshi Motoda

Institute of Scientific and

Industrial Research

Osaka University

motoda@ar.sanken.osaka-u.ac.jp

Abstract

We address the problem of efficiently estimat-
ing the influence function of initially activated
nodes in a social network under the suscepti-
ble/infected/susceptible (SIS) model, a diffusion
model where nodes are allowed to be activated mul-
tiple times. The computational complexity drasti-
cally increases because of this multiple activation
property. We solve this problem by constructing a
layered graph from the original social network with
each layer added on top as the time proceeds, and
applying the bond percolation with a pruning strat-
egy. We show that the computational complexity of
the proposed method is much smaller than the con-
ventional naive probabilistic simulation method by
a theoretical analysis and confirm this by applying
the proposed method to two real world networks.

1 Introduction

Social networks mediate the spread of various information
including topics, ideas and even (computer) viruses. The
proliferation of emails, blogs and social networking services
(SNS) in the World Wide Web accelerates the creation of
large social networks. Therefore, substantial attention has
recently been directed to investigating information diffusion
phenomena in social networks [Adar and Adamic, 2005;
Leskovec et al., 2007b; Agarwal and Liu, 2008].

Overall, finding influential nodes is one of the most cen-
tral problems in social network analysis. Thus, develop-
ing methods to do this on the basis of information diffu-
sion is an important research issue. Widely-used funda-
mental probabilistic models of information diffusion are the
independent cascade (IC) model and the linear threshold
(LT) model [Kempe et al., 2003; Gruhl et al., 2004]. Re-
searchers investigated the problem of finding a limited num-
ber of influential nodes that are effective for the spread of
information under the above models [Kempe et al., 2003;
Kimura et al., 2007]. This combinatorial optimization prob-
lem is called the influence maximization problem. Kempe

∗This work was partly supported by Asian Office of Aerospace
Research and Development, Air Force Office of Scientific Research,
U.S. Air Force Research Laboratory under Grant No. AOARD-08-
4027, and Grant-in-Aid for Scientific Research (C) (No. 20500147).

et al. [2003] experimentally showed on large collaboration
networks that the greedy algorithm can give a good approx-
imate solution to this problem, and mathematically proved a
performance guarantee of the greedy solution (i.e., the solu-
tion obtained by the greedy algorithm). Recently, methods
based on bond percolation [Kimura et al., 2007] and sub-
modularity [Leskovec et al., 2007a] were proposed for effi-
ciently estimating the greedy solution. The influence max-
imization problem has applications in sociology and “vi-
ral marketing” [Agarwal and Liu, 2008], and was also in-
vestigated in a different setting (a descriptive probabilis-
tic model of interaction) [Domingos and Richardson, 2001;
Richardson and Domingos, 2002]. The problem has recently
been extended to influence control problems such as a con-
tamination minimization problem [Kimura et al., 2009].

The IC model can be identified with the so-called suscep-
tible/infected/recovered (SIR) model for the spread of a dis-
ease [Newman, 2003; Gruhl et al., 2004]. In the SIR model,
only infected individuals can infect susceptible individuals,
while recovered individuals can neither infect nor be infected.
This implies that an individual is never infected with the dis-
ease multiple times. This property holds true for the LT
model as well. However, there exist phenomena for which
the property does not hold. For example, consider the follow-
ing propagation phenomenon of a topic in the blogosphere:
A blogger who has not yet posted a message about the topic
is interested in the topic by reading the blog of a friend, and
posts a message about it (i.e., becoming infected). Next, the
same blogger reads a new message about the topic posted by
some other friend, and may post a message (i.e., becoming
infected) again. Most simply, this phenomenon can be mod-
eled by an susceptible/infected/susceptible (SIS) model from
the epidemiology. Like this example, there are many exam-
ples of information diffusion phenomena for which the SIS
model is more appropriate, including the growth of hyper-link
posts among bloggers [Leskovec et al., 2007b], the spread
of computer viruses without permanent virus-checking pro-
grams, and epidemic disease such as tuberculosis and gonor-
rhea [Newman, 2003]. In this paper, we focus on an informa-
tion diffusion process in a social network over a given time
span on the basis of an SIS model.

Here, the SIS model is a stochastic process model, and the
influence of a node v at time-step t, σ(v, t), is defined as the
expected number of infected nodes at time-step t when v is



initially infected at time-step t = 0. We refer to σ as the
influence function for the SIS model. Developing an effec-
tive method for estimating σ is vital for various applications.
Clearly, in order to extract influential nodes, we must estimate
the value of σ(v, t) for every node v and time-step t. More-
over, note that the method developed can be easily extended
and applied to approximately solving the influence maximiza-
tion problem for the SIS model by the greedy alogrithm. We
can naively estimate σ by simulating the SIS model. How-
ever, this naive method is overly inefficient and not practical
at all as shown in the experiments. In this paper, we propose
a method for estimating influence function σ efficiently. By
theoretically comparing computational complexity with the
naive method, we show that the proposed method is expected
to achieve a large reduction in computational cost. Further,
using two large real networks, we experimentally demon-
strate that the proposed method is much more efficient than
the naive method with the same accuracy.

2 Information Diffusion Model

Let G = (V,E) be a directed network, where V and E (⊂
V ×V ) stand for the sets of all the nodes and (directed) links,
respectively. For any v ∈ V , let Γ(v;G) denote the set of the
child nodes (directed neighbors) of v, that is,

Γ(v;G) = {w ∈ V ; (v, w) ∈ E}.

2.1 SIS Model

An SIS model for the spread of a disease is based on the cycle
of disease in a host. A person is first susceptible to the dis-
ease, and becomes infected with some probability when the
person encounters an infected person. The infected person
becomes susceptible to the disease soon without moving to
the immune state. We consider a discrete-time SIS model for
information diffusion on a network. In this context, infected
nodes mean that they have just adopted the information, and
we call these infected nodes active nodes.

We define the SIS model for information diffusion on G.
In the model, the diffusion process unfolds in discrete time-
steps t ≥ 0, and it is assumed that the state of a node is either
active or inactive. For every link (u, v) ∈ E, we specify a
real value pu,v with 0 < pu,v < 1 in advance. Here, pu,v is
referred to as the propagation probability through link (u, v).
Given an initial set of active nodes X and a time span T ,
the diffusion process proceeds in the following way. Suppose
that node u becomes active at time-step t (< T ). Then, node
u attempts to activate every v ∈ Γ(u;G), and succeeds with
probability pu,v . If node u succeeds, then node v will become
active at time-step t + 1. If multiple active nodes attempt to
activate node v in time-step t, then their activation attempts
are sequenced in an arbitrary order. On the other hand, node
u will become inactive at time-step t+1 unless it is activated
from an active node in time-step t. The process terminates if
the current time-step reaches the time limit T .

2.2 Influence Function

For the SIS model on G, we consider a diffusion sample from
an initial active node v ∈ V over time span T . Let S(v, t)
denote the set of active nodes at time-step t. Note that S(v, t)

is a random subset of V and S(v, 0) = {v}. Let σ(v, t) de-
note the expected number of |S(v, t)|, where |X| stands for
the number of elements in a set X . We call σ(v, t) the influ-
ence of node v at time-step t. Note that σ is a function defined
on V × {0, 1, · · · , T}. We call the function σ the influence
function for the SIS model over time span T on network G.

It is important to estimate the influence function σ effi-
ciently. We can simply estimate σ by the simulations based
on the SIS model in the following way. First, a sufficiently
large positive integer M is specified. For each v ∈ V , the
diffusion process of the SIS model is simulated from the ini-
tial active node v, and the number of active nodes at time-step
t, |S(v, t)|, is calculated for every t ∈ {0, 1, · · · , T}. Then,
σ(v, t) is estimated as the empirical mean of |S(v, t)|’s that
are obtained from M such simulations. We refer to this esti-
mation method as the naive method. As shown in the exper-
iments, the naive method is extremely inefficient, and cannot
be practical.

3 Proposed Method

We propose a method for efficiently estimating the influence
function σ over time span T for the SIS model on network G.

3.1 Layered Graph

We build a layered graph GT = (V T , ET ) from G in the
following way. First, for each node v ∈ V and each time-step
t ∈ {0, 1, · · · , T}, we generate a copy vt of v at time-step t.
Let Vt denote the set of copies of all v ∈ V at time-step t.
We define V T by V T = V0 ∪ V1 ∪ · · · ∪ VT . In particular,
we identify V with V0. Next, for each link (u, v) ∈ E, we
generate T links (ut−1, vt), (t ∈ {1, · · · , T}), in the set of
nodes V T . We set Et = {(ut−1, vt); (u, v) ∈ E}, and define
ET by ET = E1∪· · ·∪ET . Moreover, for any link (ut−1, vt)
of the layered graph GT , we define the occupation probability
qut−1,vt

by qut−1,vt
= pu,v .

Then, we can easily prove that the SIS model with prop-
agation probabilities {pe; e ∈ E} on G over time span T is
equivalent to the bond percolation process (BP) with occu-
pation probabilities {qe; e ∈ ET } on GT .1 Here, the BP
process with occupation probabilities {qe; e ∈ ET } on GT is
the random process in which each link e ∈ ET is indepen-
dently declared “occupied” with probability qe. We perform
the BP process on GT , and generate a graph constructed by

occupied links, G̃T = (V T , ẼT ). Then, in terms of infor-
mation diffusion by the SIS model on G, an occupied link
(ut−1, vt) ∈ Et represents a link (u, v) ∈ E through which
the information propagates at time-step t, and an unoccupied
link (ut−1, vt) ∈ Et represents a link (u, v) ∈ E through
which the information does not propagate at time-step t. For

any v ∈ V , let F (v; G̃T ) be the set of all nodes that can be

reached from v (= v0) through a path on the graph G̃T . When
we consider a diffusion sample from an initial active node

v ∈ V for the SIS model on G, F (v; G̃T ) ∩ Vt represents the
set of active nodes at time-step t, S(v, t).

1The SIS model over time span T on G can be exactly mapped
onto the IC model on G

T [Kempe et al., 2003]. Thus, the result fol-
lows from the equivalence of the BP process and the IC model [New-
man, 2003; Kempe et al., 2003; Kimura et al., 2007].



3.2 Bond Percolation Method

Using the equivalent BP process, we present a method for
efficiently estimating influence function σ. We refer to this
method as the BP method. Unlike the naive method, the BP
method simultaneously estimates σ(v, t) for all v ∈ V . More-
over, the BP method does not fully perform the BP process,
but performs it partially. Note first that all the paths from a

node v ∈ V on the graph G̃T represent a diffusion sample
from the initial active node v for the SIS model on G. Let L′

be the set of the links in GT that is not in the diffusion sam-
ple. For calculating |S(v, t)|, it is unnecessary to determine
whether the links in L′ are occupied or not. Therefore, the BP
method performs the BP process for only an appropriate set
of links in GT . The BP method estimates σ by the following
algorithm:

BP method:

1. Set σ(v, t)← 0 for each v ∈ V and t ∈ {1, · · · , T}.

2. Repeat the following procedure M times:

2-1. Initialize S(v, 0) = {v} for each v ∈ V , and set
A(0)← V , A(1)← ∅, · · ·, A(T )← ∅.

2-2. For t = 1 to T do the following steps:

2-2a. Compute B(t− 1) =
⋃

v∈A(t−1) S(v, t− 1).

2-2b. Perform the BP process for the links from B(t− 1) in

GT , and generate the graph G̃t constructed by the occu-
pied links.

2-2c. For each v ∈ A(t − 1), compute S(v, t) =⋃
w∈S(v,t−1) Γ(w; G̃t), and set σ(v, t) ← σ(v, t) +

|S(v, t)| and A(t)← A(t) ∪ {v} if S(v, t) 6= ∅.

3. For each v ∈ V and t ∈ {1, · · · , T}, set σ(v, t) ←
σ(v, t)/M , and output σ(v, t).

Note that A(t) finally becomes the set of information source
nodes that have at least an active node at time-step t, that is,
A(t) = {v ∈ V ; S(v, t) 6= ∅}. Note also that B(t − 1) is
the set of nodes that are activated at time-step t − 1 by some
source nodes, that is, B(t− 1) =

⋃
v∈V S(v, t− 1).

Now we estimate the computational complexity of the BP
method in terms of the number of the nodes, Na, that are
identified in step 2-2a, the number of the coin-flips, Nb, for
the BP process in step 2-2b, and the number of the links, Nc,
that are followed in step 2-2c. Let d(v) be the number of
out-links from node v (i.e., out-degree of v) and d′(v) the
average number of occupied out-links from node v after the
BP process. Here we can estimate d′(v) by

∑
w∈Γ(v;G) pv,w.

Then, for each time-step t ∈ {1, · · · , T}, we have

Na =
∑

v∈A(t−1)

|S(v, t− 1)|, Nb =
∑

w∈B(t−1)

d(w), (1)

and

Nc =
∑

v∈A(t−1)

∑

w∈S(v,t−1)

d′(w) (2)

on average.
In order to compare the computational complexity of the

BP method to that of the naive method, we consider mapping

the naive method onto the BP framework, that is, separating
the coin-flip process and the link-following process. We can
easily verify that the following algorithm in the BP frame-
work is equivalent to the naive method:

A method that is equivalent to the naive method:

1. Set σ(v, t)← 0 for each v ∈ V and t ∈ {1, · · · , T}.

2. Repeat the following procedure M times:

2-1. Initialize S(v, 0) = {v} for each v ∈ V , and set
A(0)← V , A(1)← ∅, · · ·, A(T )← ∅.

2-2. For t = 1 to T do the following steps:

2-2b’. For each v ∈ A(t − 1), perform the BP process for
the links from S(v, t− 1) in GT , and generate the graph

G̃t(v) constructed by the occupied links.

2-2c’. For each v ∈ A(t − 1), compute S(v; t) =⋃
w∈S(v,t−1) Γ(w; G̃t(v)), and set σ(v, t) ← σ(v, t) +

|S(v, t)| and A(t)← A(t) ∪ {v} if S(v, t) 6= ∅.

3. For each v ∈ V and t ∈ {1, · · · , T}, set σ(v, t) ←
σ(v, t)/M , and output σ(v, t).

Then, for each t ∈ {1, · · · , T}, the number of coin-flips,Nb′ ,
in step 2-2b’ is

Nb′ =
∑

v∈A(t−1)

∑

w∈S(v,t−1)

d(w), (3)

and the number of the links, Nc′ , followed in step 2-2c’ is
equal toNc in the BP method on average. From equations (2)
and (3), we can see that Nb′ is much larger than Nc′ = Nc,
especially for the case where the diffusion probabilities are
small. By equations (1) and (3), we can also see that Nb′

is generally much larger than each of Na and Nb in the BP
method for a real social network. In fact, since such a net-
work generally includes large clique-like subgraphs, there are
many nodes w ∈ V such that d(w) ≫ 1, and we can expect
that

∑
v∈A(t−1) |S(v, t− 1)| ≫ |

⋃
v∈A(t−1) S(v, t− 1)| (=

|B(t− 1)|). Therefore, the BP method is expected to achieve
a large reduction in computational cost.

3.3 Pruning Method

In order to further improve the computational efficiency of the
BP method, we introduce a pruning technique and propose a
method referred to as the BP with pruning method. The key
idea of the pruning technique is to utilize the following prop-
erty: Once we have S(u, t0) = S(v, t0) at some time-step
t0 on the course of the BP process for a pair of information
source nodes, u and v, then we have S(u, t) = S(v, t) for
all t > t0. The BP with pruning method estimates σ by the
following algorithm:

BP with pruning method:

1. Set σ(v, t)← 0 for each v ∈ V and t ∈ {1, · · · , T}.

2. Repeat the following procedure M times.

2-1”. Initialize S(v; 0) = {v} for each v ∈ V , and set
A(0) ← V , A(1) ← ∅, · · ·, A(T ) ← ∅, and C(v) ←
{v} for each v ∈ V .

2-2. For t = 1 to T do the following steps:



2-2a. Compute B(t− 1) =
⋃

v∈A(t−1) S(v, t− 1).

2-2b. Perform the BP process for the links from B(t− 1) in

GT , and generate the graph G̃t constructed by the occu-
pied links.

2-2c”. For each v ∈ A(t − 1), compute S(v, t) =⋃
w∈S(v,t−1) Γ(w; G̃t), set A(t) ← A(t) ∪ {v} if

S(v, t) 6= ∅, and set σ(u, t) ← σ(u, t) + |S(v, t)| for
each u ∈ C(v).

2-2d. Check whether S(u, t) = S(v, t) for u, v ∈ A(t), and
set C(v) ← C(v) ∪ C(u) and A(t) ← A(t) \ {u} if
S(u, t) = S(v, t).

3. For each v ∈ V and t ∈ {1, · · · , T}, set σ(v, t) ←
σ(v, t)/M , and output σ(v, t).

Basically, by introducing step 2-2d and reducing the size of
A(t), the proposed method attempts to improve the computa-
tional efficiency in comparison to the original BP method.

For the proposed method, it is important to implement ef-
ficiently the equivalence check process in step 2-2d. In our
implementation, we first classify each v ∈ A(t) according to
the value of k = |S(v, t)|, and then perform the equivalence
check process only for those nodes with the same k value.
How effectively the proposed method works will depend on
several conditions such as network structure, time span, val-
ues of diffusion probabilities, and so on. We will do a simple
analysis later and experimentally show that it is indeed effec-
tive.

4 Experimental Evaluation

4.1 Network Data and Settings

In our experiments, we employed two datasets of large real
networks used in [Kimura et al., 2009], which exhibit many
of the key features of social networks.

The first one is a trackback network of Japanese blogs. The
network data was collected by tracing the trackbacks from
one blog in the site “goo (http://blog.goo.ne.jp/)” in May,
2005. We refer to the network data as the blog network.
The blog network was a strongly-connected bidirectional net-
work, where a link created by a trackback was regarded as a
bidirectional link since blog authors establish mutual com-
munications by putting trackbacks on each other’s blogs. The
blog network had 12, 047 nodes and 79, 920 directed links.

The second one is a network of people that was derived
from the “list of people” within Japanese Wikipedia. We refer
to the network data as the Wikipedia network. The Wikipedia
network was also a strongly-connected bidirectional network,
and had 9, 481 nodes and 245, 044 directed links.

For the SIS model, we assigned a uniform probability p
to the propagation probability pu,v for any link (u, v) ∈ E,
that is, pu,v = p. According to [Kempe et al., 2003;
Leskovec et al., 2007b], we set the value of p relatively small.
In particular, we set the value of p to a value smaller than 1/d̄,
where d̄ is the mean out-degree of a network. Since the values
of d̄ were about 6.63 and 25.85 for the blog and the Wikipedia
networks, respectively, the corresponding values of 1/d̄ were
about 0.15 and 0.03. We decided to set p = 0.1 for the blog
network and p = 0.01 for the Wikipedia network.

All our experimentation was undertaken on a single PC
with an Intel Core 2 Duo E6850 3GHz processor, with 3GB
of memory, running under Linux.

4.2 Estimation Accuracy Comparison

We first compared the accuracy of the estimated influence
function σ of the proposed method (BP with pruning) with
that of the naive method. Both methods require M to be spec-
ified in advance as a parameter. As shown in section 3.2, the
number of coin flips is different in these two methods and
it is much larger in the naive method. However, this does
not mean that there is more randomness introduced in the
naive method and thus the convergence of the naive method
is faster. In fact for each single initially activated node v from
which to propagate the information, the number of indepen-
dent coin-flips is effectively the same for the both methods.
Thus by using the same value of M , both would estimate
σ(v, t) with the same accuracy in principle.

Table 1: Results for the naive method on the blog network.

Rank Node ID Influence Node ID Influence

1 2210 984.38 2210 985.74

2 2248 979.59 2248 980.72

3 3906 956.82 3906 956.57

4 3907 953.14 3907 953.89

5 146 931.03 146 931.62

6 155 929.68 155 930.21

7 3233 913.50 3233 911.89

8 3228 912.27 3228 910.52

9 140 910.04 140 910.37

10 2247 909.59 2247 910.00

Table 2: Results for the proposed method on the blog net-
work.

Rank Node ID Influence Node ID Influence

1 2210 984.74 2210 984.87

2 2248 980.41 2248 979.46

3 3906 956.97 3906 955.84

4 3907 953.04 3907 952.71

5 146 929.96 146 929.30

6 155 928.77 155 928.49

7 3233 912.61 3233 911.01

8 3228 912.18 3228 910.49

9 140 909.22 140 910.31

10 2247 909.12 2247 909.59

We have experimentally confirmed that use of M =
100, 000 gives in effect the same value of σ(v, t), for t =
1, · · · , 20. The following accuracy comparison is based on
M = 100, 000. Tables 1 and 2 show the ranking of the
influential initially activated nodes v evaluated at time-step
T = 20 for the blog network. The value of influence func-
tion σ(v, 20) is sorted in the decreasing order and the top 10
nodes are listed. We repeated the experiment several times
and listed two of them. Note that the naive method takes an
order of week to return the result and we could not set T a



Table 3: Results for the naive method on the Wikipedia net-
work.

Rank Node ID Influence Node ID Influence

1 4019 134.73 4019 133.83

2 3729 133.24 3729 132.42

3 7919 132.66 7919 131.98

4 4380 132.23 1720 131.68

5 1720 132.20 4380 131.34

6 4465 132.10 4465 131.07

7 1712 131.65 1712 130.69

8 3670 130.32 1073 129.48

9 1073 129.66 3670 129.46

10 1191 128.61 1191 128.38

Table 4: Results for the proposed method on the Wikipedia
network.

Rank Node ID Influence Node ID Influence

1 4019 134.25 4019 133.67

2 3729 132.91 7919 132.17

3 7919 132.50 3729 132.02

4 4380 132.03 4380 131.84

5 4465 131.95 1720 131.63

6 1720 131.59 4465 131.12

7 1712 131.33 1712 130.90

8 3670 130.27 3670 129.78

9 1073 129.22 1073 129.12

10 1191 128.71 1191 128.40

larger value. We note that the ranking is exactly the same
for the both methods. Tables 3 and 4 are the result for the
Wikipedia network. The nodes in the 4th and the 5th ranks
for the naive method, and the 5th and the 6th ranks for the
proposed method are interchanged respectively, but the rests
are the same. From these results we confirm that the proposed
method gives the same results as the naive method with the
same value of M when M is large enough.

4.3 Processing Time Comparison

Next, we compared the processing time of the proposed
method (BP with pruning) with the BP method without prun-
ing and the naive method. Here, we used M = 1, 000 in
order to keep the computational time for the naive method
at a reasonable level so that it runs for a larger T . Fig-
ures 1 and 2 show the total processing time to estimate
{σ(v, t); v ∈ V, t = 0, 1, · · · , T} as a function of time span
T for the blog and the Wikipedia networks, respectively. In
these figures, the circles, squares and triangles indicate the
results for the proposed method (BP with pruning), the BP
method without pruning, and the naive method, respectively.
Note that in case of the blog network, the processing time
for time span T = 100 is about 7 minutues, 2 hours and
37 hours for the proposed method, the BP method without
pruning and the naive method, respectively. Namely, the pro-
posed method is about 20 and 310 times faster than the BP
method without pruning and the naive method, respectively,
for T = 100 in case of the blog network. Note also that in
case of the Wikipedia network, the processing time for time
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Figure 1: Results for the blog network.
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Figure 2: Results for the Wikipedia network.

span T = 100 is about 3 minutes, 6 minutes and 8 hours
for the proposed method, the BP method without pruning and
the naive method, respectively. Namely, the proposed method
is about 2 and 150 times faster than the BP method without
pruning and the naive method, respectively, for T = 100 in
case of the Wikipedia network.

In general, the proposed method performs the best and the
BP method without pruning follows with an exception that
the proposed method can become slightly slower than the
BP method without pruning in cases where T is small be-
cause of the overhead introduced in pruning. The two BP
methods (with and without pruning) are much faster than the
naive method. The performance difference between the pro-
posed method and each of the other two methods increases
as time-step (or time span) increases. Moreover, the same
performance difference becomes larger for the blog network



than the Wikipedia network. The following simple analysis
explains this. Consider the extreme case where S(u, t) =
S(v, t) for ∀u, v ∈ A(t) and d(w) = d for ∀w ∈ S(v, t)
(v ∈ A(t)) at some time-step t. We denote |A(t)| = a and
|S(v, t)| = s. Then, we have Na = as, Nb = sd, Nb′ =
asd and Nc = asd′ on average for time-step t + 1 (see equa-
tions (1), (2) and (3)). Recall that d′ is the expected number
of the occupied links, which is calculated as pd, where p is
the common diffusion probability for all links. Further as-

sume that the pruning was ideal such that Ña = s and Ñc

= sd′, which respectively denote the number of nodes iden-
tified in step 2-2a and the average number of links followed
in step 2-2c” for the BP with pruning method. Then, if ad′

> d, i.e., ad′/d = ap > 1 holds, the improvement ratios of
the BP with pruning method over the naive method and the
original BP method are respectively asd/sd = a and asd′/sd
= ap. From our experimental results, we can estimate a to
be 310 for the blog network and 150 for the Wikipedia net-
work. Then we obtain ap to be 31 and 1.5 respectively, which
approximates the actual ratio each, 20 and 2.

5 Discussion

Here, we compare the method proposed in [Kimura et al.,
2007] that efficiently estimates the influence function also in
the framework of bond percolation for the IC and the LT mod-
els. The same method is not applicable to the SIS model.
The key idea there is to decompose the graph that is gener-
ated by the bond percolation into a set of strongly connected
components (SCC) and efficiently calculate the node reach-
ability. However, the layered graph in the proposed method
is a directed acyclic tree and the SCC decomposition would
not work effectively. The pruning technique in the proposed
method is a new technique to improve the computational effi-
ciency for the SIS model, just like the SCC decomposition is
for the IC and the LT models.

In this paper we did not directly address the influential
maximization problem, but only proposed a new method to
efficiently estimate the influence function. We can think of
two maximization problems, that is to find the initial active
nodes with a specified number that maximize 1) the expected
number of nodes that have been activated till the end of time-
step T and 2) the expected number of active nodes at the end
of time-step T . The proposed method can easily be extended
to efficiently estimate the marginal gain of the objective func-
tion of each of the optimization problems when the problems
are to be solved by greedy algorithms.

6 Conclusion

Finding influential nodes is one of the most central problems
in the field of social network analysis. There are several mod-
els that simulate how various things, e.g., news, rumors, dis-
eases, innovation, ideas, etc. diffuse across the network. One
such realistic model is the susceptible/infected/susceptible
(SIS) model, an information diffusion model where nodes
are allowed to be activated multiple times. The computa-
tional complexity drastically increases because of this mul-
tiple activation property, e.g., compared with the suscep-
tible/infected/recovered (SIR) model where once activated

nodes can never be deactivated/reactivated. We addressed the
problem of efficiently estimating the influence function under
the SIS model, i.e., estimating the expected number of acti-
vated nodes at time-step t for t = 1, · · · , T starting from an
initially activated node v (for all v ∈ V ) at time-step t = 0.
We solved this problem by constructing a layered graph from
the original social network by adding each layer on top of
the existing layers as the time proceeds, and applying the
bond percolation with a pruning strategy. We showed that the
computational complexity of the proposed method is much
smaller than the conventional naive probabilistic simulation
method by a theoretical analysis. We further confirmed this
by applying the proposed method to two real world networks
taken from blog and Wikipedia data. Considerable reduction
of computation time was achieved without degrading the ac-
curacy.
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Abstract. We address the problem of efficiently discovering the influential nodes
in a social network under thesusceptible/infected/susceptible (SIS) model, a diffu-
sion model where nodes are allowed to be activated multiple times. The compu-
tational complexity drastically increases because of this multiple activation prop-
erty. We solve this problem by constructing a layered graph from the original
social network with each layer added on top as the time proceeds, and apply-
ing the bond percolation with pruning and burnout strategies. We experimentally
demonstrate that the proposed method gives much better solutions than the con-
ventional methods that are solely based on the notion of centrality for social net-
work analysis using two large-scale real-world networks (a blog network and a
wikipedia network). We further show that the computational complexity of the
proposed method is much smaller than the conventional naive probabilistic sim-
ulation method by a theoretical analysis and confirm this by experimentation.
The properties of the influential nodes discovered are substantially different from
those identified by the centrality-based heuristic methods.

1 Introduction

Social networks mediate the spread of various information including topics, ideas and
even (computer) viruses. The proliferation of emails, blogs and social networking ser-
vices (SNS) in the World Wide Web accelerates the creation of large social networks.
Therefore, substantial attention has recently been directed to investigating information
diffusion phenomena in social networks [1–3].

Overall, finding influential nodes is one of the most central problems in social net-
work analysis. Thus, developing methods to do this on the basis of information diffusion
is an important research issue. Widely-used fundamental probabilistic models of infor-
mation diffusion are theindependent cascade (IC) modeland thelinear threshold (LT)
model[4, 5]. Researchers investigated the problem of finding a limited number of influ-
ential nodes that are effective for the spread of information under the above models [4,
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6]. This combinatorial optimization problem is called theinfluence maximization prob-
lem. Kempe et al. [4] experimentally showed on large collaboration networks that the
greedy algorithm can give a good approximate solution to this problem, and mathe-
matically proved a performance guarantee of the greedy solution (i.e., the solution ob-
tained by the greedy algorithm). Recently, methods based on bond percolation [6] and
submodularity [7] were proposed for efficiently estimating the greedy solution. The in-
fluence maximization problem has applications in sociology and “viral marketing” [3],
and was also investigated in a different setting (a descriptive probabilistic model of in-
teraction) [8, 9]. The problem has recently been extended to influence control problems
such as a contamination minimization problem [10].

The IC model can be identified with the so-calledsusceptible/infected/recovered
(SIR) modelfor the spread of a disease [11, 5]. In the SIR model, only infected individ-
uals can infect susceptible individuals, while recovered individuals can neither infect
nor be infected. This implies that an individual is never infected with the disease mul-
tiple times. This property holds true for the LT model as well. However, there exist
phenomena for which the property does not hold. For example, consider the follow-
ing propagation phenomenon of a topic in the blogosphere: A blogger who has not yet
posted a message about the topic is interested in the topic by reading the blog of a friend,
and posts a message about it (i.e., becoming infected). Next, the same blogger reads a
new message about the topic posted by some other friend, and may post a message
(i.e., becoming infected) again. Most simply, this phenomenon can be modeled by an
susceptible/infected/susceptible (SIS) modelfrom the epidemiology. Like this example,
there are many examples of information diffusion phenomena for which the SIS model
is more appropriate, including the growth of hyper-link posts among bloggers [2], the
spread of computer viruses without permanent virus-checking programs, and epidemic
disease such as tuberculosis and gonorrhea [11].

We focus on an information diffusion process in a social networkG = (V,E) over
a given time spanT on the basis of an SIS model. Here, the SIS model is a stochastic
process model, and theinfluenceof a set of nodesH at time-stept,σ(H, t), is defined as
the expected number of infected nodes at time-stept when all the nodes inH are initially
infected at time-stept = 0. We refer toσ as theinfluence functionfor the SIS model.
Developing an effective method for estimatingσ({v}, t), (v ∈ V, t = 1, . . . , T) is vital for
various applications. Clearly, in order to extract influential nodes, we must estimate the
value ofσ({v}, t) for every nodev and time-stept. Thus, we proposed a novel method
based on the bond percolation with an effective pruning strategy to efficiently estimate
{σ({v}, t); v ∈ V, t = 1, . . . , T} for the SIS model in our previous work [12].

In this paper, we consider solving the influence maximization problems on a net-
work G = (V,E) under the SIS model. Here, unlike the cases of the IC and the LT
models, we define two influence maximization problems, thefinal-time maximization
problemand theaccumulated-time maximization problem, for the SIS model. We intro-
duce the greedy algorithm for solving the problems according to the work of Kempe et
al. [4] for the IC and the LT models. Now, let us consider the problem of influence max-
imization at the final time stepT (i.e., final-time maximization problem) as an example.
We then note that for solving this problem by the greedy algorithm, we need a method
for not only evaluating{σ({v},T); v ∈ V}, but also evaluating themarginal influence
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gains{σ(H ∪ {v},T) − σ(H,T); v ∈ V \ H} for any non-empty subsetH of V. Needless
to say, we can naively estimate the marginal influence gains for any non-empty subset
H of V by simulating the SIS model2. However, this naive simulation method is overly
inefficient and not practical at all. In this paper, by incorporating the new techniques
(the pruning and the burnout methods) into the bond percolation method, we propose
a method to efficiently estimate the marginal influence gains for any non-empty subset
H of V, and apply it to approximately solve the two influence maximization problems
for the SIS model by the greedy alogrithm. We show that the proposed method is ex-
pected to achieve a large reduction in computational cost by theoretically comparing
computational complexity with other more naive methods. Further, using two large real
networks, we experimentally demonstrate that the proposed method is much more ef-
ficient than the naive greedy method based on the bond percolation method. We also
show that the discovered nodes by the proposed method are substantially different from
and can result in considerable increase in the influence over the conventional methods
that are based on the notion of various centrality measures.

2 Information Diff usion Model

Let G = (V,E) be a directed network, whereV andE (⊂ V × V) stand for the sets of all
the nodes and (directed) links, respectively. For anyv ∈ V, letΓ(v;G) denote the set of
the child nodes (directed neighbors) ofv, that is,

Γ(v;G) = {w ∈ V; (v,w) ∈ E}.

2.1 SIS Model

An SIS model for the spread of a disease is based on the cycle of disease in a host. A per-
son is firstsusceptibleto the disease, and becomesinfectedwith some probability when
the person encounters an infected person. The infected person becomes susceptible to
the disease soon without moving to the immune state. We consider a discrete-time SIS
model for information diffusion on a network. In this context, infected nodes mean that
they have just adopted the information, and we call these infected nodesactivenodes.

We define the SIS model for information diffusion onG. In the model, the diffusion
process unfolds in discrete time-stepst ≥ 0, and it is assumed that the state of a node
is either active or inactive. For every link (u,v) ∈ E, we specify a real valuepu,v with
0 < pu,v < 1 in advance. Here,pu,v is referred to as thepropagation probabilitythrough
link (u, v). Given an initial set of active nodesX and a time spanT, the diffusion process
proceeds in the following way. Suppose that nodeu becomes active at time-stept (< T).
Then, nodeu attempts to activate everyv ∈ Γ(u;G), and succeeds with probability
pu,v. If nodeu succeeds, then nodev will become active at time-stept + 1. If multiple
active nodes attempt to activate nodev in time-stept, then their activation attempts
are sequenced in an arbitrary order. On the other hand, nodeu will become or remain
inactive at time-stept + 1 unless it is activated from an active node in time-stept. The
process terminates if the current time-step reaches the time limitT.

2 Notethat the method we proposed in [12] does not perform simulation.
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2.2 Influence Function

For the SIS model onG, we consider a diffusion sample from an initially activated node
set H ⊂ V over time spanT. Let S(H, t) denote the set of active nodes at time-step
t. Note thatS(H, t) is a random subset ofV andS(H,0) = H. Let σ(H, t) denote the
expected number of|S(H, t)|, where|X| stands for the number of elements in a setX. We
call σ(H, t) the influenceof node setH at time-stept. Note thatσ is a function defined
on 2|V| × {0,1, · · · ,T}. We call the functionσ the influence functionfor the SIS model
over time spanT on networkG.

It is important to estimate the influence functionσ efficiently. In theory we can
simply estimateσ by the simulations based on the SIS model in the following way.
First, a sufficiently large positive integerM is specified. For eachH ⊂ V, the diffusion
process of the SIS model is simulated from the initially activated node setH, and the
number of active nodes at time-stept, |S(H, t)|, is calculated for everyt ∈ {0,1, · · · ,T}.
Then,σ(H, t) is estimated as the empirical mean of|S(H, t)|’s that are obtained fromM
such simulations. However, this is extremely inefficient, and cannot be practical.

3 Influence Maximization Problem

We mathematically define the influence maximization problems on a networkG= (V,E)
under the SIS model. LetK be a positive integer withK < |V|. First, we define thefinal-
time maximization problem: Find a setH∗K of K nodes to target for initial activation such
thatσ(H∗K ; T) ≥ σ(H; T) for any setH of k nodes, that is, find

H∗K = arg max
{H⊂V; |H|=K}

σ(H; T). (1)

Second, we define theaccumulated-time maximization problem: Find a setH∗K of K
nodes to target for initial activation such thatσ(H∗K ; 1) + · · · + σ(H∗K ; T) ≥ σ(H; 1) +
· · · + σ(H; T) for any setH of k nodes, that is, find

H∗K = arg max
{H⊂V; |H|=K}

T∑
t=1

σ(H; t). (2)

The first problem cares only how many nodes are influenced at the time of interest.
For example, in an election campaign it is only those people who are convinced to vote
the candidate at the time of voting that really matter and not those who were convinced
during the campaign but changed their mind at the very end. Maximizing the number
of people who actually vote falls in this category. The second problem cares how many
nodes have been influenced throughout the period of interest. For example, maximizing
the amount of product purchase during a sales campaign falls in this category.

4 Proposed Method

Kempe et al. [4] showed the effectiveness of the greedy algorithm for the influence
maximization problem under the IC and LT models. In this section, we introduce the
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greedy algorithm for the SIS model, and describe some techniques (the bond percola-
tion method, the pruning method, and the burnout method) for efficiently solving the
influence maximization problem under the greedy algorithm, together with some argu-
ments for evaluating the computational complexity for these methods.

4.1 Greedy Algorithm

We approximately solve the influence maximization problem by the greedy algorithm.
Below we describe this algorithm for the final-time maximization problem:

Greedy algorithm for the final-time maximization problem:
A1. SetH ← ∅.
A2. Fork = 1 to K do the following steps:
A2-1. Choose a nodevk ∈ V \ H maximizingσ(H ∪ {v},T).
A2-2. SetH ← H ∪ {vk}.
A3. OutputH.

Here we can easily modify this algorithm for the accumulated-time maximization prob-
lem by replacing stepA2-1 as follows:

Greedy algorithm for the accumulated-time maximization problem:
A1. SetH ← ∅.
A2. Fork = 1 to K do the following steps:
A2-1’. Choose a nodevk ∈ V \ H maximizing

∑T
t=1σ(H ∪ {v}, t).

A2-2. SetH ← H ∪ {vk}.
A3. OutputH.

Let HK denote the set ofK nodes obtained by this algorithm. We refer toHK as the
greedy solutionof sizeK. Then, it is known that

σ(HK , t) ≥
(
1− 1

e

)
σ(H∗K , t),

thatis, the quality guarantee ofHk is assured [4]. Here,H∗k is the exact solution defined
by Equation (1) or (2).

To implement the greedy algorithm, we need a method for estimating all the marginal
influence degrees{σ(H ∪ {v}, t); v ∈ V \ H} of H in stepA2-1 orA2-1’ of the algo-
rithm. In the subsequent subsections, we propose a method for efficiently estimating the
influence functionσ over time spanT for the SIS model on networkG.

4.2 Layered Graph

We build a layered graphGT = (VT ,ET) from G in the following way. First, for each
nodev ∈ V and each time-stept ∈ {0,1, · · · ,T}, we generate a copyvt of v at time-
step t. Let Vt denote the set of copies of allv ∈ V at time-stept. We defineVT by
VT = V0 ∪ V1 ∪ · · · ∪ VT . In particular, we identifyV with V0. Next, for each link
(u,v) ∈ E, we generateT links (ut−1, vt), (t ∈ {1, · · · ,T}), in the set of nodesVT . We set
Et = {(ut−1, vt); (u,v) ∈ E}, and defineET by ET = E1 ∪ · · · ∪ ET . Moreover, for any
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link (ut−1, vt) of the layered graphGT , we define the occupation probabilityqut−1,vt by
qut−1,vt = pu,v.

Then, we can easily prove that the SIS model with propagation probabilities{pe; e ∈
E} on G over time spanT is equivalent to thebond percolation process (BP) with
occupation probabilities{qe; e ∈ ET} on GT .3 Here, the BP process with occupation
probabilities{qe; e ∈ ET} on GT is the random process in which each linke ∈ ET

is independently declared “occupied” with probabilityqe. We perform the BP process
on GT , and generate a graph constructed by occupied links,G̃T = (VT , ẼT). Then, in
terms of information diffusion by the SIS model onG, an occupied link (ut−1, vt) ∈ Et

represents a link (u,v) ∈ E through which the information propagates at time-stept,
and an unoccupied link (ut−1, vt) ∈ Et represents a link (u,v) ∈ E through which the
information does not propagate at time-stept. For anyv ∈ V \ H, let F(H ∪ {v};G̃T)
be the set of all nodes that can be reached fromH ∪ {v} ∈ V0 through a path on the
graphG̃T . When we consider a diffusion sample from an initial active nodev ∈ V for
the SIS model onG, F(H ∪ {v}; G̃T) ∩ Vt represents the set of active nodes at time-step
t, S(H ∪ {v}, t).

4.3 Bond Percolation Method

Using the equivalent BP process, we present a method for efficiently estimating influ-
ence functionσ. We refer to this method as theBP method. Unlike the naive method,
the BP method simultaneously estimatesσ(H ∪ {v}, t) for all v ∈ V \ H. Moreover, the
BP method does not fully perform the BP process, but performs it partially. Note first
that all the paths from nodesH ∪ {v} (v ∈ V \ H) on the graphG̃T represent a diffusion
sample from the initial active nodesH ∪ {v} for the SIS model onG. Let L′ be the set
of the links inGT that is not in the diffusion sample. For calculating|S(H ∪ {v}, t)|, it
is unnecessary to determine whether the links inL′ are occupied or not. Therefore, the
BP method performs the BP process for only an appropriate set of links inGT . The BP
method estimatesσ by the following algorithm:

BP method:
B1. Setσ(H ∪ {v}, t)← 0 for eachv ∈ V \ H andt ∈ {1, · · · ,T}.
B2. Repeat the following procedureM times:
B2-1. Initialize S(H ∪ {v},0) = H ∪ {v} for eachv ∈ V \ H, and setA(0) ← V \ H,

A(1)← ∅, · · · , A(T)← ∅.
B2-2. For t = 1 toT do the following steps:
B2-2a. ComputeB(t − 1) =

∪
v∈A(t−1) S(H ∪ {v}, t − 1).

B2-2b. Perform the BP process for the links fromB(t−1) inGT , and generate the graph
G̃t constructed by the occupied links.

B2-2c. For eachv ∈ A(t − 1), computeS(H ∪ {v}, t) = ∪
w∈S(H∪{v},t−1)Γ(w; G̃t), and set

σ(H∪{v}, t)← σ(H∪{v}, t) + |S(H∪{v}, t)| andA(t)← A(t)∪{v} if S(H∪{v}, t) , ∅.
B3. For eachv ∈ V \ H andt ∈ {1, · · · ,T}, setσ(H ∪ {v}, t) ← σ(H ∪ {v}, t)/M, and

outputσ(H ∪ {v}, t).
3 TheSIS model over time spanT on G can be exactly mapped onto the IC model onGT [4].

Thus, the result follows from the equivalence of the BP process and the IC model [11, 4, 6].
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Note thatA(t) finally becomes the set of information source nodes that have at least an
active node at time-stept, that is,A(t) = {v ∈ V \ H; S(H ∪ {v}, t) , ∅}. Note also that
B(t − 1) is the set of nodes that are activated at time-stept − 1 by some source nodes,
that is,B(t − 1) =

∪
v∈V S(H ∪ {v}, t − 1).

Now we estimate the computational complexity of the BP method in terms of the
number of the nodes,Na, that are identified in stepB2-2a, the number of the coin-flips,
Nb, for the BP process in stepB2-2b, and the number of the links,Nc, that are followed
in stepB2-2c. Letd(v) be the number of out-links from nodev (i.e., out-degree ofv)
andd′(v) the average number of occupied out-links from nodev after the BP process.
Here we can estimated′(v) by

∑
w∈Γ(v;G) pv,w. Then, for each time-stept ∈ {1, · · · ,T},

we have

Na =
∑

v∈A(t−1)

|S(H ∪ {v}, t − 1)|,

Nb =
∑

w∈B(t−1)

d(w), (3)

Nc =
∑

v∈A(t−1)

∑
w∈S(H∪{v},t−1)

d′(w)

on average.
In order to compare the computational complexity of the BP method to that of the

naive method, we consider mapping the naive method onto the BP framework, that is,
separating the coin-flip process and the link-following process. We can easily verify
that the following algorithm in the BP framework is equivalent to the naive method:

A method that is equivalent to the naive method:
B1. Setσ(H ∪ {v}, t)← 0 for eachv ∈ V \ H andt ∈ {1, · · · ,T}.
B2. Repeat the following procedureM times:
B2-1. Initialize S(H ∪ {v},0) = H ∪ {v} for eachv ∈ V \ H, and setA(0) ← V \ H,

A(1)← ∅, · · · , A(T)← ∅.
B2-2. For t = 1 toT do the following steps:
B2-2b’. For eachv ∈ A(t−1), perform the BP process for the links fromS(H∪{v}, t−1)

in GT , and generate the graph̃Gt(v) constructed by the occupied links.
B2-2c’. For eachv ∈ A(t−1), computeS(H∪{v}; t) =∪

w∈S(H∪{v},t−1)Γ(w;G̃t(v)), and set
σ(H∪{v}, t)← σ(H∪{v}, t)+ |S(H∪{v}, t)| andA(t)← A(t)∪{v} if S(H∪{v}, t) , ∅.

B3. For eachv ∈ V \ H andt ∈ {1, · · · ,T}, setσ(H ∪ {v}, t) ← σ(H ∪ {v}, t)/M, and
outputσ(H ∪ {v}, t).

Then, for eacht ∈ {1, · · · ,T}, the number of coin-flips,Nb′ , in stepB2-2b’ is

Nb′ =
∑

v∈A(t−1)

∑
w∈S(H∪{v},t−1)

d(w), (4)

and the number of the links,Nc′ , followed in stepB2-2c’ is equal toNc in the BP
method on average. From equations (3) and (4), we can see thatNb′ is much larger than
Nc′ = Nc, especially for the case where the diffusion probabilities are small. We can
also see thatNb′ is generally much larger than each ofNa andNb in the BP method for
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a real social network. In fact, since such a network generally includes large clique-like
subgraphs, there are many nodesw ∈ V such thatd(w) ≫ 1, and we can expect that∑

v∈A(t−1) |S(H ∪ {v}, t − 1)| ≫ |∪v∈A(t−1) S(H ∪ {v}, t − 1)| (= |B(t − 1)|). Therefore, the
BP method is expected to achieve a large reduction in computational cost.

4.4 Pruning Method

In order to further improve the computational efficiency of the BP method, we introduce
a pruning technique and propose a method referred to as theBP with pruning method.
The key idea of the pruning technique is to utilize the following property: Once we have
S(H ∪ {u}, t0) = S(H ∪ {v}, t0) at some time-stept0 on the course of the BP process for
a pair of information source nodes,u andv, then we haveS(H ∪ {u}, t) = S(H ∪ {v}, t)
for all t > t0. The BP with pruning method estimatesσ by the following algorithm:

BP with pruning method:
B1. Setσ(H ∪ {v}, t)← 0 for eachv ∈ V \ H andt ∈ {1, · · · ,T}.
B2. Repeat the following procedureM times:
B2-1”. Initialize S(H ∪ {v}; 0) = H ∪ {v} for eachv ∈ V \ H, and setA(0)← V \ H,

A(1)← ∅, · · · , A(T)← ∅, andC(v)← {v} for eachv ∈ V \ H.
B2-2. For t = 1 toT do the following steps:
B2-2a. ComputeB(t − 1) =

∪
v∈A(t−1) S(H ∪ {v}, t − 1).

B2-2b. Perform the BP process for the links fromB(t−1) inGT , and generate the graph
G̃t constructed by the occupied links.

B2-2c”. For eachv ∈ A(t − 1), computeS(H ∪ {v}, t) = ∪
w∈S(H∪{v},t−1)Γ(w; G̃t), set

A(t)← A(t)∪{v} if S(H∪{v}, t) , ∅, and setσ(H∪{u}, t)← σ(H∪{u}, t)+ |S(H∪
{v}, t)| for eachu ∈ C(v).

B2-2d. Check whetherS(H ∪ {u}, t) = S(H ∪ {v}, t) for u,v ∈ A(t), and setC(v) ←
C(v) ∪C(u) andA(t)← A(t) \ {u} if S(H ∪ {u}, t) = S(H ∪ {v}, t).

B3. For eachv ∈ V \ H andt ∈ {1, · · · ,T}, setσ(H ∪ {v}, t) ← σ(H ∪ {v}, t)/M, and
outputσ(H ∪ {v}, t).

Basically, by introducing stepB2-2d and reducing the size ofA(t), the proposed method
attempts to improve the computational efficiency in comparison to the original BP
method. For the proposed method, it is important to implement efficiently the equiva-
lence check process in stepB2-2d. In our implementation, we first classify eachv ∈ A(t)
according to the value ofn = |S(H ∪ {v}, t)|, and then perform the equivalence check
process only for those nodes with the samen value.

4.5 Burnout Method

In order to further improve the computational efficiency of the BP with pruning method,
we additionally introduce a burnout technique and propose a method referred to as
theBP with pruning and burnout method. More specifically, we focus on the fact that
maximizing the marginal influence degreeσ(H ∪ {v}, t) with respect tov ∈ V \ H is
equivalent to maximizing the marginal influence gainϕH(v, t) = σ(H ∪ {v}, t)−σ(H, t).
Here on the course of the BP process for a newly added information source nodev,
maximizingϕH(v, t) reduces to maximizing|S(H ∪ {v}, t) \ S(H, t)| on average. The BP
with pruning and burnout method estimatesϕH by the following algorithm:
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BP with pruning and burnout methods:
C1. SetϕH(v, t)← 0 for eachv ∈ V \ H andt ∈ {1, · · · ,T}.
C2. Repeat the following procedureM times:
C2-1. Initialize S(H; 0) = H, andS({v}; 0) = {v} for eachv ∈ V \ H, and setA(0) ←

V \ H, A(1)← ∅, · · · , A(T)← ∅, andC(v)← {v} for eachv ∈ V \ H.
C2-2. For t = 1 toT do the following steps:
C2-2a. ComputeB(t − 1) =

∪
v∈A(t−1) S({v}, t − 1)∪ S(H, t − 1).

C2-2b. Perform the BP process for the links fromB(t−1) inGT , and generate the graph
G̃t constructed by the occupied links.

C2-2c. ComputeS(H, t) =
∪

w∈S(H,t−1)Γ(w;G̃t), and for eachv ∈ A(t − 1), compute
S({v}, t) = ∪

w∈S({v},t−1)Γ(w;G̃t) \ S(H, t), setA(t) ← A(t) ∪ {v} if S({v}, t) , ∅, and
setϕH({u}, t)← ϕH({u}, t) + |S({v}, t)| for eachu ∈ C(v).

C2-2d. Check whetherS({u}, t) = S({v}, t) for u, v ∈ A(t), and setC(v)← C(v)∪C(u)
andA(t)← A(t) \ {u} if S({u}, t) = S({v}, t).

C3. For eachv ∈ V \ H and t ∈ {1, · · · ,T}, setϕH({v}, t) ← ϕH({v}, t)/M, and output
ϕH({v}, t).

Intuitively, compared with the BP with pruning method, by using the burnout technique,
we can substantially reduce the size of the active node set fromS(H ∪ {v}, t) to S({v}, t)
for eachv ∈ V\H andt ∈ {1, · · · ,T}. Namely, in terms of computational costs described
by Equation (3), we can expect to obtain smaller numbers forNa andNc whenH , ∅.
However, how effectively the proposed method works will depend on several conditions
such as network structure, time span, values of diffusion probabilities, and so on. We
will do a simple analysis later and experimentally show that it is indeed effective.

5 Experimental Evaluation

In the experiments, we report our evaluation results on the final-time maximization
problem due to the space limitation.

5.1 Network Data and Settings

In our experiments, we employed two datasets of large real networks used in [10], which
exhibit many of the key features of social networks.

The first one is a trackback network of Japanese blogs. The network data was col-
lected by tracing the trackbacks from one blog in the site “goo (http://blog.goo.ne.jp/)”
in May, 2005. We refer to the network data as the blog network. The blog network was
a strongly-connected bidirectional network, where a link created by a trackback was
regarded as a bidirectional link since blog authors establish mutual communications
by putting trackbacks on each other’s blogs. The blog network had 12,047 nodes and
79,920 directed links.

The second one is a network of people that was derived from the “list of people”
within Japanese Wikipedia. We refer to the network data as the Wikipedia network. The
Wikipedia network was also a strongly-connected bidirectional network, and had 9,481
nodes and 245,044 directed links.
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For the SIS model, we assigned a uniform probabilityp to the propagation proba-
bility pu,v for any link (u,v) ∈ E, that is,pu,v = p. According to [4, 2], we set the value
of p relatively small. In particular, we set the value ofp to a value smaller than 1/d̄,
whered̄ is the mean out-degree of a network. Since the values ofd̄ were about 6.63 and
25.85 for the blog and the Wikipedia networks, respectively, the corresponding values
of 1/d̄ were about 0.15 and 0.03. We decided to setp = 0.1 for the blog network and
p = 0.01 for the Wikipedia network. Also, for the time spanT, we setT = 30.

For the bond percolation method, we need to specify the numberM of performing
the bond percolation process. According to [12], we setM = 10,000 for estimating
influence degrees for the blog and Wikipedia networks.

All our experimentation was undertaken on a single PC with an Intel Dual Core
Xeon X5272 3.4GHz processor, with 32GB of memory, running under Linux.

5.2 Comparison Methods

First, we compared the proposed method with three heuristics from social network anal-
ysis with respect to the solution quality. They are based on the notions of “degree cen-
trality”, “closeness centrality”, and “betweenness centrality” that are commonly used as
influence measure in sociology [13]. Here, the betweenness of nodev is defined as the
total number of shortest paths between pairs of nodes that pass throughv, the closeness
of nodev is defined as the reciprocal of the average distance betweenv and other nodes
in the network, and the degree of nodev is defined as the number of links attached tov.
Namely, we employed the methods of choosing nodes in decreasing order of these cen-
tralities. We refer to these methods as thebetweenness method, thecloseness method,
and thedegree method, respectively.

Next, to evaluate the effectiveness of the pruning and the burnout strategies, we
compared the proposed method with the naive greedy method based on the BP method
with respect to the processing time. Hereafter, we refer to the naive greedy method
based on the BP method as the BP method for short.

5.3 Solution Quality Comparison

We first compared the quality of the solutionHK of the proposed method with that
of the betweenness, the closeness, and the degree methods for solving the problem of
the influence maximization at the final time stepT. Clearly, the quality ofHK can be
evaluated by the influence degreeσ(HK ,T). We estimated the value ofσ(HK ,T) by
using the bond percolation method withM = 10,000 according to [12].

Figures 1 and 2 show the influence degreeσ(HK ,T) as a function of the number of
initial active nodesK for the blog and the Wikipedia networks, respectively. In the fig-
ures, the circles, triangles, diamonds, and squares indicate the results for the proposed,
the betweenness, the closeness, and the degree methods, respectively. The proposed
method performs the best for both networks, while the betweenness method follows for
the blog dataset and the degree method follows for the Wikipedeia dataset. Note that
how each of the conventional heuristics performs depends on the characteristics of the
network structure. These results imply that the proposed method works effectively, and
outperforms the conventional heuristics from social network analysis.
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Fig. 1.Comparison of solution quality for the blog network.

It is interesting to note that thek nodes (k = 1,2, ...,K) that are discovered to be
most influential by the proposed method are substantially different from those that are
found by the conventional centrality-based heuristic methods. For example, the best
node (k= 1) chosen by the proposed method for the blog dataset is ranked 118 for the
betweenness method, 659 for the closeness method and 6 for the degree method, and
the 15th node (k = 15) by the proposed method is ranked 1373, 8848 and 507 for the
corresponding conventional methods, respectively. The best node (k = 1) chosen by the
proposed method for the Wikipedia dataset is ranked 580 for the betweenness method,
2766 for the closeness method and 15 for the degree method, and the 15th node (k = 15)
by the proposed method is ranked 265, 2041, and 21 for the corresponding conventional
methods, respectively. It is hard to find a correlation between these rankings, but for the
smallerk, it appears that degree centrality measure is better than the other centrality
measures, which can be inferred from Figures 1 and 2.

5.4 Processing Time Comparison

Next, we compared the processing time of the proposed method (BP with pruning and
burnout method) with that of the BP method. Letτ(K,T) denote the processing time of
a method for solving the problem of the influece maximization at the final time stepT,
whereK is the number of initial active nodes. Figures 3 and 4 show the processing time
difference∆τ(K,T) = τ(K,T) − τ(K − 1,T) as a function of the number of initial active
nodesK for the blog and the Wikipedia networks, respectively. In these figures, the cir-
cles, and crosses indicate the results for the proposed and the BP methods, respectively.
Note that∆τ(K,T) decreases asK increases for the proposed method, whereas∆τ(K,T)
increases for the BP method. This means that the difference in the total processing time
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Fig. 2.Comparison of solution quality for the Wikipedia network.

becomes increasingly larger asK increases. In case of the blog dataset, the total pro-
cessing time forK = 5 is about 2 hours for the proposed method and 100 hours for the
BP methods. Namely, the proposed method is about 50 times faster than the BP method
for K = 5. The same is true for the Wikipedia dataset. The total processing time for
K = 5 is about 0.5 hours for the proposed method and 9 hours the BP methods, and the
proposed method is about 18 times faster than the BP method forK = 5. These results
confirm that the proposed method is much more efficient than the BP method, and can
be practical.

6 Discussion

The influence functionσ(·,T) is submodular [4]. For solving a combinatorial optimiza-
tion problem of a submodular functionf on V by the greedy algorithm, Leskovec et
al. [7] have recently presented a lazy evaluation method that leads to far fewer (ex-
pensive) evaluations of the marginal incrementsf (H ∪ {v})− f (H), (v ∈ V \ H) in the
greedy algorithm forH , ∅, and achieved an improvement in speed. Note here that their
method requires evaluatingf (v) for all v ∈ V at least. Thus, we can apply their method
to the influence maximization problem for the SIS model, where the influence function
σ(·,T) is evaluated by simulating the corresponding random process. It is clear that 1)
this method is more efficient than the naive greedy method that does not employ the
BP method and instead evaluates the influence degrees by simulating the diffusion phe-
nomena, and 2) further the both methods become the same forK = 1 and empirically
estimate the influence functionσ(·,T) by probabilistic simulations. These methods also
requireM to be specified in advance as a parameter, whereM is the number of simula-
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Fig. 3.Comparison of processing time for the blog network.

tions. Note that the BP and the simulation methods can estimate influence degreeσ(v, t)
with the same accuracy by using the same value ofM (see [12]). Moreover, as shown
in [12], estimating influence functionσ(·,30) by 10,000 simulations needed more than
35.8 hours for the blog dataset and 7.6 hours for the Wikipedia dataset, respectively.
However, the proposed method forK = 30 needed less than 7.0 hours for the blog
dataset and 3.2 hours for the Wikipedia dataset, respectively. Therefore, it is clear that
the proposed method can be faster than the method by Leskovec [7] for the influence
maximization problem for the SIS model.

7 Conclusion

Finding influential nodes is one of the most central problems in the field of social net-
work analysis. There are several models that simulate how various things, e.g., news,
rumors, diseases, innovation, ideas, etc. diffuse across the network. One such realis-
tic model is thesusceptible/infected/susceptible (SIS) model, an information diffusion
model where nodes are allowed to be activated multiple times. The computational com-
plexity drastically increases because of this multiple activation property, e.g., compared
with the susceptible/infected/recovered (SIR) modelwhere once activated nodes can
never be deactivated/reactivated. We addressed the problem of efficiently discovering
the influential nodes under the SIS model, i.e., estimating the expected number of acti-
vated nodes at time-stept for t = 1, · · · ,T starting from an initially activated node set
H ∈ V at time-stept = 0. We solved this problem by constructing a layered graph from
the original social network by adding each layer on top of the existing layers as the
time proceeds, and applying the bond percolation with a pruning strategy. We showed
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Fig. 4.Comparison of processing time for the Wikipedia network.

that the computational complexity of the proposed method is much smaller than the
conventional naive probabilistic simulation method by a theoretical analysis. We ap-
plied the proposed method to two different types of influence maximization problem,
i.e. discovering theK most influential nodes that together maximize the expected influ-
ence degree at the time of interest or the expected influence degree over the time span
of interest. Both problems are solved by the greedy algorithm taking advantage of the
submodularity of the objective function. We confirmed by applying to two real world
networks taken from blog and Wikipedia data that the proposed method can achieve
considerable reduction of computation time without degrading the accuracy compared
with the naive simulation method, and discover nodes that are more influential than the
nodes identified by the conventional methods based on the various centrality measures.
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Abstract. We address the problem of estimating the parameters for a continu-
ous time delay independent cascade (CTIC) model, a more realistic model for
information diffusion in complex social network, from the observed information
diffusion data. For this purpose we formulate the rigorous likelihood to obtain
the observed data and propose an iterative method to obtain the parameters (time-
delay and diffusion) by maximizing this likelihood. We apply this method first to
the problem of ranking influential nodes using the network structure taken from
two real world web datasets and show that the proposed method can predict the
high ranked influential nodes much more accurately than the well studied con-
ventional four heuristic methods, and second to the problem of evaluating how
different topics propagate in different ways using a real world blog data and show
that there are indeed differences in the propagation speed among different topics.

1 Introduction

The rise of the Internet and the World Wide Web accelerates the creation of various
large-scale social networks, and considerable attention has been brought to social net-
works as an important medium for the spread of information [1–5]. Innovation, topics
and even malicious rumors can propagate through social networks in the form of so-
called “word-of-mouth” communications. This forms a virtual society forming various
kinds of communities. Just like a real world society, some community grows rapidly
and some other shrinks. Likewise, some information propagates quickly and some other
only slowly. Good things remain and bad things diminish as if there is a natural selec-
tion. The social network offers a nice platform to study a mechanism of society dy-
namics and behavior of humans, each as a member of the society. In this paper, we
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address the problem of how information diffuses through the social network, in partic-
ular how different topics propagate differently by inducing a diffusion model that can
handle continuous time delay.

There are several models that simulate information diffusion through a network.
A widely-used model is theindependent cascade (IC), a fundamental probabilistic
model of information diffusion [6, 7], which can be regarded as the so-calledsuscepti-
ble/infected/recovered (SIR) modelfor the spread of a disease [2]. This model has been
used to solve such problems as theinfluence maximization problemwhich is to find a
limited number of nodes that are influential for the spread of information [7, 8] and the
influence minimization problemwhich is to suppress the spread of undesirable informa-
tion by blocking a limited number of links [9]. The IC model requires the parameters
that represent diffusion probabilities through links to be specified in advance. Since
the true values of the parameters are not available in practice, this poses yet another
problem of estimating them from the observed data [10].

One of the drawbacks of the IC model is that it cannot handle time-delays for infor-
mation propagation, and we need a model to explicitly represent time delay. Gruhl et al.
is the first to extend the IC model to include the time-delay [3]. Their model now has
the parameters that represent time-delays through links as well as the parameters that
represent diffusion probabilities through links. They presented a method for estimating
the parameter values from the observed data using an EM-like algorithm, and experi-
mentally showed its effectiveness using sparse Erdös-Renyi networks. However, it is not
clear what they are optimizing in deriving the update formulas of the parameter values.
Further, they treated the time as a discrete variable, which means that it is assumed that
information propagate in a synchronized way in a sense that each node can be activated
only at a specific time. In reality, time flows continuously and thus information, too,
propagates on this continuous time axis. For any node, information must be able to be
received at any time from other nodes and must be allowed to propagate to yet other
nodes at any other time, both in an asynchronous way. Thus, for a realistic behavior
analyses of information diffusion, we need to adopt a model that explicitly represents
continuous time delay.

In this paper, we deal with an information diffusion model that incorporates con-
tinuous time delay based on the IC model (referred to as CTIC model), and propose
a novel method for estimating the values of the parameters in the model from a set of
information diffusion results that are observed as time-sequences of infected (active)
nodes. What makes this problem difficult is that incorporating time-delay makes the
time-sequence observation data structural. There is no way of knowing from the data
which node activated which other node that comes later in the sequence. We introduce
an objective function that rigorously represents the likelihood of obtaining such ob-
served data sequences under the CTIC model on a given network, and derive an iterative
algorithm by which the objective function is maximized. First we test the convergence
performance of the proposed method by applying it to the problem of ranking influen-
tial nodes using the network structure taken from two real world web datasets and show
that the parameters converge to the correct values by the iterative procedure and can
predict the high ranked influential nodes much more accurately than the well studied
conventional four heuristic methods. Second we apply the method to the problem of be-
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havioral analysis of topic propagation, i.e., evaluating how different topics propagate in
different ways, using a real world blog data and show that there are indeed differences
in the propagation speed among different topics.

2 Information Diff usion Model and Learning Problem

We first define the IC model according to [7], and then introduce the continuous-time
IC model. After that, we formulate our learning problem.

We mathematically model the spread of information through a directed networkG
= (V,E) without self-links, whereV and E (⊂ V × V) stands for the sets of all the
nodes and links, respectively. We call nodesactive if they have been influenced with
the information. In the model, it is assumed that nodes can switch their states only from
inactive to active, but not from active to inactive. Given an initial setS of active nodes,
we assume that the nodes inS have first become active at an initial time, and all the
other nodes are inactive at that time.

In this paper, nodeu is called achild nodeof nodev if (v,u) ∈ E, and nodeu is
called aparent nodeof nodev if (u,v) ∈ E. For each nodev ∈ V, let F(v) andB(v)
denote the set of child nodes ofv and the set of parent nodes ofv, respectively,

F(v) = {w ∈ V; (v,w) ∈ E}, B(v) = {u ∈ V; (u, v) ∈ E}.

2.1 Independent Cascade Model

Let us describe the definition of the IC model. In this model, for each link (u,v), we
specify a real valueλu,v with 0 < λu,v < 1 in advance. Hereλu,v is referred to as the
diffusion probabilitythrough link (u,v).

The diffusion process unfolds in discrete time-stepst ≥ 0, and proceeds from a
given initial active setS in the following way. When a nodeu becomes active at time-
stept, it is given a single chance to activate each currently inactive child nodev, and
succeeds with probabilityλu,v. If u succeeds, thenv will become active at time-stept+1.
If multiple parent nodes ofv become active at time-stept, then their activation attempts
are sequenced in an arbitrary order, but all performed at time-stept. Whether or notu
succeeds, it cannot make any further attempts to activatev in subsequent rounds. The
process terminates if no more activations are possible.

2.2 Continuous-Time Independent Cascade Model

Next, we extend the IC model so as to allow continuous-time delays, and refer to the
extended model as thecontinuous-time independent cascade (CTIC) model.

In the CTIC model, for each link (u,v) ∈ E, we specify real valuesru,v and κu,v
with ru,v > 0 and 0< κu,v < 1 in advance. We refer toru,v andκu,v as thetime-delay
parameterand thediffusion parameterthrough link (u,v), respectively.

The diffusion process unfolds in continuous-timet, and proceeds from a given initial
active setS in the following way. Suppose that a nodeu becomes active at timet. Then,
nodeu is given a single chance to activate each currently inactive child nodev. We
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choose a delay-timeδ from the exponential distribution with parameterru,v. If nodev
is not active before timet + δ, then nodeu attempts to activate nodev, and succeeds
with probability κu,v. If u succeeds, thenv will become active at timet + δ. Under
the continuous time framework, it is unlikely that multiple parent nodes ofv attempt
to activatev for the activation at timet + δ. But if they do, their activation attempts
are sequenced in an arbitrary order. Whether or notu succeeds, it cannot make any
further attempts to activatev in subsequent rounds. The process terminates if no more
activations are possible.

For an initial active setS, let φ(S) denote the number of active nodes at the end of
the random process for the CTIC model. Note thatφ(S) is a random variable. Letσ(S)
denote the expected value ofφ(S). We callσ(S) the influence degreeof S for the CTIC
model.

2.3 Learning problem

For the CTIC model on networkG, we define the time-delay parameter vectorr and the
diffusion parameter vectorκ by

r = (ru,v)(u,v)∈E, κ = (κu,v)(u,v)∈E.

In practice, the true values ofr andκ are not available. Thus, we must estimate them
from past information diffusion histories observed as sets of active nodes.

We consider an observed data set ofM independent information diffusion results,

DM = {Dm; m= 1, · · · ,M}.

Here, eachDm is a time-sequence of active nodes in themth information diffusion result,

Dm = ⟨Dm(t); t ∈ Tm⟩, Tm = ⟨tm, · · · ,Tm⟩,

whereDm(t) is the set of all the nodes that have first become active at timet, andTm

is the observation-time list;tm is the observed initial time andTm is the observed final
time. We assume that for any active nodev in themth information diffusion result, there
exits somet ∈ Tm such thatv ∈ Dm(t). Let tm,v denote the time at which nodev becomes
active in themth information diffusion result, i.e.,v ∈ Dm(tm,v). For anyt ∈ Tm, we set

Cm(t) =
∪

τ ∈Tm∩ {s;s< t}
Dm(τ)

Note thatCm(t) is the set of active nodes before timet in themth information diffusion
result. We also interpretDm as referring to the set of all the active nodes in themth in-
formation diffusion result for convenience sake. In this paper, we consider the problem
of estimating the values ofr andκ fromDM.

3 Proposed Method

We explain how we estimate the values ofr andκ fromDM. Here, we limit ourselves to
outline the derivations of the proposed method due to the lack of space. We also briefly
mention how we do behavioral analysis with the method.
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3.1 Likelihood function

For the learning problem described above, we strictly derive the likelihood function
L(r, κ;DM) with respect tor andκ to use as our objective function.

First, we consider any nodev ∈ Dm with tm,v > 0 for themth information diffusion
result. LetAm,u,v denote the probability density that a nodeu ∈ B(v) ∩Cm(tm,v) activates
the nodev at timetm,v, that is,

Am,u,v = κu,vru,v exp(−ru,v(tm,v − tm,u)). (1)

LetBm,u,v denote the probability that the nodev is not activated from a nodeu ∈ B(v)∩
Cm(tm,v) within the time-period [tm,u, tm,v], that is,

Bm,u,v = 1− κu,v
∫ tm,v

tm,u

ru,v exp(−ru,v(t − tm,u))dt

= κu,v exp(−ru,v(tm,v − tm,u)) + (1− κu,v). (2)

If there exist multiple active parents for the nodev, i.e.,η = |B(v) ∩ Cm(tm,v)| > 1, we
need to consider possibilities that each parent node succeeds in activatingv at timetm,v.
However, in case of the continuous time delay model, we can ignore simultaneous acti-
vations by multiple active parents due to the continuous property. Thus, the probability
density that the nodev is activated at timetm,v, denoted byhm,v, can be expressed as

hm,v =
∑

u∈B(v)∩Cm(tm,v)

Am,u,v

 ∏
x∈B(v)∩Cm(tm,v)\{u}

Bm,x,v

 .
=

∏
x∈B(v)∩Cm(tm,v)

Bm,x,v

∑
u∈B(v)∩Cm(tm,v)

Am,u,v(Bm,u,v)
−1. (3)

Note that we are not able to know which nodeu actually activated the nodev. This can
be regarded as a hidden structure.

Next, for themth information diffusion result, we consider any link (v,w) ∈ E such
that v ∈ Cm(Tm) andw < Dm. Let gm,v,w denote the probability that the nodew is not
activated by the nodev within the observed time period [tm,Tm]. We can easily derive
the following equation:

gm,v,w = κv,w exp(−rv,w(Tm − tm,v)) + (1− κv,w). (4)

Here we can naturally assume that each information diffusion process finished suffi-
ciently earlier than the observed final time, i.e.,Tm ≫ max{t; Dm(t) , ∅}. Thus, as
Tm→ ∞ in equation (4), we assume

gm,v,w = 1− κv,w. (5)

Therefore, by using equations (3), (5), and the independence properties, we can
define the likelihood functionL(r, κ;DM) with respect tor andκ by

L(r, κ;DM) =
M∏

m=1

∏
t∈Tm

∏
v∈Dm(t)

hm,v

∏
v∈Dm

∏
w∈F(v)\Dm

gm,v,w

 . (6)
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Here, we retained the product with respect tov ∈ Dm(t) for completeness, but in practice
there is only onev in Dm(t).

In this paper, we focus on the above situation (i.e., equation (5)) for simplicity, but
we can easily modify our method to cope with the general one (i.e., equation (4)). Thus,
our problem is to obtain the values ofr andκ, which maximize equation (6). For this
estimation problem, we derive a method based on an iterative algorithm in order to
stably obtain its solution.

3.2 Estimation method

We describe our estimation method. Letr̄ = (r̄u,v) andκ̄ = (κ̄u,v) be the current estimates
of r andκ, respectively. For eachv ∈ Dm andu ∈ B(v) ∩ Cm(tm,v), we defineαm,u,v by

αm,u,v = Am,u,v(Bm,u,v)
−1 /

∑
x∈B(v)∩Cm(tm,v)

Am,x,v(Bm,x,v)
−1. (7)

Let Ām,u,v, B̄m,u,v, h̄m,v, and ᾱm,u,v denote the values ofAm,u,v, Bm,u,v, hm,v, andαm,u,v

calculated by usinḡr andκ̄, respectively.
From equations (3), (5), (6), we can transform our objective functionL(r, κ;DM)

as follows:
logL(r, κ;DM) = Q(r, κ; r̄, κ̄) − H(r, κ; r̄, κ̄), (8)

whereQ(r, κ; r̄, κ̄) is defined by

Q(r, κ; r̄, κ̄) =
M∑

m=1

∑
t∈Tm

∑
v∈Dm(t)

Qm,v +
∑
v∈Dm

∑
w∈F(v)\Dm

log(1− κv,w)

 ,
Qm,v =

∑
u∈B(v)∩Cm(tm,v)

log
(Bm,u,v

)
+

∑
u∈B(v)∩Cm(tm,v)

ᾱm,u,v log
(
Am,u,v(Bm,u,v)

−1
)

(9)

andH(r, κ; r̄, κ̄) is defined by

H(r, κ; r̄, κ̄) =
M∑

m=1

∑
t∈Tm

∑
v∈Dm(t)

∑
u∈B(v)∩Cm(tm,v)

ᾱm,u,v logαm,u,v. (10)

SinceH(r, κ; r̄, κ̄) is maximized atr = r̄ andκ = κ̄ from equation (10), we can increase
the value ofL(r, κ;DM) by maximizingQ(r, κ; r̄, κ̄) (see equation (8)). Note here that
although logAm,u,v is a linear combination of logκu,v, logru,v, andru,v, logBm,u,v cannot
be written as such a linear combination (see equations (1), (2)). In order to cope with
this problem of logBm,u,v, we transform logBm,u,v in the same way as above, and define
βm,u,v by

βm,u,v = κu,v exp(−ru,v(tm,v − tm,u)) /Bm,u,v

Finally, as the solution which maximizesQ(r, κ; r̄, κ̄), we obtain the following update
formulas of our estimation method:

ru,v =

∑
m∈M+u,v ᾱm,u,v∑

m∈M+u,v(ᾱm,u,v + (1− ᾱm,u,v)β̄m,u,v)(tm,v − tm,u)
,

κu,v =
1

|M+u,v| + |M−u,v|
∑

m∈M+u,v

(ᾱm,u,v + (1− ᾱm,u,v)β̄m,u,v),
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whereM+u,v andM−u,v are defined by

M+u,v = {m ∈ {1, · · · ,M}; u,v ∈ Dm, v ∈ F(u), tm,u < tm,v},
M−u,v = {m ∈ {1, · · · ,M}; u ∈ Dm, v < Dm, v ∈ F(u)}.

Note that we can regard our estimation method as a kind of the EM algorithm. It should
be noted here that each time iteration proceeds the value of the likelihood function never
decreases and the iterative algorithm is guaranteed to converge.

3.3 Behavioral analysis

Thus far, we assumed that the parameters (time-delay and diffusion) can vary with re-
spect to links but remain the same irrespective of the topic of information diffused,
following Gruhl et al. [3]. However, they may be sensitive to the topic.

Our method can cope with this by assigningm to a topic, and placing a constraint
that the parameters depends only on topics but not on links throughout the networkG,
that is rm,u,v = rm andκm,u,v = κm for any link (u,v) ∈ E. This constraint is required
because, without this, we have only one piece of observation for each (m,u,v) and there
is no way to learn the parameters. Noting that we can naturally assume that people
behave quite similarly for the same topic, this constraint should be acceptable. Under
this setting, we can easily obtain the parameter update formulas. Using each pair of the
estimated parameters, (rm, κm), we can analyze the behavior of people with respect to
the topics of information, by simply plotting (rm, κm) as a point of 2-dimensional space.

3.4 Simple case analysis

Here, we analyze a few basic properties of the proposed method under simple settings.
Assume that a nodev became active at timet after receiving certain information. We
denote the active parent nodes ofv by u1, · · · ,uN. First, we consider a simple case that
diffusion parameterκ is 1 for all links, time-delay parameterr is a constant and the
same for all links, and the activation times ofu1, · · · ,uN are all zeros. Then, as is given
in equation (3), the probability density that the nodev is activated at timet by one of
the parent nodes, can be expressed as follows

hv =

N∑
n=1

r exp(−rt)

(
1−

∫ t

0
r exp(−rτ)dτ

)N−1

= Nr exp(−Nrt).

Similarly, for the case that the parent nodesu1, · · · ,uN became active at timest1, · · · tN
(< t), respectively, we easily obtain the following probability.

hv = Nr exp

−Nr

t − 1
N

N∑
n=1

tn

 .
The maximum likelihood is attained by maximizing loghv with respect tor, and the
average delay time is obtained as follows:

r−1 = N

t − 1
N

N∑
n=1

tn

 .
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We can see that this estimation isN times larger than the simple average of time differ-
ences. In other words, the information diffuses more quickly when there exist multiple
active parents, i.e.,r−1/N, and this fact matches our intuition. Thus simple statistics
such as the average delay time may fail to provide the intrinsic property of information
diffusion phenomena, and this suggests that an adequate information diffusion model is
vital.

Next, we consider another simple case that the diffusion parameterκ and the time-
delay parameterr are both uniform and constant for all links, and the activation times
of u1, · · · ,uN are all zeros. Here both parameters are variables. Then the probability
density that the nodev is activated at timet can be expressed as follows

hv = Nκr exp(−rt)(κ exp(−rt) + (1− κ))N−1.

Now, we consider maximizingf (κ, r) = loghv with respect toκ andr. The first- and
second-order derivatives off (κ, r) with respect toκ are given by

∂ f (κ, r)
∂κ

=
1
κ
+ (N − 1)

exp(−rt) − 1
κ exp(−rt) + (1− κ)

∂2 f (κ, r)
∂κ∂κ

= − 1
κ2
− (N − 1)(

exp(−rt) − 1
κ exp(−rt) + (1− κ) )2.

Since the above second-order derivative is negative definite for a given parameterr, we
note that there exists a unique global solution toκ. The corresponding derivatives with
respect tor are given by

∂ f (κ, r)
∂r

=
1
r
− t − (N − 1)

tκ exp(−rt)
κ exp(−rt) + (1− κ)

∂2 f (κ, r)
∂r∂r

= − 1
r2
+ (N − 1)

t2κ(1− κ) exp(−rt)
(κ exp(−rt) + (1− κ))2.

Unfortunately, we cannot guarantee that the above second-order derivative is negative
definite. However, most likely, this value is negative whenr ≪ 1, and can be positive
whenr ≫ 1 in which case the shape of the objective function can be complex. We can
speculate that the convergence is better for a smaller value ofr. Later, in our experi-
ments, we empirically evaluate this point by using the method described in 3.1 and 3.2
with r = 2 andr = 0.5, which are in the range that is widely explored by many existing
studies. Clearly, we need to perform further theoretical and empirical studies because
we are simultaneously estimating both diffusion and time-delay parameters,κ and r.
However, the experiments show that our method is stable for the range of parameters
we used, indicating that the likelihood function has favorable mathematical properties.

4 Experiments with Artificial data

We evaluated the effectiveness of the proposed learning method using the topologies
of two large real network data. First, we evaluated how accurately it can estimate the
parameters of the CTIC model fromDM. Next, we considered applying our learning
method to the problem of extracting influential nodes, and evaluated how well our
learned model can predict the high ranked influential nodes with respect to influence
degreeσ(v), (v∈ V) for the true CTIC model.
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4.1 Experimental Settings

In our experiments, we employed two datasets of large real networks used in [9], which
exhibit many of the key features of social networks. The first one is a trackback network
of Japanese blogs. The network data was collected by tracing the trackbacks from one
blog in the sitegoo2 in May, 2005. We refer to this network data as the blog network.
The blog network was a strongly-connected bidirectional network, where a link created
by a trackback was regarded as a bidirectional link since blog authors establish mutual
communications by putting trackbacks on each other’s blogs. The blog network had
12,047 nodes and 79,920 directed links. The second one is a network of people that was
derived from the “list of people” within Japanese Wikipedia. We refer to this network
data as the Wikipedia network. The Wikipedia network was also a strongly-connected
bidirectional network, and had 9,481 nodes and 245,044 directed links.

Here, we assumed the simplest case whereru,v andκu,v are uniform throughout the
networkG, that is,ru,v = r, κu,v = κ for any link (u,v) ∈ E. One reason behind this
assumption is that we can make fair comparison with the existing heuristics that are
solely based on network structure (see 4.2). Another reason is that there is no need
to acquire observation sequence data that at least pass through every link once. This
drastically reduces the amount of data to learn the parameters. Then, our task is to
estimate the values ofr andκ. According to [7], we set the value ofκ relatively small.
In particular, we set the value ofκ to a value smaller than 1/d̄, whered̄ is the mean
out-degree of a network. Since the values ofd̄ were about 6.63 and 25.85 for the blog
and the Wikipedia networks, respectively, the corresponding values of 1/d̄ were about
0.15 and 0.03. Thus, as for the true value of the diffusion parameterκ, we decided to
setκ = 0.1 for the blog network andκ = 0.01 for the Wikipedia network. As for the
true value of the time-delay parameterr, we decided to investigate two cases: one with
a relatively high valuer = 2 (a short time-delay case) and the other with a relatively
low valuer = 0.5 (a long time-delay case) in both networks. We used the training data
DM in the learning stage, which is constructed by generating eachDm from a randomly
selected initial active nodeDm(0) using the true CTIC model.Tm was chosen to be
effectively∞.

We note that the influence degreeσ(v) of a nodev is invariant with respect to the
values of the delay-parameterr. In fact, the effect ofr is to delay the timings when nodes
become active, that is, parameterru,v only controls how soon or late nodev actually
becomes active when nodeu activates nodev. Therefore, nodes that can be activated
are in indeed activated eventually after a sufficiently long time has elapsed, which is
the case here, i.e.Tm = ∞. Thus, we can evaluate theσ(v) of the CTIC model by
the influence degree ofv for the corresponding IC model. We estimated the influence
degrees{σ(v); v ∈ V} using the method of [8] with the parameter value 10,000, where
the parameter represents the number of bond percolation processes (we do not describe
the method here due to the page limit). The average value and the standard deviation of
the influence degrees was 87.5 and 131 for the blog network, and 8.14 and 18.4 for the
Wikipedia network.

2 http://blog.goo.ne.jp/
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Table 1: Learning performance by the proposed method.

Blog network
(r = 2)

M Er Eκ
20 0.013 0.015
40 0.010 0.010
60 0.008 0.008
80 0.007 0.007
100 0.005 0.005

Wikipedia network
(r = 2)

M Er Eκ
20 0.036 0.034
40 0.024 0.016
60 0.013 0.015
80 0.012 0.013
100 0.006 0.011

Blog network
(r = 0.5)

M Er Eκ
20 0.0110.012
40 0.0100.007
60 0.0090.005
80 0.0040.004
100 0.0040.004

Wikipedia network
(r = 0.5)

M Er Eκ
20 0.026 0.028
40 0.021 0.023
60 0.018 0.021
80 0.014 0.012
100 0.007 0.006

4.2 Comparison Methods

We compared the predicted result of the high ranked influential nodes for the true CTIC
model by the proposed method with four heuristics widely used in social network anal-
ysis.

The first three of these heuristics are “degree centrality”, “closeness centrality”, and
“betweenness centrality”. These are commonly used as influence measure in sociology
[11], where the out-degree of nodev is defined as the number of links going out from
v, the closeness of nodev is defined as the reciprocal of the average distance between
v and other nodes in the network, and the betweenness of nodev is defined as the
total number of shortest paths between pairs of nodes that pass throughv. The fourth
is “authoritativeness” obtained by the “PageRank” method [12]. We considered this
measure since this is a well known method for identifying authoritative or influential
pages in a hyperlink network of web pages. This method has a parameterε; when we
view it as a model of a random web surfer,ε corresponds to the probability with which
a surfer jumps to a page picked uniformly at random [13]. In our experiments, we used
a typical setting ofε = 0.15.

4.3 Experimental Results

First, we examined the parameter estimation accuracy by the proposed method. Letr0

and κ0 be the true values of the parametersr and κ, respectively, and let ˆr and κ̂ be
the values ofr andκ estimated by the proposed method, respectively. We evaluated the
learning performance in terms of the error rates,

Er =
|r0 − r̂ |

r0
, Eκ =

|κ0 − κ̂|
κ0
.

Table 1 shows the average values ofEr andEκ for different numbers of training samples,
M. For eachM we repeated the same experiment 5 times independently, and for each
experiment we tried 5 different initial values of the parameters that are randomly drawn
from [0,1] with uniform distribution. The convergence criterion is

|κ(n) − κ(n+1)| + |r (n) − r (n+1)| < 10−12,
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(a)blog network (r= 2)
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(b) Wikipedia network (r = 2)
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(c) blog network (r= 0.5)
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(d) Wikipedia network (r = 0.5)

Fig. 1: Performance comparison in extracting influential nodes.

where the superscript (n) indicates the value for thenth iteration. Our algorithm con-
verged at around 40 iterations for the blog data and 70 iterations for the Wikipedia data.
Further, it is observed, as predicted by the simple case analysis in 3.4, that the conver-
gence was faster for a smaller value ofr. The converged values are close to the true
values when there is a reasonable amount of training data. The results demonstrate the
effectiveness of the proposed method.

Next, we compared the proposed method with the out-degree, the betweenness, the
closeness, and the PageRank methods in terms of the capability of ranking the influen-
tial nodes. For any positive integerk (≤ |V|), let L0(k) be the true set of topk nodes,
and letL(k) be the set of topk nodes for a given ranking method. We evaluated the
performance of the ranking method by theranking similarity F(k) at rankk, whereF(k)
is defined by

F(k) =
|L0(k) ∩ L(k)|

k
.

We focused on ranking similarities only at high ranks since we are interested in ex-
tracting influential nodes. Figures 1a and 1c show the results for the blog network, and
Figures 1b and 1d show the results for the Wikipedia network, where the true value of
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r is r = 2 andr = 0.5 for Figures 1a and 1b, and Figures 1c and 1d, respectively. In
these figures, circles, triangles, diamonds, squares, and asterisks indicate ranking sim-
ilarity F(k) as a function of rankk for the proposed, the out-degree, the betweenness,
the closeness, and the PageRank methods, respectively. For the proposed method, we
plotted the average value ofF(k) at k for 5 experimental results stated earlier in the
case ofM = 100. The proposed method gives far better results than the other heuristic
based methods for the both networks, demonstrating the effectiveness of our proposed
learning method.

5 Behavioral Analysis of Real World Blog Data

We applied our method to behavioral analysis using a real world blog data based on
the method described in 3.3 and investigated how each topic spreads throughout the
network.

5.1 Experimental Settings

The network we used is a real blogroll network in which bloggers are connected to each
other. We note that when there is a blogroll link from bloggery to another bloggerx,
this means thaty is a reader of the blog ofx. Thus, we can assume that topics propagate
from bloggerx to bloggery. According to [14], we suppose that a topic is represented
as a URL which can be tracked down from blog to blog. We used the database of
a blog-hosting service in Japan calledDoblog 3. The database is constructed by all
the Doblog data from October 2003 to June 2005, and contains 52,525 bloggers and
115,552 blogroll links.

We identified all the URLs mentioned in blog posts in the Doblog database, and
constructed the following list for each URL from all the blog posts that contain the
URL:

⟨(v1, t1), · · · , (vk, tk)⟩, (t1 < · · · < tk),

wherevi is a blogger who mentioned the URL in her/his blog post published at time
ti . By taking into account the blogroll relations for the list, we estimated such paths
that the URL might propagate through the blogroll network. We extracted 7,356 URL
propagation paths from the Doblog dataset, where we ignored the URLs that only one
blogger mentioned. Out of these, only those that are longer than 10 time steps are chosen
for analyses, resulting into 172 sequences. Each sequence data represents a topic, and
a topic can be distributed in multiple URLs. The same URL can appear in different
sequences. Here note that the time stamp of each blog article is different from each other
and thus, the time intervals in the sequence< t1, t2, ..., tk > are not a fixed constant.

5.2 Experimental Results

We ran the experiments for each identified URL and obtained the corresponding param-
etersκ andr. Figure 2 is a plot of the results for the major URLs. The horizontal axis

3 Doblog(http://www.doblog.com/),provided by NTT Data Corp. and Hotto Link, Inc.
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Fig.2: Results for the Doblog database.

is the diffusion parameterκ and the vertical axis is the delay parameterr. The latter is
normalized such thatr = 1 corresponds to a delay of one day, meaningr = 0.1 cor-
responds delay of 10 days. We only explain three URLs that exhibit some interesting
propagation properties. The circle is a URL that corresponds to the musical baton which
is a kind of telephone game on the Internet. It has the following rules. First, a blogger
is requested to respond to five questions about music by some other bologger (receive
the baton) and the requested blogger replies to the questions and designate the next five
bloggers with the same questions (pass the baton). It is shown that this kind of message
propagates quickly (less than one day on the average) with a good chance (one out of
25 to 100 persons responds). This is probably because people are interested in this kind
of message passing. The square is a URL that corresponds to articles about a missing
child. This also propagates quickly with a meaningful probability (one out of 80 persons
responds). This is understandable considering the urgency of the message. The cross is
a URL that corresponds to articles about fortune telling. Peoples responses are diverse.
Some responds quickly (less than one day) and some late (more than one month af-
ter), and they are more or less uniformly distributed. The diffusion probability is also
nearly uniformly distributed. This reflects that each individual’s interest is different on
this topic. The dot is a URL that corresponds to one of the other topics. Interestingly,
the one in the bottom right which is isolated from the rest is a post of an invitation to a
rock music festival. This one has a very large probability of being propagated but with
very large time delay. In general, it can be said that the proposed method can extract
characteristic properties of a certain topics reasonably well only from the observation
data.



14 Kazumi Saito, Masahiro Kimura, Kouzou Ohara, and Hiroshi Motoda

6 Discussion

Being able to handle the time more precisely brings a merit to the analysis of such
information diffusion as in a blog data because the time stamp is available in the unit of
second. There are subtle cases where it is not self evident to which value to assign the
time when the discretization has to be made. We have solved this problem.

There are many pieces of work in which time sequence data is analyzed assuming
a certain model behind. Ours also falls in this category. The proposed approach brings
in a new perspective in which it allows to use the structure of a complex network as a
kind of background knowledge in a more refined way. There are also many pieces of
work on topic propagation analyses, but they focus mostly on the analyses of average
propagation speed (propagation speed distribution) and average life time. Our method
is new and different in that we explicitly address the diffusion phenomena incorporating
diffusion probability and time delay as well as the structure of the network.

The proposed method derives the learning algorithm in a principled way. The ob-
jective function has a clear meaning of the likelihood by which to obtain the observed
data, and the parameter is iteratively updated in such a way to maximize the likelihood,
guaranteeing the convergence. Due to the property of continuous time, we excluded the
possibility that a node is activated simultaneously by multiple parent nodes. It is also
straightforward to formulate the likelihood taking the possibility of the simultaneous
activation into account. However, the numerical experiments revealed that the results
are not as accurate as the current model. Having to explore millions of paths with very
small probability does harm numerical computation. This is, in a sense, similar to the
problem of feature selection in building a classifier. It is known that the existence of
irrelevant features is harmful even though the classification algorithm can in theory
ignore those irrelevant features.

The CTIC model is a continuous-time information diffusion model that extends the
discrete-time model by Gruhl et al [15]. We note that their model is based on the popular
IC model and they model the time-delay by a geometic distribition. In the CTIC model,
we model a time-delay by an exponential distribution. Song et al [16] also modeled
time-delays of information flow by exponential distributions in formulating an infor-
mation flow model by a continuous-time Markov chain (i.e., a random-surfer model).
Thus, we can regard the CTIC model as a natural extension to continuous-time infor-
mation diffusion model based on the IC model, and investigating its characteristics can
be an important research issue. As explained in Section 2.2, the CTIC model is rather
complicated, and developing a learning algorithm of the CTIC model is challenging. In
this paper, we presented an effective method for estimating the parameters of the CTIC
model from observed data, and applied it to node-ranking and social behavioral data
analysis. To the best of our knowledge, we are the first to formulate a continuous-time
information diffusion model based on the IC model and a rigorous learning algorithm to
estimate the model parameters from observation. We are not claiming that the model is
most accurate. The time-delay distribution for real information diffusion must be more
complex, and a power-law distribution and the like might be more suitable. Our fu-
ture work includes incorpolating various more realistic distributions as the time-delay
distribution.
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The learning algorithm we proposed is a one-time batch processing. In reality the
observation data are keep coming and the environment may change over time. It is
not straightforward to convert the algorithm to incremental mode. The simplest way to
cope with this is to use a fixed time window to collect data and use the parameters at
the previous window as the initial guesses.

We consider that our proposed ranking method presents a novel concept of cen-
trality based on the information diffusion model, i.e.,the CTIC model. Actually, nodes
identified as higher ranked by our method are substantially different from those by each
of the conventional methods. This means that our method enables a new type of social
network analysis if past information diffusion data are available. Note that this is not
to claim to replace them with the proposed method, but simply to propose that it is an
addition to them which has a different merit in terms of information diffusion.

We note that the analysis we showed in this paper is the simplest case whereκ andr
take a single value each for all the links inE. However, the method is very general. In a
more realistic setting we can divideE into subsetsE1,E2, ...,EN and assign a different
value κn and rn for all the links in eachEn. For example, we may divide the nodes
into two groups: those that strongly influence others and those not, or we may divide
the nodes into another two groups: those that are easily influenced by others and those
not. We can further divide the nodes into multiple groups. If there is some background
knowledge about the node grouping, our method can make the best use of it.

7 Conclusion

We emphasized the importance of incorporating continuous time delay for the behav-
ioral analysis of information diffusion through a social network, and addressed the
problem of estimating the parameters for a continuous time delay independent cas-
cade (CTIC) model from the observed data by rigorously formulating the likelihood
of obtaining these data and maximizing the likelihood iteratively with respect to the
parameters (time-delay and diffusion). We tested the convergence performance of the
proposed method by applying it to the problem of ranking influential nodes using the
network structure from two real world web datasets and showed that the parameters
converge to the correct values efficiently by the iterative procedure and can predict the
high ranked influential nodes much more accurately than the well studied four heuristic
methods. We further applied the method to the problem of behavioral analysis of topic
propagation using a real world blog data and showed that there are indeed sensible dif-
ferences in the propagation patterns in terms of delay and diffusion among different
topics.
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Extracting Influential Nodes on a Social Network

for Information Diffusion

Masahiro Kimura, Kazumi Saito, Ryohei Nakano,
and Hiroshi Motoda

Abstract
We address the combinatorial optimization problem of finding the most

influential nodes on a large-scale social network for two widely-used funda-
mental stochastic diffusion models. The past study showed that a greedy
strategy can give a good approximate solution to the problem. However, a
conventional greedy method faces a computational problem. We propose a
method of efficiently finding a good approximate solution to the problem un-
der the greedy algorithm on the basis of bond percolation and graph theory,
and compare the proposed method with the conventional method in terms of
computational complexity in order to theoretically evaluate its effectiveness.
The results show that the proposed method is expected to achieve a great re-
duction in computational cost. We further experimentally demonstrate that
the proposed method is much more efficient than the conventional method
using large-scale real-world networks including blog networks.
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Social network analysis, Information diffusion model, Influence maxi-

mization problem, Bond percolation
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1 Introduction

The rise of the Internet and the World Wide Web has enabled us to inves-
tigate large-scale social networks, and there has been growing interest in
social network analysis (Newman, 2001; McCallum et al., 2005; Leskovec et
al., 2006). Here, a social network is the network of relationships and inter-
actions among social entities such as individuals, groups of individuals, and
organizations. Examples include blog networks, collaboration networks, and
email networks.

The social network of interactions within a group of individuals plays a
fundamental role in the spread of information, ideas, and innovations. In
fact, a piece of information, such as the URL of a website that provides a
new valuable service, can spread from one individual to another through the
social network in the form of “word-of-mouth” communication. For exam-
ple, the information of free email services such as Microsoft’s Hotmail and
Google’s Gmail could spread largely through email networks. Thus, when
we plan to market a new product, promote an innovation, or spread a new
topic among a group of individuals, we can exploit social network effects.
Namely, we can target a small number of influential individuals (e.g., giving
free samples of the product, demonstrating the innovation, or offering the
topic), and trigger a cascade of influence by which friends will recommend
the product, promote the innovation, or propagate the topic to other friends.
In this way, we can spread decisions in adopting the product, the innovation,
or the topic through the social network from a small set of initial adopters
to many individuals. Therefore, given a social network represented by a di-
rected graph, a positive integer k, and a probabilistic model for the process
by which a certain information spreads through the network, it is an impor-
tant research issue in terms of sociology and viral marketing to find such a
target set A∗

k of k nodes that maximizes the expected number of adopters of
the information if A∗

k initially adopts it (Domingos and Richardson, 2001;
Richardson and Domingos, 2002; Kempe et al, 2003; Kempe et al., 2005).
Here, the expected number of nodes influenced by a target set is referred to
as its influence degree, and this combinatorial optimization problem is called
the influence maximization problem of size k.

Kempe et al. (2003) studied the influence maximization problem for two
widely-used fundamental information diffusion models, the independent cas-
cade (IC) model (Goldenberg, 2001; Kempe et al., 2003; Gruhl et al., 2004)
and the linear threshold (LT) model (Watts, 2002; Kempe et al., 2003). They
experimentally showed on large collaboration networks that for the influence
maximization problem under the IC and LT models, the greedy algorithm
significantly outperforms the high-degree and centrality heuristics that are
commonly used in the sociology literature. Here, the high-degree heuristic
chooses nodes in order of decreasing degrees, and the centrality heuristic
chooses nodes in order of increasing average distance to other nodes in the

3
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network. Moreover, they mathematically proved a performance guarantee
of the greedy algorithm under these information diffusion models (i.e., the
IC and LT models) by using an analysis framework based on submodular
functions.

For the influence maximization problem of size k, the greedy algorithm
iteratively finds a target set Ak of k nodes from the target set Ak−1 of k− 1
nodes that it has already found. Thus, it requires a method of computing
all the marginal influence degrees of a given set A of nodes in the network.
Here, for any node v that does not belong to A, the influence degree of
target set A ∪ {v} is referred to as the marginal influence degree of A at
v. However, it is an open question to compute influence degrees exactly by
an efficient method, and therefore, the conventional method had to obtain
good estimates for influence degrees by simulating the random process of the
information diffusion model (i.e., the IC or LT model) many times (Kempe
et al., 2003). Solving the influence maximization problem under the greedy
algorithm needed a large amount of computation for large-scale networks.

In this paper, for the IC and LT models, we propose a method of effi-
ciently estimating all the marginal influence degrees of a given set of nodes
on the basis of bond percolation and graph theory, and apply it to ap-
proximately solving the influence maximization problem under the greedy
algorithm. In order to theoretically evaluate the effectiveness of the pro-
posed method for solving the influence maximization problem, we compare
the proposed method with the conventional method in terms of compu-
tational complexity, and show that the proposed method is expected to
achieve a large reduction in computational cost. Further, using large-scale
real networks including blog networks, we experimentally demonstrate that
the proposed method is much more efficient than the conventional method.
Finally, we discuss some related work, and describe the conclusion.

2 Definitions

We examine the influence maximization problem on a network represented
by a directed graph G = (V,E) for the IC and LT models. Here, V and E
are the sets of all the nodes and links in the network, respectively. Let N
and L be the numbers of elements of V and E, respectively.

We first recall some basic notions from graph theory. Next, we define the
IC and LT models on G according to the work of Kempe et al. (2003). Last,
we give a mathematical definition of the influence maximization problem.

2.1 Graphs

We consider a directed graph G = (V,E). If there is a directed link (u, v)
from node u to node v, node v is called a child node of node u and node u is
called a parent node of node v. For any v ∈ V , let Γ(v) denote the set of all

4
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the parent nodes of v. For a subset V ′ of V , graph G′ = (V ′, E′) is called
the induced graph of G to V ′ if E′ = E ∩ (V ′ × V ′).

We call (u0, · · ·, uℓ) a path from node u0 to node uℓ if we have (ui−1, ui)
∈ E, (i = 1, · · · , ℓ). We say that node u can reach node v or node v is
reachable from node u if there is a path from node u to node v. For a node
v of the graph G, we define F (v;G) to be the set of all the nodes that are
reachable from v, and define B(v;G) to be the set of all the nodes that can
reach v. For any A ⊂ V , we set

F (A;G) =
⋃

v∈A

F (v;G), B(A;G) =
⋃

v∈A

B(v;G).

A strongly connected component (SCC) of G is a maximal subset C of V
such that for all u, v ∈ C there is a path from u to v. For a node v of G,
we define SCC(v;G) to be the SCC that contains v.

2.2 Information Diffusion Models

We consider mathematically modeling the spread of certain information
through a social network G = (V,E). In the IC and LT models, the fol-
lowing assumptions are made:

• A node is called active if it has adopted the information.

• The state of a node is either active or inactive.

• Nodes can switch from being inactive to being active, but cannot
switch from being active to being inactive.

• The spread of the information through the network G is represented
as the spread of active nodes on G.

• Given an initial set A of active nodes, we suppose that the nodes in A
first become active and all the other nodes remain inactive at time-step
0.

• The diffusion process of active nodes unfolds in discrete time-steps
t ≥ 0.

2.2.1 Independent Cascade Model

First, we define the independent cascade (IC) model. In this model, we
specify a real value pu,v ∈ [0, 1] for each directed link (u, v) in advance.
Here, pu,v is referred to as the propagation probability through link (u, v).
When an initial set A of active nodes is given, the diffusion process of active
nodes proceeds according to the following randomized rule. When node u
first becomes active at time-step t, it is given a single chance to activate

5
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each of its currently inactive child nodes v, and succeeds with probability
pu,v. If u succeeds, then v will become active at time-step t + 1. Here, if
v has multiple parent nodes that become active at time-step t for the first
time, then their activation attempts are sequenced in an arbitrary order, but
performed at time-step t. Whether or not u succeeds, it cannot make any
further attempts to activate v in subsequent rounds. The process terminates
if no more activations are possible.

For an initial active set A (⊂ V ), let ϕ(A) denote the number of active
nodes at the end of the random process for the IC model. Note that ϕ(A)
is a random variable. Let σ(A) denote the expected value of ϕ(A). We call
σ(A) the influence degree of A.

2.2.2 Linear Threshold Model

Next, we define the linear threshold (LT) model. In this model, for any node
v ∈ V , we in advance specify a weight wu,v (> 0) from its parent node u
such that ∑

u∈Γ(v)

wu,v ≤ 1.

When an initial set A of active nodes is given, the diffusion process of active
nodes proceeds according to the following randomized rule. First, for any
node v ∈ V , a threshold θv is chosen uniformly at random from the interval
[0, 1]. At time-step t, an inactive node v is influenced by each of its active
parent nodes u according to weight wu,v. If the total weight from active
parent nodes of v is at least threshold θv, that is,

∑

u∈Γt(v)

wu,v ≥ θv,

then v will become active at time-step t + 1. Here, Γt(v) stands for the set
of parent nodes of v that are active at time-step t. The process terminates
if no more activations are possible.

Note that the threshold θv models the tendency of node v to adopt
the information when its parent nodes do. Note also that the LT model
is a probabilistic model associated with the uniform distribution on [0, 1]N .
Further note that in the LT model it is the node thresholds that are random,
while in the IC model it is the propagations through links that are random.
Suppose that A is an initial set of active nodes. We define a random variable
ϕ(A) by the number of active nodes at the end of the random process for
the LT model. Let σ(A) denote the expected value of ϕ(A). We call σ(A)
the influence degree of A. Note that these notations are the same as those
for the IC model.

6
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2.3 Influence Maximization Problem

We mathematically define the influence maximization problem on a network
G = (V,E) under the IC and LT models. Let k be a positive integer with
k < N .

The influence maximization problem on G of size k is defined as follows:
Find a set A∗

k of k nodes to target for initial activation such that σ(A∗
k) ≥

σ(S) for any set S of k nodes, that is, find

A∗
k = argmaxA∈{S⊂V ; |S|=k} σ(A), (1)

where |S| stands for the number of elements of set S.

3 Conventional Method

Kempe et al. (2003) showed the effectiveness of the greedy algorithm for
the influence maximization problem under the IC and LT models. In this
section, we introduce the greedy algorithm, and describe the conventional
method for solving the influence maximization problem under the greedy
algorithm. We, then, consider evaluating the computational complexity for
the conventional method.

3.1 Greedy Algorithm

We approximately solve the influence maximization problem by the following
greedy algorithm:

(G1) Set A ← ∅.

(G2) for i = 1 to k do

(G3) Choose a node vi ∈ V maximizing σ(A ∪ {v}), (v ∈ V \ A).

(G4) Set A ← A ∪ {vi}.

(G5) end for

Let Ak denote the set of k nodes obtained by this algorithm. We refer to
Ak as the greedy solution of size k. Then, it is known that

σ(Ak) ≥

(
1−

1

e

)
σ(A∗

k),

that is, the quality guarantee of Ak is assured (Kempe et al., 2003). Here,
A∗

k is the exact solution defined by Equation (1).
To implement the greedy algorithm, we need a method for estimating all

the marginal influence degrees {σ(A∪{v}); v ∈ V \A} of A in Step (G3) of
the algorithm.
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3.2 Conventional Method for Estimating Marginal Influence

Degrees

For Step (G3) of the greedy algorithm, the conventional method estimated
all the marginal influence degrees {σ(A∪{v}); v ∈ V \A} of A in the following
way (Kempe et al., 2003): First, a sufficiently large positive integer M is
specified. For any v ∈ V \ A, the random process of the diffusion model
(IC or LT model) is run from the initial active set A ∪ {v}, and the number
ϕ(A∪{v}) of final active nodes is counted. Each σ(A∪{v}) is estimated as
the empirical mean obtained from M such simulations.

Namely, the conventional method independently estimated σ(A ∪ {v})
for all v ∈ V \ A as follows:

1. for m = 1 to M do

2. Compute ϕ(A ∪ {v}).

3. Set xm ← ϕ(A ∪ {v}).

4. end for

5. Set σ(A ∪ {v}) ← (1/M)
∑M

m=1 xm.

Here, each ϕ(A ∪ {v}) is computed as follows:

1. Set H0 ← A ∪ {v}.

2. Set t ← 0.

3. while Ht 6= ∅ do

4. Set Ht+1 ← {the activated nodes at time t + 1}.

5. Set t ← t + 1.

6. end while

7. Set ϕ(A ∪ {v}) ←
∑t−1

j=0 |Hj |

3.3 Computational Complexity of Conventional Method

We consider evaluating the computational complexity of solving the influ-
ence maximization problem. For this purpose, we introduce the notion of
examined nodes. Here, an examined node is a node that is actually vis-
ited by tracing incoming or outgoing links on the graph in question for the
method when all the marginal influence degrees {σ(A ∪ {v}); v ∈ V \A} of
A are estimated in Step (G3) of the greedy algorithm. In Section 4.4, we
describe the reason why we investigate the examined nodes for evaluating
the computational complexity.
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The computational complexity of the conventional method is evaluated
in terms of the expected number of examined nodes. In order to estimate
σ(A ∪ {v}), (v ∈ V \ A), it is necessary for any v ∈ V \ A to simulate
M times the random process of the information diffusion model (IC or LT
model) from the initial active set A ∪ {v} on graph G. For each simulation,
the set of examined nodes are the same as the set of active nodes in the
process. Thus, we can estimate that the expected number C0 of examined
nodes for the conventional method is

C0 = M
∑

v∈V \A

σ(A ∪ {v}). (2)

4 Proposed Method

We propose a method for efficiently estimating all the marginal influence
degrees {σ(A ∪ {v}); v ∈ V \ A} of A in Step (G3) of the greedy algorithm
on the basis of bond percolation and graph theory, and evaluate the compu-
tational complexity, and compare it with that of the conventional method.

4.1 Bond Percolation

The IC and LT models are identified with bond percolation models which are
defined below, and all the marginal influence degrees {σ(A∪{v}); v ∈ V \A}
of A are efficiently estimated by exploiting graph theoretic methods.

A bond percolation process on graph G = (V,E) is the process in which
each link of G is randomly designated either “occupied ” or “unoccupied”
according to some probability distribution. Here, in terms of information
diffusion on a social network, occupied links represent the links through
which the information propagates, and unoccupied links represent the links
through which the information does not propagate. Let us consider the
following set of L-dimensional vectors,

RG =
{
r = (ru,v)(u,v)∈E

∈ {0, 1}L
}

,

where L is the number of links in G. A bond percolation process on G is
determined by a probability distribution q(r) on RG. Namely, for a random
vector r ∈ RG drawn from q(r), each link (u, v) ∈ E is designated “occupied”
if ru,v = 1, and it is designated “unoccupied” if ru,v = 0. Let Er denote the
set of all the occupied links for r ∈ RG, and let Gr denote the graph (V,Er).
For each r ∈ RG, we can consider the deterministic diffusion model Mr on
Gr such that F (A;Gr) becomes the final set of active nodes when A is an
initial set of active nodes, where F (A;Gr) is the set that is reachable from A
on Gr (see, Section 2.1). By associating the diffusion modelMr on Gr with
a probability distribution q(r) on RG, we define a stochastic diffusion model
on G. We call this diffusion model the bond percolation model on G, and

9
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refer to the probability distribution q(r) on RG as the occupation probability
distribution of the bond percolation model.

We easily see that the IC model on G can be identified with the so-called
susceptible/infective/recovered (SIR) model (Newman, 2003) for the spread
of a disease on G, where the nodes that become active at time t in the IC
model correspond to the infective nodes at time t in the SIR model. We
recall that in the SIR model, an individual occupies one of the three states,
“susceptible”, “infected” and ‘recovered”, where a susceptible individual
becomes infected with a certain probability when s/he is encountered an
infected patient and subsequently recovers at a certain rate (see, Newman,
2003; Watts and Dodds, 2007). It is known that the SIR model on a network
can be exactly mapped onto a bond percolation model on the same network
(Grassberger, 1983; Newman, 2002; Kempe et al., 2003; Newman, 2003).
Hence, we see that the IC model on G is equivalent to a bond percolation
model on G, that is, these two models have the same probability distribution
for the final set of active nodes given a target set. Here, for the IC model on
G, the occupation probability distribution q(r) of the corresponding bond
percolation model is given by

q(r) =
∏

(u,v)∈E

{
(pu,v)

ru,v (1− pu,v)
1−ru,v

}
, (r ∈ RG),

that is, each link (u, v) of G is independently declared to be “occupied”
with probability pu,v, where pu,v is the propagation probability through link
(u, v) in the IC model.

On the other hand, Kempe et al. (2003) proved that the LT model on G
can also be equivalent to a bond percolation model on G to derive the result
that the influence degree function σ(A) is submodular in the LT model.
Here, for the LT model on G, the corresponding occupation probability
distribution q(r) is generated by declaring “occupied” and “unoccupied”
links in the following way: For any v ∈ V , we pick at most one of the
incoming links to v by selecting link (u, v) with probability wu,v and selecting
no link with probability 1 −

∑
u∈Γ(v) wu,v. After this process, the picked

links are declared to be “occupied” and the other links are declared to be
“unoccupied”. Here, wu,v is the weight of link (u, v) in the LT model.
Specifically, q(r) is described as follows:

q(r) =
∏

v∈V

∏

u∈Γ(v)





(wu,v)

ru,v


1−

∑

u∈Γ(v)

wu,v




(
1−

∑
u∈Γ(v)

ru,v

)



,

where if
∑

u∈Γ(v) wu,v < 1,
∑

u∈Γ(v) ru,v ≤ 1 and if
∑

u∈Γ(v) wu,v = 1,
∑

u∈Γ(v) ru,v

= 1.

10



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4.2 Proposed Method for Estimating Marginal Influence De-

grees

We present a method of estimating all the marginal influence degrees {σ(A∪
{v}); v ∈ V \ A} of A in Step (G3) of the greedy algorithm. As shown in
the preceding section, the IC and LT models on G can be identified with
the bond percolation models on G. Therefore, we have

σ(A ∪ {v}) =
∑

r∈RG

q(r) |F (A ∪ {v};Gr)|

for any v ∈ V \ A, where q(r) is the corresponding occupation probability
distribution, and F (A ∪ {v};Gr) stands for the set of all the nodes that are
reachable from A ∪ {v} on graph Gr (see, Section 2.1).

We estimate {σ(A ∪ {v}); v ∈ V \ A} in the following way: First, we
specify a sufficiently large positive integer M . Next, we independently gen-
erate a set {r1, · · · , rM} of M sample vectors on RG from the probability
distribution q(r); that is, independently generate a set {Grm ;m = 1, · · · ,M}
of M graphs. For any v ∈ V \A, we approximate σ(A ∪ {v}) by

σ(A ∪ {v}) ≃
1

M

M∑

m=1

|F (A ∪ {v};Grm)|. (3)

Thus, we estimate {σ(A ∪ {v}); v ∈ V \ A} on the basis of Equation (3) as
follows:

1. for m = 1 to M do

2. Generate graph Grm .

3. Compute {|F (A ∪ {v};Grm)|; v ∈ V \ A}.

4. Set xv,m ← |F (A ∪ {v};Grm)| for all v ∈ V \ A.

5. end for

6. Set σ(A ∪ {v}) ← (1/M)
∑M

m=1 xv,m for all v ∈ V \ A.

In particular, we evaluate {|F (A ∪ {v};Gr)|; v ∈ V \ A} for an arbitrary r
∈ RG by the following algorithm:

(E1) Find the subset F (A;Gr) of V .

(E2) Set |F (A ∪ {v};Gr)| ← |F (A;Gr)| for all v ∈ F (A;Gr) \ A.

(E3) Find the subset V A
r = V \ F (A;Gr) of V , and the induced graph GA

r

of Gr to V A
r .

(E4) Set U ← ∅.

11
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(E5) while V A
r \ U 6= ∅ do

(E6) Pick a node u ∈ V A
r \ U .

(E7) Find the subset F (u;GA
r ) of V A

r .

(E8) Find the subset C(u;GA
r ) = B(u;GA

r ) ∩ F (u;GA
r ) of F (u;GA

r ).

(E9) Set |F (A∪{v};Gr)| ← |F (u;GA
r )| + |F (A;Gr)| for all v ∈ C(u;GA

r ).

(E10) Set U ← U ∪ C(u;GA
r ).

(E11) end while

Now, we explain this algorithm. In Step (E1), we find the subset F (A;Gr)
that is reachable from A on graph Gr. In Step (E2), we use the fact that if
v ∈ F (A;Gr), the set F (A∪{v};Gr) that is reachable from A∪{v} on Gr is
equal to the set F (A;Gr), and we simultaneously compute |F (A∪ {v};Gr)|
for all v ∈ F (A;Gr). In Step (E3), we find the subset V A

r = V \ F (A;Gr),
and also find the induced graph GA

r of graph Gr to V A
r . In Steps (E4) to

(E11), we use the fact that if v /∈ F (A;Gr), |F (A ∪ {v};Gr)| is obtained
by the sum of |F (A;Gr)| and |F (v;GA

r )|. This fact enables us to reduce
the graph in question from Gr to GA

r . We attempt to decompose graph GA
r

into its SCCs. In Step (E6), on graph GA
r , we pick a node u that does not

belong to the SCCs that we have already found. In Step (E7), we find the
set F (u;GA

r ) that is reachable from u on graph GA
r . In Step (E8), we find

the subset C(u;GA
r ) = B(u;GA

r ) ∩ F (u;GA
r ) of F (u;GA

r ) by tracing back-
ward all the links from u on the induced graph of GA

r to F (u;GA
r ). Note

that the set C(u;GA
r ) is equal to the SCC SCC(u;GA

r ) that contains u. In
Step (E9), we use the fact that |F (v;GA

r )| = |F (u;GA
r )| if v ∈ C(u;GA

r ), and
simultaneously compute |F (A∪{v};Gr)| for all v ∈ C(u;GA

r ). We illustrate
the flow of the algorithm in the following example:

Example: We consider the graph Gr shown in Figure 1a, where V = {v1,
v2, v3, v4, v5, v6, v7}. We set A = {v1}. In this case, the process of the
algorithm proceeds as follows.

In Step (E1), we find F (A;Gr) = {v1, v2, v3}. In Step (E2), we find
|F (A ∪ {v2};Gr)| = |F (A ∪ {v3};Gr)| = 3. In Step (E3), we find V A

r =
{v4, v5, v6, v7} and GA

r as shown in Figure 1b. In Step (E4), we set U =
∅. In Step (E5), we check V A

r \ U = {v4, v5, v6, v7} 6= ∅. In Step (E6),
we pick v4 ∈ V A

r \ U . In Step (E7), we find F (v4;G
A
r ) = {v4, v5, v6, v7}.

In Step (E8), we find C(v4;G
A
r ) = B(v4;G

A
r ) ∩ F (v4;G

A
r ) = {v4, v5, v6} in

F (v4;G
A
r ). In Step (E9), we find |F (A ∪ {v4};Gr)| = |F (A ∪ {v5};Gr)| =

|F (A∪{v6};Gr)| = 7. In Step (E10), we set U = {v4, v5, v6}. In Step (E11),
we return to Step (E5). In Step (E5), we check V A

r \ U = {v7} 6= ∅. In
Step (E6), we pick v7 ∈ V A

r \ U . In Step (E7), we find F (v7;G
A
r ) = {v7}. In

Step (E8), we find C(v7;G
A
r ) = {v7}. In Step (E9), we find |F (A∪{v7};Gr)|

12
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(a) An example of
graph Gr.
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v

(b) Graph G
A
r .

Figure 1: An illustration of the flow of the proposed algorithm for evaluating
{|F (A ∪ {v};Gr)|; v ∈ V \ A}, where r ∈ RG and A = {v1}.

= 4. In Step (E10), we set U = {v4, v5, v6, v7}. In Step (E11), we return to
Step (E5). In Step (E5), we check V A

r \ U = ∅. Then, the process of the
algorithm ends.

4.3 Computational Complexity of Proposed Method

In the same way as in Section 3.3, we evaluate the computational complexity
of the proposed method as the expected number of examined nodes for
estimating all the marginal influence degrees {σ(A ∪ {v}); v ∈ V \ A} of A
in Step (G3) of the greedy algorithm.

Let Gr be a graph generated from the occupation probability distribution
q(r) of the corresponding bond percolation model. We consider evaluating
the expected number Z(A,Gr) of examined nodes for computing {|F (A ∪
{v};Gr)|; v ∈ V \ A} by the proposed method (see, Section 4.2). First, the
number of examined nodes for finding F (A;Gr) is given by |F (A;Gr)|. Let

V A
r =

⋃

u∈UA
r

SCC(u;GA
r )

be the SCC decomposition of the induced graph GA
r of Gr to V A

r = V \
F (A;Gr), where UA

r stands for the set of all the representative nodes for
SCCs. For any u ∈ UA

r , the number of examined nodes for finding F (u;GA
r )

is |F (u;GA
r )|. Suppose now that F (u;GA

r ) is found. Then, the number
of examined nodes for finding C(u;GA

r ) (= SCC(u;GA
r )) is |SCC(u;GA

r )|,
since C(u;GA

r ) = B(u;GA
r ) ∩ F (u;GA

r ) is calculated on the induced graph of
graph GA

r to F (u;GA
r ). Therefore, the number Z(A,Gr) of examined nodes

for computing {|F (A ∪ {v};Gr)|; v ∈ V \ A} by the proposed method is as
follows:

Z(A,Gr) = |F (A;Gr)|+
∑

u∈UA
r

(
|F (u;GA

r )|+ |SCC(u;GA
r )|

)
.
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By the definition of graph GA
r , we have

∑

u∈UA
r

|SCC(u;GA
r )| = N − |F (A;Gr)|,

where N = |V |. Thus, we have

Z(A,Gr) = N +
∑

u∈UA
r

|F (u;GA
r )|. (4)

Since |F (u;GA
r )| = |F (A ∪ {u};Gr)| − |F (A;Gr)|, we can estimate the ex-

pected value of |F (u;GA
r )| as σ(A ∪ {u}) − σ(A). Hence, by Equation (4),

we can estimate the expected number Z(A,Gr) of examined nodes for com-
puting {|F (A ∪ {v};Gr)|; v ∈ V \ A} as

Z(A,Gr) = N +

〈
∑

u∈UA
r

(σ(A ∪ {u})− σ(A))

〉

r

,

where 〈f(r)〉r stands for the operation that averages f(r) with respect to r
under q(r), that is,

〈f(r)〉r =
∑

r∈R(G)

f(r) q(r).

From the above results, we can estimate that the expected number C1 of
examined nodes for the proposed method is

C1 = M




N +

〈
∑

u∈UA
r

(σ(A ∪ {u})− σ(A))

〉

r




 . (5)

4.4 Computational Complexity Comparison

We compare the proposed method with the conventional method in terms
of computational complexity. Both methods need M to be specified as a
parameter, and we use the same value for both. We note that more coin-
flips are used in the conventional method. In fact, if we think of a single
run, i.e., any one of the M runs, the expected number of coin-flips for the
conventional method is O(|V |σ(v)) for both the IC and LT models, whereas
that for the proposed method is O(|E|) for the IC model and O(|V |) for the
LT model. Note that in case of LT model for the proposed method, the coin-
flip is realized by roulette for each node, i.e., picking at most one incoming
link. However, if we focus on a single node v for initial activation from
which to propagate the information, the number of coin-flips are O(σ(v))
for both the conventional and the proposed methods and for both the IC
and the LT models because only the activated nodes (the expected number
is σ(v)) are on the paths that lead to reachable nodes from v in the proposed

14
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method. Thus by using the same value of M , both would estimate σ(v) with
the same accuracy in principle (see Appendix A). The biggest difference
is that in the conventional method, when A is not empty, many of the
coin-flips are redundant; that is, the diffusion process from A is repeatedly
performed, whereas in the proposed method, no such repetition is made.
This contributes to the stability of the proposed method. Below we begin
by explaining the reason why we investigate the examined nodes to compare
the proposed and the conventional methods.

First, we consider the case of IC model. Both the proposed and the
conventional methods flip a coin with a bias pu,v on a link (u, v) to decide
whether to propagate the information through the link (u, v) or not. Here,
if we assume that all the coins are flipped in advance for the conventional
method and ignore the computational complexity for flipping a coin and
deciding whether or not to propagate the information, then for both the
proposed and the conventional methods, the major computation is to trace
forward or backward the links the information propagates and identify the
nodes to visit. Therefore, we evaluate the computational complexities of the
both methods for the IC model in terms of the expected number of examined
nodes.

Next, we consider the case of LT model. For the proposed method, we
ignore the computational complexity for the process of choosing at most
one incoming link of each node in the original graph. For the conventional
method, we ignore the computational complexity for the process of choosing
the threshold θv of each node v in the original graph. Note that the proposed
method performs the process M times, whereas the conventional method
performs the process MN times. Moreover, for the conventional method, we
further ignore the computational complexity for adding the weights from the
neighboring active nodes to a node and deciding whether the node becomes
active or not. Then, the major computation for the conventional method
is to trace forward the links the information propagates and identify the
nodes to visit. Therefore, we also evaluate the computational complexities
of the both methods for the LT model in terms of the expected number of
examined nodes.

Now, we compare the proposed and the conventional methods in terms of
the expected number of examined nodes. We use the results in Sections 3.3
and 4.3. By Equation (2), the expected number C0 of examined nodes for
the conventional method can be estimated as

C0 = M




N − |A|+
∑

u∈V \A

(σ(A ∪ {u})− 1)




 , (6)

since
∑

V \A 1 = N − |A|. In Equation (6), we can expect that |A| ≪ N
(= |V |), and σ(A∪{u}) − 1 is summed up for almost all u ∈ V , since k ≪ N .
On the other hand, we can generally expect |UA

r | ≪ N in Equation (5).

15



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Also, we have σ(A) > 1 in the greedy algorithm if A 6= ∅. Moreover, for
any u ∈ V \ A, σ(A ∪ {u}) − σ(A) decreases as |A| increases, since σ(A) is
a submodular function. Hence, we can generally expect that in Step (G3)
of the greedy algorithm, the proposed method has much smaller expected
number of examined nodes than the conventional method.

From the above results, we can expect that compared with the con-
ventional method, the proposed method will achieve a large reduction in
computational cost.

5 Experimental Evaluation

Using large-scale real networks, we experimentally evaluated the perfor-
mance of the proposed method.

5.1 Network Datasets

In the evaluation experiments, we should desirably use large-scale networks
that exhibit many of the key features of real social networks. Here, we show
the experimental results for two different datasets of such real networks.
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Figure 2: The out-degree distribution for the blog dataset.

First, we employed a trackback network of blogs, since a piece of infor-
mation can propagate from one blog author to another blog author through
a trackback, where a trackback is a kind of hyperlink with a linkback (i.e.,
link notification) function. We exploited the blog “Theme salon of blogs”
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Figure 3: The in-degree distribution for the blog dataset.

in the site “goo” (http://blog.goo.ne.jp/usertheme/), where blog au-
thors could recruit trackbacks of other blog authors by registering interest-
ing themes. We collected a large-scale connected trackback network in May,
2005 by the following breadth first search process:

1. We started the process from the blog of the theme “JR Fukuchiyama
Line Derailment Collision” in the site “goo”, analyzed its HTML file,
and extracted the list of the URLs of the source blogs of the trackbacks
to this blog.

2. For each list obtained, we collected the blogs of the URLs in the list.

3. For each blog collected, we analyzed its HTML file, and constructed
the list of the URLs of the source blogs of the trackbacks to the blog.

4. We repeated from Step 2 until depth ten from the original blog.

We call this network data the blog dataset. This network was a directed
graph of 12, 047 nodes and 53, 315 links, and is expected to have a feature
of real world social network in light of the way it is generated. To confirm
this, the out-degree and in-degree distributions are respectively plotted in
Figures 2 and 3, from which it is understood that these are “heavy-tailed”
distributions that most large real networks exhibit. Here, the out-degree
and in-degree distributions are the distributions of the number of outgoing
and incoming links for every node, respectively. Thus, we believe that the
blog dataset is a typical example of a large real social network represented
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by a directed graph, and can be used as the network data to evaluate the
performance of the proposed method.
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Figure 4: The degree distribution for the Wikipedia dataset.

Next, we employed a network of people that was derived from the “list of
people” within Japanese Wikipedia. Specifically, we extracted the maximal
connected component of the undirected graph obtained by linking two peo-
ple in the “list of people” if they co-occur in six or more Wikipedia pages,
and constructed a directed graph by regarding those undirected links as bidi-
rectional ones. We call this network data the Wikipedia dataset. The total
numbers of nodes and directed links were 9, 481 and 245, 044, respectively.
Compared with the blog network, the way this network is generated is rather
synthetically. Figure 4 shows the degree distribution of the undirected graph.
We also observe that the degree distribution is a “heavy-tailed” distribution.

For social networks represented as undirected graphs, Newman and Park
(2003) observed that they generally have the following two statistical prop-
erties that non-social networks do not have. First, they show positive cor-
relations between the degrees of adjacent nodes. Second, they have much
higher values of the clustering coefficient than the corresponding configura-
tion models (i.e., random network models). Here, the clustering coefficient
C for an undirected graph is defined by

C =
3× number of triangles on the graph

number of connected triples of nodes
,

where a “triangle” means a set of three nodes each of which is connected
to each other, and a “connected triple” means a node connected directly to
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Figure 5: The degree correlation for the Wikipedia dataset.

unordered other pair nodes. Note that in terms of sociology, C measures the
probability that two of your friends will also be friends each other. Given a
degree distribution {λd}, the corresponding configuration model of a random
network of N nodes is defined as the ensemble of all possible undirected
graphs of N nodes that possess the degree distribution {λd}, where λd is
the fraction of nodes in the network having degree d. It is known [18] that
the value of C for the configuration model is exactly calculated by

C =
1

Nz1

(
z2

z1

)2

,

where
z1 =

∑

d

dλd

is the average number of neighbors of a node and

z2 =
∑

d

d2λd −
∑

d

dλd

is the average number of second neighbors. For the undirected graph of the
Wikipedia dataset, the value of C of the corresponding configuration model
was 0.046, while the actual measured value of C was 0.39. Namely, the
undirected graph of the Wikipedia dataset had a much higher value of the
clustering coefficient than the corresponding configuration model. Moreover,
we can see from Figure 5 that the Wikipedia dataset had weakly positive
degree correlation. Therefore, we believe that the Wikipedia dataset is also
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a typical example of a large real social network represented by an undirected
graph, and can be used as the network data to evaluate the performance of
the proposed method.

5.2 Experimental Settings

The proposed and the conventional methods are equipped with parameter
M . We refer to the conventional method with M = 1, 000 for the IC model
as the IC1000. In the same way, we define the LT1000 and LT10000 for
the conventional method with the LT model. We also refer to the proposed
method using M = 1, 000 and M = 10, 000 for the IC model as the ICBP1000
and ICBP10000, respectively. In the same way, we define the LTBP1000 and
LTBP10000 for the proposed method with the LT model. As described in
Section 4.4, we compare these methods for the same value of M .

The IC and LT models have parameters to be specified in advance. In the
IC model, we assigned a uniform probability p to the propagation probability
pu,v for any directed link (u, v) of the network, that is, pu,v = p. In the LT
model, we uniformly set weights as follows: For any node v of the network,
the weight wu,v from a parent node u ∈ Γ(v) is given by wu,v = 1/|Γ(v)|.

We implemented all our programs of both the conventional and proposed
methods for the IC and LT models in C language. Of course, the basic
structure of these programs is the same, except that the routines of active
node calculation used in the conventional method are replaced with those
of bond percolation and SCC decomposition used in the proposed method.

5.3 Experimental Results

We compared the proposed method with the conventional method in terms
of both the performance of the approximate solution Ak and the processing
time for solving the influence maximization problem of size k. The per-
formance of Ak is measured by the influence degree σ(Ak). We estimated
σ(Ak) by using 300, 000 simulations according to the work of Kempe et al.
(2003). All our experimentation was undertaken on a single Dell PC with an
Intel 3.4GHz Xeon processor, with 2GB of memory, running under Linux.

In order to keep computational time at a reasonable level for the conven-
tional method, we mainly compared these two methods using M = 1, 000.
Note that if a large enough M is taken, these two methods should produce
the same solution. We conjecture that M = 1, 000 is not large enough, that
is, these two methods with M = 1, 000 cannot necessarily obtain good ap-
proximate values for the marginal influence degrees {σ(A∪{v}); v ∈ V \A}
of A, (see Appendices A and B). Thus, we iterated the same experiment
five times independently. Tables 1 and 2 show the experimental results for
the IC model with p = 10% and the LT model for the blog dataset, respec-
tively, where the values are rounded to three significant figures. Note that
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Table 1: Performance of approximate solutions for the influence maximiza-
tion problem under the IC model with p = 10% for the blog dataset. Up-
per: IC1000 (the conventional method). Lower: ICBP1000 (the proposed
method).

k σ(Ak) (IC1000)

1 1.74× 102 1.74 × 102 1.74 × 102 1.74 × 102 1.74 × 102

10 6.93× 102 6.98 × 102 6.93 × 102 6.91 × 102 6.95 × 102

20 8.58× 102 8.61 × 102 8.57 × 102 8.58 × 102 8.60 × 102

30 9.59× 102 9.69 × 102 9.68 × 102 9.66 × 102 9.78 × 102

k σ(Ak) (ICBP1000)

1 1.74× 102 1.74 × 102 1.74 × 102 1.74 × 102 1.74 × 102

10 7.02× 102 7.01 × 102 7.00 × 102 7.01 × 102 7.02 × 102

20 8.74× 102 8.75 × 102 8.73 × 102 8.74 × 102 8.73 × 102

30 9.91× 102 9.92 × 102 9.90 × 102 9.92 × 102 9.92 × 102

in these tables and later ones, too, the values are reestimated with 300, 000
simulations once Ak has been obtained by each method with a specified
M . Since the true solution σ(A∗

k) is by definition the maximum among all
σ(Ak), if σ(Ak) is estimated accurately, it makes sense to argue that the
larger the value is, the closer it is to the true solution and thus it is of bet-
ter quality. We first observe that the results for the proposed method were
relatively stable over the iterations, while the results for the conventional
method somewhat fluctuated for large k in particular. Here, we note that
the proposed method using M = 10, 000 was stable and always produced the
same solution for k = 30 over the iterations (not shown in the tables). We
also observe that for k = 30, the solutions by the ICBP1000 and LTBP1000
outperforms those by the IC1000 and LT1000, respectively.

Table 3 shows the processing time to obtain Ak by the IC1000, ICBP1000,
LT1000 and LTBP1000 for the blog dataset, where the values are rounded
to three significant figures. We observe from Table 3 that the ICBP1000
and LTBP1000 are much more efficient than the IC1000 and LT1000, re-
spectively. For example, to obtain the approximate solution A30 for k = 30,
both the IC1000 and LT1000 needed about 2.5 days, while the ICBP1000
and LTBP1000 needed about 2.5 and 1.5 minutes, respectively. Namely,
for k = 30, the ICBP1000 was 1.8 × 103 times faster than the IC1000, and
the LTBP1000 was 4.6 × 103 times faster than the LT1000. We also exam-
ined the LT10000 and LTBP10000 on the blog dataset. In order to obtain
approximate solution A30, the LT10000 needed about 27 days, while the
LTBP10000 needed only about 14 minutes.
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Table 2: Performance of approximate solutions for the influence maximiza-
tion problem under the LT model for the blog dataset. Upper: LT1000 (the
conventional method). Lower: LTBP1000 (the proposed method).

k σ(Ak) (LT1000)

1 2.86× 102 2.86 × 102 2.86 × 102 2.86 × 102 2.86 × 102

10 1.59× 103 1.61 × 103 1.61 × 103 1.59 × 103 1.58 × 103

20 2.41× 103 2.40 × 103 2.42 × 103 2.42 × 103 2.38 × 103

30 3.02× 103 3.05 × 103 3.01 × 103 3.01 × 103 3.00 × 103

k σ(Ak) (LTBP1000)

1 2.86× 102 2.86 × 102 2.86 × 102 2.86 × 102 2.86 × 102

10 1.60× 103 1.61 × 103 1.61 × 103 1.59 × 103 1.60 × 103

20 2.44× 103 2.44 × 103 2.44 × 103 2.44 × 103 2.44 × 103

30 3.07× 103 3.07 × 103 3.06 × 103 3.06 × 103 3.06 × 103

Table 3: Processing time (sec.) for the blog dataset.

k IC1000 ICBP1000 LT1000 LTBP1000

1 3.70× 102 7.07 6.57 × 102 3.19
10 4.69× 104 5.68 × 101 4.24 × 104 2.96 × 101

20 1.24× 105 1.09 × 102 1.25 × 105 5.64 × 101

30 2.13× 105 1.60 × 102 2.32 × 105 8.20 × 101

Tables 4, 5 and 6 show the experimental results for the Wikipedia dataset.
We see that the results were qualitatively very similar to the ones for the
blog dataset. First, the solutions by the ICBP1000 and LTBP1000 outper-
formed those by the IC1000 and LT1000, respectively. We also note that the
proposed method using M = 10, 000 was stable and always produced the
same solution for k = 30 over the iterations (not shown in the tables). Next,
the ICBP1000 and LTBP1000 were much more efficient than the IC1000 and
LT1000, respectively. For example, for obtaining the approximate solution
A30 for k = 30, the ICBP1000 was 1.9 × 103 times faster than the IC1000,
and the LTBP1000 was 8.3 × 103 times faster than the LT1000. We also
conducted experiments on some other large-scale real networks including a
blogroll network of blogs, and confirmed the effectiveness of the proposed
method.
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Table 4: Performance of approximate solutions for the influence maximiza-
tion problem under the IC model with p = 1% for the Wikipedia dataset.
Upper: IC1000 (the conventional method). Lower: ICBP1000 (the proposed
method).

k σ(Ak) (IC1000)

1 1.39× 102 1.39 × 102 1.36 × 102 1.36 × 102 1.36 × 102

10 3.91× 102 3.97 × 102 3.98 × 102 4.02 × 102 4.01 × 102

20 4.56× 102 4.64 × 102 4.62 × 102 4.64 × 102 4.66 × 102

30 4.97× 102 5.02 × 102 4.95 × 102 5.00 × 102 4.98 × 102

k σ(Ak) (ICBP1000)

1 1.39× 102 1.39 × 102 1.39 × 102 1.36 × 102 1.36 × 102

10 4.05× 102 4.06 × 102 4.07 × 102 4.06 × 102 4.07 × 102

20 4.75× 102 4.76 × 102 4.76 × 102 4.75 × 102 4.77 × 102

30 5.16× 102 5.17 × 102 5.17 × 102 5.16 × 102 5.17 × 102

5.4 Discussion

These experimental results show that the proposed method is much more
efficient than the conventional method.

First, we investigate the reason why the proposed method outperforms
the conventional method in the case of M = 1, 000 for our network datasets.
If we take a sufficiently large M (e.g., M = 100, 000), the proposed and the
conventional methods should produce the same solution. As shown in the
experiments, the estimation accuracy of influence degree function σ with
M = 1, 000 is not so high for the both methods. Now, consider estimating
all the marginal influence degrees {σ(Ak ∪ {v}); v ∈ V \ Ak} of solution
Ak, and choosing the node vk+1 that maximizes σ(Ak ∪ {v}), (v ∈ V \Ak).
It should be reemphasized that the influence set of Ak is equally evaluated
for all v ∈ V \ Ak for the proposed method. In fact, when σ(Ak ∪ {v}) is
estimated using Equation (3), each |F (Ak∪{v};Grm)| is basically computed
by

|F (Ak ∪ {v};Grm)| =
∣∣∣F (v;GAk

rm
)
∣∣∣ + |F (Ak;Grm)| .

Thus, for the proposed method, a node that is relatively optimal for Ak can
be selected as vk+1. On the other hand, for the conventional method, the
influence set of Ak is not equally evaluated for all v ∈ V \Ak since σ(Ak∪{v})
is independently estimated for every v each by a distinct simulation. We also
note that the number of final active nodes for a given target set greatly varied
for every simulation in the IC and LT models (see, Appendix B). Thus,
unlike the proposed method, the selection of vk+1 in the conventional method
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Table 5: Performance of approximate solutions for the influence maximiza-
tion problem under the LT model for the Wikipedia dataset. Upper: LT1000
(the conventional method). Lower: LTBP1000 (the proposed method).

k σ(Ak) (LT1000)

1 3.41× 102 3.41 × 102 3.41 × 102 3.41 × 102 3.41 × 102

10 1.72× 103 1.72 × 103 1.67 × 103 1.66 × 103 1.72 × 103

20 2.55× 103 2.55 × 103 2.45 × 103 2.53 × 103 2.55 × 103

30 3.12× 103 3.03 × 103 2.99 × 103 3.01 × 103 3.11 × 103

k σ(Ak) (LTBP1000)

1 3.41× 102 3.41 × 102 3.41 × 102 3.41 × 102 3.41 × 102

10 1.72× 103 1.72 × 103 1.72 × 103 1.72 × 103 1.71 × 103

20 2.58× 103 2.58 × 103 2.59 × 103 2.59 × 103 2.59 × 103

30 3.18× 103 3.18 × 103 3.18 × 103 3.18 × 103 3.18 × 103

Table 6: Processing time (sec.) for the Wikipedia dataset.

k IC1000 ICBP1000 LT1000 LTBP1000

1 6.63× 102 1.91 × 101 5.41 × 102 5.17
10 1.94× 105 1.74 × 102 9.60 × 104 4.64 × 101

20 4.82× 105 3.42 × 102 3.03 × 105 8.57 × 101

30 8.03× 105 5.10 × 102 5.69 × 105 1.21 × 102

using M = 1, 000 by necessity completely depends on how the influence set
of Ak is evaluated by chance for each v ∈ V \ Ak. Therefore, we believe
that the proposed method outperforms the conventional method in the case
of M = 1, 000 for our network datasets.

Here, to explain the point of the reason described above more clearly, we
consider the following method as an extended version of the conventional
method:

1. for m = 1 to M do

2. Find the set D(Ak) of active nodes at the end of the random process
of the IC or the LT models for initial active set Ak by simulation.

3. for each v ∈ V \ Ak do

4. Find the set D(v) of active nodes at the end of the random process
of the IC or the LT models for initial active set {v} by simulation.
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5. Set xv,m ← |D(Ak) ∪D(v)|.

6. end for

7. end for

8. for each v ∈ V \ Ak do

9. Set σ(Ak ∪ {v})← (1/M)
∑M

m=1 xv,m

10. end for

The extended method should improve the conventional method because the
influence set of Ak is now equally evaluated for all v ∈ V \ Ak, and should
be comparable to the proposed method in quality of solution. However, it
cannot be as efficient as the proposed method since it does not incorporate
the SCC-finding technique.
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Figure 6: Processing time difference τ(k) between the proposed and conven-
tional methods for the blog dataset in the case of the IC model.

Next, we discuss the sources of the difference between the proposed and
conventional methods in processing time. Note that we use the same value of
parameter M for both methods. Let τ1(k) and τ0(k) respectively denote the
processing times of the proposed and the conventional methods for obtaining
solution Ak+1 when solution Ak is given. We define the processing time
difference τ(k) by τ0(k) − τ1(k) for k, the number of nodes selected. We
believe the essential sources of speed-up in the proposed method is that we
compute {|F (Ak ∪ {v};Gr)|; v ∈ V \Ak} on graph Gr as follows:
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• By first identifying F (Ak;Gr), we reduce the graph in question from
Gr to the induced graph GAk

r of Gr to V \ F (Ak;Gr)

• By decomposing GAk
r into the SCCs, we compute |F (Ak∪{v};Gr)| for

many nodes v at once.

Namely, we believe that the larger the size of F (Ak;Gr) is, the larger the
value of τ(k) is. Moreover, we believe that the larger the sizes of the SCCs
of graph GAk

r are, the larger the value of τ(k) is. Here, we demonstrate
these characteristics for the IC model. Note that the size of F (Ak;Gr)
monotonically increases with the value of k. Thus, we can expect that the
value of τ(k) also monotonically increases with the value of k. Note also that
graph Gr becomes denser when the value of the propagation probability p is
larger, and the sizes of the SCCs of Gr also become larger. Thus, we can also
expect that the value of τ(k) monotonically increases with the value of p.
Figure 6 shows τ(k) for p = 0.1%, 1% and 10% as a function of k for the blog
dataset, where circles, squares and diamonds indicate τ(k) for p = 0.1%, 1%
and 10%, respectively. Here, we used M = 1, 000 for both the proposed and
the conventional methods. The results support our conjectures.

6 Related Work

6.1 Calculation of Influence Degrees

First, we describe work related to the calculation of influence degrees in the
IC model. Let us recall that the SIR model for the spread of a disease on
a network is equivalent to a bond percolation model on the same network,
and the size of a disease outbreak from a node corresponds to the size of the
cluster that can be reached from the node by traversing only the “occupied”
links. There are a series of work that uses this correspondence to develop
a method for theoretically calculating the probability distribution of the
size of a disease outbreak that starts with a randomly chosen node in the
configuration model (i.e., a random network model) with a given degree
distribution (Callaway et al., 2000; Newman, 2002; Newman, 2003), and to
derive a condition for the disease outbreak from a randomly chosen node to
give an epidemic outbreak that affects a non-zero fraction on the network in
the limit of very large network. Mathematically more rigorous treatments
of similar results can be found in the work of Molloy and Reed (1998) and
Chung and Lu (2002).

Next, we describe work related to the calculation of influence degrees
in the LT model. Watts (2002) investigated the LT model on a network to
explain large but rare cascade phenomena triggered by small initial shocks.
Using the concept of site percolation, he theoretically derived a condition
for the cascade from a randomly chosen seed node to give a global cascade
that affects a non-zero fraction on the network in the limit of infinitely large
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network for the configuration model (i.e., a random network model) with a
given degree distribution.

The above mentioned studies focused on global properties averaged over
a random network in the limit of very large size, while our primary inter-
est is to practically answer which nodes are most influential for information
diffusion on a given real-world network of a finite size. We also note that
those studies dealt with undirected graphs, while our work investigates in-
formation diffusion on networks represented by directed graphs. Moreover,
the theories developed in those studies assumed that the loop structure on
a network of interest can be essentially ignored in the limit of large network
size. However, this property is not true of many large-scale social networks,
and it is an open question whether or not those theories are effective for such
networks (Newman, 2003). In fact, the clustering coefficient C quantifies the
loop structure in a network, and it was indeed observed that many social
networks have much higher values of C than the corresponding configuration
models (i.e., random network models) (Newman and Park, 2003).

6.2 Solving the Influence Maximization Problem

The influence degree function σ is submodular (see, Kempe et al., 2003). For
solving a combinatorial optimization problem of a submodular function f on
V by the greedy algorithm, Leskovec et al. (2007) have recently presented
a lazy evaluation method that leads to far fewer (expensive) evaluations
of the marginal increments f(A ∪ {v}) − f(A) (v ∈ V \ A) in the greedy
algorithm for A 6= ∅, and achieved an improvement in speed. Note here
that their method requires evaluating f(v) for all v ∈ V at least. Thus, we
can apply their method to the influence maximization problem for the IC or
LT models, where the influence degree function σ is evaluated through the
simulations of the corresponding random process. It is clear that this method
is more efficient than the conventional method. However, the proposed
method for k = 30 was faster than the conventional method for k = 1 as
shown in Tables 3 and 6. Therefore, it is evident that the proposed method
can be faster than the method by Leskovec et al. (2007) for the influence
maximization problem for the IC or LT models. To quantify the difference
we implemented the lazy evaluation method. The processing time for k = 30
in case of the blog dataset was 2.12× 103 and 8.28× 102 seconds for the IC
and the LT models, respectively, and the corresponding processing time in
case of Wikipedia dataset was 1.46× 104 and 2.65× 103 seconds for the IC
and the LT models, respectively. Here, M = 1, 000 are used as the number of
simulations (see, Section 3.2), and the values are rounded to three significant
figures. From these results, we can see that the proposed method was more
than ten times faster than the method by Leskovec et al. (2007) for k = 30
in the blog and Wikipedia datasets (see, Tables 3 and 6).

Beyond the IC and LT models, Kempe et al. (2003) proposed the trig-
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gering model as an yet another diffusion model on a network. It is proved
that the triggering model can be identified with a bond percolation model
(see, Kempe et al., 2003). The proposed method can be applied to this
model because it can be applied to any diffusion model that can be identi-
fied with a bond percolation model. The future work includes presenting a
large number of realistic examples of such diffusion models.

In this paper, we have considered the progressive case in which nodes
cannot switch from being active to being inactive. However, there are many
information diffusion phenomena that non-progressive diffusion models are
required. Examples include the spread of posts for a topic in blogspace
(Gruhl et al, 2004). Kempe et al. (2003) proved that non-progressive case
can be reduced to the progressive case. More specifically, it is proved that
the influence maximization problem for a non-progressive diffusion model on
graph G in time-limit T is equivalent to the ordinary influence maximization
problem on the layered graph GT for the progressive diffusion model, where
GT is the directed acyclic graph (DAG) constructed by time-forwardly con-
necting (T + 1) copies of G (see, Kempe et al. 2003). Therefore, building
effective methods for fundamental progressive models such as the IC and LT
models is indeed important and crucial for the non-progressive case.

From a realistic point of view, the IC and LT models are by no means a
complete model, but are at best a simplified and partial representation of a
complex reality (see, Kempe et al, 2003; Gruhl et al., 2004; Leskovec et al.,
2006). However, in the field of sociology, Watts and Dodds (2007) recently
examined the “influentials hypothesis” in the contexts of the LT model and
the SIR model (i.e., an extended model of the IC model), that is, they
investigated by computer simulations whether large cascades of influence
are actually driven by influentials or not. On the other hand, Even-Dar and
Shapira (2007) mathematically studied the influence maximization problem
in the context of another fundamental model called the voter model. We also
believe that it is important to investigate information diffusion phenomena
for the IC and LT models (i.e., fundamental diffusion models) to deepen our
understanding of these models. The future work includes proposing effective
methods for solving the influence maximization problem in the contexts of
various realistic diffusion models.

6.3 Applications

As is easily understood, the conventional method is not practical unless we
rely on high-performance computers and sophisticated techniques such as
parallel computing (see, Tables 3 and 6) to solve the kind of problems such
as influence maximization problem as addressed in this paper. In contrast,
the proposed method enables us to obtain a practical solution to this kind
of problems on a single standard PC in a reasonable processing time. Thus,
we can apply the proposed method to a variety of real problems.
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The work of Watts and Dodds (2007) briefly described above needs a
method to efficiently estimate σ(A) and the proposed method can readily
be applicable.

As mentioned in the introduction, the influence maximization problem
finds many realistic applications. The most straightforward application
would be viral marketing. When we wish to promote a new product (e.g.,
an email service or a search engine), and are given a relevant social network,
we can easily find a limited number of key (influential) persons first to adopt
the new product by the proposed method, and enjoy the diffusion effect for
the IC or LT models (i.e., fundamental diffusion models) through the social
network. We admit that the diffusion models we discussed are oversimplified
but still it is useful to obtain approximate solutions as a first step toward
an effective marketing without using classical advertising channels.

The proposed method has an application of different flavor which is the
visualization of information flow. Understanding the flow of information
through a complex network is important in terms of sociology and market-
ing. We devised a new node embedding method for visualizing the infor-
mation diffusion process from the target nodes selected to be a solution of
the influence maximization problem (Saito et al., 2008). This visualization
method is characterized by 1) utilization of the target nodes as a set of pivot
objects for visualization, 2) application of a probabilistic algorithm for em-
bedding all the nodes in the network into an Euclidean space to conserve
the posterior information diffusion probability, and 3) varying appearance
of the embedded nodes on the basis of two label assignment strategies, one
with emphasis on influence of initially activated nodes, and the other on
degree of information reachability.

7 Conclusion

We have considered the influence maximization problem for the IC and LT
models on a large-scale social network represented as a directed graph G =
(V,E). Due to the computational complexity, the greedy search algorithm is
the only practical approach, but still the conventional method needed a high
amount of computation. We have proposed a method of efficiently finding
a good approximate solution to the problem under the greedy algorithm.
In particular, in order to improve the computational efficiency, we have
estimated all the marginal influence degrees {σ(A ∪ {v}); v ∈ V \ A} of a
given target set A in the following way:

• We identify the IC and LT models with the corresponding bond per-
colation models.

• For any v ∈ V \ A, we estimate the influence degree σ(A ∪ {v}) of A
∪ {v} as the empirical mean of the number |F (A ∪ {v};Gr)| of the
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nodes that are reachable from A ∪ {v} on a graph Gr generated from
the corresponding occupation probability distribution q(r) of the bond
percolation.

In particular, we estimate {|F (A ∪ {v};Gr)|; v ∈ V \ A} as follows:

• We find the set F (A;Gr) that is reachable from A on graph Gr, and
simultaneously compute {|F (A ∪ {v};Gr)|; v ∈ F (A;Gr)}.

• We find the induced graph GA
r of Gr to V \ F (A;Gr), and decompose

GA
r into its SCCs (Strongly Connected Components).

• For each SCC SCC(u;GA
r ) of GA

r , (u ∈ V \ F (A;Gr)), we simultane-
ously compute {|F (A ∪ {v};Gr)|; v ∈ SCC(u;GA

r )}.

We have compared the proposed method with the conventional method
in terms of computational complexity and quality of the solution, and have
shown that the proposed method is expected to achieve a large amount
of reduction in computational cost. Moreover, using large-scale networks
including a real blog network, we have experimentally demonstrated the ef-
fectiveness of the proposed method. For example, we obtained the following
results for the influence maximization problem of size k = 30 on the blog
and Wikipedia datasets that are real networks with about 10, 000 nodes: In
the case of the IC model, the proposed method was 1800 times faster than
the conventional method, and in the case of the LT model, the proposed
method was 4600 times faster than the conventional method.
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Appendix

A Convergence Speed

As described in Section 4.4, by using the same value of M , both the proposed
and the conventional methods would estimate σ(v) with the same accuracy
in principle. Here, we experimentally demonstrate this conjecture.
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According to the work of Kempe et al. (2003), we set M = 300, 000 as
a sufficiently large value of M , that is, we assume that σ(v) for any v ∈ V
is well approximated by 300, 000 simulations of the information diffusion
model (i.e., the conventional method using M = 300, 000). For any v ∈ V ,
let σ0(v;M) and σ1(v;M) denote the estimates of σ(v) by the conventional
and the proposed methods using parameter value M , respectively. For the
blog and Wikipedia datasets, we investigated

E =
1

N

∑

v∈V

|σ0(v; 300, 0000) − σ1(v; 300, 000)|,

E0(M) =
1

N

∑

v∈V

|σ0(v;M)− σ0(v; 300, 000)|,

E1(M) =
1

N

∑

v∈V

|σ1(v;M)− σ1(v; 300, 000)|.

We first consider the case of the IC model. Then, the value of E was
0.03 and 0.04 for the blog and Wikipedia datasets, respectively. Thus, we
can assume that the values of σ0(v; 300, 000) and σ1(v; 300, 000) are almost
the same for any v ∈ V .

Table 7: Convergence speed for the blog dataset.

M E0(M) E1(M)

100 1.16 1.12
1,000 0.36 0.36

10,000 0.11 0.12
100,000 0.03 0.03

Table 8: Convergence speed for the Wikipedia dataset.

M E0(M) E1(M)

100 1.28 1.23
1,000 0.42 0.42

10,000 0.13 0.14
100,000 0.03 0.03

Tables 7 and 8 show the values of E0(M) and E1(M) for the blog and
Wikipedia datasets, respectively. These results imply that the proposed
and the conventional methods estimate {σ(v); v ∈ V } with almost the same
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accuracy for the IC model. We also obtained similar results for the case of
the LT model. For example, the value of E was 0.03 and 0.09 for the blog
and Wikipedia datasets, respectively. For the blog dataset, the values of
E0(10, 000) and E1(10, 000) were 0.13 and 0.12, respectively. Also, for the
Wikipedia datasets, the values of E0(10, 000) and E1(10, 000) were 0.36 and
0.37, respectively. These results support our conjecture.

B Fluctuation in Simulations of Information Dif-

fusion Models

For each v ∈ V , we examine fluctuation in the number ϕ(v) of the final active
nodes for a target initially activated node v through 1, 000 simulations in the
IC and LT models. Let µ(v) and s(v) denote the empirical mean and the
standard deviation of ϕ(v) for 1, 000 simulations, respectively. We define
µ and s by the empirical means of {µ(v); v ∈ V } and {s(v); v ∈ V },
respectively. For the blog dataset, µ and s were as follows:

IC model (p = 10%): µ = 8.6, s = 14.3.

LT model: µ = 6.8, s = 14.9.

For the Wikipedia dataset, µ and s were as follows:

IC model (p = 1%): µ = 8.1, s = 16.1,

LT model: µ = 12.6, s = 42.4,

Here, the values are rounded to the first decimal place. We can observe that
compared with µ, s is very large. Therefore, we see that the number of final
active nodes for a given target set can greatly vary for every simulation in
the IC and LT models.
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