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Field emitters rely on high gradients on microfabricated structures to enable substantial levels of
emitted current, which can in turn act to reduce the field at the emission site of a single emitter. An
account of that effect is obtained in the following steps: a model of the emitter geometry based on
the point charge model that allows for the determination of the apex radius and field enhancement
factor for arbitrarily sharp emitter structures is given, followed by an analytical formula for the
calculation of total current from such a structure and then by a model of the effect of emitted current
in suppressing the field at the emission site. Predictions of the impact of space charge on the emitted
current are made and compared to findings of Barbour et al. �Phys. Rev. 92, 45 �1953�� for
sharpened structures with varying work function. A discussion is given of the method to combine
single tip three-dimensional results with a study of space charge on field emission in one dimension.
�doi:10.1063/1.3272688�

INTRODUCTION

Field emitters are high brightness electron sources under
investigation for a variety of applications, such as electron
beam lithography1,2 and transmission electron microscopes,3

spacecraft propulsion,4,5 millimeter-wave vacuum electronic
amplifiers and terahertz devices,6–8 and advanced particle ac-
celerators and free electron lasers �FELs�.9–13 Their operation
can be affected by the fields from the charges they emit if
those fields reduce the extraction field at the emission sites,
and such consequences are termed “space charge effects.”
Such effects can induce undesirable growth in the dimen-
sions of the beam as it propagates, as commonly accounted
for in the beam envelope equation;14 a related metric of beam
quality in that equation is called “emittance” and refers to the
tendency of a beam to spread as it propagates due to trans-
verse velocity components in the electron distribution func-
tion. An account of both space charge and emittance from
field emitters is required to model how the beam changes as
it propagates. In the present study, an examination is under-
taken of the space charge forces that can exist in the vicinity
of a single emitter; separate studies consider space charge
effects associated with an array of emitters15 and estimations
of the emittance of a single tip and an array.16

In vacuum electronic devices, particle accelerators, and
free electron lasers,6–8 electron sources are often run space
charge limited �in the case of thermal sources� or at such
high current densities �in the case of photocathodes in rf
injectors17–19� that an understanding of space charge and
emittance growth at the cathode is essential. As increasingly
brighter beams, shorter bunches, and/or emission modulation
are sought, field emitter arrays have been under consider-
ation. The simulation of intense sources is the domain of
highly capable particle-in-cell �PIC� simulation codes20–23

which do have field emission algorithms24 but in the case of
field emission from realistic sources, accounting for space
charge is hampered by the many orders of magnitude dispar-

ity between the dimensions of the emitting structures and the
beam acceleration and transport region �not to mention the
inherently three dimensional �3D� nature of an array of field
emitters is in contrast to the usual two dimensional �2D�
rotational symmetry of the electron beam�. While in prin-
ciple, meshing a grid to the dimensions of the emitter site is
possible, the current density, grid and macroparticle size, and
time step �if non-static� are inter-related such that computa-
tional overhead demands make fine grids a burden, and so a
one dimensional �1D� Fowler–Nordheim �FN� equation uti-
lized over the area of the cathode with a factor relating sur-
face field to anode voltage is often employed. Even though
the promise of high brightness electron sources such as field
emitters generates a strong incentive to model them in beam
codes, the magnitude of the current density at the emission
site indicates ignoring space charge effects on emission and
emittance for operational performance levels is ill advised.

A coherent theory of field emission topical to vacuum
electronics, accelerators, and free electron lasers in particular
requires, first, an account of space charge and emittance for
such sources under macroscopic and possibly low dimen-
sional environments, second, an account of the microscopic
and fully 3D regions near the emitter site, and, third, a char-
acterization of the beam that is to be produced �emittance�.
The present work addresses the second requirement, as the
first and third are the subject of separate studies,15,16 al-
though a consideration of the methods to hand off electron
distributions from the microregime �the unit cell or single
emitter region� to the macroregime �the anode-cathode or
beam transport region� is common to all.

Therefore, here, a methodology for the analysis of space
charge forces on the emission process within the unit cell is
described, and a manner in which 1D methods may be
brought to bear on arrays of emitters operating together is
presented. Apart from providing a comprehensive theoretical
account, the approach presented is intended to provide a
framework to investigate field emitters without intensive nu-
merical efforts in a manner amenable to PIC codes for whena�Electronic mail: kevin.jensen@nrl.navy.mil.
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space charge is an issue and the cathode area is but a small
region of the simulation. The theory unfolds as follows. First,
a point charge model �PCM� is modified to treat a well-
studied class of emitters otherwise known as Spindt-type
field emitter arrays.25–28 The revised PCM overcomes the
disparity in length scales between the emission site and the
overall dimensions of the emitter to predict apex field and
field fall-off quite accurately. Next, an analytical method to
calculate the total emitted current from a single tip is devel-
oped. From the total emitted current, an estimate of the im-
pact of space charge on a single emitter is developed. The
“macroscopic” field near the cathode boundary15 functions as
the “far field” in the vastly smaller unit cells under consid-
eration in the present study. Finally, a comparison of the
single emitter space charge effects is made with a study by
Barbour et al.29 in which changes in I�V� characteristics
changed as the work function of the emitter apex was sys-
tematically altered through the application of barium.

RELATION TO THE 1D THEORY

The potential away from an array of emitters �ungated or
otherwise� rapidly becomes uniform at scales larger than the
tip-to-tip spacing.15 The nature in which the field near the
emitter site changes as the distance from the emitter apex
becomes comparable to the tip-to-tip spacing is therefore
topical. In the PCM emitters are approximated as aggregates
of point charges. Presently, the discussion here needs only to
consider a single point charge to advance the argument, and
so the question becomes how the field varies for a single
point charge as compared to an array. The constant back-
ground field F of the 1D theory is intuitively related to how
the field changes as the distance from the array of emitters
increases, and showing that relation proceeds as follows. In
units of the tip-to-tip spacing l, the width of the array is M,
the anode to cathode separation is N /2, and it is assumed that
N�M to approximate the 1D configuration. The anode is at
N /2 to make the potential there explicitly nonvarying in the
transverse coordinates and is accomplished by charges �es-
sentially image charges� at N. The field between oppositely
charged planes of point particles is then

ẑ · F =
1

4�
� �

4��oa0
2� �

j=−M

M

�
k=−�M2−j2

�M2−j2

� j,k� �x,y,z�

= Fo	1 −
z

2�M2 + z2
−

�N − z�
2�M2 + �N − z�2
 , �1�

where the top line is the sum over discrete point charges, the
bottom line is the on-axis large M limit in which the sums
are replaced by integrals, N /2�M is the cathode to virtual
anode separation, � is the magnitude of the individual point
charges, Fo=� /4��0l2 is the infinite plane �capacitor plate�
field, � �with the coefficient of the summation in Eq. �1�� is
proportional to the potential associated with an anode-
cathode pair of point charges, or

�i,j�r� =
1

��i − x�2 + �j − y�2 + z2

−
1

��i − x�2 + �j − y�2 + �N − z�2
, �2�

and �i,j� =�z�i,j �the z component of the field is the largest
component, and therefore considered by itself for ease�. The
remaining terms are defined in Table I. For very large M,
augmenting a transverse coordinate �x or y� by l does not
measurably affect the potential �for M =�, it has no effect at
all�, so it shall be assumed that x and y are both smaller than
1 /2 in units of l. It is expected that near the center emitter for
z�1 �that is, within the “unit cell”�, the z component of the
field for the center point charge should dominate, but that for
z�1, then the field should be significantly more insensitive
to variations with z and less directly correlated with a single
charge. This intuition can be shown valid by considering the
case M =2N=40, and, in particular, the z component of the
field of the point charge and the array of charges for on axis
�x=y=0� and at the lowest point of the potential off axis
�x=y=1 /2�. As shown in Fig. 1, the center point charge field
fades as 1 /z2 until at the unit cell boundary z�1, it is over-
shadowed by both the on-and off-axis fields due to the array,
which have asymptotically approached the analytical form
shown in Eq. �1�. Therefore, the unit cell is defined by the
region −1 /2�x ,y	1 /2 and 0�z	1, as schematically sug-
gested in Fig. 2. The z=1 boundary can be assumed to be a
constant over the region of the virtual cathode which takes
its place, and the virtual cathode can then serve as the bound-
ary for the 1D studies.15 In such a way, the considerations of
space charge near the emitter �unit cell and 3D� can be sepa-
rated from the anode-cathode �1D� region that is the normal
realm of the simulations modeling space charge limited cur-
rent.

THE 3D MODEL

A limitation of a 1D field emission model in the analysis
of space charge is that generic field emitters emit over square
nanometer scale sites that are spatially separated �e.g., Table
III of Ref. 30� because the sites have a high degree of cur-
vature to enable fields of GV/m from background fields of
order O�100 MV /m�, potential differences on the order of
10 kV for ungated geometries or 100 V for gated geom-
etries. The impact of space charge on field emission from
multidimensional geometries is difficult, not only because
finding the field gradient along a curved surface over which
only a small portion emits is difficult but also because avail-
able emission equations are inherently 1D by virtue of the
solution of Schrödinger’s equation for current density. There-
fore, the emitted current is obtained by considering modifi-
cations to the parallel plane case �as done by Barbour et al.29

and Lau et al.31� or by integrating the local 1D current den-
sity for a given field gradient over a multidimensional sur-
face of the conductor.32

Finding solutions to the field variation over the surface
of the emitter is not trivial. Exact conformal methods can be
used in 2D,33,34 as can prolate spheroidal techniques in
3D.35–38 Numerical methods are available39–41 with effort.
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Here, it is desirable to analytically obtain the field enhance-
ment factor, the field variation over the apex of the emitter,
and the potential variation on the axis of symmetry in a
geometry that decouples the emitter apex shape from other
features of the physical model �e.g., for a hyperbolic cone
emitter, the cone angle is dependent on the anode-cathode
separation42�. Consequently, an analytical model of the emit-

TABLE I. List of symbols and parameters.

Symbol Definition Value Unit

Fundamental constants and parameters
m Electron mass 510 999 eV/c2
c Speed of light 299.792 nm/fs

 Planck’s constant 0.658 212 ev fs
q Unit charge 1 q
R� Rydberg constant 13.605 7 eV
�fs Fine structure constant 1 /137.036 ¯

�0 Permitivity of free space 5.526 35�10−2 q2 /eV nm
Q �fs
c /4 0.359 991 eV nm
F Field at cathode ¯ ev/nm
V Potential ¯ eV

Copperlike parameters

 Chemical potential 7 eV
kF �2m
�1/2 /
 13.554 6 1 /nm
vF Fermi velocity 1.569 19 nm/fs
� Work function 4.5 eV

FN field emission terms for Cu-like parameters
Ao JFN parameter �Eq. �4�� 3.138 94�10−5 A /eV2

B JFN parameter �Eq. �4�� 65.207 3 eV/nm
� JFN parameter �Eq. �4�� 0.772 81 ¯

v�y� Elliptical integral function
1−y2�1−

1

3
ln�y�
 ¯

t�y� Elliptical integral function �t�yo�=1.061 ¯

yo e−1/2 0.606 531 ¯

PCM parameters
r PCM scaling parameter ¯ ¯

n PCM number of charges ¯ ¯

a0 Radius of emitter base ¯ 
m
�exp dimensioned radial coordinate ¯ nm
zexp dimensioned axial coordinate ¯ nm
l tip-to-tip spacing ¯ 
m
L Anode-cathode separation ¯ nm, cm
a dimensioned apex radius ¯ nm
ag gete radius ¯ 
m
�t time separation between emitted e− q / Itip fs
Itip current from one emitter ¯ 
A
J�Ftip� current density at emitter apex ¯ A /cm2
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M = 40

FIG. 1. �Color online� Behavior of the z component of field for a point
charge and an array of point charges on �x=y=0� and off �x=y=1 /2� the
symmetry axis in units of tip-to-tip spacing. By z=1, the variations that exist
in the field due to the discrete emission sites is largely �although not com-
pletely� diminished, suggesting z=1 to be the boundary between the unit cell
region and the anode-cathode region.

1D

3D

ungated gated

unit cell unit cell

l

FIG. 2. �Color online� Schematic representation of the unit cell and 1D
regimes suggested by Fig. 1 for gated and ungated geometries.
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ter is developed that generalizes one used to study field emis-
sion and dark current in accelerators and referred to there as
the PCM.43

The image charge FN equation

The FN equation, as widely used, is of a form traceable
to Murphy and Good44 and relies on elliptical integral func-
tions v�y� and t�y�. The best approximation to these func-
tions has recently emerged45,46 and leads to a different form
of the FN equation than the most commonly used version in
which v�y� is assumed to be linear in y2. Using the Forbes
approximation to the elliptical integral function v�y� and a
representative constant for t�y� �as in Table I�, the general
form of the FN equation is �albeit in a slightly different form
than that given by Forbes47�

JFN�F� = AF2−� exp�− B/F� , �3�

where A, B, and � are constant �or nearly so� and given by

� =
8Q

9

�2m

�
,

A =
q

16�2
�t�yo�2��2e6

4Q
��

� Ao��2e6

4Q
��

,

B =
4

3

�2m�3, �4�

and where B is equivalent to BFN in Eq. 40 of Ref. 48, yo

=e−1/2=0.6065, t�yo�=1+ �1 /6e�=1.061, and other notations
follow Ref. 43 or are in Table I. The constant yo is such that
the tangent line to the Forbes approximation to v�y� is linear
in y2 with a slope of −1, which provides a connection to the
usual �metal� result in that if �=0, then the usual represen-
tation is recovered. For copperlike parameters it follows that
�=0.772 81. While Eq. �3� is not in a form resembling the
FN equation as originally derived, it is a consequence of the
forms used for v�y� and t�y�.

As a final observation, as discussed �and advocated� by
Forbes,47 the form of Eq. �3� removes the privileged role of
so-called FN coordinates in which ln�J /F2� is plotted against
1 /F, and—by extension—the same with ln�Itip /V2� with
1 /V. In point of fact, ln�JFN� will appear linear as a function
of 1 /F for a variety of � values. The pedigree of Millikan–
Lauritsen plots, in which ln�J� versus 1 /F is shown, is older
than FN, easier to use, more robust in dealing with correc-
tions and sources of voltage dependence, and therefore shall
be how I�V� data shall be represented here.

The numerical model for a single emitter

The PCM gives field enhancement and tip radii param-
eters in a computationally expedient manner. A line of
charges is placed along the z axis above the z=0 plane in
such a manner as to have the zero equipotential line approxi-
mate the shape of an emitter. The potential everywhere is
related to the background field Fo �in practice, the field at the
virtual anode in the unit cell� to the base dimensions of the
emitter characterized by a length scale a0 via

V��,z� � Foa0Vn��exp

a0
,
zexp

a0
� ,

Vn��,z� � − z + ��2 + z2�−1/2 + �
j=1

n
� j

��2 + �z − zj�2�1/2 , �5�

where �0 is implicitly set equal to 1 and, in the second line,
� and z are dimensionless cylindrical coordinates and corre-
spond to the ratio of the physical radial and axial coordinates
with the unit a0 such that Vn�� ,z� itself is dimensionless. The
zj are defined according to

zn = �
j=1

n−1

rn−1 =
1 − rn

1 − r
� Sn�r� �6�

and denote the location of the nth charge of relative magni-
tude �n. The physical height of an n-charge emitter is
Sn+1�r�a0. The factor r is a scaling parameter such that a
charge � j is placed rj above the one below it �i.e., zj+1=rj

+zj�. The values of � j are dictated by the boundary condition
Vn�0,zn+1�=0, and the surface is defined by the zero equipo-
tential line. Because charges of only one sign are considered
in Eq. �5�, Vn in Eq. �5� shall be termed the “monopole”
model Vn

mono�� ,z� to distinguish it from another version be-
low. The monopole emitters have broad bases suitable to
model cone formation from heating and melting. In contrast,
microfabricated field emitters tend to be of a sharper conical
shape and carbon nanotubes more cylindrical.49 It is there-
fore useful to introduce a model that more closely approxi-
mates narrow geometries and called the “dipole” model
Vn

dipl�� ,z� because it considers pairs of opposite charges
placed symmetrically about the z plane. The dipole Vn is
defined by

Vn
dipl��,z� � − z + �

j=1

n

� j���2 + �z − zj�2�−1/2

− ��2 + �z + zj�2�−1/2� , �7�

where �0 is implicitly set equal to 0. It is subject to the same
boundary condition Vn

dipl�0,zn+1�=0. The presence of mirror
image charges across the z=0 plane results in a much
sharper, more ellipsoidal emitter shape, as shown in Fig. 3
for the particular case of r=1 and n=6. In both the monopole
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l
c
o
o
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radial coordinate �

r = 1.0

n = 6

FIG. 3. �Color online� Comparison of the monopole versus dipole tips for
r=1 and n=6.
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and dipole models, the field enhancement factor �n and apex
radius an are given by

�n�r� = � − �zVn�0,z��z=zn+1
,

an�r� = � −
��Vn��,z�
��

2Vn��,z�
�

�=0,z=zn+1

. �8�

It is observed that Eq. �8� refers to apex values of field en-
hancement and radius, but Eq. �7� does not preclude the
evaluation of such quantities off-axis �rather, the on-axis val-
ues are the most appropriate metric to discuss�. The field and,
hence, local field enhancement are readily evaluated from
Eq. �7� off axis and down the sides of the emitter. Impor-
tantly, the PCM formulation allows for the treatment of small
asymmetric protrusions existing on a conical emitter through
the addition of an off-axis point charge in a straightforward
manner or alternately a whisker that is bent and therefore no
longer rotationally symmetric. These generalizations are use-
ful extensions of the theory, but are not presently considered.

The methods to evaluate �n, �n, and an in terms of r and
n are now given. As may be anticipated, �n�r� for small r is
an exponentially shrinking quantity as n increases, and it is
computationally expedient to introduce an auxiliary function
Pn�r� defined by

�n�r� � Pn�r�rn �9�

to separate out the exponentially small behavior. The bound-
ary conditions can now be concisely expressed by Eq. �5�
and �7� evaluated at �=0 and z=zn+1 via

�
j=1

n

Mn,j
mono�r�Pj�r� = Sn+1�r� −

1

Sn+1�r�
,

�
j=1

n

Mn,j
dipl�r�Pj�r� = Sn+1�r� . �10�

In matrix parlance,

�Mmono�n,j =
�n,j

Sn+1−j�r�
,

�Mdipl�n,j =
2Sj�r�

Sn+1−j�r��Sj�r� + Sn+1�r��
�n,j , �11�

where �n,j=1 if j	n and 0 otherwise, and use has been made
of Sn+1−Sj=rjSn+1−j. Equation �10� is therefore concisely ex-
pressed as matrix equation M ·P=S, where M is a lower
triangular matrix, and therefore the inversion P=M−1 ·S is
easily accomplished using standard numerical techniques.
Because M is lower triangular, the solution for n=N, where
N is larger than any n likely encountered in practice �e.g., at
N=24 and r=0.4, the base of a nanometer-radius emitter
would be approximately 2 m�, need be performed but once
for a given r and the coefficients can be stored and therefore
available for any n�N in subsequent calculations. Such
would be useful, for example, to model the physical growth
of an emitter as n increases.

The matrix method can likewise be used to calculate the
field enhancement factors �n�r�, which like Pn�r� can be cast
as the solution to matrix equations. Define B by

�Bmono�n,j =
1

rj�Sn+1−j�2 ,

�Bdipl�n,j =
4SjSn+1

rj�Sn+1−j�Sn+1 + Sj��2 , �12�

where the argument in Sj is suppressed. Then

�mono = Bmono · P + Y ,

�dipl = Bdipl · P + I , �13�

where I is the identity matrix and �Y�n=1+ �Sn�r��−2. As with
M, B is a lower triangular matrix and so all the field en-
hancement values for any n	N can be obtained by inverting
the matrix equation for n=N. The equations for apex radius
can be put in the same form, but it is convenient to simply
give them as, for the monopole case �the r dependence of the
S terms is suppressed for visual clarity�,

an
mono = Sn+1

1 + Sn+1
2 + �

j=1

n
Pj

rj � Sn+1

Sn+1−j
�2

Sn+1
3 + �

j=1

n
Pj

r2j� Sn+1

Sn+1−j
�3

, �14�

and for the dipole case

an
dipl = 2

�
j=1

n
Pj

rj

SjSn+1

�Sn+1−j�Sj + Sn+1��2

�
j=1

n
Pj

r2j

Sj�Sj
2 + 3Sn+1

2 �
�Sn+1−j�Sj + Sn+1��2

. �15�

The behavior of the field enhancement factor and the apex
radius for various r and n is shown in Fig. 4. To relate to
physical emitters, the overall shape of the emitter is gov-
erned by type �cusplike corresponds to “mono,” conical, or
ellipsoidal to “dipl”�, height is governed by Sn�r�a0

exp, and
apex radius is governed by an�r�a0

exp, where a0
exp is a dimen-

sioned unit. In contrast to all other analytical emitter models,

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 5 10 15 20

� 0.4

� 0.7

� 1.0

a
n
0.4

a
n
0.7

a
n
1.0

F
ie
ld
E
n
h
a
n
c
e
m
e
n
t
�
n
(
r
)

T
ip
R
a
d
iu
s
a
n
(r
)

n

FIG. 4. �Color online� Dimensionless field enhancement factor �n and apex
radius factor an as a function of n using the dipole model of Eqs. �13� and
�15�. The numbers following � and an in the legend are the value of r for
that line.
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the model retains the same basic emitter shape as the tip is
progressively sharpened. This is seen in Fig. 5 as n increases
for a given r.

The tip current model

Near the apex of the emitter, the surface is, to a good
approximation, parabolic and therefore defined by the equa-
tion

zsurf��� � zn+1 −
�2

2an
. �16�

The current density drops rapidly as � increases because to a
good approximation F�Ftip cos �=Ftip�1− �� /an�2�1/2,
where the cylindrical coordinate � is related to the spherical
coordinate � by �=an sin �. For example, when � is 75% of
an, then the current density is 1% of its apex, or “tip,” value.
The total current is obtained from38

I�Ftip� = �
�

Jd� = �
0

�

2���1 + ���zsurf�2J�F����d�

� 2��a0
expan�2J�Ftip��

0

1

x�1 + x2J�F�anx��dx .

�17�

Using Eq. �16� in Eq. �3� gives

I�Ftip� �
1

2
�a2��

s
�1/2

�Erf�p�F�s�F��

− Erf�s�F���exp�s�F�2�J�Ftip� ,

p�x� =
5B − 4�2 − ��x
2B − 2�1 − ��x

,

s�x� =
B − �1 − ��x

�2x�3B − 2�3 − ��x�
, �18�

where Erf�x� is the error function and the tip radius is a
�ana0

exp �and is therefore dimensioned�. For example, an
apex field of 8 GV /m, a tip radius of a0

exp=10 nm, and cop-
perlike parameters, for which p and s are equal to 2.0945 and
3.6134, respectively, Eq. �17� predicts that Itip=49.7 
A,
whereas Eq. �18� gives 52.7 
A. The notional emission area

�Itip /Jtip� is 0.176 44�a2 corresponding to 55.431 nm2. The
field dependence of the notional emission area is shown in
Fig. 6. Using the r=0.4 line of Fig. 4, this would be achieved
by an emitter characterized by a0

exp=1.5345 
m and n=6 in
a background field of 222.61 MV /m. For comparison, such a
field is: a fraction of the breakdown fields associated with
various metals; less than the 400 MV /m surface field that
characteristic of the compact linear collider50 and compa-
rable to the ratio of the gate potential �75 V� to the gate
radius �0.375 
m� for a Spindt-type field emitter operating at
50 mA for a 104 tip array.27 Continuing, the dimensionless
axis potential Vn�0,z� and its gradient for z�zn+1 are shown
in Fig. 7 �albeit for n=4 rather than 6 to bring out the near-
apex behavior� for a dipole geometry: by z−zn+1�1 �a dis-
tance characteristic of the emitter base radius� the field gra-
dient is only 28% larger than the background field whereas
the field enhancement factor is 15.855.

The coefficient of J in Eq. �18�, or rather g�F�
� Itip / ��a2J�, is to a good approximation a quadratic func-
tion of F, albeit that its evaluation is somewhat cumbersome.
It might be thought that a useful approximation can be ob-
tained by using asymptotic expansions of the error function

Erf�x��1−�−1/2e−x2
�x−1−2x−3� to give
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FIG. 5. �Color online� A dipole tip for r=0.75 and increasing values of n,
demonstrating how the shape of the tip stays approximately the same even
as the apex becomes sharper for increasing n.
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g�F� �
F�2 − s�F�−2�
B + �1 − ��F

, �19�

but this approximation is poor when F approaches
10 eV /nm, as shown in Fig. 6. For computational purposes,
it is better to exploit the quadratic behavior explicitly and
take advantage of g�0�=0 to obtain

g�F� � F�c1F + c0� ,

c1 = 2g�Fmax� − 4g�Fmax

2
� ,

c0 = − g�Fmax� + 4g�Fmax

2
� , �20�

where Fmax=10 eV /nm. For copperlike parameters, c1

=−0.064 203 and c2=0.286 47 and gives the line labeled
“Quadratic” in Fig. 6, entailing that g�F� therefore need only
be computed twice for a good parametric representation.

The space charge model

With an estimate of Itip, an evaluation of when space
charge forces affecting emission for a single tip can be made.
Assume that electrons are emitted along the z axis every �t
=q / Itip with �in contrast to a previous treatment36� an initial
velocity v�
�k� /m�
kF /m�vF, where 
2kF

2 /2m=
.16 As-
sume that the field that accelerates the emitted electron is
constant. In actuality, the field drops away from the emitter
apex as a consequence of geometry and so electrons will not
be swept away as quickly as assumed. The effect of electrons
further out �where the approximation degenerates� is much
less than those closer to the emission site �where the approxi-
mation is good� because their influence fades as the square of
their distance. Therefore, the cumulative space charge effect
will be larger than that predicted by the constant field ap-
proximation which tends to underestimate it �i.e., the con-
stant field result is a lower bound estimate�. The distance of
the jth electron from the apex is then

zj��t� =

kF

m
�j�t� +

F

2m
�j�t�2. �21�

The sum of the forces on the apex of the emitter from the
emitted electrons is

�Fe �
q2

4��0
�
j=1

�

�zj��t��−2. �22�

Let the image charge be that of a sphere of radius a, for
which

�Fi �
q2

4��0a
�
j=1

�
zj��t� + a

�zj��t��2 . �23�

Introducing the dimensionless term ��F�=2
kF /F�t then the
total reduction in field at the apex of the emitter due to the
line of emitted charge is the sum of Eqs. �22� and �23�, or

�F = �Fe + �Fi �
2afs
cm

aF�t2
	R��� + � aF

2

��2R����
 .

�24�

The functions R and R� �where the prime does not indicate
derivative� are defined by

R�x� = �
j=1

�
1

j�j + x�
,

R��x� = �
j=1

�
1

j2�j + x�2 . �25�

Special cases are R�0�=��2�=�2 /6, and R�1�=1, and R��0�
=��4�=�4 /90 and R��1�=2��2�−3, where ��n� is the Rie-
mann zeta function. The summations can be approximated
by equivalent integrals, but the error is largest for small j.
Therefore, it is most efficient computationally to sum the
first few terms and approximate the remainder by integration.
We use

R�x� �
1

2n�n + x�
+

1

x
ln�1 +

x

n
� + �

j=1

n−1
1

j�j + x�
. �26�

For n=2, Eq. �26� is accurate to within 1.2%. Performing the
same analysis with R���� results in the approximation

R��x� �
2n�n + x��2n + x� + x2

2n2x2�n + x�2 −
2

x
ln�1 +

x

n
�

+ �
j=1

n−1
1

j2�j + x�2 , �27�

which for n=2 is accurate to within 0.6%. Larger n rapidly
results in even greater accuracy. The behaviors of R and R�
are shown in Fig. 8 for values of argument encountered for
copperlike parameters �observe that n here is not the n of the
PCM�. The behavior of �F�F� is shown in Fig. 9 for a
=10 nm and �=4.5 eV.

The field at the apex of the emitter is therefore smaller
by �F than the field that would exist in the absence of space
charge. The leading order estimate of single-tip space charge
is then that the relationship between the field F at the apex to

0.01

0.1

1

0.1 1 10

R

Approx R (n=2)

R'

Approx R' (n=2)

R
(�
)
a
n
d
R
'(
�
)

�

FIG. 8. �Color online� Behavior of R and R� �Eq. �25� with the approxima-
tions of Eqs. �26� and �27� for n=2�.
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the anode voltage must be 2�nV /Nl=F+�F. From Fig. 4,
exponential approximations for the dipole geometry for r
=0.4 are given by

�n�r = 0.4� � 3.125e0.4095n,

an�r = 0.4� � 1.390e−0.9067n. �28�

The results of the space charge effects evaluation are shown
in Fig. 10 for several values of n for a dipole configuration
under the assumption that the work function is 4.5 eV and
the base radius a0 is 1 
m. The Fo used as a background
field has conceptual difficulties when being related to a gated
field emitter, as it will bear a nontrivial relationship to the
gate voltage and gate radius, and requires modeling specifics
beyond the present treatment �but intimated elsewhere36�.
The behavior shown in Fig. 10 for small large macroscopic
field �given by �F+�F� /�n� shows the impact of tip sharp-
ening on the onset of space charge effects and bears a quali-
tative similarity to data shown in Ref. 27 and 36 �albeit the
latter are shown on traditional FN plots�: however, when
emission is from an array, it is far more likely that space
charge between the anode-gate planes causes the character-
istic turnover than the single-tip effects of Fig. 10. To model
further space charge effects on arrays, the 3D tip model must
be embedded in the 1D gap model, and such an analysis shall
be deferred to a separate study.

Comparison to experiment

Therefore, for comparison, consider a sharpened needle
rather than a microtip, and, in particular, for field emission
data from a tungsten emitter examined by Barbour et al.
�Fig. 3 in Ref. 29� in which current intensified as barium was
added to the needle to lower the work function. The experi-
mental data allow for a comparison to the theoretical model
after the specification of work function, tip radius, and field
enhancement factor. First, the emission area of the needle is
far larger than for the Spindt-type emitters: as a result, the
reported apex radius of the emitter can be measured instead
of inferred. Second, as the uncoated tip was tungsten, the
field enhancement factor for the needle can be obtained from
that tip and used for the coated tip measurements. Third, with
the field enhancement factor and the apex radius, the work
function for the remaining three lines corresponding to in-
creased barium coverage of the tip can be determined. It
needs to be emphasized that the single unknown quantity for
each line �field enhancement factor for uncoated needle,
work function for partially coated needle� can be found from
a single I�V� data point using Eq. �18� rather than from least
squares fitting to find slopes and intercepts on a FN plot.

The apex radius of the tungsten emitter is suggested by
the measurements of Ref. 29 to be 364 nm. Using an I�V�
data point extracted from line 1 �uncoated tungsten� from
Fig. 3 of Ref. 29 �V=7980.6 V, I=0.646 
A�, the field en-
hancement is determined to be �=4516q /cm. Using single
data points from the other lines 2–4 at comparable current
levels, and taking vF=c /152.4 �the chemical potential of
tungsten is greater than that of copper�, the work functions of
the partially coated tips are determined to be 3.30, 2.89, and
2.52 eV, respectively. I�V� data are then generated using
Eqs. �18� and �24�. The anode voltage is determined by V
= �F+�F� /�, and the theoretical estimates of space charge
affected emission from the tip are shown, along with the data
of Barbour et al. in Fig. 11, where, following the recommen-
dation of Forbes,47 a Millikan–Lauritsen, rather than FN, co-
ordinate plot is used: the numbering of the lines corresponds
to the same numbering as used by Barbour et al. As noted
previously, the assumption of a constant �versus a declining�
field away from the emitter apex entails that the magnitude
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of �F will be underestimated, but it is seen that even for
unoptimized parameters, the prediction of the onset of space
charge effects is quite clearly predicted.

CONCLUSION

Field emission is particularly subject to space charge ef-
fects because of the strong variation in the emitted current
with the field that exists. Because of the high current densi-
ties that are possible with field emission, space charge effects
can manifest themselves in two ways: first, it can suppress
the macroscopic field between cathode and anode as would
exist for an array of emitters �and as described by the usual
Child’s law formulation�, and second, for a single emitter,
charge near the emitter site can reduce the apex field. In the
present work, a theory for the latter effect was developed and
used to analyze single emitter data in the literature. It was
determined that space charge can have an impact even for a
single field emitter, and a method to estimate that impact was
given. Finally, a discussion of the method to incorporate such
a unit cell model into a larger macroscopic model, in a man-
ner suggested to be useful to the needs of PIC codes, was
given.
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