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Abstract 
We have demonstrated an atomic layer deposition (ALD) enabled interconnect 
technology for vertical, c-axis oriented gallium nitride (GaN) nanowire (NW, 5-10 μm in 
length, 80-200 nm in diameter) arrays encapsulated by Benzocyclobutene (BCB). The 
nano-scaled ALD multilayer is essential to provide conformal co-axial dielectric (ALD-
alumina)/conductor (ALD-tungsten) coverage and precise thickness control for nanowire 
metallization. Furthermore, we have successfully developed a fabrication process to 
locally remove and connect tungsten (W) interconnect on NWs. Cross-sectional image 
taken in a focused ion beam (FIB) tool confirms the conformality of ALD interconnects.  
Photoluminescence (PL) wavelengths of the nanowires array can be tuned dynamically 
by changing the input current supplied to ALD-tungsten interconnect which heats 
nanowires. Such an experiment also demonstrated the quality of interconnect. This 
interconnect technology can be applied to various vertical nanowire-based devices, such 
as nanowire light emitting diodes (LEDs), nanowire-based field effect transistors (FETs), 
resonators, batteries or biomedical applications.  
 
Keywords: Atomic layer deposition (ALD), Interconnect, GaN nanowires, Focused ion 
beam (FIB), Photoluminescence (PL),  
 

I. Introduction 
Low dimensional materials such as nanowires (NWs) have attracted considerable 
research attention and interest due to their unique electrical, optical, magnetic properties 
[1]. They are promising material candidates as fundamental building blocks for future 
electronic [2,3], optoelectronic [4,5], energy [6], sensor [7] and biomedical [8] 
applications. Usually NW-based devices are constructed as horizontal configurations. 
NWs are taken from as-grown substrate, and then assembled, interconnected and tested 
[9,10]. Vertical nanowire array devices, compared to horizontal NW configurations, are 
of great importance for achieving ultrahigh integration density at a device level without 
the need of additional assembly and rearrangement processes. For example, vertical 
nanowire arrays are the best configuration for solid state super-capacitors [11,12], lithium 
ion batteries [13] and NW-LEDs [14],. These applications require large surface-to-
volume ratio of vertical NWs for enhanced performance and potentially higher efficiency.  
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Studies have been made on interconnect and integration of vertical NWs. Electrical 
interconnect to the top of NWs has been demonstrated by using electrostatic attachment 
of gold nanoparticles onto the tips of NWs [15]. Interconnect is formed from the bottom 
electrode through NWs to the top gold nanoparticle film. Vertical integration of NWs has 
been developed by using a sequence of fabrication process from material filling, 
mechanical polishing to the formation of top and bottom electrical interconnects [16]. 
Usually, nanowires are parts of interconnects, and electrodes are formed on top and 
bottom of NWs. For vertical NW-based LEDs, FETs or batteries, device performance 
could be significantly enhanced through the utilization of the large surface-to-volume 
ratio of vertical NWs while coated with high-quality electrical and dielectric 
interconnects. However, it is always a challenge to interconnect these vertical/as-grown 
nanowires because of their small diameters, extremely high aspect ratios, and random 
distributions on the substrate. In addition, for certain applications, to locally remove and 
connect interconnects on vertical NWs is another challenge.  
 
Our study presents a new interconnect technology for vertical NW arrays with a novel 
nano-scaled conductor/dielectric multilayer fabricated using atomic layer deposition 
(ALD). Benzocyclobutene (BCB) is employed as filling material to encapsulate NWs. 
We have also developed a fabrication process to locally remove and connect tungsten 
interconnect on NWs. Using local interconnect process, we can dynamically tune the 
wavelength of GaN NWs by heating the NWs via input current supplied to ALD-tungsten 
interconnect and verify the connection of interconnect.  
 

II. Nanowires Interconnected with Tips Covered 
Figure 1 shows the c-axis oriented GaN NWs that were grown on Si (111) in an entirely 
catalyst free fashion using nitrogen plasma enhanced molecular beam epitaxy (MBE).  
The detailed synthesis technique could be found in references [17,18].  These wires are 
defect-free with a typical diameter of 150 nm.  The nanowires used in this study were 
roughly 8 µm in length. 
 
We then employed ALD processes to interconnect GaN NWs. ALD is a low temperature 
(for example, 120◦C for Al2O3 and W film growth) thin film growth technique allowing 
atomic-scale thickness control. ALD utilizes a binary reaction sequence of self-limiting 
chemical reactions between gas phase precursor molecules and a solid surface [19, 20]. 
Films deposited by ALD are extremely smooth, pinhole-free and conformal to the 
underlying substrate surface. This conformality enables successful uniform coating of the 
entire nanowire device. Furthermore, ALD is a low temperature process enabling 
deposition on thermally sensitive materials.  
 
ALD-Al2O3 (30 nm) and ALD-W (40 nm) were sequentially deposited on the surface of 
NWs which serves as a dielectric layer and an electrical connection layer, respectively. 
The conformality of ALD-Al2O3 coating was verified by field emission scanning electron 
microscopy (FESEM) as shown in Figure 2, from side view and top view (inset). Figure 3 
shows the FESEM images of tungsten layers (deposited by ALD and sputtering) and 
placed on top of the ALD-Al2O3 layer. Apparntly, ALD deposition provides a more 
conformal tungsten coating (Figure 3a) compared to sputtered W (Figure 3b).A polymer 



encapsulation process for the interconnected vertical NW devices has also been 
developed. This encapsulation processing was needed to finalize the interconnect of the 
devices coated with the ALD conductor/dielectric multilayer and also provide a robust 
mechanical support. In this study, we selected BCB as the filling material to encapsulate 
vertical NWs. BCB has been widely adopted in a variety of electronic applications, 
including silicon and compound semiconductor passivation, interlayer dielectric, flat 
panel display, IC packaging, integrated passives, MEMS, wafer bonding and 3D 
integration, and optoelectronic components due to the favorable material properties of 
BCB such as low dielectric constant (2.65) and low dissipation factor (0.0008) [21]. 
Several droplets of BCB were dripped on the NWs chip, and then soft baked at 90◦C for 4 
minutes, exposed to UV, and then hard baked at 250◦C for 1 hour (Figure 4a).  To expose 
the tips of NWs, mechanical polishing was first employed to reduce the thickness of BCB 
and then plasma reactive ion etching (RIE) was used for selective BCB etching. Figure 
4b shows the exposed NW tips. However, as shown in the figure 4b and 4c, polishing 
process could result in NW tip damage, and also result in residual voids and cavities 
between the BCB and the NWs. Such cavities may electrically isolate the NW tip from 
the top conducting surface. 
 
To eliminate these cavities, a second ALD-W (30 nm) coating was introduced to assure a 
conformal conductor coating that would cover every NW tip even down and into the 
cavities. This ALD conductor coating is followed by a thick top W electrode which is 
deposited by sputtering with a thickness of 170 nm. As a result, a continuous electrical 
interconnection from top tips of NWs through the surface of NWs to the bottom substrate 
is formed. We note that the top electrode can be patterned to interconnect a specific 
number of NWs. This ALD-enabled interconnection scheme is of critical importance for 
the development of core-sleeve vertically aligned NW LEDs.  In other potential 
applications of nanowire structures, such as supercapacitors, the ALD-alumina dielectric 
layer may also play an important role. Figure 5 reveals the detail of the layer-by-layer 
structure using Focused-Ion-Beam (FIB) cross-sectional cutting. The conformal ALD-
Al2O3 / ALD-W layers on the NWs, and the second ALD-W layer to fill the 
voids/cavities described earlier are shown in the figure. 
 

.III. Nanowires Interconnected with Tips Exposed 
For vertical NW-based LEDs or lasers, tip regions of NWs are the passages of light 
output. Light output could be blocked by the design of a whole surface of metal 
interconnect on top of encapsulation material and NWs. For NW-based FETs, gate 
interconnect need to be separated from source and drain interconnects. Apparently a local 
interconnect process to connect NW-based devices is essential to many practical 
applications. In order to demonstrate the capability of fabricating specific NW-based 
device configurations by using ALDs as interconnects, we have successfully developed a 
fabrication process to locally remove metal layer at tip region of NWs. With local 
interconnect process, ALD-W could provide current injections on NW-based devices 
while ALD-W at NW tip region is locally removed. These nanowire array devices could 
then be tested electro-optically as described in Section IV. Figure 6 shows the schematic 
drawing of NWs interconnected with tip covered (6a), and with tips exposed (6b) after 
the local interconnect process. 



The goal of the local interconnect process is to remove the W metallization layer on tips 
of NWs. Figure 7 shows the detailed schematic process flow and corresponding 
experimental results. No photolithography mask is needed in this process. The process 
starts with as-grown GaN NWs (Fig.7a) coated with ALD-Al2O3 and W (Fig.7b). Fig. 7b 
shows a cross-sectional image of ALD-Al2O3 and W on a NW. SEM image was taken at 
the edge of a NW chip cut from a NW wafer. The NW was broken due to the cutting 
force. Again, Al2O3 and W grown by ALD method are conformal. To improve the 
wettability of NW surfaces, oxygen plasma treatment of 20 seconds was conducted 
before BCB spin-coating on NW sample. Next, tips of NWs were exposed by selective 
RIE etching (Fig.7c) and ALD-W at tips was removed by W-etchant. ALD-Al2O3 is a 
good passivation layer and can sustain W-etching process. By controlling the etching 
time, length of W removal at tips can be controlled. We observed the local W removal at 
tips after further BCB etching by RIE (Fig.7d). Top W interconnect was made by first a 
thin ALD-W layer (36nm) for making sure that all NWs are covered and interconnected, 
and then a thick sputtered-W layer (110nm) (Fig.7e). Then, BCB was spun on the sample 
again. Tips of NWs were exposed by RIE and W (ALD-W and sputtered-W) at tips was 
removed by W-etchant (Fig.7f). The etching time is critical not only to control the length 
of W interconnect at tip to be removed, but also not to cut off the top interconnect 
between NWs. Finally, BCB was removed by RIE as shown in Figure 8. The ALD-W on 
NWs are electrically interconnected and W on tips is removed (Fig.8). In local 
interconnect process, BCB was spun on NW sample, not by dripping. Thick BCB is not 
desirable because mechanical polishing process is required to reduce the thickness of 
BCB. Using BCB spin coating, thickness of BCB can be controlled by the ramping and 
spinning speed. Thus, polishing process can be eliminated if BCB is thin. Since we have 
eliminated mechanical polishing process, we don’t need to worry about the possibility of 
NW damage. Cavity issue can also be improved by oxygen plasma treatment before BCB 
spin coating.  

 
IV. Tuning GaN Nanowire Bandgaps by Heating 

Wavelength controllability is important for applications of laser and LEDs. Previous 
studies focused on tuning NW bandgap by changing material compositions [22,23]. 
Changing the material properties from material itself is one way; applying an external 
pressure, temperature or electrical field could result in a dynamic tuning of the bandgaps. 
In our study, we demonstrate the dynamic tuning of GaN nanowire bandgaps by heating 
the NWs through ALD-W interconnect. With current injection to ALD-tungsten 
interconnect, the connection quality of ALD-W interconnect along NWs can also be 
verified by this bandgap tuning demonstration. ALD-W interconnect is locally heated due 
to joule heating when current passes through. As a result, the NWs are heated. As the 
temperature of a semiconductor increases, the lattice expands and then leads to a change 
of energy bandgap [24]. We used photoluminescence (PL) system to characterize the 
dynamic tuning of GaN nanowires bandgap [25,26]. Since W on tips of NWs was 
removed by local interconnect process, PL light can be generated and measured from the 
tips. PL signals are from the tips of the NWs, and verified by spatially-resolved and 
steady-state PL measurements to be published in another paper. PL signals are tuned by 
changing the power input supplied to ALD-W on NWs. To control the direction of 
current flow in ALD-W along the surface of NWs, two metal pads were made by FIB 



machining as shown in Figure 9. As illustrated in Figure 9a, metal pads 1 and 2 are 
separated by FIB machined trenches but electrically connected through the ALD-W 
interconnect on NWs and the NW base region.  

Figure 10 shows the experimental setup of PL measurement. NW sample is placed on a 
thermoelectric device (TEC) (functioning as a substrate heater) and excited with a 
continuous-wave (CW) HeCd laser operating at 325 nm (3.815eV). A K-type 
thermocouple is placed on the TEC to monitor the surface temperature of the TEC. Two 
electrical probes were respectively positioned and located at the metal pads machined by 
FIB using microscope. Figure 11 shows the PL measurement results with/without 
injecting current into ALD-W interconnect. We first change TEC temperature to tune PL 
peak wavelength (solid line in blue). This shift can also be achieved by heating the same 
NWs sample via current injection into ALD-W interconnect as shown in the figure (dash 
line in red). Red-shifted PL spectrum is observed with power input of 1637mW into 
ALD-W interconnect. Bandgap of GaN NW is changed due to the temperature increase 
by power input into ALD-W interconnect, thus changing the PL peak wavelength. The 
connection of ALD-W interconnect is also verified by PL measurement with injecting 
current. We also note that there is slightly change of the PL slope for different heating 
mechanisms (TEC heating or current injection) which could be due to the non-uniformity 
of the temperature distribution along the NWs. More PL tuning results are shown in 
figure 12. In experiment, temperature dependence of PL peak wavelength was first 
measured. We change the input power of the TEC and record PL signals at different TEC 
temperatures. There is no power input into ALD-W interconnect via electrical probes. It 
should be noted that PL peak wavelength is determined by using the quadratic fit to the 
neighboring data of raw peak. At one TEC temperature condition we record 6 
measurements and make one error bar with one standard deviation. Afterward, we start to 
inject current into ALD-W interconnect on NWs via probes and tune the PL peak 
wavelengths. In figure 12, two target wavelengths, 368nm and 366.04nm, were chosen 
when surface temperatures of the TEC were 88°C and 55.5°C, respectively. At lower 
temperature conditions of the TEC (27.3°C and 38.8°C), we start to heat NWs by 
injecting current into ALD-W interconnect on NWs. By changing the input current 
supplied to ALD-W interconnect, PL peak wavelengths were tuned to our targets. The 
only flowing path for injected current is first from pad_1 through the ALD-W 
interconnect on NWs to the base region, and then flow back from base region to pad_2 
through ALD-W interconnect on NWs. Tunable GaN NWs by heating demonstrates a 
feasible method to fast tune bandgap of GaN NWs. Also, this heating effect is also 
important to the NW-based devices with interconnect along NWs.  

V. Conclusions 
We have demonstrated an ALD-enabled interconnect technology for vertical nanowire 
arrays. The nano-scaled conductor/dielectric multilayer is essential to the interconnect 
technology. FESEM images and cross-sectional image by FIB confirm the conformal 
ALD-Al2O3 and W layer along the GaN NWs with high aspect ratio. We have also 
developed a fabrication process to locally remove and connect W interconnect on NWs. 
By injecting current into W interconnect along NWs, PL wavelengths can be tuned 
dynamically by changing input current. PL tuning experiment also verifies the connection 
of interconnect on NWs. This interconnect technology can be applied to various vertical 



nanowire-based devices, such as nanowire light emitting diodes (LEDs), nanowire-based 
field effect transistors (FETs), resonators, batteries or biomedical applications.  
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Figure Captions 
 

Figure 1: Field-emission scanning microscopy (FESEM) image of c-axis oriented GaN 
nanowires. Nanowires, ranging from 5-10 μm in length and 80-200 nm in diameter, were 
grown on silicon (111) by nitrogen plasma enhanced MBE [17,18]. The faceted GaN 
matrix is visible in the image. Inset: top view of single NW (Scale bar: 100nm). 
 

Figure 2: Cross-sectional and top view (inset) SEM images of ALD-Al2O3 layer (30 nm, 
shell) on GaN NW (core). Conformal Al2O3 (30 nm) was deposited on the surface of 
NWs as a dielectric layer using atomic layer deposition. Scale bar: 100 nm. 

 

Figure 3: Tungsten (W) layers deposited on GaN NWs by different coating methods (a) 
ALD-W (inset: white shell) (b) Sputtered-W. Compared to sputtered W, ALD-W is much 
smoother and more conformal to the surface of NWs with high aspect ratio (5-10 μm in 
length and 80-200 nm in diameter). ALD-W layer is used as a metal interconnect for 
vertical GaN NWs.  

 

Figure 4: BCB encapsulation process for vertical GaN NWs. (a) GaN NWs were buried 
in thick BCB by dripping. (b) Mechanical polishing was employed to reduce thickness of 
BCB and tips of NWs were then exposed after RIE process. (c) Schematic drawing of 
cavity shown in (b). Scale bar in (b):1µm. 

 
Figure 5: (a) Cross-sectional view of NW with ALD layers after FIB cutting. Scale bar: 
400nm. (b) The corresponding schematic drawing. Second ALD-W was deposited for 
conformal coverage in the cavities. Sputtered-W with a thickness of 170nm was 
deposited after second ALD as a thick top electrode.  
 

Figure 6: Schematic drawing of (a) nanowires interconnected with tips covered, and (b) 
nanowires interconnected with tips exposed after the local interconnect process. 
Photoluminescence signal can be generated and measured after W at tips is locally 
removed.    

 
Figure 7: Fabrication process flow and corresponding experimental results of a local 
interconnect process that results in nanowires interconnected with tips exposed (no W-
layer on the NW tip). 

 
Figure 8: (top) Schematic drawing of final step of local interconnect process and (bottom) 
SEM image of GaN NWs with tip exposed (no W on tip region) after local interconnect 
process. 

 
Figure 9: (a) SEM image of trenches fabricated by FIB and (b) schematic drawing of 
cross-sectional view. Trenches were fabricated by FIB cutting to isolate pad 1 and pad 2. 



The dimension of each pad is 200um (width) x 100um (length). The depth of trenches is 
3um.  

 
Figure 10: Experimental setup of PL measurement. Probes were respectively positioned 
on pads of NW sample under optical microscope to provide current into W interconnect. 
The laser spot diameter is around 13um. Average number of NWs shined by laser is 10 
by FESEM examination. 

 
Figure 11: Experimental results of PL tuning by using TEC to heat NWs (solid line in 
blue) and by injecting current into W interconnect to heat NWs (dash line in red). The 
connection of W interconnect on NWs was confirmed by current injection into W 
interconnect to tune PL wavelength. The difference in PL slope could be due to the non-
uniformity of the temperature distribution along the NWs under different heating 
mechanisms (TEC heating or current injection). 
 
Figure 12: Experimental results of tunable PL wavelength by heating. PL peak 
wavelength of NW array can be dynamically tuned to target wavelengths by changing the 
input power supplied to ALD-tungsten interconnect. PL peak wavelength is determined 
by using the quadratic fit to the neighboring data of raw peak. 
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matrix is visible in the image. Inset: top view of single NW (Scale bar: 100nm). 
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Figure 2: Cross-sectional and top view (inset) SEM images of ALD-Al2O3 layer (30 nm, 
shell) on GaN NW (core). Conformal Al2O3 (30 nm) was deposited on the surface of 
NWs as a dielectric layer using atomic layer deposition. Scale bar: 100 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 (a)                                                   (b)                                              

Figure 3: Tungsten (W) layers deposited on GaN NWs by different coating methods (a) 
ALD-W (inset: white shell) (b) Sputtered-W. Compared to sputtered W, ALD-W is much 
smoother and more conformal to the surface of NWs with high aspect ratio (5-10 μm in 
length and 80-200 nm in diameter). ALD-W layer is used as a metal interconnect for 
vertical GaN NWs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

                         (a)                                                 (b)                                      (c)                            

Figure 4: BCB encapsulation process for vertical GaN NWs. (a) GaN NWs were buried 
in thick BCB by dripping. (b) Mechanical polishing was employed to reduce thickness of 
BCB and tips of NWs were then exposed after RIE process. (c) Schematic drawing of 
cavity shown in (b). Scale bar in (b):1µm. 
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(a) (b)                         

Figure 5: (a) Cross-sectional view of NW with ALD layers after FIB cutting. Scale bar: 
400nm. (b) The corresponding schematic drawing. Second ALD-W was deposited for 
conformal coverage in the cavities. Sputtered-W with a thickness of 170nm was 
deposited after second ALD as a thick top electrode.  
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(a)                                                    (b) 

Figure 6: Schematic drawing of (a) nanowires interconnected with tips covered, and (b) 
nanowires interconnected with tips exposed after the local interconnect process. 
Photoluminescence signal can be generated and measured after W at tips is locally 
removed.    
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Figure 7: Fabrication process flow and corresponding experimental results of a local 
interconnect process that results in nanowires interconnected with tips exposed (no W-
layer on the NW tip). 
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Figure 8: (top) Schematic drawing of final step of local interconnect process and (bottom) 
SEM image of GaN NWs with tip exposed (no W on tip region) after local interconnect 
process. 
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         (a)                                     (b) 

Figure 9: (a) SEM image of trenches fabricated by FIB and (b) schematic drawing of 
cross-sectional view. Trenches were fabricated by FIB cutting to isolate pad 1 and pad 2. 
The dimension of each pad is 200um (width) x 100um (length). The depth of trenches is 
3um.  
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Figure 10: Experimental setup of PL measurement. Probes were respectively positioned 
on pads of NW sample under optical microscope to provide current into W interconnect. 
The laser spot diameter is around 13um. Average number of NWs shined by laser is 10 
by FESEM examination. 
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Figure 11: Experimental results of PL tuning by using TEC to heat NWs (solid line in 
blue) and by injecting current into W interconnect to heat NWs (dash line in red). The 
connection of W interconnect on NWs was confirmed by current injection into W 
interconnect to tune PL wavelength. The difference in PL slope could be due to the non-
uniformity of the temperature distribution along the NWs under different heating 
mechanisms (TEC heating or current injection). 
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Figure 12: Experimental results of tunable PL wavelength by heating. PL peak 
wavelength of NW array can be dynamically tuned to target wavelengths by changing the 
input power supplied to ALD-tungsten interconnect. PL peak wavelength is determined 
by using the quadratic fit to the neighboring data of raw peak. 
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