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Abstract

In this paper we describe the TNO ap-
proach to large-scale polarity classification
of the Blog TREC 2008 dataset. Our
participation consists of the submission of
the 5 baseline runs provided by NIST, for
which we applied a multinomial kernel ma-
chine operating on character n-gram rep-
resentations.1

1 Introduction

The polarity task of Blog TREC 2008 consists of
retrieving and ranking for each of a total of 150
topics (queries) the positive and negative opini-
ated documents in the test collection. TREC
has made available 5 topic-relevance baseline
runs, to which polarity classification or opinion
finding techniques can be applied. This allows
participants to focus on one aspect of the pro-
cessing chain. In this contribution, we describe
the result of applying the TNO polarity classi-
fication approach to these 5 baselines. We dis-
cuss the results of our submissions in section 5
and present conclusions and lessons learned in
section 6. In the next three sections, we de-
scribe the data, our feature representation, and
the general outline of our setup.

1This work was supported by the European IST Pro-
gramme Project FP6-0033812. This paper only reflects
the authors’ views and funding agencies are not liable for
any use that may be made of the information contained
herein.

2 Data and pre-processing

The TREC Blog06 collection, a 148 Gigabytes
sample of the blogosphere, is the result of
an eleven-week period crawl (December 2005-
February 2006). Due to the automated crawling
process, the dataset contains not only legitimate
blog postings, but also spam, javascript, home-
pages and RSS feed material. The data itself
consists of raw HTML, with a total of over 3.2
million documents. In order to train a classi-
fier on these class-labeled web pages, these doc-
uments have to be cleaned up and converted to
plain text, which is by far not a trivial task. Our
HTML to text conversion strategy consists of a
dedicated DOM-parser effectively stripping the
larger part of HTML tags and javascript code.
We combined this parser with the html2text
Python script2 in sequence: following our dedi-
cated parser, we applied html2text.py. While
this produced reasonably clean text, we found
that in a lot of cases the output data still con-
tained tags and programming constructs. We
surmise that our results are to a large extent
influenced by this imperfect data preprocessing.

3 Character n-gram representations

We opted for a character n-gram approach to the
polarity classification task. For every training
document, we generated word boundary tran-
scending character n-grams from 2 up to 6 char-
acters. That is, the transition between two con-
secutive words, including the white space char-

2Available from http://www.aaronsw.com/2002/html2text/
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acter, is expressed as an n-gram. For the sen-
tence ’This car really rocks’ subword character
bigrams and trigrams (’subgrams’) are

th, hi, is, ca, ar, re, ea, al,
ll, ly, ro, oc, ck, ks, thi, his,
car, rea, eal, all, lly, roc, ock, cks.

(1)

A bigram and trigram representation that
spans word boundaries produces

th, hi, is, s#,#c, ca, ar, r#,
#r, re, ea, al, ll, ly, y#,#r,
ro, oc, ck, ks, thi, his, is#, s#c,
#ca, car, ar#, r#r,
#re, rea, eal, all, lly, ly#,
y#r,#ro, roc, ock, cks

(2)

with # a whitespace indicator.
Every document is represented by a term

vector consisting of L1-normalized character n-
gram frequencies. In our recent work (Raaij-
makers and Kraaij, 2008); (Wilson and Raai-
jmakers, 2008); (Raaijmakers et al., 2008) we
have found ample evidence for the informativ-
ity of character n-grams. In (Raaijmakers et al.,
2008) we demonstrated for a large array of ex-
periments that character n-grams are the most
informative source of information compared to
phonemes, prosody and word n-grams. These
low-level features in fact implement a form of
attenuation (Eisner, 1996): a slight abstraction
of the underlying data that leads to the forma-
tion of string equivalence classes. For instance,
words in a sentence will invariably share many
character n-grams. Since every unique character
n-gram in an utterance constitutes a separate
feature, this produces string classes, which is a
form of abstraction. Zhang and Lee (2006) in-
vestigate similar subword representations, called
key substring group features. By compressing
substrings in a corpus in a trie (a prefix tree),
and labeling entire sets of distributionally equiv-
alent substrings with one group label, an atten-
uation effect is obtained that proves very bene-
ficial for a number of text classification tasks.

Aside from attenuation effects, character
n-grams, especially those that contain word
boundaries, have additional benefits. Treating

word boundaries as characters captures micro-
phrasal information: short strings that express
the transition of one word to another. Stemming
occurs naturally within the set of initial charac-
ter n-grams of a word, where the suffix is left
out. In addition, some part-of-speech informa-
tion is captured. For example, the modals could,
would, should can be represented by the 4-gram
ould. Likewise, the set of adverbs ending in -ly
can be concisely represented by the 3-gram ly#.

4 Geodesic kernels

Recent work on document classifiation has
demonstrated the benefits of geodesic kernels
(Lafferty and Lebanon, 2005): support vector
machines that deploy geodesic distance mea-
sures on L1-normalized data. L1 normalization
corresponds to normalizing the frequencies (| · |)
of a bag of events D = w1, . . . , wn, where | wi |
is the frequency of event wi in D:

L1({w1, . . . , wn}) = { |w1|∑n

i
|wi|

, . . . , |wn|∑n

i
|wi|

}
(3)

L1-normalization of data entails an embedding
of this data into the multinomial manifold n:
an infinitely differentiable, curved information
space that is isomorphic to the parameter space
of the multinomial distribution. This informa-
tion space has geodesic properties: it is locally
Euclidean and globally curved. Distances be-
tween points therefore are best measured using
locally Euclidean and globally geodesic distance
measures. Technically, the multinomial mani-
fold n is isometric to the positive portion of
the n-sphere with radius 2, n

+ (Kass, 1989;
Lebanon, 2005):

n
+ = {φ ∈ n+1 :|| φ ||= 2,∀i, φi ≥ 0} (4)

by a diffeomorphism F : n $→ n
+:

F (x) = (2
√

xi, . . . , 2
√

xn+1) (5)

This allows for measuring distance with a kernel
K between two vectors x, y in the space n

+:

K(F (x), F (y)). (6)

where the shortest path connecting these two
points in hyperspace actually is a segment of a
great circle.



Raaijmakers (2007) demonstrates that multi-
nomial kernels based on geodesic distance are
able to produce state of the art results for sen-
timent polarity classification tasks.

In the experiments reported in this work,
we use a simple, hyperparameter-free multino-
mial kernel, the negative geodesic kernel KNGD

(Zhang et al., 2005):

KNGD(x, y) = −2 arccos
(

n∑

i=1

√
xiyi

)

(7)

Notice that this kernel combines a local, Eu-
clidean notion of similarity with a geodesic no-
tion of similarity: the vector product expresses
cosine similarity, and the inverse cosine the mea-
surement of distance along a curve.

Expanding the TREC data to character n-
grams leads to a huge expansion of data. Due
to memory constraints of our systems, we took
a random portion of training data of only 16%
(amounting already to over 250 megabytes of
training data).

4.1 Thresholding decision values

Support vector machines output decision values
that either are discretized to binary classes (a
negative value produces a negative class label,
and a positive value a positive class label), or
probabilities (e.g. (Platt, 1999)). We used the
raw decision values for ranking the various pos-
itive and negative cases. We devised a simple
threshold estimator that, on the basis of class
distribution priors in the training data, deter-
mines the optimal threshold above which deci-
sion values should produce positive classes. Al-
gorithm 1 performs a one-parameter sweep, fix-
ing a decision value threshold that optimally ap-
proximates the a priori class distributions in the
training data. We used this threshold to assign
classified documents to the positive and negative
classes, prior to ranking their respective decision
values.

5 Results

In figures 1 and 2, the results for positive and
negative queries are displayed, by plotting the
difference of the produced MAP and R-PREC

Algorithm 1 Threshold estimation for decision
value discretization
Require: δmin, δmax, σ; Dtrain (decision values

training data); P−, P+ (priors); θ (threshold);
σ (step size)
N+ ⇐ 0;N− ⇐ 0
λ ⇐ δmin

while λ <δ max do
for each d in Dtrain do

if d < λ then
N− ⇐ N− + 1

else
N+ ⇐ N+ + 1

end if
end for
N+ ⇐ N+

|Dtrain|
N− ⇐ N−

|Dtrain|
if | N+ − P+ |≤ θ and | N− − P− |≤ θ
then

return λ
end if
λ ⇐ λ + σ

end while
Return λ



values3 and the reference values. As can be
seen, the runs for the positive queries produce
well above median scores for both MAP and R-
PREC. Averaged over the 5 baseline runs, for
the positive queries, a portion of 62.3% is equal
to or above the reference median average preci-
sion. For the R-PREC scores for positive queries
this portion is on average 70.5%. The R-PREC
scores produced by the 5 positive baseline runs
were all significantly4 better than the median
R-PREC reference scores. The average differ-
ence between produced R-PREC and reference
R-PREC was +12.1%. For the negative queries,
on average, 24.7% of all MAP scores produced
were equal to or above the reference MAP val-
ues. For R-PREC, a much higher proportion of
on average 57.8% scores was equal to or above
median reference R-PREC. The averaged dif-
ference over all 5 runs for R-PREC compared
with reference R-PREC was -1.7%. In 4 out of
5 runs, this difference was significant, its average
amounting to a rather small -1.7%.

The percentages of deviations are listed in ta-
ble 1, as well as the results of the Wilcoxon
signed rank applied to the R-PREC results.

Task % MAP % R-PREC MAP R-PREC W
POSITIVE QUERIES

base1 +66.9 +75.7 26.2 21.3 +14.7
base2 +53.4 +60.8 19.4 15.4 +7.9
base3 +64.2 +73 24.1 19.4 +12.5
base4 +64.2 +71.6 23.8 19 +12.3
base5 +62.8 +71.6 24.8 19.7 +13.2
Average +62.3 +70.5 16.2 11.5 +12.1

NEGATIVE QUERIES
base1 +22.7 +61 8.7 4.5 -1.3
base2 +14.9 +49.7 6.7 3.5 -3.3
base3 +27.7 +58.9 7.7 4 -2.3
base4 +31.2 +59.6 8.3 4.5 -1.6
base5 +27 +59.6 8.4 4 =
Average +24.7 +57.8 10 6.7 -1.7

Table 1: Percentage of queries with MAP scores
above/below (+/-) median average precision; per-
centage of queries with R-PREC scores above/below
median R-PREC; average MAP and average R-
PREC scores for the 5 polarity baselines; Wilcoxon
significance of the difference of the obtained score
with the reference score (p < .5), as well as the differ-
ence of the average obtained score with the average
reference score.

3Mean Average Precision and Precision at R (with R
the number of relevant documents).

4All significance results were computed with the non-
parametric Wilcoxon signed rank test, with p < .5.
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Figure 1: Difference of TNO produced MAP and R-
PREC values with the TREC reference values for
positive queries (queries sorted by descending per-
formance).

6 Conclusions

In this paper, we presented the TNO approach
to polarity classification and ranking of the Blog
TREC 2008 data. For 5 baseline runs, we ap-
plied a geodesic kernel to character n-gram rep-
resentations. We trained our system on a rela-
tive small portion of 16% of the total available
training data. Results show that our system
performs well above median for positive queries.
For negative queries, results are in 4 out of 5
runs below median, albeit with a small (but sig-
nificant) percentage. As a lesson learned, in fu-
ture TREC participation, we will invest more
time in thorough data cleaning prior to classi-
fier training and testing.
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Figure 2: Difference of TNO produced MAP and R-
PREC values with the TREC reference values for
negative queries (queries sorted by descending per-
formance).
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