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1.0      INTRODUCTION 

Chip-scale multifunctional photonic integrated circuits (PICs) are critical for realizing 

high performance components required in modern optical data transmission links and 

telecommunication systems. Such PICs are expected to play a crucial role in next generation 

smart and adaptive sensors that would require the development of high performance optical 

signal processors and data routing technologies that will facilitate efficient and fast transfer of 

information, on-demand connection and ultrafast data processing. They are also essential for 

reducing the production cost of these systems. An important sub-component in realizing practical 

all-optical signal processor is an optical memory (buffer) element. Most suggestions for all- 

optical memories and flip-flops are based on the phenomena of optical bistability, when a 

nonlinear optical system can operate at two different output intensities for the same input 

intensity. In most cases the nonlinearity in semiconductor based structures is due to an intensity 

dependent change of refractive index produced by photo-generated electron-hall pairs. Switching 

times of these devices is limited by recombination times of the carriers, which is of the order of 

nanoseconds. 

In the Phase I efforts undertaken at Hybrid Photonics in cooperation with Queens College 

of CUNY we investigated optical bistable devices based on novel physical principles, which 

distinguish our efforts from all previously suggested approaches. Two configurations were 

studied: (i) two active waveguides side coupled to a ring resonator, and (ii) two coupled active 

microdisk resonators. In both configurations CdSe core-shell quantum dots (QDs) were used as 

active gain media. 

In Section 2, we discuss our theoretical efforts at understanding the underlying physical 

mechanism for the bistability and the modeling efforts to design the bistable device. Following 

this in Section 3, we describe the experimental work on the two device configurations and the 

results. Finally, in Section 4, we summarize our findings and discuss the future plans. 

2.0      THEORETICAL MODEL OF BISTABILITY IN THE COUPLED WAVEGUIDE- 
RING GEOMETRY 

The first step in designing an efficient device demonstrating the bistable behavior 

observed in preliminary experiments is to achieve understanding of underlying physical causes 
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of the observed behavior and to develop a computer model allowing us to relate technical 

characteristics of the device to its structural parameters. This step is divided in two subtasks: 1) 

to develop a theoretical model of the modes of the waveguides-resonator system, and 2) to 

develop a dynamic model of lasing in this structure. 

2.1. Modes and resonant frequencies of the system 

The role of the laser "cavity" in our system is played by two waveguides coupled to each 

other through the ring resonator. The feedback is provided by reflection of light from the 

cleaved edges of the waveguides and redirection of the reflected light to the second waveguide 

by coupling to the ring resonator. We present the field in each waveguide as 

Ea(z) = Aa[rae
u>°*+e-u'-*],z<La (1) 

where Aa andqa are stationary amplitudes and propagation constants of the field in the 

waveguides (a -1,2), z is the coordinate along each of the waveguide with zero chosen at the 

cleaved edges, and La are distances from the edges of the respective waveguides to the coupling 

region between the waveguides and the ring (since the size of the coupler is much smaller than 

the wavelength, we can assume that the coupling occurs at a single point), and ra are reflection 

coefficients from the cleaved edges of the waveguides. Using standard model of the coupler we 

derived the relation between the amplitudes of the field in the 1st and 2nd waveguides in the form: 

A=n(n)r2A1e
i{q^+q^) 

(2) 
4=/7(Q)r,V^+'2L2) 

where 

\iA2   /l _e2amci)/2-rrLri4 

n[Q)=        :, :  
\-\tf(l-Z2)emn)-^'2 

(3) 

7(Q) = 
K\

2
 fi^e-'*•'2-^'4 

\-\t\2(l-^)e-mn)-^'2 

In these expressions we introduced the phase change of the field inside the ring 

, Q.nL Q 2/rc 
cD = w,—— = 2/rm,—;Q,. =  (4) 

c ' Q. n L 
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where nr and Lr are refractive index and the circumference of the ring resonator, c is the speed 

of light, and m2 is an arbitrary integer. We also introduced ring's absorption coefficient, yr, 

parameters of the coupler t,K, which obey energy conservation condition\t\ +\K\ = 1, and 

losses at the coupler £. Combining Equation (2) and (3) we obtain for real and imaginary parts 

of the propagation constants g, , = q[2 + iq[2: 

where 

S = 

q[L^+q'2L2 =nmx 

q;Lx+q"2L2=-UnS{0) 

yrLr 

K\\l-?)rir2e~   2 

(5) 

-ah 
l + R2\tfe      r-2(l-?)\t\2e-r'L'cos 2/rm, 

(6) 

Equation (5) shows that the resonance frequencies of the effective "cavity" in this configuration 

are determined by properties of the waveguides, while the ring resonator affects only the 

effective losses of the system. The normalized modes of the cavity are defined as 

Ua{z) = 
re^'+e"9"2 

l^e'^+e-'^dz 
(7) 

2.2. Dynamic equations 

With  normal  modes and resonant frequencies determined we can derive dynamic 

equations for field amplitudes in each of the waveguides. We present field in each waveguide as 

Ea(t) = \[Aa(t)e
in'+l*'{')Ua(z) + c.c] (S) 

where a -1,2,  Aa and y/ are slow changing amplitude and the phase of the field, D. is an 

unknown lasing frequency, and use standard semiclassical lasing theory  [1] to derive dynamic 

equations for the amplitude and the phase in each waveguide: 
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d\Aal 

dt ya=2V^(n)Ap0K(o| ){f+f}R)
dz 

^1 0   I Jfi+/?a//?j 

(9) 

where v^and v'are real and imaginary parts of the resonance frequencies of the lasing cavity, q 

is normalized oscillator strength of optical transitions responsible for lasing, g(f2)is the gain 

profile of the active medium centered at the transition atomic frequency coQ with effective width 

yL , Ap0 is unsaturated population inversion, which characterizes the pumping intensity,   Rs is 

saturation parameter, and 

1 Ra=—\Aa(t)\
2s2

g{n)\ua(z)f 
2h 

(10) 

is responsible for the gain saturation. For the parameters of the structure realized experimentally 

the lasing is expected to occur at a frequency far above the threshold frequency of the waveguide 

so that we can assume linear relationship between the propagation constants of the waveguide 

and the respective frequencies: va « cwqa , where cw is the speed of light in the waveguide. In this 

case we can combine Equation (9) with Equation (5) to obtain closed system of dynamic 

equations in the form 

1/, +p2 +n-g2Qg(n)^- Ap0 
2r± 

TWICH 

21 

i 4*,|, ' M 
K\A\    dt A2\   dt 

+ g2Qg{Q)Ap() 
\U(z)\ P(z)f dz (11) 

2L       V   ; 

where we assumed that the waveguides are identical. In the stationary regime these equations 

give an equation for the lasing frequency: 

4y±L 
v   '      2L 

(12) 

Owning to the oscillating nature of the ring resonance parameter 5 this equation might 

admits multiple solutions (see Figure 1 below). We have developed a computer code written in 

Matlab for solving Equation (12) and determined that for typical parameters of the structure this 
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equation indeed might have three solutions within the gain width of the atomic transition. Since 

the gain parameter for different frequencies is different each of the possible frequencies will 

result in different lasing intensities. Thus, the presence of multiple solutions for the lasing 

frequency is responsible for the multistable behavior of lasing output in the structure under 

consideration. In order to determine stability of possible solutions we need to analyze the 

dynamic behavior of the amplitudes in the vicinity of possible stationary values of the 

amplitudes. To this end we use the relation between field amplitudes in different waveguides 

given by Equation (2) in order to derive a dynamic equation for a single intensity, which can be 

presented in the following form 

dl 

dt ̂
y-i \g2ng(n)APoj \U(z)f \U(z)f 

\ + /32Ig2\U(z)fg{Q)    l + Ig2\U(z)fg(n) 

CD. 
<fe + ^lnS(Q)| (13) 

where/ is dimensionless intensity, and /? = e~r'Lr'4. Frequency is also a dynamic variable whose 

initial dynamics occurs over very short times of the order of y±
] and can be neglected. In this 

case the frequency in Equation(13) can be related to the instantaneous value of the intensity as 

mco0 Q l-^g(Q)^AA{ P(4 •+• \U(2)f dz (14) 
\ + p2Ig2\U(z)\2g{Cl)    \ + Ig2\U(z)\2g{Q) 

and may evolve to one of the possible stationary values depending on their stability and the 

initial conditions. To study the stability of possible stationary solutions we used Equations (13) 

and (14) in the small signal and plot the right hand side of Equation (13) as a function of 

intensity (Fig. 1). It passes through zero at the stationary solutions and the sign of the slopes of 

this function in the vicinities of zeroes indicates the stability of the respective solution: negative 

slope corresponds to stable solutions, and positive to the unstable ones. The black curve in this 

figure corresponds to a situation when a zero intensity (nonlasing) solution is unstable, and there 

is a single stable lasing solution with nonzero intensity. With increase of pumping (blue curve) 

the stability of the solutions changes: zero intensity (non-lasing) solution becomes stable again 

and coexists with a stable lasing solution. This is a rather unusual situation, when depending on 

initial conditions the system can either laze or not at the same pumping level. Further increase of 

pumping changes the situation again. Now the non-lasing solution becomes unstable and two 

stable lasing solutions emerge. In order to illustrate this situation more clearly we plot in Figure 
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2 the time dependence of intensity for the same three pumping intensities as in Figure 1, and for 

small initial intensity, /„ = 0.1. 

Intensity 

Figure 1: Time Derivative of Intensity as Function of Intensity. Zeroes Show Stationary Solutions 

I      0,0 
c 

 p, =0 039 
 Pj =0.041 

  P, =0 050 

Figure 2: Time Dependence of Intensity for Small Initial Intensity 

One can see that for small pumping (black curve) the intensity approaches a non-zero 

value, for the second level of pumping (blue curve) the lasing is quenched for this initial 

condition, while the further increase of pumping results again in a non-zero stationary intensity. 

In order to demonstrate the existence of the second stable solution at blue pumping, we plot the 
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time dependence of intensity for this pumping level, but with different initial condition in Figure 

3, which approaches a non-zero solution. 

Initial intensity • 0 5 
 p=0 041 

1.0x10 

time 

1.5x10* 

Figure 3: Time-Dependence of Intensity for the Blue Pumping and Larger Initial Intensity 

Thus we can conclude that the developed model gives a correct physical picture of the 

observed effect and can serve as a modeling tool for designing structures with desirable bistable 

and reconfigurable properties. Even though we did not manage to observe these effects with the 

experimental design studied during the Phase-I efforts, the obtained theoretical results proof that 

the general concept of the device based on resonant coupling of the waveguides is correct and 

can be realized with more carefully prepared structure. 

2.3. Evanescent coupling and normal modes of coupled disks. 

The second thrust of the Phase-I efforts was concerned with observing bistable behavior 

in the system of coupled microdisks. In order to provide theoretical supports to these efforts and 

assist in designing of the structure a theoretical model and relevant software for analysis of 

normal frequencies and modes of single and double-disk structures were developed. 

2.3.1.   Single disks - resonance frequencies and normal modes 

It is well known that microdisk resonators can be with a good accuracy modeled as tow- 

dimensional structures, in which two different polarizations of the field and can be separated [2]. 

7 
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As a result the problem of finding resonance frequencies of these structures is reduced to solving 

a scalar tow-dimensional wave equation. However, when introducing normal modes of these 

structures, which are required for modeling their lasing properties one needs to take into account 

that micro-disk resonators have relatively low Q-factors, which means that their radiative losses 

must be taken seriously. Analysis carried out in this work was based on so called constant flux 

modes introduced recently in Ref. [3], which were defined in the following way. Inside the disks 

the field is described by Bessel function Jm(knr\where k    -com„ Icdetermines the normal «* m \    mn    a    / mn mn 

frequency comn, while outside of the disk, the field is given by an outgoing Hankel function 

Hm(kr), which depends on  an external parameter k = co/c, where spectral parameters does 

not coincide with the normal frequency. The main advantage of the modes defined this way 

compared to more traditional quasimodes [4] is that, unlike the latter, they do not diverge at 

infinity and can, therefore, be directly used to calculate the outgoing intensity of respective 

lasing structures. Normal frequencies for TE polarized modes in this case are defined by 

equation: 

•U"A„*)_ 1  KnHm{kR) 
JLiK^R)    nd   k   H'm{kR) 

where nd is the effective refractive index of the disk,   These frequencies are complex -valued 

and depend on the external spectral parameter. The real part of the normal mode is defined as 

solution of the self-consistent equationRe[kmn(kr)] = kr, while its imaginary part is given 

aslm[kmn(kr)].  In order to numerically evaluate these quantities we developed computer codes 

(Appendix A) based on the Mathematica platform using its standard library functions. The 

choice of Mathematica was due to the fact that it allowed carrying out calculations of Bessel 

functions with arbitrary precision which was crucial for finding normal frequencies of modes 

with high values of azimuthal number m. Figure 4 below presents the found frequencies and 

their imaginary parts for modes with azimuthal numbers from 10 to 100 and radial numbers. We 

also compared the results found for the constant flux modes with those found for quasi-modes. 

The real and imaginary parts of the latter coincide with those of scattering resonances found as 

poles of the respective scattering amplitudes. 
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40 50 60 70 

Angular mode # 

E 

Figure 4: Real and Imaginary Parts of Normal Frequencies of Constant Flux Modes for Azimuthal 
Mode Numbers from 10 to 100. Different Colors Correspond to Different Radial Numbers 

The comparison, shown in Figure 5, indicates that while this difference might be 

significant under some circumstances, it is small enough to be neglected for the purpose of 

analyzing effects of evanescent coupling on normal modes of multiple disks. Since numerical 

analysis of the scattering resonances is less numerically expansive, the problem of normal modes 

of the coupled disks was considered as the scattering problem. 
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Figure 5: Relative Differences between Real and Imaginary Parts of Constant Flux Normal 
Frequencies and Scattering Resonances: It is Seen that for High Order Modes the Difference 

Becomes Very Small 
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2.3.2.   Normal modes of the double-disk structures 

To model a double-disk structure it was found convenient to solve a more general 

multiple-disk scattering problem. Each disk constituting the structure was characterized by its 

internal and scattered fields presented in the form of the following modal expansion 

Bsc=^:(co)e^Hm(nok\r-r,\) 
m 

(16) 

where i enumerates disks characterized by radii /?, and centers positioned at r = ry. In addition to 

these two fields one also needs to introduce an incident field, which represents the initial incident 

field (first term in the equation below) and the fields scattered by all other disks (the second 

term): 

C=I^'m^m(«o*k-ri|)+IS^)(«>)^^(^k-r,|) (17) 
m j#i   m 

Here polar angles ^;and radial coordinates are defined in local coordinate systems associated 

with each j-th disk. For the scattering problem considered here arguments of all Bessel 

functions contain the frequency of the incident field. In order to be able to use boundary 

conditions at the rim of the ;' - th disk the scattered field of all disks needs to be rewritten in the 

coordinate system centered at the / - th disk. This is achieved with the help of the Graffs formula 

for the Hankel function [5] 

«^^.(i^|r-ry|)=gH„(i%«J»)eJ(M,#V.(i^|r-r(|y (18) 

where 7?y7 and 6jt are radial and polar coordinates of the / - th disk in the coordinate system 

centered at j-th disk. Using this theorem a single disk results is generalized into the multiple 

disk form 

b^{co) = o^{co) ^)+II^,M//m_„(«„^,>/l n-m)8h 

J*I    n 

(19) 

where a^ (co) is a single disk scattering coefficients 

10 
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ID 
_ ndJm {kndR,)J'm {kR,)-Jm(kR,)fm (kndR,) 

In the case of a double-disk system Equation (19) simplifies into 

(20) 

in ^SmM+^{-\rb^Hm_n{kD) 
(21) 

bL2)(<») = aL2)Idbl»(co)Hm_n(kD) 

where D is the distance between the disks' centers, and it was assumed that only the M-th mode 

of the first disk is being excited by an original incident field. This is the system of infinite 

number of equations, which describes coupling between different azimuthal modes. These 

equations were analyzed under assumption that all disks are identical, which is a very good 

approximation for the structures under consideration. To solve these equations it should be first 

noticed that the strongest coupling takes place between modes with equal or close single disk 

resonances. Since in microdisks modes with azimuthal numbers of the same magnitude but 

opposite signs are degenerate, one first needs to consider coupling between modes described by 

coefficients^'^. Also taking into account that the Hankel functions grow fast with increasing 

order, one realizes that coupling between coefficients b^ and b12^, characterized by coupling 

parameter H2M(kD), is much stronger than the coupling between coefficients 6^and b•, 

which is characterized by H0(kD). Thus, one can solve Equation (21) iteratively, taking first into 

account the coupling between main modes, and incorporating the rest using perturbation theory 

with coupling coefficients HM_n ///2Mas small parameters. The zero order approximation takes 

into account only coupling between counter-propagating resonant modes with following 

analytical result for new resonances modified by coupling: 

[aM(k)]~l =±H2M(kD) (22) 

The main feature of this approximation is that it preserves degeneracy between two modes, one 

of which can be described as symmetric and characterized by b^ + b^   combination of the 

coefficients, while the other one is antisymmetric characterized by b1^ -//^combination. This 

equation gives a simple method to estimate the effect of coupling on normal modes and was used 

11 
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in conjunction with experimental results to verify the efficiency of coupling in the fabricated 

structures. 

This approximation was further improved by taking into account coupling to the non- 

resonant modes in the first order of the perturbation theory. The results can be presented in the 

following form 

[aM(k)Jl =±H2M{kD)+ X an[HM_n(kD)f± £ a^Hu+n{kD)Hn_u{W)   (23) 

which shows that now there are four distinct resonance frequencies so that the degeneracy 

between symmetric and antisymmetric modes is now removed. Using this result one can 

determine if the structure under consideration requires going beyond the resonant approximation 

for its modeling. Since in our experiments only two frequencies have been observed we can 

conclude that interaction with non-resonant modes is not important and can be neglected. 

2.4. Summary 

Theoretical and modeling efforts with this Phase I project produced following results, which are 

crucial for the successful completion of the next phase of this project: 

1. We ascertained the physical mechanism responsible for multistable lasing in the system 

of two waveguides coupled through a resonant element (ring or disk resonator) 

2. The developed model of lasing in this type of structures allowed predicting emission 

properties of the structure for given morphological characteristics and tailor the structural 

parameters to achieve desirable multistable properties 

3. For the system of coupled disks a theoretical model and necessary computer codes were 

developed for simulating properties of normal modes of these structures. The obtained 

results are crucial for further modeling of lasing from these structures. 

3.0 EXPERIMENTAL 

The experimental work performed under this Phase I grant can be divided into two main 

subtasks: 

1. The microring integrated with an active waveguide system and 

2. The coupled active microdisk system 

12 
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Both these systems were investigated for their bi-stable output characteristics in addition 

to their linear transmission and luminescence properties. 

3.1.      Microring integrated with an active waveguide 

As part of this task, we have been involved in the design of the all optical flip-flop. The 

schematic drawing of the proposed architecture is shown in Figure 6. Here two gain media are 

integrated with a single microring resonator as shown in the schematic drawing. Specific 

subtasks investigated are briefly described below. 

r*U M» M I'MWW -no*i Pro** * 

Figure 6: Schematic Drawing of the Proposed All-optical flip flop which uses a passive microring 
resonator integrated with active elements. Also shown is the crossesction of the SU8 waveguides 

and the glass substrate. The waveguides are 2 umx2uiii in size 

3.1.1.   Design of ring resonator 

Firstly we investigated the bend loss mechanism in a waveguide made using SU8 - a 

negative photosensitive polymer. Simulations were performed using BEAMPROP, a 

commercially available waveguide modeling tool. Shown in Figure 7 is calculated loss of a SU8 

waveguide (2 urn x 2 urn) at different wavelengths for a 180 degree bend. 

13 
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Figure 7 Calculated Bending Loss for Different Input Wavelengths as a Function Of Bend Radius 
for a 180 Degree Bend 

The blue line in the plots above indicates the power in the fundamental mode as a function of 

bending radius for different input wavelength values. The optimal values of radii chosen for the 

different wavelengths were 205, 130, and 100 urn. 

3.1.2.   Design of Multimode Interference Coupler. 

We simulated the performance of the coupler which will be used for coupling the light 

from the straight waveguides to the ring resonator using beam propagation software. Results of 

simulations are shown in Figure 8. 

650 nm 850 nm 1550 nm 

21012)450 10 OS 00 
X irfnl Moraor vahJt (• u I 

Figure 8: Simulations of Multi-mode Interference Couplers with 50-50 Splitting Ratio for 
Different Input Wavelengths 

The couplers were based on multi-mode interference (MMI) scheme and were designed for 50- 

50 power splitting ratio. 
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3.1.3.   Resonant frequencies of the ring resonator with MMI couplers 

Following the design of the MMI coupler and the calculations of optimal bend radius, we 

simulated the resonant frequencies of the ring resonator. To this end we calculated transmission 

coefficient of a coupler, T, using a model, in which the coupling to the resonator is described by 

a 2 x 2 transfer matrix, connecting fields incident at the coupler from the waveguide, and from 

the ring. The coupler is characterized by power coupling parameters K , and the loss 

parameters y, and a , where former characterizes the fraction of power lost at the coupler, while 

the latter takes into account absorption in the resonator. This approach, which is standard for 

MMI couplers and is used in a number of works, results in the following expression for the 

power transmission coefficients defined as a fraction of energy propagating in the waveguide 

passing the coupler: 

(24) r-(i-r) 
(l-*r)1/2-(l-/)l/2exp '    1               1 

,   2             ) 

l-(l-x-)    (\-y) ~exp (   1             "\ — aL-i<& 
{   2            ) 

where L is the circumference of the resonator, and Q> - j3rL, where J3r  is the propagation 

constant in the ring. Figure 9 shows the transmission characteristics of the ring resonator at 

different wavelengths. The minima in transmission correspond to the resonance coupling of light 

to the resonator. 
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Figure 9: Simulations of Resonant Frequencies of The Ring Resonators Designed for Three 
Different Wavelength Ranges : 650, 850, and 1550 nm 
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3.1.4.   Fabrication of microring structure 

Microring structures were realized using both standard photolithography as well as 

electron beam lithography following the design parameters established above. One of the key 

components in this architecture is the integration of active waveguide consisting of colloidal 

quantum dots (CdSe/ZnS) embedded in a polymer host with a passive waveguide. We have 

successfully implemented this step using a multilayer electron beam lithography process with 

appropriate alignment marks. Scanning electron microscope image of an active waveguide 

integrated with a passive waveguide is shown in Figure 10 (a). Also shown in the same figure is 

the scanning electron microscope image of the microring resonator (b). 

Figure 10: Scanning Electron Microscope Images Of (A) Active Waveguide Integrated With Passive 
Waveguide, And (B) Microring Resonator Coupled To Passive Waveguides. Here, The Active 

Waveguides Consist Of Colloidal Cdse Qds Embedded In A SU8 Matrix. 

The active passive integrated waveguide structure was characterized by optical pumping of the 

device using an Argon ion laser (488 nm). During the initial phase of device fabrication, one of 

the major issues we had was that the colloidal quantum dots were getting deposited all over the 

wafer despite removing the polymer using the developer. This issue was overcome and now we 

have been able to realize devices where only the active region has the quantum dots. Shown in 
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Figure 11 is an optical microscope image of an active waveguide integrated with a passive 

waveguide along with the image under optical excitation where the red emission is observed only 

from the active region. 

Figure 11: Optical Microscope Image of the Active Waveguide Integrated with a Passive 
Waveguide (a) and Image of Emission from the Active Waveguide under Optical Excitation (b) 

The ring resonator was characterized for its transmission properties using a broadband source 

operating in the 1550 nm wavelength range. Although the active material we had chosen was 

CdSe quantum dots that emit in the red (620 nm), the ease of characterizing in the infrared 

prompted us to do the transmission measurements in the infrared. Shown in Figure 12 is one of 

the transmission resonances of the ring resonator in the 1550 nm wavelength range. 
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Figure 12: Transmission Characteristics of the Ring Resonator Shown Indicating Extinction of-20 
dB and 0.07 nm FWHM 

Summary: We have successfully fabricated a microring resonator integrated with two active 

waveguides. The integration of the active waveguide with the passive waveguide was shown to 

be successful based on the emission characteristics. Although we have not yet observed bistable 

lasing behavior from this integrated device, experiments are currently underway to demonstrate 

this in the near future. The outstanding issues include low reflectivity from the waveguide facets, 

and losses in the ring resonator. 

3.2.      Coupled Active Microdisks 

In this approach towards realizing bistable lasing, we use active microdisks consisting of 

CdSe/ZnS colloidal uantum dots embedded in a photosensitive polymer. In the present 

demonstration, the polymer used was SU8 (Microchem Corp.), a negative photoresist. Patterning 

of the microdisks were achieved using both soft-lithography and electron beam lithography. Due 

to the resolution limit of soft-lithography, it was not possible to realize efficient coupled 

microdisks using this technique. Hence we adopted electron beam lithography to realize this 

structure. Scanning electron microscope image of the coupled microdisks embedded with CdSe 

quantum dots is shown in Figure 13. 
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Figure 13: Scanning electron microscope image of coupled microdisks fabricated using electron 
beam lithography. The disks are 40 ^m in diameter and are separated by 300 nm 

Here the separation between the disks was varied from 250 to 350 nm to tune the coupling 

between them. These coupled microdisks were characterized for their emission properties. 

Shown in Figure 14 is the image of emission observed using a CCD camera from a three coupled 

microdisk structure along with the optical microscope image of the sample under investigation. 

Figure 14: Optical Microscope Image of The Coupled Microdisk Structure Along with the 
Emission from the Three Coupled Microdisk Sample 
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We also performed spectral measurements on the coupled microdisks. The experimental set up 

used to characterize these microdisks is shown in Figure 15. 

6 7      S 

Figure 15: The experimental setup. 1 - laser, 2 - mirror, 3 - microscope, 4 - sample, 5 - 3D 
stage with rotation, 6 - f= 25 mm lens, 7 - f= 15 mm lens, 8 - filter, 9 - optical fiber, 10 - HR 

4000 CG-UV-NIR spectrometer, 11 -computer. 

The spectral property of the coupled microdisks under optical excitation using an Argon- 

ion laser was studied using a high resolution spectrometer. Optical spectrum observed from a 

two coupled microdisk sample is shown in Figure 16. Two clear peaks are observed above the 

spontaneous emission spectrum. While we have not yet confirmed if these peaks are indeed 

lasing peaks, the significantly narrower linewidths indicate that there is gain occurring in these 

systems. In addition, bright emission observed from these disks further substantiates our claims. 
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Figure 16: Emission from a Two Coupled Microdisk Structure Showing Two Significantly Narrow 
Peaks 

Summary: We have successfully demonstrated coupled microdisks using colloidal quantum dot 

composites. These disks have demonstrated excellent spectral properties and have shown 

spectrally selective emission. Outstanding issues to be addressed include demonstration of 

optical control of bistable emission, integration of passive waveguides to these active disks, and 

short operational lifetime of these active microdisks. 

4.0      CONCLUSIONS AND RECOMMENDATIONS 

Under the Phase I grant, the Hybrid Photonics + Queens College team have successfully 

performed feasibility study on realizing bistable optical devices using novel physical 

mechanisms. Specific tasks accomplished include: 

• Developed the theory of bistable lasing in a system consisting of a single resonator coupled 

to waveguides. 

• Developed software that predicts the lasing modes in such systems 

• Successfully fabricated microring resonator side coupled to active waveguides 

• Successfully integrated colloidal quantum dot based active waveguide with a passive 

waveguide. 

• Developed theoretical model and necessary computer codes for simulating properties of 

normal modes of coupled micridisk structures. The obtained results are crucial for further 

modeling of bistable lasing from these structures. 
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•    Fabricated coupled microdisk structures and demonstrated spectrally selective narrowband 

multiwavelength emission. 

Recommendations for future work: 

Based on our preliminary results of Phase I, the coupled active microdisk resonator 

system looks more promising than the ring resonator system to obtain bistable lasing. Theoretical 

simulations have clearly indicated the possibility to obtain bistable lasing in the former system. 

Furthermore, experimentally we have observed narrow spectral emission from these coupled 

microdisk structures. Both theory and experiment favor the former system for realizing 

In future work, we will use the coupled microdisk resonator system to realize the all- 

optical flip FF. The choice of this architecture for realizing the FF is based on recent theoretical 

and experimental results we have obtained. The ring-resonator based structure was considered as 

a quick first step in realizing a principally new type of bistability providing spectral diversity, but 

the progress in this direction was hindered by unanticipated difficulties such as low light 

intensities in the passive waveguides. Nevertheless, as the main idea of this device does not 

depend on specific [ring-resonator] architecture, we have found recently that the device is 

realized easier by microdisk structures. Thus we will continue pursuing an all-optical FF based 

on the idea of the resonance coupling of active waveguides by a microdisk resonator. It is 

important to point out that the study of the waveguide coupled single-disk structure is, by any 

means, a necessary intermediate step toward realizing coupled-disk structures. Thus, while the 

main focus of our future work will be on coupled-disk based optical flip-flops, we anticipate 

realizing the principally new type of single-disk FF en route toward the main goal. The proposed 

modifications in our future efforts reflect realization that the development of a double-disk based 

FFs has lesser risks as well as guarantees excellent chances of its successful realization. 

REFERENCES 

1. Sargent III, M., Scully, M. O., Lamb, Jr., W. E. Laser Physics, Westeview Press, 1974, p. 96 

-113 

2. Borselli, M., Johnson, T. J., Painter, O., "Beyond the Rayleigh scattering limit in high-Q 

silicon micordisks: theory and experiment", Optics Express, 13, 5, February 2005, pp. 1515 - 

1530 

22 



Hybrid Photonics, LLC Topic Number: AF08- T024 Proposal #: F08A-024-0293 

3. Tureci, H. E., Ge, L., Rotter, S. Stone, A. D., "Ab initio self-consistent laser theory and 

random lasers," Nonlinearity, 22, December 2008 pp. Cl - C18. 

4. Ching, E. S. C, Leung, P. T. Maassen van den Brink, A., Suen, W. M., Tong, S. S., Young, 

K.., Quasinormal-mode expansion for waves in open systems. Rev. Mod. Phys., 70, 4, 

October 1998, pp. 1545-1554. 

5. Boriskina S. V., Spectrally engineering photonic molecules as optical sensors with enhanced 

sensitivity: a proposal and numerical analysisl, J. Opt. Soc. Am. B, 23, 8, August 2006, pp. 

1565- 1573. 

23 



APPENDIX A 

CALCULATIONS OF NORMAL AND SCATTERING RESONANCES FOR INDIVIDUAL AND 
COUPLED DISKS 

Scattering resonances: 

nO = 0; nd = 0; (* to make global, do not change it *) 

DiskTE[mmin_, mmax_, mpoints_, kmin_, kmax_, kpoints_,levels2count_] := 

Module[(out - Table[{}, {6}], xl, al, j, ReK, ImK, glmK, m, Nstep, startTime, 

endTime, g, levelsO = levels2count, countLevels, R= SetPrecision[R, myPrec]}, 

Off[General::unfl]; 

If[levels2count = -1, levelsO = 10A5;]; 

xl = SetPrecision [Range [kmin, kmax, (kmax - kmin) / kpoints] , myPrec] ; 

startTime = AbsoluteTime[]; 

If [stepsN i 0, Nstep = deltaN / stepsN, Nstep = {0, 0};] ; 

Do[ (*3*) 

countLevels = 0; 

Print["Working with order=", m, "  ", DateString[] ] ; 

nO = SetPrecision[nlnd[[1]], myPrec]; 

nd = SetPrecision[nlnd[[2]], myPrec]; 

al = fZerolmag[xl, m, R]; 

Do[ (*2*) 

If[countLevels >= levelsO, 

Break[]; 

]; 

If[al[[g]] *al[[g+l]] <0, 

Do[ (*1*) 

If[j == 0, 

nO = SetPrecision[nlnd[[1]], myPrec]; 

nd = SetPrecision[nlnd[[2]], myPrec]; 

Zerolmag = FindRoot[fZerolmag[x, m, R], {x, xl[[g]]}, AccuracyGoal -» 

myGoals , PrecisionGoal -» myGoals / 2 , WorkingPrecision -» myPrec - 1] ; 

ReK = Zerolmag[[1]][[2]]; 

ImK = ReK / 2 * nO * nd * (-BesselJ[m, ReK* nd*R] * 

(BesselJ[m- 1, ReK * nO * R] - BesselJ[m + 1, ReK* nO * R] ) + BesselJ[m, 

ReK * nO * R] * (BesselJ [m - 1, ReK * nd * R] - BesselJ [m + 1, ReK * nd * R])) ; 

A-  1 



glmK = 1 / (ReK*R) * (2 * ReK * (nO - nd) * nd * R * BesselJ [m - 1, ReK * nd *R] * 

(ReK * nO * R * BesselY [m - 1, ReK * nO * R] - 

m * BesselY [m, ReK * nO * R] ) + BesselJ [m, ReK * nd * R ] * 

(ReK * nO * R * (-ReK * nO * nd * R * BesselY [m - 2 , ReK * nO * R] - 2 * (m * nO + nd 

2 * m * nd) * BesselY [m - 1, ReK* nO * R] ) + (4 * mA2 * (nO - nd) + 

ReKA2 *nO * (nO -2 * nd) *nd*RA2) * BesselY[m, ReK * nO *R])) ; 

startRe = ReK; 

startlm = ImK / glmK; 

If [Nstep[[l]] == 0 | | deltaN[[l]] == 0, 

nO = SetPrecision[nInd[[1]], myPrec]; 

< 

nO = SetPrecision[nInd[[1]] + I * j *Nstep[[1]], myPrec];]; 

(•complex part of nO *) 

If [Nstep[ [2] ] == 0 | | deltaN[ [2] ] == 0, 

nd = SetPrecision[nInd[[2]], myPrec]; 

nd = SetPrecision[nInd[[2]] + I * j *Nstep[[2]], myPrec];]; 

(•complex part of nd *) 

startRe = X[[l]]; 

startlm = X[[2]]; 

]; 
value = FindMinimum[scatter[rek, lmk, m, R] , {rek, SetPrecision[startRe, 

myPrec] } , {imk, SetPrecision [startlm, myPrec] } , AccuracyGoal -> myGoals, 

WorkingPrecision -» myPrec, Method -> "PrincipalAxis"] ; 

X= {value[[2]][[l]][[2]], value[[2]][[2]][[2]]}; 

Y = value[[1]]; (* absolute function value *) 

, {j, 0, stepsN}]; (*/l*) 

countLevels + +; 

out[[l]] =Append[out[[l]], X[[l]] *R]; 

out[[2]] = Append[out[[2]], X[[2]] *R] ; 

out[[3]] =Append[out[[3]], Y] ; 

out[[4]] = Append[out[[4]] , m] ; 

out[[5J] = Append[out[[5]], X[[l]] / Abs[X[[2] ] ] ] ; 

out[[6]] = Append[out[[6]], countLevels]; (*number of the level*) 

]; 

A- 2 



, {g, 1, kpoints-1}] ; (*/2*) 

, {m, mmin, mmax, mpoints}]; (*/3*) 

endTime =AbsoluteTime[]; 

Print ["Execution time:", (endTime - startTime) , " seconds"]; 

If[out[[l]] == {}, 

Print["No solutions found, increase max K value or number of K points"];]; 

out (* return array *) 

]; 

fZeroImag[xO_, m0_, R_] := Module [ {kO, kd, m = SetPrecision [mO, myPrec] , x = xO , val) , 

kO = x * nO ; 

kd = x * nd; 

val : = kO * nd * BesselJ[m - 1, kd * R] *BesselY[m, kO * R] +1 / R * BesselJ [m, kd*R] * 

( -kO * R* nd* BesselY[m- 1, kO * R] + m* (nd-nO) * BesselY [m, kO * R] ) ; 

val 

]; 

scatter[RK_, IK_, m0_, R_] :=Module[{kO = SetPrecision [ (RK + I * IK) *n0, myPrec] , 

kd = SetPrecision[(RK + I * IK) * nd, myPrec], val, m = SetPrecision[mO, myPrec]}, 

val := N[nO * HankelHl [m, kO * R] * kd / 2 * (BesselJ[m - 1, kd*R] - BesselJ[m-f 1, kd * R]) 

nd* BesselJ [m, kd * R] * kO / 2 * 

(HankelHl [m - 1, kO * R] - HankelHl [m + 1, kO * R]) , myPrec] ; 

Sqrt[Re[val]A2 + Im[val]A2] 

]; 
(* supplementary functions *) 

myFileName := "scat." <> ToString[nInd[[1]]] <>"(" <> ToString[deltaN[[1]]] <> ")_" <> 

ToString[nInd[[2]]] <> "(" <>ToString[deltaN[[2]]] <>")_" <>ToString[R]; 

plotResults[res_, box_, saveFormat_, useColor_] :=Module[{piStyle, gr, fname, 

t = Table[{}, {4}], styles = Table[{}, {4}], modes, temp, k, color}, 

If [res [ [1 ] ] == { } , Return [ ] ; ] ; 

(*Off[Show::shx];*) (* hide warning for empty graph *) 

plStyle = {PlotRange -» All, PlotMarkers -» "•" , Frame -» True, 

ImageSize -> {400, 300} , LabelStyle -> {FontSize -» 14} , Axes -» False} ; 

styles[[1]] = {plStyle, FrameLabel-* {"Re(kR)", "Mode"}}; 

styles[[2]] = {plStyle, FrameLabel-» {"Re(kR)", "Im(kR)"}}; 

styles[[3]] = {plStyle, FrameLabel-» {"Re(kR)", "Q-factor"}}; 

styles[[4]] = {plStyle, FrameLabel-* {"Re(kR)", "Absolute Value"}}; 

If [! useColor, 
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t[ [1]] = ListPlot[Transpose[{res[[1]], res[[4]]}], styles[[1]]]; 

t[[2]] = ListPlot[Transpose[{res[[1]], res[[2]]}], styles[[2]]]; 

t[[3]] = ListLogPlot[Transpose[{res[[l]], res[[5]]}], styles[[3]]] ; 

t[[4]] = ListLogPlot[Transpose[{res[[l]], res[[3]]}], styles[[4]]]; 

, (*else*) 

modes = Max[res[[6]]]; 

Do[ 

temp = Transpose [Select [Transpose [res] , tt[ [6] ] == k S] ] ; 

color = ColorDataf'VisibleSpectrum"] [380 + (750 - 380) * (k - 1) / modes] ; 

t[[l]] = Show[t[[l]], ListPlot[Transpose[{temp[[l]] , temp[[4]]}] , 

{styles [ [1] ] , PlotStyle -» color}] , PlotRange -» All] ; 

t[ [2]] = Show[t[[2]], ListPlot[Transpose[{temp[[1]]- temp[[2]]}], 

{styles [ [2] ] , PlotStyle -• color}] , PlotRange -> All] ; 

t[ [3]] = Show[t[[3]], ListLogPlot[Transpose[{temp[[1]], temp[[5]]}] , 

{styles[[3]], PlotStyle-• color}], 

PlotRange -» All, FrameTicks -» {Automatic, Automatic}]; 

t[[4]] = Show[t[[4]], ListLogPlot[Transpose[{temp[[1]], temp[[3]]}] , 

{styles [ [4] ] , PlotStyle -» color}] , 

PlotRange -» All, FrameTicks -> {Automatic, Automatic}] ; 

, {k, modes}]; 

]; 
If[box | | StringQ[saveFormat], 

gr=GraphicsGrid[{{t[[l]], t[[2]]}, {t[[3]], t[[4]]}}];, 

gr=GraphicsColumn[{t[[l]], t[[2]], t[[3]], t[[4]]}]; 

]; 
If[StringQ[saveFormat], 

f name = myFileName <> " . " <> saveFormat; 

Print["Saving graphics to " <>fname] ; 

Export[NotebookDirectory[] <>fname, gr] 

(* "Image" is not required and produces strange image file, 

but there is a bug in Mathematica 7 - it can not export ListLogPlot *) 

1; 
Print[gr]; 

]; 

(* saving data to the file *) 

saveData[data_, lim_] :=Module[{k, 1, fname, res, unigueVals, saveData, pos, f}, 
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If [data [ [1] ] == { } , Return [ ] ; ] ; 

(* check same value *) 

uniqueVals = Union [data [ [1] ] , SameTest-» ((N[«l, lim] ==N[«2, lim]) &) ] ; 

If[Length[data[[1]]] * Length[uniqueVals], 

Print["There are the same solutions. Try to perform more accurate calculations 

(starting points).\nThese values for Real part are:"]; 

Print[Commonest[N[data[[l]], 12]]]; 

Print["They will be removed from saved data"]; 

saveData • Table[0, {Length[data]}, {Length[uniqueVals]}] ; 

For [k = 1, k S Length [uniqueVals] , k + +, 

pos = Position[N[data[[1]],lim], N[uniqueVals[[k]],lim]]; 

For[l = 1, 1 S Length [data] ,1++, 

saveDataf[1]][[k]] = data[[1]][[pos[[1]][[1]]]]]; 

]; 

, (*if ... else*) 

saveData = data; 

]. 

res = Transpose[saveData]; 

fname = myFileName <> " . txt" ; 

f = OpenWrite[NotebookDirectory[] <> fname ] ; 

Do[ 

WriteString[f, StringJoin[ 

Riffle[ToString[FortranForm[N[», lim]]] &/@res[[i]], "\t"]] <>"\n"] ; 

, {i, 1, Length[res]}]; 

Close[f]; 

Print["Data saved to ", fname, 

" in the format Re(kR), Im(kR), Abs Value, Mode, Qfactor"]; 

] ; 
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(* main part with the structure parameters *) 

myPrec := 50; (* working precision, should 

be larger than myGoals in approximately two times *) 

myGoals := 16; (* required precision for solution *) 

nlnd := {1, 1.5}; (* nO and nd *) 

R := 60; (* radius *) 
stepsN := 10;  (* number of steps for changing index of refraction *) 

deltaN := {0, 0.00001}; (* change in complex part of the index of refraction *) 

(* calling parameters: m_min, m_max, k_min, k_max, 

k_points, number of levels to find (-1 for 10A5 levels) *) 
results = DiskTE [5, 15, 10 , . 1, 2.1, 250 , 3] ; 

saveData [results, 16]; (* data, number of digits to save into file *) 

plotResults[results, True, "gif", False] (* data, 
2x2 (True) or 1x4 (False) output, Export graphics to "format"("gif","jpg", 

"eps".. check manual for Export supported formats) file (False to disable), 
use different color for each level (True) *) 
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Normal resonances: 

nO = 0; nd = 0; (* to make global, do not change it *) 

DiskModes[kmin_, kmax_, kpoints_, kDmin_, kDmax_, kDpoints_,levels2find_] := 

Module[{R = SetPrecision [R, myPrec] , ReK, ImK, glmK, startTime, endTime, j , gl, g2 , k, xO 

xl, levelsO = levels2find, out = Table[{}, {6}], m= SetPrecision[mode, myPrec], 

countLevels, Nstep, debug = False, myBreak, pts, Zerolmag, al, rek, imk, same}, 

Off[General::unfl]; 

If [levels2find n -1, levelsO = 10 A5;] ; 

xO = SetPrecision [Range [kmin, kmax, (kmax - kmin) / kpoints] , myPrec] ; 

xl = SetPrecision [Range [kDmin, kDmax, (kDmax - kDmin) /kDpoints] , myPrec] ; 

startTime = AbsoluteTime[]; 

If [stepsN # 0, Nstep = deltaN / stepsN, Nstep = {0, 0};] ; 

Do[ (*3*) 

countLevels = 0; 

k = x0[[gl]]; (* value of the continuous K *) 

Print ["Working with k: ", N[k, 6], " " , gl, " out of ", kpoints, " ", DateString [ ] ] ; 

nO = SetPrecision[nlnd[[1]], myPrec]; 

nd = SetPrecision[nlnd[[2]], myPrec]; 

al= fZerolmag[xl, m, k]; 

Do[ (*2*) 

If[countLevels >= levelsO, 

Break[]; 

]; 
If[al[[g2]] *al[[g2 + l]] <0, 

myBreak = False; 

Do[ (*1*) 

If[j ==0, 

nO = SetPrecision[nlnd[[1] ] , myPrec]; 

nd = SetPrecision[nlnd[[2] ] , myPrec]; 

Zerolmag = FindRoot[fZerolmag[x, m, k], {x, xl[[g2]], xl[[g2 + 1] ] } , Method -» 

"Brent" , AccuracyGoal -» myGoals / 2 , WorkingPrecision -• Round [myPrec / 1. 2 ] ] ; 

ReK = ZeroImag[[1]][[2]]; 

ImK = 1 / 2 * nO * nd * (kA2 * BesselJ [m, ReK* nd * R] * 

(BesselJ[m-l, k * nO * R] - BesselJ[m+1 , k * nO * R]) + ReKA2 *BesselJ[m, 

k * nO * R] * (BesselJ [m + 1, ReK * nd * R] - BesselJ [m - 1, ReK * nd * R])) ; 

glmK = l/2/R* (kA2*nO*ndA2*RA2* (BesselJ[m- 1, ReK*nd*R] - 

BesselJ [m + 1, ReK * nd * R]) * BesselY [m - 1, k * nO * R] + 

(-2 *nd* (ReK*n0 + k*m* nd) * R* BesselJ [m - 1, ReK*nd*R] + 2 / ReK* 

(-ReK* (m-1) *m*nO + k*mA2 *nd + ReKA3 * nO * ndA2 * RA2) * 

BesselJ[m, ReK* nd * R]) * BesselY[m, k * nO * R]) ; 
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startRe= ReK; 
startlm = ImK / glmK , 

If [Nstep[[l]] == 0 | | deltaN[[l]] == 0, 

n0 = SetPrecision[nInd[[1]], myPrec]; 

t 

nO = SetPrecision[nInd[[1]] + I * j *Nstep[[1]], myPrec];]; 
(•complex part of nO *) 

If [Nstep[[2]] == 0 | | deltaN[[2]] == 0, 

nd = SetPrecision[nlnd[[2]], myPrec]; 

nd = SetPrecision[nInd[[2]] + I * j * Nstep[[2]], myPrec];]; 
(•complex part of nd *) 

startRe = X[[l]]; 
startlm = X[[2]]; 

]; 
If[debug, 

Print["Starting from:", startRe, " and ", startlm]; 
Print["range ",xl[[g2]], " - " , xl [ [g2 + 1] ] ] ; 

pts = Reap [FindMinimum[ scatter [rek, imk, k, m] , 
{rek, SetPrecision[startRe, myPrec]}, {imk, SetPrecision[startlm, myPrec]}, 
AccuracyGoal -» myGoals, WorkingPrecision -> myPrec, 

Method -» "PrincipalAxis" , StepMonitor :-» Sow[ {rek, imk} ] ] ] [ [2 , 1] ] ; 
Print[value]; 
Print[pts]; 

]; 
value = FindMinimum[scatter[rek, imk, k, m] , 

{rek, SetPrecision[startRe, myPrec]}, {imk, SetPrecision[startlm, myPrec]}, 
AccuracyGoal -» myGoals, WorkingPrecision-> myPrec, Method -» "PrincipalAxis"]; 

X= {value[[2]][[l]][[2]], value [[2]] [[2]][[2]]}; 
Y = value[[1]]; (* absolute function value *) 
If[X[[l]] <kDmin, Print["Point skipped - solution found below the min *„"]; 

myBreak = True; Break[];]; (• break of solution found below the range *) 
, {j, 0, stepsN}]; (*/l*) 

(* check whether these values were found before *) 
same = Length [Select [N [Transpose [out] , 10], («[[1]] ==N[X[[1]] *R, 10] && 

»[[2]] ==N[X[[2]] *R, 10] &&«[[4]] ==N[k*R, 10]) S] ] ; 
If[same == 0, countLevels+ +, Print["Solution found before"]]; 

If [! myBreak && same == 0, 
out[[1]] = Append[out[[1] ] , X[[1]] * R] ; 

out[[2]] =Append[out[[2]], X[[2]] * R] ; 
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out[[3]] = Append[out[[3]], Y] ; 
out[[4]] = Append[out[[4]], k*R] ; 

out[[5]] =Append[out[[5]] , X[[l]] / Abs[X[[2]]]]; 
out[[6]] =Append[out[[6]], countLevels]; (*number of the level*) 

]; 

]; 
, {g2, 1, kDpoints}]; (*/2*) 

, {gl, 1, kpoints}]; (*/3*) 
endTime = AbsoluteTime[]; 

Print ["Execution time:", (endTime - startTime) , " seconds"] ; 

If[out[[l]] == {}, 
Print["No solutions found, increase max K value or number of K points"];]; 

out (* return array *) 

]; 
fZeroImag[xO_, m_, k_] :=Module[{val, x=xO, R=SetPrecision[R, myPrec]}, 

val : = SetPrecision[-xA2 * nO * nd * BesselJ [m -1, x * nd * R] * BesselY [m, k * nO * R] + 
BesselJ [m, x * nd * R] * (k*2*n0* nd * BesselY [m- 1, k * nO * R] + 

m/R* (x*nO-k* nd) * BesselY [m, k * nO *R]) , myPrec] ; 

val 

]; 
scatter[RK_, IK_, k_, m_] : = 

Module[{x = SetPrecision[(RK+ I * IK) , myPrec], val, R = SetPrecision[R, myPrec]}, 
val : = SetPrecision [nO * x * HankelHl [m, k * nO * R] *l/2*x*nd* 

(BesselJ [m - 1, x*nd*R] - BesselJ [m+1, x * nd * R]) - nd * k * BesselJ [m, x * nd * R] * 
l/2*k*n0* (HankelHl [m - 1, k * nO * R] - HankelHl [m + 1, k * nO * R]) , myPrec] ; 

Sqrt[Re[val] A2 + Im[val] A2] 

]; 
(* supplementary functions *) 

myFileName := "eigen. " <> ToString[nInd[ [1] ] ] <> 
" (" <>ToString[deltaN[[l]]] <> ")_" <> ToString[nInd[[2]]] <>"(" <> 

ToString[deltaN[[2]]] <>")_" <>ToString[R] <>"-M" <> ToString[mode]; 

plotResults[res_, box_, saveFormat_, useColor_] :=Module[{piStyle, gr, 

fname, t = Table[{}, {4}], styles = Table[{}, {4}] , modes, temp, k, color) , 

If[res[[l]] == {}, Return[] ; ] ; 
(*0ff[Show::shx];*) (* hide warning for empty graph *) 
plStyle = {PlotRange -» All, PlotMarkers -» "•" , Frame -» True, 

ImageSize -> {400, 300} , LabelStyle -> {FontSize -> 14} , Axes -> False} ; 
styles[[1]] = {plStyle, FrameLabel-» {"kR", "Re(kmR)"}}; 
styles[[2]] = {plStyle, FrameLabel -» {"kR", "Im(kmR)"}}; 
styles[[3]] = {plStyle, FrameLabel -» {"kR", "Q-factor"}}; 
styles[[4]] = {plStyle, FrameLabel -> {"kR", "Absolute Value"}}; 
If[! useColor, 
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t[[l]] = ListPlot[Transpose[{res[[4]], res[[l]]}], styles[[1]]] ; 
t[ [2]] = ListPlot[Transpose[{res[[4]], res[[2]]}], styles[[2]]]; 

t[ [3]] = ListLogPlot[Transpose[{res[[4]], res[[5]]}], styles[[3]]]; 

t[ [4]] = ListLogPlot[Transpose[{res[[4]], res[[3] ] }], styles[[4]]]; 

, (*else*) 
modes = Max[res[[6]] ] ; 

Do[ 

temp = Transpose [Select [Transpose [res] , tt[ [6] ] ski]]; 
color = ColorData["VisibleSpectrum"] [380 + (750 - 380) * (k- 1) /modes] ; 
t[ [1]] = Show[t[[1]], ListPlot[Transpose[{temp[[4]], temp[[1]]}] , 

{styles [ [1] ] , PlotStyle -» color} ] , PlotRange -» All] ; 

t[[2]] = Show[t[[2]], ListPlot[Transpose[{temp[[4]]- temp[[2]]}] , 

{styles [ [2] ] , PlotStyle -» color}] , PlotRange -» All] ; 

t[[3]] = Show[t[[3]], ListLogPlot[Transpose[{temp[[4]], temp[[5]]}] , 
{styles[[3]], PlotStyle-»color}], 

PlotRange -» All, FrameTicks -» {Automatic, Automatic}]; 
t[[4]] = Show[t[[4]], ListLogPlot[Transpose[{temp[[4]], temp[[3]]}], 

{styles[[4]], PlotStyle-» color}] , 
PlotRange -» All, FrameTicks -> {Automatic, Automatic}] ; 

, {k, modes}]; 

]; 
If[box | | StringQ[saveFormat], 
gr=GraphicsGrid[{{t[[l]], t[[2]]}, {t[[3]], t[[4]]}}];, 

gr=GraphicsColumn[{t[[l]], t[[2]], t[[3]], t[[4]]}]; 

]; 
If[StringQ[saveFormat], 
fname = myFileName <>"."<> saveFormat; 

Print["Saving graphics to "<>fname]; 
Export[NotebookDirectory[] <>fname, gr] 

(* "Image" is not required and produces strange image file, 
but there is a bug in Mathematica 7 - it can not export ListLogPlot *) 

]; 
Print[gr]; 

]; 
(* saving data to the file *) 

saveCata [data_, lim_] := Module [{f, k, 1, fname, res, uniqueVals, saveData, pos}, 
If[data[[l]] == {}, Return[];]; 
(* check same value *) 

uniqueVals = Union [data [ [1] ] , SameTest -» ((N[«l, lim] ==N[tt2, lim]) fi) ] ; 
If [Length [data [ [1] ] ] ?! Length [uniqueVals] , 

Print["There are dublicated solutions. Try to perform more accurate calculations 
(starting points).\nThese values for Real part are:"]; 
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Print[Commonest[N[data[[l]],12]]]; 

Print["They will be removed from saved data"]; 

saveData = Table[0, {Length[data]}, {Length[uniqueVals]}]; 

For[k = 1, k s Length [uniqueVals] , k++, 

pos = Position[N[data[[1]], lim] , N[uniqueVals[[k]], lim]]; 

For[l = 1, 1 t Length [data] ,1 + +, 

saveData[[1]] [ [k] ] = data[[1]][[pos[[1]][[1]]]]]; 

]; 
, (*if ... else*) 

saveData • data; 

]; 
(*res=Transpose[saveData];*) 

res = SortBy[Transpose[saveData] , «[6] &] ;  (* sort by number 

of the level to manually select required levels from saved data *) 

f name = myFileName <> " . txt" ; 

f = OpenWrite [NotebookDirectory [ ] <> fname ] ; 

Do[ 

WriteStringff, 

StringJoin[Riffle[ToString[FortranForm[N[tt, lim]]] &/©res[[i]], "\t"]] <>"\n"] ; 

, {i, 1, Length[res]}]; 

Close[f]; 

Print["Data saved to ", fname, 

" in the format Re(k m R), Im(k m R), Abs Value, k, Qfactor"]; 

] 

(*  main part with  the  structure parameters   *) 

myPrec :=50;  (*  working precision,   should 

be   larger  than myGoals  in  approximately  two  times   *) 

myGoals := 16;  (*  required precision  for  solution  *) 

nlnd : = {1, 1.5};   (*  nO  and nd  *) 

R := 60;     (*   radius   *) 

stepsN := 15;     (*  number of  steps  for  changing index of  refraction  *) 

deltaN := {0, 0.00001};   (*  change  in complex part of  the  index of  refraction  *) 

mode : = 130;     (*  bessel's  order  *) 

(*  calling parameters:   k_min,   k_max,   k_points,   km_min,   km_max,   km_points, 

number  of  low  levels   starting  from km_min   (set  to  -1   to  show all   levels  within  range)   *) 

results = DiskModes [ 1.1, 2.1, 15,   .7, 2.5, 100, 6] ; 

saveData[results, 16];   (*  data,   number  of  digits  to  save  into  file   *) 
plotResults[results, True,  "gif", False]   (*  data, 
2x2   (True)   or  1x4   (False)   output,   Export graphics   to   "format" 

("gif","jpg","eps"..   check  manual   for Export  supported  formats)   file   (False  to  disable) 
use  different  color  for  each  level   (True)   *) 

Do[ 
mode  : = m; 
Print ["Working with mode ", N[m] , " ", DateString [ ] ] ; 

results = DiskModes [. 01, 1.5, 50 , . 01, 1.5, 50 , 3] ; 

saveData[results, 16]; 

plotResults[results, True, False, False] ; 

, [m, 55, 95, 10}] 

Working with mode 5. Sun 30 Aug 2009 20:14:03 
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Coupled disks: 

nO = 0; nd = 0; (* to make global, do not change it *) 

DiskTE[mVal_, kmin_, kmax_, kpoints_,levels2find_] := 

Module[{out = Table[{}, {7}], k, d, NN, same, levelsO = levels2find, 

klnt, xl, al, j, ReK, ImK, glmK, m, Nstep, startTime, endTime, g, 

countLevels, R =SetPrecision[R, myPrec], oldStart= {{}, {}}}, 

Off[General::unfl]; 

If [levels2find == -1, levelsO = 10A5;]; 

xl = SetPrecision [Range [kmin, kmax, (kmax - kmin) /kpoints] , myPrec] 

startTime = AbsoluteTime[]; 

If [stepsN * 0, Nstep = deltaN / stepsN, Nstep = {0, 0} ;] ; 

m = SetPrecision[mVal, myPrec]; 

d = SetPrecision[dD, myPrec] ; 

NN = SetPrecision[Nval, myPrec]; 

Do[ (*3*) 

countLevels = 0; 

Print["Working with k=", klnt, "  ", DateString[] ] ; 

nO = SetPrecision[nlnd[[1]], myPrec]; 

nd = SetPrecision[nlnd[[2]], myPrec]; 

k = SetPrecision[klnt, myPrec]; 

al • fZeroImag[xl, m, k, R] ; 

Dof (*2*) 

If[countLevels >= levelsO, 

Break[]; 

]; 

lf[al[[g]] *al[[g+l]] <0, 

Do[ (*1*) 

if[j==o, 

nO = SetPrecision[nlnd[[1]], myPrec]; 

nd = SetPrecision[nlnd[[2]], myPrec]; 

Zerolmag = FindRoot[fZeroImag[x, m, k, R] , 

{x, (xl[ [g + 1] ] + xl[ [g] ]) / 2} , AccuracyGoal -» myGoals, 

PrecisionGoal -» myGoals , WorkingPrecision -• myPrec - 1] ; 
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»• 

ReK • ZeroImag[[1]] [ [2]] ; 

ImK = -1 + signEq * 2 * BesselJ[2 * m, d * ReK* nO] * Cos   ; 
Ll+NNJ 

glmK = D| ( (-BesselJ[-l + m, kO * nd * R] +BesselJ[l -fin, kO * nd * R] ) * BesselY[m, 

kO *n0 *R] + BesselJ[m, kO * nd * R] * (BesselY[-l +m, kO * nO * R] - 

BesselY[l + m, kO * nO * R])) / (BesselJ[m, kO * nd * R] * (-BesselJ[ 

-1+m, kO * nO * R] +BesselJ[1+m, kO * nO * R] ) + BesselJ [m, kO * 

nO * R] * (BesselJ[-l +m, kO * nd * R] -BesselJfl + m, kO * nd * R])) + 

signEq* 2 *BesselY[2 *m, d* kO] *Cosf 1 , kol / . kO -» ReK; 
1 1 +NN J    J 

startRe = ReK; 

startlm = - ImK / glmK; 

If [Nstep[[l]] == 0 | | deltaN[ [1]] = 0, 

nO = SetPrecision[nInd[[1]], myPrec]; 

nO = SetPrecision[nlnd[[1]] + I * j *Nstep[[1]], myPrec];]; 

(* complex part of nO *) 

If [Nstep[[2]] ==0J| deltaN[[2]] = 0, 

nd = SetPrecision[nlnd[[2]], myPrec]; 

nd = SetPrecision[nlnd[[2]] + I * j *Nstep[[2]], myPrec];]; 

(* complex part of nd *) 

startRe = X[[l]]; 

startlm = X[[2]]; 

]• 
(•Print[{startRe,startlm}];*) 

value = FindMinimum[scatter[rek, imk, m, k, R], {rek, SetPrecision[startRe, 

myPrec] } , {imk, SetPrecision [startlm, myPrec] } , AccuracyGoal -» myGoals, 

HorkingPrecision -» myPrec, Method -» "PrincipalAxis"]; 

(•Print[value];*) 

X= {value[[2]][[l]][[2]], value [ [2] ] [ [2] ] [ [2] ] } ; 

Y = value[[1]] (* absolute function value *) 
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, {j, 0, stepsN}]; (*/l*) 

(* check whether these values were found before *) 

same = Length[Select[N[Transpose[out], 10] , 

(«[[!]] = N[X[[1]] *R, 10] SS«[[2]] = N[X[[2]] *R, 10] S&»[[7]] == Jclnt) S] ] 

If[same == 0, countLevels + +, Print["Solution found before"]] ; 

out[[l]] = Append[out[[l]], X[[l]] * R] ; 

out[[2]] =Append[out[[2]], X[[2]] *R]; 

out[[3]] = Append[out[[3]], Y] ; 

out[[4]] = Append[out[[4]], m] ; 

out[[5]] = Append[out[[5]], X[[l]] / Abs[X[[2]]]]; 

out[[6]] =Append[out[[6]], countLevels];  (*number of the level*) 

out[[7]] = Append[out[[7]], klnt]; 

]•• 
, {g, 1, kpoints - 1}] (*/2*) 

, {klnt, 1, Nval}]; (*/3*) 

endTime =AbsoluteTime[]; 

Print [ "Execution time:", (endTime - startTime) , " seconds"] ; 

If[out[[l]] == {}, 

Printf'No solutions found, increase max K value or number of K points"];]; 

out (* return array *) 

]•• 
fZeroImag[x_, m_, k_, R_] : = 

Module[{k0, kd, val, NN = SetPrecision[Nval, myPrec], d = SetPrecision[dD, myPrec]}, 

kO = x * nO ; 

kd = x * nd ; 

val = ( (BesselJ[-l +m, kd * R] -BesselJ[l +m, kd * R]) *BesselY[m, kO *R] + 

BesselJ[m, kd * R] * (-BesselY [ - 1 + m, kO * R] + BesselY[1 + m, kO * R] ) ) / 

(BesselJ[m, kd*R] * (BesselJ[-l + m, kO * R] - BesselJfl + m, k0*R]) + 

BesselJ[m, kO * R] * (-BesselJf- 1 + m, kd*R] +BesselJ[l + m, kd*R])) + 

,   kTT   , 
signEq * 2 * BesselY [2 * m, d * kO] * Cos   ; 

L1 + NNJ 

val 

I' 
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scatter [RK_, IK_, mO_, k_, R_] := Module[{kO = SetPrecision[ (RK + I * IK) * nO , myPrec] , 

kd = SetPrecision[(RK+ I * IK) *nd, myPrec], val, m = SetPrecision[mO, myPrec], 

d = SetPrecision[dD, myPrec], NN = SetPrecision[Nval, myPrec]}, 

val = N[ (nO * HankelHl[m, kO * R] * kd / 2 * (BesselJ[m- 1, kd*R] -BesselJ[m+ 1, kd*R]) - 

nd*BesselJ[m, kd * R] * kO / 2 * 

(HankelHl [m - 1, kO * R] - HankelHl [m + 1, kO * R])) / 

(nd* BesselJfm, kd * R] * kO / 2 * (BesselJ[m- 1, kO * R] -BesselJ[m+ 1, kO * R] ) - 

nO * BesselJfm, kO * R] * kd / 2 * (BesselJfm- 1, kd*R] - BesselJ[m+ 1, kd * R])) + 

signEq * 2 * HankelHl [2 * m, kO * d] * Cos [7r * k / (1 + NN) ] , myPrec] ; 

Sqrt[Re[val] *2 + Im[val] A2] 

]; 

(* supplementary functions *) 

myFileName := "scat, general. sign" <> ToString [signEq] <> 

". " <> ToString[nlnd[[l] ] ] <> " (" <>ToString[deltaNf [1] ] ] <> ")_" <> 

ToString[nlnd[ [2]]] <>" (" <> ToString[deltaN[[2]]] <>")_" <>ToString[R]; 

plotResults[res_, box_, saveFormat_, useColor_] :=Module[{piStyle, gr, fname, 

t = Table[{}<  M}] - styles = Table[{}, {4}], modes, temp, k, color}, 

If[res[[l]] == {}, Returnf];]; 

(*Off[Show::shx];*) (* hide warning for empty graph *) 

plStyle = {PlotRange -» All, PlotMarkers -> "•" , Frame -» True, 

ImageSize -» {400, 300} , LabelStyle -> {FontSize -> 14} , Axes -» False} ; 

styles[[1]] = {plStyle, FrameLabel-» {"k", "Re(kR)"}}; 

styles[[2]] = {plStyle, FrameLabel -> {"k", "Im(kR)"}}; 

styles[[3]] = {plStyle, FrameLabel -» {"k", "Q-factor"}}; 

styles[[4]] = {plStyle, FrameLabel-* {"k", "Absolute Value"}}; 

Iff! useColor, 

t[ [1]] = ListPlot[Transpose[{res[[7]], res[[l]]}], styles[[1]]]; 

t[[2]] = ListPlot[Transpose[{res[[7]], res[[2]]}] , styles[[2]]] ; 

t[ [3]] = ListLogPlot[Transpose[{res[[7]], res[[5]]}], styles[[3]]]; 

t[ [4]] = ListLogPlot[Transpose[{res[[7]], res[[3]]}], styles[[4]]]; 

, (*else*) 

modes = Max[res[[6] ] ] ; 

Do[ 

temp = Transpose[Select[Transpose[res], »[[6]] =s k &] ] ; 

color = ColorData["VisibleSpectrum"] [380 + (750-380) * (k-1) /modes]; 

t[[l]] = Show[t[[l]], ListPlot[Transpose[{temp[[7]], temp[[l]]}] , 
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{styles [ [1] ] , PlotStyle -» color}] , PlotRange -» All] ; 

t[[2]] = Show[t[[2]], ListPlot[Transpose[{temp[[7]], temp[[2]]}] , 

{styles [ [2] ] , PlotStyle -» color}] , PlotRange -» All] ; 

t[[3]] = Show[t[[3]], ListLogPlot[Transpose[{temp[[7]], temp[[5]]}] , 

{styles[[3]], PlotStyle -> color}], 

PlotRange -» All, FrameTicks -» {Automatic, Automatic}] ; 

t[[4]] = Show[t[[4]], ListLogPlot[Transpose[{temp[[7]], temp[[3]]}] , 

{styles[[4]], PlotStyle -» color}], 

PlotRange -» All, FrameTicks -» {Automatic, Automatic}]; 

, {k, modes}]; 

J; 
If[box | | StringQ[saveFormat] , 

gr = GraphicsGrid[{{t[[l]], t[[2]]}, {t[[3]] , t[[4]]}}];, 

gr=GraphicsColumn[{t[[l]], t[[2]], t[[3]], t[[4]]}]; 

J; 
If[StringQ[saveFormat], 

fname = myFileName <>"."<> saveFormat ; 

Print["Saving graphics to "<> fname] ; 

Export[NotebookDirectory[] <>fname, gr] 

(* "Image" is not required and produces strange image file, 

but there is a bug in Mathematica 7 - it can not export ListLogPlot *) 

]; 

Print[gr]; 

]; 
(* saving data to the file *) 

saveData[data_, lim_] :=Module[{k, 1, fname, res, uniqueVals, saveData, pos, f}, 

If [data [ [1] ] := { } , Return [ ] ; ] ; 

(* check same value *) 

uniqueVals = Union [data [ [1] ] , SameTest -» ((N[«l, lim] ==N[«2, lim]) S) ] ; 

If[Length[data[[1]]] * Length[uniqueVals], 

Print["There are the same solutions. Try to perform more accurate calculations 

(starting points).\nThese values for Real part are:"]; 

Print[Commonest[N[data[[1]], 12]]]; 

Print["They will be removed from saved data"]; 

saveData = Table[0, {Length[data]}, {Length[uniqueVals]}]; 

For[k = 1, k s Length [uniqueVals] , k + +, 

A-  16 



pos = Position[N[data[[1]], lim] , NfuniqueVals[[k]], lim]]; 

For[l = 1, 1 i Length [data] ,1 + +, 

saveData[[1]][[k]] = data[[1]][[pos[[1]] [[1]]]]]; 

1; 
, (*if ... else*) 

saveData = data; 

]; 
res = Transpose[saveData]; 

f name = myFileName <> " . txt" ; 

f = OpenWrite[NotebookDirectory[] <> fname ] ; 

Do[ 

WriteString[f, StringJoin[ 

Riffle[ToString[FortranForm[N[8,lim]]] S/@res[[i]], "\t"]] <>"\n"] 

, {i, 1, Length[res]}]; 

Close[f]; 

Print["Data saved to ", fname, 

" in the format Re(kR), Im(kR), Abs Value, Mode, Qfactor, k"]; 

]; 

(*  main part with  the  structure parameters   *) 
myPrec : = 50;  (*  working precision,   should 

be larger than myGoals  in approximately two times  *) 
myGoals := 16;  (*   required precision  for  solution  *) 
nlnd := {1, 1.5);   (* nO and nd *) 
R := 60;    (*  radius   *) 
dD := (2 + 0.00001) *R;   (*  distance between disks  *) 
Nval :=2;  (*number of disks*) 
stepsN := 10;     (*  number of  steps  for  changing  index of  refraction  *) 
deltaN := {0, 0.00001};   (*   change  in  complex part of  the  index of  refraction  *) 
signEq := 1;  (*  defines   sign  in  front of  t  in equation  *) 

(*  calling parameters:   m,   k_min,   k_max,   k_points, 
number   of   levels   to   find   (-1   for   10A5   levels)   *) 
results = DiskTE[100, 0.5,  4, 200, 2] ; 
saveData[results, 16];   (*  data,   number  of  digits   to  save  into  file   *) 
plotResults[results, True,   "gif", False]    (*   data, 
2x2   (True)   or  1x4   (False)   output,   Export graphics   to   "format" 

("gif","jpg","eps"..   check manual   for Export  supported  formats)   file   (False  to  disable) 
use  different  color  for  each  level   (True)   *) 
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» *, 

AppendColumn[vector_List, matrix_List] := MapThread[Append, {matrix, vector}]; 

fData = {}; distances = {}; 

Do[ 

dD := dist; 

results = DiskTE[100, 0.1, 4, 50, 1] ; 

fData • Append[fData, results]; 

distances • Append[distances, dist]; 

, {dist, 2.000001*R, 2.1*R, 0.01*R}]; 

fData • AppendColumn[distances, fData]; 

saveData[fData, 16]; 
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