
REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 222024302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection 01

information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

I. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

22-09-2009 Final Report 15-Sep-2006 - 14-Sep-2009

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Real-Time Computing on Multicore Platforms W911NF-06-1-0425

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

611102

6. AUTHORS 5d. PROJECT NUMBER

James H. Anderson

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT

University of North Carolina - Chapel Hill
NUMBER

Office of Sponsored Research

104 Airport Drive, Suite 2200, CB 1350

Chapel Hill, NC 27599 -1350

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSORIMONITOR'S ACRONYM(S)

ADDRESS(ES) ARO

U.S. Army Research Office II. SPONSOR/MONITOR'S REPORT

P.O. Box 12211 NUMBER(S)

Research Triangle Park, NC 27709-2211 49365-CS.55

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT

The objective of this project is to develop real-time scheduling and
synchronization algorithms that are well-suited for multicore platforms and to
implement these algorithms within a real as. Towards this objective, new
multiprocessor real-time scheduling algorithms have been developed that are
optimized to deal with specific cache layouts and performance asymmetries in

15. SUBJECT TERMS

real-time, multicore, scheduling, synchronization, linux

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF PAGES James Anderson

U U U SAR I9b. TELEPHONE NUMBER

919-962-1757

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.l8



Real-Time Computing on Multicore Platforms

Final Report

James H. Anderson

September 2009

1 Statement of the Problem Studied

Multicore architectures, which contain multiple processing cores on a single chip, have been adopted by most chip
manufacturers due to the thermal- and power-related limitations of single-core designs. Most chip manufacturers have
released dual-core chips, Intel and AMD each have four-core chips on the market, and Sun’s Niagara and more recent
Niagara 2 processors are eight-core chips with multiple hardware threads per core. Furthermore, Intel has announced
plans to release chips with as many as 80 cores within five years [17].

In most proposed multicore platforms, different cores share on-chip caches. To effectively exploit the available
parallelism in these systems, such caches must not become performance bottlenecks. In fact, the issue of efficient
cache usage on multicore platforms is one of the most important problems with which chip makers are currently
grappling. In this project, we sought to address this issue in the context of soft real-time applications.

In our work, we mostly (but not exclusively) considered real-time systems that are defined as a collection of
periodic tasks. A periodic task is invoked repeatedly, and each such invocation is called a job of the task. In the variant
of the periodic model that we mostly focused on, each task T is characterized by a period T.p and a per-job execution
cost T.e: every T.p time units, a new job of T is released that executes for T.e time units. The quantity T.e/T.p

denotes the utilization of T . Each job is assigned a deadline corresponding to the release time of the next job of the
same task. In a hard real-time system, job deadlines should never be missed. However, in a soft real-time system,
deadline misses can sometimes be tolerated. Such misses are constrained to be within a specified per-task tardiness
threshold: a job with a deadline at time d will be guaranteed to complete execution no later than time d+ δ, where δ is
the tardiness threshold of the corresponding task. Such a guarantee ensures that each task T receives a processor share
close to its utilization, but allows some leeway in scheduling. A real-time task system is called schedulable if all of its
timing constraints (hard and soft) can be guaranteed. Schedulability tests are used to determine if such guarantees can
be made.

In the context of multicore platforms, care must be taken when deciding which jobs should be co-scheduled to
execute at the same time. In particular, some co-scheduling choices might be constructive while others are destructive.
Constructive choices, such as co-scheduling jobs that share data, decrease shared-cache miss rates. On the other
hand, destructive choices may increase shared-cache miss rates. This might happen, for example, if a set of jobs is
co-scheduled that together have a combined working-set size that exceeds the capacity of the last level of shared cache.

In light of these observations, we sought in this project to solve the problem of devising multiprocessor scheduling
policies that

schedule tasks so that each job of every task completes within its allowed tardiness bound, and shared-
cache miss rates are kept reasonably low by encouraging constructive co-scheduling choices and discour-
aging destructive co-scheduling choices.

Additionally, we sought to implement and evaluate such polices within a real operating system, and to also handle
such complexities as task synchronization, dynamic task behaviors, and mixed real-time/non-real-time workloads.

1



Real-Time Computing on Multicore Platforms 2

2 Summary of the Most Important Results

Addressing the problem stated above led to many new results being obtained pertaining to real-time multiprocessor
systems. This research has led to the publication of eight journal papers and 38 conference papers. The following
paragraphs present an overview of our most most important results.

Algorithmic foundations. On multiprocessors, two basic approaches exist for scheduling real-time systems: par-
titioning and global scheduling. Under partitioning, tasks are statically assigned to processors and those assigned to
each processor are scheduled upon it using a uniprocessor scheduling algorithm. Under global scheduling, tasks are
scheduled from a single run-queue and may migrate among processors. As part of this project, we conducted the
first ever comparisons of such approaches based upon real implementations [8, 15]. Our studies showed that, for hard
real-time systems, partitioning algorithms are usually preferable, while for soft real-time systems, global algorithms
are better. This is due to the following reasons. In the hard real-time case, most partitioning and global-scheduling ap-
proaches have rather similar schedulability tests in the absence of overheads. As a result, partitioning approaches tend
to be better because they have lower run-time overheads. (Techniques for assessing schedulability are impacted by
such overheads.) In contrast, in the soft real-time case, partitioning approaches are subject to bin-packing limitations
that can be eliminated through the use of global algorithms. In particular, we have shown that most global algorithms
are capable of ensuring bounded deadline tardiness on an m-processor platform for any periodic task system with total
utilization at most m (i.e., that does not over-utilize the platform) [16, 18]. This is true even if tasks are required to
execute non-preemptively (in which case, system overheads are very low, because migration costs are low). This result
was shown to apply to a wide class of global algorithms wherein each job’s priority is defined by a point in time (e.g.,
a deadline)—such points are even allowed to vary dynamically at runtime. In contrast, there exist task systems with
total utilization slightly higher than m/2 that no partitioning scheme can schedule, even if bounded deadline tardiness
is allowed. Such limitations are the reason for the better performance of global algorithms (in terms of schedulability)
in the soft real-time case.

Cache- and platform-aware real-time scheduling algorithms. We have developed several new global scheduling
algorithms that take into account the hardware characteristics of a multicore platform to improve performance. Of
most relevance to the problem stated in Section 1 is a cache-aware global scheduling algorithm that is the central result
of John Calandrino’s Ph.D. dissertation [10]. This algorithm exploits the tardiness result mentioned in the previous
paragraph, which allows a job’s priority to be varied at runtime without causing tardiness to become unbounded. In
the cache-aware algorithm, if it is constructive to co-schedule a set of jobs, then this is encouraged by increasing
the priority of all jobs in the set whenever any one of them is scheduled [11]. Encouraging desirable co-scheduling
choices has the effect of also making undesirable choices less likely. To determine which choices are desirable, a
cache profiler was incorporated into the scheduler [12]. This profiler estimates the cache footprint of each ready job
by using hardware performance counters. This cache-aware scheduling algorithm was shown in several experimental
studies to lessen cache miss rates in comparison to non-cache-aware algorithms.

In other work, we developed new scheduling algorithms for asymmetric multicore platforms, or AMPs [14]. In
the AMP architecture that we considered, a mixture of “fast” and “slow” cores are present. Such platforms have been
suggested as a means for dealing with workloads in which some tasks are inherently sequential (and thus may benefit
from being assigned to a fast core) while others are parallelizable (and thus may execute across many slow cores). In
other work, we have investigated very large multicore platforms with hierarchical cache layouts [13]. We found that,
for such platforms, an approach that mixes aspects of partitioning and global scheduling is preferable. In particular,
while task migrations within a cluster of cores that share some lower-level cache might be acceptable, migrations
among cores that are “far apart” in the cache hierarchy are expensive.

Prototype development. The experimental studies described above were conducted using a Linux-based system
developed by us called LITMUSRT (LInux Testbed for MUltiprocessor Scheduling in Real-Time systems) [1, 3, 7,
9, 15, 19]. LITMUSRT extends Linux (currently, version 2.6.24) by allowing different (multiprocessor) scheduling
algorithms to be linked as plug-in components. The development of LITMUSRT has been a major component of this
project. LITMUSRT is currently running in our lab on four machines: (1) a four-socket, single-core-per-socket Intel



Real-Time Computing on Multicore Platforms 3

Xeon platform with 2.7 GHz cores; (2) an eight-core, single-socket Sun UltraSPARC T1 (codename “Niagara”) with
1.2 GHz cores; (3) a four-core, single-socket Intel Xeon E5420 (“Core” architecture) with 2.5 GHz cores; and (4) a
four-core, single-socket Intel Core i7 (“Nahelem” architecture) with 2.66 GHz cores. As a result of our LITMUSRT-
related work, key Linux developers are now planning to incorporate “hooks” into the scheduling code of mainline
Linux (as LITMUSRT does) so that researchers can define and experiment with different scheduling policies. To the
best of our knowledge, LITMUSRT is the only (published) system wherein global multiprocessor real-time scheduling
algorithms are implemented in a real operating system.

A scheduling framework for mixed real-time and non-real-time workloads. We have developed and imple-
mented in LITMUSRT a hierarchical scheduling framework that allows hard and soft real-time tasks and best-effort
jobs to be simultaneously supported and be temporally isolated from one another [3]. In this framework, hard real-
time tasks are statically assigned to processors (i.e., are partitioned) and are accorded higher priority than soft real-time
tasks and best-effort jobs, both of which are globally scheduled. Capacity reclamation techniques are used to improve
best-effort response times and soft real-time tardiness. Spare processing capacity arises that can be reclaimed when
jobs of real-time tasks (soft or hard) execute for less than their reserved allocations. In experiments conducted using
LITMUSRT, the usage of capacity reclamation resulted best-effort response times approaching that of an idle system.

A new real-time multiprocessor synchronization protocol. Lock-based synchronization can be problematic in
real-time systems due to the potential of priority inversions existing. A priority inversion is said to exist when a
higher-priority job is forced to wait on a lower-priority job to release a lock. If the resulting waiting time is excessive,
then the higher-priority job may exceed its tardiness threshold. Real-time synchronization protocols seek to limit the
durations of priority inversions so that such violations do not occur. Such protocols have been well-studied in the case
of uniprocessor systems. However, much less work has been done in the multiprocessor case. Multiprocessor real-time
synchronization protocols tend to be much more complicated than uniprocessor ones, because waiting dependencies
can be more complex.

In prior work on multiprocessor real-time synchronization, global scheduling algorithms were not considered at
all. To enable locking to be supported under such algorithms, we developed and implemented in LITMUSRT a new
real-time synchronization protocol called the flexible multiprocessor locking protocol (FMLP) [2, 5, 4, 9]. The FMLP
provides support for both spin-based and semaphore-based locking under both global and partitioned scheduling. The
FMLP is the only real-time synchronization scheme known to us that can be used in global scheduling algorithms. In
addition, its impact on real-time schedulability in partitioned systems is much less than is the case with prior schemes.
In recent work, we also extended the spin-based variant of the FMLP to support reader/writer locks [6]. Such locks
allow read accesses to occur concurrently (write accesses are exclusive). This can greatly reduce blocking times in
workloads wherein locks are used to protect read-mostly data.

References

[1] A. Block, B. Brandenburg, J. Anderson, and S. Quint. An adaptive framework for multiprocessor real-time
systems. In Proceedings of the 20th Euromicro Conference on Real-Time Systems, pages 23–33, July 2008.

[2] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible real-time locking protocol for multipro-
cessors. In Proceedings of the 13th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pages 71–80. IEEE, August 2007.

[3] B. Brandenburg and J. Anderson. Integrating hard/soft real-time tasks and best-effort jobs on multiprocessors.
In Proceedings of the 19th Euromicro Conference on Real-Time Systems, pages 61–70. IEEE, July 2007.

[4] B. Brandenburg and J. Anderson. A comparison of the M-PCP, D-PCP, and FMLP on LITMUSRT. In Pro-
ceedings of the 12th International Conference on Principles of Distributed Systems, pages 105–124, December
2008.



Real-Time Computing on Multicore Platforms 4

[5] B. Brandenburg and J. Anderson. An implementation of the PCP, SRP, M-PCP, D-PCP, and FMLP real-time
synchronization protocols in LITMUSRT. In Proceedings of the 14th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications, pages 185–194, August 2008.

[6] B. Brandenburg and J. Anderson. Reader-writer synchronization for shared-memory multiprocessor real-time
systems. In Proceedings of the 21st Euromicro Conference on Real-Time Systems, pages 184–193, July 2009.

[7] B. Brandenburg, A. Block, J. Calandrino, U. Devi, H. Leontyev, and J. Anderson. LITMUSRT: A status report.
In Proceedings of the 9th Real-Time Workshop, pages 107–123. Real-Time Linux Foundation, November 2007.

[8] B. Brandenburg, J. Calandrino, and J. Anderson. On the scalability of real-time scheduling algorithms on multi-
core platforms: A case study. In Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.
IEEE, December 2008.

[9] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson. Real-time synchronization on multipro-
cessors: To block or not to block, to suspend or spin? In Proceedings of the 14th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 342–353. IEEE, April 2008.

[10] J. Calandrino. On the Design and Implementation of a Cache-Aware Soft Real-Time Scheduler for Multicore
Platforms. PhD thesis, University of North Carolina, Chapel Hill, NC, 2009.

[11] J. Calandrino and J. Anderson. Cache-aware real-time scheduling on multicore platforms: Heuristics and a case
study. In Proceedings of the 20th Euromicro Conference on Real-Time Systems, pages 209–308, July 2008.

[12] J. Calandrino and J. Anderson. On the design and implementation of a cache-aware multicore real-time scheduler.
In Proceedings of the 21st Euromicro Conference on Real-Time Systems, pages 194–204, July 2009.

[13] J. Calandrino, J. Anderson, and D. Baumberger. A hybrid real-time scheduling approach for large-scale multicore
platforms. In Proceedings of the 19th Euromicro Conference on Real-Time Systems, pages 247–256. IEEE, July
2007.

[14] J. Calandrino, D. Baumberger, T. Li, S. Hahn, and J. Anderson. Soft real-time scheduling on performance
asymmetric multicore platforms. In Proceedings of the 13th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 101–110. IEEE, April 2007.

[15] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson. LITMUSRT: A testbed for empirically compar-
ing real-time multiprocessor schedulers. In Proceedings of the 27th IEEE Real-Time Systems Symposium, pages
111–123. IEEE, December 2006.

[16] U. Devi and J. Anderson. Tardiness bounds for global EDF scheduling on a multiprocessor. In Proceedings of
the 26th IEEE Real-Time Systems Symposium, pages 330–341. IEEE, December 2005.

[17] C. Farivar. Intel Developers Forum Roundup: Four cores now, 80 cores later.
http://www.engadget.com/2006/09/26/intel-developers-forum-roundup-four-cores-now-80-cores-later/, 2006.

[18] H. Leontyev and J. Anderson. Generalized tardiness bounds for global multiprocessor scheduling. In Proceedings
of the 28th IEEE Real-Time Systems Symposium, pages 413–422. IEEE, 2007.

[19] UNC Real-Time Group. LITMUSRT project. http://www.cs.unc.edu/˜anderson/litmus-rt/.




