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Abstract-A cost based admission control and routing scheme
admits an arriving request on the minimum cost route if this
cost does not exceed the cost of the request, and rejects the
request otherwise.  Cost based strategies naturally arise as a
result of optimization of the network performance or
incorporating Quality of Service (QoS) requirements into the

admission and routing processes.  In the former case the implied
cost of the resources represents expected future revenue losses
due to insufficient resources to service future requests.  In the
latter case the cost of a route represents the expected level of
QoS, e.g., bandwidth, delay, packet loss, etc., provided to the

request carried on this route.  In both cases due to aggregation,
statistical nature of the resource costs, propagation and
queueing delays in disseminating signaling information, non-
steady or adversarial operational environment the cost of the
resources may not be known exactly.  Usually, this uncertainty is
modeled by assuming that resource costs are random variables
with fixed probability distributions, which may or may not be
known to the network.  This paper explores different approach
intended to guard against adversarial uncertainty, i.e., worst
case scenario, with respect to the resource costs lying within
known "confidence" intervals.  We assume that the network
minimizes and the adversarial environment maximizes the loss
or risk resulted from non-optimal admission and routing
decisions due to the uncertainty.  In a symmetric case we
explicitly identify the optimal network strategy by solving the
corresponding game of the network against environment.

I. INTRODUCTION

A. Cost Based Admission Control and Routing

    A cost based admission control and routing strategy for an

arriving request is defined by the set },..,,{ 21 KrrrR =  of

feasible routes Rr ∈ , the "cost" rc  of a feasible route

Rr ∈ , and the "cost" of the request w .  The strategy admits
the arriving request on the minimum cost route
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if this minimum cost does not exceed the cost of the request
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min* ,                                       (2)

and rejects the request otherwise.  This cost based admission
control and routing strategy can be expressed as follows:
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where ∅=r  means that the request is rejected.

    Cost based strategies naturally arise as a result of
optimization of the network performance [1] or incorporating
Quality of Service (QoS) requirements into admission and
routing process [2].  Admission of a request brings certain
revenue w  to the network, but also ties up the occupied
resources until the service is completed and, consequently,
may cause future revenue losses due to insufficient resources

for servicing some future requests.  The implied cost rc  of
the resources on a route r  reflects these potential revenue
losses, and the surplus value
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is the difference between the revenue brought by the admitted
request and the implied costs of the occupied resources.
   In a case of QoS routing cost of a route r  reflects

expected level of the QoS provided to a request carried on

this route.  For example, rc  may be the expected delay on

route r , may represent the bandwidth rb  available on route
r , or may represent the packet loss probability on route r .
In a case of QoS routing the request cost w  characterizes

the minimum acceptable level of QoS for this request:

wcr ≤ .

B. Uncertainty in the Resource Costs

   Usually, cost-based admission and routing strategies
assume the average, steady-state network behavior implying
some, typically simple, stationary or quasi-stationary
probabilistic model for the external parameters, e.g.,
connectivity, capacities, traffic arrival patterns, etc.  Since the
implied costs and surplus values are determined by future
events, e.g., arrival of requests, availability of resources, or
network topology, the performance of this strategy depends
critically on the accuracy of this probabilistic model.  The
sources of uncertainty in the resource costs rc  are (for more

detailed discussion of a case of QoS routing see [2]): (a)
statistical inferences resulted in confidence intervals rather
than point estimates, (b) aggregation used to reduce amount
of signaling traffic, (c) propagation and queueing delays in
disseminating signaling information, (d) non-steady
operational environment when costs rc  may change with
time, (e) adversarial environment attempting to manipulate
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available information on costs rc  in order to disrupt the
network operations.

   Currently, commercial networks, including the Internet,
may carry mission-critical applications.  Possibility of a
disaster or adversary attack necessitates developing
management schemes that balance cost efficiency with
robustness.  In practical situations some limited (incomplete)
statistical information about the operating environment is
available.  Proper utilization of this incomplete information
would allow the network to reduce the safety margin and
consequently increase the cost efficiency with respect to the
resource utilization.

C. Utility Function

     If the route costs are not known exactly, the network may
make erroneous decisions: to accept a request on non-optimal

route optrr ≠ , or reject the request even if ∅≠optr .  In a

case of optimization of the network performance the utility of
the admission and routing decisions is quantified by the
surplus value (4).  In a case of QoS routing we propose to
quantify the utility of the admission and routing decisions as
follows:
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where function )(ξϕ  is monotonously increasing, concave

for ),( ∞−∞∈ξ , and 0)0( =ϕ .  Surplus value (4) is a

particular case of the utility function (5) when ξξϕ ≡)( .
Note that despite formula (5) can be used in both cases:
optimization of the network performance and QoS routing,

the meanings of the utility functions ϕ  are different.  In the

former case, linear function rr cwcw −=− )(ϕ  represents

the network utility of allocating resources of total cost rc  to

a request that generates revenue w .  In the latter case

typically nonlinear function )(ξϕ  represents the user utility

of receiving QoS rc , allowing for describing the user

"soft" QoS requirements [3]-4].  A particular case of user

"hard" QoS requirements corresponds to the following

specific selection of the function )(ξϕ :
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with some positive constant 0>ω .
   The following parameterized family of functions provides
convenient approximation for the utility function )(ξϕ :

                       ( )γξωγωξψ −−= e1),(                            (7)

where 0>ω  and 0>γ  are some parameters.  Function (7)

is monotonously increasing, concave in ξ  for any

2),0(),( ∞∈γω .  When ∞→ω , 0→γ ,

const== βωγ , family (7) yields a linear utility function

βξγωξψ =),( .  When const=ω , ∞→γ , family (7)

yields utility function (6).

D. Main Results and organization of the paper

   Usually, uncertainty in the resource costs is modeled by
assuming that the resource costs are random variables with
fixed probability distributions, which may or may not be
known to the network [2].  From the decision theoretic
perspective this approach lies within Bayesian framework [5].
This paper explores a different approach, which lies within
the game theoretic framework, and can be justified as
guarding against adversarial environment or as providing
bounds for the Bayesian solution by identifying the worst
case scenario distributions [5].  The paper follows a general
approach to network management under uncertainty proposed
in [6] and then discussed in [7] in relation to cost based
admission control and routing when route costs are selected
by an adversary.  Paper [7] used this game-theoretic
framework to analyze a case of a single feasible route when
the risk results only from the admission decision under
uncertainty.
   This paper extends game-theoretic framework [7] in two
directions: first, into domain of QoS routing by assuming
generalized utility function (5), and, second, in terms of
practical applicability, to a case of multiple feasible routes,
by analyzing risks resulted from admission/rejection as well
as routing decisions.  In this paper we concentrate on a case
of binary adversarial uncertainty, when route costs

rrr ccc
�� ξξ +−= )1(  where bounds rc

�

 and rc
�

 are known

to the network, and the binary variable }1,0{∈ξ  is selected
by the adversarial environment. We demonstrate that
allowing mixed, i.e., random network strategies improves the
network performance.  This result is in sharp contrast with
the Bayesian approach, which suggests the deterministic
admission and routing strategies based on the average
utilities.  In a particular case of linear utility function and
surplus value (4), Bayesian approach with mutually

independent random route costs rc  leads to the cost based
admission and routing strategies based on the average route
costs.
   The paper is organized as follows.  Section II quantifies
risks associated with rejection, admission and routing
decisions under uncertainty, and, also, formulates the game
theoretic framework yielding the optimal admission and
routing strategy under adversarial uncertainty.  Section III
derives the best pure strategies for the network and
environment in a case of binary adversarial uncertainty.
Section IV describes approach to solving of the
corresponding game and presents explicit solution in a
symmetric case.

II. RISKS OF ADMISSION AND ROUTING UNDER UNCERTAINTY



A.  Game Theoretic Framework

   The losses due to non-optimal admission and routing
decisions can be quantified by the following loss or risk
function [5]-[7]:

         ),()(),( wrcuwcuwrcL opt −=                           (8)

where the utility of the optimal admission and routing
decisions is

                  ),()( wrcuwcu optopt =                                    (9)

and optr  is determined by (3).  Combining (3), (5), (8) and (9)

we obtain:
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where *c  is determined by (2). Given w , function

),( wrcL  possesses the following properties:

        0),( =wrcL  for  optrr = , and Cc∈∀

        0),( ≥wrcL  for },{),( RCrc ∅⊗∈∀
and thus

            0),(minmax
),(

min
max ≡=

∅∈∈
wrcLL

RrCc
                     (11)

            0),(maxmin
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max
min ≥=

∈∅∈
wrcLL

CcRr
                     (12)

The best pure strategies for the network and environment

optrr ~=  and optcc ~=  are determined by the solution to the

optimization problem (12).  It is easy to verify that

optopt rr =~  if set C  consists of a single element: cC ≡ .

This paper investigates admission and routing strategies
guarding against the worst case scenario with respect to the

route cost vector )( rcc =  when the available information

on the vector c  can be quantified in terms of the
"confidence" interval C : Cc∈ .  The following game
theoretic framework with pay-off function (10) provides a
natural formalization for this problem.
   Consider a zero-sum game with two players, where player

)(r  represents the network, and player )(c  represents the
adversarial environment.  The set of feasible strategies for the
network is },{ Rr ∅∈  and the set of feasible strategies for

the environment is Cc∈ .  The matrix of payoffs made by

the network to the environment ),( wrcL  is given by (10).

According to this game theoretic framework, the optimal
network strategy },{ Rr ∅∈  represents the admission and
routing strategy guarding against the worst case scenario with
respect to the route costs Cc∈ .  The value of the game

)(, wRCυυ =  represents expected performance loss due to

the admission and routing decisions },{ Rr ∅∈  for a single
request under incomplete information on the implied costs of

the resources Cc∈  selected by adversarial environment.  In

a particular case when the payoff function ),( wrcL  has a

saddle point, i.e., 0max
min =L , the environment and the

network have pure optimal strategies optcc ~=  and optrr ~=
respectively, which are the solution to the optimization

problem (12).  In a case when the payoff function ),( wrcL

does not have a saddle point, i.e., 0max
min >L , the

environment and the network have mixed optimal strategies
which are probability distributions on Cc∈  and

},{ Rr ∅∈  respectively.  The value of the game is
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where the expectation is taken with respect to the optimal
mixed strategies for the network and environment.
   Usually, in practical situations, optimization problem (12)
is quite tractable while finding optimal mixed strategies is
computationally challenging.  The performance gain resulted
from these computational trouble can be quantified by the
following criterion:
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B.  Admission, Rejection and Routing Risks

   There is a natural way to separate losses (10) into losses

resulted from the admission/rejection decision )( wcL ra

and losses resulted from the routing decision ),( rcLrtn

under uncertainty:

            ),()(),( rcLwcLwrcL rtnra +=                      (15)

Since the optimal routing decision (1) does not carry any risk,

i.e., 0),( * ≡rcLrtn , we have from (15):

),()( * wrcLwcL ra = , and thus:
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where the admission risk is

         )}(,0min{)( *cwwcLadm −−= ϕ                       (17)

and the rejection risk is

           )}(,0max{)( *cwwcLrej −= ϕ                         (18)

Combining (15)-(18) we obtain the following expression for
the routing risk:
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The value of the game (13) can be also represented as the
following sum:



                          rtnra υυυ +=                                        (20)
where the expected performance loss due to the
admission/rejection decision is

                      rejadmra υυυ += ,                                    (21)
the expected performance loss due to the admission is

        [ ]∅≠−−= rcwEadm )}(,0min{ *ϕαυ ,            (22)

the expected performance loss due to the rejection is

     [ ]∅=−−= rcwErej )}(,0max{)1( *ϕαυ ,        (23)

the expected performance loss due to the routing decision is

       [ ]∑ ∈
−−−=

Rr rr
rtn cwcwE )()( * ϕϕαυ ,         (24)

the probability of selecting route r  is rα , and the admission
probability is

                            ∑ ∈
=

Rr rαα                                        (25)

Expectations in (22)-(24) are to be calculated with respect to
the optimal, in general mixed, strategies for the network and
environment.

III.BEST PURE STRATEGIES UNDER BINARY UNCERTAINTY

A.  Binary Uncertainty

    Computational tractability of the game with pay-off
function (10) depends on the set of feasible strategies for the

environment CRrcc r ∈∈= ):( .  Further in this paper
we consider a case of binary strategies for the environment:
                               },{ ccC

��=                                          (26)
or, equivalently,
                          ccc

�� ξξ +−= )1(                                   (27)
where the low and upper bounds for the feasible route costs

CRrcc r ∈∈= ):(
��

 and CRrcc r ∈∈= ):(
��

 are

known to the network, while the binary variable }1,0{∈ξ  is
selected by the adversarial environment.  In this extreme case
malicious environment can only attack all feasible routes
simultaneously.  Another extreme case would be a separable
set of feasible strategies for the environment C :

                           ],[ rr
Rr

ccC
��

∈
⊗=                                      (28)

Under separable scenario (28) the malicious environment can
select route costs independently from each other within their

"confidence" intervals ],[ rrr ccc
��∈ .

    In practical applications the route costs are typically
additive, i.e., the implied cost of a route r  is the sum of the
implied costs of the links rl ∈  comprising this route.  Due
to the "global nature" of the route costs [1], and overlapping
of different routes, a realistic scenario lies somewhere
between binary scenario (26) and separable scenario (28).  In
this paper we assume a binary scenario (26) mostly because
of the computational tractability allowing us to illustrate the
proposed approach to the network management under
adversarial uncertainty.  Also, binary scenario (26) may serve
as a model of less sophisticated or capable adversarial

environment than separable scenario (28).  Note that binary
scenario (26) leads to lower expected risk and to less
conservative network strategy than scenarios with less than
perfect correlation between costs of different routes.

B.  The Best Pure Strategies

   The optimal binary environment response )(** rξξ =  to

selection of a route },{ Rr ∅∈  by the network is
determined by solution to the following optimization
problem:
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where )(ξc  is given by (27).  It is easy to verify that

            




∅≠
∅=

=
r

r

if

if
r

1

0
)(*ξ

The corresponding losses are

( ){ }




∅=−
∅≠−−−

=
rifcw

rifcwcw
L r

)}(,0max{

)(,0max

min

minmax
�

��

ϕ
ϕϕ

where { }Rrcc r ∈= ��

minmin , and

                    { }Rrcc r ∈= ��

minmin                                  (29)

The best pure network strategy is determined by solution to
the following optimization problem:
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where *r
�

 is determined by solution to (29).

IV. OPTIMAL STRATEGY

A.  Solution to the Game

   In a case of binary uncertainty the payoff function (10)
takes a form of the following )1(2 +× K  matrix
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where

)}(,0max{ min00 cwL
�−= ϕ ,

)}(,0max{ min10 cwL
�−= ϕ ,

)()}(,0max{ min0 rk cwcwL
�� −−−= ϕϕ ,

)()}(,0max{ min1 rk cwcwL
�� −−−= ϕϕ ,

Kk ,..,1= .  A )1(2 +× K  game can be explicitly solved
[8].  The fundamental simplex of mixed strategies of the



environment in this case is the closed interval [0,1].  Let the
network select the pure strategy Kk ,..,1= .  Then the
payoff of the environment will depend on its chosen
probability x  of selecting the first pure strategy:

                    kkk LxxLxg 10 )1()( −+=                         (32)

Kk ,..,1= ,  The graph of the function
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is the lower envelop off all straight lines (32).  Clearly, such a
graph is a broken line that is convex upwards.  An upper peak
of this broken line characterizes the optimal probability

*xx =  and the value of the game
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It is easy to verify that if mincw
�< , then the network has

pure optimal strategy ∅=r , i.e., reject the request, the
environment has a pure strategy 0=ξ , and the value of the

game 0=υ .  Due to space constraints, in the next
subsection we only describe the optimal strategy in a
symmetric case.

B.  The Optimal Strategy in a Symmetric Case

    Consider a symmetric case with 2≥K  feasible routes

],[ cccr

��∈ , },..,{ 1 KrrRr =∈ .  The network has two

pure admission strategies: ∅=r , i.e., to reject the request,
and Rr ∈ , i.e., to accept the request.  We assume that once
accepted a request is carried on a route randomly, with equal
probabilities, selected from all feasible routes

},..,{ 1 krrRr =∈ .  It is easy to verify that the optimal

admission probability is
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and the value of the game is
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Note that υυ =adm  since 0=rtnυ .  For utility function (7)

we get from (33)-(34): 
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QoS requirements (6), expressions (33)-(34) yield: 0=α
and ωυ = .

   The following matrix shows the network pure strategies:
∅=r  and Rr ∈ , the best environment response

)(* rξξ = , and the corresponding loss maxL  in a symmetric
case:
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The best pure admission strategy (30) is to admit the request
if ww ≥ , and reject the request otherwise.  The gain (14) is
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and 01 =δ  otherwise, where ww =  is the unique solution
to the following equation:
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�� ϕϕ                               (35)
For utility function (7) equation (35) can be solved explicitly:
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In a case of linear utility function ξξϕ ≡)( , equation (35)

yields ( ) 2ccw
�� += , and in a case of hard QoS

requirements (6), equation (35) yields cw
�= .
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