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   Abstract

MEMS gyroscopes have proved to be extremely difficult to manufacture reliably. The

MEMS gyroscope is required to sense picometer-scale displacements, making it sensitive

to spurious vibrations and other coupling mechanisms. This thesis aims to quantitatively

capture, through models and simulations, the sensitivity of a MEMS gyroscope to manu-

facturing variations in the widths of suspension beams and gaps between fingers in elec-

trostatic actuation and capacitive sensing combs. The gyroscope considered in this thesis

is manufactured in a CMOS-MEMS process. The suspended MEMS structures are com-

posed of the multi-layer stack of interconnect metals and dielectrics in a CMOS process.

The effect of misalignment between the metal layers in the suspended microstructures is

also modeled in the gyroscope. A number of fundamental issues related to the modeling

and simulation of MEMS gyroscopes are addressed. Models in elastic and electrostatic

domains are developed. Numerical tools such as finite element analysis or boundary ele-

ment analysis are used for model verification. Behavioral simulation is used throughout

this thesis to analyze the gyroscope and system-level design issues.

The elastic modeling effort is primarily aimed at a thorough understanding of cross-

axis coupling in micromechanical springs and at multi-dimensional curvature in the multi-

layer suspended structures in the CMOS-MEMS process. Cross-axis stiffness constants

are derived for basic spring topologies such as crab-leg, u-spring and serpentine springs.

Techniques to reduce, and even completely eliminate, elastic cross-axis coupling are dis-

cussed. In the electrostatic domain, a methodology which combines analytical equations

with numerically obtained data is developed to model CMOS-MEMS combs. Particular

attention is paid in this methodology to make the resultant behavioral model energy con-

serving. Convergence problems found in behavioral simulations of gyroscopes lead to a

detailed comparison of different Analog Hardware Description Language (AHDL) model

implementation of mechanical second-order systems, such as the resonating structure in a

gyroscope. AHDL model implementation guidelines for improved convergence in behav-

ioral simulations are deduced from the comparisons.
ix



Using the elastic and electrostatic models as the basis, analytical equations relating

gyroscope non-idealities: the Zero Rate Output, acceleration and acceleration-squared

sensitivity and cross-axis sensitivity to manufacturing effects are derived. The equations

are compared with results of behavioral simulation. Monte Carlo simulations using the

behavioral models are run in order to verify the trends predicted by the analytical equa-

tions. The analysis and simulations result in several insights into gyroscope non-idealities

and design pointers to reduce them.
x
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Chapter 1.  Introduction

1.1 Introduction
The field of Microelectromechanical Systems (MEMS) has, over the past 20 years,

emerged as a technology that promises to have significant impact on everyday living in the

near future. MEMS provide inexpensive means to sense and, in a limited way, control

physical, chemical and biological interactions with nature. They add a new dimension to

the information revolution of the latter half of the twentieth century, by enabling ubiqui-

tous access to sensor data previously limited to industrial, military, and medical applica-

tions. MEMS seek to achieve this vision through a variety of manufacturing techniques

common among which are surface micromachining, bulk micromachining and LIGA [1].

These integrated circuit (IC)-like techniques are capable of producing micrometer-scale

features. However, they lack the precision (i.e., relative accuracy) of traditional mechani-

cal fabrication practices. Being integrated circuit compatible, they derive their power by

leveraging well-understood and characterized signal processing capabilities of integrated

circuits. As a result, a wide spectrum (literally as well) of applications have been made

possible such as inertial sensors, pressure and acoustic transducers, high frequency radios,

optical communications, lab-on-a-chip for chemical and biological analysis. 

The contributions of this thesis are primarily relevant for micromachined inertial sen-

sors. Accelerometers and gyroscopes are two important members of the inertial sensor

family. Accelerometers sense the external acceleration in which they are placed, while

gyroscopes measure the rate of rotation or the angular velocity of the object to which they

are attached. Multi-axial accelerometers and gyroscopes can be combined to build an Iner-

tial Measurement Unit (IMU), also called an Inertial Navigation System (INS). Tradition-

ally, high precision IMUs have been an indispensable part of ships, aeroplanes, satellites,

space shuttles and the like. Surface micromachined inertial sensors, which can be batch-

fabricated with low cost have a small sensing proof-mass (~ micrograms) and conse-

quently lower resolution compared with macro-scale accelerometers or optical gyroscopes

[2]. The availability of low cost inertial sensors has opened up a wide range of new appli-

cations which do not require the high precision that IMUs demand. The current market for
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inertial sensors in automobiles is estimated to be about a billion dollars per year [3]. Air-

bag-deployment in automobiles is a well known example of a commercially successful

low cost, low resolution application. Surface-micromachined gyroscopes, have applica-

tions in dynamic stability control and rollover detection in automobiles, computer mice,

pointers, video camera stabilization and a number of robotics and military applications

[2][4]. Conventional rotating-wheel gyros and high-precision fiber-optic and ring laser

gyros are too expensive and too large to be adopted into the market for micro gyroscopes

[2]. While potential markets for inexpensive gyroscopes exist, technical challenges have

been impeding the rapid commercial deployment of gyroscopes. In the next section some

of the fundamental problems that have been encountered in manufacturing robust micro-

machined gyroscopes are examined.

1.2 Motivation
Microgyroscopes are mainly attractive because of their small size (~ 1 mm X 1 mm

including sensing circuits) and low cost. Most microgyroscopes consist of a vibrating

proof-mass which is driven into oscillation by electrostatic or other means. When placed

in a rotational field, the vibrating proof-mass experiences an apparent force called the

Coriolis force, which is proportional to the cross-product of the angular velocity of the

rotational field and the translational velocity of the oscillating proof-mass (Figure 1.1).

The Coriolis force is orthogonal to the direction of the driven oscillation. The displace-

ment induced by the Coriolis force is picked up by a sense accelerometer, which can either

FIGURE 1.1. Working principle of a microgyroscope with a sensing accelerometer
nested inside a vibrating frame.
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utilize the vibrating proof-mass or have a separate sense proof-mass. Figure 1.1 shows the

microgyroscope chip C which is attached to a rotating frame R. The global inertial refer-

ence frame G is also shown. The velocity  of driven oscillation and Coriolis force Fc are

shown in mutually orthogonal directions. The zoomed in view of the gyroscope schemati-

cally shows an inner accelerometer nested inside an outer resonator. The outer accelerom-

eter is driven into oscillation. Orthogonal induced oscillations between the two are picked

up by a capacitive sensing circuit. In order to identify important design issues, a high-level

analysis of typical magnitudes of various microgyroscope quantities is presented below.

In the following analysis typical numbers for microgyroscopes are used in order to

bring out the relative magnitudes of displacements and velocities in the driven (oscilla-

tion) direction and the induced (Coriolis force) direction. Typical value of the sense mass

is about . The angular velocities that can be sensed are of the order of

. The oscillations are usually about 10 kHz with an amplitude of about 5 µm.

Therefore, the peak oscillation velocity is about . The Coriolis force is

then given by . Assuming a spring stiffness for the sense

accelerometer of , the sense displacement is about 10 pm. In any real microgyro-

scope, some part of the driven oscillation couples onto the sense accelerometer, through

electrostatic, inertial, viscous and elastic modes. Comparing the magnitudes of the driven

oscillation and the displacement produced by the sense accelerometer, it is seen that

undesired coupling from the driven oscillation to the sense oscillation should be as small

as 2 ppm. While this may be a difficult number to achieve in any low cost system, it is

almost impossible to realize such precise dimension-control in IC-based processes which

typically control relative fabrication tolerances to only about 1% or 10000 ppm [5]. Fur-

thermore, in capacitive sensors, a displacement of few picometers typically results in a

capacitance change of a few zepto farads ( ). The total sense capacitance and para-

sitic capacitances are usually of the order of ten to hundred femto farads, leading to a rela-

tive capacitance change of 0.1 ppm. Therefore, extremely low noise front ends are

required to sense such small relative capacitance changes. Another fundamental issue

which limits the resolution of both microaccelerometers and microgyroscopes is mechani-

vd

Ms 1µg=

Ω 1° s⁄=

vd 0.31m s⁄=

Fc 2MsΩ vd× 10pN= =

1 N m⁄( )

10 21–
3



cal thermal noise. Since IC processes and surface micromachining are both basically thin

film processes, the resulting proof-masses tend to have a large surface-area to volume

ratio. As a result, viscous damping forces are more significant at the micro-scale than at

the macro-scale. Therefore, the Brownian motion resulting from viscous loss mechanisms

sets a lower limit on the smallest deterministic motion that can be sensed [6].

The solutions to the above fundamental challenges need a multi-pronged approach.

The CMOS-MEMS process developed at Carnegie Mellon provides partial answers to

some of the challenges [7] (Figure 1.2). Tight integration of MEMS and sensing circuits

leads to minimized parasitic capacitances. Large gaps between the MEMS structure and

the substrate (~ 30 µm) lead to reduced Couette damping on the underside of the structure.

In addition, the CMOS-MEMS process has several other advantages including full com-

patibility with a standard CMOS process, 0 additional masks for MEMS processing, high

aspect ratio MEMS structure and multi-conductor stacks which facilitate complex routing.

However, the CMOS-MEMS process also has a few inherent limitations such as vertical

curling due to the multi-layer structures, inadequate control of the beam cross-sections and

lack of control over mechanical properties of the microstructure.

FIGURE 1.2. Cross-section of microstructures in a CMOS-MEMS process
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1.3 Scope of This Thesis
The primary goal of this thesis is to understand the effect of elastic and electrostatic

coupling on a CMOS-MEMS microgyroscope. Specifically, the microgyro parameters

under consideration are [8][9]: 

• Zero Rate Output (Input offset or Bias): Input rate required to drive the output volt-

age to zero.

• Acceleration and Acceleration-squared Sensitivity: A linear acceleration applied to 

the gyroscope may result in an output indistinguishable from that produced by an input 

rotation. Typically, gyroscopes show a linear as well as quadratic dependence on accel-

eration.

• Cross-axis Sensitivity: Output produced by an angular rotation about an axis orthogo-

nal to the input axis of the gyroscope.

Little or no attention has been paid to the above parameters in public literature and

therefore, they are the primary focus of this thesis. Gyro resolution, sensitivity and non-

linearity have been analyzed extensively in public literature and therefore, are not covered

as part of this thesis.

Good design practice dictates that designers have estimates of expected non-idealities

before resorting to simulation tools for more detailed results. The primary goal of this the-

sis is to provide gyroscope designers with techniques for hand analysis of non-idealities.

Behavioral modeling and simulation is used throughout this thesis as a tool to verify hand

analysis as well as to provide quantitative data. Development of behavioral models and

solution techniques for associated simulation problems comprise a significant portion of

this thesis. In order to obtain a quantitative understanding of elastic and electrostatic cou-

pling in a CMOS-MEMS gyroscope, the following issues are discussed en route to the

gyroscope:

• General theory of in-plane elastic cross-axis coupling

• Out-of-plane elastic coupling in CMOS-MEMS beams

• Lateral and vertical curling of CMOS-MEMS beams with arbitrary boundary condi-

tions
5



• Model-order reduction for springs

• 3D modeling of electrostatic combs in the CMOS-MEMS process

• Convergence problems in MEMS behavioral simulations

In the next section, the organization of the topics listed above is described.

1.4 Thesis Organization
The thesis is organized as follows. Chapter 2 briefly surveys the development of

micromachined gyroscopes, introduces the CMOS-MEMS process and presents an intro-

duction to the behavioral simulation framework which is used extensively and also con-

tributed to in this thesis. Chapter 3 addresses elastic cross-coupling and thermoelastic

analysis for a restricted class of spring suspensions. Chapter 4 discusses reduced-order

modeling primarily of suspension beams elastic properties, but also suggests possible

extension to include viscous and inertial effects. Chapter 5 describes the electrostatic mod-

eling approach for CMOS-MEMS combs. Convergence problems in MEMS behavioral

simulation and guidelines for minimizing them are detailed in Chapter 6. Analysis and

simulation of non-idealities in the CMOS-MEMS gyroscope are presented in Chapter 7.

Finally, the contributions of the thesis are summarized in Chapter 8 and future directions

of work are suggested.
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Chapter 2.  Background

2.1 Introduction
Much of the work in this thesis falls in the intersection of three complementary

research areas: micromachined gyroscopes, CMOS-MEMS and behavioral modeling and

simulation. Each of these areas is briefly reviewed in this chapter in order to place the

remainder of the thesis in perspective. In the initial section of this chapter, the develop-

ment of surface-micromachined gyroscopes, and, specifically, vertical-axis gyroscopes,

over the last decade is reviewed. Following this, a qualitative comparison between a repre-

sentative single-layer vertical-axis microgyroscope and a CMOS-MEMS vertical axis

gyroscope is made [10]. The CMOS-MEMS process and relevant non-ideal manufactur-

ing effects are then described. In the subsequent part of this chapter, the behavioral simu-

lation framework called Nodal Simulation of Sensors and Actuators (NODAS) [11][12],

which has been developed at Carnegie Mellon will be described. NODAS is used for micr-

ogyroscope simulation in this thesis. Additionally, models developed as part of this thesis

have been incorporated into NODAS.

2.2 Micromachined Gyroscopes
2.2.1 Brief History

Microgyroscopes can be classified by a number of different criteria: by the manufac-

turing process into surface and bulk micromachined, in terms of the sensing axis as verti-

cal axis and lateral axis or in terms of the intended application range as rate grade, tactical

grade and inertial grade [2]. Most of the surface-micromachined gyroscopes reported so

far fall in the rate-grade category. The first microgyro reported in 1991 was a surface-

micromachined lateral axis gyroscope [13] followed up in [14]. Alternate microgyros built

using alternate sensing techniques: piezoresistive [15], tunneling-based [16] and optical

sensors [17] have also been reported. The first surface-micromachined vertical (Z) axis

gyroscope was made at the University of Michigan in 1994 [18]. This gyro used a vibrat-

ing ring suspended by radial springs to sense the Coriolis force. Most of the vertical-axis

microgyros developed since then are single-layer structures and use translational drive and
7



sense modes, in the plane of the structure [19][20][21][22][23][24][25][26][27][28][29].

Lateral [30][31] and vertical axis gyroscopes [10][32] have been built and successfully

tested in the multi-layer CMOS-MEMS process. In the next sub-section common features

of many single-layer vertical axis microgyroscopes are highlighted and compared with the

CMOS-MEMS vertical axis microgyro.

2.2.2 Common Features of Surface-Micromachined Vertical Axis Gyroscopes

The polysilicon microgyroscope developed by Clark et al. [19] at Berkeley is repre-

sentative of a number of later microgyroscope designs. As shown in Figure 2.1(a), linear

combs are used to actuate the inner-mass in the x direction. The inner plate vibrates with

large amplitude (few µm) in the x direction. The outer frame, along with the inner plate is,

free to oscillate in the y direction. A pair of differential combs on the outside are used to

pickup the Coriolis force induced vibrations in the y axis. 

The outer frame is suspended by springs which are stiff in the x direction and there-

fore, has only a small amount of drive motion (few nm). Therefore, the Coriolis force due

to the vibration of the outer frame is insignificant. The Coriolis substantially acts only on

the central plate, but is transmitted to the rigid frame through the connecting beams which

are stiff in the y direction. Thus, only a fraction of the total mass available is being used to

sense the Coriolis force. Furthermore, it is seen that the central plate along with the rigid

frame is easily displaced in the y direction due to external accelerations. This opens up a

FIGURE 2.1. Topology comparison of (a) single-layer surface micromachined
gyroscopes (e.g., Clark et al. [19]) and (b) CMOS-MEMS nested gyroscope
[10]. The dark shaded combs are the drive combs. Shading in the sense combs
indicates different potentials.
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possibility of external accelerations coupling through to the output. There are alternate

suspension schemes, which completely decouple the sense and the drive modes

[26][32][33][34], but use linear combs for sensing purposes. Linear combs are less sensi-

tive than differential combs for same number of fingers.

Note that since the entire movable structure is at the same potential, the differential

sense fingers have to be anchored. There are two possible locations for the sense combs;

outside the movable frame as is shown in Figure 2.1(a) or inside the movable frame. The

suspension design is such that the drive motion cannot be decoupled from the inner plate.

Recall from Chapter 1 that the drive motion is more than 4 orders of magnitude larger than

the Coriolis force induced motion. Differential sense combs are typically non-ideal after

manufacturing. They can be expected to have a small sensitivity to cross-axis motions, as

will be shown in Chapter 7. Placing the differential sense combs inside the movable frame

will, therefore, lead to a significant sense signal due to the drive motion coupled to the

sense combs. Thus, in case of the single-layer microgyro with the suspension design as

shown, the only reasonable alternative is to place the differential combs outside the rigid

frame.

In contrast to the single-layer microgyro described above, the CMOS-MEMS nested

gyro topology [10] allows use of differential comb for sensing and, at the same time,

allows for decoupling of the drive and sense modes. In the next sub-section the vertical

axis CMOS-MEMS gyroscope which is used throughout this thesis for simulations is

described.

2.2.3 Vertical Axis CMOS-MEMS Gyroscope

The SEM of a nested gyroscope [10] is shown in Figure 2.2(a). This gyroscope is fab-

ricated in the CMOS-MEMS process [7]. It consists of an inner accelerometer nested

inside an outer resonator [10] as shown in Figure 2.2(b). The outer resonator is suspended

by four springs which are relatively rigid along the sensing direction (x) and compliant

along the driven direction (y). The outer resonator is driven at resonance and the inner res-

onator is forced to move along with the outer resonator because the springs suspending the

inner resonator are relatively rigid in y and compliant in x. In the presence of an angular
9



rate  about the out-of-plane axis, both the resonators experience the Coriolis force in x,

however, the inner resonator has a larger displacement. The sensing mode resonant fre-

quency is designed to be larger than the drive frequency. The relative displacement

between the two resonators is sensed capacitively using differential combs.

Thus, the CMOS-MEMS gyroscope uses springs to decouple the drive and sense

modes and multiple conductors to place the differential sensing combs between the central

plate and the rigid frame, both of which are movable.

2.3 CMU CMOS-MEMS Process
In the CMOS-MEMS process developed at CMU [7][31][35], released microstruc-

tures are produced by two step post processing of a standard CMOS die. First, an anisos-

FIGURE 2.2. (a) SEM of the vertical axis CMOS-MEMS nested-gyroscope [10]. (b) Functionally
equivalent structure showing the inner accelerometer, outer rigid frame, inner and outer springs
and drive and sense combs. 
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tropic reactive-ion etch (RIE) of the dielectric not covered by any metal layer is used to

define the sidewalls of the microstructures (Figure 2.3(b)). Following this, an isotropic

etch of the Silicon substrate leads to release of the suspended microstructures (Figure

2.3(c)).

The suspended microstructures are composed of a sandwich of metal and dielectric

layers. Since the materials have different thermal coefficients of expansion, the micro-

structures behave like thermal multi-morphs. Therefore, after processing, when the wafer

temperature is reduced to room temperature, residual stresses appear which tend to curl

the microstructure. In sense combs, vertical curling of the fingers leads to reduced sensi-

tivity because of reduced overlap area. The actuation force in case of driving combs is

degraded because of reduced change in capacitance with displacement. Furthermore,

(a)

(b)

(c)

CMOS circuits

silicon substrate

dielectric

polysilicon
microstructures

metal-3
metal-2

metal-1

anchored
stator

microstructureSF6-O2 Isotropic Etch
beam
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FIGURE 2.3. Abbreviated process flow for post-CMOS micromachining
developed at CMU [7][31][35] (a) CMOS wafer cross-section with circuits and
interconnects (soon to be microstructures) (b) Oxide removal step (c)
Microstructure release by Silicon removal
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fringe capacitance due to the edges and corners of the comb-fingers becomes significant at

lower overlap areas. Curl-matching frames around the sensor have been proposed in order

to reduce the mismatch of the comb-fingers [36]. However, design of these frames for the

gyroscope under consideration is more complicated than the accelerometer in [36] and the

resultant curl is therefore, not as well-matched. Though vertical curling is seen throughout

the gyroscope it is the comb-drive which is affected significantly because it requires max-

imum overlap of the comb-fingers. Curling of the rest of the structure can be encapsulated

into a vertical displacement offset for the comb-drive and can be modeled by considering

different vertical positions of the comb-drive.

The CMOS-MEMS beams have embedded metal layers. Misalignment of the metal

layer mask during processing [38] can result in the metal layers inside the beam being off-

set from the center of the beam leading to an asymmetrical beam cross-section. This in

turn leads to elastic coupling between the in-plane and the out-of-plane modes and lateral

curling of beams and comb-fingers (Figure 2.4(a), (b)). Elastic coupling can lead to an

input offset in the microgyroscope due to the drive mode coupling onto the sense mode.

Geometrical offsets are caused by lateral curl of the fingers or the beams in the springs

(see Figure 2.5). As will be seen later, geometrical offsets give rise to input offsets and

cross-axis sensitivity. Other reasons for geometrical offsets include stress gradients along

FIGURE 2.4. (a) Lateral curling seen in beams with deliberately misaligned metal layout (b)
Cross-section of the beam. It is seen that the METAL3 is not aligned with the METAL2 and
METAL1. (Pictures courtesy Xu Zhu and Hasnain Lakdawala)
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the chip substrate or along the beam width. However, currently there are no available mea-

surements for stress gradients in the substrate or across the beam width.

Modeling approaches for the non-ideal manufacturing effects described above are

presented in the following chapters.

2.4 Structured Design Methodology for MEMS
There are on-going efforts to establish a hierarchy of design levels for MEMS

[11][12] similar to that existing in the digital design world. The basis for the hierarchy is

decomposition of MEMS devices into MEMS atomic elements such as plate masses,

beam springs, electrostatic gaps and anchors which are at a similar level as resistors,

capacitors and inductors in the electronics design hierarchy. This level is referred to as the

atomic level representation. An atomic level schematic representation of MEMS bears a

strong correspondence to the underlying layout.

At higher design levels, a chain of beam springs can be combined to form crab-leg

springs, u-shaped springs or serpentine springs. At an even higher (functional) level, all

the springs which connect two rigid elements (for instance, a plate and an anchor) can be

lumped together into a single functional spring element. The building blocks at this level

are “functional” elements such as mass, spring, damper, electrostatic sensor, electrostatic

actuator and differential sensor. Each of the functional elements exhibits only one kind of

functionality as opposed to the circuit-level atomic elements which incorporate multi-

domain physics. At the functional level, the different performance contributions are segre-

gated, requiring the parasitic-physics effects (i.e., mass of beams, damping forces on

FIGURE 2.5. (a) Geometrical offset in a differential comb-drive used in a CMOS accelerometer.
One of the gaps is smaller than the other one (b) Laterally curled springs in an accelerometer
(Pictures courtesy Vishal Gupta)
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plates, finite stiffness of plates) to be computed and included in the appropriate functional

element. The functional level representation cannot be visually correlated to the layout of

the device. However, this level closely approximates the spring-mass-damper abstraction

of an inertial sensor, which designers use extensively in developing inertial sensors.

Abstracting away even the functional composition of the MEMS device, the macromodel

level, i.e., simply an equation summarizing the input-output relationship of the device, is

obtained. 

The MEMS design hierarchy is summarized in Figure 2.6 which shows the layout

level, atomic level schematic, the functional schematic and the macromodel representa-

tion. A design hierarchy is not of use unless the different levels of the hierarchy can be tra-

versed with ease. Broadly, upward motion through the hierarchy, leading to increasing

abstraction, is referred to as extraction or verification. Downward motion, resulting in

increased visibility of finer details, is called synthesis. Over the past decade, several

research efforts, notably at CMU and other universities as well, have not only developed

hierarchical representations of MEMS but also demonstrated automated methodologies

for various components of the hierarchy traversal.

The NODAS framework, developed at CMU, implements the hierarchical representa-

tion of MEMS described above. Schematics of MEMS sensors are created using parame-

FIGURE 2.6. MEMS design hierarchy
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terized elements such as beams, plates, anchors and combs and electrical and mechanical

independent sources. DC, AC and transient analysis can then be performed on the MEMS

sensors. Behavioral simulation of the CMOS-MEMS vertical axis microgyroscope using

atomic level elements is used in this thesis to verify hand analysis and to quantify non-

ideal effects. The Spectre circuit simulator from Cadence is used as the simulation engine

for the behavioral simulations. Modeling approaches for cross-axis coupling in springs,

vertical curling and mask misalignment in beams and multi-layer effects in combs are

described in the following chapters. The resultant improved models are incorporated into

the NODAS library. One of the fundamental tasks which provides the back-bone for such

a structured design methodology is building behavioral models. A brief summary of mod-

eling approaches is given in the following sub-section.

2.4.1 Modeling

In the context of the design hierarchy mentioned above, modeling can be viewed as a

process of relating parameters at a higher-level of the hierarchy to the parameters at a

lower-level. Availability of models which are accurate and can also be evaluated fast

enables easy traversal between the different levels possible along both, extraction and syn-

thesis directions. At the level of atomic-elements, modeling involves identification and

encoding of significant relationships between geometrical parameters and functional

parameters. Examples include derivation of equations for spring stiffness from beam geo-

metrical parameters (width, length, cross-section etc.) and plate mass and moments of

inertia from plate length, width and composition. The models implicitly assume a set of

manufacturing process-dependent constants for material properties. Those familiar with

models in the circuit world can immediately correlate this modeling procedure to the deri-

vation of transistor I-V relationships in terms of geometry and process-dependent doping

and material properties. At the same time, those familiar with modeling in the mechanical

world can distinguish this process from the building of “solid models” for use in numeri-

cal solvers and visualization. Modeling in elastic and electrostatic domains done in this

thesis is explained in detail in following chapters. In this section a brief overview of mod-

eling in elastic and electrostatic domains is presented.
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2.4.2 Elastic Models

The elastic models in this thesis are based upon linear beam theory [39] wherein

forces and bending moments are linearly related to translational and rotational displace-

ments. Shear and non-linear effects are not being considered in this thesis, but are given

considerable attention in a parallel work [40]. Linear beam theory is based upon the fol-

lowing fundamental differential equation, which is valid when there are no distributed

loads, i.e., forces and moments are applied only at the two end-points of a beam [39]:

  (2.1)

where,  is the location along the length of the beam and  is the displacement along one

of the two orthogonal directions as shown in Figure 2.7. Energy methods, described in

detail in [41], are used to derive equations for spring stiffnesses. A brief introduction to

energy methods is given below by way of deriving the compliance matrix for a single

beam which is part of a spring.

A number of common spring topologies such as crab-leg, u-shaped and serpentine

springs belong to a larger class, in which each spring is a single chain of beams. The ana-

lytical advantage in dealing with this class of springs is due to the fact that the forces

transmitted through the beams remain invariant from the load point to the anchor point.

Figure 2.8 shows a spring composed of 9 beams in a single-chain configuration, attached

to a rigid plate at one end and anchored at the other end. The procedure for computing the

in-plane compliance matrix for a single beam in the spring is described below. A force (or

moment) is applied to the point C, in the direction of interest, and the displacement is cal-

culated symbolically (as a function of the design variables and the applied force). When

x4

4

d

d y 0=

x y

FIGURE 2.7. The direction along the length (x) and the direction of deflection of
a beam (y)

Anchor

x

y
Undeflected Beam

Deflected beam
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forces (moments) are applied at the end-points of the flexure, assuming linear beam the-

ory, the energy per unit length of the beam is given as:

  (2.2)

The total energy of deformation, U, is obtained by integrating over the length of the beam

followed by summation over all the beams:

  (2.3)

where, Li is the length of the i’th beam in the flexure,  is the bending moment trans-

mitted through beam i, E is the Young’s modulus of the structural material and Ii is the

moment of inertia of beam i, about the relevant axis (z axis for in-plane forces and

moments about z). The bending moment is a linear function of the forces and moments

applied to the end-points of the flexure. Furthermore, it varies linearly with the position

along the length of the beam. Therefore, the energy stored in the beam due to displacement

is quadratically dependent on the applied forces and moments. In particular, for a single

chain of beams (Figure 2.8(a)), the bending moment and, therefore, the energy stored in a

beam, depends only on the position of the end-points of the beam relative to the point of

application of force C. The displacement of point C in any direction ζ is given as:

  (2.4)

where, Fζ is the force applied in that direction [39]. Similarly, angular displacements can

be related to applied moments. The moment  being linearly dependent on the

applied forces and moments, the displacement is also a linear function of the applied

forces, i.e., 

  (2.5)
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where  is a generalized displacement (includes translation and rotation),  is the

generalized force in the direction  and , the compliance of the ith beam. 

The in-plane compliance matrix for a beam, derived in terms of the end-points of the

beam, is given as:

  (2.6)

where,

C12
3

4
5

6

7 8 9

FIGURE 2.8. (a) Spring with single-chain of 9 beams attached to a plate. C is the
point of application of force. The other end of the spring is anchored. (b) Free-
body diagram of beam 6 and the bending moment along beam 6.
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The elements of the in-plane compliance matrix derived above are used in this thesis to

derive properties of symmetric springs as well as to compute stiffness values for an entire

spring.

2.4.3 Electrostatic Modeling

Electrostatic modeling for gyroscopes mainly involves deriving geometry-based

equations for capacitance and force between two or more electrodes in combs, parallel

plates and other kinds of sensing or actuation structures. Fundamentally, deriving equa-

tions for capacitance involves solving the Laplace equation with appropriate boundary

conditions:

  (2.7)

where,  is the electrostatic potential which is generally a function of spatial loca-

tion. Instead of solving the Laplace equation for an entire sensor or actuator, which is sel-

dom practical, usually symmetry considerations are used to break up the sensor into a

number of smaller structures which can be solved much more easily. The total energy

which is stored in a capacitor with a voltage V applied between the two plates is given as:

  (2.8)

Once the capacitance has been derived as a function of the relative displacement

between the two electrodes the force can be obtained by using the principle of virtual work

and differentiating the total energy of the system (if the capacitance is independent of the

voltage). For example, the force along the x direction will be given as:

  (2.9)

It should be noted that the above equation is valid only for linear capacitors i.e., where the

capacitance is independent of the voltage. For a parallel plate capacitor the capacitance

and force are given as:
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  (2.10)

  (2.11)

where, A is the area of the electrodes,  is the permittivity of air, g is the designed gap

between the two electrodes and x is the displacement along the direction of the gap. For

non-parallel-plate structures, significant modeling effort has been spent on computing,

analytically or numerically, fringe capacitance terms which are then added onto a parallel

plate equation to obtain the total capacitance of the structure. Conformal mapping tech-

niques are frequently used to derive equations for fringe capacitance [42][43]. Detailed

modeling of combs in the CMOS-MEMS process is described in Chapter 5.

2.5 Summary
In this chapter a literature survey of microgyroscopes developed over the past decade

was presented. Following this, the CMOS-MEMS process was described briefly with par-

ticular attention paid to the non-idealities in the process. Having introduced the microgy-

roscope and the manufacturing process, the rest of the chapter outlines the structured

design methodology for MEMS developed at CMU. As part of the outline, the NODAS

design framework which implements behavioral simulation of MEMS was summarized.

An elementary overview of the modeling procedure for elastic and electrostatic elements

in the design hierarchy was also given as a precursor for the more detailed treatment in the

following chapters.

C x( )
Aε0
g x+
------------=

Fx x( )
Aε0

g x+( )2-------------------V2–=

ε0
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Chapter 3.  Elastic Modeling

3.1 Introduction
For MEMS gyroscopes to be commercially viable, it is necessary to characterize the

non-idealities inherent in them. Non-idealities in microgyroscopes and accelerometers,

including offset bias, cross-axis sensitivity and non-linearity, occur due to a combination

of undesired mechanical oscillation modes and mismatched sensing capacitances [44].

Undesired oscillation modes are caused by cross-axis coupling in the suspension springs.

It has been experimentally observed that real microgyroscopes exhibit elliptical motion

[47], depicted in Figure 3.1, as opposed to the expected straight line motion. Coupling

from the driven direction to orthogonal directions through non-ideal suspension springs is

known to cause the elliptical motion. In order to understand and predict such non-ideali-

ties, models for the cross-axis coupling in springs need to be derived. Another important

effect, specific to CMOS-MEMS (and other multi-layer) structures, is vertical curling aris-

ing from mismatched thermal coefficients of expansion in the different layers. Vertical

curling leads to vertical offsets in drive and sense comb structures, resulting in vertical

forces and cross-axis coupling. Once again, analytical models are required to estimate the

C

FIGURE 3.1. Outer frame of a gyroscope driven by a sinusoidal voltage source
and a DC source. Motion of point C is shown on the right. (a) With ideal springs
oscillations are only along the y direction. (b) However, with non-ideal mismatched
springs small amount of motion couples to the x direction.

x

y

(a) Ideal springs: straight line motion 

(b) Non-ideal springs: elliptical motion
21



curvature in the design stage either by hand calculations or through behavioral simula-

tions.

Elastic beam theory is an extensively researched area in traditional mechanical and

civil engineering. In the context of microgyroscopes, micromechanical springs, and elastic

cross-axis coupling, existing beam theory needs to be recast in a form suitable for the

MEMS designer. An example of elastic beam theory from a micromechanical viewpoint is

a methodology for deriving the lumped-element stiffness models for common microme-

chanical springs (crab-leg, u-spring, serpentine spring and folded-flexure) as outlined in

[41]. In [45], non-linear rod theory has been applied to analyze the vibration modes of a

MEMS gyroscope considering the modes to be uncoupled. Coupling among three specific

modes of a particular gyroscope structure has been investigated in [46]. Non of the above-

referred works provide a complete, general and intuitive understanding of elastic cross-

axis coupling. The goal of this chapter is to establish a broad understanding of elastic

cross-coupling, present general methods for analysis of cross-coupling and consider sys-

tem-level implications of coupling arising due to individual beams or springs.

In this chapter, the following issues are addressed analytically: in-plane cross-axis

coupling, in-plane to out-of-plane coupling due to asymmetric beam cross-sections, verti-

cal and lateral curling of CMOS-MEMS beams. Finite element analyses (FEA) are used

throughout this chapter to verify the theory at each stage. The discussion is initiated by

formalizing cross-axis coupling through use of a stiffness matrix to represent all the stiff-

ness properties of an individual spring, as well as those of a complete system with multiple

springs. Energy methods, as introduced in Chapter 2, are used to derive equations for in-

plane elastic cross-axis coupling. Cross-axis coupling coefficients are derived for popular

spring topologies such as crab-leg, u-spring and serpentine springs. Investigation of

options to reduce cross-axis coupling leads to a significant result, which is not revealed

here to maintain the readers interest. Following this, equations for out-of-plane coupling

in multi-layer beams are derived using Euler-Bernoulli beam theory. The discussion on

cross-axis coupling is concluded by examining the impact of individual springs on system

level coupling. A geometrical interpretation of the in-plane cross-axis coupling and the

relation between the stiffness matrix, the position and orientation of the so-called princi-

pal axes of elasticity and the observed motion coupling is illustrated through examples. In
22



the later sections of the chapter, existing thermal multi-morph theory for cantilevers is

used as the basis to derive a new macromodel incorporating multi-directional curvature of

non-cantilever structures. The new macromodel is developed so as to be completely com-

patible with existing behavioral models for beams and the NODAS behavioral simulation

framework. It is verified by comparison with experimental measurements on test struc-

tures which exhibit temperature dependent vertical and lateral curvature.

3.2 Stiffness Matrices
A number of gyroscopes (as well as other inertial sensors) as mentioned in [2] are

made up of a mechanical proof-mass suspended by four springs. Each spring can be repre-

sented by a 6X6 lumped-element symmetric stiffness matrix (referred to as  in

Figure 3.2). The overall system stiffness matrix is obtained as a summation of the individ-

ual stiffness matrices. The 6 diagonal terms in the stiffness matrix represent the stiffness of

the springs in the translational and rotational directions. The off-diagonal terms represent

coupling between different directions. The stiffness matrix  can also be viewed as the

combination of 4  sub-matrices. Two of the sub-matrices are referred to as , the

in-plane stiffness matrix and , the out-of-plane stiffness matrix. The remaining two

sub-matrices are shown as the shaded portion in the  matrix in Figure 3.2. When all the
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FIGURE 3.2. Elements of the stiffness matrix  and the in-plane and out-of-plane
sub-matrices  and . This symmetric matrix has 21 distinct terms. If the
shaded elements are zero, the number of distinct non-zero terms reduces to 12.
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four spring geometries are identical, and the layout is two-fold symmetric, the system

stiffness matrix is diagonal because the cross-axis (off-diagonal) terms of the four springs

cancel out exactly after summation. The eigenmodes of the system are perfectly aligned

with the reference coordinate frame. In inertial sensors, the sensitive axis is usually

aligned with one of the axes of the reference coordinate frame. Due to manufacturing vari-

ations, which are inevitable in any IC fabrication process, the four spring dimensions are

not perfectly matched. Therefore, there are residual off-diagonal terms in the system stiff-

ness matrix after summation. For example, the widths of the four springs may differ

slightly leading to coupling between the three in-plane modes ( ,  and ) and thus,

non-zero off-diagonal elements in the in-plane part of the stiffness matrix . Alterna-

tively, the beams forming the spring may have an asymmetric cross-section resulting in in-

plane to out-of-plane coupling i.e., non-zero shaded elements in Figure 3.2. In both cases

elliptical motion of the proof-mass [47], instead of the expected straight line motion,

results. The elliptical motion can be understood as a displacement (which could be rota-

tional or translational) of the eigenmodes of the system from the reference coordinate

frame. Two different approaches are used in the following sections to obtain the off-diago-

nal terms within the in-plane and out-of-plane sub-matrices,  and  respectively, and

to model coupling between the in-plane and out-of-plane directions. The former lend

themselves to direct derivation of the terms in the stiffness matrix, while the latter are

more easily characterized and understood by a rotation of the principal axes of stiffness.

The following section on modeling explains the approach to derive the 6 off-diagonal

terms in the in-plane and out-of-plane sub-matrices. 

3.3 Modeling
The procedure to derive symbolic linear relationships expressing displacements in

terms of the forces and moments applied has been described in detail in [41] and briefly

explained in Chapter 2. Energy methods are used to obtain a system of linear equations

symbolically expressing the displacements in terms of the forces and moments. The sys-

tem of symbolic linear relationships are solved to obtain the elements of the stiffness

matrices. Symbolic manipulations were done using the Mathematica program [48]. An

x y φz

kip

kip kop
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example Mathematica script to derive the stiffness matrix for the crab-leg spring is given

in Appendix A1. The stiffness matrix equations for the three types of springs, crab-leg, u-

spring and serpentine spring are described below. 

The three types of springs are parameterized as shown in Figure 3.3. The models for

diagonal elements (i.e., the translational spring constants) have been derived previously

[41]. Here the same technique is applied to derive the off-diagonal stiffness constants.

Applying the boundary conditions, as shown in Figure 3.4, a set of linear equations in

terms of the applied forces and moments and the unknown displacement is obtained. Solv-

ing the set of equations yields a linear relationship between the displacement and applied

force for the cross-axis spring constant of interest [41]. The constant of proportionality

gives the spring constant as a function of the physical dimensions of the spring. The mod-

els for the out-of-plane cross-axis spring constants are similarly derived. The equations for

the stiffness constants are presented below. In order to preserve readability, the equations

for the off-diagonal elements in the out-of-plane matrix , which are considerably more

complex, are given in Appendix A2.

FIGURE 3.3. Design variables for crab-leg-spring, U-spring and serpentine spring
with proof-mass. The external forces and moments are applied at C, the centroid
of the plate, with only one spring in the analysis so that all the cross-axis terms can
be clearly observed.
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For the crab-leg, the analytical models for elastic coupling between x, y and  modes

for one spring are:

  (3.1)

  (3.2)

  (3.3)

where, Izt, Izs and ,  are the moments of inertia of the crab-leg-beams about their

individual z axis and y respectively.

For u-springs:

  (3.4)

y

x
φz

FIGURE 3.4. Forces and moments applied at the centroid of a proof-mass
attached to the free end of a crab-leg. Boundary conditions are applied as equality
constraints on the three displacements.
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--------
where,  is the common denominator for all the in-plane stiffness constants of the u-

spring.

  (3.5)

Assuming Lb1 ~ Lb2 and Lt << Lb1, the derived analytical model is simplified to get

  (3.6)

  (3.7)

  (3.8)

For a serpentine spring, the kxy for even n is given as:

  (3.9)

where,  is the common denominator for all the terms in the in-plane stiffness matrix

for a serpentine spring with even n,
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  (3.10)

  (3.11)

  (3.12)

and for odd n 

  (3.13)

  (3.14)

  (3.15)

Though the above equations for the spring stiffnesses seem to be lengthy and complex

polynomials the following sets of observations help to discern their underlying structure

and usefulness. 

Observations on the terms in the stiffness constants

1. All the stiffness constants are fractions of polynomials in the moments of inertias ( ) 

and the lengths of the beams ( ).
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2. All the stiffness constants for a particular type of spring share a common denominator.

This is not surprising because the denominator is simply the determinant of the compli-

ance matrix of that spring. Note that in some cases, like the serpentine spring with odd n,

this is not apparent because of canceling of common factors between the numerator and

the denominator.

3. As would be obtained from a dimensional analysis, the power of moment of inertia in

the denominator is lesser than that in the numerator by 1, while, the power of length in the

denominator is greater than that in the numerator by 3.

The next set of observations is focussed on the elastic coupling term between  and

, i.e., the  term.

1.  for all springs is independent of  and  i.e., the location of the load point.

2.  is never zero for a crab-leg spring and for a serpentine spring with even n.

3.  for a serpentine spring with odd n.

4. For a u-spring  if and only if  i.e., if the two parallel beams in the

u-spring are identical.

The final observations are about the elastic coupling terms between the translational

modes ,  and the rotational mode :  and . Comparison of the  and 

of the crab-leg, serpentine and the u-spring reveals a common format which is a sum of

three terms. Generalized equations for  and  can be written as:

  (3.16)

  (3.17)

In the above equations,  and  are the elastic coupling constants between the

translational and rotational modes when  and  i.e., when the load is

applied directly to the springs. Naturally,  and  are only dependent on the

spring geometry itself and not on the dimensions of the plate to which the spring is con-

x

y kxy

kxy Lx Ly

kxy

kxy 0=

kxy 0= Lb1 Lb2=

x y φz kxφz
kyφz

kxφz
kyφz

kxφz
kyφz

kxφz
k– xxLy kxyLx kxφz0+ +=

kyφz
k– xyLy kyyLx kyφz0+ +=

kxφz0 kyφz0

Lx 0= Ly 0=

kxφz0 kyφz0
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nected. Depending on the type of spring and the distances  and , one may suitably

approximate  and  by removing one or even two terms from equations (3.16) and

(3.17). For example in case of the crab-leg spring, when , the  and

 terms can be neglected. 

The above models are for a single spring. These models suggest design directions for

reducing ,  and , and thereby, the device non-idealities. It is possible to elimi-

nate the nominal system  by symmetrically placing four springs. However, this will

only eliminate  in the nominal case in which all four springs are perfectly matched.

Manufacturing variations are commonly modeled as functions of wafer position, implying

that closely placed beams (as in the same spring) have less width variation than beams

which are farther apart (like those on two different springs). In addition to eliminating

nominal system Kxy, long range width variations can also be nullified by designing the two

beams with equal lengths and widths for a U-spring or by choosing n to be odd for a ser-

pentine spring. In Figure 3.5 it is seen that it is possible to design the U-spring such that

 is very close to zero (near ). Similar trends for the serpentine spring

with even n are shown in Figure 3.6. The plots also show that when  is very close to

Lx Ly

kxφz
kyφz

Lt Ls Lx Ly,«, kxφz0

kyφz0

kxy kxφz
kyφz
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FIGURE 3.5. Trends in the variation of in-plane spring constants for the U-
spring for varying beam lengths (Lb1). The design variables are set to: w=2.0 µm,
Lt=10.0 µm, Lb2=200.0 µm
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zero,  and  can have significant values indicating that the springs have to be

designed keeping in mind the particular requirement. In microgyroscopes it is usually

more important to eliminate  than to eliminate  and  because of several rea-

sons which will be explained in detail in Chapter 7. One of the important fundamental rea-

sons for this is the fact that the physical operating principle of the microgyroscope is based

upon coupling between  and the  modes. 

In the next section the validity of the equations derived is verified by comparison with

finite element analyses.

3.4 Model Verification
The models derived above are verified by comparison to FEA results. Assuming that

the widths of all the beams in a spring are equal, there are three remaining design variables

for the crab-leg, four for the u-spring and four for the serpentine spring. The distances of

the spring attachment point from the load point,  and  are held constant at .

The Abaqus solver was used for FEA [49]. Convergence analysis was done to determine

the granularity of the finite element mesh that was required. Consequently, each beam was

split into 40 divisions along the length and 10 divisions along the width. FEA with 3D

quadratic brick elements was done on 8 crab-leg designs, 16 u-spring designs and 8 ser-
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FIGURE 3.6. Trends in the variation of in-plane spring constants for the
serpentine-spring for varying beam lengths (a). The design variables are set to:
w=2.0 µm, Lb=20.0 µm, n=4.
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pentine spring designs. The widths of the crab-leg and u-springs were set to 2.0  and

 to span the entire range of typically used designs. The length of the crab-leg and u-

spring beams was set to 40  and 400 . Beams longer than  are generally not

manufactarable. At the lower limit, beams shorter than  are seldom used since they

lead to very stiff suspensions. For the serpentine spring a different set of metrics were used

to decide the range of spring dimensions. Serpentine springs are normally used when more

number of turns are required, either because the spring is too stiff otherwise, or, because

the maximum length of the beams is constrained by manufacturing or other consider-

ations. Therefore, the maximum spring width used in serpentine spring designs was only

4.0 , and the maximum length of beams used was . It should be noted that the

results of spring stiffness, span nearly 4 decades, because the spring stiffness are cubic in

terms of the beam width and length. The results are summarized in Table 3.1 for the crab-

Table 3.1 Comparison of FEA and analytical stiffness (in-plane) values for the crab-le
spring

w Lt Ls kxy (N/m)  (N)

µm µm µm A S
Error 
(%) A S

Error 
(%) A S

Erro
(%)

2 40 40 14.4 14.8 -2.71 -19.2 -10.5 83.2 1226 1237 -0.8
2 400 40 0.273 0.273 -0.18 -427 -426 0.42 -0.893 -0.848 5.42
2 40 400 0.273 0.273 -0.18 15.9 15.9 0.06 1030 1027 0.29
2 400 400 0.0154 0.0155 -0.90 1.82 1.85 -1.25 6.84 6.87 -0.5
5 40 40 202 207 -2.70 336 475 -29.3 1.78e4 1.78e4 0.00
5 400 40 4.07 3.94 3.17 -5733 -5478 4.65 -1.811 3.73 -148
5 40 400 4.07 4.00 1.60 239 226 5.48 1.47e4 1.41e4 4.61
5 400 400 0.237 0.240 -1.25 28.9 29.3 -1.60 106 107 -0.5

µm

5.0µm

µm µm 400µm

40µm

µm 100µm

kxφz
10 6–× N( ) kyφz

10 6–× N( )
32



g

ror 
)
7
7
3
0
2

.30

.72

.42
.8
.3
.9
2
1
6

.28
6

ine 

ror 
)
09
72
4
85
27
75

)

leg, Table 3.2 for the u-spring and Table 3.3 for the serpentine spring respectively. For the

Table 3.2 Comparison of FEA and analytical stiffness (in-plane) values for the u-sprin

w Lb1 Lb2 Lt kxy (N/m)  (N)

µm µm µm µm A S
Error 
(%) A S

Error 
(%) A S

Er
(%

2 40 40 10 0 0.701 NA -3482 -3407 2.20 1013 968.7 4.5
2 40 400 10 -0.623 -0.605 3.01 -2518 -2466 2.11 30 29.05 3.2
2 400 40 10 0.623 0.612 1.81 -1948 -1866 4.39 -16.78 -16.27 3.1
2 400 400 10 0 7.7e-4 NA -371.5 -368.7 0.76 4.969 4.954 0.3
2 40 40 50 0 0.0509 -NA -226.1 -223.1 1.34 694.3 692.1 0.3
2 40 400 50 -0.145 -0.145 -0.28 -185.2 -186.8 -0.86 10.04 10.07 -0
2 400 40 50 0.144 0.146 -0.69 -70.04 -69.28 1.10 3.184 3.207 -0
2 400 400 50 0 1.0e-4 NA -27.41 -27.44 -0.11 4.547 4.566 -0
5 40 40 10 0 15 NA -3.33e4 -3.11e4 6.94 1.38e4 1.25e4 10
5 40 400 10 -7.71 -6.88 12.0 -2.46e4 -2.24e4 10.2 370.8 327.3 13
5 400 40 10 7.71 7.07 9.00 -1.78e4 -1.53e4 16.0 -165.5 -140.4 17
5 400 400 10 0 0.0203 NA -3697 -3572 3.50 76.44 75.52 1.2
5 40 40 50 0 1.968 -NA -3035 -2876 5.53 9817 9530 3.0
5 40 400 50 -2.10 -2.08 1.01 -2530 -2555 -0.98 146.8 145.4 0.9
5 400 40 50 2.10 2.11 -0.57 -878 -832 5.53 57.79 58.54 -1
5 400 400 50 0 0.0056 NA -380.9 -379.7 0.32 70.09 69.98 0.1

Table 3.3 Comparison of FEA and analytical stiffness (in-plane) values for the serpent
spring

w La Lb kxy(N/m)

µm µm µm A S
Error 
(%) A S

Error 
(%) A S

Er
(%

2 10 10 26.9 29.5 -8.71 -1064 -1033 3.00 7597 8090 -6.
2 10 100 0.251 0.258 -2.83 -591 -595 -0.54 41.56 42.72 -2.
2 100 10 0.471 0.471 0.00 10.5 10.5 0.67 1133 1128 0.4
2 100 100 0.0269 0.0273 -1.32 -5.91 -5.93 -0.30 11.64 11.74 -0.
4 10 10 216 252 -14.4 -8297 -8111 2.29 6.24e+04 6.58e+04 -5.
4 10 100 2.01 2.12 -5.28 -4730 -4716 0.30 337.5 343.5 -1.

kxφz
10 6–× N( ) kyφz

10 6–× N(

kxφz
10 6–× N( ) kyφz

10 6–× N( )
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crab-leg spring and the U-spring it is seen from the FEA results that, for beam widths of 2

µm, when the beam lengths are at least 0.75 times the plate dimensions, all the models

match the FEA values to within 10%. For smaller beam lengths the plate ceases to be

rigid. Plate deformations are not considered in this spring modeling exercise. A brief

explanation of the procedure used to obtain  through finite elements is in order here.

Geometrical boundary conditions are applied on the finite element model such that the

anchor points have zero displacement in all degrees of freedom and the load point is

applied a fixed (1 nm) displacement in only the x direction, the y and z directions being

kept at 0 displacements. Then, the reaction force at the load point in the y direction is used

to compute the . Note that for suspensions which are very stiff in the x direction and

which do not have a significantly large , the ratio of the reaction force in the y direction

to that in the x direction can be much smaller than 1 (~ 0.01 or even smaller). Finite

numerical precision sets a lower limit on the smallest reaction force that can be computed.,

thereby limiting the smallest value of  that can be precisely obtained from finite ele-

ment analysis. For the serpentine spring it was not possible to obtain accurate values of kxy

from FEA when the values were low due to this reason. All the models other than 

match FEA results to within 10% for beam widths of 2 µm. The  also matches within

10% except when Lb is much greater than La.

As noted previously,  is of more significance than  and , and is, therefore,

analyzed further. Keeping all other design variables constant, the variation of kxy with the

beam length was studied. The beam widths are kept constant at . In the crab-leg

4 100 10 3.77 3.65 3.29 88.1 74.6 18.11 9273 8503 9.0
4 100 100 0.216 0.220 -2.22 -47.1 -47.7 -1.32 94.68 92.76 2.0

Table 3.3 Comparison of FEA and analytical stiffness (in-plane) values for the serpent
spring

w La Lb kxy(N/m)

µm µm µm A S
Error 
(%) A S

Error 
(%) A S

Er
(%

kxφz
10 6–× N( ) kyφz

10 6–× N( )

kxy

kxy

kxy

kxy

kyφz

kyφz

kxy kyφz
kxφz

2.0µm
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plots, the shin length . In the u-spring plots, since equal beam lengths lead to

zero , a constant difference  was maintained. For the serpentine

springs, As seen in Figure 3.7, Figure 3.8 and Figure 3.9 respectively the analytical mod-

els match the FEA values to within 2% for the crab-leg, 5% for the U-spring and 9% for

the serpentine-spring. Particularly evident is the large range of values over which the mod-

els match the FEA values. 

Although it appears as if the springs exhibit less cross-axis coupling as the lengths of

the beams increase, it should be kept in mind that the stiffness coefficients in the principal

directions  and  also reduce as the lengths of the beams increase. Therefore, while

Ls 50µm=

kxy Lb2 Lb1– 30µm=

Lt(µm)

k x
y (

N
/m

)
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1

10

00
FEA       

Analytical

FIGURE 3.7. Comparison of analytical model and FEA for crab-leg-spring kxy for
varying crab-leg thigh lengths (Lt). The design variables are set to: w=2.0 µm,
Ls=50.0 µm
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FIGURE 3.8. Comparison of analytical model and FEA for u-spring kxy for
varying U-spring beam lengths (Lb1). The design variables are set to: w=2.0 µm,
Lt=10.0 µm, Lb2=Lb1-30.0 µm
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the coefficient  is useful to calculate actual values of cross-axis coupling, it does not

facilitate instant comparison of cross-axis coupling in different spring designs. For this

purpose, the correlation between the cross-axis coupling coefficient and the principal axes

of elasticity is more useful and is explained in Section 3.8. In the following section, an

accelerometer simulation is used to illustrate the practical significance of the cross-axis

coupling coefficients.

3.5 Accelerometer Simulation
A macromodel for the serpentine spring was incorporated in NODAS [50]. AC analy-

sis of a proof-mass suspended by four serpentine springs was done using the spring mac-

romodel as well as individual beam elements. The macromodel-based simulation (with

n=4) was about 5 times faster than the individual beam element-based simulation. For

higher n, the speedup will be greater.

The serpentine spring, proof-mass structure described above was employed as a y-

accelerometer. Input accelerations were applied in both the x and the y directions. Mode

coupling is observed in FEA when diagonal springs are identical and one pair of diagonal

springs is wider than the other pair. The widths of the springs are indicated on the side in

microns. This configuration was simulated using the serpentine spring macromodel in

NODAS. Input accelerations, which are out of phase to easily distinguish their effects, are

applied in y and x directions. As expected, a significant cross-axis sensitivity (resulting

.01
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FEA       
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FIGURE 3.9. Comparison of analytical model and FEA for serpentine-spring kxy
for varying serpentine-spring beam lengths (a). The design variables are set to:
w=2.0 µm, Lb=20.0 µm, n=4
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from mode coupling) is seen in the Vout waveform in Figure 3.10. In this example the

numbers chosen for the spring widths are deliberately biased so that the effect of cross-

axis coupling is exaggerated and, therefore, visually discernible. In real accelerometers,

the same phenomenon causes cross-axis couplings which are about one to two order of

magnitudes smaller than the main output.

Having emphasized the significance of analyzing the cross-axis coupling coefficients,

it is natural to examine ways of reducing or even completely eliminating cross-axis cou-

pling. In the next section, special properties of symmetric springs, with respect to cross-

axis coupling, are stated and proved.

3.6 Symmetric springs
Recalling that the u-spring with equal beam lengths and the serpentine spring with

odd n have  leads one to wonder if the two springs have anything in common.

The answer is that both the springs have an axis of symmetry as shown in Figure 3.11.

This common property can be generalized for all springs which are in the form of a single

chain of beams as follows:

∆x(m)

∆y(m)

ax(m/s2)

Vout

ay(m/s2)

Output change due to accelera-

tion in x-directions (ax)

FIGURE 3.10. NODAS simulation of cross-axis sensitivity in   y-accelerometer.
The structure of the accelerometer with four serpentine springs is shown on the
side.
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“The cross-axis coupling between the two in-plane translational directions is zero for any

spring which has an axes of symmetry”

In other words, any single-chain spring that has an axis of symmetry has . This

important property is mathematically proven below.

Consider a single-chain spring consisting of 2n beams. Note that a symmetric spring

with odd number of beams can always be converted to even number of beams by splitting

the central beam. The compliance matrix, described in Chapter 2, is used here to compute

the  of the entire spring. Let the positions of the end-points of the ith beam in the

spring be x1i, y1i and x2i, y2i. Let li, wi, t and Izi be the length, width, thickness and the

moment of inertia of the beam respectively. Let the load point be xC, yC. Then the 6 dis-

tinct terms of the compliance matrix are given as:

FIGURE 3.11. Axes of symmetry for the u-spring and serpentine spring

U-spring with equal beam lengths
Serpentine spring with n=5

Axes of symmetry

kxy 0=

kxy

αxxi
li y1i

2 y2i
2 y1i y2i 3yC–( ) 3y2iyC– 3y2iyC– 3yC

2++ +( )

3EIzi
------------------------------------------------------------------------------------------------------------------------------------=

αyyi
li x1i

2 x2i
2 x1i x2i 3xC–( ) 3x2ixC– 3x2ixC– 3xC

2++ +( )

3EIzi
------------------------------------------------------------------------------------------------------------------------------------=

αφzφzi
li

EIzi
---------=

αxyi αyxi
li x1i 2y1i y2i 3yC–+( ) x2i y1i 2y2i 3yC–+( ) 3xC y1i y2i 2yC–+( )–+( )

6EIzi
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------–= =

αxφzi αφzxi
li y1 i y2 i 2yC–+( )

2EIzi
--------------------------------------------= =
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3xC
2+ )

-----------------
For a beam whose length is along the x direction (i.e., ) the above equations

reduce to:

  (3.18)

  (3.19)

  (3.20)

  (3.21)

  (3.22)

  (3.23)

where,

  (3.24)

is the mid-point of the beam along the  direction. For this analysis, without loss of gener-

ality, the axis of symmetry is assumed to be in the y direction. With the symmetry assump-

tion, it is implied that the two beams which are symmetrically located on either side of the

axis of symmetry (for example, beams numbers 7 and 4 in Figure 3.12) are identical, i.e.,

have the same width. Adding the compliance matrix of the two x beams that are symmetri-

cally placed about the axes of symmetry:

αyφzi αφzxi
li x1 i x2 i 2xC–+( )

2EIzi
--------------------------------------------–= =

y1i y2i=

αxxi 0=

αyyi
li x1i

2 x2i
2 x1i x2i 3xC–( ) 3x2ixC– 3xC

2+ + +( )

3EIzi
-------------------------------------------------------------------------------------------------------------

li li
2 3x1 ix2i 3x1ixC– 3x2ixC–+(

3EIzi
----------------------------------------------------------------------------------= =

αφzφzi
li

EIzi
---------=

αxyi αyxi
li x1i x2i 2xC–+( ) y1i yC–( )

2EIzi
---------------------------------------------------------------------–

li xmi xC–( ) y1i yC–( )

EIzi
-----------------------------------------------------–= = =

αxφzi αφzxi
li y1 i yC–( )

EIzi
---------------------------= =

αyφzi αφzyi
li xmi xC–( )

EIzi
----------------------------–= =

xmi
x1i x2i+

2
--------------------=

x
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  (3.25)

  (3.26)

  (3.27)

  (3.28)

Similarly, simplifying the compliance equations for a y-beam (numbered j):

  (3.29)

  (3.30)

  (3.31)

  (3.32)

  (3.33)

FIGURE 3.12. Example of a symmetric spring with the axes of symmetry along
the y direction. The load point C, the anchor point A and the end points of beam
number 9 are also shown.
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αφzφzi αφzφz 2n i–( )+
2li

EIzi
---------=

αxyi αxy 2n i–( )+ αyxi αyx 2n i–( )+
2li x0 xC–( ) y1i yC–( )

EIzi
------------------------------------------------------–= =

αxφzi αxφz 2n i–( )+ αφzxi αφzx 2n i–( )+
2li y1i yC–( )

EIzi
-------------------------------= =

αyφzi αyφz 2n i–( )+ αφzyi αφzy 2n i–( )+
2li x0 xC–( )

EIzi
-----------------------------–= =

αxxj αxx 2n j–( )+
lj y1 j

2 y2 j
2 y1 j y2j 3yC–( ) 3yj2yC– 3yC

2+ + +( )

3EIzj
-------------------------------------------------------------------------------------------------------------=

αyyj αyy 2n j–( )+ 0=

αφzφzj αφzφz 2n j–( )+
lj

EIzj
---------=

αxyj αyxj
lj x1j xC–( ) ymi yC–( )

EIzj
-----------------------------------------------------–= =

αxφzj αφzxj
lj ymj yC–( )

EIzj
----------------------------= =
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  (3.34)

where,

  (3.35)

is the mid-point of the jth beam, which is parallel to the y direction. Adding the compli-

ance of two y beams which are placed symmetrically:

  (3.36)

  (3.37)

  (3.38)

  (3.39)

The stiffness matrix being the inverse of the compliance matrix i.e.,

we can write:

  (3.40)

where each k corresponds to a pair of symmetrically located beams.

Now each of the summation terms is expanded and contributions from the beams along x

and the beams along y are separated. Using (3.26) and (3.37)

αyφzj αφzyj
lj x1 j xC–( )

EIzj
---------------------------–= =

ymj
y1 y2+

2-----------------=

αφzφzj αφzφz 2n j–( )+
2lj

EIzj
---------=

αxyj αxy 2n j–( )+ αyxj αyx 2n j–( )+
2lj x0 xC–( ) ymj yC–( )( )

EIzj
-----------------------------------------------------------–= =

αxφzj αyφz 2n j–( )+ αφzxj αφzx 2n j–( )+
2lj ymj yC–( )

EIzj
--------------------------------= =

αyφzj αyφz 2n j–( )+ αφzyj αφzy 2n j–( )+
2lj x0 xC–( )

EIzj
-----------------------------–= =

kxx kxy kxφz

kyx kyy kyφz

kφzx kφzy kφzφz

αxx αxy αxφz

αyx αyy αyφz

αφzx αφzy αφzφz k
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----------- αyxk
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2lk
EIzk
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



yC)
----------



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  (3.41)

Using (3.25) and (3.36)

  (3.42)

Using (3.28) and (3.39)

  (3.43)

  (3.44)

Using (3.27) and (3.38)

  (3.45)

Evaluating the two terms of the cofactor in (3.40):

  (3.46)
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  (3.47)

Observing that the two cofactor terms are identical it is concluded that their difference is

zero and therefore:

  (3.48)

Thus, it is shown that for any spring which has an axis of symmetry the in-plane elastic

coupling is zero. It is important to note that there is no constraint on the widths of the

beams in the above derivation (except that the beams which are symmetrically placed

have identical widths, which is implied by the symmetry condition). It is also evident that

placing a system composed of four such symmetric springs will have a net . The

above proof concludes the analysis of in-plane elastic cross-axis coupling. Referring to

Figure 3.2, the in-plane stiffness matrix  has been analyzed in detail so far. The out-of-

plane stiffness matrix  provides much less scope for intuitive understanding. There-

fore, the models and finite element verification for the stiffness matrix  are presented

in Appendix A2 without extensive analysis. In the subsequent section, the discussion on

elastic cross-axis coupling is extended to the remaining off-diagonal (shaded) elements of

the stiffness matrix in Figure 3.2 by looking at coupling between the in-plane and the out-

of-plane modes.

3.7 In-plane to Out-of-plane Elastic Cross-axis coupling

The in-plane to out-of-plane elastic coupling coefficients in Figure 3.2 ( , ,

, , , , ,  and  are the distinct elements assuming a sym-

metrical matrix) do not lend themselves to easy symbolic manipulation unlike the ele-

ments of the in-plane and out-of-plane stiffness matrices. They are, however, modeled in a

much simpler manner for a single beam by considering the rotation of the principle axes of

elasticity as is shown below. It has been shown earlier [39][51] that asymmetrical side-

wall angles in single-layer microstructures lead to rotation of the principal axes of the
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beam cross-section and, therefore, causes x-z (in-plane to out-of-plane) coupling. The

angle by which the axes are rotated is given by:

  (3.49)

The above expression is only valid for homogeneous cross-section beams. In this section,

a more general expression that is also valid for a multi-layer beam with misaligned layers

is derived. This is followed by an approximate analysis for out-of-plane cross-axis cou-

pling for springs with multiple beams.

3.7.1 Rotation of Principal Axes in Multi-layer Beam

The rotation of principal axes is illustrated in Figure 3.13(a) for the single-layer and

multi-layer cases. FEA of CMOS-MEMS beams showed that x-z coupling can arise due to

misaligned metal layers in a beam leading to an asymmetrical beam cross-section. In con-

trast with single-layer beams where the geometrical asymmetry causes cross-axis cou-

pling, a material asymmetry, as shown in Figure 3.13, can also cause cross-axis coupling

in CMOS-MEMS beams. The derivation of the rotation of principal axes in a multi-layer

beam due to asymmetric cross-section is done in two steps: derivation of the location of

the neutral axis i.e., the origin of the principal axes, followed by calculation of the orienta-

tion of the principal axes.

FIGURE 3.13. Rotation of beam principal axes due to asymmetrical cross-section:
asymmetrical side-walls in the single-layer case and misaligned metal layers in the
multi-layer case 
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A multilayer cantilever structure with asymmetric cross-section is shown in Figure

3.14. Axial forces acting at the centroid of each layer lead to vertical and lateral bending

moments. Each layer, i, has a thickness ti, width wi, area , coefficient of thermal

expansion, αi, and an effective Young’s Modulus Ei. Let the coordinates of the center of

the ith layer be . The material properties for each layer are assumed to be uniform

throughout the layer and independent of temperature.

In order to compute the location of the neutral axis (in this analysis the terms “neutral

axis” and “centroid” are used interchangeably), a force  is applied at a point X

along the axis of the beam and moments  and  about the y and z axes respectively

so that a uniform axial strain  is produced in the beam (i.e., the beam cross-section is dis-

placed by a distance  in the x direction, where  is the length of the beam). The total

reaction force and the reaction moments produced about the point X are now calculated.

The reaction force is given by the summation of the force over the entire beam cross-sec-

tion as:

  (3.50)

The reaction moment about the point X about the y and z axes are respectively given by:

FIGURE 3.14. (a) Side view of a n-layer beam of length L (b) Cross-section of the
beam with dots representing the axial forces acting out of plane
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 and 

  (3.51)

The neutral axis (centroid) is defined as the point about which if forces and moments are

applied to produce a uniform strain, then the moments are equal to zero. In other words, it

is sufficient to apply only a force at the centroid in order to produce a purely uniform

strain. Therefore, to compute the position of the neutral axis the moments computed above

are equated to zero.

 and   (3.52)

where,  is the location of the neutral axis. Therefore,

 and   (3.53)

Now the case of pure bending about the y axis passing through the centroid is consid-

ered and the moments that are required to maintain this state are computed. Note that pure

bending implies that there are no external forces acting on the beam. Let  be the radius

of curvature of the beam. Using Euler-Bernoulli beam theory [39], the strain  at the cen-

troid of a layer located at  measured from the neutral axis, is given as:

  (3.54)

The moment about the y axis needed to maintain beam i in this state along with a curvature

 is:
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  (3.55)

where,  is the cross-section area of the beam and  is the moment of

inertia of the ith beam about its own centroid. Using the parallel-axes theorem, the above

equation can be rewritten as:

  (3.56)

where,  is the moment of inertia of the ith beam about the neutral axis of

the composite beam. The bending moment about the z axis is given as:

  (3.57)

Note the absence of the  term in the above equation since there is no bending about the

z axis. Also, note that the term  is simply the product of inertia  of the cross-

section of the ith beam about the neutral axis of the composite beam. Therefore, the above

equation can be rewritten as:

  (3.58)

Summing up (3.56) and (3.58) over all the layers in the beam, the total moments required

to produce pure bending about the y axis are obtained as:

  (3.59)

  (3.60)
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Similarly, to produce pure bending with radius of curvature  about the z axis we need

moments:

  (3.61)

  (3.62)

where, ,  and . Note that the  term,

which is responsible for producing cross-moments, will be zero if the layers in the beam

are in perfect symmetry about either the y or z axes. The set of axes about which bending

does not produce a moment about an orthogonal axis are called principal axes. Let us con-

sider bending with radius of curvature  about an axis y1 which is rotated by an angle 

w.r.t. the y axis. The curvature can be split into orthogonal components about the y and z

axes as:

 and   (3.63)

The moments about the rotated axes y1, z1 can be written as:

  (3.64)

  (3.65)

Simplifying the above equations using (3.63):

  (3.66)
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  (3.67)

If y1, z1 are principal axes of the beam, then for pure bending about y1 the moment about

z1 will be zero, i.e., 

  (3.68)

Therefore:

 i.e.,   (3.69)

It is seen that (3.69) is similar to (3.49) except that the flexural rigidities ,  and 

are used in place of the moments of inertias ,  and  respectively. Note that the stiff-

ness matrix coefficients in the global reference frame can be calculated for a single beam

by rotating the diagonal stiffness matrix.

A behavioral model of the multi-layer beam incorporating rotation of principal axes

was implemented in the NODAS. kyz was obtained from NODAS simulations and 3D

finite element analysis (FEA) using Coventorware [54] by applying a displacement in z,

and observing the reaction force in y. Two sets of three beams each, having length and

width 100 X 2 µm and 50 X 3 µm respectively, were used in the simulations. The beams

contained three metal layers and inter-metal oxide (Figure 3.15). The comparison between
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kyz values obtained from NODAS and FEA is shown in Table 3.4. For both the sets of

beams, for all values of misalignment the model matches the FEA results to about 2%.

In this section, in-plane to out-of-plane cross-axis coupling for a single beam was

modeled by considering the rotation of the principal axes of stiffness. In the following sec-

tion the concept of principal axes of stiffness is discussed further in the context of in-plane

cross-axis coupling.

3.8 Geometrical Interpretation of Cross-axis Coupling
In this following discussion, a correlation between the elements of the in-plane stiff-

ness matrix and the position and orientation of the principal axes of elasticity is estab-

lished. Such a correlation allows us to compare two different spring designs with regard to

their cross-axis coupling properties, independent of their absolute stiffness values. The

benefits of such a comparison will become more apparent towards the end of this section. 

Consider a proof-mass suspended by 4 springs as shown in Figure 3.16(a). The center

of elasticity and the principal axes of elasticity of the system are shown respectively, as the

point Ok and a set of orthogonal axes (xk, yk) such that: if Ok is displaced from its nominal

position along either of the principal axes of elasticity, a reaction force is produced only

along that axis. At the same time, no reaction moments are produced. In this section the in-

plane system stiffness matrix is quantitatively linked to the origin and orientation of the

principal axes of elasticity. There are two main cases of interest: (1) rotation and (2) dis-

placement of the principal axes of elasticity. Figure 3.16 shows the nominal case and the

Table 3.4  Comparison of kyz from NODAS and FEA

Beam dimension 
(l µm X w µm)

Misalignment 
(µm)

kyz(NODAS) 
(N/m)

kyz(FEA) 
(N/m)

Error 
(%)

100 X 2.1 0 0 0 0
100 X 2.1 0.3 0.0108 0.0108 -0.18
100 X 2.1 0.6 0.650 0.650 0.03
50 X 3 0 0 0 0
50 X 3 0.3 0.138 0.135 2.2
50 X 3 0.6 7.39 7.24 2.03
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two other cases for a plate suspended by four springs. Nominally, when the 4 springs are

identical, the center of elasticity is at the center of the plate and the principal axes of elas-

ticity are aligned with the sides of the plate. As shown in Figure 3.16(b) and (c) respec-

tively, rotation of the principal axes corresponds to a non-zero  of the overall system

and displacement of the principal axes corresponds to a non-zero  and . In terms

of the system stiffness matrix, the two cases can be written as:

  (3.70)

where  is the angle by which the principal axes have rotated

FIGURE 3.16. In-plane rotation and displacement of the principal axes of
elasticity

Ok
xk

yk
TL TR

BL BR

Ok
xk

ykTL TR

BL BR

Ok
xk

yk

TL TR

BL BR

(a) Nominal case: , , Kxy 0= Kφzx 0= Kφzy 0=

(c) Axes of elasticity displaced: 

, , Kxy 0= Kφzx 0≠ Kφzy 0≠

(b) Axes of elasticity rotated: 

, , Kxy 0≠ Kφzx 0= Kφzy 0=

θ

Kxy

Kφzx Kφzy

Fx
Fy

Mφz

θ( )cos θ( )sin– 0
θ( )sin θ( )cos 0

0 0 1
'

Kx 0 0

0 Ky 0

0 0 Kφz

θ( )cos θ( )sin 0
θ( )sin– θ( )cos 0

0 0 1

x
y
φz

=

θ

51



  (3.71)

where, ( ) is the position of the displaced set of principal axes. With an aim of corre-

lating , and  to the off-diagonal elements of the system stiffness matrix, the

above equations are expanded to yield:

  (3.72)

  (3.73)

Note that the positions of the zero elements in the above stiffness matrices are consistent

with the assertions in Figure 3.16.

Having shown that the rotation and displacement of the principal axes of elasticity

correspond to system stiffness matrix elements  and  respectively, the sys-

tem stiffness matrix is now derived in terms of the individual spring stiffness matrix which

were derived in Section 3.3. Figure 3.17 shows how the signs of the off-diagonal elements

change as the spring (crab-leg shown only to specify orientation, can be any spring topol-

ogy in general) is mirrored in the x and y directions. The signs can be accounted for by fol-
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in the corresponding row and column of the stiffness matrix are negated. Note that, while
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Fx
Fy

Mφz

1 0 0
0 1 0
Y– 0 X0 1

'

Kx 0 0

0 Ky 0

0 0 Kφz

1 0 Y– 0

0 1 X0

0 0 1

x
y
φz

=

X0 Y0,

θ X0 Y0,( )

Fx
Fy

Mφz

Kx θ( )cos 2 Ky θ( )sin 2+
Kx Ky–

2------------------ 
  2θ( )sin 0

Kx K– y
2

------------------ 
  2θ( )sin Ky θ( )cos 2 Kx θ( )sin 2+ 0

0 0 Kφz

x
y
φz

=

Fx
Fy

Mφz

Kx 0 KxY0–

0 Ky KyX0

KxY0– KyX0 Kφz
KxY0

2 KyX0
2+ +

x
y
φz

=

Kxy Kxφz
Kyφz

,

52



they do not change sign at all and remain positive. The overall stiffness matrix of a plate

suspended by the 4 springs shown in Figure 3.17 can be written as:

  (3.74)

Note that the off-diagonal terms cancel out and the diagonal terms add up. Following this

discussion on the principal axes of stiffness, the practical implications of the insight into

elastic coupling are explored in the next section.

3.9 Manufacturing Variations and Elastic Cross-axis Coupling
Manufacturing variations are inevitable in any fabrication process. In particular, mis-

match between the widths of beams in springs can lead to elastic cross-axis coupling i.e.,

rotation or translation of the principal axes of stiffness as discussed in the previous sec-

tion. In IC fabrication processes, geometrical as well as material properties are known to

vary by as much as 10% across a wafer. This variation is generally composed of two parts:

a gradual trend across the wafer and a localized random component. When we zoom into a

single device, the gradual trends appear to be almost linear across the area of the device.

While a linear trend may suffice to model the statistical mean of a parameter across a

device, random variations may lead to significant deviation from the statistical mean in

individual springs. Therefore, in the following analysis, both, linear variations as well as

localized random variation of beam widths of individual springs are considered. 

FIGURE 3.17. Signs of off-diagonal elements in the in-plane stiffness matrix 
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A linear variation of beam widths across a device is depicted in Figure 3.18. The

width of a hypothetical beam that would have been located at the center of the device is

assumed to be . The gradients along the x and y directions are assumed to be  and

 respectively. Then, the beam width variations are as shown in Figure 3.18. It is

assumed that the distance between the beams forming a single spring is small enough that

the beams of the same spring are assumed to have the same width. Since the elements of

the stiffness matrix are proportional to  (  being the width of the beams) to the first

order, for a fractional change  in the width, the corresponding fractional change in the

stiffness is . The in-plane portion of the stiffness matrix can be written using (3.74) and

Figure 3.17 as:

  (3.75)

Substituting the values for , ,  and  from Figure 3.18,

FIGURE 3.18. Linear variation in beam-widths across a wafer, mapped onto the
springs of a single device with a plate suspended by four springs
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  (3.76)

Note that a linear gradient in the beam widths along any direction, will not result in a non-

zero  in the system matrix. This implies that there is no first order elastic coupling

between the x and the y modes arising due to a linear gradient in the beam widths. There

will, however, be a second order elastic coupling between the x and the y modes through

the  and the  in (3.76).

Three cases of beam width variation are now examined and the corresponding

changes in the stiffness matrix as well as the location and orientation of the principal axes

are observed. The system stiffness matrix can, in general, be written as:

  (3.77)

The first case is when the , i.e., widths of the top two springs i.e., springs TL

and TR in Figure 3.17, are enhanced by a fraction  and the widths of the bottom two

springs, BL and BR are diminished by a fraction . The system stiffness matrix obtained

using (3.77) is:

  (3.78)

Comparing the above stiffness matrix with (3.74) it is seen that they differ only in the

 and the  locations. Geometrically, this is equivalent to movement of the princi-

pal axes along the y axis. This can be explained by the fact that the top springs TL and TR

become “weaker” and the bottom springs BL and BR become “stronger” thereby pushing

the principal axes downwards. Note also that the  terms are zero in (3.78) and this cor-
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responds to the principal axes not rotating. In terms of the displacement of the suspended

plate, motion along the x direction couples to rotation about the z axis and vice-versa, but

there is no coupling between x and y motion.

The second case under consideration is when , i.e., the widths of the two

springs on the left i.e, springs TL and BL in Figure 3.17 are diminished by a fraction 

and the widths of the two springs on the right, TR and BR are enhanced by a fraction .

The overall stiffness matrix can be written using (3.77) as:

  (3.79)

Comparing the above stiffness matrix with (3.74) the difference is only in the  and

the  locations. This is similar to the first case considered above, except that now

movement of the principal axes is along the x axis. The left springs TL and BL become

“weaker” and the right springs TR and BR become “stronger”, pushing the principal axes

to the right. Again, note that the  terms are zero in (3.79) and this corresponds to the

principal axes not rotating. Motion of the suspended plate in the y couple to rotation about

the z axis and vice-versa but there is no coupling between y and x.

The third case is when the widths of the springs on the 135  diagonal i.e, springs TL

and BR in Figure 3.17 are enhanced by a fraction  and the widths of the two springs on

the 45  diagonal, TR and BL are diminished by a fraction . Note that such a variation

will not result from a linear gradient. The overall stiffness matrix can be written using

(3.77) as:

  (3.80)
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Comparing the above stiffness matrix with (3.74) the difference is seen to be only in the

 and the  locations. This is in contrast to the previous two cases where the 

terms were zero. In this case there is no movement of the principal axes but there is a rota-

tion. The direction of rotation of the principal axes depends on which of the two orthogo-

nal spring constants i.e.,  and  is larger. In this case there is direct motion

coupling between the x and y directions, but there is no coupling to the rotational direc-

tion.

There is an interesting duality between the position and orientation of the principal

axes and the actual displacements of the suspended plate. For example, when the principal

axes are not displaced but only rotated, there is coupling only between the translational

modes x and y. Similarly, when the principal axes are displaced but not rotated, there is

coupling between a translational mode (x or y) mode and the rotational mode, but no direct

coupling between the translational modes themselves. Note, however, that there is a sec-

ond-order coupling between the translational motions, if the principal axes are displaced

in an arbitrary direction which is neither along x nor y.

In general, in a real device, one would expect a small uncertainty in the position and

orientation of the principal axes of elasticity due to manufacturing variations. To complete

the discussion on the in-plane cross-axis coupling, simple expressions are now derived for

motion coupling between the translational modes for two main cases of interest from the

stiffness matrix point of view: 

1. Rotation of principal axes i.e., ,  and : 

 and   (3.81)

2. Displacement of the principal axes, but no rotation i.e., , 

and : 

 and   (3.82)
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Note that in (3.81) the coupling depends only on one off-diagonal term  and is, there-

fore, directly proportional to the fractional width mismatch . However, in (3.82), the

coupling depends on two off-diagonal terms  and  and is therefore proportional

to the .  can be considered either as the normalized standard deviation of the widths

of the four springs for a statistical analysis or, if the width of only one spring is changed,

as the fractional width mismatch of the single spring. Comparing (3.81) and (3.82) with

(3.72) and (3.73) respectively, it is seen that the coupling between the two translational

modes is directly proportional to the angle by which the axes are rotated or the product of

the displacements of the principal axes respectively. The high-level parameters ( , 

and ) defining the position and orientation of the principal axes can thus be effectively

used by designers to set manufacturing tolerances for system design which are indepen-

dent of the spring topology being used.

The above analysis connects the system stiffness matrix and the displacement and

rotation of the principal axes of stiffness of rotation to the actual values of mode-coupling.

In this section, the system stiffness matrix, in particular the off-diagonal elements, were

expressed in terms of geometrical asymmetries arising due to manufacturing variations. In

the previous sections, in-plane, out-of-plane and in-plane to out-of-plane cross-axis cou-

pling were analyzed in detail. The analysis lends more insight into spring design issues

and also highlights the differences in the types of cross-axis coupling. This section con-

cludes the entire discussion on modeling of elastic cross-axis coupling. 

The next section focuses on another important practical elastic modeling issue: tem-

perature dependent curvature of multi-layer beams. The derivation of the neutral axis of

the multi-layer beams as presented in Section 3.7 is an integral part of the models for ver-

tical and lateral curvature.

3.10 Curl Modeling
Vertical stress gradients in a cantilever beam arising due to the multi-layer nature of

the CMOS microstructures have been analyzed previously using thermal multimorph the-

ory [56][57][58]. The technique outlined in [58] is useful for calculating the vertical cur-
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vature of multi-layer cantilever beams. Building upon the basic thermal multimorph

theory, models for the following additional effects are developed in this section:

1. Arbitrary boundary conditions applied to beam ends

2. Lateral curling due to misaligned metal layers

3. Curling of a number of interconnected beams

The model formulated is compatible with existing linear behavioral models for beams

in NODAS [7]. Using this macromodel the internal stresses in the different layers in the

CMOS microstructure can be calculated. The stress in the polysilicon layer can be used to

incorporate piezoresistive effects. The first sub-section details the model development, the

second presents verification results using FEA and the final sub-section describes the

measured results.

3.10.1 Extension of Multimorph Analysis

A multilayer cantilever structure is shown in Figure 3.14. Axial forces acting at the

centroid of each layer lead to vertical and lateral bending moments. Each layer, i, has a

thickness ti, width wi, area , coefficient of thermal expansion, αi, and an effec-

tive Young’s Modulus Ei. The out-of-plane curling due to residual stress gradient in the

beam produces a tip deflection . The material properties for each layer are assumed to be

uniform throughout the layer and independent of temperature.

FIGURE 3.19. (a) Model of a CMOS cantilever beam composed of metal,
dielectric and polysilicon layers (b) Cross-section of an asymmetric multi-layer
beam with dots representing the axial forces acting out of plane. Since the
forces are asymmetrically located there is a resultant lateral bending moment in
addition to the vertical bending moment
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Let  represent the force in the ith layer due to the interfacial forces between adja-

cent layers. Since the forces  are produced by action-reaction pairs, they sum to zero.

Let Myi represent the moment about the y-axis in the ith layer produced by the interfacial

forces.

;   (3.83)

where,  denotes the force column vector and  is the moment arm vector measured from

the neutral axis of the composite beam. 

,     (3.84)

where, z0 is the vertical distance of the neutral axis of bending from the top of the beam

and zi is the distance of the centroid of each layer from the neutral axis. Thickness of the

beam is assumed be to much less than the radius of curvature (ρ), and the radius of curva-

ture can be assumed to be the same for each layer.

 or  where,   (3.85)

where Iyi is the moment of inertia of the ith layer having width wi taken about the principal

axis of the layer parallel to the y-axis. Let  represent the temperature of the beam when

it is flat [58]. Equating axial strains at the interfaces between layers due to temperature

change, 
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  (3.86)

Observing the uniformity of the above equation in the subscript i:

  (3.87)

where C is a uniform axial strain for all layers. Multiplying throughout by ,

  (3.88)

Summing up over all layers and using (3.83) and (3.85)

  (3.89)

Noting that the first term on the left hand side contains the parallel axis theorem for com-

puting moments and that the right hand side reduces to zero, total bending moment acting

on the composite beam is obtained as:

  (3.90)

A similar analysis for the lateral moment yields:

  (3.91)

The total axial thermally induced force is given by:

  (3.92)

It should be noted that the thermally induced forces and moments do not depend on the

length of the beam and can be computed by using only the beam cross-section. This fur-

ther implies that the curvature of a beam is independent of the length of the beam. The tip
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deflection, however, is quadratically dependent on the length of the beam. Since linear

beam theory has been assumed, by superposition, any additional force or moments can be

applied at the ends of the beam. In other words, independent arbitrary boundary conditions

can be applied in addition to the thermally induced forces and moments. Applying the

force from (3.92) and the moments from (3.90) and (3.91), at the ends of the beam will

result in exactly the same displacement and rotation of the composite beam as that pro-

duced in each individual beam by the forces and moments produced by the interfacial

forces between layers and the thermal stresses. Those familiar with Thevenin and Norton

equivalent models in electrical circuits can identify with the analogy of a Norton equiva-

lent model. The Norton equivalent model of the macromodel is shown in Figure 3.20. The

beam itself behaves analogous to a resistive element, the force (current) transmitted

through the beam (resistor) producing a linearly dependent displacement (voltage) across

the two ends of the beam (resistor). The thermally induced forces and moments are simply

added as sources to ground, as if current sources are placed at both ends of the resistor.

In order to model the piezoresistive effect the strain in the polysilicon layer along the

length of the beam needs to be calculated. Using Euler-Bernoulli beam theory, it can be

shown that the total change in resistance depends only on the average strain along the

length of the beam, which in turn is dependent only on the axial strain of the beam and the

curvature at the center of the beam. The average longitudinal strain in a layer which is at

distance of (cy, cz) from the centroid of the composite beam is:

FIGURE 3.20.  Norton equivalent of a beam macromodel with thermally induced
lumped force and moment sources and an embedded piezoresistor. The beam has
three translational pins, three rotational pins and one electrical pin at each port.
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  (3.93)

where,  and  are the axial positions, vertical rotation and lat-

eral rotation at the two terminals of the beam and L is the length of the beam. The resistiv-

ity change is related to the longitudinal strain in the layer through the piezoresistive

coefficient,  as:

  (3.94)

Transverse piezoresistance of polysilicon is much lower than longitudinal and has been

omitted from the above equation. 

The piezoresistance model illustrates the usefulness and flexibility of the proposed

macromodel for curvature multi-layer structures. In the next section, the macromodel is

verified by comparison with FEA.

3.10.2 FEA Verification

In order to verify the three claims of the macromodel two different finite element

analyses were run. First FEA is done on single cantilever beams in order to verify the

accuracy of the macromodel in both vertical and lateral curvature. Second, a suspended

plate structure with four U-springs is numerically analyzed to verify that the macromodel

accurately captures arbitrary boundary conditions as well as a number of interconnected

beams.

As part of the first set of analyses, thermomechanical FEA was done on a CMOS

beam with 3 metal layers. The width of the Metal3 layer is set to a commonly used value

of . Metal2 and Metal1 layers widths are set to . Figure 3.21(b) shows the

comparison of tip deflections predicted by the macromodel and the FEA in the lateral (y)

and vertical (z) directions. The bottom two metal layers were deliberately misaligned as

shown in Figure 3.21 (a) in order to produce lateral curling with temperature change. As

predicted by the theory, the deflection is linear with temperature and the difference

between the macromodel and the FEA is less than 3% for all temperatures.
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In order to verify the generality of the model, seven different beam compositions were

analyzed. Table 3.5 summarizes the comparison. The type of the beam refers to the com-

position with numbers denoting presence of the corresponding metal layer and P indicat-

ing presence of polysilicon layer. The beams were 100 µm long, the metal layers are 2.1

µm and the polysilicon is 1.2 µm wide. Since a linear relationship between temperature

change and tip deflection was expected, the temperature change was set to only one value:

100 K. The tip deflection values are given in µm. The model values match the FEA very

closely, probably limited by numerical precision of the finite element analyses or minor

second-order non-linear effects.

In order to verify the capability of the model to handle arbitrary boundary conditions,

3D thermo-mechanical FEA of a simplified accelerometer structure was done using Cov-

entorware. The structure consists of a single plate suspended by four serpentine springs.

The serpentine spring was deliberately chosen to see the effects of a large number of

beams. Since there is no existing thermal curling macromodel for a plate, the plate itself is

Table 3.5  Vertical deflection (in µm) of tip in 100 µm: Macromodel vs. FEA 

Type 321P 32P 31P 3P 21P 2P 1P
FEA 1.37 2.00 0.84 1.47 2.86 3.07 8.19
Model 1.36 1.98 0.82 1.44 2.81 3.03 8.06

FIGURE 3.21. (a) Cross-section of beams. Metal3 is 2.1 µm wide and Metal2 and
Metal1 layers are 1.8  µm wide and are offset by -0.15  µm from the center of the
beam (b) Comparison of behavioral curl model with FEA for beam of length 100
µm. Difference is less than 3% for all temperatures. 
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composed of a number of beam elements. The curled shape of the accelerometer structure

due to temperature change is seen in Figure 3.22. The comparison of vertical deflection

from FEA with the macromodel is shown in Table 3.6. The two deflections are in good

agreement for both the points. Thus, it is seen that the macromodel with force and moment

sources applied at the two ends provides a convenient technique to simulate temperature

dependent curvature in complex suspended structures with a number of beams, which are

not necessarily cantilevers.

3.10.3 Measurements

Measurements to characterize vertical and lateral curl in CMOS beams were made on

beams with integrated heaters. An SEM of the test structure is shown in Figure 3.23. The

structure has 3 main parts. A heated base with an integrated polysilicon heater embedded

in the structure. A meandering spring thermally isolates the heated base from the sub-

strate. The test beams are attached to the heated base. Ohmic heating is used to increase

the temperature of the base. The temperature of the base and the beams is the same as ther-

mal losses to the substrate are small due to the small device area. The device temperature

Table 3.6 Vertical deflection (in µm) for simplified accelerometer

Location Macromodel FEA
(a) Center of plate -0.9 -0.95
(b) Tip of spring 2.9 3.0

FIGURE 3.22. Temperature-induced curling of a simplified accelerometer
structure obtained from 3D FEA. The vertical deflections at points (a) and (b) are
compared with results from behavioral simulation using the macromodel in
Table 3.6.

(a): Center of plate

(b): Tip of spring
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was extracted from the resistance change in the polysilicon heater. The temperature char-

acteristic of the polysilicon heater was characterized separately by measuring the resis-

tance of the polysilicon heater while the device was placed in a temperature-controlled

oven. The device temperature was measured using the temperature characteristic of

threshold voltage of the N-well-substrate diode. Measurements with an infrared micro-

scope were made to confirm the uniform temperature distribution.

A 10 Hz triangular heating pulse was applied to the heater. Beam deflections in the

lateral direction and the beam curvature were measured using the MIT microvision system

[59]. The temperature distribution is expected to reach its equilibrium value at every mea-

surement as the thermal time constant of the structure is 6 ms. The beam out-of-plane curl

measurements were confirmed by static interferometry images of the structure. The

change in device shape with temperature is shown in Figure 3.24.

Comparison of the measured deflection vs. temperature with the macromodel is

shown in Figure 3.25. A measured 0.15 µm overetch was incorporated in the deflection

computation. The measured and the modeled deflections match to within 15% for large

deflections. Possible sources of error include temperature calibration and microvision res-

olution.

Test Beams Integrated Polysilicon Heater

Thermal Isolation spring

FIGURE 3.23. (a) SEM of the test structure used to characterize beam curling
with temperature. It consists of alternating misaligned and symmetric beams
(b) Cross-section of the measured beams (misaligned)
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Thus, the proposed macromodel for vertical and lateral curling of multi-layer beams

has been verified through FEA as well as measurement results.

3.11 Summary
A comprehensive analysis of elastic cross-axis coupling was presented at the individ-

ual spring level as well as the system level with multiple springs. Equations for cross-axis

stiffness constants were derived for crab-leg, u-shaped and serpentine springs. It was

proved that first order cross-axis coupling between the two in-plane translational modes

can be eliminated by using symmetric springs. Beam cross-section asymmetry leading to

cross-axis coupling between the in-plane and the out-of-plane modes was also modeled. A

geometrical interpretation of cross-axis coupling relating the stiffness constants to transla-

tional and rotational movement of the principal axes of elasticity was presented. This

FIGURE 3.24. Interferometric images of the out-of-plane curl of the test
structure at 24oC and 56oC. One fringe length corresponds to 245 nm
displacement in the vertical direction

T=24oC T=56oC

FIGURE 3.25. Comparison of relative tip deflection from measurements and
macromodel showing a match to within 15%. 100 nm and 20 nm error bars are
shown for the z and x deflections respectively.
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interpretation allows us to specify cross-axis coupling independent of the absolute spring

stiffnesses and can also be used to represent inertial and viscous coupling.

A macromodel suitable for schematic-based simulation of thermally induced lateral

and vertical curling in multi-layer CMOS sensors was derived using thermal multimorph

theory. By simulating a schematic with multiple beams, the curling characteristic of

CMOS sensors can be estimated at the design stage instead of post-fabrication character-

ization. Furthermore, effects of manufacturing variation such as mask misalignment on

sensor performance can now be studied in an integrated manner.

In this chapter elastic cross-axis coupling models have been derived for specific

spring topologies. In the next chapter a more general method for computing the stiffness

matrix, which can be applied to any single-chain configuration of beams, is presented. 
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Chapter 4.  Reduced Order Models: From Beams 

to Springs

4.1 Introduction
In a typical accelerometer schematic consisting of a plate suspended by four U-

springs, more than 50% of the nodes in the simulation matrix can be traced to the beam

elements used. In such an accelerometer, as well as other inertial sensors, the beam ele-

ments operate in a completely linear regime (because of the extremely small i.e., < 10 nm

displacements). Exceptions to this linear behavior are the beams associated with the large

driven mode (few m) in a microgyroscope. The large number of spring beams in an iner-

tial sensor schematic makes springs prime candidates for reduced order models. This also

has implications for simulation-based design synthesis from high-level performance spec-

ifications, which has been demonstrated for accelerometers [60]. During synthesis, the

accelerometer schematic is simulated several thousand times with varying geometrical

parameters to find an optimal design. The main output of the simulations is the overall

performance of a design. The displacements at the terminals of a particular beam element

are not of any interest during the synthesis process. Similarly, a single mass element bear-

ing equivalent inertial properties as the overall plate system in the inertial sensor, is more

efficient in terms of simulation times. Therefore, higher-level behavioral simulations

using functional elements such as spring, mass, damper and electrostatic sensors and

actuators are better suited for embedding within the synthesis loop. 

The previous chapter described in detail the models for cross-axis coupling in particu-

lar spring topologies such as crab-leg, serpentine and U-springs. In this chapter, the focus

is shifted to more general spring topologies and to extract functional parameters from geo-

metrical parameters for entire systems. The main goal of this chapter is to develop a meth-

odology for rapid translation from a circuit-level beam-plate schematic to a functional-

level spring-mass schematic. This goal is achieved by combining an efficient spring stiff-

ness computation procedure with an algorithm to automatically generate a spring-mass

netlist from a beam-plate netlist. As mentioned in Section 2.4.1 the functional spring ele-

µ
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ment implemented is pin-compatible with lower-level beam elements in NODAS. Com-

bining the spring stiffness computation with the translator, spring-mass behavioral models

of inertial sensors can be generated automatically. This work utilizes the specialized

geometry of single-chain-of-beams springs in which every beam is connected to at most

one other beam at each end. Such springs are commonly used in inertial sensors.

 The first sub-section describes the computational procedure to obtain the spring stiff-

ness coefficients for an extended family of springs. This is followed by a description of the

algorithms for translation from low-level schematic to higher-level behavioral schematic.

Following this, verification of the spring computation procedure is done by comparison

with FEA. The usefulness of the simulation at the functional level is then demonstrated by

design-space exploration of two inertial sensors. Finally, discussions and conclusions from

the results obtained are presented. Future directions of work to include effects of inertia

and damping and extension for completely arbitrary spring topologies are outlined in the

final sub-section of chapter.

4.2 Spring Stiffness Computation
4.2.1 Background

Springs are a very important part of the inertial sensor design process. Using the

energy methods outlined in Chapter 2 and described in [41][61], stiffness matrices (which

are composed of analytical models for each stiffness constant) have been derived previ-

ously for beams, crab-leg, u-shaped, serpentine and folded-flexure springs. Extension to

new topologies involves detailed analysis of the spring using free-body diagrams of indi-

vidual beam elements. There are a wide variety of spring topologies and it is practically

impossible to pre-derive the stiffness matrix for each of them. Numerical alternatives such

as building behavioral models through FEA have been proposed previously [62]. The

commercial tool Coventorware also has an in-built methodology for generating macro-

models of springs [54].

The previous chapter described in detail models for cross-axis coupling in specific

spring topologies such as crab-leg, u-spring and serpentine springs. However, for other

spring topologies, designers have to resort to finite element analysis or nodal simulation
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using tools such as NODAS, with beam elements. The computational procedure presented

in this section eliminates the need for finite element analyses to obtain linear spring coeffi-

cients. Furthermore, it also speeds up nodal analysis by replacing a number of beams with

a single spring.

The automated procedure reported in [63] for computing the spring stiffness matrix

for any single-chain configuration of beams is developed based on the modeling tech-

niques described in Section 2.4.2 and [41]. This procedure only requires the designer to

specify the spring as a layout or as a NODAS schematic composed of beam elements. In

the next sub-section, the computational procedure is described in detail.

4.2.2 Stiffness Computation Procedure

The procedure essentially consists of first obtaining the compliance matrix of the

spring and then computing the inverse of the compliance matrix. For single-chain of

beams springs, the compliance matrix is simply the sum of the compliance matrix of each

individual beam because there is no “branching” of forces at any point in the spring.

For any spring which is configured as a single chain of beams the forces and moments

transmitted through a beam in the spring can be computed independent of all the other

beams in the spring. In other words, the forces and moments passing through a beam only

depend on the position of the beam with respect to the point of application of force. Based

on this fact, the method for deriving the in-plane compliance matrix for a beam in a spring

was described in Section 2.4.2. Using the same method, the out-of-plane compliance

matrix for a beam can also be derived. For the ith beam, the compliance matrix is given as:

  (4.1)

where,

αzzi αzφxi αzφyi

αφxzi αφxφxi αφxφyi

αφyzi αφyφxi αφyφyi
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 is the Young’s Modulus of the material of the beam

 is the Shear Modulus of the material of the beam

 is the moment of inertia of the ith beam cross-section about the z (thickness) axis

 is the moment of inertia of the beam cross-section about the y (width) axis

 is the torsion constant of the beam cross-section about the x (length) axis

The above compliance terms are obtained from the strain energy of bending and tor-

sion. There are additional in-plane compliance terms which arise due to the strain energy

of axial deformation. These terms are given as:

The compliance matrix of the entire spring is obtained by summing the compliance matri-

ces of the individual beam elements.

The inverse of the spring compliance matrix yields the spring stiffness matrix. This

procedure is equivalent in the electrical domain to summing up the series resistances and

inverting to obtain the equivalent conductance of a number of series connected resistors.

In the next section, the second component of reduced order modeling strategy, i.e., transla-

tion of the circuit-level beam-plate schematic to the functional spring-mass schematic, is

described.

E
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4.3 Translation from Circuit-level to Functional Schematic
The translator implements the following tasks during the conversion to the functional

schematic.

1. Identifies groups of plates which are adjacent, lumps them into a single rigid body and

computes the effective mass for this rigid body.

2. Identifies chains of beams and collects these chains into springs.

3. Uses the spring computation procedure described earlier to compute the stiffness

matrices for the springs collected in 2.

4. Identifies groups of springs which are connected between the same rigid bodies identi-

fied in 1 and sums up their stiffness matrices so that there is at most one composite

spring between any two rigid bodies.

The algorithm to convert a beam-plate schematic to a spring-mass schematic is illus-

trated with the help of two examples: the nested-gyroscope introduced in Figure 2.2 and a

z-axis accelerometer. In order to provide more complete picture of the usefulness of this

algorithm, the starting point for this illustration is the layout. Referring to the hierarchy of

MEMS design levels as shown in Figure 2.6, traversal of the hierarchy from the layout

level to the functional level will now be demonstrated.

4.3.1 Nested gyroscope

The layout of a nested gyroscope system is shown in Figure 4.1(a) A similar topology

has also been employed in a gyroscope designed earlier [32]. The system is composed of

an inner resonator which is suspended inside a movable rigid frame. The inner resonator

consists of four suspension springs and a central proof-mass. The frame is suspended by

four springs which are anchored at the outer ends. The micromechanical part of the layout

is passed through a MEMS layout extractor [64]. The layout extractor recognizes the dif-

ferent components in the layout and generates the NODAS schematic representation of the

nested-resonator system shown in Figure 4.1(b). The actuation and sense combs seen in

the layout are removed from the schematic since they are not relevant to the current dis-

cussion. The different components which are used in the schematic are rigid plates, flexi-

ble beams and attachment points called anchors. In the schematic shown, the central
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proof-mass is modeled by a single plate at the center. This plate is connected through four

identical chains of beams to the rigid frame. The rigid frame is modeled by four plates.

These plates are anchored to the substrate using another set of four identical chains of

beams. The NODAS circuit-level schematic is the starting point for the translation to the

functional schematic.

When the schematic shown in Figure 4.1(b) is given as an input to the translator, the

resulting functional schematic is shown in Figure 4.2. The central plate is translated to a

mass element at the behavioral level. The four plates forming the rigid frame are adjacent.

FIGURE 4.1. (a) Layout of a nested-resonator system (b) Corresponding NODAS
schematic obtained through layout extraction. The schematic consists of a central
plate connected through the four inner springs to the frame. The frame is
composed of four plates which are suspended by the four outer springs. The other
ends of the four outer springs are connected to the chip substrate.

proof

4 outer springs

4 inner springs

(a) (b)x

rigid frame

 mass (plate)

FIGURE 4.2. Functional model generated from the circuit-level schematic of the
nested-resonator system shown in Figure 4.1(b)

SPRING

MASSANCHOR MASS

SPRING
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Therefore, they are combined by the translator to form another mass element. The four

inner springs are combined to form the spring which connects the two mass elements in

the behavioral model. The four outer springs are combined to form another spring element

which connect the mass element representing the rigid frame to the anchor. As shown in

Figure 4.2, the functional model comprises only of 2 spring and 2 mass elements, while

the circuit-level schematic has 5 plate and 76 beam elements. The complexity reduction is

evident even by visual comparison between the circuit-level schematic and the functional

schematic.

4.3.2 Z-axis accelerometer

Figure 4.3(a) shows the layout of an spring designed for use in a z-axis accelerometer.

This spring has about 50 beams. The schematic representation of this layout obtained by

using the layout extractor is shown in Figure 4.3(b). Four such springs were used to sym-

metrically suspend a proof-mass at the center of the layout. The resulting schematic repre-

sentation is then translated to the functional schematic which is shown in Figure 4.4. The

circuit-level schematic with all the four springs has more than 200 beams in it.

FIGURE 4.3. (a) Layout of a spring with about 50 beams connected to a proof-
mass at one end and anchored at the other end (b) Corresponding NODAS
schematic of the spring obtained through layout extraction. Beams marked with
“1” and “2” have widths w1 and w2 respectively.
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In both the above examples, the nested-gyroscope and the z-axis accelerometer, the

functional schematic, naturally, has much fewer elements compared to the circuit-level

schematic. Therefore, it is expected that the simulation using the functional schematic will

be considerably faster than that using the circuit-level schematic. However, the functional

schematic is capable of capturing only the lowest resonant modes of the structure, whereas

the circuit-level schematic is capable of revealing many more modes. 

4.4 Verification
The methodology described above for behavioral model generation is evaluated at

two levels. First, the accuracy of the spring stiffness computation is verified by compari-

son with FEA. Second, the two topologies described previously are simulated at the circuit

level and at the higher functional level and the results are compared with respect to the

accuracy and the simulation speed.

4.4.1 Verification of Spring Stiffness Computation

The layout of the spring used for verification is shown in Figure 4.5. The length and

the width (measured from centers of the adjacent beams) of the vertical beams are varied

while the horizontal beams are left unchanged. The comparisons of the spring stiffness

computations with the FEA results are shown in Figure 4.6, Figure 4.7 and Figure 4.8 for

kxx, kyy and  respectively. For the range of widths and lengths considered, the match

between the FEA and the spring stiffness computation procedure is very good. The error

surfaces for kxy,  and  with respect to the beam length and the width are not pre-

sented here, but are within 6%. The errors are more prominent at higher values of the

beam width w. This is because of the ambiguity in measuring beam lengths i.e., whether

SPRING

MASSANCHOR

FIGURE 4.4. Functional schematic generated from the circuit-level schematic of
the accelerometer shown in Figure 4.3(b)

kφzφz

kyφz
kxφz
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the length is to be measured from the center of the horizontal beams or from the edge of

the horizontal beams. Similarly for the horizontal beams, the effective length is strongly

correlated to the beam width since, the beam width (4 µm) is a significant fraction of the

length (10  µm). For the comparisons shown the beam length was measured from the edge

of the adjacent beams and a correction of: 

M
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2

FIGURE 4.5. Layout of the spring used
for FEA. A is the anchored point. M is
the point to which the mass is attached.
The length l and the width w of the
vertical beam are varied over a range of
values.
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FIGURE 4.6. Comparison of spring
stiffness computation for kxx with
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  (4.2)

is applied to both the ends of each beam.  is the width of the beam itself and

 is the width of the adjacent beam.

4.5 Comparison of Circuit-level Schematic with Functional Schematic 
Simulation

The nested-gyroscope and the z-axis accelerometer are simulated at both the circuit-

level and the functional level and the results are compared with respect to the accuracy

and simulation time.

4.5.1 Example 1: Nested-Gyroscope Design Space Exploration 

One of the design issues in a nested-resonator gyroscope is the difference in frequen-

cies between the drive-direction resonant mode (x-mode of the outer rigid frame) and the

sense-direction resonant mode (y-mode of the inner proof-mass). For maximizing sensitiv-

ity and maintaining manufacturability at the same time, it is desired that the sense resonant

mode be higher than the drive resonant mode and also that the sense resonant mode be
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FIGURE 4.9. Difference in the resonant frequency extracted from the schematic
simulations and behavioral simulations (a) drive-mode (b) sense-mode
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close enough to the drive resonant mode. The design of the suspension springs is crucial to

achieve this goal. One of the ways of controlling the spring stiffness is by changing the

widths of the beams forming the spring. By this method the overall dimensions of the

spring do not change much and therefore, the design process is simplified. 

A design space exploration is done on the nested-gyroscope using circuit-level and

functional simulations. The widths of the beams in the outer and inner springs were cho-

sen as the two design variables. AC analysis of the schematic shown in Figure 4.1(b) was

done for a range of these design variables. The dependence of the drive-mode and the

sense-mode resonant frequencies on the design variables was obtained from these analy-

ses. 

Similarly, these design variables were also passed to the spring computation code and

the stiffness of the behavioral spring was calculated for all the settings of these design

variables. With these stiffness values AC analysis of the functional schematic of the nested

gyroscope (shown in Figure 4.2) was done. Again, the dependence of the drive-mode and

the sense-mode resonant frequencies on the design variables was obtained. The higher-

level behavioral simulation was about 10 times faster than the beam-based schematic sim-

ulation. The comparison between the resonant frequencies is shown in Figure 4.9(a) and

(b) for the drive and sense modes respectively. The difference is less than 2% for all values

of the design variables. The difference is larger for larger values of the inner spring width.

This is because, in the current implementation, only the spring stiffness value is computed.

The effective mass contribution of the beams is not taken into account in the behavioral

model. From the results obtained, it is possible to choose the beam widths so that the

design objective is achieved.

4.5.2 Example 2: Resonance Frequency Analysis of Z-axis Accelerometer

The sensitivity of an accelerometer is inversely proportional to square of the reso-

nance frequency in the sensing direction. The resonance frequency of the other modes

determine the mechanical cross-axis sensitivity of the accelerometer. Therefore, it is usu-

ally preferred to have the other modes at much higher frequencies. 

The schematic built using 4 of the springs shown in Figure 4.3(b) has more than 200

beams. Two different beam widths, w1 and w2, were chosen as the design variables as
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shown in Figure 4.3(a). For different settings of these design variables AC analysis was

done on both the circuit-level schematic as well as the functional schematic combined

with the spring computation. The functional behavioral simulation combined with the

spring computation was almost 100 times faster than the beam-based schematic simula-

tion and the resonance frequencies match within 5%. This difference is because the

springs are considered massless.

Thus, in both cases, a significant improvement in simulation time is obtained at the

expense of a small loss in accuracy, which can be attributed to the fact that inertial effects

have been neglected. This small loss in accuracy is usually acceptable for applications

such as simulation-based synthesis. However, the improvement in simulation time will, in

turn, lead to significant reduction of synthesis time.

4.6 Inertial and Viscous Effects and Extension to Arbitrary Spring 
Topologies

In this section, extensions to the stiffness computation procedure to include inertial

and viscous effects are presented. The extensions are proposed for arbitrary spring topolo-

gies. The goal is to reduce a multiple terminal network of interconnected beams to a 2-port

spring, retaining the ports at which the network of beams originally connected to other ele-

ments in the schematic while preserving the significant modes of the original network.

4.6.1 Model Formulation

A mechanical second-order system with n degrees of freedom can be written as:

  (4.3)

where the  vector contains the position of the n nodes and the  vector contains the

external forces acting at the n nodes, i.e.,

 and 

M X··⋅ B X·⋅ K X⋅+ + F=

X F

X

x1

x2

…
xn

= F

f1

f2

…
fn

=
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The M and the B matrices are assumed to be diagonal. The K matrix may have cross-axis

coupling terms and therefore is not be diagonal, but is a symmetric matrix. Introducing

additional state variables , the above equations can be rewritten as:

  (4.4)

Note that in the above equation the first matrix is skew-symmetric while the second one is

symmetric. These properties may come in handy later on to preserve the passivity of the

reduced-order models [65].

Let there be p nodes where the network of beams connects to other elements (such as

a plate or an anchor). These p nodes can have external forces applied to them. This means

that the force vector on the right hand side can have non-zero entries only at these p nodes.

The original X vector is partitioned into two sub-vectors X1 of size p and X2 of size .

The reduced-order model should have only p nodes. Rewriting (4.4),

  (4.5)

The X1 and the X2 vectors are not linearly independent i.e., the X2 vector can be expressed

in terms of the X1 and V1 vectors. Similarly the V2 vector can be expressed in terms of the

V1 vector. If reduced-order matrices  for the visco-inertial properties and  for the

elastic properties then:
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  (4.6)

In order to convert (4.5) into (4.6) a transformation  with 2n rows and 2p columns is

required such that:

  (4.7)

Observing the form of the above equation and recalling that  and , Z

can be written as:

  (4.8)

where,  is a matrix whose computation is described in the following section. Substitut-

ing (4.7) in (4.5):

  (4.9)

Pre-multiplying the equation with the transpose of Z, :

  (4.10)
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Comparing (4.10) with (4.6) and using (4.8) (to verify that the right hand sides are

identical) we can compute the reduced-order B and K matrices, if the Z transformation

matrix is known. In the next section we will describe the computation of the Z matrix.

4.6.2 Model-order Reduction

This section describes the model-order reduction process which is basically the pro-

cess of expressing the state of n displacements in the X vector and the n velocities in the V

vector in terms of only the p displacements and the p velocities in the reduced-order dis-

placement and velocity vectors,  and  respectively. The transformation matrix Z

brings about the reduction of the model order.

Expanding and rewriting (4.5):

  (4.11)

Since the derivatives are zero at steady state:

  (4.12)

i.e.,

 i.e.,   (4.13)

and,

  (4.14)

Comparing (4.14) with (4.7) and (4.8) we have:
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  (4.15)

Now the reduced-order system matrices can be written as:

 and

where, 

  (4.16)

Thus, by computing the Q matrix the reduced order model can be obtained.

4.6.3 General Reduced-order Modeling

The reduced-order model derived in Section 4.6.2 has the same zeroth order moments

(steady state solution) as the original model. In order to match higher order moments also,

additional nodes need to be introduced into the reduced-order model. The transformation

matrix Z will then look like:

  (4.17)
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=
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=

Z2n 2 p r+( )×

Ip p× E1 0 0

Q n p–( ) p× E2 0 0

0 0 Ip p× E1
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where, the vectors  are orthonormal within themselves and to 

and they jointly form a basis for the first  moments of the original system. The addi-

tional vectors E, can be obtained using Arnoldi methods as shown in [65][66]. However, it

is not clear whether the first  moments of the transformed system matrices will match

those of the original system. If the basis Z were orthonormal this has been proved earlier

[65]. But the first p columns of the basis Z are not orthonormal. Therefore, additional work

is required to prove or disprove the moment matching properties of the transformed sys-

tem matrices. 

4.7 Summary
This chapter addressed the functional level of the MEMS design hierarchy and extrac-

tion from the circuit-level to the functional level. The extraction was accomplished by

combining a simple method for computing stiffness matrices for springs with an algorithm

to combine multiple beams to a spring element and multiple connected plates to a single

mass element. This stiffness computing procedure can handle any single-chain configura-

tion of beams and is accurate to within 5% as long as all beams are at least as long as they

are wide. Using the flow from layout to circuit level schematic to functional schematic,

faster design techniques for inertial sensors were demonstrated. For a complex spring with

about 50 beams, the simulations using the functional schematic coupled with the spring

computation procedure were up to 100 times faster than nodal simulation using beam and

plate atomic elements. Extensions of the stiffness computation procedure to arbitrary

spring topologies and to include inertial and viscous effects have also been proposed to

overcome current accuracy limitations.

En r×
E1

E2
=

Ip p×

Q n p–( ) p×

p r+

p r+
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Chapter 5.  Electrostatic Modeling of CMOS-MEMS 

Comb                                          

5.1 Introduction
In the previous two chapters, elastic modeling was described in extensive detail par-

ticularly with regard to elastic cross-axis coupling. In this chapter, the domain of interest is

electrostatics. Electrostatic combs are used extensively in MEMS for sensing and actua-

tion. As described in Section 2.4.3, two main quantities of interest in the electrostatic

domain are the capacitance and force. A modeling methodology for capacitance and force

of complex multi-conductor structures is developed in this chapter. Measurements on fab-

ricated variable capacitance test structures are used to verify the models.

Linear combs with dominant motion along the length of the combs [67] (Figure

5.1(a)) are used in microgyroscopes for actuation since they produce constant force over

large amplitudes [10]. Differential combs, shown in Figure 5.2, are used for sensing the

induced oscillations in gyroscopes. Since microgyroscopes are highly sensitive to spurious

forces, it is important to estimate the multi-directional actuation forces produced by the

simple comb. Furthermore, since temperature-dependent microstructure curling in

CMOS-MEMS [7] gyroscopes can lead to drive amplitude variation with temperature,

FIGURE 5.1. (a) Top view of a simple comb with three comb fingers (the lesser of
the two numbers is taken as the number of fingers in the comb) (b) Cross-section
of a comb finger in the CMOS-MEMS process
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-

robust design requires curvature-inclusive comb actuator models. Simulation of manufac-

turing variations requires models which are valid over a range of geometrical parameters.

When used for motion sensing, differential combs require an accurate capacitance model.

The modeling problem is further complicated in a multi-layered CMOS-MEMS comb

(Figure 5.1(b)) which has multiple edges and vertices on each finger. In addition to pro-

viding accurate values for the capacitance and force, a behavioral model should also con-

serve energy [68]. Behavioral simulation can be used effectively to aid in gyroscope

design only if the comb models provide reasonable estimates of capacitance and force.

In Chapter 3 and Chapter 4 the elastic properties of beam elements were analyzed.

There are important fundamental differences between the beam and the comb models.

Unlike elastic beam differential equations, which have a commonly valid and accurate

closed-form general solution, the Laplace equation defining the electrostatic behavior of

combs has closed form solutions only for a limited number of symmetrical boundary con-

ditions, which are often restricted to two dimensions. Furthermore, while beam elements

are most commonly used in their linear region of operation in inertial sensors, comb

capacitance and force are inherently non-linear. Usually the number of comb elements (2

to 4) in an inertial sensor is much smaller compared to the number of beam elements (>

FIGURE 5.2. Top view of a differential comb along with the equivalent capacitive
divider schematic. 
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15). These differences are summarized in Table 5.1. These differences suggest that differ-

ent modeling strategies be used for the beam and the comb models. Accordingly, an alter-

nate modeling methodology for electrostatic elements is presented in this chapter. Before

delving into the modeling methodology, a brief review of existing public literature is given

in the following section.

5.2 Background
2D analyses of the comb-drive cross-section usually use conformal mapping [42][51]

techniques. These analyses are primarily aimed at the simple comb with the dominant

motion being in the direction of the length of the comb-fingers. Capacitance change due to

vertical or lateral motion has been modeled using approximate analytical equations for

single-layer comb fingers [51] or by numerical simulation of fixed-geometry 2D multi-

layer cross-sections [69][70][71]. Angled comb-finger side-walls (observed in polysilicon

microstructures) have been modeled by superposing curve-fits onto nominal analytical

equations [72]. 

The conformal-mapping based analytical models for fringe capacitance are derived

using symmetry assumptions. However, movement in the gap direction breaks the symme-

try as shown in Figure 5.3 and therefore, the analytical models are not strictly valid. None

Table 5.1 Comparison of beam and comb models
Element type beam comb
Solution of physics accurate, 3D, analytical approximate, 2D, analytical
Non-linearity only for large displacements even for small displacements
Number in schematic 44 4

Odd symmetry planes

(a)

M F

FIGURE 5.3. (a) Cross-section of a comb showing two fixed fingers (F) and one
movable finger (M) along with odd and even symmetry planes used in derivation
of conformal-mapping based analytical models. (b) Movement in the gap direction
breaks the symmetry

F

Even symmetry plane
 Symmetry broken

M FF

X X X

(b)
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of the above-referred models take into account the fringe capacitance at the tips of the fin-

gers, and charge concentration effects at finger corners. While the numerical models

[69][70][71] take into account the multi-layer nature of CMOS comb-drives (Figure

5.1(b)), they are all valid only for fixed finger width and gap between the fingers. Further-

more, because of the 2D nature of the models, capacitance changes and vertical forces due

to temperature-dependent vertical curling of comb-fingers can only be approximated by

assuming a mean vertical position of two uncurled combs.

Numerical methods such as Finite Element Analysis (FEA) and Boundary Element

Analysis (BEA) can capture charge concentration, curling and generalized motion effects

on capacitance and force. However, numerical convergence needs to be closely monitored.

Experience with BEA done in this thesis suggests that even four times higher refinement

of a boundary element mesh which yielded converged capacitance values did not yield

converged force values. This is probably because capacitance convergence requires only

that the overall charge on a conductor does not change with more refinement, however,

force convergence imposes a much stricter condition that the charge distribution remains

invariant with more refinement. Also, numerical methods requiring meshed models and

significant computation time, are not convenient for direct inclusion into a system simula-

tion loop. Therefore, the modeling goal of this work is a behavioral description of the

comb which exhibits the ease of use of analytical equations in system-level simulation [7]

while incorporating the extended validity range of numerical methods. 

In [73] Gabbay et al. have presented a general macromodeling system, which

employs a rational fraction of multivariate polynomial as the fitting equation. However,

the proposed model consists of analytical equations at the core superposed with polyno-

mial curve fits for data obtained from 3D BEA [74]. The former approach is more suited

(and probably necessary) for arbitrary shaped, non-parameterized geometry, deformable

actuator systems. The electrostatic comb can be generally considered to be non-deform-

able (except for curvature, which is being treated as a geometrical parameter) and also, the

model domain not only includes the position and orientation of the comb, but also the geo-

metrical parameters. Additionally, by combining analytical models with regression one

can take advantage of the existing literature on electrostatic comb models. 
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5.3 Modeling Goals and Approach
The modeling methodology is intended to capture the following physical effects:

1. Fringe capacitance for movement in gap direction

2. General 3D motion of the combs

3. Multi-layer effects in CMOS-MEMS combs

4. Vertical curling effects

5. Charge concentration effects at corners

 The model is intended to be valid for multi-layer combs across a range of comb fin-

ger geometries, combined movement in vertical and lateral directions, and also include

curling effects and fringe and corner capacitances. The model is also aimed at providing a

energy-conserving description of the electrostatic comb actuator by fitting the derivative

of the capacitance equation to numerically obtained force values. The modeling approach

is to derive an analytical equation for comb movement in the gap direction and use numer-

ical data to capture the other effects.

In Section 5.4 the library of existing analytical models is extended for movement of

the comb in the direction along the gap. The analytical equations derived, which also form

the core of the proposed model, are briefly described. The next section describes the

numerical part of the modeling methodology. Choice of design variables, variable screen-

ing, design of experiments for BEA are described in Section 5.5. Section 5.6 details the

form of the model and the approach for combined modeling of capacitance and force. The

regression results, accuracy of the fit and an application of the model to estimate manufac-

turing variation induced drive amplitude changes in a gyroscope are discussed in Section

5.9. Experimental verification is described in Section 5.10 and the chapter summary is

presented in Section 5.11.

5.4 Analytical Model for Movement in Gap Direction
In this section, the analytical equations which will be used in the fitting formula are

described. The cross-section of a comb with three fixed (F) and two movable (M) fingers

is shown in Figure 5.4(a). The movable fingers are displaced from the nominal position to

the right by a distance x. The capacitance between the movable and fixed fingers can be
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)/2

t

written as a sum of two 2D capacitances, the parallel plate capacitance and the fringe

capacitance. The parallel plate capacitance per unit length of overlap is given as:

  (5.1)

where, the parameters t, g and x are shown in Figure 5.4.

The derivation of the fringe capacitance is described below. Conformal mapping has

been used in [42][51] to derive the capacitance for symmetric 2D cross-sections of differ-

ent parts of the simple comb. However, movement of one comb in the gap direction

destroys the symmetry boundary conditions assumed in those derivations and renders the

equations for fringe capacitance invalid. An alternative approach, which is valid for move-

ment along the gap direction, is used here. Assuming that there are a large number of fin-

gers, symmetry is used to simplify the geometry. By placing two odd symmetry planes the

simplified configuration of Figure 5.4(b) is obtained, which has two conductors and two

odd symmetry boundary planes. Noting the presence of more symmetry, another odd sym-

metry plane can be inserted between the two conductors yielding the configuration of Fig-

ure 5.4(c). The configuration of Figure 5.4(c) is basically a rectangular conductor placed

asymmetrically between two ground planes. Note that the configuration of Figure 5.4(c) is

symmetrical about the x axis. Therefore, an even symmetry plane can be inserted to fur-

ther simplify the geometry. 

cp t g x, ,( ) ε0
t

g x+
------------ t

g x–
-----------+ 

 =

FIGURE 5.4. Simplification of laterally displaced comb cross-section using
symmetry (a) Comb section showing 3 fixed fingers and 2 movable fingers
displaced in the x direction from the nominal symmetrical position (shown with
dotted lines). (b) Simplification by introduction of odd symmetry planes (c)
Equivalent configuration with the fixed comb-fingers replaced by odd-symmetry
plane placed midway between the rotor and stator fingers
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By use of conformal mapping this geometry can be mapped onto the real axis of a

complex plane. At this point there are still too many right angles in the geometry to obtain

a simple conformal mapping equation for capacitance calculation. As a rule, a geometry

needs to have less than four right angles for it to have a closed form solution for conformal

mapping [43]. Therefore, in order to isolate the fringe capacitance of only the top half of

the configuration, the conductor is assumed to be semi-infinite. Following the conformal

mapping, the parallel plate portion of the capacitance is subtracted to yield only the fringe

capacitance. Such a simplified geometry is shown in Figure 5.5(a). Note that the structure

now has only 2 right-angles, the other two turns being  as the edges are traversed

starting from the points labelled A to M.

Conformal mapping for a similar problem is given in [75] (Figure 5.5). The conductor

is assumed to be semi-infinite for the purpose of obtaining the fringe capacitance. The

conductor and ground planes traversed in the order A-B-C-D-E-F-G-H-K-M are mapped

from the Z plane to the real axis of the W plane. Note that the coordinate axes shown in

Figure 5.5 such that the complex plane Z is defined as:  and W as:

. A Schwarz-Christoffel transformation is used for this mapping [43]. The

differential form of the mapping is given as: 

  (5.2)

180°

FIGURE 5.5. (a) Conformal mapping for a single conductor placed asymmetrically
between two ground planes
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where ,  and  are computed by integration of (5.2) followed by applying the mapping

between known points shown in Table 5.2.

  (5.3)

where,

; 

; 

; 

The total fringe capacitance is then given by:

  (5.4)

where,  is the parallel plate contribution of the capacitance. To obtain

separate contributions of capacitance to the top and bottom ground plane, the mapping of

the point K, where the field lines get split into the two ground planes, is required. Evaluat-

Table 5.2 Mapping of points from Z plane to W plane
Point Z plane W plane Point Z plane W plane
A F 0

B G

C H 0

D K

E M

A δ β

∞– ∞± ∞–
t– j gm2 w+( )+ r1– t– r2

j gm2 w+( ) β– rH

jgm2 1– ∞ δ

t– jgm2+ r2– t– j gm2 w gp2+ +( )+ r1

z 2h
π
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------------------------------------ 
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gm2
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4γ2–+ 

 = β δ2
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-------------------- 

 atanh– 2γ β( )atanh 4β
β 1–
------------ 

 ln+ +=

r1( )ln 1
γ
--- πt

2h------ 2α 1 δ+
β δ+------------ 

 atanh γ β 1–
4------------ 

 ln 2 1
β
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 atanh–+ + 
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ing the limit in (5.4) and using the mapping of point K (  in the W plane) the contributions

of the capacitance to the left and right ground planes in Figure 5.4 are obtained as:

  (5.5)

  (5.6)

  (5.7)

From this model, the equations for the lateral force between the rotor and the stator comb-

fingers are also derived. 

The model is verified by comparison with 2D FEA (Figure 5.6). The x displacement

was varied from 0 to 0.9 times the gap on either side. The model matches FEA to within

2%. The maximum error of 2% is probably because of the finite number (5) of comb-fin-

gers in the simulation. The model underestimates the fringe capacitance on the end fingers

because it assumes symmetry boundary conditions. It is seen that the error is maximum for

maximum gap. This is because, the fringe capacitance of the end-fingers (and other fin-

gers too) is significant when the gap is larger. At smaller gaps, the parallel plate capaci-

tance begins to dominate. The small error suggests that the model is reasonably accurate

δ

Cl
ε0
π
----- 2α β δ+

β 1 δ+( )
-------------------- 

 atanh 2γ 1
β

------- 
 atanh 4β

β 1–
------------ 

 ln δ( )ln+–– 
 =

Cr
ε0
π
----- 1

γ
--- 

  2α 1 β+
β δ+------------ 

 atanh γ β 1–
4------------ 

 ln 2 1
β

------- 
 atanh–+ 

  δ( )ln– 
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cf w g x, ,( ) Cl Cr+=

FIGURE 5.6. Comparison of analytical model adapted from [75] and FEA for x
displacement of the comb-finger cross-section shown in Figure 5.4. 
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even when there are only 5 fingers in the comb. Naturally, with more fingers, the accuracy

is expected to improve. The total 2D capacitance per unit length per finger is given as:

  (5.8)

where  is as shown in (5.7). The capacitance thus derived is extended to 3D by

multiplying  with the overlap between the comb-fingers. The equation shown is valid

for a single-layer structure and does not account for curling and corner capacitances. The

next section describes the design of experiments for numerical analysis used to extend

(5.8) to incorporate vertical movement, multi-layer effects, curling and 3D charge concen-

tration effects.

5.5 Design of Experiments and Simulation
In this section the procedure for designing the experiments for BEA-based data col-

lection is described. Broadly, the design of experiments process can be viewed in 5 steps:

comb parameterization, variable selection, variable screening, choice of variable ranges

and data collection. Each of these steps is listed below.

5.5.1 Comb Parameterization and Variable Selection

The comb is parameterized into geometrical, position and orientation variables. The

geometrical variables are: width (w), gap (g), overlap length (olp) and the number of fin-

gers. The thickness of the comb depends on the composition of the multi-layer stack. For

maximizing in-plane actuation force designers include all metal layers and the polysilicon

layer. Therefore, we use the fixed comb cross-section containing all three metal layers and

the polysilicon as shown in Figure 5.1(b). The three position (x, y, z) and three orientation

variables ( , , ) correspond to the six degrees of freedom. Additionally, tempera-

ture (T) is also chosen as a variable because the curvature of the comb fingers is tempera-

ture dependent. Lateral combs are commonly used for actuation with amplitudes of the

order of 5 µm. Since the force is independent of the finger length, the finger length is usu-

ally tightly linked to the overlap length. Assuming a clearance of about 5 µm at maximum

displacement, the finger length (l) is set to be:

C2D w t g x, , ,( ) cp t g x, ,( ) cf w g x, ,( )+=

cf w g x, ,( )

C2D

φx φy φz
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  (5.9)

5.5.2 Variable Screening

The next step is to screen out variables which are known to have relatively small

effect on the capacitance and force. Using data collected from initial runs varying each

variable in isolation, it was decided that variables  and  can be kept at zero because

of the small change in capacitance produced by them. The final set of variables used for

the design of experiments are width, gap, overlap, positions x, y and z, orientation  and

the temperature T.

5.5.3 Choice of Variable Ranges

The values chosen for the variables are summarized in two sets in Table 5.3 and

Table 5.4. The first set of runs has 4374 points and has number of fingers set to 3. The sec-

ond set has 10 fingers in each run and has a total of 192 runs. Higher number of fingers

naturally lead to higher simulation times (e.g., the numfingers=10 run takes about 15 min-

Table 5.3 Experimental plan set 1 for simple comb BEA

Variable type Name (units) Lower bound Upper bound
Intermediate 
values

Geometry

: width (µm) 2.0 4.0 3.0
: gap (µm) 1.5 2.5 2.0

: overlap (µm) 10.0 20.0 -

Position 
x (µm) 0 0.8 g 0.4 g
y (µm) -4.0 4.0 0.0
z (µm) -2.0 2.0 0.0

Orientation -1.0 1.0 0.0
Temperature temperature (K) 250 350 300

Constants

length (µm) overlap + 10
numfingers 3

0

0
Total Number of Runs 4374

l olp 10µm+=

φy φz

φx

w
g
olp

φx °( )

φy °( )

φz °( )
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utes, while a numfingers=3 run takes about 5 minutes). Therefore, the number of runs with

higher number of fingers is kept very small.

The ranges for the width and the gap reflect commonly used values. The overlap

length is limited to 20 µm since actuation combs are not likely to require greater than a

few micrometers of movement, and when used for sensing, the capacitance change per

unit length of displacement is independent of the overlap length. Larger number of fingers

lead to larger number of panels in the boundary element mesh. Therefore, the number of

fixed fingers was set to three to minimize the analysis time. Three fingers is the minimum

number for which at least one finger on the movable part has symmetrical neighbors.

Movements along the gap (x) direction are normally restricted to less than half the gap by

limit stops or other means. However, the maximum movement is chosen to be 0.8 times

the gap in order that the potential displacements are well within the validity range of the

fitted model and also, in order to capture the highly non-linear capacitance change in the

gap direction. The displacement along the length (y) was chosen to be ± 4 µm, with a view

to keeping a clearance as well as a minimum overlap of at least twice the gap in order to

avoid potentially non-linear regions which are undesirable for gyroscope actuation.

Table 5.4 Experimental plan set 2 for simple comb BEA

Variable type Name (units) Lower bound Upper bound
Intermediate 
values

Geometry

: width (µm) 2.0 4.0 -
: gap (µm) 1.5 2.5 -

: overlap (µm) 10.0 20.0 -

Position 
x (µm) 0 0.4 g -
y (µm) 0 4.0 -
z (µm) -2.0 2.0 0.0

Temperature temperature (K) 250 350 -

Constants

length (µm) overlap + 10
numfingers 10

-1.0 1.0 0.0

0

0
Total Number of Runs 192

w
g
olp

φx °( )

φy °( )

φz °( )
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For maximizing sensitivity and actuation force, designers attempt to ensure maximum

vertical overlap in the comb by using curl-matching techniques [58]. However, the result-

ant curl-matching is usually never perfect and the ranges chosen for the  and  vari-

ables are intended to capture curl mismatch in the combs. It should also be mentioned that

 and  refer to the nominal curl-matched positions, from where  and  are

measured. At room temperature, the comb fingers are curled upward and the curling

reduces as the temperature increases. The curvature of the comb fingers, computed using

thermal multimorph theory presented in [58][76], is inversely proportional to the tempera-

ture. For a single finger the curvature  is related to the temperature :

  (5.10)

where, T0 is the temperature where the finger will become flat and the constant of propor-

tionality depends upon the composition of the finger and the material properties. The tem-

perature range of interest is chosen to be ± 50 K around the room temperature so that the

corresponding range in curvature covers possible variations in finger composition and

material properties from sensor to sensor. Also, it should be noted that measured curva-

tures of the finger can be directly fed into the comb model rather than computing curva-

ture from measured temperature.

5.5.4 Data Collection

AutoBEM software from Coyote Systems (now part of Cadence Design) [54] was

used for BEA. A number of manual iterations with the BEA mesh led to an efficient tem-

plate for the mesh which showed reduced simulation time with accuracy comparable to

that obtained by adaptive refinement and iterative solution. Convergence of BEA using

the template mesh was verified initially by splitting each element in the mesh into two and

comparing the capacitance values obtained. A mesh generation program for electrostatic

combs was implemented in C++. Figure 5.7 shows the boundary element mesh generated

for a 10 finger curled comb. The curling and the curl-mismatch in the figure is exagger-

ated to aid visualization. The initial mesh is further refined internally inside AutoBEM to

obtain very small elements near edges and vertices. Adaptive refinement is not used

z φx

z 0= φx 0= z φx

ρ T

1
ρ
--- T T0–( )∝
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because it requires multiple solutions which are time-consuming. However, the internal

mesh refinement commands used (listed in Appendix A3) are tailored to closely replicate

the optimal mesh produced by successive adaptive refinement. The final mesh used for

solution leads to very small elements and is not shown in the figure.

Force computation using BEA did not converge even with a mesh which was more

than four times as fine as (and therefore about 4 times slower than) the mesh which

yielded converged capacitance values. The refinement steps for this mesh are also listed in

Appendix A3. Therefore, only capacitance convergence was obtained for the first set of

4374 runs. Force convergence was attempted on a smaller subset of 1458 runs, in which

 was also kept constant at 0. However, convergence testing revealed that the force val-

ues were not accurate, though the capacitance values obtained were more accurate than

those in the first set of 4374 runs. Therefore, numerical differentiation of the well-con-

verged capacitance values in the second set of 1458 runs was used to obtain the forces (Fy

and Fz), in the y and z directions respectively, for 972 intermediate points. Fy values were

obtained at  and +2 µm, from capacitance values at y=-4, 0 and 4 µm. Fz values at

z= -1 and +1 µm were obtained from capacitance values at z=-2, 0 and 2 µm. This method

could not be used for computing the force (Fx) in the x direction because, the capacitance

FIGURE 5.7. Boundary-element mesh for a 10 finger vertically curled lateral
comb with all CMOS layers.

φx

y 2–=
100



change in the x direction being highly non-linear, closely spaced points are required for

precise computation of force. Therefore, a separate set of 162 runs, as summarized in

Table 5.5, was designed to compute Fx at 54 points. Note that because of the rapid change

in capacitance with x, three capacitance values were used to compute each force value.

In this section the variables used in the design of experiments to obtain numerical data

were introduced. The subsequent section details the modeling methodology.

5.6 Modeling Methodology
The form of the equation for the capacitance model is described first. Following this

the combined modeling method for capacitance and force is introduced. With this method-

ology, the force models can use the same fitting equation and coefficients as the capaci-

tance. 

5.6.1 Capacitance Modeling

The two analytical equations described in Section 5.4 are used as the core of the

model. The two functions are weighted by polynomial functions of variables. The fitting

function used for linear regression is of the form:

  (5.11)

where, 

t is the total thickness of the multi-layer comb finger which is held constant

 indicates function of all the variables in Table 5.3

Table 5.5 Experimental plan to obtain Fx values for simple comb using BEA

Variable Type Name (units) Lower bound Upper bound
Intermediate 
values

Geometry

: width (µm) 2.0 4.0 -
: gap (µm) 1.5 2.5 -

: overlap (µm) 10.0 20.0 -
Position x (µm) 0.4 g - 0.1 0.4 g + 0.1 0.4 g

y (µm) -4.0 4.0 -
z (µm) -2.0 2.0 0.0

Temperature temperature (K) 250 350 -

w
g
olp

C c1 …( )f1 …( ) c2 …( )f2 …( ) c2 …( )f3 …( )+ +=

…( )
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,  and  are capacitance functions of the design variables given as:

 is the 2D parallel-plate capacitance given in (5.1)

 is the 2D fringe capacitance as given by (5.5) to (5.7)

, ,  are the polynomial weighting functions.  corresponds to

that part of the capacitance which is neither due to the parallel plate nor the analytical

fringe capacitance. 

Let us assume that the number of polynomial terms in ,  and  are ,  and

 respectively and that all the terms are sequentially numbered from 1 to , where

. The polynomial weighting function can be written as:

  (5.12)

where, the summation index j goes from 1 to k1 for f1, from k1+1 to k1+k2 for f2, and from

k1+k2+1 to k1+k2+k3 for f3,  are the coefficients and  are the powers to

which the respective variables are raised to in the th polynomial term. Note that the unity

term as well as negative indices can also be included in the polynomial representation. The

coefficients of the polynomial terms will be obtained by regression. If the entire fitting

equation is expanded out then it is seen that each fitting coefficient is associated with a

single term which is a product of one of the capacitance functions ( ) and one of

the terms from the corresponding polynomial weighting function. This product term is

referred to as a predictor in statistical analysis. For the above regression model, there are

 predictor terms [77] which are products of the three capacitance functions c1, c2, and c3

and the polynomial terms in f1, f2 and f3 respectively, associated with that function. Evalu-

ating each of  predictor terms at the  capacitance data points, the model matrix can be

formed as:

c1 c2 c3

c1 …( ) olp y+( )cp t g x, ,( )=

c2 …( ) olp y+( )cf w g x, ,( )=

c3 …( ) 1=

f1 …( ) f2 …( ) f3 …( ) f3 …( )

f1 f2 f3 k1 k2

k3 k

k k1 k2 k3+ +=

fi …( ) rj w
aj1g

aj2olp
aj3ρ

aj4x
aj5y

aj6z
aj7φx

aj8
 
 

j
∑=

rj aj1 … aj8, ,

j

c1 c2 c3, ,

k

k n
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  (5.13)

where, 

 is the vector of capacitance values corresponding to n runs in the experimental plan.

 is the jth predictor vector. There are k predictor vectors of size  corresponding to

the n settings of the variables. 

 is the regression coefficient associated with the jth predictor vector.

5.6.2 Combined Capacitance-Force Modeling

The force produced by an electrostatic actuator, assuming constant voltage, in a gen-

eralized direction  is given as:

  (5.14)

Therefore, we can write the regression model for the force (assuming unit voltage) in the

direction  as:

  (5.15)

where,  is the total number of data points for which we have the force values in the

direction . To obtain regression coefficients which produce accurate fitted values for

both force and capacitance simultaneously, we combine (5.13) and (5.15) into a common

regression model:

C nX1 p1 p2 …
nXk

r1

r2

… kX1

=

C[ ]

pj nX1

rj

ξ

Fξ
1
2
---

ξd
dC

 
  V2=

ξ

Fξ mξX1
1
2
---

ξd
dp1

ξd
dp2 …

mξXk

r1

r2

… kX1

=

mξ

ξ
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  (5.16)

In the above equation  correspond to the number of data points for which

capacitance, Fx, Fy and Fz are respectively available. As per the experimental plan

described in Section 5.5, we have , ,  and .

Since the capacitance and force obtained may differ in their relative magnitudes, weights

may be necessary to scale the residual errors corresponding to each point so that points

with smaller absolute values of capacitance or force but relatively large percentage errors

are not ignored by the regression.

5.7 Differential Comb Modeling
In the previous sections the modeling methodology for the linear comb was described

in detail. In this section modeling of the differential comb is summarized. There are some

important differences between the linear comb and the differential comb:

1. There are three conductors in a differential comb as opposed to two in a linear comb

2. The comb fingers are typically much longer in a differential comb (~60 µm) than in a

linear comb (~10 µm). Therefore, in-plane rotation, which is relatively insignificant in

a simple comb, cannot be neglected in a differential comb

3. Longer fingers lead to greater simulation times

C
Fx
Fy
Fz n mx my mz+ + +( )X1

1
2
---

2p1 2p2 …

xd
dp1

xd
dp2 …

yd
dp1

yd
dp2 …

zd
dp1

zd
dp2 …

n mx my mz+ + +( )Xk

r1

r2

… kX1

=

n mx my mz, , ,

n 4374= mx 54= my 972= mz 972=
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The design of experiments for the differential comb reflect the above differences. As

before, two sets of the experimental plan are designed as shown in Table 5.6 and

Table 5.7.

Table 5.6 Experimental plan set 1 for differential comb BEA

Variable type Name (units) Lower bound Upper bound
Intermediate 
values

Geometry

: width (µm) 2.0 4.0 3.0
: gap (µm) 1.5 2.5 2.0

: overlap (µm) 50.0 80.0 -

Position 
x (µm) 0 0.8 g 0.4 g
y (µm) -4.0 4.0 0.0
z (µm) -2.0 2.0 0.0

Orientation
-1.0 1.0 0.0

0 0.5 0.25
Temperature temperature (K) 250 350 300

Constants
length (µm) overlap + 10
numfingers 3

0
Total number of runs 7290

Table 5.7 Experimental plan set 2 for differential comb BEA

Variable type Name (units) Lower bound Upper bound
Intermediate 
values

Geometry

: width (µm) 2.0 3.0 -
: gap (µm) 1.5 2.0 -

: overlap (µm) 75.0 75.0 -

Position 
x (µm) 0 0.4 g -
y (µm) -4.0 4.0 0.0
z (µm) -2.0 2.0 0.0

Orientation

-1.0 1.0 0.0

0 0.5 -

0 0.5 -
Temperature temperature (K) 300 300 -

Constants
length (µm) overlap + 10
numfingers 10

Total number of runs 224

w
g
olp

φx °( )

φz °( )

φy °( )

w
g
olp

φx °( )

φy °( )

φz °( )
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(Note that in set 2, the runs with non-zero  and  are only done with zero value set for all other position

and orientation variables. In other words only one run each with non-zero  and  for each unique differ-

ential comb geometry is done. Therefore, the total number of runs is only 224.)

The total number of runs in set 1 is 7290. However, a few of these points have to be

dropped from the plan because of the rotor fingers crashing into the stator fingers due to

rotation. Of the 7290 points, 1458 are perfectly symmetric points i.e.,  and .

Of the remaining 5832 points the situations shown in Table 5.8 will lead to comb crashing

and are therefore, discarded. The total number of discarded points is 891. Therefore, the

number of useful data points is 1458 + 5832 - 891 = 1458 + 4941. Note that each of the

4941 points yields two capacitance values corresponding to the left and the right halves of

the differential comb. Similarly 114 points in set 2 have different values for capacitance

for the left and right halves of the differential comb. Therefore, the total number of data

points to which the regression model is fitted is 1458 + 2*4941 + 110 + 2*114 = 11340 +

338 = 11678. Additional runs for computing forces through numerical derivatives have

not been done for the differential comb. Instead, the derivative of the capacitance values

are used directly. This is acceptable because the displacements expected in a differential

sense comb of a gyroscope are really small (few pm) and at the same time the voltages

applied in a differential comb are much smaller than the voltages applied to the drive

combs. Therefore, we can expect the forces produced in a differential sense comb to be

modeled by using the derivatives of the fitted capacitance equation, which is very accurate

for small displacements.

Table 5.8 Points to be omitted due to comb finger crashing

olp (µm) g (µm) x (µm)  
Number of 
points

50 1.5, 2.0, 2.5 0.8 g 0.5 243
50 1.5 0.8 g 0.25 81
80 1.5, 2.0, 2.5 0.8 g 0.25, 0.5 486
80 1.5 0.4 g 0.5 81

Total number of discarded runs 891

φy φz

φy φz

x 0= φz 0=

φz °( )
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5.8 BEA Summary
The number of BEA and the type of data obtained from them for the linear comb is

summarized in Table 5.9. The times shown are for analyses run on one CPU of a 450 MHz

Sun Ultra-80 workstation. Multi-processor usage leads to corresponding speed up. Note

that the Fx values were computed using three closely spaced capacitance data points while

the Fy and Fz values used a common set of 1458 capacitance values to compute deriva-

tives at 972 points. The runs used to obtain capacitance values for computing forces used

higher mesh refinement, and therefore, required higher memory and CPU times. The

entire set of runs was accomplished in about two weeks time using a 5 CPU workstation.

The final mesh for the differential comb has about 33000 panels and takes about 9 minutes

on a single CPU of a 450 MHz Sun Ultra-80 workstation.

5.9 Results
The first part of this section describes the results of the curve fitting. The second part

discusses the implementation of the resultant capacitance and force model for the combs

in the NODAS environment and simulations to illustrate the applicability of the comb

model.

5.9.1 Model Generation by Curve Fitting

The model matrix shown in (5.16) was constructed in the S-Plus [78] environment.

Polynomial terms and fitting weights were introduced by iterative manual analysis of

residual errors. The reusability of the proposed model justifies the time investment in this

procedure. The final model for the simple comb has 106 coefficients and fits the capaci-

tance data to within ±3% as shown in Figure 5.8 for 4374 points. It should be noted that

Table 5.9 Summary of BEA runs for simple comb

Quantity
Number of 
values obtained

Number of 
BEA runs

No. of 
panels 

Memory per 
run (MB)

Time per run 
(minutes)

Capacitance n=4374 4374 22000 230 5
Fx mx=54 162 90000 850 24
Fy my=972 1458 90000 850 24
Fz mz=972 1458 90000 850 24
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there are very few points that lie outside the ±2% band. The fitted values of force in all

three directions match the values obtained by numerical differentiation to about ±10%, as

seen in Figure 5.9, Figure 5.10 and Figure 5.11. The error tends to be high for points

where the absolute values of force is small (i.e., the difference in the capacitances used to

compute the derivative is small). This may be because the difference is close to the preci-

sion limit of the numerical capacitance values. Also, the plots indicate that the fit for Fy is

the best of the three forces and the fit for Fx is the worst. This is probably because the

capacitance is highly non-linear in the x direction and mostly linear in the y direction, with

the variation in z direction being moderately non-linear leading to inaccurate numerical
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derivatives. Furthermore, the model may require more polynomial terms to capture the

non-linearities accurately. The fitting quality of the differential comb model which has 78

terms is shown in Figure 5.12. The absolute error is higher than 4% only at displacements

equal to 80% of the nominal gap, i.e., about 1 µm. In microgyroscopes the full-scale sense

displacements does not exceed 1 nm and therefore, the higher error at large displacements

is of little concern.

5.9.2 Behavioral Model Implementation

The comb models were implemented in VerilogA®, an Analog Hardware Description

Language, as part of the NODAS framework and were used in simulation of a CMOS-

MEMS gyroscope [10] (Figure 5.13). The complete listing of the comb models is pro-

vided in Appendix A4. In order to demonstrate the applicability of the model to study

manufacturing variations two sets of simulations were done. An extended study of manu-

facturing variations on the gyroscope is described in [79] and will be expanded upon in

Chapter 7. The scope of the current discussion is limited to the drive amplitude of the

gyroscope.

One of the major issues in microgyroscopes is the Zero Rate Output (ZRO) and its

variation with temperature and over time. The ZRO is closely related to the drive ampli-

tude. The linear comb is used to generate the actuation force to set the gyroscope into

oscillations. As noted earlier, vertical curl in the multi-layer structures, can lead to a verti-
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cal offset between the movable and fixed portions of the linear comb. Temperature

changes can lead to variation in the vertical offset leading to a corresponding change in the

actuation force. NODAS simulations using the behavioral comb model were done to cap-

ture the curvature-dependent actuation force. The vertical offset between the movable and

fixed portions of the actuation comb in the gyroscope was varied from 0 to 1 µm (Figure

5.15). As seen in Figure 5.15, a 1 µm offset leads to about 4% decrease in the drive ampli-

tude. This change in the drive amplitude directly corresponds to a change in the sensitivity

of the gyroscope. Thus, a significant source of temperature-induced sensitivity variation in

gyroscopes can be estimated using the behavioral comb models.
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FIGURE 5.13. Functional diagram of
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5.10 Experimental Verification
In order to validate the comb models experimentally, test structures for measurement

of capacitance changes were fabricated (Figure 5.16). Each test structure consists of two

sets of interdigitated comb fingers. The outer fingers are suspended from a frame which

has an embedded polysilicon heater. The inner fingers are attached to the central portion

which is anchored. The overall test structure is made up of two structures identical to that

shown in Figure 5.16, which are connected in series as shown in Figure 5.17. Current

passing through resistors R1 and R2 heats up the capacitors C1 and C2 respectively. Due to

change in curvature of the fingers and increased vertical overlap between the fixed and

movable finger, the capacitance values change. The capacitance change is sensed and

amplified using a chopper-stabilized amplifier circuit [69], which has a known gain set by

ratioed resistors. The output voltage is given as:

  (5.17)

where,  is the fractional modulation voltage (i.e., , where D is

the duty cycle of the chopping waveform) and  is the overall gain.

Movable frame with embedded heater and 

Anchored central portion with fingers

fingers attached

FIGURE 5.16. (a) SEM of capacitance test structure with in-built heaters. The
curling can be changed by changing the current passing through the polysilicon
wires which pass through the outer frame of the structure. Interferometry images
of a quarter of the structure at (b) room temperature and (c) heated are also
shown.

(a) 

(b) room temperature

(c) heated

Vo
Vm
-------

C1 C2–
C1 C2 Cp+ +
--------------------------------A=
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The profile of the entire structure is obtained using interferometry for different values

of heating current. For the same values of heating current the output voltage of the ampli-

fier is also noted. The comparison of the capacitance change predicted by the model and

the measured capacitance change is shown in Figure 5.18. There are two sets of curves

corresponding to voltage applied to the two heaters. In both cases the values of capaci-

tance change simulated using the model developed match the experimentally measured

values to about 10% at higher heater voltages. At lower heater voltages the larger error is

probably due to the limited accuracy of the profile of the comb fingers. All the fingers in

the comb do not have the same vertical offset, because of curling of the movable frame.

Therefore, the measurements are made on the fingers which approximately represent the

mean vertical offset. This can also potentially contribute to the total error. Larger gaps due

to overetching can also lead to lower measured capacitance change.

5.11 Summary
A modeling methodology which combines the ease of use of analytical equations and

the higher accuracy of numerical methods has been demonstrated for simple and differen-

tial CMOS-MEMS combs. The models take into account the corner capacitances as well

as curling of the multi-layer comb fingers. The methodology automatically results in an

energy conserving model for the comb actuator. BEA is used to obtain capacitance values
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for a designed set of 4374 runs and force values for a reduced subset of these runs for the

simple comb and a set of 5399 runs for the differential comb. The comb model fits the

BEA capacitance data to within ±3% and to within ±6% for the differential comb. How-

ever, the error in the useful range is even smaller. Convergence of force requires higher

mesh refinement for BEA. Therefore, BEA for a large number of runs to obtain converged

force values was found to be infeasible. Numerical derivatives of a reduced subset of the

capacitance runs were used to obtain force values. The fitted values of force match the

numerically computed values to within ±10%, though a large fraction of the points match

to within ±5%. The models obtained are used to predict the capacitance change of ther-

mally actuated combs and they match measured capacitance changes to about 10%. The

comb model has been implemented in a behavioral simulation framework and its applica-

bility for simulating manufacturing variations in a gyroscope has been demonstrated.
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Chapter 6.  Convergence and Speed Issues in 

MEMS Behavioral Simulation

6.1 Introduction
The previous chapters dealt with various aspects of MEMS modeling, focusing on the

elastic and electrostatic domains. The models derived in the previous chapters are encoded

in VerilogA, a high-level hardware description language to describe analog behavior.

Behavioral simulation using high-level hardware description languages (HDLs) has

become very useful for mixed-domain MEMS simulation [80]. Behavioral models of

mechanical, electrostatic, optical and fluidic components have been implemented in ana-

log HDLs such as VerilogA [7], MAST [51] and VHDL-AMS [81]. Analog HDLs provide

a powerful methodology to combine different physical domains, such as electrical,

mechanical, thermal and others. Therefore, they are well-suited for integrated MEMS sim-

ulation. In this chapter, certain simulation issues arising from the use of analog HDLs in

MEMS simulation are addressed.

Behavioral simulation provides the model developer with freedom to implement the

physics of the component in a number of different ways. However, the high-level analog

HDL code renders the final simulation matrix inaccessible to the developer. Therefore, the

choice of the best implementation is not immediately apparent to the developer. Different

implementations lead to different number of equations, convergence properties and simu-

lation speed in transient analysis. Without a thorough understanding of the translation of

the analog HDL code to the simulation matrix, the resulting simulation times may be non-

optimal and the simulation may even be non-convergent in the worst case. Such problems

can be compounded by simulation of high-Q resonant vibrations, as is the case in the drive

mode of the gyroscope. The available reference material mainly addresses syntax issues

and does not provide insight into mapping of analog HDL representation to the equations

for nodal analysis [82][83]. In this chapter, analog HDL code is correlated to the matrix

formulation during transient analysis, as presented in [84]. The convergence and simula-

tion speed of transient analysis are then explained with the aid of the matrix formulation.
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This work was mainly motivated by convergence problems encountered during behavioral

simulations of the CMOS-MEMS gyroscope.

Comparisons between electrical circuit simulation and MEMS simulation for choice

of through and across variables for nodal analysis have been suggested previously

[62][81]. Force has been the preferred through variable. Displacement and velocity are

possible candidates for the across variable. From a user perspective displacement as

across variable is more convenient to observe motion. A preliminary evaluation of simula-

tions using the two choices for the across variable showed that the velocity as across vari-

able implementation has some convergence difficulties [85]. Simulation times have not

been compared previously. A more comprehensive comparison of the convergence and

simulation times for the two choices is presented here. 

The matrix equations resulting from a behavioral model may have widely different

coefficients due to the different numerical regions of interest in different domains. Wide

range in matrix element values can lead to ill-conditioned matrices and thus to conver-

gence difficulties. To overcome this problem scaling of specific domains has been imple-

mented earlier [86]. The improvement in the simulation matrix condition number

produced by such scaling is explained numerically in this chapter. 

The general procedure for linear transient analysis is briefly described in the back-

ground section. This is followed by an explanation of the different implementations along

with the analog HDL code and the expected matrix implementation in the simulator. Scal-

ing of quantities for better convergence is then discussed, followed by simulation results

and analyses. In the penultimate section, the guidelines for better convergence properties

are illustrated through two implementations of a squeeze film damping model. Finally,

conclusions and suggestions for analog HDL modeling are presented.

6.2 Background
The behavioral models in this chapter are implemented as part of the NODAS frame-

work. The MEMS designer constructs a schematic representation of the device by inter-

connecting elements from this library. The differential equations for the elements in

NODAS are encoded in VerilogA. The VerilogA language enables the model developer to
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define a number of natures in each physical domain. Combining two natures, one for the

across variable and one for the through variable the definition of a discipline is obtained.

For example, the mechanical domain has three disciplines: displacement-force, velocity-

force and acceleration-force. Every node introduced in the VerilogA model is defined to

belong to one of the pre-defined discipline. Each nature also has associated values of

absolute tolerances, called abstols, which are used to set the convergence criterion during

simulation. The Spectre [87] simulator from Cadence is used for simulations.

The VerilogA module is based on constitutive relationships, which describe the

behavior of the element, and interconnection relationships, which describe the structure of

the network. The simulator combines constitutive relationships with Kirchhoff’s laws in

nodal analysis to form a system of differential-algebraic equations [88]. Numerical inte-

gration methods are employed to solve these equations for transient analysis. In the fol-

lowing sub-sections numerical integration in MEMS behavioral simulation is explained

briefly, with the help of examples from the electrical domain. First, the general form of

time-discretization is introduced. Following this, transient analysis of an inductor is used

to develop the analogy between MEMS behavioral simulation and electrical circuit simu-

lation.

6.2.1 Numerical Integration

During transient analysis, circuit simulators replace the time derivative operator with

a discrete-time finite difference approximation and solve for the node variables at individ-

ual time points. Interval between time points (time step h) is controlled by the simulator to

ensure accuracy of the finite difference approximation.

Common integration methods for time-discretization include Backward Euler (BE),

Trapezoidal rule (TR) and Gear methods [89]. BE is used in this chapter to illustrate the

formulation of transient analysis matrix due to its simplicity, accuracy and stability. In BE,

the node value at time instant n, when time = t is computed based on the derivative value

at t. For example, the equation relating the velocity  to the displacement , , can

be written as:

  (6.1)

v x v x·=

x t( ) v τ( ) τd
0
t∫=
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The above equation is discretized with a time-step . Solving for node variable displace-

ment x at time  using the BE integration rule:

  (6.2)

 i.e.,   (6.3)

where, the subscripts  and  refer to time instants  and  respectively.

Figure 6.1 is an illustration of the BE integration method. In the following sub-section, the

constitutive relationships which relate the through and across variables for an element are

combined with the BE integration rule to obtain the linear equations which are solved at

every time instant during transient analysis. Inductors and capacitors in the electrical

domain as well as, springs, masses and dampers in the mechanical domain are used as

examples.

6.2.2 Time Discretization of Components

Analogy Between MEMS and Circuit elements is used in order to explain the concept

of time-discretization. Using the BE rule, the instantaneous I-V relationship for an induc-

tor is written as:

  (6.4)

Similarly for a capacitor

h

t

v t( ) x t( ) x t h–( )–
h----------------------------------=

x t( )
h--------- x t h–( )

h------------------ v t( )–= xn xn 1– hvn+=

n n 1– n n 1–

τ

v(τ)

t t+h
FIGURE 6.1. Computation of state variable using Backward Euler integration
rule. The areas of the rectangles obtained by integration are shown.

area = x(t +h)-x(t) = v(t+h)h
area = x(t)-x(t-h) = v(t)h
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  in
h
L--- 
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 ⇒
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  (6.5)

Note that in both the cases, the current is written in terms of the instantaneous voltage,

giving a conductance term, and voltage/current obtained as a solution of the previous time

step. This is because the system matrix is commonly built on the basis of Modified Nodal

Analysis (MNA) in most circuit simulators [89]. Figure 6.2 shows the circuit interpreta-

tion at time instant n during transient analysis using the BE integration rule for a parallel

RLC network and a mechanical second order system governed by the equation:

. In this implementation of the second-order system, two additional

states are used to hold vn and an. Elastic, viscous and inertial elements are discretized as

described above in the remainder of this chapter. A brief explanation of the transient anal-

ysis procedure using MNA is given below.

In Modified Nodal Analysis, the voltages at the nodes of the circuit are chosen as the

independent state variables. During transient analysis, the node voltages are solved for at

each time instant. It should be noted that the BE integration method is equivalent to a first

order time polynomial approximation of the solution. The error in this approximation,

referred to as the Local Truncation Error, is estimated to be of one order (i.e., quadratic for

the BE method) higher than the approximation itself [89]. The simulator chooses the time-

i C td
dV= 

  in
C
h---- 

  Vn
CVn 1–

h------------------–= 
 ⇒

F Kx Bx· Mx··+ +=

FIGURE 6.2. Circuit interpretation of Backward Euler integration rule for (a)
Parallel RLC network (b) Mechanical spring-mass-damper system modeled by
use of two additional states to hold vn and an

M

K B

R L CJ R h/CJn L/hin-1 Cvn-1/h

F

1/KFn Bvn
-xn-1/h

Man

vn

xn
vn

+-
+-

xn/h
-vn-1/h

an

+-

+-

vn/h
118



step  to reduce the LTE to be less than a user-defined value. For simulations with high

accuracy the SpectreTM simulator, sets the LTE to be one-tenth of the absolute tolerance

(abstol) specified for convergence of the non-linear equation solving for that discipline.

The concept of LTE is explained below for a node belonging to the mechanical discipline

and defined to have an acceleration-force discipline. Assuming that the displacement (x)

which corresponds to the acceleration (a) at the node is sinusoidal, the LTE using the BE

integration method is estimated to be of the order of:

  (6.6)

where,  is the time-step,  is the radian frequency of the sinusoidal waveform and  is

the amplitude of the sinusoidal displacement corresponding to the acceleration at the node.

Assuming typical values of  and , maximum values of the

LTE occur when :

  (6.7)

To establish the significance of the LTE, it is assumed for now that the abstol for the node

is defined to the same as for other displacements. The maximum abstol for the displace-

ments has to be less than  for the displacements to be accurate. Then, from (6.7) it is

seen that the time-step can at most be only be 10 ns. It should also be noted that for lower

frequency displacements, the same LTE setting allows larger time-steps. Thus, it is seen

that the acceleration, derived from a time-dependent displacement, limits the time-steps, if

the same discipline is used to define both the displacement and acceleration nodes. In gen-

eral higher-order time-derivatives will limit the time-steps severely at higher frequencies,

if same discipline are used to define the original signal as well as nodes carrying the time-

derivatives. This issue will be revisited during the discussion of results. 

6.3 Model Formulation
In this section two issues regarding the implementation of MEMS in HDL models are

discussed. The first issue arises from the presence of multiple physical domains in the
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models, such as translational, rotational, and electrical. The second issue is related to the

presence, in each physical domain, of time-derivatives such as velocity and acceleration in

the mechanical translational domain. The first sub-section addresses the issue of combin-

ing multiple domains together. The second sub-section investigates implementation of

time-derivatives by exploring several alternatives.

6.3.1 Multi-domain Simulation

In multi-domain simulation, implementation of behavioral models without insight

into the simulation matrix can lead to ill-conditioned matrices. For example, natural divi-

sion of nodes into mechanical and electrical arises during HDL implementation of MEMS.

Further sub-division of the mechanical nodes into displacements and rotations is also nat-

ural. Such classification is not only desired for clarity, but is also imperative to ensure

well-conditioned simulation matrices. 

Ill-conditioning of the simulation matrix arises due to the widely different numerical

ranges in which the various physical domains of interest in MEMS are located. Typical

values of through and across variables for electrical, mechanical and thermal disciplines in

MEMS are shown in Table 6.1. While the ranges for the through and across variables

themselves indicate a range of about 10 orders of magnitude, they are only part of the

complete picture. The condition number of the simulation matrix is significantly impacted

by the diagonal elements, i.e., the “conductance” entries in the MNA matrix, which can be

loosely considered as the ratio of the through variable to the across variable. As can be

seen in Table 6.1, there is a considerable spread in the ratios. Considering only the rotation

Table 6.1 Typical ranges for various physical domains in MEMS
through-across through variable across variable typical ratio
discipline min max unit min max unit unit

current-voltage  A  V Mhos

force-displacement N m 1 N/m

moment-rotation N-m radians N-m

heat flow-
temperature W K W/K

10 10– 10 2– 10 6– 102 10 4–

10 12– 10 6– 10 12– 10 6–

10 16– 10 10– 10 8– 10 2– 10 8–

10 6– 10 2– 0.1 1000 10 5–
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and displacement domains, the wide variation of the diagonal matrix elements is illus-

trated in Figure 6.3 by use of the in-plane stiffness matrix for a single cantilever beam.

The cantilever beam has width and thickness of , and a length of . In-plane

stiffness matrix of the beam is shown with and without scaling of the rotational domain.

The condition number of the matrix is the ratio of the largest to the smallest eigen value of

the matrix and is considered to be a measure of the numerical precision to which the

inverse of the matrix can be computed [90]. It is evident that the resulting matrix is better

conditioned (smaller condition number) with scaling. The scaling factor of  for the

rotational domain was suggested prior to this work, and has been found to be necessary for

convergence of behavioral simulations using NODAS. Therefore, the scaling factor of

 is used in all the simulations in this thesis.

6.3.2 Implementation of Time-derivatives

Five different behavioral model formulations of the second order mechanical system

shown in Figure 6.2 are studied. Broadly, the five formulations can be classified into two

groups, one using displacement as the across variable and the other using velocity as the

across variable, force being the through variable in all the cases. The latter bears a direct

FIGURE 6.3. In-plane stiffness matrix for a beam [61]. Beam with length = 100
µm, width = 2 µm, thickness = 2 µm and Young’s Modulus E = 165 GPa. A is the
cross-section area and I is the moment of inertia. (a) The large span of the
diagonal elements of the stiffness matrix is evident. (b) The stiffness matrix after
scaling the rotational discipline by  has much smaller condition number.10 6–

(b) Scaling of  by 1e-6δφ
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(a) No scaling
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analogy to traditional electrical circuit simulation which uses current as the through vari-

able and voltage as the across variable.

VerilogA code, equivalent circuit and matrix representations for transient analysis

with BE are shown for each case. In the equivalent circuit representations, derivatives and

integrals are shown as they are and are not expanded into their BE forms to maintain com-

pactness. Additional state variables explicitly defined and used by the model developer are

listed in the beginning of the code. In some cases, it has been seen that the simulator

inserts additional states, some of which have trivial solutions (i.e., being exactly equal to

an existing state variable). The non-trivial states inserted by the simulator are also

included in the equivalent circuit and the matrix representations. The equivalent circuits

represent the equations solved by the simulator at each time step. They are composed of

conductances which enter the diagonal elements of the matrix and voltage controlled cur-

rent sources which contribute to the off-diagonal terms in the transient analysis matrix.

6.3.3 Displacement as across variable

Implementation x1:  Additional states (v, a) are used to hold the velocity and accelera-

tion. In addition to the elastic force modeled as a conductance, two voltage-controlled cur-

rent sources corresponding to the damping and inertial forces also contribute to the force

flowing through node x. In the matrix, off-diagonal elements (1/h) become large when the

time-step h becomes small.

VerilogA

kinematic v, a;
Pos(v) <+ ddt(Pos(x));
Pos(a) <+ ddt(Pos(v));
F(x) <+ - M*Pos(a)
        - B*Pos(v)
        - K*Pos(x);
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Implementation x2:  One additional state (v) is used to hold velocity, leading to a more

compact matrix.

Implementation x3:  One additional state (v) is used to hold the velocity. This implemen-

tation differs from implementation 2 only in that Bdx/dt is used instead of Bv. The damp-

ing and inertia terms occur in different elements of the matrix. 

K
Bv Ma

x av
dx/dt dv/dt

+
-

+
-

K B M
1
h--- 1– 0

0 1
h--- 1–

xn
vn
an

Fn
xn 1–

h------------

vn 1–
h------------

=

Equivalent circuit Matrix

VerilogA

kinematic v;
Pos(v) <+ ddt(Pos(x));
F(x) <+ - M*ddt(Pos(v))
        - B*Pos(v)
        - K*Pos(x);

+
-

1/K Bv

x v
dx/dtMdv/dt K B M

h-----+

1
h--- 1–

xn
vn

Fn
Mvn 1–

h------------------+

xn 1–
h------------

=

Equivalent circuit Matrix

VerilogA

kinematic v;
Pos(v) <+ ddt(Pos(x));
F(x) <+ - M*ddt(Pos(v)) 
        - B*ddt(Pos(x)) 
        - K*Pos(x);
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6.3.4 Velocity as across variable

Implementation v1:  One extra state (x) is explicitly used to hold position (obtained by

integrating velocity). Moreover, the simulator inserts an additional state (i) to hold the

integral of velocity.

Implementation v2: No explicit additional states are used in the VerilogA code. However,

the simulator inserts an additional state (i) to hold the integral of velocity. Post-processing

of the velocity solution is needed in order to obtain the displacement.

1/K Bdx/dt
x v

dx/dtMdv/dt
+
-

K B
h---+ M

h-----

1
h--- 1–

xn
vn

Fn
Bxn 1–

h----------------
Mvn 1–

h------------------+ +

xn 1–
h------------

=

Equivalent circuit Matrix

VerilogA

kinematic x;
Pos(x) <+ idt(Pos(v),0);
F(v) <+ - M*ddt(Pos(v))
        - B*v;
       - K*Pos(x);

1/B Kx

v xi

∫vdt +
-

Mdv/dt
i B M

h-----+ K 0

0 1 1–
h 0 1–

vn
xn
in

Fn
Mvn 1–

h------------------+

0
in 1–

=

Equivalent circuit Matrix

+
-

VerilogA

F(v) <+ - M*ddt(Pos(v))
        - B*v;
        - K*idt(Pos(v),0);
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6.4 Simulation Results
The z-axis CMOS-MEMS gyroscope introduced in earlier chapters [10], is used as

the benchmark for simulations. Unlike accelerometers which exhibit very small displace-

ments during operation, the drive displacements in microgyroscopes is of the order of a

few micrometers. Furthermore, the drive displacements occur at resonance, thereby

implying that the inherent damping in the system is small for a high-Q (i.e., ) sys-

tem. Under such conditions, the convergence properties of the behavioral models are cru-

cial. 

For simulations to test convergence properties, the comb-drives are removed from the

schematic in order to eliminate non-linear physical effects. Then, the gyroscope can be

modeled as a linear nested spring-mass-damper system. By reducing the problem to a lin-

ear system, convergence problems arising from device non-linearity are eliminated.

Thereby, focus is maintained on the mathematical representation of the system and its

relation to convergence and speed of simulation. Simulations of the gyroscope were done

using the five different implementations. They are abbreviated as x1, x2, x3, v1 and v2. A

1 µN sinusoidal force was applied and transient analysis was done from 0 to 40 ms using

the SpectreS simulator from Cadence, version 4.43 [87]. The results of simulation are

summarized in Table 6.2. 

Table 6.2 Comparison of five implementations
Type Converged Correct Time (min.) No. of Eqns Time-steps
x1 No NA NA 2751 NA
x2 Yes Yes 180 1809 68811
x3 Yes Yes 110 1809 59875

+
-

1/B Ki
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Mdv/dt
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All the implementations, other than x1, converged. It should be noted that these simula-

tions were performed with the acceleration and velocity nodes having the same discipline

and therefore, the same LTE as the displacement nodes. Therefore, the simulator is forced

to take smaller time-steps to meet the LTE condition. The condition number for the matrix

for a single spring-mass-damper goes asymptotically as 1/(M.h) for x1 and as (1/M) for

x2, x3, v1 and v2. This explains why x1 does not converge for the gyroscope simulation.

Though the number of time-steps taken by v1 and v2 is nearly the same as those taken by

x3, the overall time taken is larger. This is probably due to the fact that multiple iterations

are required for each time-step since, the initial time-step attempted by the simulator is not

likely to satisfy the LTE criterion.

From the above simulations, it can be concluded that the use of additional nodes to

hold the acceleration and velocity states can be harmful to the convergence of the simula-

tions if, the acceleration and velocity states are constrained to have the same LTE as the

displacement states. Alternatively, they can be defined to have a different discipline with

independent LTE settings as shown below. In the implementation shown below, the LTE

for the acceleration and velocity states (defined using the kinematic_a and the

kinematic_v statements respectively) can be defined to be  and  times the

LTE of the displacement state according the analysis done in Section 6.2.2. It was found

that the simulations using this implementation also converged. This is to be expected,

because the LTE constraints have been relaxed by a few orders of magnitude. Therefore,

v1 Yes Yes 133 2240 60023
v2 Yes Yes 134 1556 60021

Table 6.2 Comparison of five implementations
Type Converged Correct Time (min.) No. of Eqns Time-steps

VerilogA

kinematic_v v;
kinematic_a a;
Vel(v) <+ ddt(Pos(x));
Acc(a) <+ ddt(Vel(v));
F(x) <+ - M*Acc(a)
        - B*Vel(v)
        - K*Pos(x);

108 104
126



the time-steps can be significantly larger than the x1 implementation, thereby preventing

the worsening of the condition number of the simulation matrix. 

It should be noted that the  and  numbers arise due to the frequency of interest

for the gyroscope (~ 10 kHz). Since the frequency range of MEMS sensors range from

near DC (~ 10 Hz in low bandwidth, high resolution accelerometers) to hundreds of kHz

(in band-pass filters). The LTE setting may have to be changed depending upon the device

being simulated. This requires a certain amount of numerical expertise on part of the

MEMS designer. In contrast, the x3 implementation, shows robustness even with the LTE

settings being severely constrained and is, therefore, the preferred implementation choice

in this thesis.

6.5 Model Implementation Example: Squeeze-film Damping
In this section, two VerilogA implementations of a squeeze-film damping models are

contrasted with respect to their convergence properties. This exercise is intended to con-

vey the overall guidelines deduced from the simulation experiments described above,

which include minimizing the number of off-diagonal elements and using appropriate dis-

ciplines for states. This is done by bringing out the equivalent circuit underlying the two

behavioral models.

A semi-empirical compact model for squeeze-film damping was proposed and imple-

mented in VerilogA by Vemuri et al. [91]. The initially proposed damping model is con-

structed as an electrical circuit with a number of parallel branches, each branch consisting

of a resistor and an inductor in series (Figure 6.4). Dissipative damping between the two

nodes x1 and x2 is modeled by a resistor and the non-dissipative elasticity is modeled by

the inductor. It should be noted that the resistors can be replaced by dampers and the

inductors by springs in an equivalent mechanical representation.

The VerilogA code for the two implementations are given in Figure 6.5 and Figure 6.6

respectively. The number of controlled or dependent sources in the equivalent circuits can

be considered to be an approximate estimate of the number and location of the off-diago-

nal elements in the simulation matrix. During simulation it is seen that the simulator

inserts additional states in the first implementation, which have not been shown in the

108 104
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equivalent circuit representation. Those additional states probably lead to larger number of

off-diagonal terms than is seen in the equivalent circuit. This also causes the first imple-

mentation to have severe convergence problems which completely disappear when the

second implementation is used. The second implementation is completely in the mechani-

cal domain, which is better suited to set the tolerances for convergence. Also, the off-diag-

onal elements in the second implementation are more localized (e.g., nodes n11 and vn11

FIGURE 6.4. Squeeze-film damping modeled by equivalent resistors and
inductors. Only the first two R-L branches are shown in the figure. More accurate
models need more number of branches.
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FIGURE 6.5. VerilogA code and equivalent circuit for first implementation of the
squeeze-film damping model. Only two of the RL branches are shown. The actual
circuit interpretation by the simulator is not exactly known but is probably more
complex because it is observed that additional states are implicitly introduced
during simulation.
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are directly linked, in contrast with nodes n11 and t11 in the first implementation). In fact

the nodes n11 and vn11 are simply implementing the equivalent of a capacitor in the

mechanical domain since the force (current) through node n11 is proportional to the deriv-

ative of the position (voltage) at that node. The second implementation also allows better

intuitive understanding of the damping model compared to the first one. We have to keep

in mind that the non-dissipative elements L11, L13 appear as “resistors” in the second

implementation, because the across variable is position and not velocity. Therefore, the

capacitor-like elements model the dissipative components.

6.6 Summary
In this chapter three issues which impact the convergence and simulation time in

MEMS behavioral simulations were addressed. First, velocity and displacement were

compared for the choice of the across variable in nodal simulation. The through variable is

force. Second, three state space implementations of displacement as across variable were

x1

x2

n11+
-

vn11

+
-

vn13

+
-

n13

vel

kinematic disp_node;
Pos(disp_node) <+ disp;

F(disp_node, n11) <+ (1/L11)*Pos(disp_node,n11);
Pos(vn11) <+ ddt(Pos(n11));
F(n11) <+ Pos(vn11)/R11;

F(disp_node, n13) <+ (1/L13)*Pos(disp_node,n13);
Pos(vn13) <+ ddt(Pos(n13));
F(n13) <+ Pos(vn13)/R13;

FIGURE 6.6. VerilogA code and equivalent circuit for second implementation of
the squeeze-film damping model. The controlled sources inside the damping
model are more locally distributed compared to the first implementation. This
implementation shows better convergence properties.
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compared. Finally, relative scaling of a domain (the rotational domain, in this case) in

order to improve convergence properties was considered. A minimal equation matrix rep-

resentation with low condition number using displacement as across variable and scaling

of the rotational domain gives the best convergence and simulation time.

It is seen that the implementation of the analog HDL encoding of the differential

equations describing the element behavior directly impacts the convergence and simula-

tion speed in transient analysis. There is no significant speed advantage of using velocity

as the across variable. Therefore, keeping in mind ease of use, displacement as across

variable is a better choice. On the basis of the simulations and analysis performed, the fol-

lowing guidelines are presented:

1. Additional states ( , ) to hold derivatives lead to bigger simulation matri-

ces. They introduce large off-diagonal terms during the transient analysis and lead to

ill-conditioned matrices if the local truncation error (LTE) settings are not carefully

optimized. Therefore, care must be taken when using additional states.

2. Appropriate scaling must be used when different domains are combined together so

that the composite nodal analysis matrix remains well-conditioned.

3. Between two equivalent implementations, the one with lower number of off-diagonal

coupling terms leads to better convergence properties.

a v·= v x·=
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Chapter 7.  Analysis and Simulation of a CMOS-

MEMS Gyroscope

7.1 Introduction
In the previous chapters models for elastic and electrostatic domains have been pre-

sented and gyroscope simulation problems have been addressed. In this chapter, detailed

analyses of gyroscope non-idealities are done. The non-idealities are quantified using

behavioral simulation of schematics composed of the previously described models. Elastic

cross-axis coupling theory, detailed in Chapter 3, is used extensively for understanding the

gyroscope.

The working of the microgyroscope and associated typical magnitudes of displace-

ment are described in Chapter 1. A brief recap is given here for convenience. Microgyro-

scopes can be functionally decomposed into a proof-mass, driving and sensing

electromechanical comb-drives and suspension springs made up of beams as shown in

Figure 7.1 [2]. Voltage applied across the driving comb forces the proof-mass into oscilla-

tion. When placed in a rotational field, the Coriolis force induces a vibration in a direction

orthogonal to the driven oscillations. The induced vibration is proportional to the angular

FIGURE 7.1. (a) Nested gyroscope design showing the drive and sense combs, the
outer and inner springs, the input axis, the direction of driven vibrations and the
direction of Coriolis-force induced (sense) vibrations (b) Sense capacitance bridge
for movement of inner proof-mass in positive x axis
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rate and is sensed capacitively. As the Coriolis force induced vibrations are much smaller

(~ 1 ppm) compared to the driven vibrations, the proof-mass displacements can be as

small as a few picometers. Capacitive sensing of these picometer-scale displacements

requires tight integration of circuits with the Coriolis force transducer, and can be accom-

plished in a CMOS-MEMS process [7][10][30]. Furthermore, as the Coriolis force is only

one of the weak coupling forces in the gyroscope, such devices are prone to imperfections

such as input offset, linear acceleration sensitivity, vibration sensitivity and cross-axis sen-

sitivity, making microgyroscopes difficult to design. Therefore, commercialization

attempts have met with limited and much-delayed success [5][28].

Non-idealities in microgyroscopes such as offsets and sensitivity to non-rotational

inputs are poorly understood. Optimal design to reject such non-idealities is currently

hampered by the limitations of the available simulation methodologies which do not

model such effects. Though it is commonly acknowledged [5] that the coupling of the

drive motion to the sense mode needs to be as small as a few ppm, there is no comprehen-

sive study in public literature of drive motion coupling, external accelerations and cross-

axis rotations. Quadrature error arising from elastic cross-coupling has been considered in

a few studies. However, in-phase coupling may also arise in gyroscope designs with inten-

tionally mismatched drive and sense modes.

Behavioral simulations of gyroscopes have been reported in the past. Non-idealities

in the gyroscope simulations using circuit-level schematics reported in [51] are limited to

the effect of drive coupling onto the sense mode. Simulations presented in [52] are limited

to a theoretical motion analysis arising from elastic and viscous coupling. Gyroscope sim-

ulations previously done using NODAS include nominal sensitivity and distortion effects

of centripetal forces and linear accelerations [33]. Intra-die thickness variation for a bulk-

micromachined gyroscope has been considered in [31]. Robust design techniques to reject

width variations across different chips [92] cannot compensate for width mismatch within

a device. Causes of input offset and coupling of linear acceleration to the output and cross-

axis sensitivity are not analyzed in any of the above studies. 

Geometrical asymmetries in a microgyroscope may arise due to random manufactur-

ing variations. In this thesis the focus is on variations in beam width and comb gap across
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the gyroscope and metal mask misalignment effects. Data on material property variations

is even less known than geometrical variations and are not considered in this thesis. This is

the first publicly known attempt, to understand the effect of intra-die variations on micro-

gyroscope non-idealities. MEMS circuit-level simulation is employed to correlate gyro

performance measures such as zero rate output (ZRO), linear acceleration sensitivity (Sa),

vibration sensitivity, (Sa2) and cross-axis sensitivity (Sca) to elastic and electrostatic asym-

metries in the gyroscope. The correlations are then used to develop pointers for robust

design.

The rest of the chapter is organized as follows. First, the CMOS-MEMS gyroscope

and the circuit-level representation used for simulation are described. A detailed deriva-

tion of the transduction equation of the CMOS-MEMS gyroscope is detailed. This is fol-

lowed by a discussion on the disadvantages of asymmetric drive of the gyroscope. The

subsequent sections describe the analyses and simulations for gyroscope non-idealities:

Zero Rate Output, linear acceleration sensitivity, vibration sensitivity and cross-axis sensi-

tivity. The considered sources of non-idealities are beam width and comb gap variations,

and mask misalignment. Analyses of non-idealities are supported by behavioral simula-

tions of each individual variation as well as results of Monte-Carlo simulations. Finally, a

summary of pointers and trade-offs to be considered for robust design is presented.

7.2 Gyroscope Description and Circuit-level Representation
7.2.1 Gyroscope Description

The SEM of a CMOS-MEMS gyroscope [10] is shown in Figure 7.2(a). The NODAS

schematic representation of the gyroscope is shown in Figure 7.2(b). The atomic-elements

which are used in the schematic are rigid plates, flexible beams and attachment points

called anchors. Electrostatic comb elements are also used to implement actuation and

sensing. The gyroscope, referred to as a “nested-gyroscope”, consists of an inner acceler-

ometer nested inside an outer resonator. The entire gyroscope is suspended from a curl-

matching frame which is anchored to the substrate. The inner accelerometer and the outer

resonator are each composed of four compliant springs and a number of interconnected

rigid plates. The rigid plates in the outer resonator form a rigid frame from which the inner
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accelerometer is suspended. The rigid frame is modeled by a number of plates forming an

outer ring. These plates are connected to the curl-matching frame using four identical

chains of beams which form the outer springs. In the inner accelerometer, the central

proof-mass is modeled by a row of seven plates. The plates on the extreme left and

extreme right are each connected through two identical chains of beams (inner springs) to

the rigid frame. 

Two linear combs, one at the top and one at the bottom, each with one set of anchored

(i.e., attached to the curl-matching frame) fingers and the other set attached to the rigid

outer-resonator frame, produce electrostatic force in the drive (y) direction, when a voltage

is applied across the two sets of fingers. This electrostatic force drives the rigid outer-res-

onator frame and the inner accelerometer into resonant oscillations in the y direction.

When attached to a rotating frame, Coriolis force produces oscillations of the inner central

plate relative to the outer resonator in the x direction. The Coriolis force induced oscilla-

tions are capacitively picked up by two differential combs, one each at the top and bottom,

with one set of fingers attached to the rigid outer-resonator frame and the other set of fin-

gers attached to the central plate of the inner accelerometer. The two differential combs

FIGURE 7.2. (a) SEM of the nested-gyroscope (b) Corresponding NODAS
schematic obtained through layout extraction. 
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are, ideally, only sensitive to relative motion between the central proof-mass and the outer-

resonator rigid frame in the sense (x) direction.

A small note with regard to the actuation combs is in order here. The original design

intent with the two linear combs was to use one for actuation and the other to sense the

driven oscillations [10][34]. The overwhelming undesirable effects in an asymmetrical

(only one actuation comb) driven gyroscope are described in Section 7.4. To eliminate

these effects from the following analyses in this thesis, both the linear combs are consid-

ered as actuation combs only. 

The ideal gyroscope has a frequency domain output as shown in Figure 7.3(a). The

final gyroscope output is obtained by demodulation as shown in Figure 7.3(b) [10]. The

modulation voltage  is assumed to be DC since, in this thesis the analysis is restricted

to the gyroscope. The circuits used for amplification and demodulation contribute to these

FIGURE 7.3. (a) Output spectrum of an ideal gyroscope for an input sinusoidal
rotation rate (b) sense schematic showing demodulation of gyroscope capacitance
bridge output to yield voltage proportional to input rate. The angle  needs to be
adjusted to maximize sensitivity and minimize offsets
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ωd ωΩz
– ωd ωΩz
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O
ωd
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A

(a) Ideal gyroscope output spectrum

(b) Demodulation of gyroscope output

ωdt θ+( )sin
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non-idealities through offsets, differential to common-mode conversion, phase errors, car-

rier feed-through and other well-understood circuit phenomena and are therefore, not

being considered here. Having studied the physical structure of the gyroscope, the system

level abstraction of the gyroscope is now described.

7.2.2 Gyroscope Parameters

At the system-level, gyroscopes are known only by their main performance character-

istics. In this sub-section, definitions for common gyroscope parameters, which are partic-

ularly relevant to this thesis, are given [8][9].

Sensitivity/Scale factor: The constant of proportionality between the input rotation rate

and the output voltage is called the sensitivity of the gyroscope. The sensitivity may vary

with the input rotation rate leading to non-linearity.

Resolution: The smallest detectable change in input rotation rate. The resolution is deter-

mined by the mechanical thermal noise and the electronic noise in the sensing circuits.

Zero Rate Output (ZRO)/Input offset/Bias: Input rate required to drive the output volt-

age to zero.

Bias Drift: The change in the Zero Rate Output or Bias over time. 

Acceleration sensitivity: A linear acceleration applied to the gyroscope may result in an

output voltage indistinguishable from that produced by an input rotation. Typically, gyro-

scopes show a linear as well as quadratic dependence on acceleration. The linear depen-

dence on acceleration is called the Acceleration Sensitivity. The quadratic dependence on

acceleration is referred to as Vibration or Acceleration-squared Sensitivity.

Cross-axis sensitivity: Output produced by an angular rotation about an axis orthogonal

to the input axis of the gyroscope.

All the above performance characteristics depend on the operating conditions i.e., the

ambient temperature and pressure, in addition to the gyroscope geometry. The resolution

is limited by energy leakage processes such as viscous damping and resistive loss. The

various sources of non-idealities in microgyroscopes can be broadly classified as shown in

Figure 7.4. The sensor (including the nested resonators) as well as the electrostatic actua-

tion and sensing combs) contributes to non-idealities arising from elastic, viscous or iner-

tial coupling, from elastic and electrostatic non-linearities, from electrostatic multi-
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E

directional drive and sense. As mentioned earlier, the sense and demodulation electronics

can contribute to non-idealities through lack of carrier suppression, common-mode to dif-

ferential conversion, non-linearity leading to spurious side-bands and phase errors in

demodulation leading to increased Zero Rate Output. Furthermore, packaging can exacer-

bate existing non-idealities by introducing additional stress gradients in the microstruc-

ture. Of all these, this chapter attempts to understand elastic and electrostatic causes of

non-idealities. Viscous and inertial effects can be analyzed in a manner similar to that of

elastic cross-axis coupling as described in Section 3.8. Circuit non-idealities have been

well-characterized over the years and packaging effects can be modeled by adding onto

the non-idealities modeled in this chapter. The Zero Rate Output (input offset), cross-axis

sensitivity and acceleration sensitivity arising from geometrical asymmetries are the pri-

mary focus of this thesis.

7.2.3 Notation

The symbols used in this chapter for applied voltages, displacements, external accel-

erations and rotations, and geometrical and functional parameters of the gyroscope are

FIGURE 7.4. Classification of sources of microgyroscope non-idealities

MICROGYRO NON-IDEALITIES

SENSOR CIRCUIT PACKAGE

lastic Viscous Inertial Electrostatic Carrier CM Rejection Non-linearity Phase Errors
Suppression
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compiled in Table 7.1. Additional symbols are defined as and when they appear. For anal-

Table 7.1 Symbols used

Symbol Description
Modulation voltage applied to sense combs

Gyro output voltage

Actuation voltage applied to drive combs

Drive displacement of outer resonator

Drive displacement of inner resonator

Relative displacement between outer-resonator and inner accelerometer 
in the x direction due to Coriolis force on outer-resonator frame
Relative displacement between outer-resonator and inner accelerometer 
in the x direction due to Coriolis force on inner accelerometer plate
Coriolis force induced displacement in sense direction

Relative displacement of differential sense combs in drive direction

Lateral offset in differential sense combs in sensing direction

, , External applied angular rates equal to 

External applied linear accelerations = 1 g = 9.8 

, Nominal overlap and gap in drive combs

, Nominal overlap and gap in sense combs

Relative mismatch between beam widths or gaps

, Quality factors of the inner and outer resonator respectively in the x 
direction

, Quality factors of the inner and outer resonator respectively in the y 
direction

Quality factor of the drive mode ( )

Quality factor of the sense mode ( )

, Resonant frequencies of the inner and outer resonator respectively in the 
x direction

, Resonant frequencies of the inner and outer resonator respectively in the 
y direction

Vm

VC

Vd

ydo

ydi

xco

xci

xC

yds

xos

Ωx Ωy Ωz 1 ° s⁄( ) π 180⁄( ) rad s⁄( )=

Ax Ay Az, , m s2⁄( )

olpd gd

olps gs

∆

Qix Qox

Qiy Qoy

Qd Qd Qoy≈

Qs Qs Qix≈

ωix ωox

ωiy ωoy
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ysis purposes the input angular rate and input external acceleration are considered to be

constant as given in Table 7.1.

7.2.4 CMOS-MEMS Gyroscope Design Parameters

The important geometrical and functional parameters of the CMOS-MEMS gyro-

scope reported in [10], are listed in Table 7.2 and Table 7.3 respectively. The functional

Gyro drive frequency ( )

Gyro sense mode resonant frequency ( )

, 
Elements of the stiffness matrix for the inner and outer springs respec-
tively.  are one of 

, 
Elements of the damping matrix for the inner and outer resonators 
respectively.  are one of 

,
Elements of the inertia matrix for the inner and outer resonators respec-
tively.  are one of 

, 
Approximations:  and 

Table 7.2 Geometrical parameters of the CMOS-MEMS gyroscope

Group Parameter name Symbol Value Units

Outer spring Outer spring beam length 110 µm

Outer spring beam width 1.8 µm

Inner spring Inner spring beam length 102 µm

Inner spring beam width 1.8 µm

Drive comb finger length 11.4 µm

finger width 2.7 µm

overlap 3.3 µm

gap 1.8 µm

Table 7.1 Symbols used

Symbol Description

ωd ωd ωoy≈

ωs ωs ωix≈

Kζξi Kζξo ζ ξ, x y z φx φy φz, , , , ,

Bζξi Bζξo ζ ξ, x y z φx φy φz, , , , ,

Mζξi Mζξo ζ ξ, x y z φx φy φz, , , , ,

Mo Mi
Mo Mxxo Myyo Mzzo= = =

Mi Mxxi Myyi Mzzi= = =

lbo

wbo

lbi

wbi

lfd

wfd

olpd

gd
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number of fingers 23

Sense comb finger length 61.5 µm

finger width (single finger attached 
to outer-resonator rigid frame)

3.9 µm

finger width (double finger attached 
to inner central plate)

5.7 µm

overlap 60 µm

gap 1.8 µm

number of fingers 21

Inner plates total length 372.65 µm

total width 111.6 µm

percentage holes 20.87 %

Outer-resonator 
frame overall length 456 µm

overall width 283.2 µm

frame width 22.8 µm

percentage holes 28.4 %

Table 7.3 Functional parameters of the CMOS-MEMS gyroscope

Group Name Symbol Value Units
Outer spring x stiffness Kxxo 235

y stiffness Kyyo 2.83

z stiffness Kzzo 16.6

Inner spring x stiffness Kxxi 2.91

y stiffness Kyyi 95.2

z stiffness Kzzi 10.0

Outer-resonator 
frame + inner 
plate

mass
Mo 1.02  ( )

Inner plate mass Mi 0.594  ( )

Table 7.2 Geometrical parameters of the CMOS-MEMS gyroscope

Group Parameter name Symbol Value Units

Nd

lfs

wfs

wf2s

olps

gs

Ns

lpi

wpi

fpi

lro

wro

wfr

fro

N m⁄

N m⁄

N m⁄

N m⁄

N m⁄

N m⁄

nkg µg

nkg µg
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design parameters are obtained by ac simulations of the gyroscope schematic using

NODAS.

In this section, the context for the detailed analyses to follow has been set up by a

description of the gyroscope, the important performance characteristics under consider-

ation, notations used, and the geometrical, operational and functional quantities. In the

next section, the analysis of the gyroscope begins with a derivation of the gyroscope trans-

duction equation, i.e., the conversion from input angular rate to output voltage. The analy-

sis for gyroscope sensitivity assumes that both the linear actuation combs are used to drive

the gyroscope. The effects of using only one of the two linear actuation combs to drive the

gyroscope are considered in Section 7.4. The subsequent three sections analyze the Zero

Rate Output, acceleration sensitivity and the cross-axis sensitivity in terms of the func-

tional parameters in Table 7.3.

7.3 Gyroscope Sensitivity
The sensitivity of the gyroscope is derived in a step-by-step manner, listing the sim-

plifying assumptions on the way. Simultaneously, the relative phases of the applied actua-

tion voltage , and the drive ( ) and sense ( ) displacements are also considered. It

is important to understand the phase relationships so that non-idealities which appear in-

Outer resonator x mode frequency 83820  rad/s

y mode frequency 8440  rad/s

z mode frequency 17110  rad/s

Quality factor outer frame, in y Qoy 80.9 1

Inner resonator x mode frequency 11130  rad/s

y mode frequency 76440  rad/s

z mode frequency 25500  rad/s

Quality factor inner resonator, in x Qix 11.6 1

Table 7.3 Functional parameters of the CMOS-MEMS gyroscope

Group Name Symbol Value Units

ωox 2π

ωoy 2π

ωoz 2π

ωix 2π

ωiy 2π

ωiz 2π

Vd ydo xC
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phase with the sense signal and those which only appear in quadrature can be discrimi-

nated. Gyroscope transduction can be viewed as a succession of four steps:

1. Voltages applied to drive combs produce an electrostatic force 

2. The outer resonator is set into oscillations by the applied electrostatic force 

3. When placed in a rotational field the Coriolis force produces vibrations orthogonal to

the driven oscillations 

4. The induced orthogonal oscillations are capacitively sensed leading to an output volt-

age 

Equations for each of the above steps are derived below. In order to keep in mind the

actual magnitudes of various quantities as observed in a gyroscope, the equations derived

are also numerically evaluated at every step. Such evaluation also provides instant justifi-

cation for simplifying assumptions.

As mentioned earlier, the analyses presented here assumes that both the linear combs

are used for actuation. Anti-phase voltages applied to the two drive combs, as shown in

Figure 7.1, set the outer resonator and the inner proof-mass into oscillation in the y direc-

tion. The forces in the top and bottom combs are respectively given as:

  (7.1)

Vd Fy→

Fy ydo→

Ωz ydo, xC→

xC VC→

FIGURE 7.5. Anti-phase voltages applied to drive the gyroscope into oscillations.

Vac ωdt( )sin

V– ac ωdt( )sin

Vdc

Fyt Ndc0ε0
t

gd
----- Vdc

2 2VdcVac ωdt( )sin Vac
2 ωdt( )sin 2+ +( )=
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  (7.2)

where, the constant  depends on the contribution of the fringing fields to the total force.

The total force is obtained by taking the difference of (7.1) and (7.2) as:

  (7.3)

For an applied sinusoidal voltage  and DC voltage ( ) 18 Vpp and assum-

ing  i.e., neglecting the force due to the fringe fields, we get . Note

that application of anti-phase voltages leads to symmetric drive wherein, the DC and first

harmonic components are canceled out and the resulting force only contains the funda-

mental drive frequency. Usually, the oscillations are sensed, amplified and fed back to set

up a feedback loop which leads to resonant oscillations of the outer resonator and the inner

proof-mass at the fundamental y resonant mode of the gyroscope. At resonance, the dis-

placement of the outer frame can be given as:

  (7.4)

Note that complex number notation ( ), which is commonly used to represent sinusoidal

voltages, is used above. Using values from Table 7.3, . The  in the

above equation indicates that the displacement lags behind the force by , as expected,

at resonance for a second-order system. For the transduction analysis it is assumed that the

outer resonator of the gyroscope is driven in the y direction at constant amplitude .

Since the inner accelerometer is coupled to the outer resonator, through the inner springs

with stiffness  in the y direction, the amplitude of the inner accelerometer is given as:

  (7.5)

Fyb Ndc0ε0
t

gd
----- Vdc

2 2VdcVac ωdt( )sin– Vac
2 ωdt( )sin 2+( )=

c0

Fy Ndc0ε0
t

gd
-----4VdcVac ωt( )sin=

Vac 1Vpp= Vdc

c0 1= Fy 39.5nN=

ydo j
QdFy
Kyyo
-------------–=

j

ydo j1.39µm–= j–

90°

ydo

Kyyi

ydi ydo 1
Myyiωoy

2

Kyyi Myyiωoy
2– jByyiωoy+

------------------------------------------------------------------–
 
 
 
 

ydo 1
ωoy

2

ωiy
2 ωoy

2– j
ωiyωoy

Qiy
-----------------+

--------------------------------------------------–

 
 
 
 
 
 

= =
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  (7.6)

where, the ratio  depends upon the stiffness  of the coupling spring

between the two resonators. (7.6) can be derived intuitively by considering an external

acceleration equal to  applied to the accelerometer and obtaining the relative y

displacement between the outer-resonator rigid frame and the inner accelerometer. Nor-

mally the designer ensures that  and is typically of the order of 0.1. Therefore, to

the first order, the drive displacement is approximated to be  given as:

  (7.7)

In the presence of an angular rate  about the z axis, the inner rigid plate and the outer-

resonator rigid frame experience a Coriolis force in the x direction respectively given as:

 and   (7.8)

 arises in the above equation because the  term encompasses the entire reso-

nating mass during oscillation, and therefore, includes the mass  of the inner acceler-

ometer also. Using (7.3), (7.4) and (7.8) the magnitudes of  and  can be written as:

 and

  (7.9)

Numerical magnitudes are computed as:  and . The dis-

placements due to  and  can be computed by solving the simultaneous differential

ydi ydo 1
ηiy

2

1 ηiy
2– j

ηiy
Qiy
--------+

---------------------------------–

 
 
 
 
 
 

=

ηiy ωoy ωiy⁄= Kyyi

ω– oy
2 ydo

ηiy 1«

yD

ydi ydo yD= =

Ωz

Fco j2 Mo Mi–( )ΩzωoyyD= Fci j2MiΩzωoyyD=

Mo Mi– Mo

Mi

Fco Fci

Fco 2 Mo Mi–( )Ωzωoy

QdFy
Kyyo
-------------

 
 
  2 Mo Mi–( )ΩzωoyQd

Kyyo
---------------------------------------------------- Ndc0ε0

t
gd
----- 4VdcVac( ) 

 = =

Fci 2MiΩzωoy

QdFy
Kyyo
-------------

 
 
  2MiΩzωoyQd

Kyyo
---------------------------------- Ndc0ε0

t
gd
----- 4VdcVac( ) 

 = =

Fco 1.09pN= Fci 1.53pN=

Fco Fci
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equations shown in Figure 7.6 in the frequency domain. Assuming that the resonant fre-

quency of the outer frame in the x direction is much higher than the drive frequency and

that the damping force  is insignificant compared to the spring restoring force

, the relative displacement between the outer and inner resonators due to  is:

  (7.10)

where, 

 is the ratio of the drive frequency to the resonant frequency of the inner

resonator and  is the ratio of the stiffnesses of the outer and inner springs

Fco

KxxiKxxo

BxxiBxxo

0 Mix··i Bxxi x· i x·o–( ) Kxxi xi xo–( )+ +=

Fco Mo Mi–( )x·o Bxxo Bxxi+( )x·o B– xxix
·
i Kxxo Kxxi+( )xo K– xxixi+ +=

FIGURE 7.6. Nested resonator system and dynamical equations (a) when a force
Fco is applied to the outer frame and (b) when a force Fci is applied to the inner
mass.

Fci

KxxiKxxo

BxxiBxxo

Fci Mix··i Bxxi x· i x·o–( ) Kxxi xi xo–( )+ +=

0 Mo Mi–( )x·o Bxxo Bxxi+( )x·o B– xxix
·
i Kxxo Kxxi+( )xo K– xxixi+ +=

(a)

(b)

Mo Mi–

Mi

Mi

Mo Mi–

xo xi

Bxxox·o

Kxxoxo Fco

xco
FcoQixηix

2

Kxxi Qixηix
2 Qixγ– Qixηix

2 γ jηix
3 jηixγ–+ +( )

--------------------------------------------------------------------------------------------------------------–
FcoΓ ηix( )

Kxxiγx
-------------------------–= =

ηix ωoy ωix⁄=

γx Kxxo Kxxi⁄=
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in the x direction. The function , which will be used repeatedly in following analyses,

is defined as:

which can be simplified for  and  to:

  (7.11)

For  . With the same assumptions as before, the

relative displacement between the outer and the inner resonators due to  is:

  (7.12)

 pm and  pm. Comparing (7.10) and

(7.12) it is seen that  and  are exactly in phase with each other. The ratio of their

magnitudes is:

  (7.13)

Note that in spite of  being larger than , the above ratio is much less than one. This

is because  and  are of the same order of magnitude,  is, by design, usually

slightly less than 1 and  is typically much greater than 1 because the outer springs are

designed to be much stiffer relative to the inner springs in the  direction. Therefore, for

simplicity, the total Coriolis force induced vibrations  can be assumed to consist only of

. Simplifying (7.12) by using :

Γ a( )

Γ a( )
Qixa2γx

Qixa2 Qixγx– Qixa2γx ja3 jaγx–+ +( )
-----------------------------------------------------------------------------------------------=

a 1≈ γx 1»

Γ a( ) a2

1 a2– ja Qix⁄+
--------------------------------------=

ηix 0.755= Γ ηix( ) 1.32– 0.201j+=

Fci

xci
FciQixγx

Kxxi Qixηix
2 Qixγx– Qixηix

2 γx jηix
3 jηixγx–+ +( )

---------------------------------------------------------------------------------------------------------------------–
FciΓ ηix( )

Kxxiηix
2

------------------------–= =

xci 1.19 0.181j–= xco 0.0120– 0.00181j+=

xco xci

xco
xci
-------

Mo Mi–( )ηix
2

Miγx
--------------------------------- 1«=

Fco Fci

Mo Mi– Mi ηix

γx

x

xC

xci ηix γx«
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  (7.14)

In terms of the drive displacement ,  can be written as:

  (7.15)

Note that (7.14) is simply the response of the inner resonator as if the outer resonator was

anchored and could have been obtained directly. The numerical value of  for unit input

rotation rate ( ) is  pm. Note that from (7.15), it is seen

that  should be maximized to increase the displacement produced by Coriolis force.

However, at the same time,  should be less than one i.e.,  so that there is no

attenuation due to the inner accelerometer being unable to respond to the Coriolis force.

Next, the conversion of the Coriolis force induced displacement to a differential volt-

age through the sense combs is analyzed. Referring to Figure 7.3 (b), the differential volt-

age output of the sense combs can be written as:

  (7.16)

where,  and  are the parasitic capacitances as shown in Figure 7.3(b).

  (7.17)

where it has been assumed that the total capacitance on the denominator is approximately

the same for the top and the bottom and is equal to . In order to get an idea of the mag-

nitude of the signal obtained, the parasitic capacitance at each sense node is assumed to be

about 500 fF. The sense capacitances themselves are computed as: 

xC xci
Fci

Kxxi 1 ηix
2– jηix Qix⁄+( )

-------------------------------------------------------------≈=

yD xC

xC
2MiΩzωoyyD

Kxxi 1 ηix
2– jηix Qix⁄+( )

-------------------------------------------------------------
2ΩzωoyyD

ωix
2 1 ηix

2– jηix Qix⁄+( )
----------------------------------------------------------= =

xC

1 ° s⁄( ) xC xci 1.18 0.179j–= =

ωoy

ηix ωoy ωix«

VC
Vm
-------

C1 C2–
C1 C2 Cp1+ +-----------------------------------

C3 C4–
C3 C4 Cp2+ +-----------------------------------–

 
 
 

=

Cp1 Cp2

VC
Vm
-------

Nsε0tolps
CT

-----------------------
4xC

gs
2 xC

2–
-----------------

 
 
 

=
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  (7.18)

The above value neglects the contribution of fringing fields, which can be expected to add

about 20% to the capacitance values. Simplifying (7.17), using , the output voltage

normalized to the modulation voltage  corresponding to the above Coriolis force

induced displacement is given as: 

  (7.19)

Using previously computed values for  and  the relative sensitivity is

obtained as . Most MEMS gyroscopes operate in the circuit-noise

limited regime. Therefore, the relative sensitivity number computed above, combined with

the input-referred noise of the sense electronics, determines the resolution of the gyro-

scope. The above derivation of the output voltage of a gyroscope has also been done previ-

ously, by others [31][34].

Starting from symmetric drive voltages applied to the two actuation combs, the output

voltage for a given input angular rate was derived above. Before proceeding to study non-

idealities in the gyroscope caused by manufacturing variations it is instructive to look at

the effect of asymmetric drive on the non-idealities in the gyroscope. This issue is

addressed in the following section.

7.4 Effect of Asymmetrical Drive
The nested gyroscope design reported earlier [10][34] differs from the gyroscope

described in this chapter. The difference being that a sinusoidal voltage is applied only to

one of the two linear actuation combs. Sinusoidal voltage is applied to the top linear actu-

ation comb. The bottom comb is used to capacitively sense the driven resonant oscilla-

tions. This sensed signal is amplified and fed back to the top linear comb thus completing

an oscillator loop to sustain the oscillations. The main drawback of this approach is that

C1 C2 C3 C4
Nsε0olpst

gs
----------------------- 30.05fF= = = = =

xC gs«

Vm

VC
Vm
-------

Nsε0tolps
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-----------------------
4xC

gs
2

---------
 
 
  C1

CT
-------

4xC
gs

---------
 
 
 

= =

xC CT 560fF=

VC
Vm
------- 0.142µ( ) ° s⁄( )⁄=
148



the gyroscope oscillations, being driven asymmetrically, will contain other modes (for

example x modes) which can contribute significantly to the Zero Rate Output and other

non-idealities of the gyroscope. The effect of such an asymmetric drive is analyzed in this

section.

In the previous section the drive force was computed ((7.1) and (7.2)) assuming anti-

phase voltages applied to the top and bottom drive combs and no displacement of the

combs in the x direction. Equations (7.1) and (7.2) can be rewritten for a general case,

where the rigid frame has been displaced in both the x and y direction. Let us assume that

the frame along with the drive combs is offset, as shown in Figure 7.7, in the x direction by

a distance . To the first order, the drive force in the y direction can be assumed to be

independent of the displacement in both the x and y directions. Therefore, the force in the

y direction produced by each drive comb remains unchanged. Before proceeding to derive

the total force for the asymmetrical drive case, the forces for each actuation comb are

derived for the symmetrical anti-phase drive case. Following this, the force produced by

the bottom comb is set to zero for the asymmetrical drive case. Assuming that the force

due to parallel-plate capacitance dominates, the forces produced in the x direction can be

written as:

  (7.20)

xod

FIGURE 7.7. Asymmetrical drive: Actuation voltage applied to only the top linear
comb 

Vac ωdt( )sin
Vdc

Actuation combs offset to one side

Fxt
Ndε0t olpd yD+( )

2------------------------------------------
4gdxod

gd
2 xod

2–( )
2--------------------------- Vdc

2 2VdcVac ωdt( )sin Vac
2 ωdt( )sin 2+ +( )=
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If the bottom actuation comb is driven by out of phase voltage, then the force due to the

bottom comb can be written as:

  (7.21)

Assuming  and summing (7.20) and (7.21) to get the total force in x,

  (7.22)

If the y displacement of the frame, , is primarily composed of the fundamental

drive frequency, then the above equation is significant because, it can inferred that there is

no component of  at the drive frequency. Components of  exist only at DC and the

second harmonic frequency. Thus, it is seen that anti-phase voltages leading to symmetric

drive conditions result in first order rejection of cross-axis forces at the drive frequency,

which may arise due to a position offset in the drive combs. The cancellation of cross-axis

forces due to the symmetrical drive is apparent in the above derivation.

On the other hand, if only the top comb was driven by a sinusoidal actuation voltage,

as shown in Figure 7.7, the total force on the comb in the x direction is only , which

has components at DC, the drive frequency and higher order harmonics too. Once again,

assuming that the y motion is dominated by the fundamental frequency, the component at

the fundamental frequency is:

  (7.23)

The above force will produce oscillations in the sense direction at the drive frequency and

therefore, lead to a Zero Rate Output (ZRO). The ZRO referred to the input of the gyro-

scope is denoted as , i.e., the equivalent input rate required in an ideal gyroscope to

produce the output observed in a non-ideal gyroscope when the external angular rate is

zero. Recall from Section 7.3 that the drive motion lags behind the applied force (also the
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applied voltage) by . The resultant x force has components which are both in phase

(due to the second term in the summation in (7.23)) and in quadrature to the drive motion

(due to the first term in the summation in (7.23)). Furthermore, since the Coriolis force is

in phase with the applied voltage, it is seen that there is a component of  which is

exactly in phase with the Coriolis force. The magnitudes of the in-phase and quadrature

components of  are given as:

 and 

  (7.24)

For an offset,  and same voltages assumed as before i.e., 

and ,  and . Using the response

obtained for the Coriolis force acting on the outer frame in (7.10), the relative displace-

ment between the inner accelerometer central plate and the outer-resonator rigid frame due

to  can be written as:

  (7.25)

Comparing  in (7.25) with the dominant Coriolis force induced displacement in (7.12):

  (7.26)

Using (7.9), (7.23) and (7.26) the in-phase and quadrature components of the motion

coupling due to asymmetric drive can be obtained. The in-phase component is given as:
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  (7.27)

The quadrature component is given as:

  (7.28)

Using values from Table 7.2 and Table 7.3 the in-phase and quadrature ZRO due to asym-

metric drive are, respectively, computed to be  and

.

Thus, it is seen that asymmetric drive results in a ZRO even when there are no manu-

facturing induced variations, i.e., even in an otherwise ideal gyroscope. Furthermore, it

can be shown similarly that, if each individual drive comb produces a vertical force, then

symmetric drive will cause the two vertical forces to cancel out whereas asymmetric drive

will lead to a vertical oscillatory motion at the drive frequency. Vertical oscillatory motion

at the drive frequency introduces a small cross-axis sensitivity to the vertical-axis gyro-

scope, and is, therefore, not desirable. Having shown that asymmetric drive results in non-

idealities even in a geometrically perfect gyroscope, manufacturing induced imperfections

in gyroscope geometry and resultant non-idealities are analyzed in the following sections.

In order to isolate the effects of manufacturing variations, symmetric drive is assumed in

all the analyses and simulations in the remainder of this chapter.

7.5 Zero Rate Output (ZRO)
The causes of ZRO include beam width variations leading to elastic cross-coupling,

comb gap variations, lateral offsets of the comb position, mask misalignment leading to

in-plane to out-of-plane mode coupling. Each of these causes is analyzed in detail in this
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section. Lateral offset in comb position is not considered separately but in combination

with the other causes. One sub-section is devoted to each of the three causes: beam width

variation, comb gap variation and mask misalignment. Equations relating ZRO to these

manufacturing-induced variations are derived. As before, numerical evaluations are also

carried out at each step so that the relative significances of different causes can be clearly

identified. Complex number notation is used in order to maintain information about the

magnitude as well as the phase of the signals.

7.5.1 Beam Width Variation

Beam width variation leads to in-plane elastic cross-axis coupling as explained in

Chapter 3. In general, beam width variations across a wafer are modeled as a linear gradi-

ent. As discussed in Section 3.9, gradients along three directions are first considered in

this section. Following this, the effect of mismatch in a single spring, with respect to the

other three springs is analyzed. It should be noted that the mismatch of a single spring with

respect to the other three springs is a canonical problem and can be used to solve instances

with generalized mismatch between beam widths in different springs.

The results of ZRO resulting from linear gradients along x, y and along both x and y

are shown in Table 7.4. The gradients are assumed to be such that when there is a gradient

along the x direction, then the two springs on the left have their width diminished by 1%

and the two springs on the right have their widths enhanced by 1%. Similarly for gradients

along the y direction, beam widths in the two springs at the bottom are diminished by 1%

and those of the two springs at the top are enhanced by 1%. When there is a simultaneous

gradient along both x and y directions, the spring at the bottom left is diminished by 1.4%

and that at the top right is enhanced by 1.4%. The other two springs are left unchanged in

this case. The ZRO for gradients along the x and y directions was below the numerical pre-

Table 7.4 ZRO resulting from linear gradients in beam width

Gradient direction ZRO ( )
x below numerical precision
y below numerical precision
x, y 16

° s⁄
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cision of the simulation and is presumed to be zero. However, when there is a simulta-

neous gradient along both the x and y directions, there is a significant ZRO of about 16

. This is exactly as predicted by the analysis presented in Section 3.9 which is fur-

ther expanded below. The above result is in slight contradiction to analysis presented in

[31], wherein it is reported that variations in the thickness of springs along the direction

perpendicular to the drive axis lead to more cross-axis coupling. However, the simulations

and analysis in this thesis show that cross-axis coupling is indeed maximum when the gra-

dient in widths has both and x and y component. The reason for this apparent contradiction

is explained below. The point at which cross-axis coupling  is observed is important (i.e.,

the point at which the displacement is measured). The geometrical center of the layout is

the ideal point to make this observation. If a point away from the center is chosen, then it

will be difficult to distinguish between cross-axis motions produced due to rotation about

the geometrical layout center and true translational motion itself. It should be noted that

cross-axis motions produced due to rotations about the geometrical center will be nomi-

nally cancelled out by the sense combs. Therefore, it is possible that an off-center point

was chosen to measure the cross-axis coupling in [31]. In the remaining simulations and

analyses in this chapter it is assumed that the beam widths of only one spring is mis-

matched with respect to the other three springs. This is a canonical problem whose solu-

tion can be used to compute the solution for any combination of beam width variations.

In any system consisting of a proof-mass suspended by mismatched springs (see Fig-

ure 7.8), there are essentially two mechanisms by which in-plane elastic cross-coupling

° s⁄( )

w1=w w2=w

w3=w w4=w(1+∆)

2Lx

2Ly

x

y

FIGURE 7.8. Example case for beam width variation and equation for coupling,
w1 = w2 = w3≠ w4.

φz
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can occur as discussed in Section 3.8. In both the following cases it is assumed that the

width of one out of the four springs is varied by a fraction  as shown in Figure 7.8.

1. Individual springs suspending the proof-mass have a non-zero intrinsic . The ratio

of x displacement to y displacement (referring to Figure 7.8) when there is no force in

the x direction is given as:

  (7.29)

where,  is the cross-axis stiffness of the  spring. The overall cross-axis term ,

which is a summation of the individual  varies linearly with . Recalling from Sec-

tion 3.8 that a fractional change of  in the beam width produces a fractional change of

 in the stiffness constants, the above equation can be rewritten as:

  (7.30)

where,  and  are the stiffness constants of the nominal (ideal) spring.

2. The second case is when each individual spring has zero intrinsic  as proved in

Section 3.8 and [53]. Spring designs that are completely symmetrical possess this

property and are, therefore, highly recommended for reducing elastic cross-coupling.

In this case there is no direct coupling between the two in-plane translational modes x

and y, but, there is second-order coupling through the rotational mode. In other words

the y mode first couples to the rotational mode , which in turn couples to the x

mode.

  (7.31)

Each of the cross-axis terms ,  and  varies linearly with the width mis-

match . Therefore, in the first case the elastic cross-coupling is linear, whereas in the
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second case, the linear portion has been eliminated by better spring design and the remain-

ing coupling is a quadratic function of . If the intrinsic rotational stiffness of the springs

is neglected, the stiffnesses of a single nominal spring in (7.31) can be written as (from

(3.16) and (3.17))

  (7.32)

  (7.33)

  (7.34)

Note that the sign of the cross-axis terms  and  changes with the quadrant in

which the spring is located, while the diagonal term  is always positive.

If the springs are designed to be highly stiff in one direction (say x) and highly com-

pliant in the orthogonal direction (y), then, noting that spring stiffnesses vary as the cube

of the width, (7.31) can be simplified to:

  (7.35)

Similarly,

  (7.36)

where,  and  are the nominal values of the spring stiffnesses.

For the nested gyroscope under consideration, there are 2 sets of springs and the mis-

match in the 2 sets are considered separately. Each outer spring is symmetric in itself,

therefore, mismatch in the outer spring corresponds to the second case above. Each inner

spring is not symmetric in itself, and therefore, mismatch in inner springs is analyzed

using case one above.
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Derivation similar to that used to derive (7.10) yields the following equations using

(7.30). Coupling of the drive into the sense mode due to relative beam width mismatch

( ) in outer (Figure 7.9) and inner springs are respectively given as:

  (7.37)

  (7.38)

where,  , as before,  is the resonant frequency of the

inner resonator in the sense (x) direction,  and  are the resonant frequencies of the

outer and inner resonators in the drive (y) direction and  is as defined in (7.11).  and

 respectively denote the displacement produced in the sense direction due to spring

mismatch in the outer and inner springs respectively. Using the spring stiffness computa-

tion procedure described in Chapter 4 . The approximate numerical

values are  pm and  pm. The outer springs

being inherently symmetric, the coupling from drive to sense mode is proportional to ,

∆

w1=w w2=w

w3=w w4=w(1+∆)
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2Ly
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y

(sense)
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riv

e)

FIGURE 7.9. Example case for beam width variation, w1 = w2 = w3≠ w4.
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whereas, in the asymmetric inner springs the coupling is not only proportional to  but is

also more than 10 times higher. Also, in case of the nested gyroscope, the topology lends

itself to isolating the drive mode to the outer springs and the sense modes to the inner

springs i.e.,  and . The corresponding input referred ZROs can

be computed by taking the ratios of  and  to  the Coriolis force induced displace-

ment for unit rotation rate. 

 and   (7.39)

Note that  can also be approximated as the ratio of the elastic cross-coupling force

to the Coriolis force acting on the inner plate:

  (7.40)

The ZRO due to beam width mismatch is in exact quadrature with the Coriolis force

induced output as indicated by the  in the denominator of (7.40).

From the above analysis, it is seen that beam width variations lead to ZRO through

two different mechanisms in the nested gyroscope. The outer springs are symmetric, and

therefore show only second-order coupling between the drive and sense modes, while the

inner springs being asymmetric show first order coupling. Additionally, the outer springs

have been designed to attenuate sense mode oscillations resulting in much smaller ZRO

due to width mismatch in the outer springs than due to width mismatch in the inner

springs. It is also interesting to note that the ZRO caused by beam width mismatch is in

exact quadrature with the normal gyroscope output and therefore, can be eliminated by

demodulation with appropriate phase. However, phase errors in the local oscillator of the

demodulator will lead conversion of the quadrature ZRO to final gyroscope output.

Design options to reduce ZRO include use of wider beam widths to average out litho-

graphic variations, use of symmetric springs to eliminate first order coupling and springs
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which have lower kyy/kxx. Increasing the separation between the y modes of the inner reso-

nator and the outer resonator (i.e., decreasing ) will also lead to decreased ZRO.

7.5.2 Comb gap variation

In this sub-section, the impact of mismatch in the gaps between the comb fingers on

the ZRO is analyzed. All the gaps in the same comb, are assumed to be identical and vari-

ations are assumed to occur only between different combs. There are two cases: 

1. mismatch between the gaps in the top and bottom linear actuation combs and 

2. mismatch between the gaps in the top and bottom differential sense combs

Before analyzing the multidirectional forces produced due to mismatch in the actua-

tion combs, it is asserted here that if there is no mismatch between the two actuation

combs and if symmetrical anti-phase voltages are applied, then there is no net force pro-

duced by the actuation combs at the drive frequency other than in the drive direction. This

statement is contradictory to prior analysis [31]. This is because in the analysis presented

in [31], only one drive comb is considered. Therefore, the cancellation effect of the other

drive comb is not observed. Now mismatch in the gaps in the two drive combs as shown in

Figure 7.10 will be shown to produce multi-directional forces at the drive frequency in the

presence of mismatch. It is assumed that the gaps in the top and bottom drive combs are

different and are represented by  and  respectively. For a displacement  in the x

direction, the x force in the top comb is given as:

ηiy

gdt = g(1+∆)

FIGURE 7.10. Mismatch in the gaps in the drive combs on the top and bottom

gdb = g

lm

olpd

gdt gdb xt
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

ωt))




  (7.41)

If the bottom comb is being driven out of phase, then, the x force produced by the bottom

comb can be written as:

  (7.42)

Let us now consider two cases for computation of the total force in x and the total moment

about z. In the following analyses a parallel plate approximation is used to compute the

forces and the moments. 

The first case is a common mode x displacement for the top and bottom combs:

. Such a displacement will be produced by x translational motion. The

total force and moment are obtained by summing (7.41) and (7.42). The nominal part and

the mismatch dependent part of the force and moment are written separately as:
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 is the distance in the y direction from the center of the overlapped region of the actua-

tion combs to the center of the gyroscope itself. If it is assumed that  has only low fre-

quency content and  has only drive frequency component, then the nominal force given

by (7.43) has components only at DC and at even harmonics of the drive frequency. This

is expected from the discussion in Section 7.4. However, (7.44) shows that in the presence

of a lateral offset  in the drive combs and a mismatch , there is a force in the sensing

direction at the drive frequency. Note that this force is present in spite of the symmetric

nature of the drive voltage. Such a lateral offset can either arise due to manufacturing

effects or be caused by a linear acceleration thus leading to a linear acceleration sensitiv-

ity. Displacements caused by linear accelerations are usually about 2 orders of magnitude

smaller than manufacturing-induced offsets. Magnitude of the force is obtained as:

  (7.47)

  (7.48)

where, the I and Q represent in-phase and quadrature with respect to the Coriolis force.

Reusing the analysis used to derive (7.10), relative displacements between the inner plate

and the outer frame due to  and  are given as:

 and   (7.49)

  (7.50)

The corresponding ZROs are given as:

 and   (7.51)
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

  (7.52)

Since the rotational mode ( ) frequency is usually higher than the greater of the two

translational modes (see Appendix A5) the rotation produced by  will not be large

enough to compete with the expected range of external rotation rates and is, therefore, not

analyzed further. It should be noted that the magnitudes of the forces in (7.47) and (7.48)

are about two orders of magnitude larger than the Coriolis force. However, as will be seen

below, they do not lead to significant ZRO. The reason for this is that the outer springs are

much stiffer in x effectively attenuating the displacement produced by the above forces.

This is in sharp contrast to single layer gyroscopes such as [19][28]. 

The second case is when . This case corresponds to rotational move-

ment of the outer frame. Then the forces and moments are again separated into nominal

and mismatch dependent parts and written as: 
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If it is assumed that  has only low frequencies and  has only drive frequency

present, then from (7.53) and (7.56) then it can be concluded that  and  will

have only low frequency and bands centered around even harmonics of the drive fre-

quency whereas  and  will have only bands centered around the drive fre-

quency and odd harmonics of the drive frequency. In general, the nominal components

 and  are expected to be much larger than the mismatch-dependent compo-

nents  and . Therefore,  having drive frequency components and

 having low frequency components is a less acceptable situation than the two hav-

ing low frequency and drive frequency components respectively. The reason being that

 having drive frequency components will lead to coupling of motion at drive fre-

quency to the sense mode and  having low frequency components will produce

rotations of the rigid frame and the inner plate. Such a rotation will itself lead to a Coriolis

force as if an external rotation had been applied. From (7.53) and (7.56) it is seen that low

frequency rotations of the rigid frame lead to both  and  having compo-

nents which will interfere with normal gyro operation. Comparing (7.53) with (7.44) if

, the force produced in (7.53) is significantly larger (being independent of )

than the force produced in (7.44). Thus it is seen that rotational offsets produce coupling

of drive motion to the sense mode, even with perfectly matched comb gaps. This com-

pletes the discussion on ZRO produced by coupling in the drive combs. 

Next mismatch in the gaps between the two differential sense combs, as shown in Fig-

ure 7.11, is considered. The movement in the sense combs in the  direction is given as:

  (7.57)

It is now assumed that there is a lateral offset in the x direction ( ) in the differential
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  (7.58)

Assuming 

  (7.59)

  (7.60)

The above equation suggests that if there is a lateral offset in the sense direction, then

there will be a voltage output proportional to the relative displacement of the sense combs

in the drive direction . The first term in the summation produces output proportional to

the displacement in the sense mode i.e., the Coriolis force induced displacement as well as

direct response of the inner accelerometer to external accelerations. Assuming the lateral

offset  and the relative mismatch , the input referred ZRO is

obtained as:

  (7.61)

Note that if the relative displacement in the sense combs in the drive direction was

equal to the drive displacement (i.e., there is no decoupling, therefore, ) then the

FIGURE 7.11. Mismatch in the gaps in the sense combs on the two sides
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above number will be almost 100 times as large. The nested gyroscope topology shows

double decoupling i.e., drive mode is decoupled from the sense combs and the sense mode

is decoupled from the drive comb. This double decoupling is a major advantage over a

number of single-layer gyroscopes such as in [19][27][28] which are constrained by the

single-layer nature to have only the drive mode decoupled from the sense combs, leaving

the sense mode fully coupled into the drive combs.

It was shown in this sub-section that gap mismatch in the drive and sense combs can

lead to ZRO only in the presence of offsets in the combs. Analysis of rotational offsets in

the drive comb shows that low frequency rotations of the frame can be more significant

than translational offsets and therefore, have to be avoided. Analysis of mismatched gaps

in the combs shows the importance of double decoupling i.e., isolating the drive mode to

the drive combs and the sense mode to the sense combs.

7.5.3 Mask Misalignment

Mask misalignment of the metal layers in the CMOS-MEMS beams leads to two

effects: lateral curling of the springs causing offset in the proof-mass position and   mode

coupling between the in-plane modes (x, y) and the out-of-plane mode (z) due to rotation

of principal axes of elasticity as explained in Section 3.7. At their mean position, the dif-

ferential sense combs are insensitive to vertical motion. However, if the combs are offset

by a small distance  due to lateral curling (or any other reason), then they become sen-

sitive to vertical motion (Figure 7.12). In this sub-section, the offset, , is assumed to be

xos

FIGURE 7.12. Cross-section of one set of fingers of a differential sense comb (a)
without lateral offset, vertical motion leads to common-mode capacitance
change; (b) with lateral offset, vertical motion leads to common-mode and
differential capacitance change. 
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a constant. Using a parallel plate approximation for the sense comb capacitance, the nor-

malized output voltage in such a case, can be written as:

  (7.62)

where,  is the relative vertical motion in the sense combs and  is the output volt-

age due to mask misalignment, even when there is no rotational input. The input referred

ZRO is obtained by dividing by the output voltage for the Coriolis force induced displace-

ment in (7.19):

  (7.63)

Using the theory described in Section 3.7, , the relative vertical motion in the sense

combs caused due to mask misalignment is now estimated. Mask misalignment and elastic

coupling in the outer springs are considered first. It is assumed that the angle by which the

principal axes of a spring rotates is the same as the angle by which the principal axes of

each of the individual compliant beams rotates ( ). This assumption is valid when all

the compliant beams are parallel to each other and the trusses connecting the compliant

beams are short and stiff compared to the compliant beams. With an additional assumption

that the z resonant mode ( ) is well separated from the drive frequency ( ), viscous

and inertial effects in the vertical direction can be neglected. Motion coupled to the z axis

in the outer springs can then be written as:

  (7.64)

If the y stiffness is assumed to be small compared to the z stiffness then, using (3.70) and

(3.72):

  (7.65)

Vo mm,
Vm

----------------
2Nsε0olpszs

gs
2------------------------------ 2xos( )

 
 
 

CT( )⁄=

zs Vo mm,

Ω0 mm,

zsxos
txC

------------=

zs

θoyz

ωoz ωoy

zo
Kyzo
Kzzo
-----------

 
 
 

yD=

zo
2θoyz( )sin
2-------------------------- 

  yD= θoyzyD≈
166



for small values of . This is a crude approximation, since typically,  for

CMOS-MEMS springs of width 1.8 , but allows us to quickly simplify  in (7.64).

With inclusion of inertial effects a slightly more complex expression for relative vertical

motion between the central plate and the frames is obtained:

  (7.66)

where, , , ,  and . The above

equation is derived using a similar system of equations as is described in Figure 7.6, with

the  subscripts replaced by . Assuming sufficient mode separation and quality factors

much greater than 1, the damping terms in those equations can be neglected. For a 

misalignment of the METAL2 and METAL1 layers with respect to the METAL3 layer,

 radians. Also note that the ratio  is approximately proportional to

the aspect ratio of the CMOS-MEMS beams, typically between 2 to 3 for nested gyro-

scopes in a standard CMOS process. (for example width of  and thickness of

). Using values in Table 7.3,  nm. The j term indicates that the verti-

cal motion is in-phase with the drive displacement, as expected from (7.66). Thus, it is

seen that for a 0.02 radian rotation of the principal axes due to misalignment, about 0.02%

of the drive motion couples (in phase) to the relative vertical motion in the sense combs.

Since the Coriolis force induced displacement is not in exact quadrature with respect to

the drive displacement, the vertical motion coupling leads to in-phase and quadrature

ZRO. Back-substituting values for  in (7.63), . It is seen

that  is more significant than  and , for the same value of lateral off-

set in the sense comb. So far only mask misalignment in the outer spring beams has been

considered. Mask misalignment in the inner springs is discussed next.

The long beams in the inner springs are parallel to the y (drive) direction and there-

fore, compliant in the x (sense) direction. Mask misalignment in the long beams of the
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inner springs can only lead to coupling between the x and z modes. Mask misalignment in

the shorter truss beams, which are parallel to the x direction will lead to negligible elastic

cross-axis coupling between the y and z modes, because the truss beams are short and stiff.

Furthermore, the relative y motion in the inner springs ( ) is

only a small fraction (about 1.5%) of the total drive motion yD. Therefore, the elastic cou-

pling between y and z modes in the inner springs is not analyzed further.

7.5.4 ZRO Summary

ZRO due to beam width mismatch in the inner (asymmetric) springs is found to be

significant, but in exact quadrature with the Coriolis force induced displacement. ZRO due

to mismatched gaps is seen to be directly related to the offset in the sense combs as well as

the decoupling of sense mode from the drive comb and vice-versa. It is seen that mask

misalignment in the outer springs can cause greater ZRO than gap mismatch, with reason-

able assumptions for misalignment and mismatch values. It is also seen that the quadrature

component of ZRO is more significant than the in-phase component for both gap mis-

match and mask misalignment cases. This suggests that the in-phase component can be

decreased even more by pushing the sense resonant mode further away from the drive res-

onant mode (i.e., decrease ). There will, of course, be an accompanying sensitivity

reduction.

The analyses for deriving ZRO equations establishes the basic effects of beam width

mismatch, comb gap mismatch and mask misalignment. An external acceleration is added

in the next section. The resulting analyses for acceleration sensitivity are closely related to

analyses presented in this section.

7.6 Acceleration Sensitivity
In this section the impacts of beam width mismatch, comb gap mismatch and mask

misalignment on the acceleration and acceleration-squared sensitivity of the gyroscope are

considered. The spectrum of a non-ideal gyroscope when subjected to an external acceler-

ation is shown in Figure 7.13. At  the acceleration response of the inner accelerometer

is seen. The gyroscope ZRO is seen at , the drive frequency. Sidebands at  and

yds ydi ydo– yDΓ ηiy
2( )= =

ηix
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 arise due to the acceleration sensitivity of the non-ideal gyro and sidebands at

 and  due to the acceleration-squared sensitivity. In Section 7.5 ZRO

was seen to arise due to completely linear phenomena. However, acceleration and acceler-

ation-squared sensitivity necessarily imply the presence of a non-linear element which

“mixes” the low-frequency ( ) acceleration signal and the drive frequency  to pro-

duce the side-bands at  and  as seen in Figure 7.13. While both the

drive and sense combs are non-linear elements, the drive comb is linear during actuation

even for relatively large displacements (i.e., few µm), whereas, the sense comb can be

considered linear only for displacements which are a very small fraction of the gap (i.e.,

tens of nm). Therefore, in the following analyses, the major source of non-linearity is the

sense comb. Non-linearity in the beams in the outer springs, which experience significant

displacement, is a complex area of research in itself and is not considered in this thesis

[40][93][94][95].

Before the effects of variations on acceleration sensitivity are considered, a brief

examination of the sense comb non-linearity is in order. From (7.17) the voltage output of

the differential sense combs can be written as a Taylor’s series expansion in terms of the

displacement  of the comb fingers in the lateral (gap) direction:

  (7.67)

, is the total displacement of the comb in the sense direction, com-

prised of a DC offset term, , a sinusoidal acceleration term , and a drive

FIGURE 7.13. Spectrum of output voltage of a non-ideal gyroscope when
subjected to an external acceleration. 
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frequency term  due to coupling. The cubic term in (7.67) leads to mixing of the three

components in the x direction. Furthermore, it is seen from (7.67) that periodic variation in

the overlap length  along y and the overlap length along the z direction, nominally

represented by t, can give rise to additional mixing. In the following sub-sections, beam

width variation, comb gap variation and mask misalignment are considered for their con-

tributions to the mixing terms in (7.67).

7.6.1 Beam Width Variation

The cubic term in (7.67) mixes three displacement signals, all in x direction, leading

to acceleration and acceleration-squared sensitivity. From Section 7.5, it is known that

beam width variation leads to drive motion coupling onto the sense combs as described by

(7.37), (7.38). Therefore, there are at least two components of motion in the x direction:

the low frequency acceleration signal  and the drive frequency coupled signal .

The presence of the cubic term requires another DC term in order to generate side-bands at

. Thus, it is seen that acceleration sensitivity due to beam width mismatch occurs

only in the presence of a DC offset term . Now, comparing the cubic term in (7.67)

with (7.19) the acceleration sensitivity and the acceleration-squared sensitivity, obtained

by taking the ratio of the output voltages produced by mixing to the output voltage pro-

duced by input rotation, are given by:

  (7.68)

  (7.69)

where,  is the gyro sensitivity.  in the above equations can arise due to width mis-

match in the outer or the inner springs. The Sa2 term is usually not very significant

because the displacement produced by the acceleration  is typically an order of magni-

tude smaller than the offset ( ), i.e., . However,  and  being strong
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functions of the sense comb gap, they effectively constrain the smallest gap that can be

used by designers. Also,  implies , because .

A lower bound on , while reducing the acceleration-squared sensitivity also limits the

overall sensitivity of the gyroscope (from (7.15)). Maximizing sensitivity is vital to the

gyroscope performance, particularly in circuit-noise limited systems. When  is caused

due to mismatch in the outer springs we have:  and

. When  arises due to mismatch in the inner

springs,  and . All the above

quantities are in quadrature to the Coriolis force induced displacement because, as seen in

Section 7.5,  is in quadrature with . It is also seen that the acceleration and acceler-

ation-squared sensitivities are not very significant. For example, if there is a 1% mismatch

in the inner springs, it was seen in Section 7.5 that  is about 400 pm. Even with such a

large drive motion coupling (relative to the Coriolis displacement) to the sense mode, 20g

of acceleration will be required to produce a quadrature output equal in magnitude to the

output due to a  rotation rate. This concludes the analysis of acceleration sensitiv-

ity produced by beam width mismatch. Next the effect of comb gap variation on accelera-

tion sensitivity is studied.

7.6.2 Comb Gap Variation

Two separate cases are considered for drive comb mismatch and sense comb mis-

match; first drive comb mismatch.

If there is a relative mismatch  in the drive comb gap,  between the top and the

bottom combs, the force produced in the sensing direction by the drive combs is obtained

from (7.44) by replacing  by :
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  (7.70)

where  is the offset in the drive comb due to acceleration in the sensing direction. The

outer springs are stiff in the  direction, and therefore, lead to small  and an even

smaller response to the above force as was seen in the comparison between the displace-

ments produced by the Coriolis forces acting on the outer frame and the inner plate in Sec-

tion 7.3. Therefore, this effect is not elaborated.

Once again, acceleration sensitivity due to mismatch in the sense combs is related to

ZRO due to sense comb mismatch. Non-identical gaps in the two sensing combs, cause a

response to acceleration in the sense direction, obtained by replacing  in (7.60) by ,

as:

  (7.71)

The first term in (7.71) is the first order response of the inner accelerometer to the external

acceleration. The second term mixes  and . Comparing the second term with the

output produced by the Coriolis force in (7.19) the acceleration sensitivity is obtained as:

  (7.72)

Using (7.15), (7.57) and , we get:

  (7.73)

Using standard values for all quantities: .

This effect can be reduced by increasing the mode-separation, , or the overlap
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length, . Note that (7.73) is independent of  and therefore, increasing the sense

comb gap will not be very useful. The only effect of increasing the sense gap will be to

reduce the relative mismatch , if the absolute mismatch is assumed to remain constant.

It is important to recognize that the acceleration sensitivity is not very significant

because very little drive motion couples to the sense combs ( ). If one side of the sense

combs were anchored to the ground instead of being attached to the outer resonator, then

 in (7.72) will be equal to the drive amplitude  (unless there is a special decoupling

suspension design as in [19]) and, as a result, the acceleration sensitivity would be much

higher. This fact underscores the need for decoupling the drive oscillations from the sense

combs. The decoupling is facilitated by the availability of multiple conductors in the

CMOS-MEMS process.

7.6.3 Mask Misalignment

As described in Section 7.5.3, the differential sense combs become sensitive to verti-

cal motions in the presence of a lateral offset. If the lateral offset is caused by an input

acceleration, then the sense combs mix the vertical motion at drive frequency and the lat-

eral (x) motion at low frequency giving rise to acceleration sensitivity. Assuming only par-

allel plate sense capacitances, the equation for acceleration sensitivity is obtained by

replacing the lateral offset  in (7.63) by , the displacement produced by external

acceleration:

  (7.74)

Using (7.15) for ,  (7.65) for  and , (7.74) can be written as:

  (7.75)
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The above equation suggests that the acceleration sensitivity due to mask misalignment is

directly proportional to  which is a measure of the drive motion coupled to the verti-

cal axis. Furthermore, the acceleration sensitivity is also a strong function of the z resonant

frequency of the inner resonator, thus providing yet another reason to design the drive

mode to be well-separated and smaller than other vertical and lateral modes.

7.6.4 Summary of Acceleration Sensitivity

The three causes for acceleration sensitivity discussed above can also be viewed as

mixing of the low frequency acceleration signal with drive motion coupled to sense comb

in three orthogonal directions: beam width mismatch leading to x coupling, comb gap mis-

match leading to sensitivity to y coupling and mask misalignment leading to z coupling.

The results of acceleration sensitivity analyses reinforce some of the inferences from the

ZRO analyses. Beam width mismatch leads to quadrature acceleration sensitivity, resulting

from the cubic term of the differential comb capacitance equations. As a result beam width

mismatch is not a significant cause of acceleration sensitivity. Comb gap mismatch is also

not a significant cause because a relatively small fraction of the drive motion is coupled to

the sense combs. Mask misalignment appears to cause considerable acceleration sensitiv-

ity. The main difference between the comb gap mismatch case and the mask misalignment

case is that, in the former the large overlap length of the comb fingers   lowers sensitivity

to coupled drive motion, while in the latter the sensitivity to both vertical motion and Cori-

olis motion is linear with overlapped length of the sense comb fingers. The only design

method to reduce the acceleration sensitivity, due to mask misalignment is to reduce the

vertical motion coupled to the sense combs, i.e., increase the mode separation.

7.7 Cross-axis Sensitivity
Beam width and comb gap variations primarily result in in-plane elastic coupling and

forces or motion sensitivities as described in the preceding sections. In order to sense out-

of-plane rotations, the driven oscillations or the Coriolis force-induced oscillations need to

have out-of-plane components. Therefore, sensitivity to rotation about the drive (y) or the

sense (x) directions necessarily involves either out-of-plane mode coupling (elastic, elec-

trostatic coupling or by other means) or comb sensitivity to out-of-plane motion. There-

θoyz
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fore, beam width and comb gap variations are not being considered in the analysis of

cross-axis sensitivity. Instead, causes of out-of-plane motion and sensitivity to out-of-

plane motion are investigated. Two cases are considered: rotation about the sense direction

and rotation about the drive direction.

7.7.1 Rotation About Sense Axis 

The gyroscope is driven into oscillations in the y direction. Just as rotation about the z

axis leads to Coriolis force in the x axis, rotation about the x axis leads to Coriolis force

along the z axis. The Coriolis force in  produced for  is equal to the force produced in

 due to . There are two main factors which prevent the Coriolis force due to rotation

about x from being sensed. First, the sense combs are (ideally) not sensitive to vertical

motion. Second, since the thickness of both the outer and the inner springs is about 2.5

times their width, the z resonant mode is higher than the x resonant mode leading to

reduced Coriolis-force induced displacement.

First the z motion arising in the sense combs because of the Coriolis force is esti-

mated. The z motion arises due to Coriolis forces acting on both the outer frame as well as

the inner plate. The motion of the outer frame due to the Coriolis force acting on the outer

frame is obtained by analysis of a dual mass system coupled with springs, as shown in

Figure 7.6 and described in Section 7.3, given as:

  (7.76)

  (7.77)

where, , , ,  and . Using values

from Table 7.3,  fm and  fm. Note that in deriving the above equa-

tions the effect of damping in the z direction has been neglected. This is indeed the case, if

it is assumed that the quality factors of both the inner and outer z resonant modes are much
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greater than 1 (i.e., at least 10) and also that the z modes are sufficiently separated from the

drive mode (i.e.,  and ). Mode separation by a factor of 2 and minimum

quality factors of about 10 are more than adequate to render the damping force at the drive

frequency inconsequential in the above derivations. 

If it is assumed that  and  are very small, then the Coriolis force induced dis-

placement in the z direction, , is dominated by  and can be approximately written

as:

  (7.78)

The sense combs exhibit a small sensitivity to vertical motion in the presence of a lateral

offset in the combs as described in Section 7.5.3. The resultant cross-axis sensitivity is

obtained by taking the ratio of output voltage produced by  to the nominal gyroscope

output given by (7.19).

  (7.79)

where, the drive motion coupled to the z axis has been replaced by the Coriolis force

induced displacement . To get some more insight, at the expense of accuracy, substitut-

ing (7.20) and (7.78) into (7.79) when :

  (7.80)

The above equation shows the dependence of the cross-axis sensitivity on the separation

 between the sense mode and the vertical mode. In fact given an offset , this is the

only design option to reduce the cross-axis sensitivity. However, for the nested gyroscope

it is seen that the cross-axis sensitivity to rotation about the sense axis is not very signifi-

cant (about 0.2%), and therefore, does not need to be reduced.
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7.7.2 Rotation About Drive Axis ( )

While rotations about the vertical axis  and the sense axis both produce Corio-

lis forces when the gyroscope is oscillating along the drive axis, rotation about the drive

axis itself does not produce any Coriolis force because the Coriolis force involves a cross-

product of the rotation vector and the instantaneous velocity vector. On the other hand,

rotations about the drive axis will lead to Coriolis force if some part of the drive motion

couples to a non-drive axis. For example, if the drive motion is coupled to the z direction

due to mask misalignment,  leads to a Coriolis force in x, the sense direction. Drive

motion coupled to the x axis is not considered because that will result in a Coriolis force

that induces vibrations in z. Sensing these vibrations involves cascading of two non-ideal

effects: drive motion coupling to x axis and sense combs producing differential output due

to vertical motion. Therefore, drive motion coupled to x axis is expected to be less signifi-

cant than drive motion coupled to z axis for purposes of cross-axis sensitivity. The details

of sensitivity to rotation about the drive axis due to drive motion coupling to the z axis, are

presented below.

As shown in Section 7.3, the Coriolis force acting on the outer resonator rigid frame

contributes insignificantly to the total Coriolis force induced relative displacement in x

between the inner accelerometer plate and the outer resonator rigid frame. Therefore, only

the effect of Coriolis force acting on the inner accelerometer plate is taken into account.

The vertical displacement of the plate due to motion coupled from the drive mode is

obtained by solving a dual mass spring system as shown in Figure 7.6 where a coupling

force  acts on the outer frame:

  (7.81)

wherein a 0.1  mask misalignment has been assumed. Note that if the inner springs are

highly rigid in z (i.e., ) then the above equation reduces to the case where the outer

frame and the inner plate move in unison vertically. The normalized cross-axis sensitivity

is obtained directly as a ratio of the Coriolis forces acting on the inner accelerometer plate
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arising due to rotations about y and z. The Coriolis forces are, in turn, respectively propor-

tional to amplitude of driven oscillations of the inner accelerometer plate in the z and the y

directions. Thus,

  (7.82)

If the springs are much stiffer in z than in y a much simpler, approximate expression can be

written:

  (7.83)

where  is the angle through which the principal axes of stiffness of the outer resonator

have rotated to produce coupling between the y and the z modes. From (7.82) and (7.83) it

can be concluded that the normalized cross-axis sensitivity to rotations about the drive

axis is directly proportional to the angle by which the principal axes of stiffness of the

outer spring beams have rotated due to mask misalignment. From the denominator of

(7.82), the importance of separation between the vertical modes and the drive mode is yet

again seen. Similar to ,  is found to be insignificant (about 0.25%).

7.7.3 Summary of Cross-axis Sensitivity

Response of the vertical axis gyroscope to rotations about both orthogonal axes, x and

y have been discussed in this section. While the former is seen to occur due to sensitivity

of the drive comb to vertical oscillations the latter occurs due to coupling of drive motion

to vertical axis. Both the cross-axis sensitivities are found to be less than 1% for expected

values of comb offset and mask misalignment. In a way, this is an expected result. The dis-

placements arising from Coriolis forces in off-axis directions (x, y) are relatively so small

that there is little possibility of them interfering with the main axis sensitivity.

7.8 Simulation Results
In the previous sections, non-ideal manufacturing effects have been analyzed in

detail, and correlated to Zero Rate Output, acceleration and acceleration-squared sensitiv-
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ity and cross-axis sensitivity. In the first part of this section, results of NODAS behavioral

simulation for each non-ideal case analyzed before are presented and compared with the

analytical derivations. Non-idealities are considered only one at a time in the first part. In

reality, all the non-ideal manufacturing effects occur in collusion, rendering hand analysis

not only tedious, but also unfruitful in terms of intuitive understanding. In order to obtain

a complete picture of manufacturing effects on the gyroscope, Monte-Carlo simulations

are employed in the second part of this section. Monte-Carlo simulations have been used

extensively in a variety of fields to understand effects of multiple, randomly varying fac-

tors [96]. 

In order to optimize the simulation time, three different schematics for the gyroscope

are used to capture individual effects. The three schematics in increasing order of simula-

tion time are:

1. 2D schematic for beam width and gap mismatch where there is no out-of-plane motion

coupling.

2. 3D schematic for gap mismatch case requiring non-zero sensitivity of differential

combs to vertical motion.

3. 3D schematic with detailed beam model capturing effects of metal mask misalign-

ment.

It should be noted that all the simulations can be done with the third schematic listed

above, at the expense of increased simulation time. The netlist for the 2D schematic is

given in Appendix A7.

7.8.1 Mismatch Simulation Results

Comparison between the analytically derived numbers and those obtained from simu-

lation are shown in Table 7.5, Table 7.6 and Table 7.7 for the ZRO, acceleration sensitivity

Table 7.5 Comparison between analytical calculations and NODAS simulations of 
ZRO

Mismatch case Analytical ( /s) Simulation ( /s)
Asymmetric Drive 37.2 41.4
Outer spring width mismatch 0.845 2.85
Inner spring width mismatch 645 653
Drive comb gap mismatch 2.25 2.73

° °
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and cross-axis sensitivity respectively. In the ZRO table, the simulation values are fairly

close to the hand analysis values except for the case of width mismatch in the outer

springs. Upon detailed investigation of the simulation results, this discrepancy was related

to the effect of non-zero mass of the spring beams. When the width of one out of the four

outer springs is changed by 1%, the effective mass of the spring also changes resulting in

an asymmetric mass distribution for the outer resonator. This asymmetric mass distribu-

tion is not accounted for in the analysis presented, but is captured by the NODAS behav-

ioral simulations. A similar discrepancy is also seen in the acceleration sensitivity

estimates from analysis and simulations. Among the other results, the difference between

the analytical and simulation results is somewhat higher for the two cases of gap mismatch

for both the ZRO and the acceleration sensitivity. This higher difference can be attributed

to the fact that the fringe capacitance and force was neglected in the hand analysis. An

additional effect not considered in the hand analysis, is the different response of the sense

Sense comb gap mismatch 0.338 0.400
Mask misalignment 4.70 4.42

Table 7.6 Comparison between analytical calculations and NODAS simulations of 
acceleration sensitivity

Mismatch case Analytical (  /s/g) Simulation (  /s/g)
Outer spring width mismatch 0.287 0.512
Inner spring width mismatch 0.239 0.237
Drive comb gap mismatch 0.796 1.05
Sense comb gap mismatch 6.78 5.42
Mask misalignment 94.1 69.0

Table 7.7 Comparison between analytical calculations and NODAS simulations of 
cross-axis sensitivity

Mismatch case Analytical ( ) Simulation ( )
Rotation about sense 1.87 1.44
Rotation about drive 2.43 2.34

Table 7.5 Comparison between analytical calculations and NODAS simulations of 
ZRO

Mismatch case Analytical ( /s) Simulation ( /s)° °

10 3–× ° 10 3–× °

10 3–× 10 3–×
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accelerometer at frequencies at  and , because the sense mode resonant

frequency is closer to  than to . Following the above discussion, it can be

summarized that the hand analysis provides adequate estimates of the non-idealities as

well as insights into the causes for designers. However, behavioral simulation yields more

accurate estimates of non-idealities and will, almost always, capture additional non-ideal

effects than hand analysis. Therefore, behavioral simulation must be an integral part of the

design process.

7.8.2 Monte-Carlo Simulations

Monte-Carlo analysis has been traditionally used by analog circuit designers to study

the effect of manufacturing variations in the threshold voltage, gate-oxide thickness and

other device parameters on the circuit performance. A similar technique is applied here for

gyroscope simulations with twelve randomly varied geometrical parameters. The four

outer spring beam widths, four inner springs beam widths, two drive comb gaps and the

two sense comb gaps comprise the twelve randomly varied parameters. As in the preced-

ing hand analysis, it is assumed that the beam widths (or gap) in a given spring (comb) are

uniform within the spring (comb). However, each spring (comb) is considered indepen-

dent. This assumption attempts to capture non-local variations in the beam widths and the

comb gaps.

The nominal gyroscope design uses 1.8  µm beam widths and comb gaps. The analy-

sis for the acceleration and acceleration-squared sensitivities in Section 7.6 suggests that

larger gaps and larger sense mode resonant frequency will lead to lower acceleration sen-

sitivity. Monte-Carlo simulations using the NODAS schematic described in Section 7.2

and shown in Figure 7.2(b) were done with nominal beam widths and gaps of 1.8  µm and

2.0  µm. In each case, beam widths in the eight springs and the gaps in the four combs

were assumed to be independent, normally distributed random variables (N(w, σ)) with

common mean w, equal to the layout dimension (1.8 or 2.0  µm), and standard deviation σ

(3σ = 0.05 µm). Each Monte-Carlo analysis involves 59 transient analysis, with the 12

randomly generated dimensions ~ N(w, σ). The 59 sets of 12 randomly distributed dimen-

sions are listed in Appendix A6. Prior to the each transient analysis, ac analysis was per-

formed in order to obtain the y resonant frequency of the outer frame, which was then used

ωd ωa– ωd ωa+

ωd ωa+ ωd ωa–
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as the drive frequency in the transient analysis. The OCEAN scripts used to run the ac and

transient analysis are listed in Appendix A7.

The Zero Rate Output (ZRO), acceleration sensitivity ( ) and acceleration-squared

sensitivity ( ) for the 1.8 and 2.0  µm designs are shown in Figure 7.14, Figure 7.15.

and Figure 7.16. The prominence of the third bin is nothing more than the fact that the

number of runs in each bin is not too high. If key statistical measures such as the standard

deviation of the ZRO do not change significantly as the number of Monte-Carlo simula-
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FIGURE 7.14. ZRO Histograms for widths and gaps = 1.8  µm and 2.0 µm from
Monte-Carlo simulation.

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
0

5

10

15

20
ZRO 1.8 um

N
o.

 o
f r

un
s

N
o.

 o
f r

un
s

Mean = 980 

 = 783 

° s⁄( )

σ ° s⁄( )

Mean = 1110 

 = 881 

° s⁄( )

σ ° s⁄( )

ZRO (X 1000 )° s⁄( ) ZRO (X 1000 )° s⁄( )

FIGURE 7.15. Acceleration sensitivity histograms for widths and gaps = 1.8  µm
and 2.0 µm from Monte-Carlo simulation. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25
Sa 1.8 um

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25
Sa 2.0 um

N
o.

 o
f r

un
s

N
o.

 o
f r

un
s

Mean = 0.35 

 = 0.28 

° s g⁄⁄( )

σ ° s g⁄⁄( )

Mean = 0.19 

 = 0.16 

° s g⁄⁄( )

σ ° s⁄ g⁄( )

Sa/S ° s g⁄⁄( ) Sa/S ° s g⁄⁄( )
182



tions increases, then the number of runs can be considered to be adequate. The standard

deviation of the ZRO for the first 30 runs is 781  and that for the remaining 29 runs is

787 . Since there is a difference of less than 1% in the two standard deviations, the

number of simulations runs can be considered to be sufficient. Since the main contribution

to ZRO is the asymmetric topology of the inner springs, it is not affected by larger width

and gap. To reduce the ZRO alternate solutions have to be adopted. Simulations with sym-

metric inner springs resulted in ZRO reduction of about 90% and greatly reduced offsets

due to lateral curling. The simulation values for cross-axis sensitivities are about 100

times smaller than the gyro sensitivity. Increased width and gaps do not have significant

impact on cross-axis sensitivity because, the cross-axis sensitivity is mainly dependent on

out-of-plane resonant modes and comb sensitivities. Now, the differences between the 1.8

 and the 2.0  designs in acceleration sensitivity are discussed. 

For equal drive displacements, the nominal gyro sensitivity  for the 2.0  µm design

is smaller by about 35%. However, both the normalized acceleration sensitivity 

and the normalized acceleration-squared sensitivity  have also reduced signifi-

cantly, as expected. The mean and standard deviation of  reduce by about 45% from

0.35 (°/s)/g to 0.19 (°/s)/g and from 0.28 (°/s)/g to 0.16 (°/s)/g respectively. The absolute

FIGURE 7.16. Acceleration-squared sensitivity histograms for widths and gaps =
1.8  µm and 2.0 µm from Monte-Carlo simulation. 
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reduction in  is greater than 60%. Thus, it is seen that increasing the widths and the

gaps results in significant improvement in the acceleration and acceleration-squared sensi-

tivity. The analytical equations derived earlier can be used to optimize the gyro sensitivity

and the acceleration sensitivity to a required ratio for a given set of manufacturing varia-

tions. For instance, (7.68) indicates that, with all other things kept constant, the normal-

ized acceleration sensitivity goes as . It should, however, be noted that the gyro

sensitivity also reduces with increasing gap. The ideal choice of gap for a specific applica-

tion can be made using the trade-off between decreasing acceleration sensitivity and

decreasing gyro sensitivity as shown in Figure 7.17. In the figure, the acceleration sensi-

tivity is plotted against the gyroscope sensitivity, both being normalized to the respective

values at the sense gap . The desirable gyroscope has high sensitivity to

angular velocity and low sensitivity to linear acceleration. However, the plot shows that

this cannot be achieved by changing the sense gap. Gyroscope sensitivity has to be sacri-

ficed in order to obtain better rejection of linear acceleration due to non-linearity in the

differential sense combs. 

From the analysis and the simulations presented in the preceding sections the follow-

ing conclusions for the ZRO and Sax can be deduced:

Zero Rate Output:

1. Use symmetric springs only 

Sax

1 gs
2⁄

FIGURE 7.17. Trade-off between gyroscope sensitivity and acceleration
sensitivity with varying gap
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2. Choose spring topology and position the springs to minimize elastic coupling

Acceleration Sensitivity:

1. Larger comb gaps are better

2. Higher sense mode resonant frequency and larger gaps are better for reduced accelera-

tion-squared sensitivity, 

Both the above approaches lead to reduced sensitivity. However, the acceleration

rejection obtained is greater than the sensitivity loss. Furthermore, analysis (equation

(7.72) in Section 7.6.2) suggests that decoupling of drive vibration from sense combs can

reduce linear acceleration sensitivity significantly and potentially eliminate the need for

dual anti-phase gyroscopes. Cross-axis sensitivities are found to be about 100 times

smaller than the gyro sensitivity and are not strongly dependent on the beam widths and

the gaps unlike the acceleration sensitivity. 

7.9 Summary
Detailed analyses of microgyroscope non-idealities caused by three kinds of manu-

facturing effects have been presented in this chapter. The manufacturing effects consid-

ered are: beam width variation, comb gap variation and mask misalignment. The

gyroscope non-idealities discussed are the Zero Rate Output, acceleration and accelera-

tion-squared sensitivity and the cross-axis sensitivity. The analyses enable a qualitative

comparison of CMOS-MEMS and single-layer gyroscope topologies. The necessity of

complete symmetry in design (e.g., symmetric spring topologies) as well as operational

aspects (e.g., symmetric gyroscope drive) has been clearly brought out. Mode-separation,

which has always been considered important in MEMS design, has been quantitatively

linked to gyroscope non-idealities. The equations derived to explain gyroscope non-ideal-

ities can serve as examples for future work in treatment of other manufacturing effects.

Monte-Carlo simulations have been used to verify the analyses and enhance understand-

ing of design trade-offs between nominal performance and the ability to reject non-ideal

variations. They can also be used to estimate manufacturing yield for given beam width

and gap variations and alignment tolerances.
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Chapter 8.  Summary and Future Work

8.1 Thesis Summary and Contributions
The thesis examines several important aspects of MEMS modeling, simulation and

design on the way to understanding of gyroscope non-idealities. Elastic cross-axis cou-

pling, temperature dependent curl macromodels and rapid computation of spring stiffness

constants, modeling method for CMOS-MEMS combs and difficulties in MEMS behav-

ioral simulations have been addressed. The chapter on gyroscope analysis and simulation

utilizes the models and solutions described earlier to derive detailed equations correlating

gyroscope non-idealities to manufacturing variations. 

The contributions of this work can be broadly classified in three fundamental direc-

tions: modeling, simulation and design. Each direction is elaborated in the following sub-

sections.

8.1.1 Modeling

Modeling of phenomena in two physical domains, elastic and electrostatic, has been

done in this thesis. The two domains required different approaches. Elastic models were

derived from a purely analytical viewpoint, with extensive verification through finite ele-

ment analysis. Elastic models for micromechanical springs, have previously been mostly

restricted to main axis stiffness terms. The analytical treatment presented in this thesis led

to fundamental understanding of elastic cross-axis coupling effects at the system-level and

for individual springs such as crab-leg, u-spring and serpentine shaped springs. The

important result that in-plane translational cross-axis coupling can be eliminated through

symmetric spring design was also proved formally. Equations for out-of-plane cross-axis

coupling in CMOS-MEMS due to misaligned metal layers were derived. A computational

technique for rapid computation of spring stiffness matrices for single-chain-of-beams

springs has been presented. Extensions to arbitrary spring topologies as well as inclusion

of viscous and inertial effects have been suggested. Temperature-dependent curl macro-

model for CMOS-MEMS beams was developed and implemented in the NODAS frame-
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work. Test structures were characterized experimentally to verify the vertical and lateral

curvature predicted by the macromodel.

Modeling in the electrostatic domain has been tackled by using a combination of ana-

lytical and numerical techniques. The method used is similar to transistor models,

wherein, each new process requires several device-level field solutions in order to fit the

model parameters. Curling of comb fingers, multi-layer cross-section, corner effects and

arbitrary motion of combs, which are almost impossible to capture analytically, have been

captured in the model through this method. Furthermore, the model ensures energy con-

servation between different domains through combined solution for the capacitance and

force fitting coefficients. Experimental measurements were made on variable capacitance

structures for model verification.

8.1.2 Simulation

A fundamental understanding of transient analysis with MEMS component models

encoded in an Analog Hardware Description Language (AHDL) was obtained by extend-

ing time-discretized interpretation of electrical components such as resistors, inductors

and capacitors to the mechanical domain. Pointers for AHDL implementation with better

simulation convergence and speed were deduced. Important guidelines to be considered

during AHDL modeling are: minimize the number of additional internal states during

model development, minimize the quantity and size of off-diagonal elements in the simu-

lation matrix and use scaling in multi-domain simulations. The importance of the above

pointers cannot be overemphasized; gyroscope simulations reported in Chapter 7 do not

converge without making use of the above guidelines.

8.1.3 Gyroscope Design

A number of significant insights into gyroscope design were obtained following the

analyses and simulations reported in Chapter 7, which represent the first detailed study of

intra-die manufacturing variations and misalignments on the Zero Rate Output, accelera-

tion sensitivity and cross-axis sensitivity of a microgyroscope. Geometrical and opera-

tional symmetry were found to be crucial in reducing gyroscope non-idealities.

Importance of double-decoupling: i.e., sense mode decoupled from drive combs and drive

mode decoupled from sense modes was also quantified. The nested gyroscope topology in
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the multi-conductor CMOS-MEMS process particularly embodies the double-decoupling

concept. The effect of lateral offsets in drive comb and sense comb, when combined with

vertical coupling of drive motions was shown to cause all the three non-idealities under

consideration. The mode-separation requirement was quantified by analytically linking it

to gyroscope non-idealities. Monte-Carlo simulations demonstrated the trade-offs between

nominal gyroscope performance and reduction of gyroscope non-idealities. 

8.2 Future Directions of Work
Experimental evidence of the analysis presented in this thesis is required in order to

establish leading causes of gyroscope non-idealities. Following measurements of non-ide-

alities, design techniques to further reduce the non-idealities need to be explored. Existing

commercial microgyroscopes [21][28][29] use two proof-masses which are driven anti-

phase in order to cancel out acceleration sensitivity to the first order. This entails almost a

2X increase in the MEMS area of the chip. Gyroscope designs with double-decoupling

may potentially eliminate the need for dual proof-masses in single-layer processes. Since

the acceleration sensitivity arises due to sense comb non-linearity, linear sensing mecha-

nisms such as a simple comb may also be used to suppress it, with the side-effect of

reduced gyroscope sensitivity. Additionally, the low-frequency acceleration signal pro-

vided by the inner accelerometer in the gyroscope maybe used to provide electronic or

electromechanical cancellation of the acceleration sensitivity. The area efficiency of such

a solution remains to be compared with the use of dual anti-phase proof-masses.

Based on the simulations presented in this thesis, a set of basic benchmark simula-

tions to be performed on any gyroscope design can be readily constructed. Optimizing

gyroscope performance by trading off sensitivity for robustness will be facilitated by such

a benchmark suite. This will not only be useful in comparing gyroscope topologies, but

can also help in potentially automating parts of the optimization. 

Automated simulation-based optimization has already been demonstrated commer-

cially for analog systems [97] and in academia for micromachined accelerometers [60].

Having obtained a basic understanding of gyroscope non-idealities due to manufacturing

effects, we can now look at automating gyroscope size optimization. Model-order reduc-

tion techniques proposed in Chapter 4 and by others [98], can be combined with the simu-
188



lation-based synthesis tools to facilitate rapid sizing of microgyroscopes. Synthesis tools

can illuminate trade-offs between various performance metrics such as gyroscope area,

operating frequency, sensitivity, resolution, bandwidth, Zero Rate Output, acceleration

sensitivity.
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Appendix A1 Mathematica program to derive Crab-leg 

stiffness matrix

(* Computes the in-plane spring constants for the crab leg. *)

(* Lt is along the x direction, 

Ls is along the y direction

Lt is attached to the plate *)

Clear[Ab, At, It, Is, Lt, Ls, Mb2, Ms, Mt, Ub1, Ub2, Ub3, Ly, Lx, tt, EY];

Clear[dtheta, dx, dy, Fx, Fy, M0];

Mt = M0 + Fx*Ly - Fy*Lx - Fy t;

Ms = M0 + Fx*Ly - Fy*Lx - Fy Lt + Fx t;

Ub1 = \[Integral]\_0\%Lt Mt^2/2 *EY * It \[DifferentialD]t;, 

Ut = \[Integral]\_0\%Ls Ms^2/2 *EY * Is \[DifferentialD]t;, 

Ucomp = Fx^2 Lt/2 EY Ab + Fy^2 Ls/2 EY At;

U = Ub1 + Ut;

dtheta = \[PartialD]\_M0 U;, 

dx = \[PartialD]\_Fx U;, 

dy = \[PartialD]\_Fy U;\n

(* **************** Computing kxx ****************) 

tmp = Solve[{dy == 0, dtheta == 0}, {Fy, M0}]; 

tmp1 = dx /. tmp;

Kx = Simplify[Fx/tmp1]
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(******************* End of kxx ******************) 

(***************** Computing kyy ***************)

tmp = Solve[{dx == 0, dtheta == 0}, {Fx, M0}];, 

tmp1 = dy /. tmp;, 

Ky = Simplify[Fy/tmp1]

(******************* End of kyy ****************)

(***************** Computing ktt or kthetaz ************)

tmp = Solve[{dx == 0, dy == 0}, {Fx, Fy}]; 

tmp1 = dtheta /. tmp;

Kt = Simplify[M0/tmp1]

(******************* End of ktt or kthetaz *************)

(******************* Computing kxy ********************) 

tmp = Solve[{dx == 0, dtheta == 0}, {Fy, M0}];

tmp1 = dy /. tmp;

Kxy = Simplify[Fx/tmp1]

(******************* End of kxy ***********************)

(***************** Computing kyt or kythetaz ****************)

tmp = Solve[{dx == 0, dy == 0}, {Fx, M0}];, 

tmp1 = dtheta /. tmp;

Kyt = Simplify[Fy/tmp1];

(******************* End of kyt or kythetaz *****************)

(***************** Computing kxt or kxthetaz *****************)
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tmp1 = dtheta /. tmp;, 

Kxt = Simplify[Fx/tmp1];

(***************** End of kxthetaz ***************************)

(***************** Computing kty or kthetazy *****************)

tmp = Solve[{dx == 0, dtheta == 0}, {Fx, Fy}];, 

tmp1 = dy /. tmp; 

Kty = Simplify[M0/tmp1]

(******************* End of kty or kthetazy ******************)
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Appendix A2 Equations for out-of-plane off-diagonal 

stiffness constants

For crab-leg springs:

  (A2.1)

  (A2.2)

  (A2.3)

where,

  (A2.4)

is the common denominator for out-of-plane coupling coefficients for the crab-leg.

For u-springs

  (A2.5)

  (A2.6)

  (A2.7)

where,

kzφx

6EIytIys GJsLt EIytLs+( ) 2EIysLtLy GJtLs Ls 2Ly+( )+( )

Dcop
--------------------------------------------------------------------------------------------------------------------------------------------=

kzφy
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Dcop
-------------------------------------------------------------------------------------------------------------------------------------------------------------=
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Dcop
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

Dcop
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=
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))
  (A2.8)

For serpentine springs for even n:

  (A2.9)

  (A2.10)

  (A2.11)

where,

  (A2.12)

Serpentine springs with odd n:

  (A2.13)

  (A2.14)

  (A2.15)

  (A2.16)
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r(%)
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)

.91

.76

.20

.24

.92

.74

.97

.12

.26

.43

.18

.51

.33

)

FEA verification results for out-of-spring stiffness constants are shown in Table 2.1

for the crab-leg spring, Table 2.2 for the u-spring and  Table 2.3 for the serpentine spring

Table A2.1 Comparison of FEA and analytical stiffness (out-of-plane) values for the crab-leg 
spring

w Lt Ls

µm µm µm A S
Error 
(%) A S

Error 
(%) A S Erro

2 40 40 320.5 332.5 -3.61 564.1 576.7 -2.18 2.66e4 2.74e4 -3.10
2 400 40 1.17 1.203 -2.74 8.061 8.226 -2.01 324.7 331.9 -2.17
2 40 400 6.166 6.394 -3.57 2.605 2.675 -2.62 553.2 573.4 -3.52
2 400 400 0.8598 0.9072 -5.22 2.704 2.742 -1.39 319.7 334.1 -4.31
5 40 40 877.8 929.1 -5.52 1457 1514 -3.76 7.12e4 7.48e4 -4.81
5 400 40 3.208 3.306 -2.96 21.61 22 -1.77 860.1 880.7 -2.34
5 40 400 17.88 18.4 -2.83 7.268 7.412 -1.94 1612 1652 -2.42
5 400 400 3.071 3.156 -2.69 7.289 7.369 -1.09 1059 1082 -2.13

Table A2.2 Comparison of FEA and analytical stiffness (out-of-plane) values for the U spring

w Lb1 Lb2 Lt

µm µm µm µm A S
Error
(%) A S

Error 
(%) A S

Er
(%

2 40 40 10 480 502 -4.29 -727 -755 -3.71 -3.56e4 -3.71e4 -3
2 40 400 10 1.65 1.68 -1.85 2.62 2.69 -2.64 140.7 144.7 -2
2 400 40 10 1.353 1.37 -1.38 -8.40 -8.49 -1.08 -371.3 -375.8 -1
2 400 400 10 0.936 0.95 -1.48 -4.87 -4.93 -1.26 -238.8 -241.8 -1
2 40 40 50 121.4 130 -6.33 -142 -150 -5.66 -9784 -1.04e4 -5
2 40 400 50 2.155 2.21 -2.62 1.57 1.67 -5.69 139.6 148.1 -5
2 400 40 50 1.20 1.23 -2.68 -7.18 -7.30 -1.71 -354.1 -361.2 -1
2 400 400 50 1.05 1.08 -2.60 -4.08 -4.16 -2.09 -281.2 -287.3 -2
5 40 40 10 1207 1278 -5.56 -1825 -1913 -4.60 -8.94e4 -9.44e4 -5
5 40 400 10 4.24 4.33 -2.19 6.67 6.86 -2.84 365.6 378.6 -3
5 400 40 10 3.33 3.38 -1.33 -21.1 -21.3 -0.75 -912.1 -923 -1
5 400 400 10 2.36 2.4 -1.71 -12.3 -12.4 -1.29 -600.2 -609.4 -1
5 40 40 50 394 418 -5.71 -451 -471 -4.35 -3.11e4 -3.29e4 -5

kzφx
10 6– N×( ) kzφy

10 6–× N( ) kφxφy
10 12– N-m×( )

kzφx
10 6– N×( ) kzφy

10 6–× N( ) kφxφy
10 12– N-m×(
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.08

.54

.70

r

ror
)

)

)

respectively.

5 40 400 50 5.87 6.02 -2.36 4.90 5.078 -3.60 433.1 451.5 -4
5 400 40 50 3.29 3.35 -1.79 -19.0 -19.2 -0.94 -941.3 -956 -1
5 400 400 50 2.87 2.93 -1.98 -10.9 -11.1 -1.53 -752.8 -765.8 -1

Table A2.3 Comparison of FEA and analytical stiffness (out-of-plane) values for the 
serpentine spring

w La Lb

µm µm µm A S
Error
(%) A S

Error 
(%) A S

Erro
(%)

2 10 10 1513 1662 -8.97 -1038 -1140 -8.95 -7.26e4 -7.98e4 -8.97
2 10 100 35.08 37.66 -6.85 -46.6 -50.03 -6.86 -3262 -3502 -6.85
2 100 10 9.726 9.856 -1.32 -1.867 -1.892 -1.32 -466.8 -473.2 -1.35
2 100 100 5.405 5.628 -3.96 -2.011 -2.094 -3.96 -502.6 -523.5 -3.99
4 10 10 3658 4173 -12.3 -2561 -2802 -8.60 -1.79e5 -1.96e5 -8.57
4 10 100 83.52 91.16 -8.38 -112.1 -119.8 -6.43 -7850 -8383 -6.36
4 100 10 19.88 20.19 -1.54 -3.897 -3.794 2.71 -974.3 -946.9 2.89
4 100 100 13.06 13.39 -2.46 -4.912 -4.925 -0.26 -1228 -1231 -0.24

Table A2.2 Comparison of FEA and analytical stiffness (out-of-plane) values for the U spring

w Lb1 Lb2 Lt

µm µm µm µm A S
Error
(%) A S

Error 
(%) A S

Er
(%

kzφx
10 6– N×( ) kzφy

10 6–× N( ) kφxφy
10 12– N-m×(

kzφx
10 6– N×( ) kzφy

10 6–× N( ) kφxφy
10 12– N-m×(
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Appendix A3 Mesh Refinement Steps

In this appendix the mesh refinement steps carried out inside AutoBEM are listed for

three cases: simple comb capacitance, simple comb force runs (for numerical differentia-

tion), differential comb capacitance

Mesh refinement for simple comb capacitance. 

(* Before starting with the refinement procedure we have to form the 
   ROTORTOTAL and STATORTOTAL regions *)
selection{type{panel},clear};

(* Make ROTORTOTAL *)
selection{type{panel}, add{region{"ROTOR"}}};
selection{type{panel}, add{region{"ROTOROXIDE"}}};
region{name{ "ROTORTOTAL" },panels{},}; 
selection{type{panel},operation{add,region{"ROTORTOTAL"}}};
selection{type{panel},clear};
set{ property{ region{ visual{ name{ "ROTORTOTAL"}, value{ 
0.701960784314,0.0, 0.0, 1.00, 0.10, 10, 0.62, 0.59} } } } };

(* Make STATORTOTAL *)
selection{type{panel}, add{region{"STATOR"}}};
selection{type{panel}, add{region{"STATOROXIDE"}}};
region{ name{ "STATORTOTAL" },panels{},}; 
selection{type{panel},operation{add,region{"STATORTOTAL"}}};
selection{type{panel},clear};

FIGURE A3.1. Regions defined in the boundary element model for mesh refinement. REFINE0 is
the most finely meshed region, followed by REFINE1 and REFINE3 and finally REFINE2 and
REFINE4 are the most coarsely meshed regions.

REFINE0

REFINE1
REFINE2

REFINE3
REFINE4
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set{ property{ region{ visual{ name{ "STATORTOTAL"}, value{ 0.0,0.0, 
0.701960784314, 1.00, 0.10, 10, 0.62, 0.59} } } } };

(* The following is the refinement algorithm:
Steps are as follows:
1. REFINE0:
   smoothness>0.5 edge refinement with AR 1000 min diagonal of 0.2 
*)

refine{
 simulationSpecification{"computation1"},
 elementSmoothness{
  option{
   minimumElementDiagonal{0.2},   includeRegion{"REFINE0",}
  },
  type{    edge{aspectRatio{1000}}   },
   absolute{ 0.5 },
 }
};
(*
2. REFINE3:
   smoothness>0.5 edge refinement for AR > 1000 min diagonal of 0.2
*)

refine{
 simulationSpecification{"computation1"},
 elementSmoothness{
  option{
   minimumElementDiagonal{0.5},   includeRegion{"REFINE3",}
  },
  type{    edge{aspectRatio{1000}}   },
   absolute{ 0.5 },
 }
};

(*
3. REFINE1:
   smoothness>0.5 edge refinement for AR > 1000 min diagonal of 0.4
*)

refine{
 simulationSpecification{"computation1"},
 elementSmoothness{
  option{
   minimumElementDiagonal{0.4},   includeRegion{"REFINE1"}
  },
  type{    edge{aspectRatio{1000}}   },
   absolute{ 0.5 },
 }
};
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(*
4. REFINE5 and REFINE6 
   smoothness > 0.5 edge refinement for AR > 1000 min diagonal of 0.1
*)
refine{
 simulationSpecification{"computation1"},
 elementSmoothness{
  option{
   minimumElementDiagonal{0.1},   includeRegion{"REFINE5","REFINE6",}
  },
  type{    edge{aspectRatio{1000}}   },
   absolute{ 0.5 },
 }
};

Mesh refinement for simple comb force runs. 

(* Before starting with the refinement procedure we have to form the 
   ROTORTOTAL and STATORTOTAL regions *)
selection{type{panel},clear};

(* Make ROTORTOTAL *)
selection{type{panel}, add{region{"ROTOR"}}};
selection{type{panel}, add{region{"ROTOROXIDE"}}};
region{name{ "ROTORTOTAL" },panels{},}; 
selection{type{panel},operation{add,region{"ROTORTOTAL"}}};
selection{type{panel},clear};
set{ property{ region{ visual{ name{ "ROTORTOTAL"}, value{ 
0.701960784314,0.0, 0.0, 1.00, 0.10, 10, 0.62, 0.59} } } } };

(* Make STATORTOTAL *)
selection{type{panel}, add{region{"STATOR"}}};
selection{type{panel}, add{region{"STATOROXIDE"}}};
region{ name{ "STATORTOTAL" },panels{},}; 
selection{type{panel},operation{add,region{"STATORTOTAL"}}};
selection{type{panel},clear};
set{ property{ region{ visual{ name{ "STATORTOTAL"}, value{ 0.0,0.0, 
0.701960784314, 1.00, 0.10, 10, 0.62, 0.59} } } } };

(* The following is the refinement algorithm:
Steps are as follows:
1. REFINE0:
   smoothness>0.5 edge refinement with AR 1000 min diagonal of 0.05
*)

refine{
 simulationSpecification{"computation1"},
 elementSmoothness{
  option{
   minimumElementDiagonal{0.05},   includeRegion{"REFINE0",}
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  },
  type{    edge{aspectRatio{1000}}   },
   absolute{ 0.5 },
 }
};

(* 
2. REFINE0:
   smoothness>1.5 edge refinement with AR 1000 min diagonal of 0.02
*)

refine{
 simulationSpecification{"computation1"},
 elementSmoothness{
  option{
   minimumElementDiagonal{0.02},   includeRegion{"REFINE0",}
  },
  type{    edge{aspectRatio{1000}}   },
   absolute{ 1.5 },
 }
};
(*3. REFINE3:
     smoothness>0.5 edge refinement for AR > 1000 min diagonal of 0.2
*)

refine{
 simulationSpecification{"computation1"},
 elementSmoothness{
  option{
   minimumElementDiagonal{0.5},   includeRegion{"REFINE3",}
  },
  type{    edge{aspectRatio{1000}}   },
   absolute{ 0.5 },
 }
};

(*
4. REFINE1:
   smoothness>0.5 edge refinement for AR > 1000 min diagonal of 0.4
*)

refine{
 simulationSpecification{"computation1"},
 elementSmoothness{
  option{
   minimumElementDiagonal{0.4},   includeRegion{"REFINE1"}
  },
  type{    edge{aspectRatio{1000}}   },
   absolute{ 0.5 },
 }
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};

(*
5. REFINE5 and REFINE6 
   smoothness > 0.5 edge refinement for AR > 1000 min diagonal of 0.1
*)
refine{
 simulationSpecification{"computation1"},
 elementSmoothness{
  option{
   minimumElementDiagonal{0.1},   includeRegion{"REFINE5","REFINE6",}
  },
  type{    edge{aspectRatio{1000}}   },
   absolute{ 0.5 },
 }
};

(*
6. All h-refinement
*)
refine {
  simulationSpecification{computation1},
  all{
    type{ h }, 
  }
};

Mesh refinement for differential comb capacitance. 

(* Before starting with the refinement procedure we have to form the 
   ROTORTOTAL and STATORTOTAL regions *)
selection{type{panel},clear};

(* Make ROTORTOTAL *)
selection{type{panel}, add{region{"ROTOR"}}};
selection{type{panel}, add{region{"ROTOROXIDE"}}};
region{name{ "ROTORTOTAL" },panels{},}; 
selection{type{panel},operation{add,region{"ROTORTOTAL"}}};
selection{type{panel},clear};
set{ property{ region{ visual{ name{ "ROTORTOTAL"}, value{ 
0.701960784314,0.0, 0.0, 1.00, 0.10, 10, 0.62, 0.59} } } } };

(* Make STATORTOTAL *)
selection{type{panel}, add{region{"STATOR"}}};
selection{type{panel}, add{region{"STATOROXIDE"}}};
region{ name{ "STATORTOTAL" },panels{},}; 
selection{type{panel},operation{add,region{"STATORTOTAL"}}};
selection{type{panel},clear};
set{ property{ region{ visual{ name{ "STATORTOTAL"}, value{ 0.0,0.0, 
0.701960784314, 1.00, 0.10, 10, 0.62, 0.59} } } } };
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(* The following is the refinement algorithm:
Steps are as follows:
1. REFINE0:
   smoothness>0.5 edge refinement with AR 1000 min diagonal of 0.2 
*)

refine{
 simulationSpecification{"computation1"},
 elementSmoothness{
  option{
   minimumElementDiagonal{0.2},   includeRegion{"REFINE0",}
  },
  type{    edge{aspectRatio{1000}}   },
   absolute{ 0.5 },
 }
};
(*
2. REFINE3:
   smoothness>0.5 edge refinement for AR > 1000 min diagonal of 0.2
*)

refine{
 simulationSpecification{"computation1"},
 elementSmoothness{
  option{
   minimumElementDiagonal{0.5},   includeRegion{"REFINE3",}
  },
  type{    edge{aspectRatio{1000}}   },
   absolute{ 0.5 },
 }
};

(*
3. REFINE1:
   smoothness>0.5 edge refinement for AR > 1000 min diagonal of 0.4
*)

refine{
 simulationSpecification{"computation1"},
 elementSmoothness{
  option{
   minimumElementDiagonal{0.4},   includeRegion{"REFINE1"}
  },
  type{    edge{aspectRatio{1000}}   },
   absolute{ 0.5 },
 }
};

(*
4. REFINE5 and REFINE6 
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   smoothness > 0.5 edge refinement for AR > 1000 min diagonal of 0.1
*)
refine{
 simulationSpecification{"computation1"},
 elementSmoothness{
  option{
   minimumElementDiagonal{0.1},   includeRegion{"REFINE5","REFINE6",}
  },
  type{    edge{aspectRatio{1000}}   },
   absolute{ 0.5 },
 }
};
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Appendix A4 Comb Model Listing

In this appendix the VerilogA® implementations of the curve-fit based capacitance

models as described in Chapter 5 are listed. Models for the simple comb are presented first

followed by models for the differential comb. 

The simple comb model with curling effects consists of 4 files. 

1. comb_curl_cyy_1.va: Main model file which “includes” the 3 other files

2. efringe.va: File containing functions for computing the fringe capacitance. The func-

tions in this file are derived analytically

3. cap.va: File containing numerically curve-fit coefficients and equation for capacitance

4. force.va: File containing equation for force

Comb_curl_cyy_1.va
// VerilogA for “comb_1” “veriloga”
// Modified on January 1, 2002
// 1. Changed the calculation of capacitance from a function call
//    to simple inclusion of the file
// 2. Added another include file containing derivatives for computing 
force

‘include “../../constants.h”
‘include “../../discipline.h”
‘include “../../process.h”
‘include “../../design.h”

// “a” side has more fingers
// “b” side has less fingers
// nominally a is to the left of b

module comb_curl_cyy_1(OMG, a, phia, phib, va, vb, xa, xb);
   // Pin definitions
   // Inertial Pins
   inout [0:2] OMG;
   rotational [0:2] OMG;
   inout [0:2] a;
   kinematic [0:2] a;

   // Position and voltage pins
   inout [0:2] phia;
   rotational [0:2] phia;
   inout [0:2] phib;
   rotational [0:2] phib;
   inout [0:3] va;
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   electrical [0:3] va;
   inout [0:3] vb;
   electrical [0:3] vb;
   inout [0:2] xa;
   kinematic [0:2] xa;
   inout [0:2] xb;
   kinematic [0:2] xb;

   // Parameter Definitions;
   parameter   real  finger_width = ‘default_comb_finger_width;
   parameter   real  finger_length = ‘default_comb_finger_length;
   parameter   real  overlap = ‘default_comb_overlap;
   parameter   real  gap = ‘default_comb_gap;
   parameter   real  fingers = ‘default_comb_fingers;
   parameter   real  angle = ‘default_comb_angle;
   parameter   real poly_cut_in = ‘default_poly_cut_in;
   parameter   real  Xc = ‘default_comb_Xc;
   parameter   real  Yc = ‘default_comb_Yc ;
   parameter   real  wing_length_a = ‘default_comb_wing_length_a;
   parameter   real  wing_length_b = ‘default_comb_wing_length_b;
   parameter   real  truss_width_a = ‘default_comb_truss_width_a;
   parameter   real  truss_width_b = ‘default_comb_truss_width_b;

   parameter   real alpha = 0;
   parameter   real beta = 0;
   parameter   real gamma = 0;

   parameter   integer flip_about_y = 0 from [0:1];// If flip is zero 
that means that there is no flipping
   parameter   real rho_a = 0; // Radius of curvature of a side 
   parameter   real rho_b = 0; // Radius of curvature of b side
   parameter   real za = 0;
   parameter   real zb = 0;

   // These angles are the static angular displacements at the
   // base of the a side and the b side respectively
   parameter   real angle_a = 0;
   parameter   real angle_b = 0;
//gap(air) 
parameter real air_gap = ‘default_air_gap;           

//Viscosity of air at Atmospheric pressure and at T=288K
parameter real visc_air = ‘default_visc_air;

parameter real ntv_ox_t = ‘default_ntv_ox_t;

parameter real delta = ‘default_delta;

parameter real E = ‘default_E_cmos;
parameter real den_metal=‘default_den_metal;
parameter real den_poly=‘default_den_poly;
parameter real den_oxide=‘default_den_oxide;
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parameter real t_m3 = ‘default_t_m3;
parameter real t_m2 = ‘default_t_m2;
parameter real t_m1 = ‘default_t_m1;
parameter real t_poly = ‘default_t_poly;
parameter real t_m3_m2 = ‘default_t_m3_m2;
parameter real t_m2_m1_overpoly = ‘default_t_m2_m1_overpoly;
parameter real t_m1_poly = ‘default_t_m1_poly; 
parameter real t_poly_sub = ‘default_t_poly_sub;  

parameter real t_cmos = 
t_m3+t_m3_m2+t_m2+t_m2_m1_overpoly+t_m1+t_m1_poly+t_poly+t_poly_sub;
parameter real den_cmos = 
(den_metal*(t_m3+t_m2+t_m1)+den_poly*t_poly+den_oxide*(t_m3_m2+t_m2_m1_o
verpoly+t_m1_poly+t_poly_sub))/t_cmos;
   // Call sub-modules
   mass_comb_3D # (.angle(angle),
.finger_width(finger_width), 
     .finger_length(finger_length), 
     .gap(gap),
     .fingers(fingers),
     .truss_width(truss_width_a),
     .wing_length(wing_length_a),
.thickness(t_cmos),
.density(den_cmos),
.flip(1),
.number(1)) mass_a(xa, phia, OMG, a);
   
   mass_comb_3D # (.angle(angle),
.finger_width(finger_width), 
     .finger_length(finger_length), 
     .gap(gap),
     .fingers(fingers),
     .truss_width(truss_width_b),
     .wing_length(wing_length_b),
.thickness(t_cmos),
.density(den_cmos),
.flip(-1),
.number(0)) mass_b(xb, phib, OMG, a);
   
   viscous_damping_comb #(.angle(angle),
  .finger_width(finger_width), 
  .finger_length(finger_length), 
  .gap(gap),
  .fingers(fingers),
  .truss_width(truss_width_a),
  .wing_length(wing_length_a),
  .number(1),
  .top_gap(delta), 
  .bottom_gap(delta)) damp_a(xa[0], xa[1], phia[2]);

   viscous_damping_comb #(.angle(angle),
  .finger_width(finger_width), 
  .finger_length(finger_length), 
  .gap(gap),
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  .fingers(fingers),
  .truss_width(truss_width_b),
  .wing_length(wing_length_b),
  .number(0), 
  .top_gap(delta), 
  .bottom_gap(delta)) damp_b(xb[0], xb[1], phib[2]);
   

   coutte_damping #(.angle(angle),
    .length(overlap),
    .width(t_cmos),
    .gap(gap),
    .multiplier1(fingers),
    .multiplier2(2)) side_wall_damp(xa[0], xa[1], phia[2], xb[0], xb[1], 
phib[2]);
   

   sq_damp_model_general #(.length(overlap),
   .width(t_cmos),
   .gap(gap),
   .Pamb(1.0e5),
   .multiplier1(fingers),
   .multiplier2(2),
   .angle(angle)) damp_sq_finger(xa[0], xa[1], xb[0], xb[1]);

‘include “/afs/ece/usr/sita/.vol1/models/comb/curvefit/efringe.va”
   // definition of user parameters (with default values)
   // Euler angles (alpha, beta and gamma, in degrees) are used 
   // to specify beam orientation and to form coordination transformation 
matrix
   // Order of rotation: 
   // step1: rotate by gamma degree about z-axis
   // step2: rotate by beta  degree about y-axis
   // step3: rotate by alpha degree about x-axis
   // Following variables will be used in going from the chip frame to 
the local frame of the model

   real        cos_alpha, cos_beta, cos_gamma;
   real        sin_alpha, sin_beta, sin_gamma;
   real        l1, m1, n1 ;
   real        l2, m2, n2 ;
   real        l3, m3, n3 ;
   real        inv_l1, inv_m1, inv_n1 ;
   real        inv_l2, inv_m2, inv_n2 ;
   real        inv_l3, inv_m3, inv_n3 ;

   real        gamma_offset; // is 90 degrees because the simulations 
were done
   // with the combs rotated by 90 degrees
   real        alpha_local_model; // This angle is required to convert 
the displacements in the local
   // frame to that in the model frame
   // Variables for holding position in chip and local frames
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   real        l_phixa, l_phixb, l_phiya, l_phiza, l_phiyb, l_phizb;
   real        l_phiz, l_phiy; 
   real        chip_phixa, chip_phiya, chip_phiza;
   real        chip_phixb, chip_phiyb, chip_phizb;

   real        l_xa, l_xb, l_ya, l_yb, l_za, l_zb;
   real        l_dx, l_dy, l_dz;
   real        dx, dy, dz;
   real        chip_x, chip_y, chip_z;
   real        chip_xa, chip_ya, chip_xb, chip_yb, chip_za, chip_zb;

   // Variables for holding force and torque in local frame
   real        l_Fxa, l_Fxb, l_Fya, l_Fyb, l_Fza, l_Fzb;
   real        l_Tqxa, l_Tqxb, l_Tqya, l_Tqyb, l_Tqza, l_Tqzb;

   // Variables for holding force and torque in chip frame
   real        Fchipxa, Fchipxb, Fchipya, Fchipyb, Fchipza, Fchipzb;
   real        Tqchipxa, Tqchipxb, Tqchipya, Tqchipyb, Tqchipza, 
Tqchipzb;

   real        w[0:9], thickness, Earray[0:9], tce[0:9]; // width, thick-
ness
   integer     m3_id, m2_id, m1_id, poly_id, ox3_id, ox2_id, ox1_id, 
ox0_id, ox_poly_left_id, ox_poly_right_id; // indices for array

   real        sum_E_w_t_z, sum_E_w_t, sum_E_alpha_w_t_z, sum_E_I; // sum 
variables for computing neutral axis

   real        zc, z_top[0:9], new_z[0:9]; // z coordinates: neutral 
axis, from the top, top - neutral axis

   integer     i; // loop variable

   real        cyy_per_degree_T, deltaT, cyy; // Temperature and tip 
deflections
   real        l_total_comb, l_rotor, l_base, l_stator, l_plate_to_rotor;
   real        z_matched_rotor, z_matched_stator, phix_matched_rotor, 
phix_matched_stator; // Curl matched coordinates

   real        dz1; // varies from the curl-matched position
   real        dphix, dphix1, dphiy, dphiz; // dphix is the total angle 
of a in the model frame
   // dphix1 is the mismatch angle i.e. dphix - phix_matched_rotor

   real        cap, dCx, dCy, dCz, dCphix, dCphiy, dCphiz, vltg;
   real        Fx, Fy, Fz;
   real        moment_arm_a, moment_arm_b;
   integer     flip;

   // Variables for calculation of capacitance and force
   real        fwidth, g, olp, dtx, dty, dtz, dtx1, cap_curl, eps0;
   real        c0, c1, c2, c3, c4, c5, c6, c7, c8, c9;
   real        c10, c11, c12, c13, c14, c15, c16, c17, c18, c19;
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   real        c20, c21, c22, c23, c24, c25, c26, c27, c28, c29;
   real        c30, c31, c32, c33, c34, c35, c36, c37, c38, c39;
   real        c40, c41, c42, c43, c44, c45, c46, c47, c48, c49;
   real        c50, c51, c52, c53, c54, c55, c56, c57, c58, c59;
   real        c60, c61, c62, c63, c64, c65, c66, c67, c68, c69;
   real        c70, c71, c72, c73, c74, c75, c76, c77, c78, c79;
   real        c80, c81, c82, c83, c84, c85, c86, c87, c88, c89;
   real        c90, c91, c92, c93, c94, c95, c96, c97, c98, c99;
   real        c100, c101, c102, c103, c104, c105, c106, c107, c108, c109;
   real        c110, c111, c112, c113, c114, c115, c116, c117, c118, c119;
   real        ppcaptotal, efcaptotal, defcaptotal, dppcaptotalx, dppcap-
totaly;
   

   // internal states
   electrical vlt;

   analog begin
      @(initial_step) begin
 eps0 = 8.85e-12;
 // flip_about_y = 1 => flip = -1
 // flip_about_y = 0 => flip = 1
 flip = 1-2*flip_about_y;
 
 cyy = (1.0/2.0)*(1/(2.0*rho_a) + 1/(2.0*rho_b));
 // Can also calculate the tip deflection and the angle to be applied at 
the end of the rotor
 // so that in the nominal case the two combs are perfectly matched
 // First calculate the position of the matched combs with rotor at a 
fixed distance from the point of
 // zero z deflection and angle
 
 l_plate_to_rotor = 100.0e-6; // This is a value which was used in the 
Coyote simulation runs
 l_total_comb = 2*finger_length - overlap + truss_width_a + 
truss_width_b;
 l_rotor = l_plate_to_rotor;
 z_matched_rotor = (l_rotor*l_rotor)*cyy*1e6; // in micrometers
 phix_matched_rotor = (2*l_rotor*cyy)*180/‘M_PI; // in degrees
 
 l_stator = l_plate_to_rotor + l_total_comb;
 z_matched_stator = (l_stator*l_stator)*cyy*1e6; // in micrometers
 phix_matched_stator = (2*l_stator*cyy)*180/‘M_PI; // in degrees
 
 // Three angles need to be computed:
 // 1. The angle of the stator - phix_matched_stator
 //    This will tell us by what angle the entire comb reference frame 
should be rotated
 //    so that we are in the reference frame of the simulation data. Note 
that this includes
 //    rotation of displacements, computation of forces and finally, 
reverse rotation of forces
 // 2. rotor angle (after transformation by 1.) - phix_matched_rotor
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 //    This angle will give us the value corresponding to dtx1 in the 
simulations
 // 3. rotor angle itself (after transformation by 1.)
 //    This angle will give us the value corresponding to dtx in the sim-
ulations
 // // translational displacement in chip frame
 
 // Compute the angle which has to be added to the value of beta to
 // transform the displacements in the chip frame to the local frame
 
 // For comb_1111_1 the “a” side will be considered equivalent to the 
rotor
 // and the “b” side will be considered equivalent to the stator
 
 // angle between local frame and frame in which the model is built
 alpha_local_model = (angle_a - phix_matched_stator); // in degrees
 // rotation of simulation data
 gamma_offset = -90; // i.e, gamma = 90 implies no rotation and
 // gamma = 0 implies -90 rotation
 
 // coordination transformation matrix based on euler angles
 cos_alpha = cos((alpha  + alpha_local_model)/180*‘M_PI);
 cos_beta = cos(beta /180*‘M_PI);
 cos_gamma = cos((gamma + gamma_offset)/180*‘M_PI);
 sin_alpha = sin((alpha + alpha_local_model)/180*‘M_PI );
 sin_beta = sin(beta /180*‘M_PI);
 sin_gamma = sin((gamma + gamma_offset)/180*‘M_PI);
 
 // transformation matrix from chip frame to local frame
 l1 =  cos_beta*cos_gamma;
 m1 =  cos_beta*sin_gamma;
 n1 = -sin_beta;
 l2 =  sin_alpha*sin_beta*cos_gamma-cos_alpha*sin_gamma;
 m2 =  sin_alpha*sin_beta*sin_gamma+cos_alpha*cos_gamma;
 n2 =  sin_alpha*cos_beta;
 l3 =  cos_alpha*sin_beta*cos_gamma+sin_alpha*sin_gamma;
 m3 =  cos_alpha*sin_beta*sin_gamma-sin_alpha*cos_gamma;
 n3 =  cos_alpha*cos_beta;
 
 // transformation matrix from local frame to chip frame
 inv_l1 =  cos_beta*cos_gamma;
 inv_l2 =  cos_beta*sin_gamma;
 inv_l3 = -sin_beta;
 inv_m1 =  sin_alpha*sin_beta*cos_gamma-cos_alpha*sin_gamma;
 inv_m2 =  sin_alpha*sin_beta*sin_gamma+cos_alpha*cos_gamma;
 inv_m3 =  sin_alpha*cos_beta;
 inv_n1 =  cos_alpha*sin_beta*cos_gamma+sin_alpha*sin_gamma;
 inv_n2 =  cos_alpha*sin_beta*sin_gamma-sin_alpha*cos_gamma;
 inv_n3 =  cos_alpha*cos_beta;

 cyy = cyy*1e-6;
      end
      chip_x = Pos(xa[0],xb[0]);
      chip_y = Pos(xa[1],xb[1]);
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      chip_z = Pos(xa[2],xb[2]);
      chip_xa = Pos(xa[0]);
      chip_ya = Pos(xa[1]);
      chip_za = Pos(xa[2]);
      chip_xb = Pos(xb[0]);
      chip_yb = Pos(xb[1]);
      chip_zb = Pos(xb[2]);

      // rotational displacement in chip frame all in radians
      chip_phixa = 1e6*Theta(phia[0]);
      chip_phiya = 1e6*Theta(phia[1]);
      chip_phiza = 1e6*Theta(phia[2]);
      chip_phixb = 1e6*Theta(phib[0]);
      chip_phiyb = 1e6*Theta(phib[1]);
      chip_phizb = 1e6*Theta(phib[2]);

      // transform from chip frame into local frame
      l_xa = l1*chip_xa + m1*chip_ya + n1*chip_za;
      l_ya = l2*chip_xa + m2*chip_ya + n2*chip_za;
      l_za = l3*chip_xa + m3*chip_ya + n3*chip_za;
      l_xb = l1*chip_xb + m1*chip_yb + n1*chip_zb;
      l_yb = l2*chip_xb + m2*chip_yb + n2*chip_zb;
      l_zb = l3*chip_xb + m3*chip_yb + n3*chip_zb;

      l_dx = l1*chip_x + m1*chip_y + n1*chip_z;
      l_dy = l2*chip_x + m2*chip_y + n2*chip_z;
      l_dz = l3*chip_x + m3*chip_y + n3*chip_z;

      l_phixa = l1*chip_phixa + m1*chip_phiya + n1*chip_phiza;
      l_phiya = l2*chip_phixa + m2*chip_phiya + n2*chip_phiza;
      l_phiza = l3*chip_phixa + m3*chip_phiya + n3*chip_phiza;

      l_phixb = l1*chip_phixb + m1*chip_phiyb + n1*chip_phizb;
      l_phiyb = l2*chip_phixb + m2*chip_phiyb + n2*chip_phizb;
      l_phizb = l3*chip_phixb + m3*chip_phiyb + n3*chip_phizb;

      // phix and z displacements total and from curl-matched positions
      // za and zb are the changes from the curl-matched positions of the 
a comb and the b comb respectively
      // Note that dz1 and dphix1 to be passed to comb_curl are for the 
base of the truss
      // beam which is asummed to be 10 um in the Coyote simulations, but 
here they are at
      // the position of the “truss_width_a and truss_width_b” respec-
tively
      // This is not being taken into account right now
      
      dz1 = zb - za - l_dz*1e6 - (z_matched_rotor - z_matched_stator); /
/ in micrometers
      dz = dz1 + z_matched_rotor; // Total relative z displacement in 
micrometers
220



      // angle_a and angle_b are the changes from the curl-matched angle 
of the 
      // bases of the a comb and the b comb respectively
      // They are multiplied by 1e-6*‘M_PI/180 to convert them to Megara-
dians
      // so that they can be added to l_phixa - l_phixb
      

      dphix1 = (-(angle_a - angle_b) - (phix_matched_rotor - 
phix_matched_stator))*‘M_PI/180 - (l_phixa - l_phixb); // in radians
      dphix = phix_matched_rotor*‘M_PI/180 + dphix1; // in radians
      dphiy = l_phiya - l_phiyb;
      dphiz = l_phiza - l_phizb;

      moment_arm_a = truss_width_a + finger_length - (overlap + l_dy)/
2.0;
      moment_arm_b = truss_width_b + finger_length - (overlap + l_dy)/
2.0;
      // Note that 8.85e-12 is used here instead of ‘P_EPS0 because 
8.85e-12 is used in the perl script to
      // scale down the coefficients
      // 1e-6 is required because cap_curl assumes all dimensions are 
meters and therefore returns a capacitance
      // value for all dimensions equal to meters
      // In other words it returns uF and we have to multiply that by 1e-
6 to get F
      
//      cap = 8.85e-12*1e-6*((fingers)/(3.0))*cap_curl(finger_width*1e6, 
gap*1e6, overlap*1e6, cyy*1e-6, 
// l_dx*1e6, l_dy*1e6, dz*1e6,
// -dphix*1e6*180/‘M_PI, dphiy*1e6*180/‘M_PI, dphiz*1e6*180/‘M_PI, 
// dz1*1e6, -dphix1*1e6*180/‘M_PI);
      fwidth = finger_width*1e6; // Needs to be in um
      g = gap*1e6;
      olp = overlap*1e6;
      dx = (l_dx - dphiz*moment_arm_a)*1e6;
      dy = l_dy*1e6;
      dz = dz;
      dtx = -dphix*180/‘M_PI;
      dty = dphiy*180/‘M_PI;
      dtz = dphiz*180/‘M_PI;
      dz1 = dz1;
      dtx1 = -dphix1*180/‘M_PI;
‘include “cap.va”
      cap = eps0*1e-6*(fingers/3.0)*cap_curl;

      // Note the - sign before dphix and dphix1 in the above function 
call, have to keep in mind that
      // the actual matching of rotation in this frame and the model 
frame will be more involved
      // and has to be worked out later
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      // Current computation
      V(vlt) <+  V(va[0], vb[0]);
      I(va[0],vb[0]) <+ ddt(cap*V(vlt));

      vltg = V(vlt)*V(vlt);

      // Force and torque computation in local frame
      Fx = 0;
      Fy = 0;
      Fz = 0;
      dCphix = 0;
      dCphiy = 0;
      dCphiz = 0;

‘include “force.va”

      Fx = 0.5*eps0*(fingers/3.0)*Fx;
      Fy = 0.5*eps0*(fingers/3.0)*Fy;
      Fz = 0.5*eps0*(fingers/3.0)*Fz;
//      $display(“Fx=%g Fy=%g Fz=%g\n”, Fx, Fy, Fz);
//      $display(“w=%g g=%g o=%g cyy=%g dx=%g dy=%g dz=%g dz1=%g dtx=%g 
dtx1=%g\n”,
//       fwidth, g, olp, cyy, dx, dy, dz, dz1, dtx, dtx1);
      l_Fxa = Fx*vltg;
      l_Fya = Fy*vltg;
      l_Fza = -Fz*vltg;

      l_Fxb = -Fx*vltg;
      l_Fyb = -Fy*vltg;
      l_Fzb = Fz*vltg;

      l_Tqxa = dCphix*vltg + l_Fza*1*moment_arm_a;
      l_Tqya = dCphiy*vltg;
      l_Tqza = dCphiz*vltg + l_Fxa*1*moment_arm_a;

      l_Tqxb = -dCphix*vltg - l_Fzb*1*moment_arm_b;
      l_Tqyb = -dCphiy*vltg;
      l_Tqzb = -dCphiz*vltg - l_Fxb*1*moment_arm_b;

      //bending forces/moments transformed from local frame back to chip 
frame
      Fchipxb = inv_l1*l_Fxb + inv_m1*l_Fyb + inv_n1*l_Fzb;
      Fchipyb = inv_l2*l_Fxb + inv_m2*l_Fyb + inv_n2*l_Fzb;
      Fchipzb = inv_l3*l_Fxb + inv_m3*l_Fyb + inv_n3*l_Fzb;

      Fchipxa = inv_l1*l_Fxa + inv_m1*l_Fya + inv_n1*l_Fza;
      Fchipya = inv_l2*l_Fxa + inv_m2*l_Fya + inv_n2*l_Fza;
      Fchipza = inv_l3*l_Fxa + inv_m3*l_Fya + inv_n3*l_Fza;

      Tqchipxb = inv_l1*l_Tqxb + inv_m1*l_Tqyb + inv_n1*l_Tqzb;
      Tqchipyb = inv_l2*l_Tqxb + inv_m2*l_Tqyb + inv_n2*l_Tqzb;
      Tqchipzb = inv_l3*l_Tqxb + inv_m3*l_Tqyb + inv_n3*l_Tqzb;
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      Tqchipxa = inv_l1*l_Tqxa + inv_m1*l_Tqya + inv_n1*l_Tqza;
      Tqchipya = inv_l2*l_Tqxa + inv_m2*l_Tqya + inv_n2*l_Tqza;
      Tqchipza = inv_l3*l_Tqxa + inv_m3*l_Tqya + inv_n3*l_Tqza;

      // bending forces/torques applied to the comb terminals
      F(xa[0]) <+ Fchipxa;
      F(xa[1]) <+ Fchipya;
      F(xa[2]) <+ Fchipza;

      F(xb[0]) <+ Fchipxb;
      F(xb[1]) <+ Fchipyb;
      F(xb[2]) <+ Fchipzb;

      Tau(phia[2]) <+ Tqchipza;
      Tau(phib[2]) <+ Tqchipzb;
      Tau(phia[1]) <+ Tqchipya;
      Tau(phib[1]) <+ Tqchipyb;
      Tau(phia[0]) <+ Tqchipxa;
      Tau(phib[0]) <+ Tqchipxb;   
      
   end 

endmodule // comb_curl

efringe.va
function real efringe;
      input width, gap1, dx1;
      real    width, gap1, dx1;

      real Pi, gplus, gminus, alpha1, gamma1, q, p, fringe0, fringe1;
      begin
 Pi = 3.14159;
 gplus = (gap1 + dx1)/2.0;
 gminus = (gap1 - dx1)/2.0;
 alpha1 = (width + gap1)/gminus;
 gamma1 = gplus/gminus;
 
 q = (1.0/2.0)*(alpha1*alpha1 - gamma1*gamma1 - 1 +
sqrt((alpha1*alpha1 - gamma1*gamma1 - 1)*(alpha1*alpha1 - gamma1*gamma1 
- 1) - 
     4*gamma1*gamma1));
 p = q*q/(gamma1*gamma1);
 
 
 
 // gap1 minus dx1
 // Keep in mind that this contains the fringe for both the top and the 
bottom
 fringe0 = (1.0/Pi)*(2*alpha1*atanh(sqrt(p+q)/sqrt(p*(1+q))) - 
                             2*gamma1*atanh(1/sqrt(p)) - 
                             ln(4*p/(p-1)) + 
                             ln(q));
 // gap1 plus dx1
 fringe1 = (1.0/Pi)*((1.0/gamma1)*(2*alpha1*atanh(sqrt((1+q)/(p+q))) +
223



  gamma1*ln((p-1)/(4)) -
  2*atanh(1/sqrt(p))) - ln(q));
 efringe = fringe0 + fringe1;

// $display(“width=%g gap=%g dx=%g alpha1 = %g gamma1 = %g q = %g p = %g 
fringe0 = %g fringe1 = %g\n”, 
//  width, gap1, dx1, alpha1, gamma1, q, p, fringe0, fringe1);

      end

endfunction // efringe

function real defringe;
      input width, gap1, dx1;
      real    width, gap1, dx1;

      real Pi, gplus, gminus, alpha1, gamma1, q, p, fringe0, fringe1;
      real      dalpha1, dgamma1, dalpha1_gamma1, dq, dp, dfringe0, 
dfringe1;
      begin
 Pi = 3.14159;
 gplus = (gap1 + dx1)/2.0;
 gminus = (gap1 - dx1)/2.0;
 alpha1 = (width + gap1)/gminus;
 gamma1 = gplus/gminus;
 
 q = (1.0/2.0)*(alpha1*alpha1 - gamma1*gamma1 - 1 +
sqrt((alpha1*alpha1 - gamma1*gamma1 - 1)*(alpha1*alpha1 - gamma1*gamma1 
- 1) - 
     4*gamma1*gamma1));
 p = q*q/(gamma1*gamma1);
 
 
 dalpha1 = 2*(gap1+width)/((gap1-dx1)*(gap1-dx1));
 dgamma1 = (gap1+dx1)/((gap1-dx1)*(gap1-dx1)) + 1/(gap1-dx1);
 dalpha1_gamma1 = -2*(gap1+width)/((gap1+dx1)*(gap1+dx1));
 dq = (1.0/2.0)*(2*alpha1*dalpha1 - 2*gamma1*dgamma1 + 
 (1.0/2.0)*(2*(alpha1*alpha1 - gamma1*gamma1 - 1)*(2*alpha1*dalpha1 - 
2*gamma1*dgamma1) - 
    8*gamma1*dgamma1)/
 sqrt((alpha1*alpha1 - gamma1*gamma1 - 1)*(alpha1*alpha1 - gamma1*gamma1 
- 1)-4*gamma1*gamma1));
 
 dp = 2*q*dq/(gamma1*gamma1) - 2*q*q*dgamma1/(gamma1*gamma1*gamma1);
 
 // gap1 minus dx1
 // Keep in mind that this contains the fringe for both the top and the 
bottom
 fringe0 = (1.0/Pi)*(2*alpha1*atanh(sqrt(p+q)/sqrt(p*(1+q))) - 
                             2*gamma1*atanh(1/sqrt(p)) - 
                             ln(4*p/(p-1)) + 
                             ln(q));
 dfringe0 = (1.0/Pi)*(2.0*dalpha1*atanh(sqrt(p+q)/sqrt(p*(1+q))) + 
2.0*alpha1*((p+p*q)/(-q+p*q))*(1.0/2.0)*
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(sqrt(p*(1+q))/sqrt(p+q))*(p*(1+q)*(dp+dq)-(p+q)*(dp+p*dq+q*dp))/
(p*p*(1+q)*(1+q)) -
2.0*dgamma1*atanh(1/sqrt(p)) -
2.0*gamma1*(p/(p-1))*(-1.0/2.0)*pow(p,-3.0/2.0)*dp +
dp/(p-1) - dp/p +
dq/q);

 // gap1 plus dx1
 fringe1 = (1.0/Pi)*((1.0/gamma1)*(2*alpha1*atanh(sqrt((1+q)/(p+q))) +
  gamma1*ln((p-1)/(4)) -
  2*atanh(1/sqrt(p))) - ln(q));

 dfringe1 = (1.0/Pi)*((1.0/gamma1)*(2*dalpha1*atanh(sqrt((1+q)/(p+q))) +
   2*alpha1*((p+q)/(p-1))*(1.0/2.0)*
   (sqrt((p+q)/(1+q))*((p+q)*dq - (1+q)*(dp+dq))/((p+q)*(p+q))) +
   dgamma1*ln((p-1)/4) + gamma1*(4/(p-1))*dp/4 -
   2*p/(p-1)*(-1.0/2.0)*dp/(p*sqrt(p))) -
      (dgamma1/(gamma1*gamma1))*(2*alpha1*atanh(sqrt((1+q)/(p+q))) +
      gamma1*ln((p-1)/(4)) - 2*atanh(1/sqrt(p))) -
      dq/q);
      
 
 defringe = dfringe0 + dfringe1;

// $display(“alpha1 = %g gamma1 = %g q = %g p = %g fringe0 = %g fringe1 = 
%g dfringe0 = %g dfringe1 = %g\n”, 
//  alpha1, gamma1, q, p, fringe0, fringe1, dfringe0, dfringe1);

      end

endfunction // defringe

function real pptotal;
      input thickness,overlap,gap1,dx1,dy;
      real  thickness,overlap,gap1,dx1,dy;

      begin
 pptotal = thickness*(overlap + dy)*(2*gap1/(gap1*gap1 - dx1*dx1));
      end
endfunction // pptotal

       
function real dpptotalx;
      input thickness,overlap,gap1,dx1,dy;
      real  thickness,overlap,gap1,dx1,dy;

      begin
 dpptotalx = thickness*(overlap + dy)*(4*gap1*dx1/((gap1*gap1 - 
dx1*dx1)*(gap1*gap1 - dx1*dx1)));
      end
endfunction // dpptotalx
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function real dpptotaly;
      input thickness,overlap,gap1,dx1,dy;
      real  thickness,overlap,gap1,dx1,dy;

      begin

 dpptotaly = thickness*(1/(gap1 - dx1) + 1/(gap1 + dx1));
      end
endfunction // dpptotaly

// Single sided functions
function real efringep;
      input width, gap1, dx1;
      real    width, gap1, dx1;

      real Pi, gplus, gminus, alpha1, gamma1, q, p, fringe0, fringe1;
      begin
 Pi = 3.14159;
 gplus = (gap1 + dx1)/2.0;
 gminus = (gap1 - dx1)/2.0;
 alpha1 = (width + gap1)/gminus;
 gamma1 = gplus/gminus;
 
// $strobe(“width=%g gap=%g dx=%g alpha1 = %g gamma1 = %g q = %g p = %g 
fringe0 = %g fringe1 = %g\n”, 
//  width, gap1, dx1, alpha1, gamma1, q, p, fringe0, fringe1);
 q = (1.0/2.0)*(alpha1*alpha1 - gamma1*gamma1 - 1 +
sqrt((alpha1*alpha1 - gamma1*gamma1 - 1)*(alpha1*alpha1 - gamma1*gamma1 
- 1) - 
     4*gamma1*gamma1));
 p = q*q/(gamma1*gamma1);
 
 
 
 // gap1 minus dx1
 // Keep in mind that this contains the fringe for both the top and the 
bottom
 fringe0 = (1.0/Pi)*(2*alpha1*atanh(sqrt(p+q)/sqrt(p*(1+q))) - 
                             2*gamma1*atanh(1/sqrt(p)) - 
                             ln(4*p/(p-1)) + 
                             ln(q));
 // gap1 plus dx1
 fringe1 = (1.0/Pi)*((1.0/gamma1)*(2*alpha1*atanh(sqrt((1+q)/(p+q))) +
  gamma1*ln((p-1)/(4)) -
  2*atanh(1/sqrt(p))) - ln(q));

 // Return gap + dx value
 efringep = fringe1;

      end
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endfunction // efringep

function real defringep;
      input width, gap1, dx1;
      real    width, gap1, dx1;

      real Pi, gplus, gminus, alpha1, gamma1, q, p, fringe0, fringe1;
      real      dalpha1, dgamma1, dalpha1_gamma1, dq, dp, dfringe0, 
dfringe1;
      begin
 Pi = 3.14159;
 gplus = (gap1 + dx1)/2.0;
 gminus = (gap1 - dx1)/2.0;
 alpha1 = (width + gap1)/gminus;
 gamma1 = gplus/gminus;
 
 q = (1.0/2.0)*(alpha1*alpha1 - gamma1*gamma1 - 1 +
sqrt((alpha1*alpha1 - gamma1*gamma1 - 1)*(alpha1*alpha1 - gamma1*gamma1 
- 1) - 
     4*gamma1*gamma1));
 p = q*q/(gamma1*gamma1);
 
 
 dalpha1 = 2*(gap1+width)/((gap1-dx1)*(gap1-dx1));
 dgamma1 = (gap1+dx1)/((gap1-dx1)*(gap1-dx1)) + 1/(gap1-dx1);
 dalpha1_gamma1 = -2*(gap1+width)/((gap1+dx1)*(gap1+dx1));
 dq = (1.0/2.0)*(2*alpha1*dalpha1 - 2*gamma1*dgamma1 + 
 (1.0/2.0)*(2*(alpha1*alpha1 - gamma1*gamma1 - 1)*(2*alpha1*dalpha1 - 
2*gamma1*dgamma1) - 
    8*gamma1*dgamma1)/
 sqrt((alpha1*alpha1 - gamma1*gamma1 - 1)*(alpha1*alpha1 - gamma1*gamma1 
- 1)-4*gamma1*gamma1));
 
 dp = 2*q*dq/(gamma1*gamma1) - 2*q*q*dgamma1/(gamma1*gamma1*gamma1);
 
 // gap1 minus dx1
 // Keep in mind that this contains the fringe for both the top and the 
bottom
 fringe0 = (1.0/Pi)*(2*alpha1*atanh(sqrt(p+q)/sqrt(p*(1+q))) - 
                             2*gamma1*atanh(1/sqrt(p)) - 
                             ln(4*p/(p-1)) + 
                             ln(q));
 dfringe0 = (1.0/Pi)*(2.0*dalpha1*atanh(sqrt(p+q)/sqrt(p*(1+q))) + 
2.0*alpha1*((p+p*q)/(-q+p*q))*(1.0/2.0)*
(sqrt(p*(1+q))/sqrt(p+q))*(p*(1+q)*(dp+dq)-(p+q)*(dp+p*dq+q*dp))/
(p*p*(1+q)*(1+q)) -
2.0*dgamma1*atanh(1/sqrt(p)) -
2.0*gamma1*(p/(p-1))*(-1.0/2.0)*pow(p,-3.0/2.0)*dp +
dp/(p-1) - dp/p +
dq/q);

 // gap1 plus dx1
 fringe1 = (1.0/Pi)*((1.0/gamma1)*(2*alpha1*atanh(sqrt((1+q)/(p+q))) +
  gamma1*ln((p-1)/(4)) -
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  2*atanh(1/sqrt(p))) - ln(q));

 dfringe1 = (1.0/Pi)*((1.0/gamma1)*(2*dalpha1*atanh(sqrt((1+q)/(p+q))) +
   2*alpha1*((p+q)/(p-1))*(1.0/2.0)*
   (sqrt((p+q)/(1+q))*((p+q)*dq - (1+q)*(dp+dq))/((p+q)*(p+q))) +
   dgamma1*ln((p-1)/4) + gamma1*(4/(p-1))*dp/4 -
   2*p/(p-1)*(-1.0/2.0)*dp/(p*sqrt(p))) -
      (dgamma1/(gamma1*gamma1))*(2*alpha1*atanh(sqrt((1+q)/(p+q))) +
      gamma1*ln((p-1)/(4)) - 2*atanh(1/sqrt(p))) -
      dq/q);
      
 // Return gap + dx value
 defringep = dfringe1;

// $display(“alpha1 = %g gamma1 = %g q = %g p = %g fringe0 = %g fringe1 = 
%g dfringe0 = %g dfringe1 = %g\n”, 
//  alpha1, gamma1, q, p, fringe0, fringe1, dfringe0, dfringe1);

      end

endfunction // defringep

function real pptotalp;
      input thickness,overlap,gap1,dx1,dy;
      real  thickness,overlap,gap1,dx1,dy;

      begin
 pptotalp = thickness*(overlap + dy)*(-1/((gap1 + dx1)*(gap1 + dx1)));
      end
endfunction // pptotalp

       
function real dpptotalpx;
      input thickness,overlap,gap1,dx1,dy;
      real  thickness,overlap,gap1,dx1,dy;

      begin
 dpptotalpx = thickness*(overlap + dy)*(-1/((gap1 + dx1)*(gap1 + dx1)));
      end
endfunction // dpptotalpx

function real dpptotalpy;
      input thickness,overlap,gap1,dx1,dy;
      real  thickness,overlap,gap1,dx1,dy;

      begin

 dpptotalpy = thickness*(1/(gap1 + dx1));
      end
endfunction // dpptotalpy

cap.va
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thickness = 4.5;
ppcaptotal = thickness*(olp + dy)*(1/(g + dx) + 1/(g - dx));
dppcaptotalx = dpptotalx(thickness,olp,g,dx,dy);
dppcaptotaly = dpptotaly(thickness,olp,g,dx,dy);
efcaptotal = efringe(fwidth, g, dx);
defcaptotal = defringe(fwidth, g, dx);
@(initial_step(“ac”,”dc”,”tran”)) begin
   c0 = 0.0276373107344633;
   c1 =    -0.036654;
   c2 =   -0.0363877;
   c3 =     -49.4764;
   c4 =       114.19;
   c5 =     -4586.57;
   c6 =  -0.00139927;
   c7 =     0.926732;
   c8 =     0.094436;
   c9 =   -0.0572805;
   c10 =      1.31469;
   c11 =     -1.88933;
   c12 =   0.00653463;
   c13 =      97.8598;
   c14 =     -1248.49;
   c15 =      -4.8071;
   c16 =  -0.00433067;
   c17 =     0.254919;
   c18 =    -0.215126;
   c19 =  -0.00244782;
   c20 =  -0.00601334;
   c21 =  -0.00252484;
   c22 =     -4.89106;
   c23 =    0.0343773;
   c24 =      136.489;
   c25 =   -0.0350893;
   c26 =    -0.011512;
   c27 =    0.0103864;
   c28 =     -0.12185;
   c29 =   -0.0306053;
   c30 =       369779;
   c31 =    0.0019406;
   c32 =     -304.803;
   c33 =    -0.177552;
   c34 =     0.012253;
   c35 = -0.000267055;
   c36 =   0.00242414;
   c37 =     -2742.33;
   c38 =       850666;
   c39 =      879.931;
   c40 =      10.7562;
   c41 = -0.000721616;
   c42 =   -0.0073036;
   c43 =    0.0177324;
   c44 =     -11096.8;
   c45 =    0.0285413;
   c46 =     -0.24904;
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   c47 =      202.283;
   c48 =     0.012807;
   c49 =  0.000136373;
   c50 =      100.469;
   c51 =     -1.69623;
   c52 =       63.838;
   c53 =     0.445681;
   c54 =      -206898;
   c55 =    0.0276114;
   c56 =      13.0536;
   c57 =     0.959911;
   c58 =  -0.00741532;
   c59 =      1.19818;
   c60 =    0.0803255;
   c61 =      32432.5;
   c62 =      5.49038;
   c63 =     -5.23022;
   c64 =      2.99633;
   c65 =   -0.0239581;
   c66 =    -0.230001;
   c67 =      153.515;
   c68 =      1.78854;
   c69 =   -0.0455665;
   c70 =      1.14643;
   c71 =     0.036121;
   c72 =     -858.224;
   c73 =     -7.32389;
   c74 =     -24.7476;
   c75 =   -0.0874021;
   c76 =      90599.6;
   c77 =  -0.00403123;
   c78 = -5.02762e-06;
   c79 = -6.24865e+07;
   c80 =  0.000903951;
   c81 =    0.0135729;
   c82 =  0.000232695;
   c83 =   0.00104478;
   c84 =  -0.00324096;
   c85 =     0.184985;
   c86 =     -32.5984;
   c87 =     0.084973;
   c88 =      0.01552;
   c89 =     -26.5471;
   c90 =     -33.4237;
   c91 =    0.0022785;
   c92 =     -50.8039;
   c93 =      -51.879;
   c94 =     -3746.48;
   c95 =      11108.5;
   c96 = -0.000548988;
   c97 =     -1.17128;
   c98 =      4149.19;
   c99 =      -362530;
   c100 =   0.00312093;
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   c101 =   -0.0539101;
   c102 =     0.276848;
   c103 =   0.00182284;
   c104 =      17.6506;
   c105 =    0.0136148;
end
cap_curl = (c0 * ((olp+dy)*efcaptotal)*(dtx1)) + 
(c1 * (dy*dz1)) + 
(c2 * ppcaptotal*((g/fwidth)*dz1)) + 
(c3 * ((olp+dy)*efcaptotal)*((g/fwidth)*dz1*cyy)) + 
(c4 * ((olp+dy)*efcaptotal)*(cyy*dtx1)) + 
(c5 * ((olp*cyy*dz1)/(g-dx)+(olp*cyy*dz1)/(g+dx))) + 
(c6 * ((olp+dy)*efcaptotal)*(olp*dz1*dtx1)) + 
(c7 * (dz1*dtx1)) + 
(c8 * (olp*dz1)) + 
(c9 * ((olp+dy)*efcaptotal)*((g/fwidth)*dz1*dtx1)) + 
(c10 * ppcaptotal) + 
(c11 * (dy)) + 
(c12 * (olp*fwidth*dz1)) + 
(c13 * ((cyy*dy*dy*dz1)/(g-dx)+(cyy*dy*dy*dz1)/(g+dx))) + 
(c14 * ((g/fwidth)*dz1*dtx1*cyy)) + 
(c15 * ppcaptotal*((g/fwidth)*dz1*cyy)) + 
(c16 * ((olp+dy)*efcaptotal)*(dz1*dtx1)) + 
(c17 * (dtx1*dtx1)) + 
(c18 * ((olp+dy)*efcaptotal)*(fwidth)) + 
(c19 * (dy*dy)*((olp+dy)*efcaptotal)) + 
(c20 * ((olp+dy)*efcaptotal)*(dy*dz1)) + 
(c21 * ((olp+dy)*efcaptotal)*(olp*dtx1)) + 
(c22 * ppcaptotal*(cyy*(dy*dy))) + 
(c23 * (olp*dz1*dtx1)) + 
(c24 * ((olp+dy)*efcaptotal)*((g/fwidth)*dz1*dtx1*cyy)) + 
(c25 * ppcaptotal*(dtx1*dtx1)) + 
(c26 * (olp*dtx1)) + 
(c27 * (dy*fwidth*dz1)) + 
(c28 * (g*fwidth*dtx1)) + 
(c29 * ((olp+dy)*efcaptotal)*(g*dz1*dtx1)) + 
(c30 * (cyy)) + 
(c31 * ((olp+dy)*efcaptotal)*(g*fwidth*dz1)) + 
(c32 * ((olp*cyy*dtx1*dy)/(g-dx)+(olp*cyy*dtx1*dy)/(g+dx))) + 
(c33 * (g*dz1*dtx1)) + 
(c34 * (dy*dy)) + 
(c35 * ppcaptotal*(g*fwidth*dtx1)) + 
(c36 * ppcaptotal*(olp*dz1*dtx1)) + 
(c37 * ((olp+dy)*efcaptotal)*(cyy*(g*g))) + 
(c38 * (cyy*cyy)*((olp+dy)*efcaptotal)) + 
(c39 * ppcaptotal*(cyy)) + 
(c40 * ((olp+dy)*efcaptotal)) + 
(c41 * (g*fwidth*dy*dz1)) + 
(c42 * ppcaptotal*(dy)) + 
(c43 * (dtx1*dtx1)*((olp+dy)*efcaptotal)) + 
(c44 * ((olp+dy)*efcaptotal)*(cyy)) + 
(c45 * ppcaptotal*(g*dz1)) + 
(c46 * ppcaptotal*(g*g)) + 
(c47 * ppcaptotal*(cyy*(g*g))) + 
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(c48 * (g*fwidth*dz1)) + 
(c49 * ppcaptotal*(olp*dz1)) + 
(c50 * (g)) + 
(c51 * (dz1)) + 
(c52 * ((olp*cyy*dz1*dz1*dtx1*dy)/(g-dx)+(olp*cyy*dz1*dz1*dtx1*dy)/
(g+dx))) + 
(c53 * (fwidth*fwidth)) + 
(c54 * ppcaptotal*(cyy*cyy)) + 
(c55 * ((olp+dy)*efcaptotal)*(dy)) + 
(c56 * ppcaptotal*(cyy*dy)) + 
(c57 * ppcaptotal*(g)) + 
(c58 * ppcaptotal*(dz1)) + 
(c59 * (g*g)*((olp+dy)*efcaptotal)) + 
(c60 * ((olp+dy)*efcaptotal)*(dz1)) + 
(c61 * ((cyy*dz1)/(g-dx)+(cyy*dz1)/(g+dx))) + 
(c62 * ((olp+dy)*efcaptotal)*(cyy*(dy*dy))) + 
(c63 * ((olp+dy)*efcaptotal)*(g)) + 
(c64 * ((olp*cyy*dy*dy*dz1)/(g-dx)+(olp*cyy*dy*dy*dz1)/(g+dx))) + 
(c65 * ((olp+dy)*efcaptotal)*(g*dz1)) + 
(c66 * ppcaptotal*(dz1*dz1)) + 
(c67 * ((((olp+dy)*(olp+dy))*cyy*dz1)/(g-
dx)+(((olp+dy)*(olp+dy))*cyy*dz1)/(g+dx))) + 
(c68 * ppcaptotal*(cyy*dtx1)) + 
(c69 * (olp*fwidth*dz1*dz1)) + 
(c70 * (dtx1)) + 
(c71 * ((olp+dy)*efcaptotal)*((g/fwidth)*dz1)) + 
(c72 * ppcaptotal*(cyy*g)) + 
(c73 * ppcaptotal*(cyy*dz1)) + 
(c74 * (g*g)) + 
(c75 * (g*dz1)) + 
(c76 * (cyy*(g*g))) + 
(c77 * ppcaptotal*(g*fwidth*dz1)) + 
(c78 * ppcaptotal*(olp*dtx1)) + 
(c79 * (cyy*cyy)) + 
(c80 * ppcaptotal*(dy*dy)) + 
(c81 * ppcaptotal*(g*dz1*dtx1)) + 
(c82 * ppcaptotal*(g*fwidth*dy*dz1)) + 
(c83 * ppcaptotal*(dtx1)) + 
(c84 * ((olp+dy)*efcaptotal)*(olp*dz1)) + 
(c85 * (dx*dx)*((olp+dy)*efcaptotal)) + 
(c86 * ((olp+dy)*efcaptotal)*(cyy*dy)) + 
(c87 * ppcaptotal*(dz1*dtx1)) + 
(c88 * ppcaptotal*((g/fwidth)*dz1*dtx1)) + 
(c89 * (cyy*(dy*dy))) + 
(c90 * ((olp*cyy*dz1*dtx1*dy)/(g-dx)+(olp*cyy*dz1*dtx1*dy)/(g+dx))) + 
(c91 * ((olp+dy)*efcaptotal)*(g*fwidth*dtx1)) + 
(c92 * ((olp+dy)*efcaptotal)*(cyy*dz1)) + 
(c93 * ppcaptotal*((g/fwidth)*dz1*dtx1*cyy)) + 
(c94 * (cyy*dtx1)) + 
(c95 * ((olp+dy)*efcaptotal)*(cyy*g)) + 
(c96 * ((olp+dy)*efcaptotal)*(g*fwidth*dy*dz1)) + 
(c97 * (dz1*dz1)) + 
(c98 * (cyy*dz1)) + 
(c99 * (cyy*g)) + 
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(c100 * ppcaptotal*(fwidth)) + 
(c101 * (dy*fwidth*dz1*dz1)) + 
(c102 * (dz1*dz1)*((olp+dy)*efcaptotal)) + 
(c103 * ppcaptotal*(dy*dz1)) + 
(c104 * (fwidth)) + 
(c105 * ppcaptotal*(dx*dx));

force.va
Fx =  
c61*((cyy*dz1)/((-dx + g)*(-dx + g)) - (cyy*dz1)/((dx + g)*(dx + g))) +  
c13*((cyy*((dy)*(dy))*dz1)/((-dx + g)*(-dx + g)) -  
(cyy*((dy)*(dy))*dz1)/((dx + g)*(dx + g))) +  
c32*((cyy*dtx1*dy*olp)/((-dx + g)*(-dx + g)) -  (cyy*dtx1*dy*olp)/((dx + 
g)*(dx + g))) +  
c5*((cyy*dz1*olp)/((-dx + g)*(-dx + g)) -  (cyy*dz1*olp)/((dx + g)*(dx + 
g))) +  
c90*((cyy*dtx1*dy*dz1*olp)/((-dx + g)*(-dx + g)) -  
(cyy*dtx1*dy*dz1*olp)/((dx + g)*(dx + g))) +  
c64*((cyy*((dy)*(dy))*dz1*olp)/((-dx + g)*(-dx + g)) -  
(cyy*((dy)*(dy))*dz1*olp)/((dx + g)*(dx + g))) +  
c52*((cyy*dtx1*dy*((dz1)*(dz1))*olp)/((-dx + g)*(-dx + g)) -  
(cyy*dtx1*dy*((dz1)*(dz1))*olp)/((dx + g)*(dx + g))) +  
c67*((cyy*dz1*((dy + olp)*(dy + olp)))/((-dx + g)*(-dx + g)) -  
(cyy*dz1*((dy + olp)*(dy + olp)))/((dx + g)*(dx + g))) +  
2*c85*dx*(dy + olp)*efcaptotal +  
2*c105*dx*ppcaptotal +  
c40*(dy + olp)*defcaptotal +  
c44*cyy*(dy + olp)*defcaptotal +  
c38*((cyy)*(cyy))*(dy + olp)*  defcaptotal +  
c0*dtx1*(dy + olp)*defcaptotal +  
c4*cyy*dtx1*(dy + olp)*defcaptotal +  
c43*((dtx1)*(dtx1))*(dy + olp)*  defcaptotal +  
c85*((dx)*(dx))*(dy + olp)*defcaptotal +  
c55*dy*(dy + olp)*defcaptotal +  
c86*cyy*dy*(dy + olp)*defcaptotal +  
c19*((dy)*(dy))*(dy + olp)*defcaptotal +  
c62*cyy*((dy)*(dy))*(dy + olp)*  defcaptotal +  
c60*dz1*(dy + olp)*defcaptotal +  
c92*cyy*dz1*(dy + olp)*defcaptotal +  
c16*dtx1*dz1*(dy + olp)*defcaptotal +  
c20*dy*dz1*(dy + olp)*defcaptotal +  
c102*((dz1)*(dz1))*(dy + olp)*  defcaptotal +  
c18*fwidth*(dy + olp)*defcaptotal +  
c63*g*(dy + olp)*defcaptotal +  
c95*cyy*g*(dy + olp)*defcaptotal +  
c65*dz1*g*(dy + olp)*defcaptotal +  
c29*dtx1*dz1*g*(dy + olp)*  defcaptotal +  
(c71*dz1*g*(dy + olp)*defcaptotal)/  fwidth + 
(c3*cyy*dz1*g*(dy + olp)*  defcaptotal)/fwidth +  
(c9*dtx1*dz1*g*(dy + olp)*  defcaptotal)/fwidth +  
(c24*cyy*dtx1*dz1*g*(dy + olp)*  defcaptotal)/fwidth +  
c91*dtx1*fwidth*g*(dy + olp)*  defcaptotal +  
c31*dz1*fwidth*g*(dy + olp)*  defcaptotal +  
c96*dy*dz1*fwidth*g*(dy + olp)*  defcaptotal +  
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c59*((g)*(g))*(dy + olp)*  defcaptotal +  
c37*cyy*((g)*(g))*(dy + olp)*  defcaptotal +  
c21*dtx1*olp*(dy + olp)*  defcaptotal +  
c84*dz1*olp*(dy + olp)*defcaptotal +  
c6*dtx1*dz1*olp*(dy + olp)*  defcaptotal +  
c10*dppcaptotalx +  
c39*cyy*dppcaptotalx +  
c54*((cyy)*(cyy))*dpptotalx(thickness,olp,g,dx,  dy) + 
c83*dtx1*dpptotalx(thickness,olp,g,dx,  dy) + 
c68*cyy*dtx1*dpptotalx(thickness,olp,g,  dx,dy) + 
c25*((dtx1)*(dtx1))*  dppcaptotalx +  
c105*((dx)*(dx))*dpptotalx(thickness,olp,g,dx,  dy) + 
c42*dy*dpptotalx(thickness,olp,g,dx,  dy) + 
c56*cyy*dy*dpptotalx(thickness,olp,g,  dx,dy) + 
c80*((dy)*(dy))*dpptotalx(thickness,  olp,g,dx,dy) + 
c22*cyy*((dy)*(dy))*  dppcaptotalx +  
c58*dz1*dppcaptotalx +  
c73*cyy*dz1*dppcaptotalx +  
c87*dtx1*dz1*dppcaptotalx +  
c103*dy*dz1*dppcaptotalx +  
c66*((dz1)*(dz1))*dpptotalx(thickness,olp,g,dx,  dy) + 
c100*fwidth*dpptotalx(thickness,olp,g,  dx,dy) + 
c57*g*dpptotalx(thickness,olp,g,  dx,dy) + 
c72*cyy*g*dpptotalx(thickness,olp,  g,dx,dy) + 
c45*dz1*g*dpptotalx(thickness,  olp,g,dx,dy) + 
c81*dtx1*dz1*g*  dppcaptotalx +  
(c2*dz1*g*dppcaptotalx)/  fwidth + 
(c15*cyy*dz1*g*dpptotalx(thickness,  olp,g,dx,dy))/fwidth +  
(c88*dtx1*dz1*g*dpptotalx(thickness,olp,g,  dx,dy))/fwidth + 
(c93*cyy*dtx1*dz1*g*  dppcaptotalx)/fwidth +  
c35*dtx1*fwidth*g*dpptotalx(thickness,olp,g,  dx,dy) + 
c77*dz1*fwidth*g*  dppcaptotalx +  
c82*dy*dz1*fwidth*g*dpptotalx(thickness,olp,  g,dx,dy) + 
c46*((g)*(g))*  dppcaptotalx +  
c47*cyy*((g)*(g))*dpptotalx(thickness,olp,g,  dx,dy) + 
c78*dtx1*olp*dpptotalx(thickness,  olp,g,dx,dy) + 
c49*dz1*olp*  dppcaptotalx +  
c36*dtx1*dz1*olp*dpptotalx(thickness,olp,g,  dx,dy) ;
 Fy =  
c11 + 
2*c34*dy + 
2*c89*cyy*dy + 
c1*dz1 + 
c27*dz1*fwidth +  
c101*((dz1)*(dz1))*fwidth + 
c41*dz1*fwidth*g +  
c13*((2*cyy*dy*dz1)/(-dx + g) + (2*cyy*dy*dz1)/(dx + g)) +  
c32*((cyy*dtx1*olp)/(-dx + g) + (cyy*dtx1*olp)/(dx + g)) +  
c90*((cyy*dtx1*dz1*olp)/(-dx + g) +  (cyy*dtx1*dz1*olp)/(dx + g)) +  
c64*((2*cyy*dy*dz1*olp)/(-dx + g) +  (2*cyy*dy*dz1*olp)/(dx + g)) +  
c52*((cyy*dtx1*((dz1)*(dz1))*olp)/(-dx + g) +  
(cyy*dtx1*((dz1)*(dz1))*olp)/(dx + g)) +  
c67*((2*cyy*dz1*(dy + olp))/(-dx + g) +  (2*cyy*dz1*(dy + olp))/(dx + g)) 
+ 
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c40*efcaptotal +  
c44*cyy*efcaptotal + 
c38*((cyy)*(cyy))*efcaptotal +  
c0*dtx1*efcaptotal + 
c4*cyy*dtx1*efcaptotal +  
c43*((dtx1)*(dtx1))*efcaptotal +  
c85*((dx)*(dx))*efcaptotal + 
c55*dy*efcaptotal +  
c86*cyy*dy*efcaptotal +  
c19*((dy)*(dy))*efcaptotal +  
c62*cyy*((dy)*(dy))*efcaptotal +  
c60*dz1*efcaptotal + 
c92*cyy*dz1*efcaptotal +  
c16*dtx1*dz1*efcaptotal + 
c20*dy*dz1*efcaptotal +  
c102*((dz1)*(dz1))*efcaptotal +  
c18*fwidth*efcaptotal + 
c63*g*efcaptotal +  
c95*cyy*g*efcaptotal + 
c65*dz1*g*efcaptotal +  
c29*dtx1*dz1*g*efcaptotal +  
(c71*dz1*g*efcaptotal)/fwidth +  
(c3*cyy*dz1*g*efcaptotal)/fwidth +  
(c9*dtx1*dz1*g*efcaptotal)/fwidth +  
(c24*cyy*dtx1*dz1*g*efcaptotal)/fwidth +  
c91*dtx1*fwidth*g*efcaptotal +  
c31*dz1*fwidth*g*efcaptotal +  
c96*dy*dz1*fwidth*g*efcaptotal +  
c59*((g)*(g))*efcaptotal +  
c37*cyy*((g)*(g))*efcaptotal +  
c21*dtx1*olp*efcaptotal +  
c84*dz1*olp*efcaptotal +  
c6*dtx1*dz1*olp*efcaptotal +  
c55*(dy + olp)*efcaptotal +  
c86*cyy*(dy + olp)*efcaptotal +  
2*c19*dy*(dy + olp)*efcaptotal +  
2*c62*cyy*dy*(dy + olp)*efcaptotal +  
c20*dz1*(dy + olp)*efcaptotal +  
c96*dz1*fwidth*g*(dy + olp)*efcaptotal +  
c42*ppcaptotal +  
c56*cyy*ppcaptotal +  
2*c80*dy*ppcaptotal +  
2*c22*cyy*dy*ppcaptotal +  
c103*dz1*ppcaptotal +  
c82*dz1*fwidth*g*ppcaptotal +  
c10*dppcaptotaly +  
c39*cyy*dppcaptotaly +  
c54*((cyy)*(cyy))*dpptotaly(thickness,olp,g,dx,  dy) + 
c83*dtx1*dpptotaly(thickness,olp,g,dx,  dy) + 
c68*cyy*dtx1*dpptotaly(thickness,olp,g,  dx,dy) + 
c25*((dtx1)*(dtx1))*  dppcaptotaly +  
c105*((dx)*(dx))*dpptotaly(thickness,olp,g,dx,  dy) + 
c42*dy*dpptotaly(thickness,olp,g,dx,  dy) + 
c56*cyy*dy*dpptotaly(thickness,olp,g,  dx,dy) + 
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c80*((dy)*(dy))*dpptotaly(thickness,  olp,g,dx,dy) + 
c22*cyy*((dy)*(dy))*  dppcaptotaly +  
c58*dz1*dppcaptotaly +  
c73*cyy*dz1*dppcaptotaly +  
c87*dtx1*dz1*dppcaptotaly +  
c103*dy*dz1*dppcaptotaly +  
c66*((dz1)*(dz1))*dpptotaly(thickness,olp,g,dx,  dy) + 
c100*fwidth*dpptotaly(thickness,olp,g,  dx,dy) + 
c57*g*dpptotaly(thickness,olp,g,  dx,dy) + 
c72*cyy*g*dpptotaly(thickness,olp,  g,dx,dy) + 
c45*dz1*g*dpptotaly(thickness,  olp,g,dx,dy) + 
c81*dtx1*dz1*g*  dppcaptotaly +  
(c2*dz1*g*dppcaptotaly)/  fwidth + 
(c15*cyy*dz1*g*dpptotaly(thickness,  olp,g,dx,dy))/fwidth +  
(c88*dtx1*dz1*g*dpptotaly(thickness,olp,g,  dx,dy))/fwidth + 
(c93*cyy*dtx1*dz1*g*  dppcaptotaly)/fwidth +  
c35*dtx1*fwidth*g*dpptotaly(thickness,olp,g,  dx,dy) + 
c77*dz1*fwidth*g*  dppcaptotaly +  
c82*dy*dz1*fwidth*g*dpptotaly(thickness,olp,  g,dx,dy) + 
c46*((g)*(g))*  dppcaptotaly +  
c47*cyy*((g)*(g))*dpptotaly(thickness,olp,g,  dx,dy) + 
c78*dtx1*olp*dpptotaly(thickness,  olp,g,dx,dy) + 
c49*dz1*olp*  dppcaptotaly +  
c36*dtx1*dz1*olp*dpptotaly(thickness,olp,g,  dx,dy) ;
 Fz =  
c51 + 
c98*cyy + 
c7*dtx1 + 
c1*dy + 
2*c97*dz1 + 
c27*dy*fwidth +  
2*c101*dy*dz1*fwidth + 
c75*g + 
c33*dtx1*g +  
(c14*cyy*dtx1*g)/fwidth + 
c48*fwidth*g + 
c41*dy*fwidth*g +  
c61*(cyy/(-dx + g) + cyy/(dx + g)) +  
c13*((cyy*((dy)*(dy)))/(-dx + g) + (cyy*((dy)*(dy)))/(dx + g)) +  
c8*olp + 
c23*dtx1*olp + 
c12*fwidth*olp +  
2*c69*dz1*fwidth*olp + 
c5*  ((cyy*olp)/(-dx + g) + (cyy*olp)/(dx + g)) +  
c90*((cyy*dtx1*dy*olp)/(-dx + g) +  (cyy*dtx1*dy*olp)/(dx + g)) +  
c64*((cyy*((dy)*(dy))*olp)/(-dx + g) +  (cyy*((dy)*(dy))*olp)/(dx + g)) 
+  
c52*((2*cyy*dtx1*dy*dz1*olp)/(-dx + g) +  (2*cyy*dtx1*dy*dz1*olp)/(dx + 
g)) +  
c67*((cyy*((dy + olp)*(dy + olp)))/(-dx + g) +  (cyy*((dy + olp)*(dy + 
olp)))/(dx + g)) +  
c60*(dy + olp)*efcaptotal +  
c92*cyy*(dy + olp)*efcaptotal +  
c16*dtx1*(dy + olp)*efcaptotal +  
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c20*dy*(dy + olp)*efcaptotal +  
2*c102*dz1*(dy + olp)*efcaptotal +  
c65*g*(dy + olp)*efcaptotal +  
c29*dtx1*g*(dy + olp)*efcaptotal +  
(c71*g*(dy + olp)*efcaptotal)/fwidth +  
(c3*cyy*g*(dy + olp)*efcaptotal)/fwidth +  
(c9*dtx1*g*(dy + olp)*efcaptotal)/fwidth +  
(c24*cyy*dtx1*g*(dy + olp)*efcaptotal)/fwidth +  
c31*fwidth*g*(dy + olp)*efcaptotal +  
c96*dy*fwidth*g*(dy + olp)*efcaptotal +  
c84*olp*(dy + olp)*efcaptotal +  
c6*dtx1*olp*(dy + olp)*efcaptotal +  
c58*ppcaptotal +  
c73*cyy*ppcaptotal +  
c87*dtx1*ppcaptotal +  
c103*dy*ppcaptotal +  
2*c66*dz1*ppcaptotal +  
c45*g*ppcaptotal +  
c81*dtx1*g*ppcaptotal +  
(c2*g*ppcaptotal)/fwidth +  
(c15*cyy*g*ppcaptotal)/fwidth +  
(c88*dtx1*g*ppcaptotal)/fwidth +  
(c93*cyy*dtx1*g*ppcaptotal)/fwidth +  
c77*fwidth*g*ppcaptotal +  
c82*dy*fwidth*g*ppcaptotal +  
c49*olp*ppcaptotal +  
c36*dtx1*olp*ppcaptotal ;
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Appendix A5 Comparison of Rotational and 

Translational Modal Frequencies

In this appendix we show through approximate analysis that the rotational mode fre-

quency is usually higher or of the order of the higher of the two in-plane translational

modes. To the first order we can write the overall rotational stiffness of a rectangular plate

suspended by four springs at its corners as:

  (A5.1)

where,  is the total stiffness of the four springs in the x direction,  is the total stiff-

ness of the four springs in the y direction and  is the stiffness of each individual

spring for rotation about the z axis. The total moment of inertia of the plate is given by:

  (A5.2)

where,  is the total mass of the plate. Without loss of generality we can assume that the

springs are much stiffer in x than in y and that the lengths Lx and Ly are comparable. Then

we can write a simplified equation for the resonant frequency of the first  mode as:

  (A5.3)

FIGURE A5.1. Rectangular plate suspended by four springs
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Note that since we assumed the springs to be stiffer in x than in y, Thus we see that

the rotational mode is of the same order of the higher translational mode. Normally there

will be comb fingers attached to the plate, as is the case of the gyroscope drive mode.

However, if the comb fingers are not very long compared to the plate, our result is still

approximately valid.

ωx ωy>
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Appendix A6 Beam Widths and Comb Gaps for Monte-

Carlo Analysis

Table A6.1 Fractional variation of beam widths and gaps used for Monte-Carlo simulations

No. wo1 wo2 wo3 wo4 wi1 wi2 wi3 wi4 gdt gdb gst gsb

1 -0.433 -0.588 -0.692 1.191 -2.171 0.000 -0.377 0.212 0.781 -0.947 0.129 -0.9
2 -0.546 -0.079 0.133 -0.465 1.957 0.086 0.944 0.587 0.485 0.262 -0.011 -1.0
3 -0.548 -0.896 -0.275 -0.020 -2.449 -0.957 -0.981 1.635 0.702 -0.637 0.672 1.3
4 -0.209 -0.964 0.229 0.652 -2.424 -1.863 -0.146 1.751 1.259 -0.570 -1.301 0.3
5 -0.351 -0.249 1.142 -0.006 1.682 0.249 0.485 0.723 0.018 -0.711 1.151 -0.2
6 0.533 -1.723 0.755 0.411 0.285 -0.607 -0.583 0.900 0.399 0.406 0.760 -0.8
7 0.339 -1.430 0.289 0.441 -0.453 -1.384 0.709 -0.598 -1.008 1.259 -1.414 0.0
8 -1.227 -0.151 -0.911 -0.908 -0.703 1.008 -0.258 0.448 -0.339 -0.720 -0.535 0.2
9 -0.395 -1.333 1.958 -0.650 -1.666 2.183 0.858 -1.202 -0.059 -0.318 -0.296 0.2
10 0.569 -0.374 0.656 1.340 -0.847 1.535 1.593 0.371 0.505 -2.005 -2.120 -0.2
11 -0.005 1.213 -0.001 -0.402 0.261 0.135 2.213 0.279 0.473 1.293 -0.688 -1.2
12 -0.488 -1.003 -0.508 1.320 0.756 -2.379 -0.959 -0.377 -0.224 -0.454 0.248 0.7
13 0.044 -1.499 -0.605 0.599 0.892 -0.150 1.552 0.524 0.594 0.102 0.599 0.0
14 0.818 -1.170 -0.608 0.173 1.033 1.263 0.508 -1.307 0.826 0.687 -0.896 -2.1
15 1.116 1.216 -1.713 -1.665 0.290 -0.150 1.165 0.565 1.399 0.460 -0.748 -0.4
16 -0.665 0.858 -0.384 -1.758 -0.190 0.316 -1.631 -1.044 0.563 0.158 -1.372 0.5
17 0.730 0.758 3.203 -0.191 -0.144 -0.724 -0.073 0.623 0.125 -0.136 1.254 -0.0
18 -1.011 1.095 -1.475 -1.008 -0.822 -1.186 -1.168 0.290 -0.246 -0.606 1.018 0.7
19 1.865 -0.493 -0.645 0.480 -0.276 -0.275 -0.249 0.174 -0.013 -0.139 1.509 1.0
20 0.117 0.441 1.339 -0.214 1.862 -0.186 0.856 -0.909 0.376 -0.838 -0.146 -0.6
21 0.058 -0.652 -0.077 0.065 -0.314 -0.050 -1.489 0.147 1.578 -1.258 1.384 1.3
22 0.790 -0.041 -0.086 1.541 0.702 1.065 0.806 0.923 -1.052 -0.600 0.132 0.3
23 -0.008 0.020 0.249 0.285 0.620 1.448 1.537 -0.901 0.662 -0.505 0.806 -0.6
24 -0.462 0.629 0.229 0.983 0.558 -2.105 -0.458 1.687 -0.302 1.344 -0.359 0.3
25 -0.050 -0.587 -1.268 0.857 0.294 -1.643 0.439 -0.079 -2.334 -0.664 0.939 -1.3
26 0.288 0.114 -1.594 -0.157 0.614 -1.874 -0.234 -0.742 -0.266 -1.056 -0.461 1.4
27 0.663 -1.347 -1.580 2.112 -0.340 0.462 -0.704 0.668 1.276 -0.133 0.397 -0.1
28 -0.580 -1.163 -1.945 0.622 -0.591 1.281 -0.909 -0.199 1.107 -1.054 0.269 -2.3
29 -1.345 0.257 0.745 0.249 -0.425 0.103 1.738 -0.293 0.227 0.553 0.559 -0.1
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79
88
27
00
82
78

07
83
34
73

27
17

57
23

97
28

52
35
98
28
42
92
18

20
76
70

62
65
08

88
25
30 -1.108 0.313 -0.758 0.482 0.105 -2.248 0.325 -1.701 -0.231 -0.680 0.217 -0.1
31 0.362 -2.064 0.280 0.500 0.858 1.064 -1.490 -0.733 -0.288 -1.025 -1.610 0.5
32 -0.581 -1.729 -1.356 0.834 0.033 0.380 -0.223 1.762 -1.189 -0.361 -0.291 0.3
33 0.957 -2.238 -0.398 0.902 1.164 1.574 -0.895 -0.266 -0.849 -1.057 -1.150 0.7
34 -1.358 0.198 -0.080 1.048 -1.146 1.067 -1.441 -1.604 0.508 0.428 0.118 1.0
35 -1.188 1.472 -0.262 1.138 -0.854 0.469 -0.079 -1.357 -1.140 -0.321 -1.018 -0.0
36 1.863 -1.271 -0.264 1.064 2.136 1.184 -1.681 -1.751 -0.655 -0.498 -0.413 0.3
37 -1.228 -0.072 0.625 1.789 1.482 -0.184 -0.890 -0.384 -0.203 -0.221 1.622 0.0
38 0.997 0.083 -0.277 -2.635 -0.026 2.690 0.443 -0.787 -0.159 -0.511 -0.335 -1.0
39 -0.114 -1.726 -0.373 -0.522 -0.037 0.111 -0.983 -0.511 0.775 -1.341 0.314 -0.7
40 -1.372 0.205 1.110 0.554 0.888 -0.417 0.121 -2.237 0.799 -1.013 -0.853 1.4
41 -0.775 0.554 -0.301 0.716 -0.533 1.293 -1.161 1.279 0.659 -0.517 0.589 -0.4
42 -2.534 -0.252 0.887 -0.797 -1.816 -1.795 -0.801 0.863 1.191 0.059 0.571 0.2
43 1.692 0.896 0.315 -0.131 -2.202 0.056 -1.213 -0.684 -1.201 -0.904 -0.682 -1.0
44 -0.211 1.237 -0.182 0.889 -0.523 -1.664 -1.664 -0.245 -0.258 -0.015 -0.574 0.6
45 -1.081 -1.119 -0.506 -0.572 -0.670 0.279 -1.047 0.391 0.033 -0.168 0.139 -0.5
46 -1.513 -0.279 0.626 0.766 1.216 1.578 -1.294 0.028 -1.111 0.290 0.911 0.7
47 0.871 0.249 -0.322 -0.764 0.128 0.813 -0.832 1.432 -1.228 1.488 -0.944 0.2
48 1.306 0.480 -2.025 0.152 -0.686 0.589 -1.110 -0.415 0.172 -0.615 -0.222 1.0
49 0.897 -0.347 0.346 0.912 0.271 -1.556 -1.589 1.599 -0.901 -0.378 -1.110 -0.1
50 -1.550 1.228 1.843 -0.206 -2.379 -1.298 -0.283 -0.801 1.108 -1.388 0.309 -0.6
51 1.189 -0.096 -0.400 -1.056 0.591 0.731 1.444 0.390 0.986 -1.217 -1.319 -1.2
52 -0.120 0.036 -1.025 1.038 1.190 -0.631 1.521 2.309 0.103 -0.704 -1.029 -1.5
53 -1.410 0.536 -0.186 0.811 -0.048 0.808 1.620 -0.978 1.341 1.373 1.536 0.0
54 1.870 -0.117 -0.236 0.055 -1.126 -0.734 0.092 2.237 -0.543 -0.331 -0.888 -0.8
55 0.751 -1.423 -1.074 -0.167 -0.195 0.369 -0.382 2.176 -0.799 1.442 0.287 -0.8
56 -0.275 0.053 -0.013 -0.598 1.232 -1.634 0.529 -0.337 0.332 -0.264 0.385 0.0
57 0.849 0.721 0.572 -0.002 0.138 0.442 0.110 0.327 1.535 -0.207 1.094 -2.0
58 -0.893 0.003 0.291 0.613 -3.029 1.584 1.348 -0.174 -0.346 1.233 1.035 -0.0
59 -0.142 0.198 1.052 0.660 -0.038 -0.832 0.690 1.415 -0.644 0.578 -0.351 0.0
60 -0.519 -0.041 0.931 -0.073 -0.065 -0.628 -1.234 -0.390 -1.116 -2.325 -0.038 0.5

Table A6.1 Fractional variation of beam widths and gaps used for Monte-Carlo simulations

No. wo1 wo2 wo3 wo4 wi1 wi2 wi3 wi4 gdt gdb gst gsb
241



Appendix A7 OCEAN Scripts and Sample Netlist  for 

Gyroscope Monte-Carlo Simulations

A7.1 OCEAN Script

simulator( “spectre” )
runname = “./sigma_0.05/run1”;
design(strcat(runname “/netlist/netlist”))
 resultsDir( runname )
 desVar( “temper” 0 )
 desVar( “m2ma_x” 0.1u )
 desVar( “m1ma_x” 0.1u )
 desVar( “m2ma_y” 0.1u )
 desVar( “m1ma_y” 0.1u)
 desVar( “zframe” 0 )
 desVar( “zanchor” 0u )
 desVar( “zpm” 0)
 desVar( “ifactr” 1.0000 ) 
 desVar( “ifactl” 0.9799 ) 
 desVar( “ifacbr” 1.0020 ) 
 desVar( “ifacbl” 0.9965 ) 
 desVar( “g_s_r”  1.7835u ) 
 desVar( “g_s_l”  1.8021u ) 
 desVar( “g_dr_r”  1.7842u ) 
 desVar( “g_dr_l”  1.8130u ) 
 desVar( “overetch” 0 )
 desVar( “mism” 0 )
 desVar( “fdrive” 8.4k )
 desVar( “fext” 500 )
 desVar( “offs” 0.0 )
 desVar( “w_i”  1.8000u ) 
 desVar( “w_o”  1.8000u ) 
 desVar( “ofacbl” 0.9936 ) 
 desVar( “ofactr” 0.9946 ) 
 desVar( “ofactl” 0.9960 ) 
 desVar( “ofacbr” 1.0110 ) 
 desVar( “_gpar3” 0)
 desVar( “ax_sin” 0 )
 desVar( “ax_dc” 0 )
 desVar( “ay_sin” 0 )
 desVar( “ay_dc” 0 )
 desVar( “az_sin” 0 )
 desVar( “az_dc” 0)
 desVar( “phi_dc” 0 )
 desVar( “phi_amp” 0 )
 desVar( “phix_sin” 0 )
 desVar( “phiy_sin” 0)
 desVar( “fx_fr_sin” 0 )
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 desVar( “tphi_fr_sin” 0 )
 desVar( “tphi_fr_ac” 0 )
 desVar( “tphi_frame” 0 )
 desVar( “tphi_disp” 0 )
 desVar( “fz_pm_ac” 0 )
 desVar( “fz_fr_ac” 0 )
 desVar( “fy_pm_dc”  300.0000n ) 
 desVar( “fy_pm_ac” 0 )
 desVar( “fy_fr_ac” 0 )
 desVar( “fx_pm_ac” 0 )
 desVar( “fx_fr_ac” 0 )
 desVar( “drive_sin” 2 )
 desVar( “drive_dc” 0 )
 desVar( “drive_sin_r” -2)
 
 
 
 desVar(“fx_fr_ac” 1u)
 saveOption( ‘save “selected”)
 analysis(‘ac ?start “1k”  ?stop 100k  ?dec 500  )
 run()
 
 selectResult( “ac-ac” )
 x_fr_freq1 = xmax(vm(“I0.x_frame_left_0”), 1)
 fd = 50*round(x_fr_freq1/50)
 
 
 analysis(‘tran ?maxstep 1u ?stop 60m ?errpreset “conservative”)
 desVar( “fx_fr_ac” 0u)
 desVar( “fdrive” fd )
 desVar( “ay_sin” 98 )
 desVar( “fy_pm_dc”  300.0000n ) 
 run()
 
 
 fa = 500;
 fdmfa = fd - fa;
 fdpfa = fd + fa;
 fdm2fa = fd - 2*fa;
 fdp2fa = fd + 2*fa;
 selectResult( “tran-tran” )
 drive_wave = dft(v(“I0.x_frame_left_0”) 40m 60m 2048 “Rectangular” )
 drive = value( drive_wave fd)
 dft_wave = dft( (v(“inp”) - v(“inn”)) 40m 60m 2048 “Rectangular” )
 lsb = value(dft_wave fdmfa)
 carrier = value(dft_wave fd)
 rsb = value(dft_wave fdpfa)
 l2sb = value(dft_wave fdm2fa)
 r2sb = value(dft_wave fdp2fa)
printf(“RESULT: %s %6d %9.4g %4.2f %9.4g %4.2f %9.4g %4.2f %9.4g %4.2f 
%9.4g %4.2f %9.4g %4.2f\n”, runname fd mag(drive) phase(drive) mag(l2sb) 
phase(l2sb) mag(lsb) phase(lsb) mag(carrier) phase(carrier) mag(rsb) 
phase(rsb) mag(r2sb) phase(r2sb)) 
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A7.2 Gyroscope 2D netlist

// Library name: bikram_gyro
// Cell name: gyro_mems
// View name: schematic_simple
// Inherited view list: spectreS cdsSpice spice verilog behavioral
//functional hdl system verilogNetlist schematic cmos.sch cmos_sch
//veriloga ahdl auLvs
subckt gyro_mems ax_ext ay_ext az_ext inn inp phi_disp
        phi_ext phix_ext phiy_ext
        v_act_bias v_act_l
        v_act_r vdc_neg_n vdc_neg_p vdc_pos_n vdc_pos_p x_disp y_disp
    I83 (0 net0693) angle_source dc_value=0 ac_mag=0 ac_phase=0 offset=0
        amplitude=752f frequency=8.4k phase=0
    I60 (0 phi_frame) torque_source dc_value=0 ac_mag=tphi_fr_ac
        ac_phase=0 offset=0 amplitude=tphi_fr_sin frequency=8.4k phase=0
    I61 (0 phi_disp) torque_source dc_value=0 ac_mag=tphi_disp ac_phase=0
        offset=0 amplitude=0 frequency=0 phase=0
    I65 (0 x_proof_left) force_source dc_value=0 ac_mag=fx_pm_ac
        ac_phase=0 offset=0 amplitude=0 frequency=0 phase=0
    I67 (0 x_frame_left) force_source dc_value=0 ac_mag=fx_fr_ac
        ac_phase=0 offset=0 amplitude=fx_fr_sin frequency=8.4k phase=0
    I72 (0 y_frame_bot) force_source dc_value=fy_fr_dc ac_mag=fy_fr_ac 
ac_phase=0
        offset=fy_fr_dc amplitude=0 frequency=0 phase=0
    I75 (net01619 net1202) force_source dc_value=fy_pm_dc 
ac_mag=fy_pm_ac
        ac_phase=0 offset=fy_pm_dc amplitude=0 frequency=0 phase=0
    I56 (net679 net695 net686 net1830 net693 net1832 net698 net682 net692
        net691 net696 net677 net683 net676 net678 net689 net681 net1831
        net675 net697 net700 net685 net699 net687 net684 net674 net694
        net680 net713 net702 net703 net704 net705 net706 net707 net708
        net709 net710 net711 net712) plate_1000 unitl=7.6u unitw=9.9u
        unitnum_x=24 unitnum_y=3 angle=0 joint_offset=7.05u
        percentage_holes=0.295853 fraction_m3=1 fraction_m2=0.00604
        fraction_m1=0.00604 fraction_poly=0 Xc=0 Yc=0 neighbor_x=1
        neighbor_y=0
    I52 (phi_ext ax_ext ay_ext phi_frame net929 x_frame_left net738 
net722
        net732 net731 net736 net717 net723 net716 net718 net729 net920
        y_frame_left net715 net737 net740 net725 net739 net727 net724
        net714 net734 net720 net753 v_act_bias net743 net744 net951 
net746
        net747 net748 net749 net750 net751 net752) plate_1000
        unitl=44.9e-6 unitw=7.6u unitnum_x=3 unitnum_y=1 angle=0
        joint_offset=0u percentage_holes=0.284072 fraction_m3=1
        fraction_m2=0.18459 fraction_m1=0.13085 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=0 neighbor_y=2
    I40 (phi_ext ax_ext ay_ext phi_frame net773 net770 net778 net762
        net772 net771 net776 net757 net763 net756 net758 net769 net761
        net781 net755 net777 net780 net765 net779 net767 net764 net754
        net774 net760 net793 net782 net783 net784 net785 net786 net787
        net788 net789 net790 net791 net792) plate_1000 unitl=37.65u
        unitw=7.6u unitnum_x=3 unitnum_y=1 angle=0 joint_offset=10.45u
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        percentage_holes=0.284072 fraction_m3=1 fraction_m2=0.15583
        fraction_m1=0.16524 fraction_poly=0 Xc=0 Yc=0 neighbor_x=0
        neighbor_y=2
    I41 (phi_ext ax_ext ay_ext phi_frame net849 net810 net818 net802
        net812 net811 x_frame_right net0865 net803 net1791 net798 net0720
        net840 net821 net795 net817 net820 net805 y_frame_right net0875
        net804 net1789 net814 net0708 net833 net822 net823 net824 net871
        net826 net827 net828 net829 net830 net831 net832) plate_1000
        unitl=44.9u unitw=7.6u unitnum_x=3 unitnum_y=1 angle=0
        joint_offset=22.45u percentage_holes=0.284072 fraction_m3=1
        fraction_m2=0.15583 fraction_m1=0.16524 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=0 neighbor_y=2
    I48 (phi_ext ax_ext ay_ext phi_frame net1249 net850 net858 net842
        net852 net851 net856 net837 net843 net836 net838 net849 net1241
        net861 net835 net857 net860 net845 net859 net847 net844 net834
        net854 net840 net873 net862 net863 net864 net1271 net866 net867
        net868 net869 net870 net871 net872) plate_1000 unitl=127.35u+offs
        unitw=7.6u unitnum_x=3 unitnum_y=1 angle=0 joint_offset=34.45u
        percentage_holes=0.284072 fraction_m3=1 fraction_m2=0.15583
        fraction_m1=0.16524 fraction_poly=0 Xc=0 Yc=0 neighbor_x=0
        neighbor_y=2
    I50 (phi_ext ax_ext ay_ext phi_frame net969 net890 net898 net882
        net892 net891 net896 net877 net883 net876 net878 net889 net960
        net901 net875 net897 net900 net885 net899 net887 net884 net874
        net894 net880 net913 net902 net903 net904 net991 net906 net907
        net908 net909 net910 net911 net912) plate_1000 unitl=9.4125u
        unitw=7.6u unitnum_x=3 unitnum_y=4 angle=0 joint_offset=15.15u
        percentage_holes=0.284072 fraction_m3=1 fraction_m2=0.18459
        fraction_m1=0.13085 fraction_poly=0 Xc=0 Yc=0 neighbor_x=0
        neighbor_y=2
    I44 (phi_ext ax_ext ay_ext phi_frame net1329 net930 net938 net922
        net932 net931 net936 net917 net923 net1856 net918 net929 net1321
        net941 net915 net937 net940 net925 net939 net927 net924 net1857
        net934 net920 net953 net942 net1862 net944 net1351 net946 net947
        net948 net949 net950 net951 net952) plate_1000 unitl=127.35u+offs
        unitw=7.6u unitnum_x=3 unitnum_y=1 angle=0 joint_offset=34.45u
        percentage_holes=0.284072 fraction_m3=1 fraction_m2=0.18459
        fraction_m1=0.13085 fraction_poly=0 Xc=0 Yc=0 neighbor_x=0
        neighbor_y=2
    I51 (phi_ext ax_ext ay_ext phi_frame net1689 net970 net978 net962
        net972 net971 net976 net957 net963 net1844 net958 net969 net1680
        net981 net955 net977 net980 net965 net979 net967 net964 net1845
        net974 net960 net993 net982 net1843 net984 net1711 net986 net987
        net988 net989 net990 net991 net992) plate_1000 unitl=9.4125e-6
        unitw=7.6u unitnum_x=3 unitnum_y=4.0 angle=0 joint_offset=10.45u
        percentage_holes=0.284072 fraction_m3=1 fraction_m2=0.18459
        fraction_m1=0.13085 fraction_poly=0 Xc=0 Yc=0 neighbor_x=0
        neighbor_y=2
    I74 (phi_ext ax_ext ay_ext phi_frame net0720 net0717 net0725 net0709
        net0719 net0718 net0723 net0704 net0710 net0703 net0705 net0716
        net0708 net0728 net0702 net0724 net0727 net0712 net0726 net0714
        net0711 net0701 net0721 net0707 net0740 net0729 net0730 net0731
        net0732 net0733 net0734 net0735 net0736 net0737 net0738 net0739)
        plate_1000 unitl=82.45u-offs unitw=7.6u unitnum_x=3 unitnum_y=1
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        angle=0 joint_offset=22.45u percentage_holes=0.284072
        fraction_m3=1 fraction_m2=0.15583 fraction_m1=0.16524
        fraction_poly=0 Xc=0 Yc=0 neighbor_x=0 neighbor_y=2
    I14 (phi_ext ax_ext ay_ext phi_frame net1013 net1616 net1018 net1003
        net1012 net1011 net1016 net998 net1004 net997 net999 net1253
        net1002 net1619 net996 net1017 net1020 net1006 net1019 net1008
        net1005 net995 net1014 net1242 net1033 net1628 net1023 net1024
        net1025 net1026 net1027 net1028 net1029 net1030 net1265 net1032)
        plate_1000 unitl=22.8u unitw=7.6u unitnum_x=3 unitnum_y=1 angle=0
        joint_offset=0u percentage_holes=0.284072 fraction_m3=1
        fraction_m2=0.18459 fraction_m1=0.13085 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=1 neighbor_y=1
    I13 (phi_ext ax_ext ay_ext phi_frame net1053 net1050 net1058 net1043
        net1052 net1051 net1056 net1038 net1044 net1037 net1039 net1049
        net1042 net1061 net1036 net1057 net1060 net1046 net1059 net1048
        net1045 net1035 net1054 net1041 net1073 net1062 net1063 net1064
        net1065 net1066 net1067 net1068 net1069 net1070 net1071 net1072)
        plate_1000 unitl=22.8u unitw=7.6u unitnum_x=3 unitnum_y=1 angle=0
        joint_offset=0u percentage_holes=0.284072 fraction_m3=1
        fraction_m2=0.18459 fraction_m1=0.13085 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=1 neighbor_y=1
    I15 (phi_ext ax_ext ay_ext phi_frame net1093 net1656 net1098 net1083
        net1092 net1091 net1096 net1078 net1084 net1077 net1079 net1089
        net1082 net1659 net1076 net1097 net1100 net1086 net1099 net1088
        net1085 net1075 net1094 net1081 net1113 net1668 net1103 net1104
        net1105 net1106 net1107 net1108 net1109 net1110 net1111 net1112)
        plate_1000 unitl=22.8u unitw=7.6u unitnum_x=3 unitnum_y=1 angle=0
        joint_offset=0u percentage_holes=0.284072 fraction_m3=1
        fraction_m2=0.18459 fraction_m1=0.13085 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=1 neighbor_y=1
    I16 (phi_ext ax_ext ay_ext phi_frame net1369 net1130 net1138 net1123
        net1132 net1131 net1136 net1118 net1124 net1117 net1119 net1129
        net1361 net1141 net1116 net1137 net1140 net1126 net1139 net1128
        net1125 net1115 net1134 net1121 net1153 net1142 net1143 net1144
        net1391 net1146 net1147 net1148 net1149 net1150 net1151 net1152)
        plate_1000 unitl=22.8u unitw=7.6u unitnum_x=3 unitnum_y=1 angle=0
        joint_offset=0u percentage_holes=0.284072 fraction_m3=1
        fraction_m2=0.18459 fraction_m1=0.13085 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=1 neighbor_y=1
    I6 (phi_ext ax_ext ay_ext phi_disp net1569 net1170 net1178 net1163
        net1172 net2204 net1176 net1158 net1164 net1157 net1159 net1169
        net1561 net1181 net1156 net1177 net1180 net2205 net1179 net1168
        net1165 net1155 net1174 net1161 net1193 net1182 net1183 net1184
        net1591 net1186 net1187 net1188 net1189 net1190 net1191 net1192)
        plate_1000 unitl=9.55u unitw=9.3u unitnum_x=12 unitnum_y=1 
angle=0
        joint_offset=0.9u percentage_holes=0.208716 fraction_m3=1
        fraction_m2=0.59043 fraction_m1=0.53222 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=0 neighbor_y=1
    I5 (phi_ext ax_ext ay_ext phi_disp net1213 net1210 net1218 net1203
        net1212 net1211 net1216 net1198 net1204 net2084 net1199 net1209
        net1202 net1221 net1196 net1217 net1220 net1206 net1219 net1208
        net1205 net2085 net1214 net1201 net1233 net1222 net1223 net1224
        net1225 net1226 net1227 net1228 net1229 net1230 net1231 net1232)
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        plate_1000 unitl=9.55u unitw=9.3u unitnum_x=12 unitnum_y=1 
angle=0
        joint_offset=0.9u percentage_holes=0.208716 fraction_m3=1
        fraction_m2=0.59043 fraction_m1=0.53222 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=0 neighbor_y=1
    I967 (phi_ext ax_ext ay_ext phi_frame net1253 net1250 net1258 net1243
        net1252 net1251 net1256 net1238 net1244 net1237 net1239 net1249
        net1242 net1261 net1236 net1257 net1260 net1246 net1259 net1248
        net1245 net1235 net1254 net1241 net1273 net1262 net1263 net1264
        net1265 net1266 net1267 net1268 net1269 net1270 net1271 net1272)
        plate_1000 unitl=55.4u unitw=7.6u unitnum_x=3 unitnum_y=1 angle=0
        joint_offset=15.15u percentage_holes=0.284072 fraction_m3=1
        fraction_m2=0.15583 fraction_m1=0.16524 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=0 neighbor_y=2
    I968 (phi_ext ax_ext ay_ext phi_frame net1729 net1290 net1298 net1283
        net1292 net1291 net1296 net1278 net1284 net1277 net1279 net1093
        net1720 net1301 net1276 net1297 net1300 net1286 net1299 net1288
        net1285 net1275 net1294 net1082 net1313 net1302 net1303 net1304
        net1751 net1306 net1307 net1308 net1309 net1310 net1105 net1312)
        plate_1000 unitl=25u unitw=7.6u unitnum_x=3 unitnum_y=1 angle=0
        joint_offset=0u percentage_holes=0.284072 fraction_m3=1
        fraction_m2=0.15583 fraction_m1=0.16524 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=0 neighbor_y=2
    I971 (phi_ext ax_ext ay_ext phi_frame net1049 net1330 net1338 net1323
        net1332 net1331 net1336 net1318 net1324 net1317 net1319 net1329
        net1041 net1341 net1316 net1337 net1340 net1326 net1339 net1328
        net1325 net1315 net1334 net1321 net1353 net1342 net1343 net1344
        net1071 net1346 net1347 net1348 net1349 net1350 net1351 net1352)
        plate_1000 unitl=55.4u unitw=7.6u unitnum_x=3 unitnum_y=1 angle=0
        joint_offset=15.15u percentage_holes=0.284072 fraction_m3=1
        fraction_m2=0.18459 fraction_m1=0.13085 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=0 neighbor_y=2
    I972 (phi_ext ax_ext ay_ext phi_frame net889 net1370 net1378 net1363
        net1372 net1371 net1376 net1358 net1364 net1357 net1359 net1369
        net880 net1381 net1356 net1377 net1380 net1366 net1379 net1368
        net1365 net1355 net1374 net1361 net1393 net1382 net1383 net1384
        net911 net1386 net1387 net1388 net1389 net1390 net1391 net1392)
        plate_1000 unitl=25u unitw=7.6u unitnum_x=3 unitnum_y=1 angle=0
        joint_offset=0u percentage_holes=0.284072 fraction_m3=1
        fraction_m2=0.18459 fraction_m1=0.13085 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=0 neighbor_y=2
    I973 (phi_ext ax_ext ay_ext phi_disp x_proof_top net1410 net1418
        net1403 net1412 net1411 net1416 net1398 net1404 net1397 net1399
        net1409 y_proof_top net1421 net1396 net1417 net1420 net1406
        net1419 net1408 net1405 net1395 net1414 net1401 net1433 net1422
        net1423 net1424 net1471 net1426 net1427 net1428 net1429 net1430 0
        net1432) plate_1000 unitl=5.7u-offs unitw=9.3u unitnum_x=12
        unitnum_y=1 angle=0 joint_offset=0u percentage_holes=0.208716
        fraction_m3=1 fraction_m2=0.59043 fraction_m1=0.53222
        fraction_poly=0 Xc=0 Yc=0 neighbor_x=0 neighbor_y=2
    I974 (phi_ext ax_ext ay_ext phi_disp x_proof_bot x_proof_left net1458
        net1443 x_disp net1451 x_proof_right net1438 net1444 net1437
        net1439 x_proof_top y_proof_bot y_proof_left net1436 net1457
        y_disp net1446 y_proof_right net1448 net1445 net1435 net1454
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        y_proof_top net1473 net1462 net1463 net1464 net1511 net1466
        net1467 net1468 net1469 net1470 net1471 net1472) plate_1000
        unitl=284.7u unitw=9.3u unitnum_x=12 unitnum_y=1 angle=0
        joint_offset=0u percentage_holes=0.208716 fraction_m3=1
        fraction_m2=0.59043 fraction_m1=0.53222 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=0 neighbor_y=2
    I975 (phi_ext ax_ext ay_ext phi_disp net1529 net1490 net1498 net1483
        net1492 net1491 net1496 net1478 net1484 net1477 net1479
        x_proof_bot net1521 net1501 net1476 net1497 net1500 net1486
        net1499 net1488 net1485 net1475 net1494 y_proof_bot net1513
        net1502 net1503 net1504 net1551 net1506 net1507 net1508 net1509
        net1510 net1511 net1512) plate_1000 unitl=5.7u+offs unitw=9.3u
        unitnum_x=12 unitnum_y=1 angle=0 joint_offset=0u
        percentage_holes=0.208716 fraction_m3=1 fraction_m2=0.59043
        fraction_m1=0.53222 fraction_poly=0 Xc=0 Yc=0 neighbor_x=0
        neighbor_y=2
    I976 (phi_ext ax_ext ay_ext phi_disp net1209 net1530 net1538 net1523
        net1532 net1531 net1536 net1518 net1524 net1517 net1519 net1529
        net1201 net1541 net1516 net1537 net1540 net1526 net1539 net1528
        net1525 net1515 net1534 net1521 net1553 net1542 net1543 net1544
        net1231 net1546 net1547 net1548 net1549 net1550 net1551 net1552)
        plate_1000 unitl=9.575u unitw=9.3u unitnum_x=12 unitnum_y=3
        angle=0 joint_offset=16.95u percentage_holes=0.208716
        fraction_m3=1 fraction_m2=0.59043 fraction_m1=0.53222
        fraction_poly=0 Xc=0 Yc=0 neighbor_x=0 neighbor_y=2
    I977 (phi_ext ax_ext ay_ext phi_disp net1409 net1570 net1578 net1563
        net1572 net1571 net1576 net1558 net1564 net1557 net1559 net1569
        net1401 net1581 net1556 net1577 net1580 net1566 net1579 net1568
        net1565 net1555 net1574 net1561 net1593 net1582 net1583 net1584 0
        net1586 net1587 net1588 net1589 net1590 net1591 net1592)
        plate_1000 unitl=9.575u unitw=9.3u unitnum_x=12 unitnum_y=3
        angle=0 joint_offset=16.95u percentage_holes=0.208716
        fraction_m3=1 fraction_m2=0.59043 fraction_m1=0.53222
        fraction_poly=0 Xc=0 Yc=0 neighbor_x=0 neighbor_y=2
    I982 (phi_ext ax_ext ay_ext phi_frame x_frame_bot net1056 net1618
        net1603 net1959 net1611 net1616 net1598 net1604 net1597 net1599
        net01627 y_frame_bot net1059 net1596 net1617 net1961 net1606
        net1619 net1608 net1605 net1595 net1614 net01619 net1633 net1068
        net1623 net1624 net1625 net1626 net1627 net1628 net1629 net1630
        net1631 net1968) plate_1000 unitl=7.6u unitw=9.9u unitnum_x=24
        unitnum_y=3 angle=0 joint_offset=7.05u percentage_holes=0.295853
        fraction_m3=1 fraction_m2=0.14949 fraction_m1=0 fraction_poly=0
        Xc=0 Yc=0 neighbor_x=2 neighbor_y=0
    I1028 (phi_ext ax_ext ay_ext phi_frame net01671 net1136 net1658
        net1643 net1652 net1651 net1656 net1638 net1644 net1637 net2324
        x_frame_top net01660 net1139 net1636 net1657 net1660 net1646
        net1659 net1648 net1645 net1635 net2325 y_frame_top net1673
        net1148 net1663 net2330 net1665 net1666 net1667 net1668 net1669
        net1670 net1671 net1672) plate_1000 unitl=7.6u unitw=9.9u
        unitnum_x=24 unitnum_y=3 angle=0 joint_offset=7.05u
        percentage_holes=0.295853 fraction_m3=1 fraction_m2=0.14949
        fraction_m1=0 fraction_poly=0 Xc=0 Yc=0 neighbor_x=2 neighbor_y=0
    I53 (phi_ext ax_ext ay_ext phi_frame net729 net1690 net1698 net1682
        net1692 net1691 net1696 net1677 net1683 net1676 net1678 net1689
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        net720 net1701 net1675 net1697 net1700 net1685 net1699 net1687
        net1684 net1674 net1694 net1680 net1713 net1702 net1703 net1704
        net751 net1706 net1707 net1708 net1709 net1710 net1711 net1712)
        plate_1000 unitl=82.45u-offs unitw=7.6u unitnum_x=3 unitnum_y=1
        angle=0 joint_offset=0u percentage_holes=0.284072 fraction_m3=1
        fraction_m2=0.18459 fraction_m1=0.13085 fraction_poly=0 Xc=0 Yc=0
        neighbor_x=0 neighbor_y=2
    I47 (phi_ext ax_ext ay_ext phi_frame net769 net1730 net1738 net1722
        net1732 net1731 net1736 net1717 net1723 net1716 net1718 net1729
        net760 net1741 net1715 net1737 net1740 net1725 net1739 net1727
        net1724 net1714 net1734 net1720 net1753 net1742 net1743 net1744
        net791 net1746 net1747 net1748 net1749 net1750 net1751 net1752)
        plate_1000 unitl=9.4125u unitw=7.6u unitnum_x=3 unitnum_y=4
        angle=0 joint_offset=15.15u percentage_holes=0.284072
        fraction_m3=1 fraction_m2=0.15583 fraction_m1=0.16524
        fraction_poly=0 Xc=0 Yc=0 neighbor_x=0 neighbor_y=2
    I1047 (phi_ext ax_ext ay_ext phi_frame net1762 v_act_bias v_act_bias
        v_act_bias v_act_bias v_act_r v_act_r v_act_r v_act_r
        x_frame_right net1757 y_frame_right net1764) comb_1111_2
        finger_width=2.7u finger_length=11.4u overlap=3.3u gap=g_dr_r
        fingers=23 angle=0 Xc=0 Yc=0 wing_length_a=0u wing_length_b=0u
        truss_width_a=0u truss_width_b=0u
    I1046 (phi_ext ax_ext ay_ext net1836 phi_frame v_act_l v_act_l 
v_act_l
        v_act_l v_act_bias v_act_bias v_act_bias v_act_bias net1838
        x_frame_left net1837 y_frame_left) comb_1111_1 finger_width=2.7u
        finger_length=11.4u overlap=3.3u gap=g_dr_l fingers=23 angle=0
        Xc=0 Yc=0 wing_length_a=0u wing_length_b=0u truss_width_a=0u
        truss_width_b=0u
    I1045 (phi_ext ax_ext ay_ext phi_disp phi_frame inn inn inn inn
        vdc_pos_n vdc_pos_n vdc_pos_n vdc_pos_n vdc_neg_n vdc_neg_n
        vdc_neg_n vdc_neg_n x_proof_right net810 y_proof_right net821)
        comb_diff_1111_2 finger_width_a=5.7u finger_width_b=3.9u
        finger_length=61.5u overlap=60u gap=g_s_r fingers=21 Xc=0 Yc=0
        angle=0 wing_length_a=0u wing_length_b=0u truss_width_a=0u
        truss_width_b=0u
    I1044 (phi_ext ax_ext ay_ext phi_frame phi_disp inp inp inp inp
        vdc_neg_p vdc_neg_p vdc_neg_p vdc_neg_p vdc_pos_p vdc_pos_p
        vdc_pos_p vdc_pos_p net736 x_proof_left net739 y_proof_left)
        comb_diff_1111_1 finger_width_a=3.9u finger_width_b=5.7u
        finger_length=61.5u overlap=60u gap=g_s_l fingers=21 Xc=0 Yc=0
        angle=0 wing_length_a=0u wing_length_b=0u truss_width_a=0u
        truss_width_b=0u
    I57 (net1830 net1832 net1831) anchor
    I978 (net1762 net1757 net1764) anchor l=32.4u w=27u
    I1032 (net1836 net1838 net1837) anchor l=32.4u w=27u
    I10 (net2166 phi_frame net2163 net1844 net2165 net1845 nt2172 net1843
        net2164 net1843 net2171 net1843) beam_1110 l=6.0u w=5.1u angle=0
    I7 (net1930 phi_frame net1928 net1856 net1929 net1857 net1934 net1862
        net1933 0 net1927 0) beam_1110 l=6.0u w=5.1u angle=0
    I9 (phi_frame net1870 net757 net1868 net767 net1869 net787 net1874
        net787 net1873 net787 net1867) beam_1110 l=6.0u w=5.1u angle=0
    I8 (phi_frame net1882 net837 net1880 net847 net1881 net867 net1886
        net867 net1885 net867 net1879) beam_1110 l=6.0u w=5.1u angle=0
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    I981 (net1914 net1894 net1911 net1892 net1913 net1893 net1920 net1898
        net1912 net1897 net1919 net1891) beam_1110 l=5.1u+1.8u w=5.1u
        angle=0
    I983 (net1938 net1906 net1935 net1904 net1937 net1905 net1944 net1910
        net1936 net1909 net1943 net1903) beam_1110 l=5.1u+1.8u w=5.1u
        angle=0
    I984 (net1914 net2110 net1911 net2108 net1913 net2109 net1920 net2114
        net1912 net2113 net1919 net2107) beam_1110 l=105u+5.1u
        w=ofacbl*1.8u-overetch angle=90
    I985 (net1894 net1930 net1892 net1928 net1893 net1929 net1898 net1934
        net1897 net1933 net1891 net1927) beam_1110 l=105u+5.1u
        w=ofacbl*1.8u-overetch angle=90
    I986 (net1938 net1882 net1935 net1880 net1937 net1881 net1944 net1886
        net1936 net1885 net1943 net1879) beam_1110 l=105u+5.1u
        w=ofacbr*1.8u-overetch angle=90
    I987 (net1906 net1954 net1904 net1952 net1905 net1953 net1910 net1958
        net1909 net1957 net1903 net1951) beam_1110 l=105u+5.1u
        w=ofacbr*1.8u-overetch angle=90
    I988 (phi_frame net1966 net1959 net1964 net1961 net1965 net1968
        net1970 0 net1969 0 net1963) beam_1110 l=5.1u+0.9u w=5.1u 
angle=90
    I989 (phi_frame net2002 net1618 net2000 net1596 net2001 net1630
        net2006 0 net2005 0 net1999) beam_1110 l=5.1u+0.9u w=5.1u 
angle=90
    I990 (net1966 net1990 net1964 net1988 net1965 net1989 net1970 net1994
        net1969 net1993 net1963 net1987) beam_1110 l=102u w=1.8u*ifacbl
        angle=0
    I991 (net2022 net2002 net2019 net2000 net2021 net2001 net2028 net2006
        net2020 net2005 net2027 net1999) beam_1110 l=102u w=1.8u*ifacbr
        angle=0
    I992 (net1990 net2038 net1988 net2036 net1989 net2037 net1994 net2042
        net1993 net2041 net1987 net2035) beam_1110 l=5.1u+1.8u w=5.1u
        angle=90
    I993 (net2022 net2026 net2019 net2024 net2021 net2025 net2028 net2030
        net2020 net2029 net2027 net2023) beam_1110 l=5.1u+1.8u w=5.1u
        angle=90
    I994 (net2058 net2038 net2055 net2036 net2057 net2037 net2064 net2042
        net2056 net2041 net2063 net2035) beam_1110 l=102u w=1.8u*ifacbl
        angle=0
    I995 (net2026 net2050 net2024 net2048 net2025 net2049 net2030 net2054
        net2029 net2053 net2023 net2047) beam_1110 l=102u w=1.8u*ifacbr
        angle=0
    I996 (net2058 net2062 net2055 net2060 net2057 net2061 net2064 net2066
        net2056 net2065 net2063 net2059) beam_1110 l=5.1u+1.8u w=5.1u
        angle=90
    I997 (net2050 net2098 net2048 net2096 net2049 net2097 net2054 net2102
        net2053 net2101 net2047 net2095) beam_1110 l=5.1u+1.8u w=5.1u
        angle=90
    I998 (net2062 phi_disp net2060 net2084 net2061 net2085 net2066 
net2090
        net2065 net2089 net2059 net2083) beam_1110 l=53.4u+2.55u w=1.8u
        angle=0
    I999 (phi_disp net2098 net1198 net2096 net1208 net2097 net2100 
net2102
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        net2092 net2101 net2099 net2095) beam_1110 l=53.4u+2.55u w=1.8u
        angle=0
    I1002 (net1836 net2110 net1838 net2108 net1837 net2109 net2112 
net2114
        net2104 net2113 net2111 net2107) beam_1110 l=5.1u+0.9u w=5.1u
        angle=0
    I1005 (net1954 net1762 net1952 net1757 net1953 net1764 net1958 
net2126
        net1957 net2125 net1951 net2119) beam_1110 l=5.1u+0.9u w=5.1u
        angle=0
    I1006 (net1836 net2134 net1838 net2132 net1837 net2133 net2136 
net2138
        net2128 net2137 net2135 net2131) beam_1110 l=5.1u+0.9u w=5.1u
        angle=0
    I1009 (net2190 net1762 net2187 net1757 net2189 net1764 net2196 
net2150
        net2188 net2149 net2195 net2143) beam_1110 l=5.1u+0.9u w=5.1u
        angle=0
    I1010 (net2134 net2158 net2132 net2156 net2133 net2157 net2138 
net2162
        net2137 net2161 net2131 net2155) beam_1110 l=105u+5.1u
        w=ofactl*1.8u-overetch angle=90
    I1011 (net2166 net2350 net2163 net2348 net2165 net2349 net2172 
net2354
        net2164 net2353 net2171 net2347) beam_1110 l=105u+5.1u
        w=ofactl*1.8u-overetch angle=90
    I1012 (net1870 net2182 net1868 net2180 net1869 net2181 net1874 
net2186
        net1873 net2185 net1867 net2179) beam_1110 l=105u+5.1u
        w=ofactr*1.8u-overetch angle=90
    I1013 (net2190 net2362 net2187 net2360 net2189 net2361 net2196 
net2366
        net2188 net2365 net2195 net2359) beam_1110 l=105u+5.1u
        w=ofactr*1.8u-overetch angle=90
    I1016 (net2226 phi_disp net2223 net2204 net2225 net2205 net2232 0
        net2224 0 net2231 0) beam_1110 l=53.4u+2.55u w=1.8u angle=0
    I1017 (phi_disp net2218 net1163 net2216 net1177 net2217 0 net2222 0
        net2221 0 net2215) beam_1110 l=53.4u+2.55u w=1.8u angle=0
    I1018 (net2226 net2230 net2223 net2228 net2225 net2229 net2232 
net2234
        net2224 net2233 net2231 net2227) beam_1110 l=5.1u+1.8u w=5.1u
        angle=90
    I1019 (net2218 net2266 net2216 net2264 net2217 net2265 net2222 
net2270
        net2221 net2269 net2215 net2263) beam_1110 l=5.1u+1.8u w=5.1u
        angle=90
    I1020 (net2230 net2254 net2228 net2252 net2229 net2253 net2234 
net2258
        net2233 net2257 net2227 net2251) beam_1110 l=102u w=1.8u*ifactl
        angle=0
    I1021 (net2286 net2266 net2283 net2264 net2285 net2265 net2292 
net2270
        net2284 net2269 net2291 net2263) beam_1110 l=102u w=1.8u*ifactr
        angle=0
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    I1022 (net2254 net2302 net2252 net2300 net2253 net2301 net2258 
net2306
        net2257 net2305 net2251 net2299) beam_1110 l=5.1u+1.8u w=5.1u
        angle=90
    I1023 (net2286 net2290 net2283 net2288 net2285 net2289 net2292 
net2294
        net2284 net2293 net2291 net2287) beam_1110 l=5.1u+1.8u w=5.1u
        angle=90
    I1024 (net2322 net2302 net2319 net2300 net2321 net2301 net2328 
net2306
        net2320 net2305 net2327 net2299) beam_1110 l=102u w=1.8u*ifactl
        angle=0
    I1025 (net2290 net2314 net2288 net2312 net2289 net2313 net2294 
net2318
        net2293 net2317 net2287 net2311) beam_1110 l=102u w=1.8u*ifactr
        angle=0
    I1026 (net2322 phi_frame net2319 net2324 net2321 net2325 net2328
        net2330 net2320 net2329 net2327 net2323) beam_1110 l=5.1u+0.9u
        w=5.1u angle=90
    I1027 (net2314 phi_frame net2312 net1644 net2313 net1645 net2318
        net1666 net2317 net2341 net2311 net2335) beam_1110 l=5.1u+0.9u
        w=5.1u angle=90
    I1029 (net2158 net2350 net2156 net2348 net2157 net2349 net2162 
net2354
        net2161 net2353 net2155 net2347) beam_1110 l=5.1u+1.8u w=5.1u
        angle=0
    I1030 (net2182 net2362 net2180 net2360 net2181 net2361 net2186 
net2366
        net2185 net2365 net2179 net2359) beam_1110 l=5.1u+1.8u w=5.1u
        angle=0
ends gyro_mems
// End of subcircuit definition.

// Library name: bikram_gyro
// Cell name: gyro_sim_no_ckt
// View name: schematic
// Inherited view list: spectreS cdsSpice spice verilog behavioral
//functional hdl system verilogNetlist schematic cmos.sch cmos_sch
//veriloga ahdl auLvs
I6 (0 ax_ext) position_source dc_value=ax_dc ac_mag=0 ac_phase=0
        offset=ax_dc amplitude=ax_sin frequency=100 phase=0
I7 (0 ay_ext) position_source dc_value=ay_dc ac_mag=0 ac_phase=0
        offset=ay_dc amplitude=ay_sin frequency=fext phase=0
Az (0 az_ext) position_source dc_value=az_dc ac_mag=0 ac_phase=0
        offset=az_dc amplitude=az_sin frequency=fext phase=0
C4 (inp dr_bias) capacitor c=mism*23.4501e-15
C5 (inn dr_bias) capacitor c=mism*1.09296e-16
C0 (inp 0) capacitor c=500.0f
C1 (inn 0) capacitor c=500.0f
I17 (0 phi_ext) angle_source dc_value=phi_dc ac_mag=0 ac_phase=0 off-
set=0
        amplitude=phi_amp frequency=fext phase=0
Phix (0 phix_ext) angle_source dc_value=0 ac_mag=0 ac_phase=0 offset=0
        amplitude=phix_sin frequency=fext phase=0
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Phiy (0 phiy_ext) angle_source dc_value=0 ac_mag=0 ac_phase=0 offset=0
        amplitude=phiy_sin frequency=fext phase=0
I0 (ax_ext ay_ext az_ext inn inp phi_disp phi_ext phix_ext phiy_ext
        dr_bias drive_l drive_r net90
        net90 net92 net92 x_disp y_disp) gyro_mems
V8 (drive_r 0) vsource dc=-drive_dc mag=10 phase=0 type=sine delay=0
        sinedc=0 ampl=drive_sin_r freq=fdrive
V0 (drive_l 0) vsource dc=drive_dc mag=10 phase=0 type=sine sinedc=0
        ampl=drive_sin freq=fdrive
V7 (net086 0) vsource dc=0 mag=0 phase=0 type=dc
V6 (net088 0) vsource dc=0 mag=0 phase=0 type=dc
V2 (net90 0) vsource dc=-2.5 mag=0 phase=0 type=dc
V3 (net92 0) vsource dc=2.5 mag=0 phase=0 type=dc
V1 (dr_bias 0) vsource dc=18 mag=0 phase=0 type=dc

save I0.phi_frame ay_ext x_disp y_disp phi_disp I0.x_frame_left
    I0.y_frame_left I0.x_frame_bot I0.y_frame_bot I0.x_frame_right
    I0.y_frame_right I0.x_frame_top I0.y_frame_top I0.x_proof_left
    I0.y_proof_left I0.x_proof_bot I0.y_proof_bot I0.x_proof_right
    I0.y_proof_right I0.x_proof_top I0.y_proof_top I0:4 I0:3 inp inn
    ax_ext 
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