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ARTICLE INFO ABSTRACT

Keywards: Our work addresses the link between internal solitary waves and acoustics. The location
:;I)(l,ga:y Wa‘r’sst of the study is in the Yellow Sea south of the Shandong peninsula. Previously in this
€ parameters region, we have performed internal solitary wave generation and propagation simulations

Scaling parameters ; . R b .
Wavegag]pmude with the Lamb nonhydrostatic model [K. Lamb, Numerical experiments of internal waves

Wavelength and phase speed generated by strong tidal flow across a finite amplitude bank edge, J. Geophys. Res. 99
Parameter space regimes (c1)(1994) 848-864; A. Warn-Varnas, S.A. Chin-Bing, D.B. King, J.A. Hawkins, K.G. Lamb,
Nonhydrostatic models M. Teixeira, Yellow Sea ocean-acoustic solitary wave modeling studies, |. Geophys. Res.

110 (2005) C08001, doi:10.1029/2004jC002801). The model parameters were tuned to
SAR data. Here, we consider variations of solitary wave characteristics in parameter space.
We introduce scaling parameters for a two-layer analogue configuration. This analogue
is applied to predicted numerical solutions with the full nonlinear nonhydrostatic Lamb
model in the first of the above-mentioned references. Variations of density difference
across the pycnocline, tidal forcing and topographic height are considered. Characteristics
of solitary waves are analyzed as the parameters deviate from a tuned case to data.
Changes of solitary wave functional form, amplitude, wavelength, and phase speed are
tracked. We consider oceanographic and acoustical parameters that describe the physical
ocean-acoustic environment and its associated variability. For certain source, receiver,
and acoustical frequency configurations, a redistribution of acoustical energy to higher
modes can occur and result in acoustical intensity loss in the presence of solitary wave
trains [A. Warn-Varnas, S.A. Chin-Bing, D.B. King, J. A. Hawkins, K.G. Lamb, M. Teixeira,
Yellow Sea internal solitary wave variability, in: N.G. Pace, Finn B. Jensen (Eds.), Impact of
Littoral Environmental Variability on Acoustic Predictions and Sonar Performance, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2002]. This will be considered in part B.

Published by Elsevier Ltd

1. Introduction

In the Shandong Peninsular region of the Yellow Sea internal solitary waves have been observed and modeled, Warn-
Varnas, et al. [1] and Teixeira, et al. [2]. In these studies nonhydrostatic and Korteweg-de Vries (KdV) type model
predictions were tuned to Synthetic Aperture RADAR (SAR) observations. The predictions encompassed the full nonlinear
nonhydrostatic numerical solution of Lamb [3] and the weakly nonlinear Dnoidal solution of KdV equation of Apel [4]. The
Dnoidal solution consisted of a mixture of cnoidal and cosine functions that can degenerate into cosine or sech” functions.
The full nonlinear nonhydrostatic numerical solutions of Lamb [3] contained all possible functional forms that can evolve
through nonlinear dynamics.

* Corresponding author. Tel.: +1 228 688 5223; fax: +1 228 688 4759.
E-mail address: varnas@nrissc.navy.mil (A. Warn-Varnas).

0362-546X/$ - see front matter. Published by Elsevier Ltd
dot:10.1016/j.n2.2009.02.104
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Latitude

Fig. 1. Location of study region south of Shandong Peninsula in Yellow Sea. Red dotted line indicates modeling track. Black lines are SAR observations. Blue
dotted line is a shallower modeling track. Red circle outlines area where Zhou et al. [ 7] conducted their measurements. (Color figures available online.)

Model predicted and observed solitary wave trains can be analyzed with various techniques. The KdV solution can be
expressed as a linear superposition of cnoidal waves and their nonlinear interaction, Osborne [5]. Linear Fourier and wavelet
analysis can be applied to solitary wave trains for deducing fundamental modes of first order nonlinear dynamics [6]. Direct
scattering transform of solitary wave trains can elucidate the solitary wave train nonlinear dynamical evolution [6], as the
dispersive effects cause the amplitudes and number of oscillations to vary.

In the shelfbreak area of the Shandong Peninsula, the barotropic tide interacts with topography in the presence of
stratification and generates a baroclinic tide in the form of an internal bore. The internal bores propagated away from
the shelfbreak, steepened through nonlinear effects and disintegrated into solitary wave trains through frequency and
amplitude dispersion [ 1]. The resultant solitary wave trains arising from full nonlinear dynamics are complex and can exhibit
changes in the functional structure [4].

The original interest in the region of the Yellow Sea south of the Shandong Peninsula started with the acoustical
measurements of shallow-water sound propagation, Fig. 1. Acoustical measurements performed by Zhou et al. [7], over a
period of several summers, showed an anomalous drop in acoustical intensity of about 20 dB at a range of 28 km for acoustic
frequencies of around 630 Hz. The transmission loss was found to be time and direction dependent. The authors postulated
the existence of solitons in the thermocline through a gated sine function representation and performed transmission loss
calculations using an acoustic parabolic equation (PE) model. The simulation results from this hypothetical case showed that
an anomalous transmission loss could occur at a frequency of around 630 Hz when acoustical waves and solitons interact.
Computer simulations subsequently confirmed (Chin-Bing et al. [8]; King et al. [9]) that the resonant like transmission loss
is caused by an acoustical mode coupling due to the presence of solitons, together with a corresponding larger bottom
attenuation for the coupled acoustic modes.

A study of the interaction between several environments of propagating solitary wave trains and the acoustical field was
conducted in Warn-Varnas et al. [ 10] and showed that, indeed, for certain frequencies a loss of acoustical intensity occurs.

A train of solitary waves can be characterized by wavelength scales of the order of 1000 m. The phase speed can be around
1 m/s, amplitudes 50 m to 250 m, and frequency of the order of 1073 Hz. The individual wavelengths, amplitudes, and phase
speeds vary in a solitary wave train itself and in the different regions of the world oceans where solitary waves are found.
On the acoustical side we are dealing with frequencies of a few hundred to few thousand Hz. At a frequency of 1000 Hz the
wavelength is 1.5 m for an ocean sound speed of 1500 m/s. The acoustical propagation speeds and frequencies are orders of
magnitude higher than the corresponding oceanographic analogue.

In the range of 100 Hz to 2 kHz, the acoustical wavelengths are orders of magnitude smaller than the oceanographic
counterparts. The comparably shorter acoustical wavelengths in relation to the solitary wave wavelengths enable the
acoustical field to interact with the solitary wave distribution located between the source and the receiver. As a result many
interactions of the acoustical field and the solitary wave train can occur. The differences in scenarios with and without
solitary wave disturbances in the acoustical path can be striking.

In Part A of ‘Effects on acoustics caused by ocean solitons’, we consider the oceanographic parameters that describe the
oceanographic fields and the associated variability of the oceanographic field. The Part A paper is divided into sections on
model predictions in Shandong Peninsula region, parameter variations studies with Lamb model, dispersion and conclusion.
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Fig. 2. RADARSAT1 observations on 8 August 1998. 51, 52, and S3 indicate a zoom of the first three solitary wave trains to propagate away from the
shelfbreak along the red dotted line shown in Fig. 1. The solid black line represents a scale of 46 km.

Simulation of Yellow Sea Solitons {August 22nd, 1998)
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Fig. 3. Predicted solitary wave train evolution with Apel model for two tidal periods. Arrows show the centroid of the packet that moves with the linear
phase speed, co.

2. Model predictions in Shandong Peninsula region

Along the red dotted line in Fig. 1, solitary wave trains have been observed to propagate away from the shore. An
observation by RADARSAT1, Synthetic Aperture Radar (SAR), on 8 August 1998 is shown in Fig. 2. S1, S2, and S3 denote
a zoom of the first three solitary wave trains. The spacing between the bright convergence lines increases as one proceeds
from S1 to S3, suggesting generation in the coastal shelfbreak area. The spacing between the wave packets has a high degree
of regularity along a defined direction. The overall concave shape of the wave front is preserved along the travel path, which
again suggests that these internal wave packets originated from the same shelfbreak location.

In a previous study, predictions of solitary wave trains in the Shandong region were undertaken in the Shandong
Peninsula region of the Yellow Sea with the Dnoidal model of Apel [4]. The simulations were along the red track shown
in Fig. 1. Climatological density profiles were used for initialization and parameter estimates. A solution with parameters
tuned to SAR data is shown in Fig. 3. The simulations show the evolution of a solitary wave train at 6.2 h intervals for two
tidal periods. Arrows indicate the centroid of the wave packet that moves with a linear phase speed of .8636 m/s. The front
of the wave packet moves with the nonlinear phase speed of 9412 m/s.

The beginning of each wave packet has flat segments after the first few depressions. This indicates a cnoidal wave, The
back of the train exhibits a cosine structure. The wave train is a mixture of cnoidal and cosine waves Apel [4].

Another set of predictions was undertaken with fully nonlinear nonhydrostatic model of Lamb [3] described in the
Appendix. A simulation with parameters tuned to SAR data is shown in Fig. 4 in terms of an isopycnal in mid pycnocline for
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Table 1

Simulation parameters: hq is the pycnocline depth, H (m) is the water depth, V7 is the tidal strength, dy, is the length of computational domain.

Case hy H (m) Up (m/s) dy (km)
1 15 70 7 240

the second solitary wave train to come off the shelf. A change in structure of the solitary wave train can be seen in the time
interval from 42 to 55 h. At 55 h the back of the train has larger wavelengths (separations between depressions) than the
front of the train. This will be referred as a type B configuration. At 42 h the wavelengths decrease from front to back with
the largest wavelength in front. This is the expected order and will be referred as type A configuration.

The two configurations suggest two different dynamical regimes evolving from the full nonlinear nonhydrostatic model
of Lamb [3].

3. Parameter variation studies with Lamb model
3.1. Solitary wave trains in domain

The parameters for a previous simulations of oceanographic fields in the Shandong Peninsula region are listed in Table 1.
These are pycnocline depth hy, vertical depth H, tidal forcing Ug, and dy the horizontal domain size. Case 1, in Table 1,
represents a tuned set of parameters [1]. The semidiurnal tidal flow moves back and forth over the shelfbreak and generates
internal bore depressions. These depressions split into right and left propagating waves. Nonlinear effects steepen the
depressions and disintegration into solitary wave occurs, through frequency and amplitude dispersion. Fig. 5 illustrates
the evolution of solitary wave trains as the tide interacts with topography in the presence of stratification. Fig. 5(a) shows
the initial off-bank flow generating depressions. In Fig. 5(b) a solitary wave train is forming at about 25 km. The depression
at 50 km is the off-shelf propagating depression formed to the lee of the ridge during the first tidal period. It disintegrates
into solitary waves in time, Fig. 5(c). Each semidiurnal tidal period, 12.4 h, a solitary wave train is formed. Fig. 5(d) is 24 h
apart from Fig. 5(c) and contains 2 additional solitary wave trains.

3.2. Variation of solitary wave characteristics in parameter space

The model predictions are conducted with a pycnocline located at 15 m, Table 1 and Fig. 5. Case 1 in Table 1 is
initialized from density profiles derived from climatology and observations. The predicted solitary wave trains evolve into
two configurations, A and B discussed in Section 2.

Here, we perform a study of solitary wave train characteristics dependence on density difference across the pycnocline,
barotropic tidal forcing and topographic height variations. We introduce scaling parameters for a two-layer analogue with



A. Warn-Varnas et al. / Nonlinear Analysis 71 (2009) e1807-e1817 el811

Table 2

Characterization study parameters. hy = 15mand h; = 55 m for cases 1-6; h; = 25mand h, = 45 m forcase 7; L; = 5674 m, ;1 = .41.

Case Aap o (m/s) F 3 Ly (m}) €p & Uo (m/s)
1 0037 0.66 1.06 23 %107 4973 .79 .70 i

2 0060 0383 0.84 1.4 x 1074 4973 .79 .70 7

3 0016 043 163 5.3 % 1074 4973 79 .70 7

4 8.7 x 1074 032 22 9.7 x 1074 4973 79 .70 7

5 8.7 x 1075 0.10 7.0 9.7 x 1073 4973 .79 .70 i

6 .0037 0.66 0.46 2.3x 1074 2131 .79 30 3

7 .0037 0.66 1.06 23 x 1074 4973 .64 56 7

the mid pycnocline, at 15 m, separating the layers:
4, = (p2 — p1)/p2s
1/2

gAphl
= —] - by s
hy
8 = (oH/cp),
——
o
U,
= —,
o
r(x)
Ly = —,
r(x)
yo O
ULT’Z
[T
o
. T
b= T
Ly
£ = —¢
e

p1 and p; are layer densities; h; is the upper layer thickness; h; is the lower layer thickness; H is the depth; Ly is the
topographic length scale; r(x) = H — h(x) where h(x) is the topographic height with h; maximum; Ly is the tidal excursion
distance; cp is the phase speed; § is the nonhydrostatic dispersion parameter; F is the Froude number; u is the Coriolis
dispersion; f is the Coriolis parameter; o is the tidal frequency; Uy is the barotropic tide.

Similar scaling parameters are used in Gerkema { 11] and Lamb [3], where Ly, is the tidal excursion and Ly, the topographic
length scale parameters are defined. For the topographic length scale, Ly, the maximum value will be used. Topography is
simplified, for this study, by removing the small mount or finger that appears in Fig. 5. Table 2 lists parameters of study.

Case 1in Table 2 is equivalent to case 1in Table 1 with the topography finger removed. Results are similar. Case 1 in
Table 2 is the basic reference case of this parameter variation study. Fig. 6 shows predicted density at 55 h. There are 4
evolved solitary wave trains propagating away from the shelfbreak. Other solitary wave trains are forming off the shelf. On
the shelf there are solitons of elevation. An enlargement of the second solitary wave train is shown in the lower panel of Fig. 6.
The leading soliton is located at 119 km in range. When the previous topography, containing the finger, is used the location
isat 117.5 km, Fig. 4. The train consists of separated solitons with the spacing between them tending to increase towards the
back of the train, indicative of category B behavior [ 1]. Category A being a behavior where the separation between solitons
decreases towards the back. Table 2 indicates parameters of this case using a two-layer model estimate with interface located
at pycnocline, 15 m. Estimated phase speed, ¢y, is .66 m/s, Ly, tidal excursion distance is 4973 m, Ly, horizontal length scale
is 5674 m, Froude number is 1.06, 8, nonhydrostatic dispersion parameter is 2.3 x 1074, hy, height of topography is 55 m,
&, parameter of nonlinearity is .70. The internal tide is disintegrated into solitary waves. The Froude number is near critical,
nonhydrostatic dispersion has a small magnitude that is indicative of a tide that has disintegrated into solitary waves [11].

Case 2 in Table 2 has a larger density jump across the pycnocline. This leads to solitary wave trains travelling further down
range, relative to case 1, with a higher phase speed. With the larger density jump, the nonhydrostatic dispersion parameter
and the Froude number are lower.

Cases 3, 4, and 5, Table 2, have progressively lower density jumps across the pycnocline. As the density jump decreases,
the phase speed decreases, Froude number increases, and nonhydrostatic dispersion parameter increases. Parameters of
topographic height and nonlinearity stay at the same level as for cases 1 and 2. Fig. 7 shows the predicted solitary waves
trains for case 4, Table 2, at 55 h. The solitary wave trains are not as far down range as those of case 1 in Fig. 6, indicative of
a lower phase speed, ¢y = .32 m/s instead of cp = .66 m/s for case 1. There are fewer solitons in the second train relative
to case 1, Figs. 7 and 6. In the second train, Fig. 7, the separation between solitons increases from front to back of the train.
The first soliton in the train is much wider than the other solitons of the train. In case 1 the first soliton has a comparable
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Fig 5. Oceanographic model simulations with tuned parameters, case 1 in Table 1. These simulations will be used for acoustical studies. Shown are o,
density fields at hours (a) 3, (b) 24, (¢) 48, and (d) 72. Labeling is from top to bottom.

width to solitons behind it. The larger width for the first soliton appears as the density difference across the pycnocline is
decreased. Also, the amplitude of the first soliton increases relative to case 1. The weaker stratification of case 4 leads to
large amplitudes.

As the stratification across the pycnocline decreases further, case 5 in Table 2, more changes occur. The density difference
across the pycnocline is now weak, the weakest in a set of parameter variations. The phase speed is the lowest among
the cases in Table 2. Froude number and nonhydrostatic parameter are the largest among the cases. The predicted density
structure undergoes a profound change. At 95 h, Fig. 8, there are no solitary wave trains. The movement of the semidiurnal
(M2) tide causes a depression and lifting of the isopycnals across the shelfbreak. Small depressions of isopycnals that
propagate to the right are visible off the shelfbreak. They are suggestive of Lee waves induced by tidal flow to the right.
There are indications of nonlinear steepening that does not evolve into solitary wave trains.

Cases 6 and 7 in Table 2 involve variations of barotropic tidal forcing and topographic height relative to case 1. In
case 6 the barotropic tidal forcing is reduced from .7 m/s to .3 m/s, Table 2. The Froude number, tidal excursion and
nonlinearity parameters decrease relative to case 1. A decrease of barotropic tidal forcing results in internal bores of smaller
amplitudes, Figs. 9 and 6. The internal bores of smaller amplitude evolve into smaller amplitude solitary wave trains, Figs. 9
and 6. In Fig. 9 there is no evolved solitary wave train at around 140 km (not shown) that relates to the Lee wave formed
during initial off-shelf flow. The three visible trains in Fig. 9 have fewer solitons and less amplitude than those of Fig. 6. Less
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Fig. 6. Case 1in Table 2. This is an analogue of case 1in Table 1 with the finger in topography removed. Predicted density field at 55 h. Upper panel shows
predicted density structure. Lower panel shows an expanded view of second solitary wave train.
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Fig. 7. Case 4 in Table 2. Predicted density field at 55 h. Upper panel shows predicted density structure. Lower panel shows an expanded view of second
solitary wave train. Case 4 has a lower density difference across the pycnocline relative to case 1.

barotropic tidal forcing results in a weaker interaction with topography and a weaker internal tide that leads to different
solitary wave characteristics.

In case 7 the topographic height is decreased from 55 m to 45 m relative to case 1, Table 2. For this case the topographic
height and nonlinearity parameters decrease relative to case 1, Table 2. Fig. 10 shows the density prediction at 55 h. On
the shelf there is reflectance off the left boundary that causes difference in structure from case 1.The number of solitary
wave trains off the shelf is the same as in Fig. 6. In the second train the number of solitary waves has decreased and the
amplitudes of the solitons are smaller. Lowering of topographic height results in fewer solitons with less amplitude. The
dynamics is less nonlinear, as suggested by decrease of nonlinear parameter £. The dynamics can also be less nonlinear,
for the same nonlinear parameter ¢, as the density difference across the layers tends to zero (4, — 0), cases 1and 5 in
Table 2. This arises because of decreased energy transfer into the baroclinic internal tide, from barotropic tide interaction
with topography in the presence of weaker stratification.
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Fig. 8. Case 5 in Table 2. Case 5 has a ten times lower density difference across the pycnocline relative to case 4. Predicted density field at 95 h. Upper
panel shows predicted density structure. Lower panel shows an expanded view of second solitary wave train. Note the absence of solitary wave trains.
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Fig. 9. Case 6 in Table 2. This case has a lower barotropic tidal forcing velocity, Uy = .3 m/s, relative to case 1. Predicted density field at 55 h. Upper panel
shows predicted density structure. Lower panel shows an expanded view of second solitary wave train. Note a decrease in number of solitary waves in
train and their amplitudes relative to case 1.

4. Dispersion

Dispersion analysis is performed for case 1 in Table 1 (tuned to SAR data) of the second solitary wave train to come off
the shelf at 30, 42, 55, and 67 h. An isopycnal of o, = 22.5 located in the middle of the pycnocline is chosen for tracking the
solitary wave train, Fig. 4. The wavelength is defined as the distance between successive centers of troughs. Wave amplitude
is defined as the vertical displacement of an isopycnal from just ahead of an individual wave. Fig. 4 shows the time evolution
of the second solitary wave to come off the shelf at the respective time periods. A phase speed estimate for the first soliton
was made by tracking the center of the first depression in time. A straight line fit yielded a propagation speed of 0.83 m/s.
Fig. 11 shows the wavelength versus amplitude dispersion. At 30 h the amplitudes of the second soliton train vary from
about 9.5 to .2 m and the wavelengths decrease from about 250 to 200 m. At 42 h the amplitudes range is slightly less
and the wavelengths vary from 425 to 350 m, indicating decreasing wavelengths or less space between the centers of the
depressions, from front to back of the train. The 30 and 42 h dispersions belong to regime A behavior, Section 2, where
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Fig. 10. Case 7 inTable 2. The shelf depth is 25 minstead of 15 m as in case 1. Predicted density field at 55 h. Upper panel shows predicted density structure.
Lower panel shows an expanded view of second solitary wave train. As the shelf depth is lowered, number of solitary waves and their amplitudes tend to
decrease relative to case 1.
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Fig. 11. Amplitude-wavelength dispersion diagram for case 1 in Table 1 at 30, 42,55 and 67 h.

the wavelengths and amplitudes decrease from the front to the back of the train. At 55 h the structure of the soliton train
changes, whereby the wavelengths tend to increase from the front to the back of the train with the amplitudes decreasing
as before. The wavelength variation is from 550 to 1000 m. The wavelength behavior is indicative of a dispersion regime
change. At 67 h the amplitudes decrease, as before, and the wavelengths show more increase than at 55 h from front to
back, ranging from 625 to 2300 m. At the back of the soliton train the distances between the centers of the depression
increase appreciably as evidenced in Fig. 4. The 55 and 67 h dispersion behavior belong to regime B, Section 2, where the
wavelengths increase from front to back of the train and the amplitudes decrease. The solitons in the trains evolve from
regime A to regime B.

5. Conclusion

A modeling study shows that, as the semidiurnal barotropic tide moves back and forth over the shelfbreak in the
Shandong area of the Yellow Sea, generation of internal bores occurs. The internal bore depressions result in right and
left propagating waves. The propagating depression waves steepen through nonlinear effects and disintegrate into solitary
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waves through frequency and amplitude dispersions. Internal solitary wave train propagating away from the shelfbreak are
generated. The generation occurs every semidiurnal tidal cycle.

We applied a scaling analogue of a two-layer system to the predicted numerical solutions with the full nonlinear
nonhydrostatic Lamb [3] model. We calculated parameters of pycnocline density difference, linear phase speed, Froude
number, nonhydrostatic dispersion, topographic length scale, tidal excursion distance, topographic height, and nonlinearity.
Variations of density difference across the pycnocline, tidal forcing and topographic height were undertaken relative to a
reference case tuned to data.

As density difference across pycnocline increases, the phase speed increases and nonhydrostatic dispersion parameter
and Froude number decrease, Table 2. The nonlinearity and topographic height parameters remain the same. Their
magnitude is approaching one and suggests appreciable topographic changes and nonlinear effects. As the density difference
across pycnocline decreases, the phase speed decreases, nonhydrostatic dispersion parameter and Froude number increase.
For the lowest density difference across the pycnocline, case 5 in Table 2, a profound change in predicted density structure
occurs. Solitary waves do not evolve. Instead there are small internal tide depressions that propagate to the right. An internal
tide type of configuration results from these particular parameters.

Adecrease in barotropic tidal forcing, leads to a decrease in Froude number, tidal excursion, and nonlinearity parameters.
There are fewer evolved solitons in the trains with smaller amplitudes.

As the topographic height parameters are decreased from 55 to 45 m, the topographic height and nonlinearity parameters
decrease relative to case 1 (reference case). The number of solitary waves decrease in the trains and the amplitudes become
smaller.

Dispersion diagrams of wavelength and amplitude indicate confinement of dispersion to parts of the diagram. The
oceanographic parameters associated with the confinement areas of dispersion will be related in Part B of this study to
acoustical parameters that cause transmission loss at certain frequencies. A feedback loop will be established between
oceanographic and acoustical parameters.
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Appendix. Nonhydrostatic Lamb model

The Lamb [3] model is used for simulating the generation and propagation of internal solitary waves in the Shandong
area of the Yellow Sea, Fig. 1. It is a fully nonlinear and nonhydrostatic model. It consists of the incompressible Boussinesq
equations on a rotating f plane. In the along-bank direction (i.e., y-direction), the velocity v is included but the derivatives
with respect to the y-coordinate are neglected (hence, the designation “2.5 dimensional” representation). The equations of
the model are:

Vi +V.VV — fV x k= —Vp — kpg, (1
p+V -Vp=0, (2)
V.V =0, (3)

where viscosity is neglected, V (u, v, w) is the velocity vector, V is the three-dimensional vector gradient operator, subscript
t denotes the time derivative, p has been scaled by the reference density as well as P after the hydrostatic pressure in
balance with py has been subtracted off, i.e., the physical density is pg(1 + p), and the physical pressure is po(p — gz),
g is the gravitational acceleration, f is the Coriolis parameter taken as 9.029 x 1075 s~!, and k is the unit vector along
the z-direction. In the three-dimensional equations (1) to (3) the partial derivatives with respect to y are neglected, i.e.
d/dy(.) = 0. Thus, Egs. (1) to (3) are equivalent to Equations (1a) to (1d) in Lamb’s [3] paper. The y-component v(x, y) of
the model is in geostrophic balance with the horizontally varying density field.

Before the equations are solved, they are transformed to a terrain following coordinate system (sigma-coordinates) in the
vertical, which leads to higher vertical resolution over the sill of the strait. The equations are solved on a domain bounded
below by the topography at z = h(z) and above by a rigid lid. There is no normal flow at the upper and lower boundaries.
H is the deep-water depth. The right boundary is treated as an outflow, tidal forcing is applied on the left boundary.
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