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1. Introduction 

The U.S. Army Research Laboratory has been developing high power electronics for a variety of 
Army applications. Selecting the right materials for custom components plays an integral role in 
high power electronics development. A NuSil EPM 2482 potting material was evaluated for 
possible use in a high power convertor module as a metal-oxide semiconductor field-effect 
transistor (MOSFET) package electrical insulating material. There was some concern that the 
potting material would distort in form when subjected to many heating and cooling cycles. This 
kind of distortion would cause mechanical pulling and torquing of wire bonds that would result 
in opening the electrical connections to the source or gate of the MOSFET. To mitigate the 
concerns associated with using a new potting material, a practical power cycling evaluation of 
this material was performed in view of a thermal imaging camera. 

2. Test Preparation 

In order to evaluate the NuSil EPM 2482 potting material, we needed to isolate any changes in 
the material itself and account for the potting material obstructing the camera view of the die 
temperature. To do this, we compared the thermal response of the potted MOSFET with a 
unpotted MOSFET (figure 1). A comparison of otherwise identical potted and unpotted 
MOSFETs accounts for the thermal camera’s obstructed view of the potted MOSFET, provided 
two conditions were met. 

Potting and Packaging

Un potted MOSFET Potted MOSFET

 
Figure 1.  Unpotted MOSFET in a TO-256 package (left) and a similar but potted version (right). 
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The first condition was to make some basic assumptions about the thermal path from the 
MOSFET packages to the heat sink because other thermal paths could contribute to the loss of 
heat from the package. The thermal paths other than those directly connected to the MOSFET’s 
heat sink would have to be relatively insignificant for the unpotted device to be a credible 
reference. Thus, the unpotted MOSFET was placed under the thermal imaging camera and power 
cycled only a few times at the same level of power dissipation and cooling as the two evaluation 
devices. The observed die temperature of the unpotted MOSFET cycled between 105 and  
165 ºC. If the blocked convection path is, in fact, of negligible significance, then for all intents 
and purposes, the thermal responses of the potted and unpotted packages should be nearly 
identical, provided all other external and packaging variables are the same.  

The relevant materials in this experiment and their thermal conductivities are as follows: 

• Air (surrounds rest of package):  < 0.03 W/mK at 20 ºC 

• Arctic Silver (thermal heat sink paste):  8.6 W/mK 

• Aluminum (in part package and heat sink):  235 W/mK 

• Gold (in part package and heat sink):  300 W/mK 

• Copper (in heat sink):  400 W/mK 

Figure 2 shows the setup of the device. 

 

Figure 2.  Setup of the device. 

Two main paths of thermal power dissipation exist (apart from the radiation component) from 
the component being tested. According to the thermal conductivity values listed previously and 
the diagram in figure 2, the main bottleneck of heat transfer is through the Arctic Silver.  

Heat Sink 

Peltier Device (active heat-sink component) 

Arctic Silver 5.08e-4m thick 

Free Air Convection

Potting material fills package inner 
cavity around implanted MOSFET 

Device Under Test Package 
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The heat flux through the Arctic Silver is calculated as follows: 

  ܳܽܿ ൌ ௞∆௄

௫
ൌ ଼.଺כሺ଻଴Kሻ

ହ.଴଼כଵ଴షర௠
 =  

ଵ.ଵଽெௐ

௠మ  (1) 

where k = thermal conductivity, W/mK, Q = thermal flux, W/m2, and x = distance in meters 
through material. 

Assuming 50% voiding would give us 595 kW/m2. The free convection air flux is around 
0.5 kW/m2. 

Even when considering that the surface area of convection is roughly three times larger than the 
conduction area, the contribution of convection losses are three orders of magnitude less than the 
conduction losses. 

There is also a radiation component but it is also negligible. The power dissipated by the part 
package (radiation) can be estimated using the Stefan-Boltzmann Law: 

 Wnet = Aεσ(ܭସ െ ଴ܭ
ସሻ (2) 

where 

A = area in m2 

ε = emissivity = 0.98 (part package coated with borium nitrite) 

σ = Stefan-Boltzmann constant = 5.67 כ 10ି଼ܹ݉ିଶିܭସ 

Wpackage = (6e-4m2)(0.98)(5.67x10–8Wm–2K–4)((70)K4) = 2.3 nW (negligible) 

The conduction heat loss component, being far larger than the convection and radiation 
components, was found to be identical between the potted and unpotted parts. Thus, we conclude 
that the thermal camera image of the unpotted MOSFET, showing a die temperature of 
approximately 105 to 165 ºC, is a reasonably accurate prediction of the potted MOSFET die 
temperature. 

With the expectation of the potted and unpotted packages thermally behaving in a nearly 
identical manner, only the possible difference in the electrical power dissipation between the 
MOSFETs remains to be resolved before the unpotted MOSFET can be used as a valid reference 
to predict the surface die temperature of the potted MOSFET. The MOSFET is the sole heat 
source in each package and the surface area and volume of the MOSFETs are identical: about 
11 cm2 and 1.6 cm3, respectively. The packaging and heat-sinking are also identical. Thus, when 
a reasonable similarity between electrical characteristics is determined or compensated for, the 
power density and die temperature are assumed to be the nearly the same.  

The parts according to the on-state characteristic curves (figures 3–6) are electrically similar but 
not the same. The power dissipation between the three parts evaluated was maintained at a 
constant 30 W by making small adjustments in the drain voltage. 
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Un‐potted MOSFET on‐state 
characteristics

Vertical units are in amps DC 
and horizontal units are in volts DC 

 

Figure 3.  Unpotted MOSFET initial conducting state current as a function of voltage characteristics. 

1st Potted MOSFET on‐state 
characteristics

 

Figure 4.  First potted MOSFET initial conducting state current as a function of voltage characteristics. 
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2nd Potted MOSFET on‐state 
characteristics

 

Figure 5.  Second potted MOSFET initial conducting state current as a function of voltage characteristics. 

Parts are electrically similar

Potted parts 1 and 2 and Un‐potted part over‐layed

 

Figure 6.  Overlay of initial conducting state current as a function of voltage characteristics. 
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3. Power Cycling Evaluation 

The actions outlined previously allow us to account for the un-seeable die temperature 
underneath the potting material. Our goal was to power cycle the MOSFET so any part of the 
potting material would be subject to a maximum ∆T of 60–70 ºC for 2000 cycles. 

In order to perform the actual evaluation, we used the following procedure: 

1. We packaged three similar MOSFETs in a similar way.  

2. We potted two parts. 

3. We coated all three parts with borium nitrite to provide a uniform emissivity of close to 1. 

4. We characterized the pre-stress electrical response curves. 

5. We provided an active heat-sink for a controlled and elevated ambient temperature. A 
peltier device was installed in between the heat sink and package to force an additional 
temperature swing. 

6. The unpotted part was evaluated briefly (cycled a few times under thermal imaging 
observation) in order to observe the die and wire bond temperatures under identical power 
dissipation and heat-sinking conditions. Convection blocking by the potting compound was 
not considered to be significant enough effect to spoil the evaluation. We knew that the die 
temperature of the potted parts would be close to the same temperature. 

7. The first and second potted parts were cycled at the same power level (30 W) for 10 s on 
and 10 s off for 2000 cycles at a ∆T of 60–70 ºC at the die. The drain voltage was slightly 
adjusted throughout testing to offset drift in the electrical response curves in order to keep 
the power dissipation level (30 W) consistent. 

8. We took post stress electrical response curves. 

9. We made visual observations of the potting material. 

The test bed for the device is shown in figure 7. 
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The test bed

Oil provided externally circulates through a heatsink mounted under the test device
A thermal imaging camera is used to observe heating and heat spreading. 

Camera lense

Test part

Heatsink

 

Figure 7.  Device under test mounted to a heat sink and placed under the lens of a thermal imaging camera. 

4. Conclusions 

The potting material evaluation resulted in the following conclusions: 

1. No visible change of the potting material was observed during or after testing. 

2. Taking scaling into consideration, the heat spreading patterns (figure 8) look the same 
between the potted and unpotted parts. This result implies that convection losses do not 
play a significant role in die temperature.  
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Thermal Images

Note: Temperature to color scaling is dependent on the current maximum and
minimum temperatures viewed. All die temperatures fall with‐in a range of 76deg 
C and 146deg C.

Un‐potted part hot Potted part hot

 

Figure 8.  A thermal imaging comparison of the potted and unpotted MOSFETs at a peak (external to the 
package) temperature of 146 ºC. 

3. Spot measurements placed near the die did not vary in minimum or maximum temperature 
throughout testing for each part as forward conduction drift was compensated for by 
holding the drain-to-source power constant (figure 9).  

After testing on‐state characteristics  

After testing drift to MOSFET electrical response occurred by was compensated 
for by holding power constant. The MOSFETs were still basically functional. The 
unpotted part was not recharacterized because no long term testing was performed
on it

Potted parts 1 and 2 over‐layed.

 

Figure 9.  Overlay of the post-stress conducting state current as a function of the voltage characteristics of 
potted parts 1 and 2. 
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4. Because the potting material did not dislocate the wire bonds, the MOSFETs were basically 
operational after stress testing. 

5. Reverse (up to 750 V) blocking (figure 10) was not compromised. 

Reverse Blocking Comparisons

2nd Potted part 
after evaluation 
leakage

2nd Potted part before 
evaluation leakage

In either case no leakage greater than 500nA was observed at voltages less than 750V.

 

Figure 10.  Overlay of pre and post stress blocking state current as a function of voltage for potted part 2. 

Overall, we conclude that this potting compound, under the conditions to which it was exposed 
during the power cycling evaluation, did not significantly distort either chemically or physically 
in a way that would harm or hinder the basic functionality of the MOSFET devices being 
insulated. Furthermore, the potting material did not provide any real changes in thermal heating 
effects. 
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