
Final Report

Title: Adaptive Anomaly Detection using Isolation Forest

AFOSR/AOARD Reference Number: FA2386-09-1-4014

AFOSR/AOARD Program Manager: Hiroshi Motoda, Ph.D.

Period of Performance: 2009

Submission Date: 30th December 2009

PI: Kai Ming Ting, Monash University, Gippsland Campus, Churchill, Victoria, Australia. Tel: +613 51226241

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
05 JAN 2010

2. REPORT TYPE
FInal

3. DATES COVERED
 21-01-2009 to 20-01-2010

4. TITLE AND SUBTITLE
Adaptive Anomaly Detection using Isolation Forest

5a. CONTRACT NUMBER
FA23860914014

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Kai Ming Ting

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Gippsland School of Information Technology, Monash
University,Gippsland Campus, Churchill,Victoria 3842,Australia,au,3842

8. PERFORMING ORGANIZATION
REPORT NUMBER
N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AOARD, UNIT 45002, APO, AP, 96337-5002

10. SPONSOR/MONITOR’S ACRONYM(S)
AOARD

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
AOARD-094014

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This project developed an adaptive anomaly detection system based on Isolation Forest, applicable to data
stream which demands single-scan online algorithms with poly-logarithmic time and space complexities.
The proposed system based on Half-Space Tree, an extension of Isolation Forest, is not only capable of
detecting anomalies when the underlying concept changes gradually over time, but also capable of
detecting abrupt changes in the underlying concepts. Half-Space Trees is significantly better than three
existing state-of-the-art distance-based and density-based methods, in terms of detection accuracy, time
complexity and memory requirement.

15. SUBJECT TERMS
Computer Science, Data Mining, Anomaly Detection

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

31

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

(2) Objective

This project aims to develop an adaptive anomaly detection system based on Isolation Forest, applicable to data
stream which demands single-scan online algorithms with poly-logarithmic time and space complexities. The
proposed system is not only capable of detecting anomalies when the underlying concept changes gradually over
time, but also capable of detecting abrupt changes in the underlying concepts.

(3 & 4) Status of effort & Abstract

We have not only successfully achieved the objective of this project, but also uncovered a new ranking measure for
anomaly detection. We have written two papers. The first paper reports the new ranking measure called mass and
investigates its relationship to two commonly used ranking measures: distance and density; and it provides evidence
that the proposed mass-based approach, called Half-Space Trees, is significantly better than three existing state-of-
the-art distance-based and density-based methods, in terms of detection accuracy, time complexity and memory
requirement. We also show that Isolation Forest is also a mass-based approach, uncovering the previously unknown
principle underpinning the method we have reported in 2008. The second paper reports how the proposed mass-
based approach can be adapted to deal with concept change, change detection and model adaptation in the context of
data stream. There is no equivalent system which has all three capabilities that we are aware of in the literature. We
have also identified three types of concept change, and revealed that only one type of change requires model update;
whereas model update for other changes will degrade the detection accuracy. In addition, we have incorporated two
change categories into the proposed method: transient change and permanent change, in order to detect abrupt
changes in the underlying concepts.

(5) Personnel Supported

The grant is used to support a research assistant James Tan Swee Chuan, part-time for a period of 10 months.

(6) Publications

The following papers are submitted for publication as of 30th December 2009:

1. Ting, Tan & Liu. Mass: A new ranking measure for anomaly detection. Submitted to IEEE Transactions on
Knowledge and Data Engineering.

2. Tan, Ting & Liu. Half-Space Trees: Amortised O(1) anomaly detection algorithm in evolving data stream.
To be submitted to the Sixteenth ACM SIGKDD international conference on Knowledge discovery and
data mining, Washington D.C. July 25-28 2010 (submission due 2 Feb 2010.)

(10) Archival Documentation

Attached are the two papers listed in item (6) above.

Other items are not applicable.

Gippsland School of Information Technology

Technical Report

Title: Mass: A New Ranking Measure for Anomaly
Detection

Authors: Kai Ming Ting, Swee Chuan Tan, Fei Tony Liu

TR No.: TR2009/1

Department: Gippsland School of Information Technology

Faculty: Information Technology

1

Mass: A New Ranking Measure for
Anomaly Detection

Kai Ming Ting, James Tan Swee Chuan and Fei Tony Liu
Gippsland School of Information Technology,

Monash University, Australia.
kaiming.ting@infotech.monash.edu.au

Abstract—Ranking measure is of prime importance in anomaly detection tasks because it is required to rank the instances from the
most anomalous to the most normal. This paper investigates the underlying assumptions and definitions used for ranking in existing
anomaly detection methods; and it has three aims: First, we show evidence that the two commonly used ranking measures—distance
and density—cannot accurately rank clustered anomalies in anomaly detection tasks. We introduce a new measure—mass, which can
accurately rank both scattered and clustered anomalies. Second, we propose a definition of anomaly based on this new measure and
contrast it with the current definitions based on distance and density. We identify the strengths and weaknesses of these definitions, and
demonstrate the advantages of the new definition based on mass. Third, we propose a mass-based approach for anomaly detection
called Half-Space Tree and show that it performs favourably to three existing state-of-the-art distance-based and density-based anomaly
detection methods in term of detection accuracy, runtime and memory space requirements.

Index Terms—Anomaly Detection, Ranking Measures, Mass, Scattered Anomalies, Clustered Anomalies.

✦

1 INTRODUCTION

Anomalies are data patterns that have different data charac-
teristics from normal instances. The detection of anomalies
often provides critical actionable information and brings about
significant impact on the task at hand. For example, anomalies
in credit card transactions could signify a fraudulent use of
credit cards [2]. Abnormal patient condition could indicate a
disease outbreak in a specific area [34]. An unusual computer
network traffic pattern could signify an unauthorised access
[15]. These applications demand anomaly detectors with high
detection rates and fast execution.

Anomaly detection usually involves ranking a set of in-
stances, from the most anomalous instances at the top of the
ranked list to the most normal instances at the bottom. Since
this is a ranking problem, the ranking measure is of prime
importance to the success of the method. Distance and density
are the two most commonly used basic ranking measures,
and we refer to anomaly detection methods based on them as
distance-based and density-based methods, respectively, in this
paper. There are many variants of these two basic measures
such as Local Outlier Factor [9]—a density measure based
on k-nearest neighbours; and multi-granularity deviation factor
[26]—a density measure based on regions with a fixed radius.

This paper investigates the underlying assumptions and def-
initions for ranking anomalies which underpin many existing
anomaly detection approaches. We show that these assump-
tions and definitions are only good for detecting scattered
anomalies but fail to detect clustered anomalies—a problem
known as ‘masking effect’ [25] in statistics literature [7, 27].
These anomalies group in cluster(s) and are difficult to detect
because of their close promixity to each other, thus have high
density—the exact opposite to the assumptions that anomalies

are far from normal instances and have low density in order for
distance-based and density-based methods to function well.

It is important to incorporate the ability to detect clus-
tered anomalies in detectors. The inability to detect clustered
anomalies by existing methods are a ‘loophole’ that can be
exploited by fraudsters or organsisms that have evolved to
evade detection. For example, credit card fraudsters might
incur a short burst of abnormal transactions that masquerate
their abnormality with their high occurence. This has high
financial cost if they are not detected quickly. Similarly, viruses
might mutate to exploit this weakness that can cause many
lives if they evade detection for a prolong period of time.

This paper has three aims. First, we propose a new ba-
sic ranking measure called mass for anomaly detection and
demonstrate that it has different properties from the two com-
monly used ranking measures: distance and density. Second,
we propose a definition of anomaly based on this new measure
and contrast it with the current definitions based on distance
and density. We identify the strengths and weaknesses of these
definitions, and demonstrate the advantages of the new defini-
tion based on mass. Third, we devise a mass-based approach
for anomaly detection, and we show evidence that mass is
indeed a better ranking measure than distance and density1;
and the mass-based approach has a better performance in terms
of detection accuracy, runtime and memory space requirements
than existing state-of-the-art distance-based anomaly detectors
such as ORCA [8] and one-class SVM [31], and density-based
anomaly detector LOF [9].

The rest of the paper is organised as follows. Section 2
introduces the proposed new ranking measure: mass. Section

1. Note that a dichotomy into anomalies and normal points is a special case
of ranking, which is used by some anomaly detectors.

2

3 describes various definitions used for ranking anomalies and
contrasts the difference with the definition based on mass.
Section 4 introduces the mass-based approach to anomaly
detection. Section 5 provides an empirical evaluation, and Sec-
tion 6 stipulates a comparison of time and space complexities
among anomaly detection methods. Section 7 describes the
connection of the proposed mass-based approach to a closely
related method. We describe the related work and conclusions
in the last two sections.

2 A NEW RANKING MEASURE: MASS

Distance and density are the two basic ranking measures
commonly used to rank instances for anomaly detection. Dis-
tance is usually defined based on some distance or similarity
metric; the typical distance metrics are Euclidean, Lp-norm or
Mahalanobis distance measures.

The common definition for density is the number of data
point per unit space2. The other possible definition for density
is based on a kernel function i.e., kernel density estimation in
which a kernel function is placed in each point and the overall
density is the sum of the kernel function applied to all points.
In other words, density is defined against some standard (unit
space or kernel function).
Definition 1 : Data mass or mass, the new ranking measure
we proposed, is defined as the number of points in a region;
and two groups of data can have the same mass regardless
of the characteristics of the regions (e.g., density, shape and
size).

Let X a feature space and Ri a subspace, Ri ⊂ X . The
mass in subspace Ri is the total number of instances in that
subspace, denoted as m(Ri); The basis function for mass
distribution is a rectangular function which is defined as

f(x) =

{

m(Ri) if x ∈ Ri

0 otherwise

A mass distribution based on f(x) has the following prop-
erties:

• The height of the distribution indicates the mass of the
data in their local region rather than denseness.

• Any two uni-modal density distributions which possess
the same data mass will have the same height in their
mass distributions, regardless of their densities.

All the above-mentioned properties3 are illustrated using a
simple example in Figure 1, in contrast to density distribution
estimated using histogram.

A ‘smoothed’ mass distribution can be obtained by using
an ensemble method from the rectangular basis function f(x),
without explicitly defining a region.
Let {Rx

1
, Rx

2
, . . . , Rx

t } the set of t subspaces which all cover
point x, i.e.,

⋂

iR
x
i ⊇ {x}; and each subspace Rx

i is a random
‘variant’ of each other.

2. A variant is defined as number of points per unit distance when k-nearest
neighbours are used to measure density—a ratio of k and the sum of distances
to each of the k nearest neighbours.

3. It is interesting to note that there is only one way to compute mass, given
a region; but there are many ways to compute density or distance, depending
on the metric used.

C1

C2

C1 C2

Fig. 1. Mass versus density: Two regions having the
same number of instances (1000 data points each), with
different densities (sd=0.125 and 1.0, respectively), have
the same mass shown as rectangular functions of the
same height. The histograms depict the differing densities
of the two regions.

x

R1

R2

R3

Fig. 2. An example of three subspaces covering x.

Definition 2 : The mass distribution, mass(x), estimates
mass at point x by a simple averaging over all masses in all
subspaces Rx

i covering x as follows.

mass(x) =

∑t

i=1
m(Rx

i)

t
(1)

An example of Rx
i is shown in Figure 2. Note that this

mass definition applies to any data distribution because no
assumption of data distribution in Rx

i is made. In practice, Rx
i

can be generated randomly without explicitly searching for
one. We will show such a mass-based approach in Section 4.

Note that the resultant mass distribution derived from
mass(x) is a ‘smoothed’ distribution, which stipulates a
gradation of the mass between adjacent points. Examples of
the ‘smoothed’ distribution will be showed in the next section
(in Figure 3).
mass(x) can then be used to rank instances according to

their masses—instances with low mass are more likely to be
anomalies than instances with high mass. In this paper, we
show that the ranking provided by mass is good for detecting
both scattered anomalies and clustered anomalies; but the
ranking provided by either density or distance is only good
for scattered anomalies. These will be discussed in Section
3.2. We will first discuss how ranking measures are used for
anomaly detection in the next section.

3 RANKING FOR ANOMALY DETECTION

3.1 Definitions of anomalies

There are a number of accepted definitions for anomalies.
Some prevalent definitions are:

‘An observation which deviates so much from other obser-
vations as to arouse suspicion that they were generated by a
different mechanism’ [18].

3

‘An observation which appears to be inconsistent with the
remainder of that set of data’ [7].

The key property of anomalies highlighted in these and
other definitions is: ‘different’, and the implicit assumption
is that anomalies are ‘few’ with respect to the normal points.
We will do our analysis in terms of ‘few’ and ‘different’ in
the following.

We focus on definitions used in the distance-based and
density-based anomaly detection approaches because they are
the prevalent approaches. The definitions commonly used are:

(i) D-Distance Anomalies are data points which have fewer
than p neighboring points within a distance D [22].

(ii) kth NN Distance Anomalies are the top-ranked in-
stances whose distance to the kth nearest neighbor is greatest
[29].

(iii) Average kNN Distance Anomalies are the top-ranked
instances whose average distance to the k nearest neighbors
is greatest [4].

(iv) Density-based Anomalies are instances which are in
regions of low density or low local/relative density.

Definition (i) uses distance D to differentiate one region
from another and uses the number of instances within each
region to define ‘few’. This is very restrictive because the
regions are constrained to a specific shape defined by the
distance metric employed, and D is fixed globally. Definitions
(ii) and (iii) measure ‘different’ in terms of distance, and k
controls the number of instances to be considered as ‘few’—
an (anomaly) region with instances more than k will not be
considered as anomalies using this definition. Definition (iv)
correctly refers to ‘few’ when low density regions have small
number of instances; but this definition assigns low density
regions which have many instances as anomaly regions, and
high density regions which have few instances as normal
regions—both of which are counter-intuitive. These definitions
are good for detecting scattered anomalies (regions with one
or two instances thus low density which are far from normal
instances) but fail to detect clustered anomalies (regions with
few instances but high density.)

In contrast, the definition based on data mass is
(v) ‘Mass-based Anomalies are instances which are in

regions of low mass, regardless of density, shape and size of
the regions.’

‘Low mass’ refers specifically to ‘few’, and ‘mass’ by its
definition refers to a region that is ‘different’ from other
regions.

We argue that the definition of mass-based anomalies can
better capsulate the true nature of anomalies than either
distance-based or density-based definitions.

3.2 Scattered and clustered anomalies

Here we examine the ability of the five definitions mentioned
in the last section to rank scattered anomalies as well as
clustered anomalies. We first contrast the density-based and
mass-based definitions; and then show that the distance-based
definition has the same ‘deficiency’ as the density-based
definition.

Let region R(m, d) has m instances and density d, calcu-
lated by a density estimation method. Assume that we have

a set of t regions R1, R2, R3, ..., Rt. Consider the following
four scenarios:

(a) The regions have the same d but increasing masses.
(b) The regions range from dense small regions to

sparse large regions: R1(m, td), R2(2m, (t−1)d), R3(3m, (t−
2)d),, Rt(tm, d).

(c) The regions range from sparse small regions to dense
large regions: R1(m, d), R2(2m, (2d), R3(3m, 3d),,
Rn(tm, td).

(d) The regions have the same m but increasing densities.
The series of masses and densities for each scenario is

shown in Table 1.

Scenario Mass Density
(a) m, 2m, 3m, ..., tm d, d, d, ..., d
(b) m, 2m, 3m, ..., tm td, (t− 1)d, (t− 2)d, ..., d
(c) m, 2m, 3m, ..., tm d, 2d, 3d, ..., td
(d) m,m,m, ...,m d, 2d, 3d, ..., td

TABLE 1
Series of masses and densities of t regions in four

different scenarios: (a), (b), (c), (d).

We highlight the following observations:

• The definition for density-based anomalies ranks all re-
gions equally in scenario (a), and ranks the sparse large
regions in front of the dense small regions in scenario
(b). Both of the above rankings are counter-intuitive—
small regions (because of being ‘few’) are obviously the
more likely candidates of anomalies than large regions.
Scenario (b) is the case in which there are clustered
anomalies which might be denser than the normal regions.

• The definition for mass-based anomalies ranks small
regions before the large regions in both scenarios (a) and
(b), regardless of the densities.

• Scenario (c) is an easy case for all measures for which the
rankings are identical and in the right order. When m = 1,
this scenario is the one which has scattered anomalies and
dense normal regions.

• In scenario (d), it is arguable that the regions should be
ranked at all in terms of anomaly ranking: for large m,
they are all unlikely to be anomalies; for small m, say 1 or
2 instances, the density estimation is inaccurate, rendering
the ranking meaningless.

Figure 3 shows an example in which the anomaly defini-
tions based on distance and density (defined using k nearest
neighbours) will fail to rank the dense small region (having 20
points denoted as C1) ahead of the sparse large region (having
1000 points denoted as C2); whereas the mass measure ranks
them correctly. The ‘smoothed’ mass distribution is obtained
from an ensemble of 50 mass-based models called HS*-Trees.
This mass-based ensemble approach is to be introduced in the
next section.

4 MASS-BASED APPROACH

This section has three aims. First, we propose a practical
anomaly detector which provides an effective ranking using
mass. Second, we compare the three ranking measures using

4

−10 −5 0 5 10

0
5

10
15

20
25

m
as

s

0
80

0
16

00
24

00
32

00
40

00
D

en
si

ty
 (

kn
n)

x xxxx xxxxx x xx xx xx xx xxxx x x xxx xx x x xxxx xxx xx xx xxxxx x xxxx xx xx xx xxxx xx xxxx xxx xxx xxxxxx xx xxxx xx xx xx xxx xxx xx xxxxx xx xx x xx xx xxx xx xx xxx xxxx x xxx x x xxx xx xxx xxx xxxx xxxx xxxxxx x xxx x xxx xx xx xxxxxxx xxx x xxxxx x xx xx xx x xx xxxx xx xx xxx xx xxxxx xx xx xxx xxx xxx xxx xx xxxx xx xxx xxxxx xxxx xxx x x xx xxxx x xxxx xxxx x xxxx xxxx xx xx xxx xxx xxxxxx x xx xx xxxx xxx x xxx x xx xxxx xx x xx x xx xx xxx xx xxxx xxxx xxx xx xx xxxx xxx xx xx xx xxxxxx xx xxxx x xx x xx xx xxxx xx x xx xxxx xx x xxxx xxx x xx xxx x x xx xx x xxxxx xx xx xxxxx xxx xxxxx xxx xx xx x x xx xx xxxx xxxx xxxx xxxx x xxx xxxx xxx xx xxxx xxx xx xx x xxxxx xxx xx xx xxx xxx xx xx xxx xxxx x xxx xx x xxx x xx xxxxx xx xx x xxx xx x x x xx xx xxx xx xx xxx xxx xx xxx xxx xx xx x xx x xx xxxx xx xxxxx xxxx xxx xx xxx xx xx xxxxxx xx xx xx xxx xx xxx x xx xx xxx xxx x xxxx xx xxx xxxx xxx x xxx xxx xx xx xx x xx xxxx xxx x xxxx xxx xx xx xx xxx xx xx xx xx xxx xxxx x xx x xx x xxxxx x xx xxxxx xx xxxxx xxx x xx xx xxxx xxx xx xx xxx xxx x xxx xx xxxxx xxx xx xx x xx x x x xxx xx xx xxxx xxxx xx x xx xx xxx x x xxx xxx x xxxx xx x xxxx xxx xxxx xx xx xxx xxxxx x xxx xx x xxxxxx xx xxxx xx xxxx x xxx xx x xxx xxx x x xxxx xx xx xx xx xx x xxxxx xxxxx xx xxx x x xx x xxxxxx xx x xx xx xxx xx xxxx xx xxxx xxx xx x xxx xx xxxxx xxx x xxxx xx xx x xxx xxx xxxxxxxxxxxxxxxxxxxxxx
C1

C2

HS*−Tree (ψψ=256) Density (knn)

(a)

−10 −5 0 5 10

0
5

10
15

20
25

m
as

s

0
0.

1
0.

2
0.

3
0.

4
0.

5

kth
nn

 D
is

ta
nc

e

x xxxx xxxxx x xx xx xx xx xxxx x x xxx xx x x xxxx xxx xx xx xxxxx x xxxx xx xx xx xxxx xx xxxx xxx xxx xxxxxx xx xxxx xx xx xx xxx xxx xx xxxxx xx xx x xx xx xxx xx xx xxx xxxx x xxx x x xxx xx xxx xxx xxxx xxxx xxxxxx x xxx x xxx xx xx xxxxxxx xxx x xxxxx x xx xx xx x xx xxxx xx xx xxx xx xxxxx xx xx xxx xxx xxx xxx xx xxxx xx xxx xxxxx xxxx xxx x x xx xxxx x xxxx xxxx x xxxx xxxx xx xx xxx xxx xxxxxx x xx xx xxxx xxx x xxx x xx xxxx xx x xx x xx xx xxx xx xxxx xxxx xxx xx xx xxxx xxx xx xx xx xxxxxx xx xxxx x xx x xx xx xxxx xx x xx xxxx xx x xxxx xxx x xx xxx x x xx xx x xxxxx xx xx xxxxx xxx xxxxx xxx xx xx x x xx xx xxxx xxxx xxxx xxxx x xxx xxxx xxx xx xxxx xxx xx xx x xxxxx xxx xx xx xxx xxx xx xx xxx xxxx x xxx xx x xxx x xx xxxxx xx xx x xxx xx x x x xx xx xxx xx xx xxx xxx xx xxx xxx xx xx x xx x xx xxxx xx xxxxx xxxx xxx xx xxx xx xx xxxxxx xx xx xx xxx xx xxx x xx xx xxx xxx x xxxx xx xxx xxxx xxx x xxx xxx xx xx xx x xx xxxx xxx x xxxx xxx xx xx xx xxx xx xx xx xx xxx xxxx x xx x xx x xxxxx x xx xxxxx xx xxxxx xxx x xx xx xxxx xxx xx xx xxx xxx x xxx xx xxxxx xxx xx xx x xx x x x xxx xx xx xxxx xxxx xx x xx xx xxx x x xxx xxx x xxxx xx x xxxx xxx xxxx xx xx xxx xxxxx x xxx xx x xxxxxx xx xxxx xx xxxx x xxx xx x xxx xxx x x xxxx xx xx xx xx xx x xxxxx xxxxx xx xxx x x xx x xxxxxx xx x xx xx xxx xx xxxx xx xxxx xxx xx x xxx xx xxxxx xxx x xxxx xx xx x xxx xxx xxxxxxxxxxxxxxxxxxxxxx
+

+

+

++

++++

+

+
+

+

+

+

+

+

++ +++
+

+ +

+
+

+ +
+

+ +++

+

++
+

++ ++ +
++
+

+
+ +

++

+

+

+ ++
++ +++

+
+

+

++++

+

+
+ +++

+
++++

+
+

+ ++++ ++ ++ ++
+++

+++ +
+ +

+++
+ ++ ++

+ +
+

+
+ +++ +
+

+
+

+
+
+ +++

+

+
+

++
+ +

+

+
+

+

+

++

+

+

++ ++++
+

+++ +++
+
++

+ +
+

+
+

+
++

++
+

+
++++++

+
++

+

+ +++++ +

+

+
++

++
+ ++ ++

++

++ +

+

+++
++
++

+++ ++

+

+

+

++
++

+ +++ ++
+++ +

+
+

+
++++

+
+++

+
+

+

+

+

+

++

+

++

+

+

+

+++ +
++

++ ++++ + ++++ +++
+ ++

+
+

+++

+

+

+ ++++
+

+

+ ++ ++ +
+++

+++ +
++

+

+ ++
++++ +

+
+

+

+
++

+
+

+

+
+
+ ++

+
+

++
+
++

+

+++ ++
+

+
++++
+

+
+

++

+

+ ++
+++

+
+

+ ++
+++

+ + +

+

+ +

+

++ ++
+
+ +

+

+
++ ++++

+

+ +
+

++
+

+

+
+

+

++

+
++ + +

+

+ ++

+
++

++ ++ +

+

+++++ ++
+

+++++ ++

+

++ ++ +
+

+

+ +

+

+++
+

+

+++ ++
+
+ +++

+
++

+ +++
+

++

+
++ ++

+

+
+++ +

+
++

+
+++++ +++

+

+
++ ++

+

+++
++
++
++

+

+++

+

+

+

++ +
+

+++ +

+

+

++
++

+
+

+
++ +

+
++ +

+
+

+ +

+

+

++ ++
+

+
+

+
+

+
+

+ +++

+

+

+

++
+

+

+

+
+ ++ +

+

+

+ +
+

++
++++ +

+

+
++

+
++ +++ ++ +++

+
+

++
++++

+

+

++ ++ ++ +
++

+

+ ++
+ +

+

++ +
+

+

+

++ ++++

+ +

+

++

+
+++
+ ++

+

+
+

++ +++++

+
+

+
+ +

+
+ ++++ +

++

+ ++++
+

++ +

+

++ +

+

+++

+

+

+
+ ++

+

+ +++

+

+++ +

+

+
+

+

+ +

+

++

+
+

+ ++
+

+++
+ +
+

++

+

++
+

++ + ++ ++ ++
+
+

+
+
+ ++

+

+
+

+

+
+++ + +++ +

+
++++

+
+

++ ++ +

+

+ +

+

+ + +

+

++ ++ ++ +

+

+
+

++++

+
+ +

+
+

+

+
+

+

+
+

+ ++
+

+
+

+ + +
++

+

+
+ +

+

+
+

+ ++

+
+

+++ ++
+

+ +++ +
+

+
+

+ + +
++ +

+
+

+
++++

+
++

+
+++

+
+

+

++

+

+
++

+ +

+

+
+++

+

+

+

+

+

+

++

+

+

+ +
+ +

+

+

+ +

+

+

+

++++
++++ ++

+
+

+ +
+

+

+ + +++
+

+

++
+ ++ ++ ++

+ ++ +
+++ +

+
+

+++ ++
+

+
+

+ ++
+

+
+ ++

+++
+

+

+

+

+

+
+

+

++
++

+
+++ ++

+
++

++++++++++++++++++++
C1

C2

HS*−Tree (ψψ=256) + kthnn Distance

(b)

Fig. 3. A comparison of different ranking measure dis-
tributions provided by mass, (a) density (kNN) and (b)
kthNN distance using an example of a dense small region
C1 of 20 points (on the left) and a sparse large region C2
of 1000 points (on the right). Each ‘X’ symbol in the last
row denotes one point in one-dimension (x-axis); note that
C1 appears to have only one ‘X’ because the 20 points are
very close to each other, i.e., very dense.

the same anomaly detector and show that mass is effective for
both scattered and clustered anomalies whereas the other two
measures are not. Third, we provide empirical evidence that
the proposed mass-based approach performs better than the
state-of-the-art anomaly detectors which employ density and
distance ranking measures.

4.1 Half-Space Tree

The motivation of the proposed method, Half-Space Tree,
comes from the fact that equal-size subspaces contain the same
mass in a space with uniform mass distribution, regardless of
the shapes of the subspaces. This is shown in Figure 4(a),
where the space enveloped by the data is split into equal-
size half-spaces recursively three times into eight subdivisions.
Note that the shapes of the eight subdivisions may be different
because the splits at the same level may not use the same
attribute.

x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x

(a) Uniform mass distribution.

x x x x x x x x x
x

x x x
x x x x x x x x x x x x

x x x x x
x x x x x

x x x x x x x x x x x x x x x
x x x x

x x

(b) Non-uniform mass distribution.

Fig. 4. Half-space subdivisions of: (a) uniform mass
distribution; and (b) non-uniform mass distribution.

The binary half-space split ensures that every split produces
two equal-size half-spaces, each containing exactly half of
the mass before the split under a uniform mass distribution.
This characteristic enables us to compute the relationship
between any subdivisions easily. For example, the mass in
every subdivision shown in Figure 4(a) is the same, and it is
equivalent to the original mass divided by 23 because three
levels of binary half-space subdivisions have been applied.
A deviation from the uniform mass distribution allows us to
rank the subdivisions based on mass. Figure 4(b) provides
such an example in which a ranking of subdivisions based
on mass provides an order of the degrees of anomaly in each
subdivision.

In the following two subsections, we first provide definitions
for the proposed Half-Space Tree method and its two different
variants; then, we present the Half-Space Tree algorithm.

4.2 Definitions

Definition 3 : Half-Space Tree is a binary tree in which each
internal node makes a half-space split into two equal-space
subdivisions, and each external node terminates further splits.
All nodes record the mass of the training data in their own
subdivisions.

Let R[i] be a half-space subdivision at depth level i with
mass m(R[i]) or short for m[i].
Definition 4 : Equivalence of mass between any two subdivi-
sions is expressed with reference to m[i = 0] at depth level=0
(the root) of a Half-Space Tree.

Under uniform mass distribution, the mass at level i is
related to mass at level 0 as follows:

m[i = 0] = m[i]× 2i,

5

m1 m2 m3 m4 m8m5 m6 m7

(a) HS-Tree.

4

1

1

1

1

(b) HS*-Tree.

Fig. 5. Half-Space Tree: (a) HS-Tree: An HS-Tree for the
data shown in Figure 4a has mi = 4,∀i, which are m[` =
3] (i.e., mass at level 3). (b) HS*-Tree: This is an example
of a special case of HS*-Tree when the size limit is set to
1.

or masses between any subdivisons at levels i and j are related
as follows:

m[i]× 2i = m[j]× 2j .

Under non-uniform mass distribution, the following inequal-
ity establishes an ordering between subdivisions at different
levels:

m[i]× 2i < m[j]× 2j .

We employ the above property to rank instances and define
the anomaly score s based on (augmented) mass for Half-
Space Tree as follows.

s(x) = m[`]× 2`, (2)

where ` is the depth level of an external node with m[`]
instances in which a test instance x falls into.

The anomaly score is based on mass m[`] only if a Half-
Space tree has all external nodes at the same depth level.
The score is based on augmented mass, m[`] × 2`, if the
external nodes have differing depth levels. We describe two
such variants of Half-Space Tree below.

HS-Tree: Ranking based on mass only. The first variant,
HS-Tree, builds a balanced binary tree structure which makes
a half-space split at each internal node and all external nodes
have the same depth. The number of training instances falls
into each external node is recorded and it is used for scoring
in testing. An example of HS-Tree is shown in Figure 5(a).

HS*-Tree: Ranking based on augmented mass. Unlike
HS-Tree, the second variant, HS*-Tree, has differing depth
levels. The anomaly score for HS*-Tree is Equation (2) in
order to account for different depths. We call this score

augmented mass, as the mass is augmented in the calculation
by the level of subdivision in HS*-Tree, as opposed to mass
only in HS-Tree.

In a special case of HS*-Tree, an external node only
terminates when the training data size is 1. Here the anomaly
score reduces to depth level only, i.e., 2` or simply `. In other
words, the depth level becomes a proxy to mass in HS*-
Tree when the size limit is set to 1. An example of HS*-Tree,
when the size limit is set to 1, is shown in Figure 5(b).

Since the two variants have similar performance, we will
focus on HS*-Tree only in the rest of this paper; and use the
terms ‘mass’ and ‘augmented mass’ interchangably, unless a
distinction is required.

Ensemble. The proposed method uses a random subsample
to build one Half-Space Tree, and multiple Half-Space Trees
are constructed from different random subsamples (without
replacement) to form an ensemble.

4.3 Algorithm for HS*-Trees

The proposed method estimates a mass distribution efficiently,
even in a multi-dimensional space, without density or distance
calculations or clustering. The method employs an ensemble to
produce a ‘smoothed’ mass distribution which is an average of
augmented mass from all trees in the ensemble, where every
mass estimate for an instance x from a tree is assuming a
rectangular function over the region in which x resides. This
method requires only a small data sample to produce a mass
distribution that is suitable for anomaly detection.

Training. The first step in generating an HS*-Tree from a
data sample is to establish a working space. An internal node
in HS*-Tree is created by randomly selecting a dimension,
and a half-space split on this dimension is established for this
node. Then, the process is repeated for each branch until a size
limit (or a depth limit) is reached to form an external node.
The training instances at the external node at depth level `
form the mass m[`] to be used during the testing process. The
training procedures for an ensemble of HS*-Trees are shown
in Algorithms 1 and 2.

Algorithm 1 : HS*-Trees(X, t, ψ, S, h)
Inputs: X - input data, t - number of trees, ψ - sub-sampling
size, S - data size limit at external node, h - maximum depth
limit
Output: F - a set of t HS*-Trees

1: SizeLimit← S
2: MaxDepthLimit← h
3: Initialize F
4: for i = 1 to t do
5: X ′ ← sample(X,ψ) {without replacement}
6: (min,min) ← InitialiseWorkingSpace(X ′)
7: F ← F ∪ SingleHS*-Tree(X ′,min,max, 0)
8: end for
9: return F

The aim is to generate many diverse HS*-Trees to form
an ensemble. This is achieved by defining a (random) range
for each dimension, forming a working space which covers

6

Algorithm 2 : SingleHS*-Tree(X,min,max, `)
Inputs: X - input data, min & max - arrays of minimum
and maximum values for all attributes in a working space,
` - current depth level
Output: an HS*-Tree

1: if (|X| ≤ SizeLimit) or (` ≥MaxDepthLimit) then
2: return exNode(Size← |X|)
3: else
4: randomly select an attribute q
5: p← (maxq +minq)/2
6: Xl ← filter(X, q < p)
7: Xr ← filter(X, q ≥ p)
8: {Build two nodes: Left and Right as a result of a split

into two equal-volume half-spaces.}
9: temp← maxq; maxq ← p

10: Left← SingleHS*-Tree(Xl,min,max, `+ 1)
11: maxq ← temp; minq ← p
12: Right← SingleHS*-Tree(Xr,min,max, `+ 1)
13: return inNode(Left,Right, SplitAtt← q,

SplitV alue← p)
14: end if

all the training data of a subsample, before the construction
of a tree. This is done in the step to InitialiseWorkingSpace
in Algorithm 1. For each attribute q, a random split value
(zq) is chosen within the range [Dminq ,Dmaxq], i.e., the
minimum and maximum values of q in the subsample. Then,
attribute q of the working space is defined having the range
[minq , maxq] = [zq − r, zq + r], where r = 2 · max(zq −
Dminq , Dmaxq − zq). The ranges for all dimensions define
the working space to generate a Half-Space Tree. The outer
rectangles in both Figures 4a and 4b are examples of a working
space.

Constructing a single Half-Space Tree is almost identical
to constructing an ordinary decision tree4 [28], except that no
splitting selection criterion is required at each node. The split
point of a node in Half-Space Tree is simply the mid-point in
a randomly selected dimension of the working space defined
above. The detail procedure is described in Algorithm 2.

Note that the entire training procedure does not require
any evaluation criteria at all; and randomisation is invoked
in three steps: the random subsample step, the working space
initialisation step, and the random attribute selection at each
internal node.

Testing. During testing, a test instance x traverses through
each Half-Space Tree from the root to an external node, and
the mass recorded at the external node is used as the anomaly
score s(x) (i.e., Equation (2)) for this instance. This testing is
carried out for all Half-Space Trees in the ensemble, and the
final score is the average score from all trees, equivalent to
Equation (1).

For a set of data set, the scores obtained are used to rank the
instances. From this ranking and the ground truth, we employ
AUC (Area Under receiver operating characteristic Curve) to

4. However, they are for different tasks: Decision trees are for supervised
learning tasks; Half-Sapce trees are for unsupervised learning tasks.

measure the performance of all anomaly detectors reported in
this paper.

Time and Space complexities. Because of no evaluations
or searches at all, an HS*-Tree can be generated very fast. In
addition, a good performing HS*-Tree can be generated using
only a small subsample (size ψ) from a given data set of size n,
where ψ ¿ n. An ensemble of HS*-Trees has training time
complexity O(thψ) which is constant for an ensemble with
fixed subsample size ψ, maximum depth level h and ensemble
size t. It has time complexity O(thn) during testing. The space
complexity for HS*-Trees is O(thψ) and is also a constant for
an ensemble with fixed subsample size, maximum depth level
and ensemble size.

5 EMPIRICAL EVALUATION

Here we conduct experiments to evaluate the proposed ranking
measure: mass, and the proposed mass-based method HS*-
Trees. This section has two aims. First, we compare the
proposed ranking measure, mass, with two commonly used
measures, density and distance, all implemented in HS*-Trees.
This assesses the anomaly detection performance of the three
measures using the same algorithm. Second, we assess the
anomaly detection performance of mass-based method HS*-
Trees in comparison with three state-of-the-art algorithms
which uses density and distance ranking measures.

Experimental settings. The default settings for HS*-Trees
are ψ = 256, S = 20, h = 20 and t = 100 (i.e., an
ensemble of 100 trees is built.) The performance measures are
AUC—Area Under receiver operating characteristics (ROC)
Curve and CPU run time. Although AUC or ROC curve
(or the alternative precision-recall curve) is commonly used
for supervised learning tasks, it can also commonly used for
measuring performance in anomaly detection, e.g., in [13, 16,
21]. AUC ranges from 0 (the worse) to 1 (the best). The results
reported are an average over ten runs; each run is obtained
using a different random seed for all non-deterministic algo-
rithms. They are conducted as single threaded jobs processed
at 2.3GHz in a Linux cluster (www.vpac.org).

When using kth NN distance or kNN density in HS*-Trees
in the first experiment, a test instance traverses from the root
of a tree to the deepest node which has at least k data points
so that a value can be computed using this measure. We use
k = 5 in our experiments.

The second experiment compares HS*-Trees with ORCA
[8], one-class SVM (first mentioned in [31]) and LOF [9].
ORCA employs distance-based definition (ii), stated in sec-
tion 3.1, to rank anomalies; LOF is the state-of-the-art density-
based anomaly detector, designed to detect both local and
global anomalies; it computes local density and defines anoma-
lies as having low local densities (i.e., density-based definition
(iv)); and SVM employs a simplified version of distance
measure.

ORCA is a distance-based method based on k-Nearest
Neighbour (kNN) with a sample randomisation scheme and
a pruning rule to speed up run time. Our default parameters
for ORCA are k = 5 and N = n

8
, where N the number of

anomalies expected. LOF is a density-based method based on

7

Fig. 6. This figure shows an example of Mulcross in two
dimensions. Circles (◦) are normal points in the middle
cluster, and triangles (4) denote anomalies which are
points as two smaller clusters and at the fringe of the
middle cluster.

data size d anomaly class
Http (KDDCUP99) 567497 3 attack (0.4%)

ForestCover 286048 10
class 4 (0.9%)

vs. class 2
Mulcross 262144 4 2 clusters (10%)
Smtp (KDDCUP99) 95156 3 attack (0.03%)
Shuttle 49097 9 classes 2,3,5,6,7 (7%)
Mammography 11183 6 class 1 (2%)
Annthyroid 7200 6 classes 1, 2 (7%)

Satellite 6435 36
3 smallest

classes (32%)
Pima 768 8 pos (35%)
Breastw 683 9 malignant (35%)

Arrhythmia 452 274
classes 03,04,05,07,
08,09,14,15 (15%)

Ionosphere 351 32 bad (36%)
Synthetic 2000 2 anomaly (7.5%)

TABLE 2
Data characteristics of the data sets used in the

experiments, where d is the number of dimensions, and
the percentage in bracket indicates the percentage of

anomalies.

k-nearest neighbour. LOF’s default parameter is k = 10. One-
class SVM is using the Radial Basis Function kernel and its
inverse width parameter is estimated by the method suggested
in [10].

Benchmark data sets are employed in both expriments. We
utilise a synthetic data and an additional of twelve data sets
mostly from the UCI repository [5], which include many real-
world data sets, e.g., two from KDD CUP 99, one Mammog-
raphy data set 5 and one anomaly data generator Mulcross
[30] which generates data with both clustered and scattered
anomalies. An example of Mulcross is shown in Figure 6.

5. The Mammography data set was made available, courtesy of Aleksandar
Lazarevic

Table 2 gives a summary of these datasets. All nominal and
binary attributes are removed to focus on the continuous-
valued attributes.

5.1 Mass versus density and distance

To better understand the robustness of ranking using mass, we
first examine in this section how well the ranking based on
either mass, kth NN distance or kNN density in a scenario in
which the density of an anomaly cluster changes with respect
to the normal cluster. To achieve this, we use a synthetic data
set with two clusters, C1 and C2. The normal cluster is denoted
as C1: it is a bivariate normal distribution with a standard
deviation of 2 and has 1850 instances. The anomaly cluster is
denoted as C2: it has 150 instances and is well separated from
the normal cluster. The standard deviation of C2 decreases
from 2 to 0.2, with a step size of 0.2, yielding a ratio of
standard deviations between C1 and C2 (denoted as Stdev
Ratio), changing from 1 to 10—simulating an increasingly
denser anomaly cluster. Figure 7(a) shows two examples where
Stdev Ratio is equal to 1 and 10.

-0.258069 0.402294 3.086817 -3.994605 3.086817 16.0054
-0.149834 -0.14829 -0.141211 2.386205 -0.141211 22.38621
-0.312296 -0.478834 0.674497 0.823869 0.674497 20.82387
-0.174493 0.342796 -4.796235 -0.627646 -4.796235 19.37235
0.076185 0.163152 -0.786674 0.65958 -0.786674 20.65958
-0.15547 -0.3635 2.4476 -3.21718 2.4476 16.78282

-0.034634 0.191766 -0.475979 0.408952 -0.475979 20.40895
-0.143381 -0.352353 0.230539 -1.165015 0.230539 18.83499
-0.360059 -0.495494 -0.958706 -0.749428 -0.958706 19.25057
-0.070557 0.059494 3.435138 0.746219 3.435138 20.74622
0.176738 -0.188516 0.492173 -0.211774 0.492173 19.78823

-0.0126 -0.046671 -1.259268 -2.315548 -1.259268 17.68445
0.063543 -0.155769 2.290359 0.531994 2.290359 20.53199

-0.318827 -0.316106 0.256385 0.982923 0.256385 20.98292
0.415789 -0.053382 2.194372 1.992095 2.194372 21.9921

-0.187669 -0.121206 0.312011 1.055646 0.312011 21.05565
0.080829 0.121189 -2.092222 0.948995 -2.092222 20.949
0.043314 0.332532 1.635057 -2.745428 1.635057 17.25457

-0.179887 0.079948 -1.866477 -2.78866 -1.866477 17.21134
-0.07807 0.062324 3.875282 -5.241289 3.875282 14.75871
0.129179 -0.184916 -0.277446 0.09475 -0.277446 20.09475

-0.054946 -0.150195 -1.31123 -2.899751 -1.31123 17.10025

Stdev Ratio = 1

Stdev Ratio = 10

C2
C1

C2

C1

(a) Synthetic Data at StdevRatio=1 and StdevRatio=10
[1] DensityRatio5 5 avg auc = 0.22 5 0.22
[1] DensityRatio6 6 avg auc = 0.13 6 0.13
[1] DensityRatio7 7 avg auc = 0.09 7 0.09
[1] DensityRatio8 8 avg auc = 0.09 8 0.09
[1] DensityRatio9 9 avg auc = 0.04 9 0.04
[1] DensityRatio10 10 avg auc = 0.01 10 0.01
> source(EvaluateJForest.R)
[1] HS*Tree using KTH DISTANCE only
[1] Summary of results KthDist
[1] DensityRatio1 1 avg auc = 0.99
[1] DensityRatio2 2 avg auc = 0.90
[1] DensityRatio3 3 avg auc = 0.74
[1] DensityRatio4 4 avg auc = 0.46
[1] DensityRatio5 5 avg auc = 0.36
[1] DensityRatio6 6 avg auc = 0.27
[1] DensityRatio7 7 avg auc = 0.23
[1] DensityRatio8 8 avg auc = 0.18
[1] DensityRatio9 9 avg auc = 0.16
[1] DensityRatio10 10 avg auc = 0.12
> source(EvaluateJForest.R)
[1] HS*Tree using Kai Ming's Level + log(mass) only
[1] Summary of results gmented Mass
[1] DensityRatio1 1 avg auc = 1.00

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

Stdev Ratio

A
U

C

Mass

Kth NNDist

KNNDen

(b) Mass versus kth NN Distance and kNN density using HS*-Trees

Fig. 7. (a) Two examples of the synthetic data used. (b)
A comparison of AUC performance of HS*-Trees using
either mass, kth NN Distance or kNN density.

Figure 7(b) shows that when the standard deviation ratio
changes from 1 to 10, the AUC score for HS*-Trees using
either kth NN distance or kNN density drops significantly.
When the ratio goes beyond 3, kNN density gives an AUC
score below 0.5. Note that an AUC of 0.5 is the expected

8

AUC Time (Seconds)
mass distance density mass distance density

Http 1.00 1.00 0.62 88.35 1849.21 568.33
ForestCover 0.89 0.65 0.67 36.33 156.20 131.48
Mulcross 0.99 #0.00 #0.00 29.22 182.71 109.18
Smtp 0.90 0.85 0.87 17.07 113.59 62.88
Shuttle 1.00 0.98 0.88 9.75 74.59 34.29
Mammography 0.86 0.82 0.83 3.41 11.51 7.00
Annthyroid 0.73 0.73 0.73 2.61 5.64 3.68
Satellite 0.74 0.74 0.72 2.54 6.37 4.94
Pima 0.69 0.72 0.72 1.44 1.68 1.30
Breastw 0.99 0.98 0.98 1.51 1.78 1.26
Arrhythmia 0.84 0.82 0.82 1.92 3.78 3.30
Ionosphere 0.80 0.90 0.90 1.36 1.59 1.33
win/draw/loss 7/3/2 9/1/2 12/0/0 9/0/3

TABLE 3
Result comparing three ranking measures in terms of AUC and runtime. The distance and density are computed

based on k nearest neighbours at the leaf of HS*-Trees. Figures boldfaced are the best performance for each data
set. The runtime results include both training and testing times. # The AUC results are not exactly zero but a small

number less than one-hundredth.

score by random ranking. As the ratio increases, both kNN
density and kth NN distance begin to rank normal instances
ahead of normal instances—exactly the scenario depicted in
(c) in Section 3. In contrast, the AUC score of HS*-Trees using
mass has almost perfect score throughout the entire range.

We also conduct an experiment with k-Means using the
three ranking measures and it produces the same result. This
is shown in Appendix A—this shows that the mass ranking
measure is better than either distance or density measure,
independent of the specific method used (HS*-Trees or k-
Means.)

It is important to note that while kth NN distance is able
to detect the clustered anomalies less than k, trying to find an
appropriate k is impractical for two reasons. First, there may
be more than one cluster with differing numbers of anomalies.
Second, the number of anomalies in one cluster can vary from
one occassion to another, e.g., from one sample to another.
Thus, setting a fixed k is not a solution. In addition, setting a
large k increases the runtime substantially.

Table 3 shows the anomaly detection performance in the
twelve data sets (listed in Table 2) in terms of AUC and
runtime for HS*-Trees which uses each of the three measures
to perform ranking. In terms of AUC, mass has more wins than
losses than either distance or density, notably in ForestCover
and Mulcross in which anomaly clusters have a significant
presence. Only in the Pima and Ionosphere data sets mass
loses, and the difference is small. These are likely to be due
to scenario (d) mentioned in Section 3.2 in which both density
and distance have a slight advantage. In terms of runtime, HS*-
Trees using mass has a significant advantage over all other
ranking measures, especially in large data sets. For example,
in the largest data set Http, HS*-Trees using mass takes less
than one-twentieth and one-sixth of the time required by HS*-
Trees using distance and density, respectively.

5.2 Compare to state-of-the-art anomaly detectors

This experiment aims to show that mass-based HS*-Trees
performs better, in terms of AUC and run time, than either

[1] DensityRatio4 4 avg auc = 0.98
[1] DensityRatio5 5 avg auc = 0.98
[1] DensityRatio6 6 avg auc = 0.98
[1] DensityRatio7 7 avg auc = 0.98
[1] DensityRatio8 8 avg auc = 0.98
[1] DensityRatio9 9 avg auc = 0.96
[1] DensityRatio10 10 avg auc = 0.96
> source("EvaluateJForest.R")
[1] "Balance HS-Tree (Level 6) using Kai Ming's Level + log(mass) only"
[1] Summary of results Mass
[1] DensityRatio1 1 avg auc = 0.998697
[1] DensityRatio2 2 avg auc = 0.995699
[1] DensityRatio3 3 avg auc = 0.995801
[1] DensityRatio4 4 avg auc = 0.992373
[1] DensityRatio5 5 avg auc = 0.99467
[1] DensityRatio6 6 avg auc = 0.993616
[1] DensityRatio7 7 avg auc = 0.993647
[1] DensityRatio8 8 avg auc = 0.995717
[1] DensityRatio9 9 avg auc = 0.994106
[1] DensityRatio10 10 avg auc = 0.990645

Methods 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

Stdev Ratio

A
U

C

HS-*Trees LOF

ORCA SVM

Fig. 8. A comparison of HS*-Trees, LOF, ORCA and SVM
in the synthetic data.

distance-based or density-based methods: ORCA, SVM and
LOF.

Figure 8 shows the result using the synthetic data (described
in Figure 7(a).) It shows that HS*-Trees has near perfect
AUC over the entire range of Stddev Ratios. In contrast,
methods based on distance and density all perform very poorly
in detecting clustered anomalies in this data set, especially
when clustered anomalies become significantly denser than the
normal cluster. Note that LOF performs particularly poorly in
this data set because it can only detect instances at the fringes
of the two clusters as anomalies and that does not change
much throughout the entire range of Stddev Ratios.

Table 4 shows the anomaly detection performance in the
twelve data sets in terms of AUC and runtime, comparing
HS*-Trees with the three methods: ORCA, SVM and LOF.
In terms of AUC, HS*-Trees has a better detection accuracy
than all of the other methods with the following win/draw/loss
counts: 10/0/2 compared to ORCA, 11/0/1 compared to SVM,
10/0/1 compared to LOF. In terms of runtime, HS*-Trees is
significantly faster than all other methods, especially in the
large data sets. For example, in the largest data set Http, HS*-
Trees takes less than one-hundredth and one-four-hundredth

9

AUC Time (Seconds)
HS*-Trees ORCA SVM LOF HS*-Trees ORCA SVM LOF

Http 1.00 0.36 0.90 † 88.35 9487.47 35872.09 > 2 weeks
ForestCover 0.89 0.83 0.90 0.57 36.33 6995.17 9737.81 224380.19
Mulcross 0.99 0.33 0.59 0.59 29.22 2512.20 7342.54 156044.13
Smtp 0.90 0.87 0.78 0.32 17.07 267.45 986.84 24280.65
Shuttle 1.00 0.60 0.79 0.55 9.75 156.66 332.09 7489.74
Mammography 0.86 0.77 0.65 0.67 3.41 4.49 10.80 14647.00
Annthyroid 0.73 0.68 0.63 0.72 2.61 2.32 4.18 72.02
Satellite 0.74 0.65 0.61 0.52 2.54 8.51 8.97 217.39
Pima 0.69 0.71 0.55 0.49 1.44 0.06 0.06 1.14
Breastw 0.99 0.98 0.66 0.37 1.51 0.04 0.07 1.77
Arrhythmia 0.84 0.78 0.71 0.73 1.92 0.49 0.15 6.35
Ionosphere 0.80 0.92 0.71 0.89 1.36 0.04 0.04 0.64
win/draw/loss 10/0/2 11/0/1 10/0/1 7/0/5 8/0/4 9/0/2

TABLE 4
Result comparing four anomaly detectors in terms of AUC and runtime. Figures boldfaced are the best performance

for each data set. †We do not have the full results for LOF because it has a high computational complexity and is
unable to complete the large data set in more than two weeks.

141 34750 0.140556
125 33063 0.01028
204 34250
140 33047
141 34078
125 33657
125 33516
125 35079
125 34719

ORCA
1024 0.08 0.00008
2048 0.21 0.00021
4096 0.73 0.00073
8192 2.63 0.00263

16384 10.19 0.01019
32768 40.2 0.0402
65536 158.16 0.15816

131072 637.83 0.63783
262144 2535.6 2.5356
524288 10203.64 10.20364

0

10

20

30

40

50

0 200 400 600 800 1000

Data Size ('000)

R
un

tim
e

('0
00

 s
ec

)

ORCA
HS*-Trees

.11.06.03.02.01

Fig. 9. Run time (training + testing) comparison between
HS*-Trees and ORCA in Mulcross data set with increasing
data sizes.

of the time required by ORCA and SVM, respectively; and
the gap is even bigger in comparison with LOF—less than
one-thirteen-thousandth!

There are two interesting observations. First, HS*-Trees
using density (result shown in Table 3) performs better than
LOF—a state-of-the art algorithm using density measure—in
all data sets in terms of both AUC and runtime. The only
exceptions are in the small size Pima and Ionosphere data
sets in terms of runtime; and in Mulcross in terms of AUC.
Second, HS*-Trees using distance performs better in terms
of AUC than ORCA (which employs distance measure) in 7
data sets, draws in 1, and loses in 4 data sets, which is very
competitive. In terms of runtime, HS*-Trees using distance is
significantly faster in all large data sets—it is more than five
times faster than ORCA in the largest data set, Http.

Figure 9 shows the runtime comparison between HS*-Trees
and ORCA (which is a near-linear algorithm and the fastest
among the three anomaly detectors) using the Mulcross data
generator.

In this experiment, training an ensemble of 100 HS*-Trees
takes constant time at about 1 second, no matter the given data
size is one thousand or one million. This is because only a

subsample of fixed size ψ = 256 is used to train an HS*-Tree.
The sublinear increase in runtime for HS*-Trees is solely due
to the time used for testing, which is sublinear to the size
of the data set. In this case, the testing time increases from
0.6 to 111 seconds when the data size increases from one
thousand to one million. In contrast, ORCA’s runtime increases
from 0.1 seconds to over 40000 seconds. Moreover, the AUC
performance of HS*-Trees has already reached 0.97 from one
thousand data size; whereas ORCA’s AUC starts at 0.02 and
stabilises at 0.33, as the top AUC performance, even the data
size increases to one million.

6 TIME AND SPACE COMPLEXITIES COMPARI-
SON.
This section compares the time and space complexities of
three state-of-the-art anomaly detectors with HS*-Trees. This
includes DOLPHIN [3] — the latest k-nearest neighbour-based
algorithm method which uses distance for ranking. Table 5 lists
the complexities for the four algorithms.

Time complexity Space complexity
HS*-Trees O(th(n+ ψ)) O(thψ)
DOLPHIN O(n2d) O(n)

O(k
p
nd)† O(k

p
)†

ORCA O(nlogn · d) O(n)
LOF O(n2d) O(n)

† Under special condition; p is the probability of randomly picking a point
from the data set which is a neighbour of the point under consideration
using a search index; k is the number of nearest neighbours; d is the
number of dimensions.

TABLE 5
A comparison of time and space complexities. The time

complexity includes both training and testing.

HS*-Trees has a significant advantage over three k-nearest-
neighbours-based methods in terms of both time and space
complexities. This is mainly due to the fact that HS*-Trees
only needs a small subsample to train a tree, where ψ ¿ n; ψ
(also t and h) can be fixed in practice, regardless of the size

10

of the given training set, as demonstrated in the last section
using Mulcross. Another distinguishing feature is that the time
complexity of HS*-Trees is independent of the dimensionality
of the domain. Thus, the training time and memory space
requirement are fixed—these properties make HS*-Trees the
ideal candidate to apply to domains with huge data size or
infinite data such as data stream.

7 RELATION TO IFOREST

Here we establish that the anomaly score used in iForest [20],
i.e., path length, is a form of the augmented mass in Half-
Space Tree.

The definition of anomalies based on iForest is given as
follows.

‘Anomalies are the top-ranked instances whose average path
lengths are the shortest.’

During testing, a tree in iForest computes the path length
at an external node with m instances at level ` as follows.

s = `+ c(m)

= `+ 2(ln(m− 1)−
m− 1

m
+ E),

where c(m) is a function which estimates the average path
length of an unexpanded subtree for a training data of size m,
and E is Euler’s constant [20].

Apply logarithm to Equation (2) used in Half-Space Tree
gives

s′ = `+ log(m)

Note that both s and s′ take the general form of depth level
` plus a derivative of mass. In essence, the path length used
in iForest [20] is a form of augmented mass ranking measure.
Thus, iForest is a kind of mass-based approach.

Another key difference between Half-Space Tree and iForest
[20] is that Half-Space Tree uses the mid-point split which
guarantees equal-size subdivision; whereas iForest randomly
selects a split point. The analysis in Section 4.1 is possible
because of half-space splits; as far as we know, there is no
equivalent analysis exists for random-split.

A comparison of HS*-Trees and iForest in terms of AUC
is given in Appendix B.

8 RELATED WORK

On the surface, there is a close relationship between the
augmented mass in Equation (2) and data depth [19] because
of the use of depth level in the form of Half-Space Tree: they
both delineate the centrality of a data cloud (as opposed to
compactness in the case of density measure.) However, there
are two fundamental differences. First, mass, by its definition,
does not have to be expressed in tree form. For example, using
a clustering algorithm to find regions, and then apply mass to
rank the regions (as shown in Appendix A) does not entail the
concept of depth or centrality in each region. Second, mass is
a simple and straightforward measure; whereas data depth has
many different definitions, depending on the construct used to
define depth. The constructs could be Convex Hull, simplicial,

half-space6 and so on [19], all of which are expensive to
compute in multi-dimensional problems. Even when expressed
in the form of Half-Space Tree, the augmented mass is still
simple and straightforward and can be traced back to the
simple mass definition as shown in Section 4.2.

At the algorithm level, k-d Tree [17], that based on median
split, may appear to be similar to Half-Space Tree on the
surface. However, there are important differences. First, the
purpose of the algorithm is different: k-d Tree is designed to
speed up search, e.g., in a near neighbour search; whereas
Half-Space Tree is specifically designed for mass estimation
(the new ranking measure we proposed here) for the purpose
of anomaly detection. Second, constructing a node of a k-d
Tree starts by searching for median as the splitting point on
one dimension, and it cycles through the dimensions to build
subsequent nodes in the tree; in contrast, the splitting point
for a node of Half-Space Tree is simply the mid-point of a
randomly chosen dimension in the working space, independent
of the distribution of the data—no search is required to find
the split point. Third, a k-d Tree cannot be used to estimate
mass because it is a balance tree (due to the median-split)
and all external nodes will have the same mass—useless for
our purpose here! Fourth, a k-d Tree is constructed using all
available data; whereas each Half-Space Tree only requires a
small training sample; e.g., only 0.045% or 256 out of more
than half a million instances in the Http data (reported in
Section 5) are required to build a good-performing Half-Space
Tree. Although both are linear time-complexity algorithms in
training, k-d Tree is linear with respect to the total training set
size n; and Half-Space Tree is linear with repsect to ψ ¿ n.

A method has been proposed to use k-d Tree for anomaly
detection [12]. It partitions the data into regions of uniform
density and then ranks the regions according to their densities.
It will have problems detecting clustered anomalies because
of the use of density measure to do ranking.

LOCI [26] is a density-based method that uses mainly
countings to compute its anomaly score because density (=
number of instances per unit space) is equivalent to counts
when the space is the same for all density computations. For
each instance p, it first identifies a region defined by a (fixed
user-defined) radius r from p and all its nearest neighbours
within the region. Then, it counts the number of instances
within a smaller circle of radius αr, centred at each nearest
neighbour including p, where α < 1. The anomaly score,
Multi-Granularity Deviation Factor (MDEF), a derivative of
density ranking measure, is defined to be the relative difference
between the average count for all nearest neighbours (n̂)
and the count for p (n), i.e., (n̂ − n)/n̂. A point which
is surrounded by points having the same density will have
MDEF=0. Anomalies will have MDEF much larger than 0. It
is a more computational intensive approach than Half-Space
Tree as it requires distance calculation to define the regions.

Tietjen and Moore [33] describe ‘masking effect’ of clus-
tered anomalies as follows:

6. The term ‘half-space’ has been used in geometry to denote either part
of the space divided by a hyperplane; they are not required to have equal-size
space, unlike the one used in Half-Space Tree.

11

“Suspected observations sometimes form subgroups; i.e.,
several values are closer to each other than they are to the
bulk of the observations. The masking effect is the inability
of a testing procedure to identify even a single outlier in the
presence of several suspected values.”

Statistical tests are all affected by the masking effect in
different degrees [e.g., 7,27]. For example, in the flow rate
data set which has four anomalies clusters making up 20% of
the total 2589 hourly average flow rate measurements from
an industrial manufacturing process, Pearson [27, Chapter
3] shows that the Hampter identifier [14] is better anomaly
detector than extreme studentised deviation identifier [14]; yet
in another data set which has asymmetrical distribution, the
Hampter identifier misses some scattered anomaly while the
asymmetrical boxplot is able to detect it together with other
anomalies. All of these statistical tests are designed for single
or low dimensional problems only [11].

Note that the ‘collective outliers’ referred to in [11] are
different from clustered anomalies. Collective outliers occur in
data where individual instances are related, in e.g., sequence,
spatial, graph and time series data. The individual instances
in collective outliers may not be anomalies by themselves;
whereas every individual instance in clustered anomalies is an
anomaly, without exception.

9 CONCLUDING REMARKS

This paper introduces a ranking measure, mass, for anomaly
detection. This measure is simple, straightforward and fast to
compute. It is the only basic ranking measure that we know
which ranks both scattered and clustered anomalies correctly
for anomaly detection tasks.

We have identified the key weakness for the two commonly
used measures: distance and density—as a ranking measure,
they both fail to rank clustered anomalies correctly; thus
unable to detect this kind of anomalies. It is well-known
that both of these measures are computationally expensive.
Existing anomaly detection methods based on them require
extensive search and pruning heuristics in order to speed up
the run time (e.g., [3,8]).

Our analysis using Half-Space Tree shows that mass is an
effective ranking measure for both scattered anomalies and
clustered anomalies, and the depth level of the tree is a proxy
to mass. This simple method is shown to perform better than
state-of-the-art distance-based anomaly detectors ORCA and
SVM, and density-based anomaly detector LOF, in terms of
anomaly detection accuracy. Its time and space complexities
are also significantly better with constant training time and
memory space requirement.

We reveal that a previous method iForest is a mass-based
approach which employs the depth level as a proxy to mass.
This uncovers the principle underpinning the method, which
was previously unknown.

This paper identifies the source of failure for existing
methods to detect clustered anomalies—the use of density or
distance as the ranking measure. There are a few attempts
to mitigate the problem with limited success, e.g., modifying
the density measure [32] or alternatively use a clustering

algorithm to identify the clustered anomalies. We show that by
using the mass measure and the proposed HS*-Trees, clustered
anomalies can be identified effectively and efficient without
resorting to the use of clustering algorithm.

REFERENCES

1) Abe, N., Zadrozny, B., and Langford, J. (2006). Outlier
detection by active learning. Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 504–509.

2) Aleskerov, E., Freisleben, B., and Rao, B. (1997). Card-
watch: A neural network based database mining system
for credit card fraud detection. Proceedings of IEEE
Computational Intelligence for Financial Engineering.
220–226.

3) Angiulli F., F. Fassetti. (2009). DOLPHIN: An efficient
algorithm for mining distance-based outliers in very large
datasets. ACM Transactions on Knowledge Discovery
from Data. Vol 3 Issue 1. Article No.4.

4) Angiulli, F. and C. Pizzuti. (2002). Fast outlier detection
in high dimensional spaces. In Proceedings of the Sixth
European Conference on the Principles of Data Mining
and Knowledge Discovery. 15–26.

5) A. Asuncion and D. Newman. UCI machine learning
repository. 2007.

6) Barnett, V. (1976). The ordering of multivariate data.
Journal of the Royal Statistical Society. Series A 139,
318–354.

7) Barnett, V. and Lewis, T. (1994). Outliers in statistical
data. John Wiley and sons.

8) Bay, S. D. and Schwabacher, M. (2003). Mining distance-
based outliers in near linear time with randomization
and a simple pruning rule. Proceedings of the ninth
ACM SIGKDD international conference on Knowledge
discovery and data mining. 29–38.

9) Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander,
J. (2000). Lof: identifying density-based local outliers.
In Proceedings of 2000 ACM SIGMOD International
Conference on Management of Data. 93-104.

10) B. Caputo, K. Sim, F. Furesjo, and A. Smola. (2002).
Appearance based object recognition using svms: which
kernel should I use? Proc of NIPS workshop on Statitsical
methods for computational experiments in visual process-
ing and computer vision.

11) Chandola, V., Banerjee, A., and Kumar, V. (2009).
Anomaly Detection : A Survey. ACM Computing Sur-
veys, Vol. 41(3). 1–58.

12) Chaudhary, A., Szalay, A. S., and Moore, A. W. (2002).
Very fast outlier detection in large multidimensional data
sets. Proceedings of ACM SIGMOD Workshop in Re-
search Issues in Data Mining and Knowledge Discovery
(DMKD). ACM Press.

13) Das, K., Schneider, J. and Neill, D.B. (2008). Anomaly
Pattern Detection in categorical datasets. Proceedings
of the 14th ACM SIGKDD international conference on
knowledge discovery and data mining. 169–176. ACM
Press.

12

14) Davies, L., and Gather, U. (1993). The identification
of multiple outliers. Journal of the American Statistical
Association. 88. No.423. 782–792.

15) Ertoz, L., Eilertson, E., Lazarevic, A., Tan, P.-N., Ku-
mar, V., Srivastava, J., and Dokas, P. (2004). MINDS -
Minnesota Intrusion Detection System. In Data Mining -
Next Generation Challenges and Future Directions. MIT
Press.

16) Eskin, E. (2000). Anomaly detection over noisy data
using learned probability distributions. In Proceedings
of the Seventeenth International Conference on Machine
Learning. 255–262.

17) Friedman, J.H., Bentley, J.L., and Finkel, R.A. (1997).
An Algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical Soft-
ware 3(3): 209–266.

18) Hawkins, D. (1980). Identification of outliers. Mono-
graphs on Applied Probability and Statistics.

19) Liu, R.Y., J. M. Parelius, K. Singh. (1999). Multivariate
Analysis by Data Depth: Descriptive Statistics, Graphics
and Inference. The Annals of Statistics. Vol. 27, No.3.
783–840.

20) Liu, T., Ting, K.M. & Zhou, Z-H. (2008). Isolation
Forests. Proceedings of the 2008 IEEE International
Conference on Data Mining. pp. 413-422.

21) Kriegel, H-P., Schubert, M. & Zimek, A. (2008). Angle-
based outlier detection in high-dimensional data. Proceed-
ing of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining. 444-452.

22) Knorr E. M. and R. T. Ng. (1999). Finding intensional
knowledge of distance-based outliers. In Proceedings of
the 25th VLDB Conference. 211–222

23) Knorr, E. M., Ng, R. T., and Tucakov, V. 2000. Distance-
based outliers: algorithms and applications. The VLDB
Journal 8, 3-4, 237–253.

24) MacQueen, J.B. (1967). Some methods for classification
and analysis of multivariate observations. In Proceedings
of the Fifth Berkeley Symposium on Mathematical Statis-
tics and Probability. 281–297.

25) Murphy, R.B. (1951). On Tests for Outlying Observa-
tions. PhD thesis, Princeton University.

26) Papadimitriou, S. Kitagawa, H. Gibbons, P.B. Faloutsos,
C. (2003). LOCI: fast outlier detection using the local
correlation integral. Proceedings of 19th International
Conference on Data Engineering. pp. 315-326. IEEE
Computer Society.

27) Pearson, R. (2005). Mining imperfect data : dealing
with contamination and incomplete records. Philadelphia
: Society for Industrial and Applied Mathematics.

28) Quinlan, J.R. (1993). C4.5: programs for machine learn-
ing. Morgan Kaufmann.

29) Ramaswamy, S., Rastogi, R., and Shim, K. 2000. Effi-
cient algorithms for mining outliers from large data sets.
Proceedings of the 2000 ACM SIGMOD international
conference on Management of data. 427–438.

30) Rocke D. M. and D. L. Woodruff. (1996). Identification
of outliers in multivariate data. Journal of the American
Statistical Association. 91(435):1047-1061.

31) Schoelkopf, B., R. C. Williamson, A. J. Smola, J. Shawe-
Taylor and J. C. Platt (2000). Support vector method
for novelty detection, Advances in Neural Information
Processing Systems, vol. 12, pp. 582-588.

32) Tang, J., Chen, Z., Fu, A.W.-c. and Cheung, D.W. (2002).
Enhancing effectiveness of outlier detections for low den-
sity patterns. Proceedings of the Pacific-Asia Conference
on Knowledge Discovery and Data Mining. pp. 535–548.

33) Tietjen, G.L. and Moore, R.H. (1972). Some Grubbs-
Type Statistics for the Detection of Several Outliers.
Technometrics. 14. 583–597.

34) Wong, W.-K., Moore, A., Cooper, G., and Wagner, M.
(2003). Bayesian network anomaly pattern detection for
disease outbreaks. Proceedings of the 20th International
Conference on Machine Learning. AAAI Press, Menlo
Park, California, 808–815.

13

APPENDIX A: ANOMALY DETECTION USING
CLUSTERING.
Here we demonstrate that one can use a clustering algorithm
to carve out the regions in the feature space, and then use any
one of the three ranking measures to do ranking for anomaly
detection. We employ a commonly used clustering algorithm
k-Means [24] to carve out a pre-set number of clusters from
data.

We perform the same experiment as conducted in Section
5.1. We compare the ranking performance using either one
of the three ranking measures after the k-Means clustering
result in the synthetic data set (with increasing densities for
the anomaly cluster.)

[1] DensityRatio5 5 avg auc1 = 0.310573 avg auc2 = 0.293175 avg auc3 = 1
[1] DensityRatio6 6 avg auc1 = 0.237189 avg auc2 = 0.221323 avg auc3 = 1
[1] DensityRatio7 7 avg auc1 = 0.197402 avg auc2 = 0.182613 avg auc3 = 1
[1] DensityRatio8 8 avg auc1 = 0.162277 avg auc2 = 0.150018 avg auc3 = 1
[1] DensityRatio9 9 avg auc1 = 0.079647 avg auc2 = 0.072825 avg auc3 = 1
[1] DensityRatio10 10 avg auc1 = 0.057647 avg auc2 = 0.04662 avg auc3 = 1

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

Stdev Ratio

A
U

C

Mass

Kth NNDist

KNNDen

Fig. 10. A comparison of AUC performance of k-means
(k=5) using either mass, kth NN distance or kNN density.

Figure 10 shows the result comparing the three measures
using the synthetic data set. It shows the same relative per-
formance between mass and the other two ranking measures,
as we have seen in Section 5.1—mass is a better ranking
measure no matter HS*-Trees or k-means is used to carve
out the regions.

APPENDIX B: HS*-TREES VERSUS IFOREST

This section compares the anomaly detection performance
between HS*-Trees and iForest [20]. Table 6 shows that HS*-
Trees performs better than iForest in 6 data sets, draws in 4,
and loses only in 2 data sets, in terms of AUC.

HS*-Trees iForest
Http 1.00 1.00
ForestCover 0.89 0.88
Mulcross 0.99 0.97
Smtp 0.90 0.88
Shuttle 1.00 1.00
Mammography 0.86 0.86
Annthyroid 0.73 0.82
Satellite 0.74 0.71
Pima 0.69 0.67
Breastw 0.99 0.99
Arrhythmia 0.84 0.80
Ionosphere 0.80 0.85

TABLE 6
AUC result comparing HS*Trees and iForest. Figures

boldfaced are the best performance for each data set.

Gippsland School of Information Technology

Technical Report

Title: Streaming HS-Trees: Amortised O(1) anomaly
detection algorithm in evolving data streams

Authors: Swee Chuan Tan, Kai Ming Ting, Fei Tony Liu

TR No.: TR2009/2

Department: Gippsland School of Information Technology

Faculty: Information Technology

This page is intentionally left blank

Streaming HS-Trees: AmortisedO(1) anomaly detection algorithm
in evolving data streams

Swee Chuan Tan, Kai Ming Ting and Fei Tony Liu∗

Abstract

The data stream problem has received a lot of attention in recent
years. Data streams are potentially high speed and infinite, demand-
ing efficient algorithms that require only one pass over the data.
Furthermore, a lot of stream data can evolve over time, thus data
stream algorithms must be able to adapt to changes occur at the in-
put. In this paper, we propose a new, adaptive, data stream anomaly
detection method, called Streaming HS-Trees. The method features
a random tree modelwell integrated with achange detector, so that
the model can adapt to changing input. We also identify the specific
type of change in data distribution that requires model update in or-
der to maintain high detection accuracy. The proposed model can
be constructed without any data instances and hence can be installed
before the arrival of a data stream. It is highly efficient because it
requires no model restructuring when adapting to new data distribu-
tion. Our analysis shows that Streaming HS-Trees has an amortised
constant time complexity and has a constant memory requirement,
independent of data size. Our performance study demonstrates the
benefits of developing an anomaly detection model that can adapt to
data distribution changes. When compared with two existing out-
lier detection methods, our method performs favourably in terms of
both detection accuracy and runtime performance.

1 Introduction

Data streams are commonly found in modern data acquisi-
tion systems. Sensor networks, for example, generate vast
amount of data that must be analysed in real time. Data
streams are potentially infinite. Any off-line learning algo-
rithms that attempt to store all the data for analysis will run
out of memory space at some point, regardless of the capac-
ity of the available memory space.

In addition, no single static model can accurately anal-
yse an entire data stream that evolves and experiences
changes in data distribution over time. Instead, the model
needs to adapt to different parts of the data stream.

A data stream algorithm thus need to satisfy two con-
straints. First, it must be a one-pass algorithm, i.e., inspect
each data point only once—it discards a data point before
the next is processed. In a one-pass algorithm, the mem-
ory requirement never grows, and it can analyse potentially

∗Gippsland School of Information Technology, Monash University,
Australia.

endless amount of data. Second, it must incorporate change
detection and model update mechanisms into the method, in
order to deal with time-varying data distribution.

This paper proposes a one-pass anomaly detector for
evolving data streams. The proposed method is called
Streaming Half-Space Trees (HS-Trees).

Streaming HS-Trees has the following characteristics:

i) It is a one-pass anomaly detection algorithm that can be
used to analyse massive datasets or data streams.

ii) Unlike traditional model-based algorithms, a model in
Streaming HS-Trees can be built without any data;
hence it is possible to create HS-Trees before the arrival
of a data stream.

iii) Each model stores the profile of a data stream in differ-
ent time windows. As will be shown later, the profiles
between two windows can be compared easily, offer-
ing a simple way to detect distribution changes in data
stream.

iv) When there is a need to update a model, Streaming HS-
Trees does so by simply using the latest profile in the
latest time window; this avoids the need and the cost to
modify its model structure.

v) It has the ability to deal with anomaly detection and data
distribution change within a single framework.

The rest of this paper is organized as follows. Section
2 states the problem and the goal of this paper. Section 3
presents the proposed Streaming HS-Trees method. Section
4 describes the experimental setup and Section 5 discusses
the experimental results. Section 6 provides a discussion.
Finally, we conclude this paper in Section 7.

2 Problem Statement and Goal

When a data stream arrives continuously in high speed, it is
impractical to use traditional off-line learning methods that
store all the data for analysis. Instead, an on-line, one-pass
anomaly detector is required to address this problem.

The underlying profile in a stream may change over
time, causing any non-adaptive anomaly detector to degrade
its detection accuracy. However, only a certain type of
change demands a model update; whereas no model update

is required in others. Thus, we need a change detector that is
able to detect the ‘right’ type of change and then trigger the
anomaly detector to adapt to the new profile.

A data distribution can be expressed asP (x, y) which
has two components:P (x|y) and P (y), wherex is the
input andy is the ‘class’. In the anomaly detection context,
y ∈ {normal, anomaly}. We describe the different types
of change in data distribution as follows:

(I) Change due to normal points only:P (x|y = normal)

(II) Change due to anomalies only:P (x|y = anomaly)

(III) Change in proportion of anomalies/normal points only:
P (y), especially an increased number of anomalies or
contamination level:P (y = anomaly)

In practice, a change may involve any combination of
the above:P (x, y) = P (x|y)P (y).

A model shall be updated for any combination of
changes involving Type (I) change. However, it is impera-
tive not to update a model when it is either Type (II) or Type
(III) change. Type (I) and Type (II) changes are collectively
referred to as concept change in the literature. We make a
distinction here because the change inP (x|y = anomaly)
does not affect the detection performance of an anomaly de-
tector if it profiles normal points. In fact, any attempt to up-
date the model will result in a poor detection accuracy under
this situation.

Problem statement. We address three inter-related
problems in evolving data streams. The first problem is to
maintain a high anomaly detection accuracy at all times in
evolving data streams. This requires an anomaly detector
to (i) have an ability todetect changein data distribution
and (ii) effect a timelymodel updatein order to adapt to the
changing data distribution. As we have mentioned earlier
that not all changes in data distribution warrant a model
update. Thus, the second problem is to devise a change
detection mechanism which will detect any change due to
P (x|y = normal) only; and ignore all other changes. The
third problem is to institute a model update only when a
persistent change inP (x|y = normal) is detected; and no
model update if the change is found to be transient.

Goal. Our goal in this paper is to address these three
problems in a single framework. We aim to:

• introduce an algorithm that has an amortisedO(1) time
complexity, called Streaming HS-Trees,

• demonstrate that Streaming HS-Trees can deal with
anomaly detection, change detection, and adapting to
data distribution change, all within a single framework.

3 The Proposed Method

The proposed method is a tree-based ensemble approach.
The model is in the form of Half-Space Trees, or HS-Trees.

We describe the proposed method in the following four sec-
tions. Section 3.1 provides the definitions and algorithms
to construct an HS-Tree. Section 3.2 describes the pro-
posed one-pass algorithm, Streaming HS-Trees. Section 3.3
provides an analysis of the time and space complexities of
Streaming HS-Trees. Section 3.4 presents the change detec-
tion and model update mechanisms.

The key symbols and notations used in this paper are
listed in Table 1.

x a streaming point
n the number of streaming points
T an Half Space Tree, HS-tree
N a node in an HS-Tree orNode
t the number of HS-Trees in an ensemble
h maximum depth level of a tree, ormaxDepth
min an array of minimum values for all dimensions
minq minimum value of dimensionq
max an array of maximum values for all dimensions
maxq maximum value of dimensionq
r mass∗ of a node in the reference window
l mass of a node in the latest window
ψ window size
λ number of consecutive windows before a model

is updated
s an anomaly score

Table 1: Key symbols and notations (∗mass is the number
of training instances which traverses through a node in an
HS-Tree.)

3.1 Half-Space Trees.A Half-Space Tree is a balanced
binary tree in which each internal node splits a feature
(sub)space into two half-sized subspaces; and all external
nodes have the same depth. An Half-Space Tree is built from
a working space that is established by defining a range in
every dimension. The tree building process begins by ran-
domly selecting a dimension and then bisecting the working
space using mid-point of the selected dimension. This pro-
cess continues for each newly created node recursively until
it reaches the required maximum depth level, denoted ash
ormaxDepth.

Creating diverse HS-Trees is crucial to the success of
our method. This is achieved by invoking the procedureIni-
tialiseWorkingSpace(Algorithm 1) to obtain a new work-
ing space, right before the construction ofeach tree. The
purpose of Algorithm 1 is to redefine the range of each di-
mension in the feature space such that each dimension has a
new range. Since each tree is built from a variant of the orig-
inal space, the result is an ensemble of diverse HS-Trees.

Algorithm 2 shows the procedure for building a single
HS-Tree. Each internal node is formed by randomly select-

Algorithm 1 : InitialiseWorkingSpace(Dmin,Dmax)
Inputs: Dmin & Dmax - arrays of given minimum and
maximum values for every dimension
Output : min & max - arrays of redefined minimum and
maximum values for every dimension in a Working Space

1: for each dimensionq do
2: Randomly chooses from [Dminq, Dmaxq]
3: σ ← 2 ·max(s−Dminq,Dmaxq − s)
4: minq ← s− σ
5: maxq ← s+ σ
6: end for
7: return min andmax

ing a dimension (see line 4) to form two half-spaces; the split
point is the mid-point of the current range of the selected di-
mension. As a result, the entire tree construction procedure
is very fast because the process requires no evaluation crite-
ria for dimension or split point selections.

Each node has two mass variables,r andl, which record
the number of training instances traversing through it at
different time windows of a data stream. Each of these
variables is assigned an initial value of zero during the initial
tree construction process.

Algorithm 2 : BuildSingleHS-Tree(min,max, k)
Inputs: min & max - arrays of minimum and maximum
values for every dimension in a Working Space,k - current
depth level
Output : an HS-Tree

1: if k == maxDepth then
2: returnNode(r ← 0, l← 0) {External node}
3: else
4: randomly select a dimensionq
5: p← (maxq +minq)/2
6: {Build two nodes:Left andRight as a result of a

split into two equal-volume half-spaces.}
7: temp← maxq; maxq ← p
8: Left← BuildSingleHS-Tree(min,max, k + 1)
9: maxq ← temp; minq ← p

10: Right← BuildSingleHS-Tree(min,max, k + 1)
11: returnNode(Left,Right, SplitAtt← q,

SplitV alue← p, r ← 0, l← 0)
12: end if

Recording mass profile in HS-Tree. Once a HS-Tree is
constructed, it needs to build a mass profile of the data before
it can be employed for anomaly detection. The process
involves traversing every training instance through the HS-
Tree. The mass profile of a node is simply the number of
training instances traversing through that node. Algorithm 3
shows that training instances in the reference time window

will update massr, otherwise massl (in the latest time
window) is updated. The variablesr and l are used in
Streaming HS-Trees which will be described in Section 3.2.

Algorithm 3 : UpdateMass(x,Node, referenceWindow)
Inputs: x - a test instance,Node - a node in an HS-Tree
Output : none

1: (referenceWindow)?Node.r++ : Node.l++
2: if (Node.Level < maxDepth) then
3: LetNode′ be the sub-node ofNode thatx traverses
4: UpdateMass(x,Node′, referenceWindow)
5: end if

Scoring. After a mass profile is recorded in an HS-Tree,
it is ready to assign anomaly scores to test instances. Given a
test instancex and an ensemble of HS-Trees, the anomaly
score is the sum ofscore(x, T.root) (see Algorithm 4)
obtained from every Half-Space TreeT .

In Algorithm 4, sizeLimit is a global parameter that
ensures that a score is obtained from a node that has a
reasonable number of instances.maxDepth is also a global
parameter; it ensures that a tree is grown to the specified
maximum depth. For our purpose, we find thatsizeLimit =
20 andmaxDepth = 15 give reasonable results over a range
of real and synthetic datasets.

Algorithm 4 : Score(x,Node)
Inputs: x - a test instance,Node - a node in an HS-Tree
Output : an anomaly score forx

1: if (Node.Level == maxDepth) ∨ (Node.r ≤
sizeLimit) then

2: returnNode.r × 2Node.Level

3: else
4: LetNode′ be the sub-node ofNode thatx traverses
5: Score(x,Node′)
6: end if

3.2 Streaming HS-Trees.One interesting aspect of the
proposed streaming method is that it requires no data to build
a model—it only requires the range of each dimension in
the feature space. This is materially different from many
traditional models, which demand training data to construct
their models. As a result, a model can be constructed with
Streaming HS-Trees even before the actual data arrive, as
long as the range of each dimension is known (or estimated)
a priori. Furthermore, traditional algorithms must update
their model structures continuously in order to keep up with
newly arrived data. In contrast, Streaming HS-Trees builds a
model structure that does not need to be changed to keep up
with newly arrived data.

Algorithm 5 shows the operational procedure for

Streaming HS-Trees. Line 1 builds an ensemble of Half-
Space Trees. Line 2 uses the firstψ instances of the stream
to train the HS-Trees. Since these instances come from the
initial reference time window, only massr of each traversed
node is updated. After these two steps, the model is ready
to provide an anomaly score for each subsequent streaming
point.

Streaming HS-Trees is designed to process the data in a
single pass. When a data point arrives, it is traversed from
the root to a (terminating) node of each tree. The point is
then discarded before the next data point is processed. This
enables the model to deal with an incoming data stream by
examining every data point only once. Hence, the proposed
method only requires a finite memory to process an infinitely
long data stream.

Each node in an HS-Tree has two variables: reference
massr and latest massl, which respectively store the mass
profiles of areferencewindow andlatestwindow. Line 2 of
the algorithm records the mass profile in the reference mass
r. This mass is always used to compute the anomaly score
for each streaming point (line 9). The recording of mass
for each subsequent streaming point in the latest window is
carried out on massl (line 8). This latest mass profile is used
by the change detector to decide if a change (with respect
to massr in the reference window) has effected. Each node
with a non-zero massl is reset at the end of each window
(line 19).

In Streaming HS-Trees, the model is updated only after
a (persistent) distribution change is detected overλ consec-
utive windows (line 15). This is to avoid model update over
a transient distribution change. Model update is surprisingly
simple and no structural change of the model is required.
The model is updated to the latest mass before the start of
the next window by simply transferring the non-zero massl
to r (line 16).

3.3 Time and space complexities.Here, we analyse the
amortised time complexityof Streaming HS-Trees. Forn
streaming points, wheren > ψ, there aren predictions,n

ψ

change detections, and at mostn
λψ

model updates. There are
five key operations in the main loop of Algorithm 5, as listed
in Table 2.

The first operation is to update the mass variablel in all
nodes along a path from the root of a tree to the maximum
depth ofh; and this is required for allt trees. The second
operation is to provide a score which takesO(h) for each tree
and a sum of scores overt trees. These two operations are to
be carried out for each streaming point. The third operation
is to detect change (the details are provided in Section 3.4)
which needs to access a maximum ofψ nodes in each tree;
and this operation is performed at the end of each window.
The fourth operation is to update the model to the lastest
mass profile which takesO(ψ) number of assignmentsr ← l

Algorithm 5 : Streaming HS-Trees(ψ, t)
Inputs: ψ - Window Size,t - number of HS-Trees
Output : s - anomaly score for each streaming point

1: Build t HS-Trees : call Algorithms 1 & 2 for each tree
2: Record a reference mass profile in HS-Trees: for each

tree T , invoke UpdateMass(x, T.root, true) for each
itemx in the firstψ instances of the stream

3: Count← 0
4: while data stream continuesdo
5: Receive the next streaming pointx
6: s← 0
7: for each treeT in HS-Treesdo
8: UpdateMass(x, T.root, false) {update massl in T }
9: s← s+ Score(x, T.root) {accumulate scores}

10: end for
11: Reports as the anomaly score forx
12: Count++
13: if Count == ψ then
14: ChangeDetected? #Change++ : #Change← 0
15: if #Change ≥ λ then
16: Update model :N.r ← N.l for each non-zero

mass nodeN
17: #Change← 0
18: end if
19: ResetN.l ← 0 for all non-zero mass nodeN
20: Count← 0
21: end if
22: end while

for all non-zero mass nodes. The operation only needs to be
done at mostn

λψ
times. The fifth operation is to resetN.l for

all nodesN with non-zero mass. This operation involves a
maximum ofψ non-zero nodes; it is done for every tree and
needs to be carried out at the end of each window.

In summary, model update has the smallest cost among
the five operations, while update massl and score(x, T.root)
have the largest cost.

Thus, for Streaming HS-Trees, the average time cost of
each operation in the worse case forn streaming points is

T (n)

n
= O(t(h+ 1 +

1

2λ
)).

Note that the above amortised cost is independent of
data sizen or the window sizeψ or the number of dimen-
sions. Since the parameterst, h andλ are algorithmic pa-
rameters independent of data size, our proposed algorithm
Streaming HS-Trees is an amortisedO(1) algorithm.

Thespace complexityfor HS-Trees isO(t2h) and is a
constant for an ensemble with fixed maximum depth level
(h) and ensemble size (t). Note that this is also independent
of data size.

Operation (Op) Line# Cost/Op #Op
1. Update massl 8 th n
2. Score(x, T.root) 9 th n
3. Change detection 14 tψ n

ψ

4. Update model 16 tψ n
λψ

5. ResetN.l ← 0 19 tψ n
ψ

Total cost,T (n) = O(2nt(h+ 1 + 1

2λ
))

Table 2: Amortised Analysis for Streaming HS-Trees: Total
time cost forn streaming points. Line# refers to the line
number in Algorithm 5.

3.4 Change detection.The idea is to capture significant
changes in mass within a subspace defined by branch in an
HS-Tree. Given a subspace which has a high mass in a
reference window. If this subspace has a significant change
in mass in the latest window (compared to the reference
window), then a significant change in normal points have
effected. This is because a high-mass subspace is normally
associated with normal points. Changes in the high-mass
subspaces indicate changes in distribution due to the normal
points (i.e.,P (x|y = normal)). When this occurs, the
model shall be updated to the latest mass profile. We give
a more precise definition of our change detection method
below.

Let L be a set ofNode with non-zero (reference and
latest) mass of HS-Trees; that is:

L = {Node : (Node.r > 0) ∨ (Node.l > 0)}
The mean of all non-zero massNode.r of HS-Trees is

given as:

r =
1

|L|
·
∑

Node∈L

Node.r

The set of high-massNode is defined as:

Lhigh = {Node : (Node ∈ L) ∧ (Node.r > r)}

Lhigh contains the mass profile of a set of subspaces
with high mass. Examining the changes of this profile allows
us to describe the changes which have taken place in a data
distribution.

The percentage of change in the high-mass profile of a
latest window with respect to that of a reference time window
is given as follows:

d =

∑

Node∈Lhigh
|Node.r −Node.l|

∑

Node∈Lhigh
Node.r

.

3.4.1 Change detection for model update.We now de-
fine the required amount of change in the high-mass profile
to be considered as ‘large enough’ to update a model. Letdω

be the percentage of change in the high-mass profile, where
ω is the index of each time window.

We estimate the average ofd using an exponential
update rule:

d̂ω+1 = α · dω + (1 − α) · d̂ω
Here, α is the smoothing constant in the range of

[0, 1] and a higherα-value gives more weight to recent
observations.

The average deviationδ from the average ofd is defined
similarly:

δ̂ω+1 = α · |d̂ω − dω|+ (1− α) · δ̂ω
Let dω+m be a change that occurs atm number of

windows after its reference time windowω. This change is
considered large if

dω+m > d̂ω + τ · δ̂ω,
wherem ≥ 1 andτ define the amount of deviation that is
considered to be ‘large enough’.

The model is only updated if changes are detected inλ
consecutive windows. Based on this, a change is categorised
as:

• a transient change ifm < λ;

• a persistent change ifm ≥ λ.

3.4.2 Model updating schemes.The proposed model up-
date scheme based on persistent change is called Selec-
tive Update scheme, denoted as SU. We will compare this
scheme with two other schemes. The first scheme as-
sumes that an initial model can be used throughout the entire
stream. We denoted this scheme as NoU, which stands for
No Update. The second scheme Always Updates (denoted
as AU) the model at each time window.

Table 3 summarises the strengths and weaknesses of
these three schemes under different conditions. NoU is ex-
pected to work well when there is no change in the distri-
bution of normal points; otherwise NoU will fail because
the initial model will become irrelevant after a change due
to P (x|y = normal) has occurred. AU is expected to cope
well when there is a distribution change in the normal points;
but it fails when the change is due toP (x|y = anomaly)
or P (y = anomaly). SU is expected to work well in
most cases, except when there is a transient change due to
P (x|y = normal). In this case, SU will miss to update its
model and therefore will not perform well during the short
period in which a transient change occurs.
Why a delay in λ windows is required before a model
update? When there is a combination of changes involving
bothP (x|y = normal) andP (x|y = anomaly), a delay
will avoid transient Type (I) change and still be able to detect
anomalies over the duration of this change. Otherwise, the
anomaly detector will fail to detect anomalies during this
transient Type (I) change while adapting to it. Note that this
failure can be very serious as the Type (II) change could

Type of Change SU NoU AU

Type (I) ✓(persistent) ✗ ✓

✗(transient)

Type (II) ✓ ✓ ✗

Type (III) ✓ ✓ ✗

Table 3: A summary of the working conditions for the three
model updating schemes.✓ means a scheme can cope with
a change.✗ means a scheme cannot cope with a change.

accompany a significantly increased number of anomalies
(i.e., Type (III) change). We demonstrate this combination
of changes using one example in Section 3.4.3 and its effect
in Section 5.1.1.

3.4.3 Changes in high-mass profile when data distribu-
tion changes.The aim of this section is to provide a sys-
tematic analysis of four possible scenarios associated with
distribution change in the context of anomaly detection. To
facilitate our analysis, we will consider a synthetic dataset
with two Gaussian clusters—a big normal cluster in which
the centroid is at the origin; a small anomalous cluster with
about 9% the size of the normal cluster, and its points are
scattered. An example of the data distributionbefore any
changes occuris as shown in Figure 1. This distribution will
undergo a change in the middle of the streaming process.

2.980747 3.581977 0.596013

-1.043013 -1.064672 0.598015

-0.364654 1.498257 0.124099

1.142713 -2.182666 0.036821

-0.264242 -2.785516 0.67178

1.032484 1.328463 0.687534

0.237902 -1.164071 0.950586

0.067539 -1.25796 0.556858

0.332135 2.469405 0.076067

0.756414 1.223454 0.302256

1.511306 0.520515 0.238158

-2.76667 -0.28095 0.267549

0.062052 -1.395834 0.642464

-0.557312 1.088626 0.778265

1.495996 -2.398504 0.359441

-0.322609 0.401189 0.320085

-0.096148 3.630339 0.929372

4.449437 -2.360641 0.275093

0.967645 -0.262703 0.683249

-0.644782 1.569289 0.659361

2.441086 -2.699276 0.747289

0.563696 -0.348078 0.8813

-1.594699 -0.211465 0.730059

-20

-10

0

10

20

30

40

50

-10 10 30 50

Normal point

Anomaly

Figure 1: The original synthetic dataset consists of a big
normal cluster and a small abnormal cluster.

The first case considered here is associated with dis-
tribution change due to normal points only (i.e.,P (x|y =
normal), as shown in Figure 2. This case is concerned with
a shift of the normal cluster to a completely new centroid lo-
cation. An anomaly detection model must adapt to the new
data distribution in order to maintain its detection accuracy.

The second and third cases are associated with changes
in anomalies only. Figure 3 depicts these two cases. The
second case is associated with a three-fold increase in the

932509 -2.599843 0.995924

.87146 -1.044436 0.907601

356039 -1.5507 0.140404

.16694 -1.550714 0.804384

.61411 -0.950226 0.517833

117409 0.910846 0.793639

353435 -1.642662 0.914315

279937 2.117667 0.914385

450183 -0.74998 0.973407

.94329 -2.475538 0.302782

830816 -3.086068 0.180955

043534 2.07872 0.845216

133353 0.481941 0.799517

.10744 -2.559233 0.868963

145327 -1.336853 0.309205

937173 3.30123 0.61554

624116 -3.679736 0.23442

006485 1.034237 0.781638

313532 0.282955 0.776096

.02658 -0.887784 0.077608

812771 -0.827828 0.456883

314534 0.191956 0.658329

760175 -0.101018 0.162598

-20

-10

0

10

20

30

40

50

-10 10 30 50

Normal point

Anomaly

Figure 2: Case 1: A shift in normal cluster centroid. This is
a Type (I) change due toP (x|y = normal).

number of anomalies (i.e.,P (y = anomaly) as well as
an increase in density (i.e.,P (x|y = anomaly). The third
case involves an increase in density of anomalies only (i.e.,
P (x|y = anomaly)). These two cases should not trigger
a model update because there is no change in the normal
points.

0 0.149154 2.014587 0.024536933

0 -0.154327 0.013463 0.297824536

0 -1.236091 -1.173941 0.761150672

0 0.358755 2.140658 0.211349974

0 -1.53482 -0.737842 0.2573453

0 0.299197 -0.590174 0.752201378

0 0.713138 1.626098 0.475140828

0 3.841448 0.26786 0.694056618

0 -0.855637 1.496676 0.077288388

0 0.534581 3.287837 0.823889779

0 2.027351 0.601144 0.133340272

0 -4.002669 -0.667839 0.389291394

0 -1.987604 -1.588739 0.110057691

0 -3.814222 5.241935 0.377653908

0 -0.33622 1.304138 0.704938745

0 2.05677 -2.268347 0.146256046

0 -2.482645 -0.680657 0.461547409

0 -3.408916 0.704085 0.733705099

0 -1.651789 -0.400966 0.822408174

0 0.125779 -1.519782 0.76699009

0 -1.794038 -0.933674 0.170107811

0 -0.82391 -0.776164 0.568340834

0 -1.956033 1.411027 0.741927796

-20

-10

0

10

20

30

40

50

-10 10 30 50

Normal point

Anomaly

600 dense

anomalies

Case 2: Anomalies increase in number and density

0 -3.405403 3.248127 0.536156

0 2.738719 2.362313 0.194067

0 -1.774959 4.040821 0.164253

0 1.466738 -0.543265 0.83328

0 0.675182 2.580159 0.114136

0 3.525032 1.291008 0.932493

0 -3.973887 1.62517 0.241441

0 0.165682 1.326246 0.446632

0 2.564247 0.073874 0.790402

0 2.101879 2.003305 0.743228

0 -1.091987 -2.202866 0.594794

0 -2.664619 -0.39334 0.607689

0 -0.447942 -0.395844 0.158055

0 -1.620308 -1.395494 0.927563

0 -0.363218 2.49184 0.510633

0 1.734972 -1.650897 0.491457

0 -3.26851 3.217785 0.955657

0 -3.322805 1.187827 0.279832

0 1.475481 -4.009525 0.531045

0 0.992449 1.52338 0.03525

0 -4.228047 0.033009 0.550942

0 0.560443 -2.410888 0.827513
-20

-10

0

10

20

30

40

50

-10 10 30 50

Normal point

Anomaly

200 dense

anomalies

Case 3: Anomalies increase in density

Figure 3: Case 2 has Type (II) and Type (III) changes. Case
3 has Type (II) change only.

The fourth and the last case is as shown in Figure
4. This case is more complicated because it involves the
following changes: (i) a shift of the centroid of the normal
cluster, and (ii) an increase in the number and density of the
anomalies, where the anomalies occur as short bursts during
the streaming process. We expect a model update to occur

when there is a distribution change of the normal points.
However, when there are short bursts of anomalies, we do
not want to update the model.

0 3.09632 4.538557 0.118309435

0 -2.545847 -1.01857 0.151994858

0 0.899877 -1.1763 0.945818458

0 -1.479031 2.429913 0.463504658

0 4.180673 -1.471406 0.19785982

0 -0.473172 -0.221481 0.961162332

0 2.005871 -1.599595 0.487222365

0 2.217028 -5.901683 0.426419229

0 -2.165383 0.206425 0.596155549

0 -0.939171 -0.130362 0.331064153

0 1.852674 0.670389 0.730441632

0 1.377682 -1.1886 0.700458881

0 0.992071 0.37432 0.364967873

0 -0.754185 1.664592 0.065881685

0 -1.063868 0.842362 0.286084679

0 1.33501 0.433472 0.493593087

0 -0.871446 -0.418196 0.628023376

0 -2.272631 2.693728 0.455135499

0 -3.174645 -1.393622 0.146216708

0 1.950373 -0.279014 0.46001123

0 2.152682 1.944969 0.988456618

0 4.461209 1.987583 0.61968321

0 0.525374 1.217928 0.083809238

-20

-10

0

10

20

30

40

50

-10 10 30 50

Normal point

Anomaly

600 dense anomalies

occur in short bursts

Figure 4: Case 4: A change of data distribution due to
a combination of several changes in normal points and
anomalies. These Type (I), Type (II) and Type (III) changes.

Figure 5 shows the changes in the high-mass profile
associated with two synthetic cases identified earlier. It
is easy to see that the high-mass profile changes quite
significantly for Case 1 at the middle of the stream in which
Type (I) change has occurred. When there are Type (II) and
Type (III) changes which involve anomalies only, as in Case
2, the change in the high-mass profile is relatively small.
These examples show that analysing the changes in the high-
mass profile is an effective way to detect distribution change
due toP (x|y = normal), or Type (I) change.

250 firstHalf= 0.00 secondHalf= 4.00E-04

500 firstHalf= 0.04 secondHalf= 0.0373

750 firstHalf= 0.04 secondHalf= 0.0431

1000 firstHalf= 0.04 secondHalf= 0.0433

1250 firstHalf= 0.04 secondHalf= 0.0432

1500 firstHalf= 0.04 secondHalf= 0.0397

1750 firstHalf= 0.04 secondHalf= 0.0482

2000 firstHalf= 0.04 secondHalf= 0.0383

2250 firstHalf= 0.07 secondHalf= 0.0451

2500 firstHalf= 0.15 secondHalf= 0.1609

2750 firstHalf= 0.04 secondHalf= 0.0444

3000 firstHalf= 0.05 secondHalf= 0.0436

3250 firstHalf= 0.04 secondHalf= 0.0402

3500 firstHalf= 0.04 secondHalf= 0.0386

3750 firstHalf= 0.05 secondHalf= 0.0454

4000 firstHalf= 0.04 secondHalf= 0.05

4250 firstHalf= 0.05 secondHalf= 0.0425

ss Change profile for Case (4) 3036: case 2: orig

.00

.02

.04

.06

.08

.10

.12

.14

.16

0 1000 2000 3000 4000

Progression of data stream

%
 c

h
a

n
g

e
 i
n

 h
ig

h
 m

a
s
s

Case 1

Case 2

Figure 5: An example of high-mass profile changes in two
different synthetic cases.

4 Experimental Setup

4.1 Data. We use the four synthetic datasets presented in
Section 3.4.3. Each of these synthetic datasets has a very
specific property and allows us to analyse the conditions
under which a method could fail.

We also use six large datasets from different domains.
The first two datasets are SMTP and HTTP from KDD
CUP 99 network intrusion data as used in [13]. These

datasets have a temporal aspect in their data sequence,
which resembles the properties of streaming data. HTTP
is characterised by its sudden bursts of anomalies in some
streaming segments. SMTP does not produce bursts of
anomalies, but possibly exhibits some distribution changes
within the streaming sequence.

In practice, it is hard to quantify whether a distribution
change has indeed occurred within a stream. For this
reason, we have derived a dataset, SMTP+HTTP, which
contains the SMTP data instances follow by the HTTP data
instances. When viewed as an entire stream, we expect
a distribution change to occur when the communication
protocol is switched from SMTP to HTTP.

We also use the COVERTYPE and SHUTTLE datasets
from the UCI Machine Learning Repository [2]. COVER-
TYPE is a relatively large dataset and is commonly used in
data stream research. We split the anomaly class into several
small groups and placed them in different segments of the
dataset. As will be shown later, this simulates short bursts
of anomalies in different streaming segments. As for the
SHUTTLE dataset, it represents a situation where there is
little or no distribution change.

The last dataset we use is MULCROSS [11]. This
dataset contains dense clusters of anomalies that are harder to
detect than scattered anomalies. We expect many traditional
anomaly detection methods to fail in detecting the dense
anomalies in this dataset.

Table 4 gives a summary of the real and synthetic data
used in this study.

N D anomaly class

Synthetic Case 1,3 4400 2 class 2 (9%)
Synthetic Case 2,4 4800 2 class 2 (16.7%)
SMTP (KDD Cup 99) 95156 3 attack (0.03%)
HTTP (KDD Cup 99) 567497 3 attack (0.4%)
SMTP + HTTP 662653 3 attack (0.35%)

COVERTYPE 286048 10
class 4 (0.9%)

vs. class 2
SHUTTLE 49097 9 class 2,3,5-7 (7%)
MULCROSS 262144 4 2 clusters (10%)

Table 4: A summary of the characteristics of datasets used.
N is the number of instances andD is the number of dimen-
sions. The percentage in bracket indicates the percentage of
anomalies.

4.2 Settings.For all the experiments, we conducted ten in-
dependent runs of each algorithms on each dataset. Each run
was conducted as a single threaded job processed at 2.3GHz
in a Linux cluster (www.vpac.org). Once the anomaly scores
for all instances are obtained, the results can be evaluated
by using the anomaly scores to rank the instances. Normal

points are expected to have high scores, whereas anomalies
are expected to have low scores. From this ranking and the
ground truth, we then compute the AUC (Area Under re-
ceiver operating characteristic Curve) [4] to measure the per-
formance of all anomaly detectors reported in this paper. The
actual CPU times are also reported for the six large datasets.

The parameter settings for Streaming HS-Trees are as
follows. We use an ensemble size (t) of 25 trees. For the
exponential update of changes in mass profile, we set the
smoothing constantα at 0.3. The window size (ψ) is 250.
The threshold (τ) for detecting a change in the high-mass
profile is 4. The number of consecutive changes (λ) for
persistent change is set at 1 for all the small synthetic cases.
For the six large datasets,λ is fixed at 4. All these settings
remain unchanged throughout the experiments.

5 Experimental Results

In this section, we report the results of two experiments.
The aim of the first experiment is to examine the effective-
ness of the change detector in Streaming HS-Trees for per-
forming model updates in order to cope with evolving data
streams. To demonstrate the practical benefits of the pro-
posed method, we compare Streaming HS-Trees with the
three model updating schemes described in Section 3.4.2,
namely Selective Update (SU), No Update (NoU) and Al-
ways Update (AU). Results of this experiment will be re-
ported in Section 5.1.

The aim of the second experiment is to examine
how Streaming HS-Trees fares in comparison with existing
anomaly detection methods. The benchmarking methods in-
clude ORCA - a distance-based anomaly method based on k-
Nearest Neighbours (k-nn) [3] and One-Class Support Vec-
tor Machine (SVM) [12]. ORCA is selected because it is a
major improvement ofk-distance anomaly detection imple-
mentation in terms of efficiency. Using a pruning rule with
randomly ordered samples, the time complexity of ORCA is
reduced to near linear. The parameters of ORCA is (k = 5
andN = n/8) following the same treatment as in [10]. As
for One-Class SVM, we apply the Radial Basis Function ker-
nel and parameter setting as suggested in [5]. Results for this
experiment will be reported in Section 5.2.

5.1 Results of Streaming HS-Trees with three model
updating schemes.The presentation of results is organised
as follows. Section 5.1.1 provides an analysis of the results
on the four synthetic cases. Section 5.1.2 gives a detailed
analysis of the results on large datasets. Section 5.1.3 gives
an analysis of the speed of processing the largest dataset (i.e.,
SMTP+HTTP) used in this study.

5.1.1 Results on synthetic cases.Table 5 shows that
Streaming HS-Trees using the SU scheme is the most ro-
bust in terms of the overall AUC scores. Its results are ei-

ther ranked first or second for the synthetic data. Notice that
the performance of Streaming HS-Trees using SU scheme
is slightly lower than that of using AU scheme in Synthetic
Case 1. This is because SU scheme updates its model at the
next time window after a change was detected, this degrades
its performance slightly. As will be demonstrated in Sec-
tion 5.1.2, this delay in model update is quite small for large
streaming data and therefore the effects on the detection ac-
curacy is not substantial.

Table 5 shows that NoU only works well when there is
no changes in the high-mass distribution (i.e., Cases 2 and
3). It fails badly when a major distribution change occurs in
Cases 1 and 4. This is because the initial model used in NoU
is no longer relevant after a distribution change in normal
points has occurred in the middle of the stream.

AU works well when there is a distribution change in
normal points only (i.e., Synthetic Case 1). However, its
performance degrades when there is a sudden increase in
the number of anomalies in Cases 2 and 3. This is because
the model updates itself and treats some of the anomalies
as normal points. Furthermore, AU’s performance becomes
poorer when the anomalies occur in short bursts during the
streaming process, as in Case 4.

Dataset SU NoU AU
Synthetic Case 1 0.935 0.519 0.989
Synthetic Case 2 0.996 0.996 0.940
Synthetic Case 3 0.997 0.992 0.990
Synthetic Case 4 0.982 0.531 0.789

HTTP 0.998 0.984 0.143
SMTP 0.858 0.753 0.874

SMTP + HTTP 0.994 0.403 0.262
COVERTYPE 0.915 0.855 0.743

SHUTTLE 0.997 0.997 0.997
MULCROSS 0.974 0.980 0.965

Table 5: A summary of the overall AUC scores for the
synthetic and real data for Streaming HS-Trees using the
three model updating schemes: NoU, AU and SU. The best
result is boldfaced and underlined; the second best result is
boldfaced.

5.1.2 Results on large streaming data.Table 5 shows
that the performance of SU is the most consistent throughout
all the datasets. We will discuss these results in conjunction
with the AUC performance in different streaming segments
in each dataset.

HTTP: AU performs a lot worse than both SU and NoU
in this dataset. From our analysis summarised in Table 3, it
is likely that there are TYPE (II) and/or TYPE (III) changes.
Figure 6 reveals that the bursts of anomalies occur at segment
3 and the change continues to segment 4 to a lesser extend.

NoU and SU perform well in this dataset. NoU will
never update its model and therefore detect the bursts of
anomalies successfully. SU regards the bursts of anomalies
as transient changes and never updates its model to these
changes. Hence it also performs well on this dataset with
the highest AUC of 0.998 as reported in Table 5.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

Progression of data stream (120000)

A
U

C

SU NoU AU

0 1 2005 104 101

Figure 6: HTTP – AUC scores over five segments. The
number on top of each segment is the total number of
anomalies in that segment.

SMTP: AU and SU have similar performance in this
data set, but NoU performs poorly. This scenario is likely
to be due to Type (I) change. Indeed, Figure 7 shows that
NoU has performed poorer than both AU and SU in all five
segments. Segment 3 could be a result of a combination of
changes in both transient Type (I) and Type (II) (or Type
(III))—this causes both AU and SU to perform poorly as
well.

0.4

0.6

0.8

1.0

1 2 3 4 5

Progression of data stream (20000)

A
U

C

SU NoU AU

13 1

11

4 1

Figure 7: SMTP – AUC scores over five segments.

SMTP+HTTP : Because of a persistent change of
P (x|y) at the changeover from SMTP to HTTP in segment 1,
NoU performs poorly throughout the HTTP stream from seg-
ment 3 to segment 5 in Figure 8. This is because NoU does
not update its model that was previously learned from the
SMTP stream in segment 1. The behaviour of AU and SU are
consistent with their performance previously shown in Fig-
ures 6 and 7. Finally, SU has the best result in this dataset—
its AUC remains high throughout the entire stream. This is
because SU successfully updates its model when there is a

change in the protocol, while avoiding to update its model
when there is a burst of anomalies.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

Progression of data stream (150000)

A
U

C

SU NoU AU

30
1 2005 105 100

Figure 8: SMTP+HTTP – AUC scores over five segments.

COVERTYPE: This dataset demonstrates the scenario
reminiscent to synthetic Case 4 in which there is a combina-
tion of persistent changes of Type (I), Type (III) and/or Type
(II) in which only SU performs well out of the three schemes.
Both AU and NoU notably perform poorer in segments 3 and
4 when there are bursts of anomalies as shown in Figure 9.
SU suffers a little at the beginning of segment 1; this is likely
to be due to one or two transient changes of Type (I).

0.4

0.6

0.8

1.0

1 2 3 4 5

Progression of data stream (60000)

A
U

C

SU NoU AU

726 0 1445 576 0

Figure 9: COVERTYPE – AUC scores over five segments.

MULCROSS and SHUTTLE: All schemes do well in
these two datasets. It is likely that there is little or no changes
in data distribution in them, as demonstrated in all segments
of Figures 10 (a) and (b).

Our results show that SU can strike a balance between
no adaptation to changes in data distribution, as in NoU;
and over-adaptation, as in AU. As a result, Streaming HS-
Trees adopting the SU scheme is more robust in evolving
data streams. Table 6 shows that SU only performs a small
number of model updates compared to the high number of
updates performed by AU. For example, SU performs only 3
updates on the SMTP+HTTP dataset, compared to no update
in NoU and 2650 updates in AU; yet its AUC performance is
significantly higher than NoU and AU.

0.4

0.6

0.8

1.0

1 2 3 4 5

Progression of data stream (60000)

A
U

C

SU NoU AU

5986 6111 5856 6065 2196

(a) MULCROSS

0.8

0.9

1.0

1 2 3 4 5

Progression of data stream (10000)

A
U

C

SU NoU AU

706 713 721 717 654

(b) SHUTTLE

Figure 10: MULCROSS and SHUTTLE – AUC scores over
five segments.

No. of Updates
Dataset SU AU

HTTP 1 2269
SMTP 2 380

SMTP+HTTP 3 2650
COVERTYPE 1 1144
MULCROSS 1 1048

SHUTTLE 1 196

Table 6: Number of updates executed by SU and AU.

5.1.3 Analysis of stream processing speed.Figure 11
shows that, when processing the SMTP+HTTP dataset,
Streaming HS-Trees can process at least 20,000 items per
second. This is a reasonable speed for processing real
streaming data or large static datasets. NoU is the most ef-
ficient scheme since it does not perform any model update.
AU always update its model and thus it is not as fast as NoU.
The speed of SU is in between the speeds of AU and NoU.

5.2 Comparison with ORCA and One-Class SVM.In
this section, we compare Streaming HS-Trees (using the SU
scheme) to ORCA and SVM. Table 7 shows that Streaming
HS-Trees significantly outperforms ORCA and SVM, both
in terms of AUC and runtime.

We see that Streaming HS-Trees attains an AUC score

taset= smtp_http 4040 time at j= 100000 1.04E+15 time elaps 2306 5204 2613 2834

taset= smtp_http 4040 time at j= 150000 1.04E+15 time elaps 2514 3165 2426 2389

taset= smtp_http 4040 time at j= 200000 1.04E+15 time elaps 2265 2830 2193 2315

taset= smtp_http 4040 time at j= 250000 1.04E+15 time elaps 2182 2975 2443 2382

taset= smtp_http 4040 time at j= 300000 1.04E+15 time elaps 2289 2900 2375 2254

taset= smtp_http 4040 time at j= 350000 1.04E+15 time elaps 2220 2947 2447 2380

taset= smtp_http 4040 time at j= 400000 1.04E+15 time elaps 2327 2904 2181 2367

taset= smtp_http 4040 time at j= 450000 1.04E+15 time elaps 2247 3011 2401 2256

taset= smtp_http 4040 time at j= 500000 1.04E+15 time elaps 2322 2862 2386 2365

taset= smtp_http 4040 time at j= 550000 1.04E+15 time elaps 2269 2993 2180 2301

taset= smtp_http 4040 time at j= 600000 1.04E+15 time elaps 2373 2901 2481 2474

taset= smtp_http 4040 time at j= 650000 1.04E+15 time elaps 2305 2928 2198 2446

taset= smtp_http 4040 numAdapta 2650

taset= smtp_http 4040 1.04E+15 total time e 39537.68

taset= smtp_http 4040 time at j= 50000 1.04E+15 time elaps 3419

taset= smtp_http 4040 time at j= 100000 1.04E+15 time elaps 5204

taset= smtp_http 4040 time at j= 150000 1.04E+15 time elaps 3165

taset= smtp_http 4040 time at j= 200000 1.04E+15 time elaps 2830

taset= smtp_http 4040 time at j= 250000 1.04E+15 time elaps 2975

taset= smtp_http 4040 time at j= 300000 1.04E+15 time elaps 2900

taset= smtp_http 4040 time at j= 350000 1.04E+15 time elaps 2947

taset= smtp_http 4040 time at j= 400000 1.04E+15 time elaps 2904

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5

Progression of data stream

#
it

e
m

s
 p

ro
c
e
s
s
e
d

 p
e
r

s
e
c
o

n
d

SU NoU AU

Figure 11: The number of instances processed per sec-
ond over each segment in the data stream (SMTP+HTTP
dataset).

of almost one (rounded to the nearest two decimal places) on
the SHUTTLE, MULCROSS and HTTP datasets, whereas
ORCA and SVM perform significantly poorer. In particular,
ORCA does not perform well with MULCROSS and HTTP
because of the density of the anomaly class is higher than
normal instances. This reverses the ranking even to rank
normal instances first before anomalies, causing a poorer
than average AUC score.

Notice that One-Class SVM performs reasonably well
on SMTP and HTTP, with AUC scores of 0.78 and 0.90 re-
spectively. However, when these two datasets are combined
as SMTP+HTTP, One-Class SVM fails quite badly. This is
because the mixed distributions in SMTP+HTTP is too com-
plex for One-Class SVM to handle, resulting in a poor AUC
score of 0.43

Recall that Streaming HS-Trees is a one-pass algo-
rithm, restricting itself to inspect each data point only once,
whereas ORCA and SVM requires all the data to be load onto
working memory. Table 7 shows that the efforts of building a
one-pass Streaming HS-Trees translates well into a very fast
processing speed. In contrast, One-Class SVM is the slowest
because of the need to perform optimization during its model
building process. ORCA is faster than SVM, but it is still (on
average) 267 times slower than Streaming HS-Tree.

Another observation is that ORCA takes a longer time
(13197 seconds) to process SMTP+HTTP, compared to the
total time (267 + 9487 seconds) to process SMTP and HTTP
datasets individually. This suggests that the processing time
of ORCA becomes longer when the (combined) distribution
becomes more complex. On the other hand, Streaming HS-
Trees takes a relatively shorter time (35 seconds) to process
SMTP+HTTP, compared to the total time (9 + 32 seconds)
to process SMTP and HTTP datasets individually. This
suggests that the processing time of Streaming HS-Trees is
not sensitive to more complex data distributions.

AUC Runtime (seconds)
Streaming Streaming
HS-Trees ORCA SVM HS-Trees ORCA SVM

SHUTTLE 1.00 0.60 0.79 7.09 155.66 332.09
MULCROSS 0.97 0.33 0.59 18.14 2512.20 7342.54
HTTP 1.00 0.36 0.90 32.07 9487.47 35872.09
SMTP 0.86 0.80 0.78 9.07 267.45 986.84
SMTP+HTTP 0.99 0.38 0.43 35.10 13197.04 34918.70
COVERTYPE 0.92 0.83 0.90 21.13 6995.17 9737.81

Table 7: Streaming HS-Trees (using SU scheme) performs favourably to ORCA and SVM, both in terms of AUC and total
processing time. Boldfaced entires are the best results.

6 Discussion

Many methods in data stream research employ the sliding
window approach, for example, Concept-adapting Very Fast
Decision Trees algorithm (CVFDT) [8]. Like Very Fast De-
cision Trees algorithm (VFDT) [6], CVFDT uses Hoeffd-
ing bound as a change detection mechanism to determine
whether a model update is warranted. Here we highlight two
key differences in comparison with Streaming Half-Space
Trees. First, the change detection mechanism in CVFDT
does not take into account the types of change and the two
categories of change (i.e., transient change and persistent
change) we have discussed in this paper. While one may
argue that this is not required in the classification tasks, we
suspect that this consideration will bring about more insights
into data stream issues in classification tasks, especially in
skewed class distribution problems.

Second, most sliding-window-based methods are known
to be sensitive to the window size: if the window is too large,
the model will perform poorly when there is a change in
data distribution; if the window is too small, then the model
will be inaccurate because of small training data size. This
applies to CVFDT. As shown by our results, Streaming HS-
Trees only needs a small amount of training data in order for
an ensemble to perform well. The results of MULCROSS
and SHUTTLE in Table 7 shows that Half-Space Trees
performs significantly better than ORCA and SVM, even
though ORCA and SVM employ all available data (50,000
and 260,000 instances) for training whereas each Half-Tree
is trained from 250 instances only. Note that these two
datasets have no change in data distribution which is the
perfect condition for both ORCA and SVM.

There are some change detection methods proposed in
the literature, e.g., the dynamic weighted majority algorithm
(DWM) [9], and other variants [7]. DWM maintains an
ensemble of base learners in classification tasks and predict
using a weighted majority vote; and it dynamically creates
and deletes base learners in response to changes in prediction
performance. Thus, the change detection mechanism is

solely based on the prediction accuracy to weight and discard
each learner. Gao et al. [7] uses a data set with balanced
distribution to train each model in the ensemble to deal with
skew class distributions. Although these methods are generic
change detection methods, it is unclear they can deal with
window size issue; and because they do not assess the data
distribution change directly, they are unable to deal with
different types of change.

A framework for on-demand classification of evolving
data streams [1] enables simultaneous training and testing
streams to be used for classification. In contrast, our Stream-
ing Half-Space Trees uses the same stream for training and
prediction.

The key limitation of Streaming HS-Trees is space
complexity which is exponential to the tree heighth. The
flip side of this limitation has many advantages, i.e., the
model structure can be built without training data, and it only
needs to be built once; the model structure does not change
and the memory space stays constant throughout the entire
data stream. An alternative is to build a model when the
training data is available, and retrain another one if it needs
to be updated. While this may reduce the overall memory
requirement, it takes up previous time for training a new
model in every model update; thus reduce the number of
instances that can be processed—this can be critical in many
real-world applications.

We have shown that the Selective Update scheme takes
the best from two other schemes: No Update and Always
Update. However, it is important to be aware of the con-
straint imposed byλ consecutive windows to define a per-
sistent change: (i) the anomaly detector will perform poorly
within theλ windows under type (I) persistent change. But
this is limited toλ windows only—an error guarantee in the
SU scheme that cannot be found in the other two schemes.
(ii) If there are many transient type (I) changes, then SU will
perform poorly. In practice, a data distribution change often
involves a combination of different types of change which
we have demonstrated that SU is more robust than AU and
NoU in real-world scenarios.

7 Concluding Remarks

The proposed anomaly detection algorithm, Streaming HS-
Trees, satisfies the key constraints for mining evolving data
streams:

• It is a one-pass algorithm with amortisedO(1) time
complexity andO(1) space complexity—this allows it
to deal with huge datasets or infinite data streams.

• It incorporates three mechanisms: anomaly detection,
change detection, and model update, in a single frame-
work.

The use of Half-Space Trees in the framework brings
about the following features:

1) An HS-Tree structure can be built without any data.

2) Data profile can be updated incrementally in the HS-Tree
structure as the data stream progresses.

3) The HS-Tree structure only needs to be constructed once
and use throughout its entire life span, even when model
updates are required during the streaming process.

4) Model updates are simple and efficient.

Most existing algorithms have only one or two of the
above-mentioned features; incorporating all of the above
features within a single method is a rarity.

We have identified the specific type of change in data
distribution in evolving data streams that requires model
update in order to maintain high detection accuracy. We
have also identified other types of change that should not
trigger a model update; otherwise the detection performance
will degrade. This has led us to devise an effective change
detection and model update mechanism in the framework.

We have shown in our empirical evaluation that Stream-
ing HS-Trees with the selective update scheme is more ro-
bust in various scenarios in evolving data streams than two
other schemes: always update and no update. We have also
shown that Streaming HS-Trees significantly outperforms
two state-of-the-art anomaly detection algorithms in terms
of both detection accuracy and runtime.

References

[1] C. Aggarwal, J. Han, J. Wang, and P. S. Yu,A Framework for
On-Demand Classification of Evolving Data Streams, IEEE
Transactions on Knowledge and Data Engineering, 18(5)
(2006), pp. 577–789.

[2] A. Asuncion and D. Newman. UCI machine learning reposi-
tory, 2007.

[3] S. D. Bay and M. Schwabacher,Mining distance-based
anomalies in near linear time with randomization and a
simple pruning rule, Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data
mining, ACM Press (2003), Washington, D.C., pp. 29–38.

[4] A. P. Bradley, The use of the area under the ROC curve
in the evaluation of machine learning algorithms, Pattern
Recognition (1997), 30 (7), pp. 1145-1159.

[5] B. Caputo and K. Sim and F. Furesjo and A. Smola,
Appearance-based object recognition using SVMs: which
kernel should I use?, Proc of NIPS workshop on Statitsical
methods for computational experiments in visual processing
and computer vision, Whistler (2002).

[6] P. Domingos and G. Hulten,Mining high-speed data
streams, Proceedings of the Sixth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
(SIGKDD00), ACM New York (2000), pp. 71-80.

[7] J. Gao, W. Fan, J. Han and P. S. Yu,A General Framework for
Mining Concept-Drifting Data Streams with Skewed Distri-
butions, Proceedings of 2007 SIAM International Conference
on Data Mining (SDM’07), Minneapolis, MN, April 2007.

[8] G. Hulten, L. Spencer and P. Domingos,Mining Time-
changing Data Stream, Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery
and Data mining, (2001) pp. 97-106.

[9] J. Z. Kolter, and M. A. Maloof,DynamicWeighted Majority:
An Ensemble Method for Drifting Concepts, Journal of Ma-
chine Learning Research, 8 (2007), pp. 2755–2790.

[10] T. Liu, K. M. Ting and Z. H. Zhou,Isolation Forests, Pro-
ceedings of the 2008 IEEE International Conference on Data
Mining, (2008), pp. 413–422.

[11] D. M. Rocke and D. L. Woodruff,Identification of outliers
in multivariate data, Journal of the American Statistical
Association, 91(435) (1996), pp. 1047-1061.

[12] B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor and
J. Platt,Support Vector Method for Novelty Detection, Ad-
vances in Neural Information Processing Systems, 12 (2002),
pp. 582–588.

[13] K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne,
Online unsupervised outlier detection using finite mixtures
with discounting learning algorithms, Proceedings of the
sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM Press (2000), pp. 320-324.

