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ABSTRACT
In this paper, we report our experiments in the TREC 2008
Relevance Feedback Track. Our main goal is to study a
novel problem in feedback, i.e., optimization of the balance
of the query and feedback information. Intuitively, if we
over-trust the feedback information, we may be biased to
favor a particular subset of relevant documents, but under-
trusting it would not take advantage of feedback. In the cur-
rent feedback methods, the balance is usually controlled by
some parameter, which is often set to a fixed value across all
the queries and collections. However, due to the difference
in queries and feedback documents, this balance parameter
should be optimized for each query and each set of feedback
documents.

To address this problem, we present a learning approach
to adaptively predict the balance coefficient (i.e., feedback
coefficient). First, three heuristics are proposed to char-
acterize the relationships between feedback coefficient and
other measures, including discrimination of query, discrimi-
nation of feedback documents, and divergence between the
query and the feedback documents. Then, taking these
three heuristics as a road map, we explore a number of fea-
tures and combine them using a logistic regression model
to predict the feedback coefficient. Experiments show that
our adaptive relevance feedback is more robust and effective
than the regular fixed-coefficient relevance feedback.

1. INTRODUCTION
Among many techniques for improving the accuracy of

ad hoc information retrieval, relevance feedback is arguably
one of the most effective techniques and has been shown
to be effective with variety of retrieval models [7, 6, 8, 4,
10]. In the vector space model, feedback is usually done
with the Rocchio algorithm, which forms a new query vec-
tor by maximizing its similarity to relevant documents and
minimizing its similarity to non-relevant documents [7]. The
feedback method in classical probabilistic models is to select
expanded terms primarily based on Robertson/Sparck-Jones
weight [6]. In the recently proposed language modeling ap-
proaches, relevance feedback can be implemented through
estimating a query language model [3, 10] or relevance model
[4] through exploiting a set of feedback documents.

All these existing methods show that combining feedback
information with the original query typically improves the
performance. However, we need to carefully balance the

query and feedback information because if we over-trust the
feedback information, we may be biased to favor a particular
subset of relevant documents, but under-trusting it would
not take advantage of feedback. In the current feedback
methods, the balance is usually controlled by some parame-
ter, which is often set to a fixed value across all the queries
and collections. However due to the difference in queries
and feedback documents, this balance parameter presum-
ably should be optimized for each query and each set of
feedback documents.

As far as we know, how to optimize the balance of the
query and feedback information has not been well studied
in previous work. Thus, in our work, we study this novel
problem in relevance feedback and propose an adaptive feed-
back method which predicts a dynamic balance coefficient
by using a learning approach. Specifically, we estimate a
potentially different feedback coefficient for each query and
each set of feedback documents, rather than manually set
it to a fixed constant. We hypothesize that the proposed
method will do better than the current fixed-coefficient ap-
proaches.

We explore a number of features potentially correlated
with the feedback coefficient and classified them into three
categories: (1) discrimination of query: we expect that the
“clearer” (i.e., more discriminative) the query is, the less
feedback we need. (2) discrimination of feedback docu-
ments: we hypothesize that clearer feedback documents can
be trusted more. (3) divergence between the query and the
feedback documents: if the divergence between a query and
its feedback documents is large, it means that the query does
not represent relevant documents well, thus we may need a
larger feedback coefficient. Following these three heuristics,
we explored a number of features and combined them us-
ing a logistic regression model [2] to predict the feedback
coefficient.

Through preliminary experiments, we observe that, al-
though a well-tuned fixed coefficient is not optimal for many
queries, it provides a “safe” coefficient range. Compared
with it, our predicted value is sometimes too extreme and
thus “risky.” So we also experimented with some strate-
gies to smooth our prediction using the safe fixed coefficient
value. We hypothesize that, with smoothing, our adaptive
relevance feedback method would be more robust.

In our experiments, the basic retrieval method is the KL-
divergence retrieval model [3] with the Dirichlet smooth-
ing method [9] plus a generative mixture model feedback
method [10], which adopts our predicted feedback coeffi-
cient. Our proposed method has shown clear improvements
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in our experiments over a robust fixed-coefficient relevance
feedback method; it is also observed that most features that
we explore help predict the feedback coefficient. Through
further analysis, we find that our adaptive relevance feed-
back approach is still robust and effective even if training
and testing data sets are inconsistent.

In the rest of this paper, we will first introduce our basic
retrieval method in Section 2. After that, we will present
the adaptive relevance feedback method in Section 3. In
Section 4, we will describe how to smooth the prediction
value to make relevance feedback more robust. We report
our experimental results in Section 5 and conclude our work
in Section 6.

2. RETRIEVAL METHOD
To make our algorithm clear, we break down the relevance

feedback task into four steps: initial retrieval, adaptive feed-
back coefficient prediction, coefficient smoothing, and query
language model updating. At the retrieval step, we adopt
the KL-divergence retrieval model with Dirichlet smoothing
method to do an initial retrieval, based on which, a couple of
features are explored to predict the feedback coefficient using
the logistic regression model. After that, several strategies
are applied to smooth our prediction value using a tuned
fixed coefficient. Finally, the smoothed value is plugged into
the mixture model relevance feedback method to update the
query language model.

In this section, we present our basic retrieval approaches,
the KL-divergence retrieval model and the mixture model
feedback method.

2.1 The KL-Divergence Retrieval Model
The KL-divergence retrieval model [3] is a generalization

of the query likelihood retrieval method proposed in [5] and
can support feedback more naturally than the query likeli-
hood method. In this model, all the queries and documents
are represented by unigram language models, which are es-
sentially word distributions. Assuming that these language
models can be appropriately estimated, the KL-divergence
retrieval model scores a document D with respect to a query
Q by computing the negative Kullback-Leibler divergence
between the query language model θQ and the document
language model θD as follows:

S(Q, D) = −D(θQ||θD) = −
∑
w∈V

p(w|θQ) log
p(w|θQ)

p(w|θD)

where V is the set of words in our vocabulary. Clearly, the
retrieval performance of the KL-divergence would depend
on how we estimate the document model θD and the query
model θQ. The document model θD needs to be smoothed
and an effective method is Dirichlet smoothing [9]:

p(w|θD) =
c(w, D) + µp(w|C)

|D|+ µ

where p(w|C) is the collection language model and is esti-

mated with p(w|C) = c(w,C)∑
w c(w,C) , and µ is a smoothing pa-

rameter and is usually set empirically. Across all of our
experiments, we used the Dirichlet prior smoothing method
for estimating document language models.

The query model intuitively captures what the user is in-
terested in, thus would affect retrieval accuracy significantly.
Without feedback, θQ is often estimated as p(w|θQ) = p(w|Q) =

c(w,Q)
|Q| , where c(w, Q) is the count of word w in the query

Q, and |Q| is the total number of words in the query.

2.2 The Mixture Model Feedback Method
The query model described above, however, is not very

discriminative because a query is typically extremely short.
Several different methods have been proposed to improve the
estimation of θQ by exploiting documents, especially those
documents that are used for relevance feedback or pseudo-
relevance feedback [3, 4, 10]. In [10], it was proposed that
feedback can be implemented in the KL-divergence retrieval
model as updating the query model based on the feedback
documents. Specifically, we can define a two-component
mixture model (i.e., a fixed background language model
p(w|C) estimated using the whole collection and an unknown
topic language model to be estimated) and assume that
the feedback documents are generated using such a mixture
model. Formally, let θT be the unknown topic language
model and F ⊂ C be a set of feedback documents. The
log-likelihood function of the mixture model is:

L(F|θT ) =
∑
D∈F

∑
w∈V

c(w, D) log[(1− λ)p(w|θT ) + λp(w|C)]

where λ is a mixture noise parameter which controls the
weight of the background model. Given a fixed λ (λ = 0.9
in our experiments), a standard EM algorithm can then be
used to estimate parameters p(w|θT ), which is then inter-
polated with the original query model p(w|Q) to obtain an
improved estimation of the query model:

p(w|θQ) = (1− α)p(w|Q) + αp(w|θT )

where α is the feedback coefficient. Similarly to other ex-
isting feedback methods [7, 6, 8], the parameter α in this
formula is generally fixed across all queries and documents.

However, due to the difference in queries and feedback
documents, the coefficient α, which indicates the balance
between query and feedback, should be optimized for each
query and each set of feedback documents. This motivates
us to study how to optimize the balance of the query and
feedback information. We view this problem as a prediction
problem and propose a learning approach to solve it. Al-
though we explore this idea in the context of the mixture
model feedback method in this paper, it could be applica-
ble to other feedback methods as well. We now present our
method.

3. FEEDBACK COEFFICIENT PREDICTION

3.1 Heuristics and Features
In this work, we investigate three heuristics to predict the

feedback coefficient: discrimination of query, discrimination
of feedback documents, and divergence between the query
and the feedback documents. The three heuristics capture
intrinsic characteristics of the two main components (i.e.
query and feedback document set) and the relationship be-
tween these two components in a feedback process. We ar-
gue, and then show experimentally in Section 5, that the
three heuristics all play important roles in predicting the
feedback coefficient. Possibly, many other features can be
explored by taking the three heuristics as a road map.

3.1.1 Discrimination of Query



Intuitively, if the query itself is discriminative enough, we
do not need to rely heavily on feedback documents. Hence,
we expect the discrimination of query is correlated with the
feedback coefficient. Several measures are proposed to quan-
tify it.

(1) Query Length: Intuitively, for two queries Q1 and
Q2, if Q1 is longer than Q2 (i.e. Q1 has more terms than
Q2), Q1 is usually discriminative than Q2. Therefore, the
query length could be a characteristic of the discrimination
of a query. To capture this intuition, we introduce query
length |Q| as our first feature. Formally, it is defined as:

|Q|: the number of terms in query Q.

(2) Entropy of Query: It is known that more entropy
means more randomness and less discrimination. Therefore,
we could adopt such a concept to measure how discrimina-
tive a query is. To compute the entropy, we need to estimate
the query language model first, which, however, involves
again an interpolation between the original query model θQ

and the pseudo feedback document model θF ′ as well as the
setting of a feedback coefficient. (Note that we have used
a slightly different notation θF for relevance feedback docu-
ment model, and throughout this paper we estimate pseudo
feedback models by using the top 50 documents.) To avoid
this problem, in this paper, we do not estimate an entropy
for the interpolated query model directly, instead, two en-
tropy scores respectively for θQ and θF ′ are computed, allow-
ing the training system to weigh them, which is expected to
get an appropriate approximation. Assume that each query
term only appears once in a query, the entropy of θQ is de-
fined as:

QEnt A1 =
∑
w∈Q

−p(w|θQ) log2 p(w|θQ) = log2 |Q|

Where θQ is estimated as p(w|θQ) = c(w,Q)
|Q| = 1

|Q| . We can

see that QEnt A1 is a negative logarithm transformation of
query length |Q|. Thus in effect, we just have another query
length feature.

Similarly, we defined the entropy of θF ′ as follows:

QEnt A2 =
∑

w∈F ′
−p(w|θF ′) log2 p(w|θF ′)

where p(w|θF ′) is estimated as p(w|θF ′) = c(w,F′)∑
w c(w,F′) .

(3) Relative Entropy of Query: In the definition
above, query entropy is affected significantly by common
terms (e.g., ‘the’, ‘and’, ...). This problem can be addressed
by using a mixture model to separate the topic model from
the background model [10]. However, they both are quite
time-consuming. So, we adopt a similar idea of “relative
entropy of query” as proposed in [1] to compute the query
clarity score, which measures the coherence of the language
usage in query language models as compared to the collec-
tion model. The “query clarity” has been shown an intrinsic
feature of queries and has an important impact on the re-
trieval performance [1]. Therefore, we expect that it can
also predict the feedback coefficient.

In the definition, the clarity of a query is the Kullback-
Leibler divergence of the query model from the collection
model. Similar to the computation of query entropy, an
important role in this definition is the estimation of a query
model. To avoid it, we use the same strategy by computing
two clarity scores for θQ and θF ′ respectively.

To further reduce the effect of common terms, θF ′ is smoothed
with the collection language model using Jelinek-Mercer smooth-
ing method with a λ of 0.7[9]. Following [1], we define rela-
tive entropy QEnt R1 and QEnt R2 as follows:

QEnt R1 =
∑
w∈Q

p(w|θQ) log
p(w|θQ)

p(w|C)

QEnt R2 =
∑

w∈F ′
p(w|θF ′) log

p(w|θF ′)

p(w|C)

where p(w|C) is the collection language model.

3.1.2 Discrimination of Feedback Documents
Intuitively, if feedback documents are more discrimina-

tive, it means that they focus more on the relevant topic
and far away from noise. Therefore, discriminative feedback
documents can be trusted more in the feedback process.

(1) Feedback Length: For a query Q and two possible
relevant judgment sets F1 and F2, if F1 has more documents
than F2, usually F1 contains more intensive relevant infor-
mation than F2; thus, F1 could be discriminative than F2

in describing relevant information. Therefore, the number
of feedback documents, which we define as feedback length,
can be taken as a characteristic of the discrimination of feed-
back document set. Formally, feedback length |F | is defined
as follows:

|F |: the number of documents in F .

(2) Entropy of Feedback Documents: Feedback length,
as described above, captures the discrimination of feedback
documents on the document level, whereas the entropy of
feedback documents, which measures the term distribution,
is on the term level. Usually, more entropy means a more
random term distribution; thus it is not clear which topic
the feedback documents talk about. Similarly to the com-
putation of query entropy, the entropy of feedback model θF

is defined as:

FBEnt A =
∑
w∈F

−p(w|θF ) log2 p(w|θF )

where p(w|θF ) is estimated as p(w|θF ) = c(w,F)∑
w c(w,F)

.

(3) Relative Entropy of Feedback Documents: Sim-
ilar to Query Entropy QEnt A2, the computation of feed-
back document entropy FBEnt A is also affected severely
by common terms. So, we follow the same idea to smooth
θF using Jelinek-Mercer smoothing method and then com-
pute the “relative entropy of feedback documents” as an
alternative feature, which is defined as follows:

FBEnt R =
∑
w∈F

p(w|θF ) log
p(w|θF )

p(w|C)

3.1.3 Divergence between Query and Feedback Doc-
uments

The motivation of divergence between query and feedback
documents is that, we have to rely on feedback more, if the
query does not represent relevant information well (i.e., the
divergence between the query and its feedback documents is
large.) Below, we list two measures to quantify it.

(1) Absolute Divergence:



A direct and intuitive way to estimate the divergence is
computing the divergence between query model θQ and feed-
back model θF using the KL-divergence formula. It is clear
that θF is easily estimated using the Maximum Likelihood

estimator: p(w|θF ) = c(w,F)∑
w c(w,F)

.

We simply use pseudo feedback document model θF ′ in-
stead of θQ to compute the divergence, which is defined be-
low:

QFBDiv A =
∑
w∈F

p(w|θF ) log
p(w|θF )

p(w|θF ′)

To prevent zero probability, θF ′ is smoothed using the col-

lection language model as p(w|θF ′) = c(w,F ′)+µp(w|C)∑
w c(w,F′)+µ

where

µ is set to 1500.
We call this divergence “absolute divergence” in contrast

to the relative divergence to be defined below.
(2) Relative Divergence:
With the above absolute divergence, it is often difficult to

say that a large divergence value means a bad query, because
the absolute divergence only relies on θF and θQ but does
not take other useful factors into consideration, e.g., the di-
vergence between query model and negative feedback model.
In fact, if the divergence between query and negative feed-
back is much larger than that between query and positive
feedback documents, we can say that the query represents
relevant information well, no matter what is the absolute
divergence value.

To address this problem, we propose another feature to
capture a relative divergence. Considering a scenario: in a
searching process, if document D is judged as a relevant doc-
ument but its rank in the result document list is very low,
it also shows that the query does not represent the feedback
documents well. Hence, intuitively, the rank of a document
also measures the divergence between query and feedback
documents, and such a measure seems more comparable
among different queries. Because there are sometimes more
than one feedback documents, we adopt an average rank in
our predicting system, as follows:

QFBDiv R1 =
∑

d∈F

rd

|F |
Where rd is the rank of document d, e.g., the rank of the
first document is 1 and the second one is 2 ...; |F | is feedback
length as described before.

In the formula above, a large QFBDiv R1 value means
a low rank. Intuitively, we would like QFBDiv R1 to pos-
itively contribute to the measure of the divergence between
query and feedback documents, which simply says that a
higher QFBDiv R1 implies a larger divergence. However,
we would like the contribution from a rank measure to drop
quickly when the QFBDiv R1 is low and become nearly
constant as it becomes higher. The rationale of this heuris-
tic is the following: a low rank of feedback documents (i.e.,
large QFBDiv R1) often implies large divergence between
query and feedback documents, thus we should take consid-
eration of such a measure when computing the divergence;
however, when QFBDiv R1 is very large (i.e., the feed-
back documents are ranked very low), the contribution of
rank should not be so sensitive to the difference in ranks as
when it is small. The heuristic suggests a concave curve for
QFBDiv R1 and the query-feedback divergence as shown
in Figure 1. To capture such a heuristic, we propose an-
other measure by taking a logarithm transformation on the
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Figure 1: Approximate relation between the query-
feedback divergence and the average rank.

average rank to approximate the divergence div(Q, F ), as
follows:

QFBDiv R2 = log
∑

d∈F

rd

|F |

3.2 Learning Algorithm
Based on our heuristics and features, we hope to utilize

some learning technique to obtain equations which predict
feedback coefficients.

We propose to use the logistic regression model [2], which
appears to model our problem well: it can take any value
from negative infinity to positive infinity as an input, whereas
the output is confined to values between 0 and 1.

Logistic regression models are also called maximum en-
tropy models in some communities. In particular, logistic
regression models are of the form:

f(z) =
1

1 + exp(−z)

where the variable z represents the exposure to some set of
features, while f(z) represents the probability of a particu-
lar outcome, given that set of features. The variable z is a
measure of the total contribution of all the features used in
the model, which is usually defined as z = w̄x̄. Specifically,
x̄ is a vector of numeric values representing the features, for
instance, our features might include query length |Q|, the
entropy of feedback documents, etc. And w̄ represents a
set of weights, which indicate the relative weights for each
feature. A positive weight means that the corresponding fea-
ture increases the probability of the outcome, while a neg-
ative weight means that its corresponding feature decreases
the probability of that outcome; a large weight means that
the feature strongly influences the probability of that out-
come; while a near-zero weight means that the feature has
little influence on the probability of that outcome.

Typically, we learn these weights using training data. For
our problem, the training data would consist of feature val-
ues along with the corresponding optimal feedback coeffi-
cient. To construct such a training data set, we exhaust the



feedback coefficient space for each query-feedback pair to
find its optimal coefficient (more details are given in Section
5), where each query-feedback pair together with its optimal
coefficient form our training data. Because logistic regres-
sion models have a global optimum, the choice of learning
algorithm is usually of little importance. In our study, we
use the statistical package R 1 to train our model.

Once the weight vector w̄ of the equation have been de-
rived for a particular data set (training data), these weights
may be used to predict feedback coefficients for new queries.

4. FEEDBACK COEFFICIENT SMOOTHING
One advantage of our adaptive feedback algorithm is that

we can naturally incorporate many features as evidence to
improve our estimation of the feedback coefficient. However,
through preliminary experiments, we observe that, although
a fixed coefficient may not be optimal for many queries, it
provides a “safe” coefficient range; compared with it, our
predicted dynamic value, though optimized based on many
features, is sometimes too extreme and thus “risky”. To
address this problem, we experimented with some strate-
gies to smooth our prediction using the safe fixed coefficient
value. We hypothesize that, with smoothing, our adaptive
relevance feedback method would be more robust.

Formally, let αf be the fixed feedback coefficient and αd

be the dynamically predicted coefficient. Our task here is
to estimate a more robust feedback coefficient, which we
denote by αc, obtained by smoothing αd using αf . We now
describe several different smoothing strategies.
(1) Linear Interpolation: Our first idea is to linearly
interpolate the two feedback coefficients (i.e., αf and αd) to
obtain the final coefficient αc, which is defined below.

αc = (1− β)αf + βαd

where β ∈ [0, 1] is a parameter to control the weight on each
coefficient. If β = 0, αc simplifies to αf ; If β = 1, αc sim-
plifies to αd; otherwise αc is between αf and αd. In our
experiments, β is experimentally set to 0.5.
(2) Range Normalization: Suppose there is a safe range
for feedback coefficient [αf−δl, αf +δr], and we would like to
restrict αc in the safe range. If we have some prior knowledge
about δl and δr, we can obtain the safe range easily. How-
ever, most of the time, we do not have such knowledge and
have to approximate δl and δr. In this work, they are empir-
ically approximated as: δl = γ(αf − 0) and δr = γ(1− αf ),
where we use a γ to indicate the breadth of safe range. Based
on these assumptions, we propose to use the following for-
mula to obtain the final feedback coefficient.

αc = 2δαd + αf − δ

where, if αd < αf , then δ = δl; otherwise, δ = δr. And it
is clear that, αc is restricted to [αf − δl, αf + δr]. In our
experiments, γ is experimentally set to 0.5.
(3) Pivoted Interpolation: Intuitively, if the feedback
coefficient is not very large, the performance of relevance
feedback will be at least as good as that of the original
query; however, if we use a large coefficient, we have a rel-
ative higher possibility to hurt the retrieval performance.
To strike a balance between exploration and exploitation,
we suggest a preservative strategy to take advantage of the
predicted coefficient but at the same time not to be involved

1http://www.r-project.org/

A B C D E
Retrieval Model LM + Dirichlet (µ = 1500)
FB Model – Relevance Model 2
FB Term Count – 30 50
Docs per Query 2500
Stopword No 319 common words

Table 1: Parameters in Constructing Workingset.
The row “Docs per Query” means that we use top
2500 documents of each query to construct working
sets

Smoothing Mixture Noise FB Term Count others
µ = 1500 0.9 100 default

Table 2: Parameters in Relevance Feedback

in too much risk. Specifically, if αd < αf , we use αd as the
feedback coefficient; otherwise, we use αf . Formally, this
Pivoted Interpolation is defined as follows.

αc = (1− β)αf + βαd

where if αd < αf , β = 1; otherwise β = 0.

5. EXPERIMENT RESULTS

5.1 Data Preprocessing
We employ the Lemur toolkit (version 4.5) and Indri search

engine (version 2.5) 2 in our experiments. Below, we de-
scribe how we pre-process the data collection and how to
prepare the training data.

First, due to the large size of the GOV2 data collection,
we decide to do the retrieval experiments on a subset of the
collection, instead of the whole 426G data. To make the
retrieval experiments on our working sets equally to that on
the whole data set, we use Indri to construct 5 working sets,
each for one task. Specifically, we first build an index on the
whole Gov2 collection, then we retrieve result documents for
each query (for task B-E, we do relevance feedback based on
the corresponding positive judgments), and finally these re-
sult documents are extracted to construct our working sets.
The related parameters we adopt to construct working sets
is shown in Table 1, other parameters are the same as Indri’s
default setting.

Furthermore, we pre-compute a global collection model
θC using the whole data set, and in the following experi-
ments, whenever we need to access a local collection lan-
guage model (i.e., language model of a specified working
set) to smooth document models, we just use θC instead.
To very if our working sets work appropriately, we try some
retrieval experiments on them and observe that the retrieval
performance is almost the same to that on the whole data
set.

After constructing working sets, we build a separate index
for each working set. Throughout this paper, when building
any index, we only stem words using the Porter algorithm,
without any other preprocessing.

To train our adaptive relevance feedback model, we need
some training data. In our study, we use the Terabyte topics
(701-850, excluding those included in this year’s test set) as
the training queries. There are 100 topics in total, of which

2http://www.lemurproject.org/
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Figure 2: The sensitivity to feedback coefficient of
some Terabyte query topics.

one topic has no relevant documents and another fails to re-
turn any relevant documents. So, finally, we adopt 98 topics
as training data. Then, for each query, we randomly se-
lect some top relevant documents to simulate “judgments”.
Specifically, for each query, with a probability of 0.3 we will
select only 1 relevant document for feedback, and with prob-
abilities of 0.4, 0.1, 0.1 and 0.1 we will select 3, 4, 5 and 6
relevant documents respectively. The distribution over these
different numbers of relevant documents is heuristically fixed
to {0.3, 0.4, 0.1, 0.1, 0.1} to approximate the numbers of rel-
evant documents used for feedback in the official tasks B, C,
and D.

After that, we also construct a working set for training
data using the same parameter setting as task C. Finally,
with Lemur toolkit, we adopt the KL-Divergence retrieval
model with mixture model feedback to do relevance feed-
back experiments (related parameters are shown in Table
2); through trying different feedback coefficients (0.0, 0.1,
..., 1.0), we get the optimal coefficient value for each query.
The 4th column of Table 3 gives some examples of the opti-
mal coefficients. We use this data set to learn the prediction
model.

5.2 Sensitivity of Feedback Coefficient
As we have discussed in Section 2, relevance feedback is

controlled by a coefficient α. When α = 0, we are only using
the original query model (i.e., no feedback), while if α = 1,
we ignore completely the original query and rely only on the
feedback model. To show the sensitivity of α, we plot the
MAP of some queries (Terabyte topics 757, 776, and 793)
in relevance feedback experiments by varying α from 0 to 1.
The results are shown in Figure 2. We can observe that the
setting of feedback coefficient α can affect the performance
significantly, and the optimal coefficients for different queries
could be quite different.

5.3 Preliminary Experiment
We find that Relative Query Entropy QEnt R1, Relative

Entropy of Feedback Document FBEnt R, Absolute Diver-
gence QFBDiv A, and Relative Divergence QFBDiv R2
have the most significant influence on the ability to predict
accurate feedback coefficients. Thus, we keep the above four
features in our final prediction model, and the following co-

Adaptive Fixed Optimal
785 0.3525 0.6 0.4
787 0.4629 0.6 0.2
789 0.4654 0.6 0.7
791 0.6799 0.6 0.3
793 0.6006 0.6 0.0
795 0.8717 0.6 0.9
797 0.4897 0.6 0.4
799 0.3533 0.6 0.5
801 0.5830 0.6 0.8
805 0.7812 0.6 1.0
807 0.5145 0.6 0.5
809 0.4262 0.6 0.5
810 0.7063 0.6 0.8
811 0.5002 0.6 0.5
813 0.5616 0.6 0.5
815 0.6266 0.6 0.8
816 0.4972 0.6 0.1
817 0.3873 0.6 0.7
819 0.4527 0.6 0.2
821 0.4929 0.6 0.5

Table 3: Samples of Prediction Values

efficients are then derived from our training algorithm.

z0 = − 0.93265 + 0.09890 ∗QEnt R1

− 1.45937 ∗ FBEnt R + 0.28350 ∗QFBDiv A

+ 0.32427 ∗QFBDiv R2

Where we use the absolute value of each feature. Then, we
can predict feedback directly as below:

α = f(z0) =
1

1 + exp(−z0)

From the above formulas, we can see clearly that QFBDiv A
and QFBDiv R2 play the similar roles as we discussed in
Section 3. However, Relative Query Entropy QEnt R1 in-
creases the feedback coefficient, which means that, if a query
is more discriminative, we can use a higher feedback coeffi-
cient. It is in contrast to our initial expectation. One expla-
nation is that, a more discriminative query (i.e., with a high
clarity score) is more drifting-tolerant, and thus it is safe to
use a large feedback coefficient in this case. Also FBEnt R
is negatively correlated to the feedback coefficient α, and
it is also in contrast to our intuition. One possible expla-
nation is that, we do not need a large feedback coefficient
if the feedback is too discriminative, since a discriminative
feedback can easily drift the original query away.

With the prediction formula, we can compute potentially
different feedback coefficients for different queries. Note
that, the four features are all computed efficiently, because
we only use the Maximum Likelihood method to estimate
related language models.

We evaluate our method on the training data by using
10-fold cross validation. Some examples of our prediction
values are shown in the second column of Table 3.

We compare our adaptive feedback method with our base-
line system, i.e., the fixed feedback coefficient approach (where
we use a fixed coefficient 0.6, since it brings the best per-
formance). Before evaluation, the judged documents are
removed from the results, and the result document list is
then restricted to only contain the top 1000 documents. Be-
sides, we also compute the Mean Absolute Error (MAEr-
ror) to indicate how far off the coefficients used in the two



MAError MAP Recall
Fixed 0.2173 0.3243 12070/18649
Adaptive 0.1824 0.3341* 12365/18649
Improvement 16.1% 3.0% 2.4%
upper-bound 0 0.3553 12696/18649

Table 4: Performance Comparison on Training Data

MAError MAP Recall
All Features 0.1824 0.3341 12365/18649
No FBEnt R 0.1879 0.3320 12308/18649
No QEnt R1 0.1905 0.3294 12295/18649
No QFBDiv R2 0.1950 0.3307 12409/18649
No QFBDiv A 0.1842 0.3330 12316/18649

Table 5: Contributions of Features on Training
Data. “No XXX” means removing feature XXX.

methods and the optimal coefficients. The comparison of
performances is shown in Table 4, which indicates that our
approach outperforms the fixed coefficient approach clearly.

Next, we perform several experiments to show the con-
tributions of individual features. Table 5 shows the re-
sults, where every time one feature is removed singly. Below
we give the derived formula to predict coefficient without
QEnt R1 as an example. From Table 5, we can see that
each feature plays an important role.

z1 = + 0.01156− 0.77456 ∗ FBEnt R

+ 0.20068 ∗QFBDiv A

+ 0.35399 ∗QFBDiv R2

Also, we design some experiments to evaluate the pro-
posed smoothing methods (Section 4). The results are shown
in Table 6. It indicates that Range Normalization (Norm) ≥
Linear Interpolation (Linear) ≥ Pivot Interpolation (Pivot),
however, no smoothing method outperforms our basic adap-
tive feedback method. Maybe it is because we did not tune
the parameters of these smoothing methods, which will be
further studied in the future work.

5.4 Official Run Results
We submitted two runs for each task, in which various

techniques we designed are applied. These runs are de-
scribed in Table 7. UIUC.B1, UIUC.C1, UIUC.D1 and
UIUC.E1 use the proposed adaptive relevance feedback plus
the range normalization smoothing method; UIUC.B2 and
UIUC.C2 also adopt our adaptive feedback but respectively
use pivot and linear interpolation as the smoothing method;
UIUC.D2 only tests the adaptive feedback without any smooth-
ing method; in UIUC.E2, we add a pseudo relevance feed-
back on top of the adaptive relevance feedback. Table 8
shows the performance of these official runs.

After our official runs were submitted we discovered that

NoSmooth Linear Norm Pivot
All Features 0.3341 0.3316 0.3323 0.3265
No FBEnt R 0.3320 0.3301 0.3308 0.3263
No QEnt R1 0.3294 0.3295 0.3304 0.3244
No QFBDiv R2 0.3307 0.3294 0.3299 0.3254
No QFBDiv A 0.3330 0.3308 0.3310 0.3262

Table 6: Comparison of Smoothing Methods on
Training Data

RunID Description
UIUC.A1 No Relevance Feedback
UIUC.B1 Adaptive + Norm
UIUC.B2 Adaptive + Pivot
UIUC.C1 Adaptive + Norm
UIUC.C2 Adaptive + Linear
UIUC.D1 Adaptive + Norm
UIUC.D2 Adaptive
UIUC.E1 Adaptive + Norm
UIUC.E2 Adaptive + PseudoFB

Table 7: Description of Runs

RunID MAP MTC StatAP
UIUC.A1 0.1240 0.0460 0.2127
UIUC.B1 0.1868 0.0650 0.2886
UIUC.B2 0.1770 0.0641 0.2833
UIUC.C1 0.1971 0.0714 0.3192
UIUC.C2 0.1971 0.0714 0.3192
UIUC.D1 0.2078 0.0722 0.3397
UIUC.D2 0.2079 0.0712 0.3327
UIUC.E1 0.2118 0.0673 0.3284
UIUC.E2 0.1744 0.0583 0.2681

Table 8: Official Results of Runs

our implementation of the range normalization was not quite
accurate and we had left out the query feedback documents
divergence feature QFBDiv A. So, we decided to re-compute
our runs. Note that we did not change anything related to
our algorithm but just the implementation. We also gener-
ated some additional runs to compare different techniques
we proposed. Table 9 and 10 show the performance of these
runs.

Comparing to our preliminary experimental results, there
are two significant changes: feature QFBDiv R2 hurts the
performance; our smoothing methods, especially the Range
Normalization, improve the performance. From Table 9,
we can see that “No QFBDiv R2” outperforms “All Fea-
tures” all the time, and that “No QFBDiv R2” always beats
the baseline system; with Range Normalization, the perfor-
mances of all methods are improved.

One possible explanation of the two significant changes is
that, the training data and the testing data are quite incon-
sistent. In our training data, we use top relevant documents
to simulate judged documents, because in real world, users
would like to judge top documents; however, in the test-
ing data, the judged documents are often ranked very low
(or even do not occur in the top 2500 result documents).
Our feature QFBDiv R2 measures the rank of feedback doc-
uments and thus is very sensitive across two data sets. How-
ever, on the other hand, it also shows that our prediction

Task B
NoSmooth Linear Norm Pivot

Baseline 0.1889 – – –
UIUC.B1 – – 0.1868 –
UIUC.B2 – – – 0.1770
All Features 0.1781 0.1870 0.1892 0.1771
No FBEnt R 0.1719 0.1837 0.1874 0.1730
No QEnt R1 0.1718 0.1820 0.1847 0.1724
No QFBDiv R2 0.1892 0.1915 0.1948 0.1826
No QFBDiv A 0.1760 0.1862 0.1891 0.1753

Table 9: Performance Comparison on Task-B



Task C
NoSmooth Linear Norm Pivot

Baseline 0.1948 – – –
UIUC.C1 – – 0.1971 –
UIUC.C2 – 0.1971 – –
All Features 0.1919 0.1955 0.1973 0.1904
No QFBDiv R2 0.1968 0.1976 0.1994 0.1893

Task D
Baseline 0.2057 – – –
UIUC.D1 – – 0.2078 –
UIUC.D2 0.2079 – – –
All Features 0.2071 0.2090 0.2100 0.2039
No QFBDiv R2 0.2075 0.2073 0.2118 0.2006

Task E
Baseline 0.2182 – – –
UIUC.E1 – – 0.2118 –
All Features 0.1797 0.2123 0.2110 0.2182
No QFBDiv R2 0.2192 0.2193 0.2184 0.2182

Table 10: Performance on Task C, D and E

model without QFBDiv R2 is very robust, which even works
well on such a different data set; although the parameter of
our Range Normalization smoothing method is not tuned,
it still helps a lot when testing and training data are not
consistent.

Another reason to explain the changes may be the sparse-
ness of our training data. We only utilize 98 training queries
to train 4 features, which have already led to a robust rel-
evance feedback method. It would be interesting to see
whether a large number of queries would lead to a more
effective logistic regression approach to predict feedback co-
efficients.

6. CONCLUSIONS
In summary, we studied a novel problem in feedback, i.e.,

optimization of the balance of the query and feedback infor-
mation, in this year’s relevance feedback task, and proposed
an adaptive relevance feedback approach to dynamically pre-
dict feedback coefficient. Our experiment results show that
the our proposed method is robust and effective, which out-
performs the fixed-coefficient relevance feedback, even when
training and testing data sets are not consistent.

Besides, we also designed three smoothing strategies to
smooth our predicted coefficients to make them more robust.
Among the three smoothing methods, Range Normalization
is the most effective one; smoothing our prediction value can
make it more robust, especially when training and testing
data sets are inconsistent.

Among our features, we find that Relative Query En-
tropy QEnt R1, Relative Entropy of Feedback Document
FBEnt R, Absolute Divergence QFBDiv A, and Relative
Divergence QFBDiv R2 are the most effective ones. How-
ever, QFBDiv R2 is very sensitive to the data set and
should be used carefully.

There is still much room to explore in the future work. We
should study more effective and robust features in the future.
And also, we hope to apply our method to other feedback
models, e.g. Rocchio Feedback, to show its performance. In
addition, it will be interesting to explore how to adaptively
predict feedback coefficients in pseudo and implicit relevance
feedback models.
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