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Abstract

MEMS gyroscopes have proved to be extremely difficult to manufacture reliably. The
MEMS gyroscope is required to sense picometer-scale displacements, making it sensitive
to spurious vibrations and other coupling mechanisms. This thesis aims to quantitatively
capture, through models and simulations, the sensitivity of a MEMS gyroscope to manu-
facturing variations in the widths of suspension beams and gaps between fingersin elec-
trostatic actuation and capacitive sensing combs. The gyroscope considered in this thesis
is manufactured in a CMOS-MEMS process. The suspended MEMS structures are com-
posed of the multi-layer stack of interconnect metals and dielectrics in a CMOS process.
The effect of misalignment between the metal layers in the suspended microstructures is
also modeled in the gyroscope. A number of fundamental issues related to the modeling
and simulation of MEMS gyroscopes are addressed. Models in elastic and electrostatic
domains are developed. Numerical tools such as finite element analysis or boundary ele-
ment analysis are used for model verification. Behavioral ssimulation is used throughout
thisthesis to analyze the gyroscope and system-level design issues.

The elastic modeling effort is primarily aimed at a thorough understanding of cross-
axis coupling in micromechanical springs and at multi-dimensional curvature in the multi-
layer suspended structures in the CMOS-MEMS process. Cross-axis stiffness constants
are derived for basic spring topologies such as crab-leg, u-spring and serpentine springs.
Techniques to reduce, and even completely eliminate, elastic cross-axis coupling are dis-
cussed. In the electrostatic domain, a methodology which combines analytical equations
with numerically obtained data is developed to model CMOS-MEMS combs. Particular
attention is paid in this methodology to make the resultant behavioral model energy con-
serving. Convergence problems found in behavioral simulations of gyroscopes lead to a
detailed comparison of different Analog Hardware Description Language (AHDL) model
implementation of mechanical second-order systems, such as the resonating structurein a
gyroscope. AHDL model implementation guidelines for improved convergence in behav-

ioral simulations are deduced from the comparisons.



Using the elastic and electrostatic models as the basis, analytical equations relating
gyroscope non-idedlities. the Zero Rate Output, acceleration and acceleration-squared
sensitivity and cross-axis sensitivity to manufacturing effects are derived. The equations
are compared with results of behavioral ssimulation. Monte Carlo simulations using the
behavioral models are run in order to verify the trends predicted by the analytical equa-
tions. The analysis and ssimulations result in severa insights into gyroscope non-idealities

and design pointers to reduce them.
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Chapter 1. Introduction

1.1 Introduction

The field of Microelectromechanical Systems (MEMS) has, over the past 20 years,
emerged as atechnol ogy that promises to have significant impact on everyday living inthe
near future. MEMS provide inexpensive means to sense and, in a limited way, control
physical, chemical and biological interactions with nature. They add a new dimension to
the information revolution of the latter half of the twentieth century, by enabling ubiqui-
tous access to sensor data previously limited to industrial, military, and medical applica-
tions. MEMS seek to achieve this vision through a variety of manufacturing techniques
common among which are surface micromachining, bulk micromachining and LIGA [1].
These integrated circuit (1C)-like techniques are capable of producing micrometer-scale
features. However, they lack the precision (i.e., relative accuracy) of traditional mechani-
cal fabrication practices. Being integrated circuit compatible, they derive their power by
leveraging well-understood and characterized signal processing capabilities of integrated
circuits. As a result, a wide spectrum (literally as well) of applications have been made
possible such asinertial sensors, pressure and acoustic transducers, high frequency radios,

optical communications, lab-on-a-chip for chemical and biologica analysis.

The contributions of thisthesis are primarily relevant for micromachined inertial sen-
sors. Accelerometers and gyroscopes are two important members of the inertial sensor
family. Accelerometers sense the externa acceleration in which they are placed, while
gyroscopes measure the rate of rotation or the angular velocity of the object to which they
are attached. Multi-axial accelerometers and gyroscopes can be combined to build an Iner-
tial Measurement Unit (IMU), also called an Inertial Navigation System (INS). Tradition-
aly, high precision IMUs have been an indispensable part of ships, aeroplanes, satellites,
gpace shuttles and the like. Surface micromachined inertial sensors, which can be batch-
fabricated with low cost have a small sensing proof-mass (~ micrograms) and conse-
guently lower resolution compared with macro-scal e accel erometers or optical gyroscopes
[2]. The availability of low cost inertial sensors has opened up a wide range of new appli-

cations which do not require the high precision that IMUs demand. The current market for

1



inertial sensors in automobiles is estimated to be about a billion dollars per year [3]. Air-
bag-deployment in automobiles is a well known example of a commercially successful
low cost, low resolution application. Surface-micromachined gyroscopes, have applica-
tions in dynamic stability control and rollover detection in automobiles, computer mice,
pointers, video camera stabilization and a number of robotics and military applications
[2][4]. Conventiona rotating-wheel gyros and high-precision fiber-optic and ring laser
gyros are too expensive and too large to be adopted into the market for micro gyroscopes
[2]. While potential markets for inexpensive gyroscopes exist, technical challenges have
been impeding the rapid commercial deployment of gyroscopes. In the next section some
of the fundamental problems that have been encountered in manufacturing robust micro-

machined gyroscopes are examined.

1.2 Motivation

Microgyroscopes are mainly attractive because of their small size (~1 mm X 1 mm
including sensing circuits) and low cost. Most microgyroscopes consist of a vibrating
proof-mass which is driven into oscillation by electrostatic or other means. When placed
in a rotationa field, the vibrating proof-mass experiences an apparent force called the
Coriolis force, which is proportional to the cross-product of the angular velocity of the
rotational field and the trandational velocity of the oscillating proof-mass (Figure 1.1).
The Caoriolis force is orthogonal to the direction of the driven oscillation. The displace-

ment induced by the Coriolisforceis picked up by a sense accel erometer, which can either

—
Driven

oscillations
Inner accelerometer

Vg

oscillations

_Ilnduced
Coriolis- Force

F. = 2MQ x vy

FIGURE 1.1. Working principle of a microgyroscopewith a sensing accelerometer
nested inside a vibrating frame.



utilize the vibrating proof-mass or have a separate sense proof-mass. Figure 1.1 shows the

microgyroscope chip C which is attached to a rotating frame R. The global inertial refer-

ence frame G is also shown. The velocity v of driven oscillation and Coriolisforce F are

shown in mutually orthogonal directions. The zoomed in view of the gyroscope schemati-
cally shows an inner accelerometer nested inside an outer resonator. The outer accelerom-
eter isdriven into oscillation. Orthogonal induced oscillations between the two are picked
up by acapacitive sensing circuit. In order to identify important design issues, a high-level

analysis of typical magnitudes of various microgyroscope quantitiesis presented below.

In the following analysis typical numbers for microgyroscopes are used in order to
bring out the relative magnitudes of displacements and velocities in the driven (oscilla-

tion) direction and the induced (Coriolis force) direction. Typical value of the sense mass

is about Mg = 1lug. The angular velocities that can be sensed are of the order of

Q = 1°/s. The oscillations are usually about 10 kHz with an amplitude of about 5 um.

Therefore, the peak oscillation velocity is about vy = 0.31m/s. The Coriolis force is
then given by F_. = 2M Q x v, = 10pN . Assuming a spring stiffness for the sense

accelerometer of 1(N/m), the sense displacement is about 10 pm. In any real microgyro-
scope, some part of the driven oscillation couples onto the sense accel erometer, through
electrostatic, inertial, viscous and elastic modes. Comparing the magnitudes of the driven
oscillation and the displacement produced by the sense accelerometer, it is seen that
undesired coupling from the driven oscillation to the sense oscillation should be as small
as 2 ppm. While this may be a difficult number to achieve in any low cost system, it is
amost impossible to realize such precise dimension-control in 1C-based processes which
typically control relative fabrication tolerances to only about 1% or 10000 ppm [5]. Fur-

thermore, in capacitive sensors, a displacement of few picometers typically results in a

capacitance change of a few zepto farads (10_21). The total sense capacitance and para-
sitic capacitances are usually of the order of ten to hundred femto farads, leading to arela-
tive capacitance change of 0.1 ppm. Therefore, extremely low noise front ends are
required to sense such small relative capacitance changes. Another fundamental issue

which limits the resolution of both microaccel erometers and microgyroscopes is mechani-
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cal thermal noise. Since |C processes and surface micromachining are both basically thin
film processes, the resulting proof-masses tend to have a large surface-area to volume
ratio. As a result, viscous damping forces are more significant at the micro-scale than at
the macro-scale. Therefore, the Brownian motion resulting from viscous |oss mechanisms

sets alower limit on the smallest deterministic motion that can be sensed [6].

The solutions to the above fundamental challenges need a multi-pronged approach.
The CMOS-MEMS process developed at Carnegie Méellon provides partia answers to
some of the challenges [7] (Figure 1.2). Tight integration of MEMS and sensing circuits
leads to minimized parasitic capacitances. Large gaps between the MEMS structure and
the substrate (~ 30 um) lead to reduced Couette damping on the underside of the structure.
In addition, the CMOS-MEMS process has severa other advantages including full com-
patibility with a standard CMOS process, 0 additional masks for MEMS processing, high
aspect ratio MEMSS structure and multi-conductor stacks which facilitate complex routing.
However, the CMOS-MEMS process also has a few inherent limitations such as vertical
curling due to the multi-layer structures, inadequate control of the beam cross-sections and

lack of control over mechanical properties of the microstructure.



1.3 Scope of ThisThesis
The primary goal of thisthesisis to understand the effect of elastic and electrostatic
coupling on a CMOS-MEMS microgyroscope. Specifically, the microgyro parameters

under consideration are [8][9]:

» Zero Rate Output (Input offset or Bias): Input rate required to drive the output volt-

age to zero.

» Acceleration and Acceleration-squared Sensitivity: A linear acceleration applied to
the gyroscope may result in an output indistinguishable from that produced by an input
rotation. Typically, gyroscopes show alinear as well as quadratic dependence on accel-

eration.

» Cross-axis Sensitivity: Output produced by an angular rotation about an axis orthogo-

nal to the input axis of the gyroscope.

Little or no attention has been paid to the above parameters in public literature and
therefore, they are the primary focus of this thesis. Gyro resolution, sensitivity and non-
linearity have been analyzed extensively in public literature and therefore, are not covered

as part of thisthesis.

Good design practice dictates that designers have estimates of expected non-idealities
before resorting to ssimulation tools for more detailed results. The primary goal of this the-
sisisto provide gyroscope designers with techniques for hand analysis of non-idedlities.
Behavioral modeling and simulation is used throughout this thesis as a tool to verify hand
analysis as well as to provide quantitative data. Development of behavioral models and
solution techniques for associated simulation problems comprise a significant portion of
thisthesis. In order to obtain a quantitative understanding of elastic and electrostatic cou-
pling in a CMOS-MEMS gyroscope, the following issues are discussed en route to the

gyroscope:
» General theory of in-plane elastic cross-axis coupling
* Qut-of-plane elastic couplingin CMOS-MEMS beams

o Lateral and vertical curling of CMOS-MEMS beams with arbitrary boundary condi-

tions



» Model-order reduction for springs
» 3D modeling of electrostatic combsin the CMOS-MEMS process

» Convergence problemsin MEM S behavioral simulations

In the next section, the organization of the topics listed above is described.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 briefly surveys the development of
micromachined gyroscopes, introduces the CMOS-MEMS process and presents an intro-
duction to the behavioral smulation framework which is used extensively and also con-
tributed to in this thesis. Chapter 3 addresses elastic cross-coupling and thermoelastic
analysis for a restricted class of spring suspensions. Chapter 4 discusses reduced-order
modeling primarily of suspension beams elastic properties, but also suggests possible
extension to include viscous and inertial effects. Chapter 5 describes the el ectrostatic mod-
eling approach for CMOS-MEMS combs. Convergence problems in MEMS behavioral
simulation and guidelines for minimizing them are detailed in Chapter 6. Anaysis and
simulation of non-idealities in the CMOS-MEMS gyroscope are presented in Chapter 7.
Finally, the contributions of the thesis are summarized in Chapter 8 and future directions

of work are suggested.



Chapter 2. Background

2.1 Introduction

Much of the work in this thesis falls in the intersection of three complementary
research areas. micromachined gyroscopes, CMOS-MEMS and behavioral modeling and
simulation. Each of these areas is briefly reviewed in this chapter in order to place the
remainder of the thesis in perspective. In the initial section of this chapter, the develop-
ment of surface-micromachined gyroscopes, and, specifically, vertical-axis gyroscopes,
over the last decadeisreviewed. Following this, a qualitative comparison between arepre-
sentative single-layer vertical-axis microgyroscope and a CMOS-MEMS vertical axis
gyroscope is made [10]. The CMOS-MEMS process and relevant non-ideal manufactur-
ing effects are then described. In the subsequent part of this chapter, the behavioral smu-
lation framework called Nodal Simulation of Sensors and Actuators (NODAYS) [11][12],
which has been developed at Carnegie Mellon will be described. NODAS is used for micr-
ogyroscope smulation in this thesis. Additionally, models developed as part of this thesis
have been incorporated into NODAS.

2.2 Micromachined Gyroscopes
2.2.1 Brief History

Microgyroscopes can be classified by a number of different criteria: by the manufac-
turing process into surface and bulk micromachined, in terms of the sensing axis as verti-
cal axis and lateral axis or in terms of the intended application range as rate grade, tactical
grade and inertial grade [2]. Most of the surface-micromachined gyroscopes reported so
far fal in the rate-grade category. The first microgyro reported in 1991 was a surface-
micromachined lateral axis gyroscope [13] followed up in [14]. Alternate microgyros built
using alternate sensing techniques. piezoresistive [15], tunneling-based [16] and optical
sensors [17] have also been reported. The first surface-micromachined vertical (Z) axis
gyroscope was made at the University of Michigan in 1994 [18]. This gyro used a vibrat-
ing ring suspended by radial springs to sense the Coriolis force. Most of the vertical-axis

microgyros developed since then are single-layer structures and use trandational drive and
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FIGURE 2.1. Topology comparison of (a) single-layer surface micromachined
gyroscopes (e.g., Clark et al. [19]) and (b) CMOS-MEMS nested gyroscope
[10]. The dark shaded combs are the drive combs. Shading in the sense combs
indicates different potentials.
sense modes, in the plane of the structure [19][20][21][22][23][24][25][26][27][28][29].
Lateral [30][31] and vertical axis gyroscopes [10][32] have been built and successfully
tested in the multi-layer CMOS-MEMS process. In the next sub-section common features
of many single-layer vertical axis microgyroscopes are highlighted and compared with the

CMOS-MEMS vertical axis microgyro.
2.2.2 Common Features of Surface-Micromachined Vertical Axis Gyroscopes

The polysilicon microgyroscope developed by Clark et al. [19] at Berkeley is repre-
sentative of a number of later microgyroscope designs. As shown in Figure 2.1(a), linear
combs are used to actuate the inner-mass in the x direction. The inner plate vibrates with
large amplitude (few pm) in the x direction. The outer frame, along with the inner plateis,
free to oscillate in the y direction. A pair of differential combs on the outside are used to

pickup the Coriolis force induced vibrations in the y axis.

The outer frame is suspended by springs which are stiff in the x direction and there-
fore, has only a small amount of drive motion (few nm). Therefore, the Coriolis force due
to the vibration of the outer frame is insignificant. The Coriolis substantially acts only on
the central plate, but is transmitted to the rigid frame through the connecting beams which
are stiff in the y direction. Thus, only afraction of the total mass available is being used to
sense the Coriolis force. Furthermore, it is seen that the central plate along with the rigid

frame is easily displaced in the y direction due to external accelerations. This opens up a



possibility of external accelerations coupling through to the output. There are alternate
suspension schemes, which completely decouple the sense and the drive modes
[26][32][33][34], but use linear combs for sensing purposes. Linear combs are |less sensi-

tive than differential combs for same number of fingers.

Note that since the entire movable structure is at the same potential, the differentia
sense fingers have to be anchored. There are two possible locations for the sense combs,
outside the movable frame as is shown in Figure 2.1(a) or inside the movable frame. The
suspension design is such that the drive motion cannot be decoupled from the inner plate.
Recall from Chapter 1 that the drive motion is more than 4 orders of magnitude larger than
the Coriolis force induced motion. Differential sense combs are typically non-ideal after
manufacturing. They can be expected to have a small senditivity to cross-axis motions, as
will be shown in Chapter 7. Placing the differential sense combs inside the movable frame
will, therefore, lead to a significant sense signal due to the drive motion coupled to the
sense combs. Thus, in case of the single-layer microgyro with the suspension design as
shown, the only reasonable alternative is to place the differential combs outside the rigid

frame.

In contrast to the single-layer microgyro described above, the CMOS-MEMSS nested
gyro topology [10] allows use of differential comb for sensing and, at the same time,
allows for decoupling of the drive and sense modes. In the next sub-section the vertical
axis CMOS-MEMS gyroscope which is used throughout this thesis for smulations is
described.

2.2.3 Vertical Axis CMOSMEMS Gyroscope

The SEM of anested gyroscope [10] isshown in Figure 2.2(a). This gyroscopeisfab-
ricated in the CMOS-MEMS process [7]. It consists of an inner accelerometer nested
insde an outer resonator [10] as shown in Figure 2.2(b). The outer resonator is suspended
by four springs which are relatively rigid along the sensing direction (x) and compliant
along the driven direction (y). The outer resonator is driven at resonance and the inner res-
onator isforced to move along with the outer resonator because the springs suspending the

inner resonator are relatively rigid in y and compliant in x. In the presence of an angular
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FIGURE 2.2. (a) SEM of the vertical axis CMOS-MEM S nested-gyroscope [10]. (b) Functionally
equivalent structure showing the inner accelerometer, outer rigid frame, inner and outer springs
and drive and sense combs.

rate Q, about the out-of-plane axis, both the resonators experience the Coriolis forcein x,

however, the inner resonator has a larger displacement. The sensing mode resonant fre-
quency is designed to be larger than the drive frequency. The relative displacement

between the two resonators is sensed capacitively using differential combs.

Thus, the CMOS-MEMS gyroscope uses springs to decouple the drive and sense

modes and multiple conductorsto place the differential sensing combs between the central

plate and the rigid frame, both of which are movable.

2.3CMU CMOSMEMS Process
In the CMOS-MEMS process developed at CMU [7][31][35], released microstruc-
tures are produced by two step post processing of a standard CMOS die. First, an anisos-
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FIGURE 2.3. Abbreviated process flow for post-CMOS micromachining
developed at CMU [7][31][35] (&) CMOS wafer cross-section with circuits and
interconnects (soon to be microstructures) (b) Oxide removal step (€)
Microstructurerelease by Silicon removal

tropic reactive-ion etch (RIE) of the dielectric not covered by any metal layer is used to
define the sidewalls of the microstructures (Figure 2.3(b)). Following this, an isotropic
etch of the Silicon substrate leads to release of the suspended microstructures (Figure
2.3()).

The suspended microstructures are composed of a sandwich of metal and dielectric
layers. Since the materials have different thermal coefficients of expansion, the micro-
structures behave like thermal multi-morphs. Therefore, after processing, when the wafer
temperature is reduced to room temperature, residual stresses appear which tend to curl
the microstructure. In sense combs, vertical curling of the fingers leads to reduced sensi-
tivity because of reduced overlap area. The actuation force in case of driving combs is

degraded because of reduced change in capacitance with displacement. Furthermore,
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FIGURE 24. (a) Lateral curling seen in beams with deliberately misaligned metal layout (b)
Cross-section of the beam. It is seen that the METAL3 is not aligned with the METAL2 and
METAL 1. (Pictures courtesy Xu Zhu and Hasnain Lakdawala)

fringe capacitance due to the edges and corners of the comb-fingers becomes significant at
lower overlap areas. Curl-matching frames around the sensor have been proposed in order
to reduce the mismatch of the comb-fingers[36]. However, design of these frames for the
gyroscope under consideration is more complicated than the accelerometer in [36] and the
resultant curl istherefore, not as well-matched. Though vertical curling is seen throughout
the gyroscope it is the comb-drive which is affected significantly because it requires max-
imum overlap of the comb-fingers. Curling of the rest of the structure can be encapsulated
into a vertical displacement offset for the comb-drive and can be modeled by considering

different vertical positions of the comb-drive.

The CMOS-MEMS beams have embedded metal layers. Misalignment of the metal
layer mask during processing [38] can result in the metal layersinside the beam being off-
set from the center of the beam leading to an asymmetrical beam cross-section. This in
turn leads to elastic coupling between the in-plane and the out-of-plane modes and lateral
curling of beams and comb-fingers (Figure 2.4(a), (b)). Elastic coupling can lead to an
input offset in the microgyroscope due to the drive mode coupling onto the sense mode.
Geometrical offsets are caused by lateral curl of the fingers or the beams in the springs
(see Figure 2.5). As will be seen later, geometrical offsets give rise to input offsets and

cross-axis sengitivity. Other reasons for geometrical offsets include stress gradients along
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the chip substrate or along the beam width. However, currently there are no available mea-

surements for stress gradients in the substrate or across the beam width.

Modeling approaches for the non-idea manufacturing effects described above are

presented in the following chapters.

2.4 Structured Design M ethodology for MEM S

There are on-going efforts to establish a hierarchy of design levels for MEMS
[11][12] similar to that existing in the digital design world. The basis for the hierarchy is
decomposition of MEMS devices into MEMS atomic elements such as plate masses,
beam springs, electrostatic gaps and anchors which are at a similar level as resistors,
capacitors and inductors in the electronics design hierarchy. Thislevel isreferred to asthe
atomic level representation. An atomic level schematic representation of MEMS bears a

strong correspondence to the underlying layout.

At higher design levels, a chain of beam springs can be combined to form crab-leg
springs, u-shaped springs or serpentine springs. At an even higher (functional) level, all
the springs which connect two rigid elements (for instance, a plate and an anchor) can be
lumped together into a single functional spring element. The building blocks at this level
are “functional” elements such as mass, spring, damper, electrostatic sensor, electrostatic
actuator and differential sensor. Each of the functional elements exhibits only one kind of
functionality as opposed to the circuit-level atomic elements which incorporate multi-
domain physics. At the functional level, the different performance contributions are segre-

gated, requiring the parasitic-physics effects (i.e., mass of beams, damping forces on

=
E

AccV  Magn A Ma =
20.0 kV 2178x 200KV 218x. (SE (Nol4

FIGURE 2.5. (a) Geometrical offset in a differential comb-drive used in a CMOS accelerometer.
One of the gaps is smaller than the other one (b) Laterally curled springs in an accelerometer
(Picturescourtesy Vishal Gupta)
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plates, finite stiffness of plates) to be computed and included in the appropriate functional
element. The functional level representation cannot be visually correlated to the layout of
the device. However, this level closely approximates the spring-mass-damper abstraction
of an inertial sensor, which designers use extensively in developing inertial sensors.
Abstracting away even the functional composition of the MEM S device, the macromodel
level, i.e.,, smply an equation summarizing the input-output relationship of the device, is
obtai ned.

The MEMS design hierarchy is summarized in Figure 2.6 which shows the layout
level, atomic level schematic, the functional schematic and the macromodel representa-
tion. A design hierarchy is not of use unless the different levels of the hierarchy can betra-
versed with ease. Broadly, upward motion through the hierarchy, leading to increasing
abstraction, is referred to as extraction or verification. Downward motion, resulting in
increased visibility of finer details, is called synthesis. Over the past decade, severd
research efforts, notably at CMU and other universities as well, have not only developed
hierarchical representations of MEMS but also demonstrated automated methodologies

for various components of the hierarchy traversal.

The NODAS framework, developed at CMU, implements the hierarchical representa-
tion of MEMS described above. Schematics of MEMS sensors are created using parame-

Macromode
A

|
L -
Functional schematic I \_I

Extraction/Verification Atomic schematic

Layout

FIGURE 2.6. MEM Sdesign hierarchy
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terized elements such as beams, plates, anchors and combs and electrical and mechanical
independent sources. DC, AC and transient analysis can then be performed on the MEMS
sensors. Behavioral simulation of the CMOS-MEMS vertical axis microgyroscope using
atomic level elementsis used in this thesis to verify hand analysis and to quantify non-
ideal effects. The Spectre circuit simulator from Cadence is used as the simulation engine
for the behaviora ssmulations. Modeling approaches for cross-axis coupling in springs,
vertical curling and mask misalignment in beams and multi-layer effects in combs are
described in the following chapters. The resultant improved models are incorporated into
the NODAS library. One of the fundamental tasks which provides the back-bone for such
a structured design methodology is building behavioral models. A brief summary of mod-

eling approachesis given in the following sub-section.
2.4.1 Modeling

In the context of the design hierarchy mentioned above, modeling can be viewed as a
process of relating parameters at a higher-level of the hierarchy to the parameters at a
lower-level. Availability of models which are accurate and can aso be evaluated fast
enables easy traversal between the different levels possible along both, extraction and syn-
thesis directions. At the level of atomic-elements, modeling involves identification and
encoding of significant relationships between geometrical parameters and functional
parameters. Examples include derivation of equations for spring stiffness from beam geo-
metrical parameters (width, length, cross-section etc.) and plate mass and moments of
inertia from plate length, width and composition. The models implicitly assume a set of
manufacturing process-dependent constants for material properties. Those familiar with
modelsin the circuit world can immediately correlate this modeling procedure to the deri-
vation of transistor |-V relationships in terms of geometry and process-dependent doping
and material properties. At the same time, those familiar with modeling in the mechanical
world can distinguish this process from the building of “solid models’ for use in numeri-
cal solvers and visualization. Modeling in elastic and electrostatic domains done in this
thesisis explained in detail in following chapters. In this section a brief overview of mod-

eling in elastic and el ectrostatic domains is presented.
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2.4.2 Elastic Models

The elastic models in this thesis are based upon linear beam theory [39] wherein
forces and bending moments are linearly related to trandational and rotationa displace-
ments. Shear and non-linear effects are not being considered in this thesis, but are given
considerable attention in a paralel work [40]. Linear beam theory is based upon the fol-
lowing fundamental differential equation, which is valid when there are no distributed
loads, i.e., forces and moments are applied only at the two end-points of abeam [39]:

4
d—i =0 2.1)
dx
where, X isthe location along the length of the beam and y is the displacement along one
of the two orthogonal directions as shown in Figure 2.7. Energy methods, described in
detail in [41], are used to derive equations for spring stiffnesses. A brief introduction to
energy methods is given below by way of deriving the compliance matrix for a single

beam which is part of a spring.

A number of common spring topologies such as crab-leg, u-shaped and serpentine
springs belong to a larger class, in which each spring isa single chain of beams. The ana-
Iytical advantage in dealing with this class of springs is due to the fact that the forces
transmitted through the beams remain invariant from the load point to the anchor point.
Figure 2.8 shows a spring composed of 9 beamsin a single-chain configuration, attached
to arigid plate at one end and anchored at the other end. The procedure for computing the
in-plane compliance matrix for a single beam in the spring is described below. A force (or
moment) is applied to the point C, in the direction of interest, and the displacement is cal-

culated symbolically (as a function of the design variables and the applied force). When
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forces (moments) are applied at the end-points of the flexure, assuming linear beam the-

ory, the energy per unit length of the beam is given as:

2
du _ Mi(x)
dx  2EN

(2.2)

The total energy of deformation, U, is obtained by integrating over the length of the beam

followed by summation over all the beams:

_ LM (0
U=y [ e 2.3)

beami=1

where, L; isthe length of thei’th beam in the flexure, M, (x) isthe bending moment trans-

mitted through beam i, E is the Young's modulus of the structural material and I; is the

moment of inertia of beam i, about the relevant axis (z axis for in-plane forces and
moments about z). The bending moment is a linear function of the forces and moments
applied to the end-points of the flexure. Furthermore, it varies linearly with the position
along the length of the beam. Therefore, the energy stored in the beam due to displacement
is quadratically dependent on the applied forces and moments. In particular, for a single
chain of beams (Figure 2.8(a)), the bending moment and, therefore, the energy stored in a
beam, depends only on the position of the end-points of the beam relative to the point of

application of force C. The displacement of point C in any direction ¢ isgiven as:

_ ou
o= Er= (2.4)
C
where, Fe is the force applied in that direction [39]. Similarly, angular displacements can

be related to applied moments. The moment M;(x) being linearly dependent on the

applied forces and moments, the displacement is also a linear function of the applied

forces, i.e.,

5= Yoy @3)
g
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where 3¢; is a generalized displacement (includes translation and rotation), F};i is the

generaized force in the direction & and o cei the compliance of the ith beam.

The in-plane compliance matrix for a beam, derived in terms of the end-points of the
beam, isgiven as.

Olyxi Onyi OLx¢zi

Clyxi Oyyi Gy j (2.6)

Lo xi Foyi %00,

where,
L (Y2 +y2 3y.)—3 3 3y2
W= i(Y1; Y2 + Y1 (Yo =3Ye) = 3Y5iYe —3YaYe + 3Ye)
XXI1 3E| 5i
I 2
W = i(x1i + Xoi + Xq; (x2i - 3Xc) - 3X2ch - 3X2ch + 3xC)
yy! 3El i
_
%004 T Bl
_ i (Xq5(2Yq; + Y1 = 3Y) + %51 (Yq; + 2Y5; = 3Y) = XYy + Yo = 2Y())
Cxyi = YCyxi = 6EI,
Li(Y1i +Y2i —2Yc)
“ _
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FIGURE 2.8. (a) Spring with single-chain of 9 beams attached to a plate. C isthe
point of application of force. The other end of the spring is anchored. (b) Free-
body diagram of beam 6 and the bending moment along beam 6.
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The elements of the in-plane compliance matrix derived above are used in this thesis to

derive properties of symmetric springs as well as to compute stiffness values for an entire
spring.
2.4.3 Electrostatic Modeling

Electrostatic modeling for gyroscopes mainly involves deriving geometry-based
eguations for capacitance and force between two or more electrodes in combs, parallel
plates and other kinds of sensing or actuation structures. Fundamentally, deriving equa-
tions for capacitance involves solving the Laplace equation with appropriate boundary

conditions:
VaV(xy,2) = 0 (2.7)

where, V(X, Y, z) isthe electrostatic potential which is generally afunction of spatial loca
tion. Instead of solving the Laplace equation for an entire sensor or actuator, which is sel-
dom practical, usually symmetry considerations are used to break up the sensor into a
number of smaller structures which can be solved much more easily. The total energy

which is stored in a capacitor with avoltage V applied between the two platesis given as.

1.2

U = 5cv (2.8)

Once the capacitance has been derived as a function of the relative displacement
between the two electrodes the force can be obtained by using the principle of virtual work
and differentiating the total energy of the system (if the capacitance is independent of the

voltage). For example, the force along the x direction will be given as:

_adu _ 1dCV2

Fx = 3 = 2dx (2.9)

It should be noted that the above equation isvalid only for linear capacitorsi.e., where the
capacitance is independent of the voltage. For a parallel plate capacitor the capacitance

and force are given as:
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A
Fy(x) = —— 2oV @.11)
(9+%)

where, A is the area of the electrodes, ¢, is the permittivity of air, g is the designed gap

between the two electrodes and x is the displacement along the direction of the gap. For
non-parallel-plate structures, significant modeling effort has been spent on computing,
analytically or numericaly, fringe capacitance terms which are then added onto a parallel
plate equation to obtain the total capacitance of the structure. Conformal mapping tech-
niques are frequently used to derive equations for fringe capacitance [42][43]. Detailed
modeling of combs in the CMOS-MEMS process is described in Chapter 5.

2.5 Summary

In this chapter a literature survey of microgyroscopes developed over the past decade
was presented. Following this, the CMOS-MEMS process was described briefly with par-
ticular attention paid to the non-idealities in the process. Having introduced the microgy-
roscope and the manufacturing process, the rest of the chapter outlines the structured
design methodology for MEM S developed at CMU. As part of the outline, the NODAS
design framework which implements behavioral smulation of MEMS was summarized.
An elementary overview of the modeling procedure for elastic and electrostatic elements
in the design hierarchy was also given as a precursor for the more detailed treatment in the

following chapters.

20



Chapter 3. Elastic Modeling

3.1 Introduction

For MEMS gyroscopes to be commercidly viable, it is necessary to characterize the
non-idealities inherent in them. Non-idealities in microgyroscopes and accelerometers,
including offset bias, cross-axis sensitivity and non-linearity, occur due to a combination
of undesired mechanical oscillation modes and mismatched sensing capacitances [44].
Undesired oscillation modes are caused by cross-axis coupling in the suspension springs.
It has been experimentally observed that real microgyroscopes exhibit elliptical motion
[47], depicted in Figure 3.1, as opposed to the expected straight line motion. Coupling
from the driven direction to orthogonal directions through non-ideal suspension springsis
known to cause the elliptical motion. In order to understand and predict such non-ideali-
ties, models for the cross-axis coupling in springs need to be derived. Another important
effect, specificto CMOS-MEMS (and other multi-layer) structures, is vertical curling aris-
ing from mismatched thermal coefficients of expansion in the different layers. Vertical
curling leads to vertical offsets in drive and sense comb structures, resulting in vertical

forces and cross-axis coupling. Once again, analytical models are required to estimate the

T
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(a) Ideal springs:. straight line motion

|

t» X (b) Non-ideal springs:. eliptical motion

FIGURE 3.1. Outer frame of a gyroscope driven by a sinusoidal voltage source
and a DC source. Mation of point C is shown on theright. (a) With ideal springs
oscillationsareonly along they direction. (b) However, with non-ideal mismatched
springs small amount of motion couplesto the x direction.
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curvature in the design stage either by hand calculations or through behavioral smula-

tions.

Elastic beam theory is an extensively researched area in traditional mechanical and
civil engineering. In the context of microgyroscopes, micromechanical springs, and elastic
cross-axis coupling, existing beam theory needs to be recast in a form suitable for the
MEMS designer. An example of elastic beam theory from a micromechanical viewpoint is
a methodology for deriving the lumped-element stiffness models for common microme-
chanical springs (crab-leg, u-spring, serpentine spring and folded-flexure) as outlined in
[41]. In [45], non-linear rod theory has been applied to analyze the vibration modes of a
MEMS gyroscope considering the modes to be uncoupled. Coupling among three specific
modes of a particular gyroscope structure has been investigated in [46]. Non of the above-
referred works provide a complete, general and intuitive understanding of elastic cross-
axis coupling. The goal of this chapter is to establish a broad understanding of elastic
cross-coupling, present general methods for analysis of cross-coupling and consider sys-

tem-level implications of coupling arising due to individual beams or springs.

In this chapter, the following issues are addressed anaytically: in-plane cross-axis
coupling, in-plane to out-of-plane coupling due to asymmetric beam cross-sections, verti-
cal and lateral curling of CMOS-MEMS beams. Finite element analyses (FEA) are used
throughout this chapter to verify the theory at each stage. The discussion is initiated by
formalizing cross-axis coupling through use of a stiffness matrix to represent all the stiff-
ness properties of an individual spring, aswell asthose of a complete system with multiple
springs. Energy methods, as introduced in Chapter 2, are used to derive equations for in-
plane elastic cross-axis coupling. Cross-axis coupling coefficients are derived for popular
spring topologies such as crab-leg, u-spring and serpentine springs. Investigation of
options to reduce cross-axis coupling leads to a significant result, which is not revealed
here to maintain the readers interest. Following this, equations for out-of-plane coupling
in multi-layer beams are derived using Euler-Bernoulli beam theory. The discussion on
cross-axis coupling is concluded by examining the impact of individual springs on system
level coupling. A geometrical interpretation of the in-plane cross-axis coupling and the
relation between the stiffness matrix, the position and orientation of the so-called princi-

pal axes of elasticity and the observed motion coupling isillustrated through examples. In
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the later sections of the chapter, existing therma multi-morph theory for cantilevers is
used as the basis to derive a new macromodel incorporating multi-directional curvature of
non-cantilever structures. The new macromodel is developed so asto be completely com-
patible with existing behavioral models for beams and the NODAS behavioral simulation
framework. It is verified by comparison with experimental measurements on test struc-

tures which exhibit temperature dependent vertical and lateral curvature.

3.2 Siffness Matrices

A number of gyroscopes (as well as other inertial sensors) as mentioned in [2] are
made up of amechanical proof-mass suspended by four springs. Each spring can be repre-
sented by a 6X6 lumped-element symmetric stiffness matrix (referred to as k in
Figure 3.2). The overall system stiffness matrix is obtained as a summation of the individ-
ual stiffness matrices. The 6 diagonal termsin the stiffness matrix represent the stiffness of
the springs in the trandational and rotational directions. The off-diagonal terms represent

coupling between different directions. The stiffness matrix k can also be viewed as the

combination of 4 3 x 3 sub-matrices. Two of the sub-matrices are referred to as kip, the

in-plane stiffness matrix and k_ ,, the out-of-plane stiffness matrix. The remaining two

op’

sub-matrices are shown as the shaded portion in the k matrix in Figure 3.2. When al the

Shaded elements are zero if thereis no out-of-plane coupling
; In-plane stiffness matrix

k. k
XX Xy
K K kxx kxy kx¢z
YX VY SYZ UYay k.. = | k k k
p yx tyy Tyé,
Koo KK Ky Ky
Sl I I ox Koy Ko,
OxX 0y TOxZ Thyhy Toxby T0x0; Out-of -plane stiffness matrix
Kox Koy Ko,z Ko 0.1 0, Ko 0
y y y y yry yrz kzz kz¢x kZ(I)y
L Ko Koy Koz o0, K00, Koo, | ko = (Ko Ko 6. Ko g
% xPx  PxPy
k k. k

0.2 K0y Koy,

FIGURE 3.2. Elements of the stiffness matrix k and the in-plane and out-of-plane
sub-matrices kip and kop. This symmetric matrix has 21 distinct terms. If the

shaded elements are zer o, the number of distinct non-zero termsreducesto 12.
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four spring geometries are identical, and the layout is two-fold symmetric, the system
stiffness matrix is diagonal because the cross-axis (off-diagonal) terms of the four springs
cancel out exactly after summation. The eigenmodes of the system are perfectly aligned
with the reference coordinate frame. In inertial sensors, the sensitive axis is usually
aligned with one of the axes of the reference coordinate frame. Due to manufacturing vari-
ations, which are inevitable in any |1C fabrication process, the four spring dimensions are
not perfectly matched. Therefore, there are residual off-diagonal terms in the system stiff-

ness matrix after summation. For example, the widths of the four springs may differ

dightly leading to coupling between the three in-plane modes (X, y and ¢,) and thus,

non-zero off-diagonal elements in the in-plane part of the stiffness matrix kip. Alterna-

tively, the beams forming the spring may have an asymmetric cross-section resulting inin-
plane to out-of-plane coupling i.e., non-zero shaded elements in Figure 3.2. In both cases
eliptical motion of the proof-mass [47], instead of the expected straight line motion,
results. The elliptical motion can be understood as a displacement (which could be rota-
tiona or translational) of the eigenmodes of the system from the reference coordinate

frame. Two different approaches are used in the following sections to obtain the off-diago-

nal terms within the in-plane and out-of-plane sub-matrices, kip and kop respectively, and

to model coupling between the in-plane and out-of-plane directions. The former lend
themselves to direct derivation of the terms in the stiffness matrix, while the latter are
more easily characterized and understood by a rotation of the principal axes of stiffness.
The following section on modeling explains the approach to derive the 6 off-diagonal

termsin the in-plane and out-of-plane sub-matrices.

3.3 Modeling

The procedure to derive symbolic linear relationships expressing displacements in
terms of the forces and moments applied has been described in detail in [41] and briefly
explained in Chapter 2. Energy methods are used to obtain a system of linear equations
symbolically expressing the displacements in terms of the forces and moments. The sys-
tem of symbolic linear relationships are solved to obtain the elements of the stiffness

matrices. Symbolic manipulations were done using the Mathematica program [48]. An
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FIGURE 3.3. Design variablesfor crab-leg-spring, U-spring and ser pentine spring
with proof-mass. The external forces and moments are applied at C, the centroid
of the plate, with only one spring in the analysisso that all the cross-axistermscan
be clearly observed.
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example Mathematica script to derive the stiffness matrix for the crab-leg spring is given
in Appendix Al. The stiffness matrix equations for the three types of springs, crab-leg, u-

spring and serpentine spring are described bel ow.

The three types of springs are parameterized as shown in Figure 3.3. The models for
diagonal elements (i.e., the tranglational spring constants) have been derived previously
[41]. Here the same technique is applied to derive the off-diagonal stiffness constants.
Applying the boundary conditions, as shown in Figure 3.4, a set of linear equations in
terms of the applied forces and moments and the unknown displacement is obtained. Solv-
ing the set of equations yields a linear relationship between the displacement and applied
force for the cross-axis spring constant of interest [41]. The constant of proportionality
gives the spring constant as a function of the physical dimensions of the spring. The mod-
elsfor the out-of-plane cross-axis spring constants are similarly derived. The equations for

the stiffness constants are presented below. In order to preserve readability, the equations

for the off-diagonal elementsin the out-of-plane matrix kop , which are considerably more

complex, are given in Appendix A2.
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Boundary conditions for springs

| —
Force/
Spring Boundary Moment to be
constant | conditions solved for
F?\M Key 5x = 0,80,=0 | F,
3
5y ° —» Fy kg | x=0,8y=0 |F
367 =
kyd)z ox = 0,8y =0 y
y kZd)X 6z = 0, 8¢y =0 | F,
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z
kd)xd)y 6, =0,6z=0 Md)x

FIGURE 3.4. Forces and moments applied at the centroid of a proof-mass
attached to the free end of a crab-leg. Boundary conditions are applied as equality
constraintson the three displacements.

For the crab-leg, the analytical models for elastic coupling between x, y and ¢, modes

for one spring are:

9Ly o
Voo Lkl + 156k
2 2 2
BE1 (1,0l + AL L Ly~ 31, 7L 1L L)

X¢ 3

’ Lils(I 4L+ 1,60
3EI (=31, L2, + (I L2+4l L L)L +1 L2 +21 L.L?

G, = (=3l by by + (Ixhg + 4L L Ly + 1Ll + 21 ,6LcLy) (33)
b, 3 :
’ Lol (Ixbg+ 15600

where, |4, I,sand | ., |, . are the moments of inertia of the crab-leg-beams about their

yt’ 'ys
individual z axis and y respectively.
For u-springs:

OBl (Lps =Lp) (@l 4lpibpy + 1(Lpg + L)Ly
kxy = 5

(3.4)
uip
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where, D b Is the common denominator for all the in-plane stiffness constants of the u-

spring.

2 3 3. 2 3 3. 2
o =r| Slabeibea(bpr+Lpa) * lap(bpy + Loy + (3.5)
A e ald L v32 12 Al 12 4L '
bl (Lp1 +4Lpibpo ¥ 3Lpibpy + 4Ly bpo + L)Ly

Assuming Ly; ~ Ly, and L; << Ly, the derived analytical model is simplified to get

_ SElx(Ly —Lpo)
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For a serpentine spring, the k,,, for even nisgiven as:
2
36El,_|
k, = —22 (3.9)
i I:)soip
where, Dsoip Is the common denominator for al the termsin the in-plane stiffness matrix

for a serpentine spring with even n,
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kx¢ - . za zb\“"-y a (3.14)
z
(NL2)(n*Lal g+ (N2 =30+ 2)Lyl,)
2
. - BEl ol p((2(N=1)1 L, + 201 L)L+ (N=D)l,Le +(N=D)l L Ly) s,
0, " |

(N—DLA(N=1)I5L2+41 | nL L +3(n—1)I5L2)

zZa Z

Though the above equations for the spring stiffnesses seem to be lengthy and complex
polynomials the following sets of observations help to discern their underlying structure
and usefulness.

Observations on the terms in the stiffness constants

1. All the stiffness constants are fractions of polynomialsin the moments of inertias (1,)

and the lengths of the beams (L ).
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2. All the stiffness constants for a particular type of spring share acommon denominator.
This is not surprising because the denominator is simply the determinant of the compli-
ance matrix of that spring. Note that in some cases, like the serpentine spring with odd n,
this is not apparent because of canceling of common factors between the numerator and
the denominator.

3. Aswould be obtained from a dimensional analysis, the power of moment of inertiain
the denominator is lesser than that in the numerator by 1, while, the power of length in the

denominator is greater than that in the numerator by 3.

The next set of observations is focussed on the elastic coupling term between x and

y,i.e,the kXy term.
1 kXy for al springsisindependent of L, and Ly I.e., the location of the load point.

2.k, isnever zero for acrab-leg spring and for a serpentine spring with even n.

Yy

3. kXy = 0 for a serpentine spring with odd n.

4. For au-spring kXy = 0 ifandonlyif Ly, = L, i.e, if thetwo parallel beamsin the
u-spring are identical.
The final observations are about the elastic coupling terms between the translational

modes X, y and the rotational mode ¢ : kx¢ and kyd> . Comparison of the kx¢ and kyd>
z z z z

of the crab-leg, serpentine and the u-spring reveals a common format which is a sum of

three terms. Generalized equations for kx¢ and kyd> can be written as.
z z

Ko, = Kaxby + KLy * Ky 0 (3.16)

Ko,

In the above equations, kx¢ o and kyd> o are the elastic coupling constants between the
z z

HeyLy Ry L Ry g (3.17)

translational and rotational modes when L, = O and Ly = 0 i.e, when the load is
applied directly to the springs. Naturally, kx¢ o and kyd> o are only dependent on the
z z

spring geometry itself and not on the dimensions of the plate to which the spring is con-
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FIGURE 3.5. Trends in the variation of in-plane spring constants for the U-
spring for varying beam lengths (L,;). Thedesign variablesare set to: w=2.0 um,

L+=10.0 um, L,,=200.0 um
nected. Depending on the type of spring and the distances L, and Ly, one may suitably

approximate kx¢ and kyd> by removing one or even two terms from equations (3.16) and
z z
(3.17). For example in case of the crab-leg spring, when L, L «L,, Ly, the kXd)zO and

kyd> o terms can be neglected.
z

The above models are for a single spring. These models suggest design directions for

reducing k

Xy kXd)z and kvd)z’ and thereby, the device non-idealities. It is possible to elimi-

nate the nomina system KXy by symmetrically placing four springs. However, this will

only eliminate KXy in the nominal case in which all four springs are perfectly matched.

Manufacturing variations are commonly modeled as functions of wafer position, implying
that closely placed beams (as in the same spring) have less width variation than beams
which are farther apart (like those on two different springs). In addition to eliminating

nominal system K, long range width variations can also be nullified by designing the two
beams with equal lengths and widths for a U-spring or by choosing n to be odd for a ser-
pentine spring. In Figure 3.5 it is seen that it is possible to design the U-spring such that

k,, isvery closeto zero (near L, = 200um). Similar trends for the serpentine spring

Yy

with even n are shown in Figure 3.6. The plots aso show that when kXy is very close to



zero, kx¢ and kyd> can have significant values indicating that the springs have to be
z z

designed keeping in mind the particular requirement. In microgyroscopes it is usualy

more important to eliminate kXy than to eliminate kx¢ and kyd> because of several rea-
z z

sonswhich will be explained in detail in Chapter 7. One of the important fundamental rea-

sonsfor thisisthefact that the physical operating principle of the microgyroscopeis based

upon coupling between x and the y modes.

In the next section the validity of the equations derived is verified by comparison with

finite element analyses.

3.4 Model Verification
The models derived above are verified by comparison to FEA results. Assuming that
the widths of all the beamsin aspring are equal, there are three remaining design variables

for the crab-leg, four for the u-spring and four for the serpentine spring. The distances of

the spring attachment point from the load point, L, and Ly are held constant at 100pm.

The Abaqus solver was used for FEA [49]. Convergence analysis was done to determine
the granularity of the finite element mesh that was required. Consequently, each beam was
split into 40 divisons along the length and 10 divisions along the width. FEA with 3D

quadratic brick elements was done on 8 crab-leg designs, 16 u-spring designs and 8 ser-
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FIGURE 3.6. Trends in the variation of in-plane spring constants for the
serpentine-spring for varying beam lengths (a). The design variables are set to:
w=2.0 um, Lp=20.0 um, n=4.
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pentine spring designs. The widths of the crab-leg and u-springs were set to 2.0 um and
5.0um to span the entire range of typically used designs. The length of the crab-leg and u-
spring beams was set to 40 um and 400 um. Beams longer than 400um are generally not
manufactarable. At the lower limit, beams shorter than 40pum are seldom used since they
lead to very stiff suspensions. For the serpentine spring a different set of metrics were used
to decide the range of spring dimensions. Serpentine springs are normally used when more
number of turns are required, either because the spring is too stiff otherwise, or, because
the maximum length of the beams is constrained by manufacturing or other consider-
ations. Therefore, the maximum spring width used in serpentine spring designs was only
4.0 um, and the maximum length of beams used was 100pm. It should be noted that the

results of spring stiffness, span nearly 4 decades, because the spring stiffness are cubic in
terms of the beam width and length. The results are summarized in Table 3.1 for the crab-

Table 3.1 Comparison of FEA and analytical stiffness (in-plane) valuesfor the crab-leg

spring
Lol f e o) Keo ( x107°N) (N[ Ky (< 207°N)

W t s Xy z z

Error Error Error
um| um | um| A S (%) A S (%) A S (%)
2 |40 |40 | 144 14.8 -2.71|-19.2 | -105 | 832 | 1226 1237 | -0.89
2 1400|40 ]10273 | 0273 |-0.18]-427 |-426 | 042 ]|-0.893 |-0.848 | 5.42
2 |40 |400]0.273 | 0273 |-0.18]159 |159 | 0.06 | 1030 1027 | 0.29
2 |400| 400] 0.0154 | 0.0155 | -090| 1.82 |1.85 |-1.25]6.84 6.87 -0.57
5 |40 |40 | 202 207 -2.70| 336 475 -29.3] 1.78e4 | 1.78e4 | 0.00
5 1400| 40 |4.07 3.94 3.17 | -5733 | -5478 | 4.65 | -1.811 | 3.73 -148
5 |40 | 400] 4.07 4.00 1.60 | 239 226 548 | 1.47e4 | 1.41e4 | 4.61
5 1400|400] 0.237 | 0240 |-125]|289 |29.3 |-1.60] 106 107 -0.56
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leg, Table 3.2 for the u-spring and Table 3.3 for the serpentine spring respectively. For the

Table 3.2 Comparison of FEA and analytical stiffness (in-plane) valuesfor the u-spring

w | Lot | Lpo | Ly Ky (N/) kxd)z( x 10 6N) (N) kY¢z( x 10 6N)
Error Error Error
um | pum| um|um| A S (% | A S (%) | A S (%)
2 |40 |40 (10 |O 0.701 | NA | -3482 | -3407 | 2.20| 1013 | 968.7 | 4.57
2 |40 | 400( 10 | -0.623| -0.605| 3.01| -2518 | -2466 | 2.11] 30 29.05 | 3.27
2 |400|40 [10 | 0623 | 0612 | 1.81]| -1948 | -1866 | 4.39] -16.78 | -16.27 | 3.13
2 |400|400(10 |O 7.7e-4| NA | -3715 | -368.7 | 0.76] 4.969 | 4.954 | 0.30
2 |40 |40 (50 |O 0.0509| -NA | -226.1 | -223.1 | 1.34| 694.3 | 692.1 | 0.32
2 |40 | 400( 50 | -0.145| -0.145| -0.24 -185.2 | -186.8 | -0.89 10.04 | 10.07 | -0.30
2 |400|40 |50 |0.144 | 0.146 | -0.69 -70.04 | -69.28 | 1.10] 3.184 | 3.207 | -0.72
2 |400|400(50 |O 1.0e-4| NA | -27.41 | -27.44 | -0.11) 4.547 | 4.566 | -0.42
5 (40 |40 |10 |O 15 NA | -3.33e4| -3.11e4| 6.94] 1.38e4| 1.25e4| 10.8
5 |40 |400| 10 | -7.71 | -6.88 | 12.0]| -2.46e4| -2.24e4| 10.2] 370.8 | 327.3 | 13.3
5 1400140 |10 | 7.71 | 7.07 |9.00|-1.78¢e4| -1.53e4| 16.0| -165.5 | -140.4| 17.9
5 1400|400/ 10 |O 0.0203| NA | -3697 | -3572 | 3.50| 76.44 | 75.52 | 1.22
5 [40 |40 |50 | O 1.968 | -NA| -3035 | -2876 | 5.53]9817 | 9530 | 3.01
5 |40 |400| 50 |-210 | -208 | 1.01] -2530 | -2555 | -0.99 146.8 | 145.4 | 0.96
5 1400140 |50 | 210 | 211 |-0.57 -878 -832 5,53 57.79 | 5854 | -1.28
5 1400|400/ 50 |O 0.0056| NA | -380.9 | -379.7 | 0.32] 70.09 | 69.98 | 0.16

Table 3.3 Comparison of FEA and analytical stiffness (in-plane) valuesfor the ser pentine

spring
K 107°N 107°N
w | Ly | Lp Kyy(N/m) xd)z( x ) ky¢z( X )
Error Error Error
um | um| um| A S (%) |A S (%) A S (%)
10 | 10 | 26.9 295 -8.711 -1064| -1033| 3.00 | 7597 8090 -6.09

10 | 100 0.251 | 0.258 | -2.83|-591 | -595 | -0.54 | 41.56 42.72 -2.72

100| 10 | 0471 | 0471 | 0.00 | 105 | 105 | 0.67 | 1133 1128 0.44

100| 100§ 0.0269 | 0.0273 | -1.32| -5.91 | -5.93 | -0.30 | 11.64 11.74 -0.85

10 | 10 | 216 252 -14.4| -8297| -8111| 2.29 | 6.24e+04| 6.58e+04| -5.27

AIBAINIDNIDNDN

10 | 100] 2.01 212 -5.28 | -4730| -4716| 0.30 | 337.5 343.5 -1.75




Table 3.3 Comparison of FEA and analytical stiffness (in-plane) valuesfor the ser pentine

spring
k. ( x10°N) ( x10°N)
w oL | L Ky (/) xo, Ko,

Error Error Error
um| um | um| A S (%) | A S (%) | A S (%)
4 |100| 10 | 3.77 3.65 329 |88.1 | 746 | 18.11] 9273 8503 9.06
4 |100| 100] 0.216 | 0.220 |-2.22]-47.1| -47.7|-1.32 | 94.68 92.76 2.07

crab-leg spring and the U-spring it is seen from the FEA results that, for beam widths of 2
um, when the beam lengths are at least 0.75 times the plate dimensions, al the models
match the FEA vaues to within 10%. For smaller beam lengths the plate ceases to be

rigid. Plate deformations are not considered in this spring modeling exercise. A brief

explanation of the procedure used to obtain kXy through finite elements is in order here.

Geometrical boundary conditions are applied on the finite element model such that the
anchor points have zero displacement in all degrees of freedom and the load point is
applied a fixed (1 nm) displacement in only the x direction, the y and z directions being
kept at O displacements. Then, the reaction force at the load point in the y direction is used

to compute the kXy. Note that for suspensions which are very stiff in the x direction and

which do not have asignificantly large k

Xy’ theratio of thereaction forceinthey direction

to that in the x direction can be much smaller than 1 (~ 0.01 or even smaller). Finite

numerical precision setsalower limit on the smallest reaction force that can be computed.,

thereby limiting the smallest value of kXy that can be precisely obtained from finite ele-
ment analysis. For the serpentine spring it was not possible to obtain accurate values of k,y,

from FEA when the values were low due to this reason. All the models other than ky¢
z

match FEA resultsto within 10% for beam widths of 2 um. The ky " also matches within
z

10% except when L, is much greater than L.

As noted previoudly, kXy isof more significance than kyd> and kx¢ , and is, therefore,
z z

analyzed further. Keeping all other design variables constant, the variation of ky, with the
beam length was studied. The beam widths are kept constant at 2.0um. In the crab-leg
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FIGURE 3.7. Comparison of analytical model and FEA for crab-leg-spring ky, for
varying crab-leg thigh lengths (L;). The design variables are set to: w=2.0 um,
L=50.0 um

plots, the shinlength L, = 50um. In the u-spring plots, since equal beam lengths lead to

zero kxy, a constant difference L, —L,; = 30um was maintained. For the serpentine

springs, As seen in Figure 3.7, Figure 3.8 and Figure 3.9 respectively the analytical mod-
els match the FEA values to within 2% for the crab-leg, 5% for the U-spring and 9% for
the serpentine-spring. Particularly evident isthe large range of values over which the mod-

els match the FEA vaues.

Although it appears as if the springs exhibit less cross-axis coupling as the lengths of

the beams increase, it should be kept in mind that the stiffness coefficients in the principal

directions k,, and kyy also reduce as the lengths of the beams increase. Therefore, while

100 : ‘
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FIGURE 3.8. Comparison of analytical model and FEA for u-spring k, for
varying U-spring beam lengths (L},;). The design variables are set to: w=2.0 um,
L+=10.0 um, L>=L;-30.0 um



the coefficient kXy Is useful to calculate actual values of cross-axis coupling, it does not

facilitate instant comparison of cross-axis coupling in different spring designs. For this
purpose, the correlation between the cross-axis coupling coefficient and the principal axes
of elasticity is more useful and is explained in Section 3.8. In the following section, an
accelerometer smulation is used to illustrate the practical significance of the cross-axis

coupling coefficients.

3.5 Accelerometer Simulation

A macromodel for the serpentine spring was incorporated in NODAS [50]. AC analy-
sis of a proof-mass suspended by four serpentine springs was done using the spring mac-
romodel as well as individual beam elements. The macromodel-based simulation (with
n=4) was about 5 times faster than the individual beam element-based smulation. For

higher n, the speedup will be greater.

The serpentine spring, proof-mass structure described above was employed as a y-
accelerometer. Input accelerations were applied in both the x and the y directions. Mode
coupling isobserved in FEA when diagonal springs are identical and one pair of diagonal
springs is wider than the other pair. The widths of the springs are indicated on the side in
microns. This configuration was simulated using the serpentine spring macromode! in
NODAS. Input accelerations, which are out of phase to easily distinguish their effects, are

applied in y and x directions. As expected, a significant cross-axis sengitivity (resulting

10 : . .
FEA *
Analytical
1 K.
&
<. 0.1
x
X
.01
10 40 70 100 130 160

L a(m)
FIGURE 3.9. Comparison of analytical model and FEA for serpentine-spring ky,

for varying serpentine-spring beam lengths (a). The design variables are set to:
w=2.0 um, L,=20.0 pm, n=4
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FIGURE 3.10. NODAS simulation of cross-axis sensitivity in  y-accelerometer.
The structure of the accelerometer with four serpentine springsis shown on the
side.

from mode coupling) is seen in the Vout waveform in Figure 3.10. In this example the
numbers chosen for the spring widths are deliberately biased so that the effect of cross-
axis coupling is exaggerated and, therefore, visually discernible. In real accelerometers,
the same phenomenon causes cross-axis couplings which are about one to two order of

magnitudes smaller than the main output.

Having emphasized the significance of analyzing the cross-axis coupling coefficients,
it is natural to examine ways of reducing or even completely eliminating cross-axis cou-
pling. In the next section, special properties of symmetric springs, with respect to cross-

axis coupling, are stated and proved.

3.6 Symmetric springs

Recalling that the u-spring with equal beam lengths and the serpentine spring with
odd n have kXy = 0 leads one to wonder if the two springs have anything in common.
The answer is that both the springs have an axis of symmetry as shown in Figure 3.11.

This common property can be generalized for all springs which are in the form of asingle

chain of beams as follows:
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“The cross-axis coupling between the two in-plane trandational directionsis zero for any

spring which has an axes of symmetry”
In other words, any single-chain spring that has an axis of symmetry has kXy = 0. This
important property is mathematically proven below.

Consider a single-chain spring consisting of 2n beams. Note that a symmetric spring

with odd number of beams can always be converted to even number of beams by splitting

the central beam. The compliance matrix, described in Chapter 2, is used here to compute

the kXy of the entire spring. Let the positions of the end-points of the ith beam in the

spring be X4, Y1; and Xy, Yoi. Let l;, wi, t and |, be the length, width, thickness and the
moment of inertia of the beam respectively. Let the load point be Xz, Y. Then the 6 dis-

tinct terms of the compliance matrix are given as:

2 2 2
_ iV Yo + Y13 (Yo =3Ye) = 3Y5iYe = 3Y5iYe + 3Ye)

Fxxi = 3El,
1O, + X2 3x) -3 3 3%
o = (X X1 + Xq;(Xp; = 3Xc) = 3o Xc = 3%y X + 3Xc)
vy 3ET,
y
Yo0d T El,
_ i (Xq5(2Yq; + Y1 = 3Y) + %51 (Yq; + 2Y5; = 3Y) = XYy + Yo = 2Y())
0nyi - 0Lyxi - 6E|zi
= = L (Y + Yoi =2Y0)
xoi = %o T 2EI

Axes of symmetry

U-spring with equal beam lengths
Serpentine spring with n=5

FIGURE 3.11. Axes of symmetry for the u-spring and ser pentine spring



li(xqj %51 —2Xc)
2EI

0°y¢2i = 0°d>zxi =

For a beam whose length is along the x direction (i.e,, y;; = Y,,;) the above equations

reduceto:

Qyxi ~ 0

(3.18)

2 2 2 2 2
_ Ii(x1i + X1 + Xy (x2i - 3Xc) — 3x2ixC + 3Xc) _ Ii(li + 3x1ix2i - 3x1ixC — 3x2ixC + 3Xc)

Fyyi 3EI, 3EI,
(3.19)
.
.
%004 T ET (3.20)
= = (i + %51 = 2X)(Yai —¥e) _ 1iCmi =X (Y35 —Yo) 521)
Xyl yXi 2EI i El i .
(Y =Ye)
- _ 1N C
Oypi = % xi = ———EI—Z—I——— (3.22)
(X —Xe)
- _ I 'mi C
Oyy i = Oy yi = _—_ET;__ (3.23)
where,
Xa: + Xo:
2
Xmi = _1_|_2___| (3.24)

isthe mid-point of the beam along the x direction. For this analysis, without loss of gener-

ality, the axis of symmetry isassumed to bein they direction. With the symmetry assump-

tion, it isimplied that the two beams which are symmetrically located on either side of the

axis of symmetry (for example, beams numbers 7 and 4 in Figure 3.12) areidentical, i.e.,

have the same width. Adding the compliance matrix of the two x beams that are symmetri-

cally placed about the axes of symmetry:
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FIGURE 3.12. Example of a symmetric spring with the axes of symmetry along
the y direction. The load point C, the anchor point A and the end points of beam

number 9 are also shown.

2l

% o0 T % 0 2n—i) = BT

Zl

2| {(Xg—X)(Y1;—Ye)

Oxyi T Oxyan-i) T Yy ¥ Ayx(an-i) T El,
_ : 2l.(y1;—Yo)

Oxgi ¥ Oxg2n—i) = %pxi T % x(2n-i) = El

Qyp,i T Yyp2n—i) T %oy T Foyan—i) T T El,

Similarly, smplifying the compliance equations for a y-beam (numbered j):

2 2 2
N Ly Y5 Y1V —3Ye) —3Y0Yc * 3Ye)
0Lxxj 0Lxx(Zn—j) - 3E|zj

.+ . =
Gyyj T Lyy2n—j)

|

% o5 F %o 2n—j) = El,

Ij(le —Xc)Ymi —Ye)
Xyj YXj El 2

: |j(ymj -Ye)
Yo T El

Uxpj ~

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)



Dy T %oyi T El, (3.34)
where,

Y1tYs
Ymi =~ (3.35)

is the mid-point of the jth beam, which is parallel to the y direction. Adding the compli-

ance of two y beams which are placed symmetrically:

%o, T %,0,2n-)) = % (3.36)
Oyyj ¥ Oxyn—j) = Cyxj T Gyxcan—j) T 2Ij((xo_x§|)z(jymj o) (3:37)
%xd,] * Qyp2n-j) = %o + %o x(2n-j) = Z—IJ‘(‘%Z‘J_‘XQ (3.38)
Cyp * Ayon-) T %oi T % yan—j) T ‘Z—Ij‘(i(E%‘z_j‘iC—) (3.39)

The diffness matrix being the inverse of the compliance matrix i.e,

k. K. K

XX Xy X, 2n Oxx 0ny 0°x¢2

Kyx Kyy Ky, | =] Do %yx Cyy Oy

“o.x Koy Koo, | %px %4y %0,

1\—1

we can write:

2n 2n 2n 2n
1
Key = ‘m[[ > “yxk}[ > °‘¢z¢zk} ‘[ > “y¢zk}[ > “x¢zkﬂ (3:40)
k=1 k=1 k=1 k=1

where each k corresponds to a pair of symmetrically located beams.
Now each of the summation terms is expanded and contributions from the beams along x
and the beams along y are separated. Using (3.26) and (3.37)
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2n

21, (%o = %) (Y3 ~Yo) 21X = %) Yy —Yc)
_ i\0 C/\ 1 C J 0 C/\'mj C
2 Yk T2 £l Y P (3.41)
xbeams ybeams J
il 2,(y3; - Yo) 21, (Y ~ Vo)
- (v _ i\J1i—JC ji\mj —YC
k=1 xbeams ybeams
Using (3.25) and (3.36)
2n 2n
21, 21,
2 %ok = Z EI DI =D = (3.42)
k=1 xbeams ybeams ) k=1
Using (3.28) and (3.39)
2" 21 (Xq—X~) 2l (Xy—X~)
- SV " SN0
2 Yy k 2 El; 3 El, (3.43)
xbeams ybeams
2n 2n |
— k
D Ok = 2(X=Xc) Y = (3.44)
= k=1

Using (3.27) and (3.38)

2n
2li(y1i —Ye) 2L (Y —Ye)
_ i1 C jSmj C
Yok X TE ot Y R (3.45)
k=1 xbeams ybeams J
Evaluating the two terms of the cofactor in (3.40):
i i 21, (Y3 -Yo) 21 (Y~ o 2!
- (v _ iY1i—YC j mJ C k
[Z “yxk}[ 2 “¢Z¢Zk} = (% XC>£ > El, 2 j[ 2 E }
k=1 k=1 xbeams ybeams
(3.46)

1 xbeams ybeams

2n 2n 2n
2l 2li(Y1i —Ye) 2L(Ymi —Ye)
[Zayq)zk}[zaxezi} = %o XC)[Z El }[ Z I Elllzi =+ Z | IrEnlsz Cj
k=1 k=1
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(3.47)

Observing that the two cofactor terms are identical it is concluded that their difference is

zero and therefore:

Ky = O (3.48)

Thus, it is shown that for any spring which has an axis of symmetry the in-plane elastic
coupling is zero. It is important to note that there is no constraint on the widths of the
beams in the above derivation (except that the beams which are symmetrically placed
have identical widths, which isimplied by the symmetry condition). It is aso evident that

placing a system composed of four such symmetric springs will have a net KXy = 0.The

above proof concludes the analysis of in-plane elastic cross-axis coupling. Referring to

Figure 3.2, the in-plane stiffness matrix k; b has been analyzed in detail so far. The out-of-
plane stiffness matrix kop provides much less scope for intuitive understanding. There-

fore, the models and finite element verification for the stiffness matrix kop are presented

in Appendix A2 without extensive analysis. In the subsequent section, the discussion on
elastic cross-axis coupling is extended to the remaining off-diagonal (shaded) elements of
the stiffness matrix in Figure 3.2 by looking at coupling between the in-plane and the out-

of-plane modes.

3.7 In-plane to Out-of-plane Elastic Cross-axis coupling

The in-plane to out-of-plane elastic coupling coefficients in Figure 3.2 (k,,, kx¢ ,
X

kx¢y, Kyz: ky¢x, de)y' kZd)z' k¢x¢z and kd)yd)z are the distinct elements assuming a sym-

metrical matrix) do not lend themselves to easy symbolic manipulation unlike the ele-
ments of the in-plane and out-of-plane stiffness matrices. They are, however, modeledin a
much simpler manner for a single beam by considering the rotation of the principle axes of
elasticity as is shown below. It has been shown earlier [39][51] that asymmetrical side-

wall angles in single-layer microstructures lead to rotation of the principal axes of the
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FIGURE 3.13. Rotation of beam principal axesdueto asymmetrical cross-section:
asymmetrical sde-wallsin the single-layer case and misaligned metal layersin the
multi-layer case

beam cross-section and, therefore, causes x-z (in-plane to out-of-plane) coupling. The

angle by which the axes are rotated is given by:

2l
6 = }atan[ yZJ (3.49)

2

The above expression is only valid for homogeneous cross-section beams. In this section,
amore general expression that is also valid for amulti-layer beam with misaligned layers
is derived. This is followed by an approximate analysis for out-of-plane cross-axis cou-

pling for springs with multiple beams.
3.7.1 Rotation of Principal Axesin Multi-layer Beam

The rotation of principal axesis illustrated in Figure 3.13(a) for the single-layer and
multi-layer cases. FEA of CMOS-MEM S beams showed that x-z coupling can arise due to
misaligned metal layersin abeam leading to an asymmetrical beam cross-section. In con-
trast with single-layer beams where the geometrical asymmetry causes cross-axis Cou-
pling, amaterial asymmetry, as shown in Figure 3.13, can also cause cross-axis coupling
in CMOS-MEMS beams. The derivation of the rotation of principal axes in a multi-layer
beam due to asymmetric cross-section is done in two steps: derivation of the location of
the neutral axisi.e., the origin of the principal axes, followed by calculation of the orienta-

tion of the principal axes.



A multilayer cantilever structure with asymmetric cross-section is shown in Figure
3.14. Axial forces acting at the centroid of each layer lead to vertical and lateral bending

moments. Each layer, i, has athickness t;, width w;, area A; = wit;, coefficient of thermal
expansion, a;, and an effective Young's Modulus E;. Let the coordinates of the center of
theith layer be (y;, z) . The material properties for each layer are assumed to be uniform
throughout the layer and independent of temperature.

In order to compute the location of the neutral axis (in this analysis the terms “ neutral
axis’ and “centroid” are used interchangeably), aforce F, isapplied at a point X(y,, z,)
along the axis of the beam and moments My and M, about the y and z axes respectively

so that auniform axial strain ¢ isproduced in the beam (i.e., the beam cross-section is dis-

placed by adistance €L in the x direction, where L isthe length of the beam). The total
reaction force and the reaction moments produced about the point X are now calculated.
The reaction force is given by the summation of the force over the entire beam cross-sec-

tion as:

Fy = S A(Ee) = s[ZEiAJ (3.50)

The reaction moment about the point X about the y and z axes are respectively given by:

E, [os - Fp '
E, —u2—>F2 e —|— — - (Y %)
co S
Zi 5 zyge - \ X(Yo» Z0)
/ E, ) '
5 >
< » X Y,
€) (b)

FIGURE 3.14. (a) Side view of a n-layer beam of length L (b) Cross-section of the
beam with dotsrepresenting the axial for ces acting out of plane



= ZFi(zi—zo) = sZEiAi(zi—zo) and

ZF(Y| Yo) = EZE (Y — (3.51)

The neutral axis (centroid) is defined as the point about which if forces and moments are
applied to produce a uniform strain, then the moments are equal to zero. In other words, it
is sufficient to apply only a force at the centroid in order to produce a purely uniform
strain. Therefore, to compute the position of the neutral axis the moments computed above

are equated to zero.

n

S EA(Z-2) = 0and S EA(Y,—Y) = 0 (3.52)

i=1

where, (Y., z,) isthelocation of the neutral axis. Therefore,

ZE| i4 iEiAiyi

7z, = H——andy, = S—r (3.53)

C n n

ZEiAi ZEiAi
i=1 i=1

Now the case of pure bending about the y axis passing through the centroid is consid-

ered and the moments that are required to maintain this state are computed. Note that pure

bending implies that there are no external forces acting on the beam. Let Py be the radius
of curvature of the beam. Using Euler-Bernoulli beam theory [39], the strain ¢; at the cen-
troid of alayer located at (y;, z;.) measured from the neutral axis, is given as:

_ Zic
e =

— 3.54
s (3.54)

The moment about the y axis needed to maintain beam i in this state along with a curvature

Py is:
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Mo = LA i +A 3.55
yi — p i€ 4e = p ( |Z|c) (3.55)

3
1.
where, Ai = Witi is the cross-section area of the beam and Iyi = —1'5'— is the moment of

inertia of the ith beam about its own centroid. Using the parallel-axes theorem, the above

eguation can be rewritten as:

El .
_ —ilyic
M,; = 5 (3.56)
y

where, Iin = |yi + Ai zizC isthe moment of inertia of the ith beam about the neutral axis of

the composite beam. The bending moment about the z axisis given as:

E.
_ _ |
M, = EiAgY;c = E;(Aizicyic) (3.57)

Note the absence of the pi term in the above equation since there is no bending about the
z

zaxis. Also, note that the term A,z .y; . is sSimply the product of inertia Iyzi ¢ Of the cross-

section of the ith beam about the neutral axis of the composite beam. Therefore, the above
eguation can be rewritten as:
El,.
M, = —¥=° (3.58)
Py
Summing up (3.56) and (3.58) over all the layersin the beam, the total moments required

to produce pure bending about the y axis are obtained as:

"Ely. X
M = ilyic _ Ly (3.59)
e Zl Py Py
"El,,. %
M. = | yac _ Zyz (360)
ZC Z py y
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Similarly, to produce pure bending with radius of curvature p, about the z axis we need

moments.
"El, . 7y
M = ilyzic _ Xyz (3.61)
e Z Pz P
"Eli. x
M. = L 4r - (3.62)
ZC Z P, P,

n n

where, 7, = ZEiniC, Xy = ZEiIZiC and x,, = ZEinziC. Note that the x,, term,
i=1

i=1 i=1
which is responsible for producing cross-moments, will be zero if the layers in the beam
arein perfect symmetry about either the y or z axes. The set of axes about which bending
does not produce a moment about an orthogonal axis are called principal axes. Let us con-

sider bending with radius of curvature p about an axisy; which is rotated by an angle ¢

w.r.t. the y axis. The curvature can be split into orthogonal components about they and z

axes as:
51; = %cos(q)) andpiZ = %Sin(d)) (3.63)

The moments about the rotated axes y4, z; can be written as:

<
I

. Ay X Ayz  Xz) .
yc = MycCos(=0) + M. sin(—) = [EX + By_zj cos(¢) —[FV-Z + ‘-)-jsn(q)) (3.64)
y z y

<
I

. Xy X . X X
2c = Mycsin(—9) + M,ccos(—4) = {Ei + Eyfj sin(¢) + (—pxy-z + p—j cos(¢)  (3.65)

Simplifying the above equations using (3.63):

My,c = Sty 0s(6)° ~28n(8)") (3.66)



FIGURE 3.15. Cross-section  Meta [
of beams used for
comparison of macromodel  oOxide ]
with FEA. The kyZ matches

to 2% for 2 sets (50 um X 3.0

isali : 00
um and 100 um X 2.1 um) of Misalignment: 0.6 um 0.3um um
3 beams each.
1(( Xz~ Xy .
M, ¢ = 5((-5-2-1) SN(20) + 7,,008(20) (3.67)

If yq, ; are principal axes of the beam, then for pure bending about y; the moment about

7y will be zero, i.e., lec =0

Az = Ay .
( 22 y)sm(2q>)+xyzcos(2q>) =0 (3.68)
Therefore:

2y 1 2%yz

It is seen that (3.69) is sSimilar to (3.49) except that the flexura rigidities Lyzr Xy and y,

are used in place of the moments of inertias | Iy and |, respectively. Note that the stiff-

yz’
ness matrix coefficients in the global reference frame can be calculated for a single beam

by rotating the diagonal stiffness matrix.

A behavioral model of the multi-layer beam incorporating rotation of principal axes
was implemented in the NODAS. ky, was obtained from NODAS simulations and 3D
finite element analysis (FEA) using Coventorware [54] by applying a displacement in z,
and observing the reaction force in y. Two sets of three beams each, having length and
width 100 X 2 um and 50 X 3 um respectively, were used in the simulations. The beams

contained three metal layers and inter-metal oxide (Figure 3.15). The comparison between
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kyz values obtained from NODAS and FEA is shown in Table 3.4. For both the sets of

Table 3.4 Comparison of ky, from NODAS and FEA

Beam dimension Misdignment | k(NODAS) ky(FEA) Error
(I pm X w um) (nm) (N/m) (N/m) (%)
100X 2.1 0 0 0 0
100X 2.1 0.3 0.0108 0.0108 -0.18
100X 2.1 0.6 0.650 0.650 0.03
50X 3 0 0 0 0
50X 3 0.3 0.138 0.135 2.2
50X 3 0.6 7.39 7.24 2.03

beams, for al values of misalignment the model matches the FEA results to about 2%.

In this section, in-plane to out-of-plane cross-axis coupling for a single beam was
modeled by considering the rotation of the principal axes of stiffness. In the following sec-
tion the concept of principal axes of stiffnessis discussed further in the context of in-plane

cross-axis coupling.

3.8 Geometrical I nterpretation of Cross-axis Coupling

In this following discussion, a correlation between the elements of the in-plane stiff-
ness matrix and the position and orientation of the principal axes of elasticity is estab-
lished. Such a correlation allows us to compare two different spring designs with regard to
their cross-axis coupling properties, independent of their absolute stiffness values. The

benefits of such a comparison will become more apparent towards the end of this section.

Consider a proof-mass suspended by 4 springs as shown in Figure 3.16(a). The center
of elasticity and the principal axes of elasticity of the system are shown respectively, asthe
point O, and a set of orthogonal axes (X, Y;) such that: if O, is displaced from its nominal

position along either of the principal axes of elasticity, a reaction force is produced only
along that axis. At the sametime, no reaction moments are produced. In this section thein-
plane system stiffness matrix is quantitatively linked to the origin and orientation of the
principal axes of elagticity. There are two main cases of interest: (1) rotation and (2) dis-

placement of the principal axes of elasticity. Figure 3.16 shows the nominal case and the



two other cases for a plate suspended by four springs. Nominally, when the 4 springs are
identical, the center of elagticity is at the center of the plate and the principal axes of elas-

ticity are aligned with the sides of the plate. As shown in Figure 3.16(b) and (c) respec-

tively, rotation of the principal axes corresponds to a non-zero KXy of the overall system

and displacement of the principal axes correspondsto anon-zero K . and K by Interms
z V4

of the system stiffness matrix, the two cases can be written as:

Fx cos(0) —sin(6) 0 Ke 00 cos(0) sn(0) Of | X
Fy | = |sin(0) cos(8) 0'| © Ky O ||—sin(0) cos(0) 0|| Y (3.70)
My 0 0 10 0K, 0 0 1|9,

where 0 isthe angle by which the principal axes have rotated

-

(a)NommaIcaseK —OK « =0, Kd)y 0
% TR % % TL E/k TR %
L’L‘(TG
K
(b) Axes of elasticity rotated: (c) Axes of elagticity dlsplaced.
KXy;tO, Kd)z =0, Kd)zy 0 KXy =0, Kd)zx;to, Kd)zy;to

FIGURE 3.16. In-plane rotation and displacement of the principal axes of
elasticity
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Fx 1 00/ [Kx 0 Oll10-Yy|x
Fy| =] 0 100Ky 0llo1 x|y (3.71)
M¢z Yo X1l |0 O K¢z 00 1 o,

where, (X, Yq) isthe position of the displaced set of principal axes. With an aim of corre-

lating 0, and (Xy, Y) to the off-diagona elements of the system stiffness matrix, the

above equations are expanded to yield:

K,—K
2 . 2 .
3 K,cos(6)” + K sin(6) (—XZ———V)sn(ze) 0 )
F.| = K, —K (3.72)
y (x y). 2 K o 2 y
Mq) 5 Sin(20) Kycos(e) Ksn(®) 0 o,
z
_ 0 0 Kd)z_
F, K, O K, Yq
Fol=1] O K KyXo y (3.73)
2
Mo, =K, Yo KXo Ky + K Yo+ KXol |92

Note that the positions of the zero elements in the above stiffness matrices are consistent

with the assertionsin Figure 3.16.

Having shown that the rotation and displacement of the principal axes of elasticity
correspond to system stiffness matrix elements KXy and de) , Ky¢ respectively, the sys-
z z

tem stiffness matrix is now derived in terms of the individual spring stiffness matrix which
were derived in Section 3.3. Figure 3.17 shows how the signs of the off-diagonal elements
change as the spring (crab-leg shown only to specify orientation, can be any spring topol-
ogy in general) ismirrored in the x and y directions. The signs can be accounted for by fol-
lowing the simple rule: If a spring is mirrored about the x (y) direction, then the elements
in the corresponding row and column of the stiffness matrix are negated. Note that, while

implementing this rule, the diagonal elements change are negated twice and, therefore,
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they do not change sign at all and remain positive. The overall stiffness matrix of a plate

suspended by the 4 springs shown in Figure 3.17 can be written as:

4, 0 0
K = ky +kir+kar+ks = | O 4k, O (3.74)
0 0 4k,

Note that the off-diagonal terms cancel out and the diagonal terms add up. Following this
discussion on the principa axes of stiffness, the practical implications of the insight into

elastic coupling are explored in the next section.

3.9 Manufacturing Variations and Elastic Cross-axis Coupling
Manufacturing variations are inevitable in any fabrication process. In particular, mis-
match between the widths of beams in springs can lead to elastic cross-axis coupling i.e.,
rotation or translation of the principal axes of stiffness as discussed in the previous sec-
tion. In IC fabrication processes, geometrical as well as material properties are known to
vary by as much as 10% across awafer. Thisvariation is generally composed of two parts:
agradual trend across the wafer and alocalized random component. When we zoom into a
single device, the gradual trends appear to be almost linear across the area of the device.
While a linear trend may suffice to model the statistical mean of a parameter across a
device, random variations may lead to significant deviation from the statistical mean in
individual springs. Therefore, in the following analysis, both, linear variations as well as

localized random variation of beam widths of individual springs are considered.

k., —K., k k. K. K

XX TUXy  TXo, XX XY X,
TLi ke = Ky Kyy ~Kyp | Krr = [Key Ky Kyg, iTR
kx¢z _ky¢z kd)zd)z kxd)z ky¢z kd)zd)z
k k.., —k
y XX Xy Xd, kxx _kxy _kX¢z
|, ) BR
y BL ~— | "xy kyy de)z Ker = [ Key Kyy de)z
k., - k
X(I)z kyd)z d)zd)z _kxd)z ky(i)z kd)zd)z

FIGURE 3.17. Signs of off-diagonal elementsin thein-plane stiffness matrix



wy = Wo(l—AX+Ay) w, = W0(1+AX+Ay)

2L,

W(Xa y) = WO + (X‘XX + (x‘yy

L
X \II_VO X
y
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\q)z
X
FIGURE 3.18. Linear variation in beam-widths across a wafer, mapped onto the

springs of a singledevice with a plate suspended by four springs

A linear variation of beam widths across a device is depicted in Figure 3.18. The

width of a hypothetical beam that would have been located at the center of the device is
assumed to be w,,. The gradients aong the x and y directions are assumed to be o, and
oy, respectively. Then, the beam width variations are as shown in Figure 3.18. It is
assumed that the distance between the beams forming a single spring is small enough that
the beams of the same spring are assumed to have the same width. Since the elements of
the stiffness matrix are proportional to W3 (w being the width of the beams) to the first

order, for a fractional change A in the width, the corresponding fractional change in the

gtiffnessis 3A. Thein-plane portion of the stiffness matrix can be written using (3.74) and

Figure 3.17 as.
(4/3)k,, KBy + A3 =8, =A,) Kyy (Ag+Ay=Az=A,)

(3.75)

Substituting the valuesfor A;, A,, A5 and A, from Figure 3.18,



4K, 0 Kk (124))

K = 0 Ak, Ky (124)) (3.76)
Kyp (128) Ky (124,) 4Ky o

Note that alinear gradient in the beam widths along any direction, will not result in anon-

zero KXy in the system matrix. This implies that there is no first order elastic coupling

between the x and the y modes arising due to a linear gradient in the beam widths. There

will, however, be a second order elastic coupling between the x and the y modes through
the KX% and the Kyd)z in (3.76).

Three cases of beam width variation are now examined and the corresponding
changes in the stiffness matrix as well as the location and orientation of the principa axes

are observed. The system stiffness matrix can, in general, be written as:

K = Ky (1=3Ap) + krp(1=3A,) + Kgr(L1+ 3A4) + kg (1+3A,) (3.77)

Thefirst caseiswhen the o, = 0, i.e,, widths of the top two springsi.e., springs TL
and TR in Figure 3.17, are enhanced by a fraction Ay and the widths of the bottom two

springs, BL and BR are diminished by afraction Ay. The system stiffness matrix obtained

using (3.77) is.

Ak, 0 Ky, (124)
K = 0 4, 0 (3.78)
ke (124,) 0 4k,

Comparing the above stiffness matrix with (3.74) it is seen that they differ only in the

de) and the K X locations. Geometrically, thisis equivalent to movement of the princi-
z zZ

pal axes along the y axis. This can be explained by the fact that the top springs TL and TR
become “weaker” and the bottom springs BL and BR become “stronger” thereby pushing

the principal axes downwards. Note aso that the KXy terms are zero in (3.78) and this cor-



responds to the principal axes not rotating. In terms of the displacement of the suspended
plate, motion along the x direction couples to rotation about the z axis and vice-versa, but

there is no coupling between x and y motion.

The second case under consideration is when oy = 0, i.e., the widths of the two

springs on the left i.e, springs TL and BL in Figure 3.17 are diminished by a fraction A,

and the widths of the two springs on the right, TR and BR are enhanced by afraction A, .

The overal stiffness matrix can be written using (3.77) as:

4, 0 0

K=1|0 4k, Ky (124, (3.79)
0 ki, (124,) 4k, 4

Comparing the above stiffness matrix with (3.74) the difference is only in the Ky¢ and
z

the K, . locations. This is similar to the first case considered above, except that now

by
movement of the principal axes is aong the x axis. The left springs TL and BL become

“weaker” and the right springs TR and BR become “ stronger”, pushing the principal axes
to the right. Again, note that the KXy terms are zero in (3.79) and this corresponds to the

principal axes not rotating. Motion of the suspended plate in the y couple to rotation about

the z axis and vice-versa but there is no coupling between y and x.

The third case is when the widths of the springs on the 135 ° diagonal i.e, springs TL
and BR in Figure 3.17 are enhanced by afraction A and the widths of the two springs on
the 45° diagonal, TR and BL are diminished by a fraction A. Note that such a variation

will not result from a linear gradient. The overall stiffness matrix can be written using
(3.77) as:

a4k, kxy(12A) 0
K= kxy( 12A) 4kyy 0 (3.80)

0 0 4k¢z¢Z
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Comparing the above stiffness matrix with (3.74) the difference is seen to be only in the

KXy and the ny locations. Thisisin contrast to the previous two cases where the KXy

terms were zero. In this case there is no movement of the principal axes but thereisarota

tion. The direction of rotation of the principal axes depends on which of the two orthogo-

nal spring constants i.e., 4k, and 4kyy is larger. In this case there is direct motion

coupling between the x and y directions, but there is no coupling to the rotational direc-

tion.

There is an interesting duality between the position and orientation of the principal
axes and the actual displacements of the suspended plate. For example, when the principal
axes are not displaced but only rotated, there is coupling only between the translational
modes x and y. Similarly, when the principal axes are displaced but not rotated, there is
coupling between a trand ational mode (x or y) mode and the rotational mode, but no direct
coupling between the trandational modes themselves. Note, however, that there is a sec-
ond-order coupling between the trandational motions, if the principal axes are displaced

in an arbitrary direction which is neither along x nor .

In genera, in areal device, one would expect a small uncertainty in the position and
orientation of the principal axes of elasticity due to manufacturing variations. To complete
the discussion on the in-plane cross-axis coupling, simple expressions are now derived for
motion coupling between the trandational modes for two main cases of interest from the

stiffness matrix point of view:

1. Rotation of principal axesi.e., ny;to, de) = K¢ x = 0 and Ky¢ = Kd)y =0:
z A z Z
K K
X Kyy y KXX

2. Displacement of the principal axes, but no rotation i.e., KXy =0, (de) = K¢ WE
z z

and (Kyd)z = K¢zy)¢0:

y SR, x K, Kye,

Y= and® = —— (3.82)
X BywRe0, Y B0,

57



Note that in (3.81) the coupling depends only on one off-diagonal term KXy and is, there-

fore, directly proportional to the fractional width mismatch A. However, in (3.82), the

coupling depends on two off-diagonal terms de) and Kyd)z and is therefore proportional
z

tothe A. A can be considered either as the normalized standard deviation of the widths
of the four springs for a statistical analysis or, if the width of only one spring is changed,
as the fractional width mismatch of the single spring. Comparing (3.81) and (3.82) with
(3.72) and (3.73) respectively, it is seen that the coupling between the two translational

modesis directly proportional to the angle by which the axes are rotated or the product of

the displacements of the principal axes respectively. The high-level parameters (0, X,

and Y) defining the position and orientation of the principal axes can thus be effectively

used by designers to set manufacturing tolerances for system design which are indepen-

dent of the spring topology being used.

The above analysis connects the system stiffness matrix and the displacement and
rotation of the principal axes of stiffness of rotation to the actual values of mode-coupling.
In this section, the system stiffness matrix, in particular the off-diagonal elements, were
expressed in terms of geometrical asymmetries arising due to manufacturing variations. In
the previous sections, in-plane, out-of-plane and in-plane to out-of-plane cross-axis cou-
pling were analyzed in detail. The analysis lends more insight into spring design issues
and aso highlights the differences in the types of cross-axis coupling. This section con-

cludes the entire discussion on modeling of elastic cross-axis coupling.

The next section focuses on another important practical elastic modeling issue: tem-
perature dependent curvature of multi-layer beams. The derivation of the neutral axis of
the multi-layer beams as presented in Section 3.7 is an integral part of the models for ver-
tical and lateral curvature.

3.10 Curl Modeling

Vertical stress gradients in a cantilever beam arising due to the multi-layer nature of
the CMOS microstructures have been analyzed previoudy using therma multimorph the-
ory [56][57][58]. The technique outlined in [58] is useful for calculating the vertical cur-
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vature of multi-layer cantilever beams. Building upon the basic therma multimorph
theory, models for the following additional effects are developed in this section:

1. Arbitrary boundary conditions applied to beam ends

2. Latera curling due to misaligned metal layers

3. Curling of a number of interconnected beams

The model formulated is compatible with existing linear behavioral models for beams
in NODAS [7]. Using this macromodel the internal stresses in the different layers in the
CMOS microstructure can be calculated. The stressin the polysilicon layer can be used to
incorporate piezoresistive effects. The first sub-section details the model development, the
second presents verification results using FEA and the final sub-section describes the

measured results.
3.10.1 Extension of Multimorph Analysis
A multilayer cantilever structure is shown in Figure 3.14. Axial forces acting at the

centroid of each layer lead to vertical and lateral bending moments. Each layer, i, has a

thickness t;, width w;, area A; = wit,

it; , coefficient of thermal expansion, a;, and an effec-

tive Young's Modulus E;. The out-of-plane curling due to residual stress gradient in the

beam produces atip deflection 6. The material propertiesfor each layer are assumed to be

uniform throughout the layer and independent of temperature.
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FIGURE 3.19. (a) Model of a CMOS cantilever beam composed of metal,
dielectric and polysilicon layers (b) Cross-section of an asymmetric multi-layer
beam with dots representing the axial forces acting out of plane. Since the
forcesareasymmetrically located thereisaresultant lateral bending moment in
addition to the vertical bending moment
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Let P, represent the force in the ith layer due to the interfacial forces between adja-

cent layers. Since the forces P; are produced by action-reaction pairs, they sum to zero.

Let My; represent the moment about the y-axis in the ith layer produced by the interfacial

forces.

= (Z'P) (3.83)

n
Z Myi

i=1

n
ZPi:O;

i=1

where, P denotes the force column vector and Z isthe moment arm vector measured from

the neutral axis of the composite beam.

t
1
o o 3%
Py Z t,
t,+ = -2
p=|P z=|%=| * 27 (3.84)
- L
_P“_ n] ) th
2Nitg%
i=1 ]

where, z; is the vertical distance of the neutral axis of bending from the top of the beam
and z is the distance of the centroid of each layer from the neutral axis. Thickness of the

beam is assumed be to much less than the radius of curvature (p), and the radius of curva-

ture can be assumed to be the same for each layer.

3
it

12

Vil

= =W =
=5 or Myl where, Iyl

M. .
Y (3.85)
iyi

where l,; is the moment of inertia of theith layer having width w; taken about the principal

axis of the layer parallel to the y-axis. Let T, represent the temperature of the beam when

it isflat [58]. Equating axia strains at the interfaces between layers due to temperature
change, AT = T-T,



P P, Z -z
1 1
'; — = FAT(oy, ) == p'* =0 (3.86)

E EA

i+17%+1 [

Observing the uniformity of the above equation in the subscript i:

P; T Z c

where Cisauniform axial strain for all layers. Multiplying throughout by E;A;z;,

2
EAizi

Summing up over all layers and using (3.83) and (3.85)

E.
‘ZEI('WAiZiZ) +S EAZATq = CYEAZ (3.89)
. i i

Noting that the first term on the left hand side contains the parallel axis theorem for com-
puting moments and that the right hand side reduces to zero, total bending moment acting

on the composite beam is obtained as:

My = Z(ziwitiEiATai) (3.90)
i

A similar analysis for the lateral moment yields:

M, = > Wit EAToy (3.91)
i

The total axial thermally induced force is given by:

Fy = Z(WitiEiATai) (3.92)
i

It should be noted that the thermally induced forces and moments do not depend on the
length of the beam and can be computed by using only the beam cross-section. This fur-

ther implies that the curvature of abeam isindependent of the length of the beam. Thetip
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FIGURE 3.20. Norton equivalent of a beam macromodel with thermally induced

lumped force and moment sources and an embedded piezoresistor. The beam has

threetrandational pins, threerotational pinsand one electrical pin at each port.
deflection, however, is quadratically dependent on the length of the beam. Since linear
beam theory has been assumed, by superposition, any additional force or moments can be
applied at the ends of the beam. In other words, independent arbitrary boundary conditions
can be applied in addition to the thermally induced forces and moments. Applying the
force from (3.92) and the moments from (3.90) and (3.91), at the ends of the beam will
result in exactly the same displacement and rotation of the composite beam as that pro-
duced in each individual beam by the forces and moments produced by the interfacial
forces between layers and the thermal stresses. Those familiar with Thevenin and Norton
equivalent models in electrical circuits can identify with the analogy of a Norton equiva-
lent model. The Norton equivalent model of the macromodel is shown in Figure 3.20. The
beam itself behaves analogous to a resistive element, the force (current) transmitted
through the beam (resistor) producing a linearly dependent displacement (voltage) across
the two ends of the beam (resistor). The thermally induced forces and moments are ssimply

added as sources to ground, asif current sources are placed at both ends of the resistor.

In order to model the piezoresistive effect the strain in the polysilicon layer along the
length of the beam needs to be calculated. Using Euler-Bernoulli beam theory, it can be
shown that the total change in resistance depends only on the average strain along the
length of the beam, which in turn is dependent only on the axial strain of the beam and the
curvature at the center of the beam. The average longitudinal strain in alayer which is at

distance of (cy, c,) from the centroid of the composite beam is:
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_ ((X]_ - X2) + (d)y]_ - ¢y2)cz + (d)z]_ - ¢22)Cy)

g = - - - (3.93)

where, (X4, ¢y1, ¢Zl) and (X, ¢y2, ¢ZZ) are the axial positions, vertical rotation and |at-

eral rotation at the two terminals of the beam and L is the length of the beam. The resistiv-

ity change is related to the longitudinal strain in the layer through the piezoresistive

coefficient, T as

20 = g (3.94)
p
Transverse piezoresistance of polysilicon is much lower than longitudinal and has been

omitted from the above equation.

The piezoresistance model illustrates the usefulness and flexibility of the proposed
macromodel for curvature multi-layer structures. In the next section, the macromodel is

verified by comparison with FEA.
3.10.2 FEA Verification

In order to verify the three clams of the macromodel two different finite element
analyses were run. First FEA is done on single cantilever beams in order to verify the
accuracy of the macromodel in both vertical and latera curvature. Second, a suspended
plate structure with four U-springs is numerically analyzed to verify that the macromodel
accurately captures arbitrary boundary conditions as well as a number of interconnected

beams.

As part of the first set of analyses, thermomechanical FEA was done on a CMOS
beam with 3 metal layers. The width of the Metal3 layer is set to a commonly used value
of 21um. Metal2 and Metall layers widths are set to 1.8um. Figure 3.21(b) shows the
comparison of tip deflections predicted by the macromodel and the FEA in the latera (y)
and vertical (2) directions. The bottom two metal layers were deliberately misaligned as
shown in Figure 3.21 (a) in order to produce lateral curling with temperature change. As
predicted by the theory, the deflection is linear with temperature and the difference

between the macromodel and the FEA islessthan 3% for all temperatures.
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FIGURE 3.21. (a) Cross-section of beams. Metal3 is 2.1 um wide and M etal2 and
Metall layersare 1.8 um wide and are offset by -0.15 um from the center of the
beam (b) Comparison of behavioral curl model with FEA for beam of length 100
um. Differenceislessthan 3% for all temperatures.

In order to verify the generality of the model, seven different beam compositions were
analyzed. Table 3.5 summarizes the comparison. The type of the beam refers to the com-
position with numbers denoting presence of the corresponding metal layer and P indicat-
ing presence of polysilicon layer. The beams were 100 um long, the metal layers are 2.1
um and the polysilicon is 1.2 um wide. Since a linear relationship between temperature
change and tip deflection was expected, the temperature change was set to only one value:

100 K. The tip deflection values are given in um. The model values match the FEA very

Table 3.5 Vertical deflection (in um) of tip in 100 um: Macromodel vs. FEA

Type 321P 32P 31P 3P 21P 2P 1P
FEA 1.37 2.00 0.84 147 2.86 3.07 8.19
Model 1.36 1.98 0.82 1.44 2.81 3.03 8.06

closely, probably limited by numerical precision of the finite element analyses or minor

second-order non-linear effects.

In order to verify the capability of the model to handle arbitrary boundary conditions,
3D thermo-mechanical FEA of a simplified accelerometer structure was done using Cov-
entorware. The structure consists of a single plate suspended by four serpentine springs.
The serpentine spring was deliberately chosen to see the effects of a large number of

beams. Since thereis no existing thermal curling macromodel for a plate, the plateitself is



(a): Center of plate

(b): Tip of spring
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FIGURE 3.22. Temperature-induced curling of a simplified accelerometer
structure obtained from 3D FEA. The vertical deflections at points (a) and (b) are
compared with results from behavioral smulation using the macromodel in
Table 3.6.

composed of a number of beam elements. The curled shape of the accelerometer structure
due to temperature change is seen in Figure 3.22. The comparison of vertical deflection

from FEA with the macromodel is shown in Table 3.6. The two deflections are in good

Table 3.6 Vertical deflection (in um) for simplified accelerometer

Location Macromodel FEA
(@) Center of plate -0.9 -0.95
(b) Tip of spring 29 3.0

agreement for both the points. Thus, it is seen that the macromodel with force and moment
sources applied at the two ends provides a convenient technique to simulate temperature
dependent curvature in complex suspended structures with a number of beams, which are

not necessarily cantilevers.
3.10.3 Measurements

Measurements to characterize vertical and lateral curl in CM OS beams were made on
beams with integrated heaters. An SEM of the test structure is shown in Figure 3.23. The
structure has 3 main parts. A heated base with an integrated polysilicon heater embedded
in the structure. A meandering spring thermally isolates the heated base from the sub-
strate. The test beams are attached to the heated base. Ohmic heating is used to increase
the temperature of the base. The temperature of the base and the beamsis the same asther-

mal losses to the substrate are small due to the small device area. The device temperature



was extracted from the resistance change in the polysilicon heater. The temperature char-
acteristic of the polysilicon heater was characterized separately by measuring the resis-
tance of the polysilicon heater while the device was placed in a temperature-controlled
oven. The device temperature was measured using the temperature characteristic of
threshold voltage of the N-well-substrate diode. Measurements with an infrared micro-

scope were made to confirm the uniform temperature distribution.

A 10 Hz triangular heating pulse was applied to the heater. Beam deflections in the
lateral direction and the beam curvature were measured using the MIT microvision system
[59]. The temperature distribution is expected to reach its equilibrium value at every mea-
surement as the thermal time constant of the structure is 6 ms. The beam out-of -plane curl
measurements were confirmed by static interferometry images of the structure. The

change in device shape with temperature is shown in Figure 3.24.

Comparison of the measured deflection vs. temperature with the macromodel is
shown in Figure 3.25. A measured 0.15 um overetch was incorporated in the deflection
computation. The measured and the modeled deflections match to within 15% for large
deflections. Possible sources of error include temperature calibration and microvision res-

olution.

Test Beams  Integrated Polysilicon Heater
\

1.2 um

I
2.1 um
&= )

OXIDE

Thermal Isolation spring
@ (b)

FIGURE 3.23. (a) SEM of the test structure used to characterize beam curling
with temperature. It consists of alternating misaligned and symmetric beams
(b) Cross-section of the measured beams (misaligned)
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FIGURE 3.24. Interferometric images of the out-of-plane curl of the test

structure at 24°C and 56°C. One fringe length corresponds to 245 nm
displacement in the vertical direction
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FIGURE 3.25. Comparison of relative tip deflection from measurements and
macromodel showing a match to within 15%. 100 nm and 20 nm error bars are
shown for the z and x deflections respectively.

Thus, the proposed macromodel for vertical and latera curling of multi-layer beams

has been verified through FEA as well as measurement results.

3.11 Summary

A comprehensive analysis of elastic cross-axis coupling was presented at the individ-
ual spring level aswell as the system level with multiple springs. Equations for cross-axis
stiffness constants were derived for crab-leg, u-shaped and serpentine springs. It was
proved that first order cross-axis coupling between the two in-plane translational modes
can be eliminated by using symmetric springs. Beam cross-section asymmetry leading to
cross-axis coupling between the in-plane and the out-of-plane modes was also modeled. A
geometrical interpretation of cross-axis coupling relating the stiffness constants to tranda-

tional and rotational movement of the principal axes of elasticity was presented. This
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interpretation allows us to specify cross-axis coupling independent of the absolute spring

stiffnesses and can also be used to represent inertial and viscous coupling.

A macromodel suitable for schematic-based simulation of thermally induced lateral
and vertical curling in multi-layer CMOS sensors was derived using thermal multimorph
theory. By simulating a schematic with multiple beams, the curling characteristic of
CMOS sensors can be estimated at the design stage instead of post-fabrication character-
ization. Furthermore, effects of manufacturing variation such as mask misalignment on

sensor performance can now be studied in an integrated manner.

In this chapter elastic cross-axis coupling models have been derived for specific
spring topologies. In the next chapter a more general method for computing the stiffness

matrix, which can be applied to any single-chain configuration of beams, is presented.



Chapter 4. Reduced Order Models: From Beams
to Springs

4.1 Introduction

In a typical accelerometer schematic consisting of a plate suspended by four U-
springs, more than 50% of the nodes in the simulation matrix can be traced to the beam
elements used. In such an accelerometer, as well as other inertial sensors, the beam ele-
ments operate in a completely linear regime (because of the extremely small i.e., < 10 nm
displacements). Exceptions to this linear behavior are the beams associated with the large
driven mode (few p m) in amicrogyroscope. The large number of spring beamsin an iner-
tial sensor schematic makes springs prime candidates for reduced order models. This also
has implications for simulation-based design synthesis from high-level performance spec-
ifications, which has been demonstrated for accelerometers [60]. During synthess, the
accelerometer schematic is simulated severa thousand times with varying geometrical
parameters to find an optimal design. The main output of the simulations is the overal
performance of a design. The displacements at the terminals of a particular beam element
are not of any interest during the synthesis process. Similarly, a single mass element bear-
ing equivalent inertial properties as the overall plate system in the inertial sensor, is more
efficient in terms of smulation times. Therefore, higher-level behavioral simulations
using functional elements such as spring, mass, damper and electrostatic sensors and

actuators are better suited for embedding within the synthesis |oop.

The previous chapter described in detail the modelsfor cross-axis coupling in particu-
lar spring topologies such as crab-leg, serpentine and U-springs. In this chapter, the focus
is shifted to more general spring topologies and to extract functional parameters from geo-
metrical parameters for entire systems. The main goal of this chapter isto develop a meth-
odology for rapid translation from a circuit-level beam-plate schematic to a functional-
level spring-mass schematic. This godl is achieved by combining an efficient spring stiff-
ness computation procedure with an algorithm to automatically generate a spring-mass

netlist from a beam-plate netlist. As mentioned in Section 2.4.1 the functiona spring ele-

69



ment implemented is pin-compatible with lower-level beam elements in NODAS. Com-
bining the spring stiffness computation with the trand ator, spring-mass behavioral models
of inertial sensors can be generated automatically. This work utilizes the specialized
geometry of single-chain-of-beams springs in which every beam is connected to at most

one other beam at each end. Such springs are commonly used in inertial sensors.

The first sub-section describes the computational procedure to obtain the spring stiff-
ness coefficients for an extended family of springs. Thisisfollowed by a description of the
algorithms for tranglation from low-level schematic to higher-level behavioral schematic.
Following this, verification of the spring computation procedure is done by comparison
with FEA. The usefulness of the smulation at the functional level isthen demonstrated by
design-space exploration of two inertial sensors. Finally, discussions and conclusions from
the results obtained are presented. Future directions of work to include effects of inertia
and damping and extension for completely arbitrary spring topologies are outlined in the

final sub-section of chapter.

4.2 Spring Stiffness Computation
4.2.1 Background

Springs are a very important part of the inertial sensor design process. Using the
energy methods outlined in Chapter 2 and described in [41][61], stiffness matrices (which
are composed of analytical models for each stiffness constant) have been derived previ-
oudly for beams, crab-leg, u-shaped, serpentine and folded-flexure springs. Extension to
new topologies involves detailed analysis of the spring using free-body diagrams of indi-
vidual beam elements. There are a wide variety of spring topologies and it is practically
impossible to pre-derive the stiffness matrix for each of them. Numerical aternatives such
as building behaviora models through FEA have been proposed previously [62]. The
commercia tool Coventorware also has an in-built methodology for generating macro-

models of springs [54].

The previous chapter described in detail models for cross-axis coupling in specific
spring topologies such as crab-leg, u-spring and serpentine springs. However, for other

spring topologies, designers have to resort to finite element analysis or nodal simulation
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using tools such asNODAS, with beam elements. The computational procedure presented
in this section eliminates the need for finite element analysesto obtain linear spring coeffi-
cients. Furthermore, it a'so speeds up nodal analysis by replacing a number of beams with

asingle spring.

The automated procedure reported in [63] for computing the spring stiffness matrix
for any single-chain configuration of beams is developed based on the modeling tech-
niques described in Section 2.4.2 and [41]. This procedure only requires the designer to
specify the spring as a layout or as a NODAS schematic composed of beam elements. In

the next sub-section, the computational procedure is described in detalil.
4.2.2 Siffness Computation Procedure

The procedure essentially consists of first obtaining the compliance matrix of the
spring and then computing the inverse of the compliance matrix. For single-chain of
beams springs, the compliance matrix is smply the sum of the compliance matrix of each

individual beam because there is no “branching” of forces at any point in the spring.

For any spring which is configured as a single chain of beams the forces and moments
transmitted through a beam in the spring can be computed independent of all the other
beams in the spring. In other words, the forces and moments passing through a beam only
depend on the position of the beam with respect to the point of application of force. Based
on thisfact, the method for deriving the in-plane compliance matrix for abeam in a spring
was described in Section 2.4.2. Using the same method, the out-of-plane compliance

matrix for abeam can also be derived. For the ith beam, the compliance matrix is given as.

A zzi OLz¢xi a

Loz Lo d,0 Loy

Yo,z Lo0,i Loy,

z¢yi

(4.1)

where,
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(X1;.¥1;) (Xo;.Y,;) arethe coordinates of the beam end-points
(xcYo) arethe coordinates of the point of application of force

l; isthe length of the beam
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E isthe Young's Modulus of the material of the beam
G isthe Shear Modulus of the material of the beam

|, isthe moment of inertia of the ith beam cross-section about the z (thickness) axis

lyi isthe moment of inertia of the beam cross-section about the y (width) axis

Jyi

; isthetorsion congtant of the beam cross-section about the x (Iength) axis

The above compliance terms are obtained from the strain energy of bending and tor-
sion. There are additional in-plane compliance terms which arise due to the strain energy

of axial deformation. These terms are given as.

2
(X =%y
D = " EAl,
2
: (Y1; = Yoi)
“wi T TEAL
a¢z¢zi =0
_ _(Xq = %5)(Y1i —Yai)
0nyi - 0Lyxi - EAIi
0Lxd)zi = 0Ld)zxi =0
Cyg,i = % i = 0

The compliance matrix of the entire spring is obtained by summing the compliance matri-

ces of the individual beam elements.

The inverse of the spring compliance matrix yields the spring stiffness matrix. This
procedure is equivalent in the electrical domain to summing up the series resistances and
inverting to obtain the equivalent conductance of a number of series connected resistors.
In the next section, the second component of reduced order modeling strategy, i.e., tranda
tion of the circuit-level beam-plate schematic to the functional spring-mass schematic, is
described.
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4.3 Translation from Circuit-level to Functional Schematic
The trandator implements the following tasks during the conversion to the functional

schematic.

1. ldentifies groups of plates which are adjacent, lumps them into asingle rigid body and
computes the effective mass for thisrigid body.

2. ldentifies chains of beams and collects these chains into springs.

3. Uses the spring computation procedure described earlier to compute the stiffness
matrices for the springs collected in 2.

4. ldentifies groups of springs which are connected between the same rigid bodies identi-
fied in 1 and sums up their stiffness matrices so that there is at most one composite

spring between any two rigid bodies.

The agorithm to convert a beam-plate schematic to a spring-mass schematic isillus-
trated with the help of two examples: the nested-gyroscope introduced in Figure 2.2 and a
z-axis accelerometer. In order to provide more complete picture of the usefulness of this
algorithm, the starting point for thisillustration is the layout. Referring to the hierarchy of
MEMS design levels as shown in Figure 2.6, traversal of the hierarchy from the layout

level to the functional leve will now be demonstrated.
4.3.1 Nested gyroscope

The layout of anested gyroscope system is shown in Figure 4.1(a) A similar topology
has also been employed in a gyroscope designed earlier [32]. The system is composed of
an inner resonator which is suspended inside a movable rigid frame. The inner resonator
consists of four suspension springs and a central proof-mass. The frame is suspended by
four springs which are anchored at the outer ends. The micromechanical part of the layout
is passed through a MEMS layout extractor [64]. The layout extractor recognizes the dif-
ferent components in the layout and generates the NODA S schematic representation of the
nested-resonator system shown in Figure 4.1(b). The actuation and sense combs seen in
the layout are removed from the schematic since they are not relevant to the current dis-
cussion. The different components which are used in the schematic are rigid plates, flexi-

ble beams and attachment points called anchors. In the schematic shown, the centra
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FIGURE 4.1. (a) Layout of a nested-resonator system (b) Corresponding NODAS
schematic obtained through layout extraction. The schematic consists of a central
plate connected through the four inner springs to the frame. The frame is
composed of four plates which are suspended by the four outer springs. The other
ends of thefour outer springs are connected to the chip substrate.

proof-mass is modeled by asingle plate at the center. This plate is connected through four

identical chains of beams to the rigid frame. The rigid frame is modeled by four plates.

These plates are anchored to the substrate using another set of four identical chains of

beams. The NODAS circuit-level schematic is the starting point for the translation to the

functional schematic.

When the schematic shown in Figure 4.1(b) is given as an input to the trandator, the

resulting functional schematic is shown in Figure 4.2. The central plate is translated to a

mass element at the behavioral level. The four plates forming the rigid frame are adjacent.

ANCHOR MASS

MASS

%]—EF SPRING %] {1

SPRING [] — 1

FIGURE 4.2. Functional model generated from the circuit-level schematic of the
nested-resonator system shown in Figure 4.1(b)
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Therefore, they are combined by the trandator to form another mass element. The four
inner springs are combined to form the spring which connects the two mass elements in
the behavioral model. The four outer springs are combined to form another spring element
which connect the mass element representing the rigid frame to the anchor. As shown in
Figure 4.2, the functional model comprises only of 2 spring and 2 mass elements, while
the circuit-level schematic has 5 plate and 76 beam elements. The complexity reduction is
evident even by visual comparison between the circuit-level schematic and the functional

schematic.
4.3.2 Z-axis accelerometer

Figure 4.3(a) shows the layout of an spring designed for use in a z-axis accelerometer.
This spring has about 50 beams. The schematic representation of this layout obtained by
using the layout extractor is shown in Figure 4.3(b). Four such springs were used to sym-
metrically suspend a proof-mass at the center of the layout. The resulting schematic repre-
sentation is then translated to the functional schematic which is shown in Figure 4.4. The

circuit-level schematic with all the four springs has more than 200 beamsin it.

FIGURE 4.3. (a) Layout of a spring with about 50 beams connected to a proof-
mass at one end and anchored at the other end (b) Corresponding NODAS
schematic of the spring obtained through layout extraction. Beams marked with
“1” and “2" have widths w; and w, respectively.
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FIGURE 4.4. Functional schematic generated from the circuit-level schematic of
theaccelerometer shown in Figure 4.3(b)

In both the above examples, the nested-gyroscope and the z-axis accelerometer, the
functional schematic, naturally, has much fewer elements compared to the circuit-level
schematic. Therefore, it isexpected that the ssmulation using the functional schematic will
be considerably faster than that using the circuit-level schematic. However, the functional
schematic is capable of capturing only the lowest resonant modes of the structure, whereas

the circuit-level schematic is capable of revealing many more modes.

4.4 Verification

The methodology described above for behavioral model generation is evaluated at
two levels. First, the accuracy of the spring stiffness computation is verified by compari-
son with FEA. Second, the two topol ogies described previously are simulated at the circuit
level and at the higher functional level and the results are compared with respect to the

accuracy and the ssmulation speed.
4.4.1 Verification of Spring Siffness Computation

The layout of the spring used for verification is shown in Figure 4.5. The length and
the width (measured from centers of the adjacent beams) of the vertical beams are varied
while the horizontal beams are left unchanged. The comparisons of the spring stiffness

computations with the FEA results are shown in Figure 4.6, Figure 4.7 and Figure 4.8 for
Ky Kyy and k 0.0 respectively. For the range of widths and lengths considered, the match
zvz

between the FEA and the spring stiffness computation procedure is very good. The error

surfaces for ki, ky and k_, with respect to the beam length and the width are not pre-
Xy Yo, Xd,

sented here, but are within 6%. The errors are more prominent at higher values of the

beam width w. This is because of the ambiguity in measuring beam lengths i.e., whether
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FIGURE 4.5. Layout of the spring used
for FEA. A isthe anchored point. M is
the point to which the massis attached.
The length | and the width w of the
vertical beam are varied over arange of
values.
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FIGURE 4.6. Comparison of spring
stiffness computation for k,, with
FEA

the length is to be measured from the center of the horizontal beams or from the edge of

the horizontal beams. Similarly for the horizontal beams, the effective length is strongly

correlated to the beam width since, the beam width (4 um) is a significant fraction of the

length (10 pum). For the comparisons shown the beam length was measured from the edge

of the adjacent beams and a correction of
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Wbeam

is applied to both the ends of each beam. w, ., is the width of the beam itself and

Wadjacent isthe width of the adjacent beam.

4.5 Comparison of Circuit-level Schematic with Functional Schematic
Simulation

The nested-gyroscope and the z-axis accelerometer are simulated at both the circuit-
level and the functional level and the results are compared with respect to the accuracy

and simulation time.
4.5.1 Example 1. Nested-Gyroscope Design Space Exploration

One of the design issues in a nested-resonator gyroscope is the difference in frequen-
cies between the drive-direction resonant mode (x-mode of the outer rigid frame) and the
sense-direction resonant mode (y-mode of theinner proof-mass). For maximizing sensitiv-
ity and maintaining manufacturability at the sametime, itis desired that the sense resonant

mode be higher than the drive resonant mode and also that the sense resonant mode be
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FIGURE 4.9. Difference in the resonant frequency extracted from the schematic
simulations and behavioral smulations (a) drive-mode (b) sense-mode
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close enough to the drive resonant mode. The design of the suspension springsiscrucial to
achieve this goal. One of the ways of controlling the spring stiffness is by changing the
widths of the beams forming the spring. By this method the overall dimensions of the

spring do not change much and therefore, the design processis simplified.

A design space exploration is done on the nested-gyroscope using circuit-level and
functional simulations. The widths of the beams in the outer and inner springs were cho-
sen as the two design variables. AC analysis of the schematic shown in Figure 4.1(b) was
done for a range of these design variables. The dependence of the drive-mode and the
sense-mode resonant frequencies on the design variables was obtained from these analy-

SES.

Similarly, these design variables were a so passed to the spring computation code and
the stiffness of the behavioral spring was calculated for all the settings of these design
variables. With these stiffness values AC analysis of the functional schematic of the nested
gyroscope (shown in Figure 4.2) was done. Again, the dependence of the drive-mode and
the sense-mode resonant frequencies on the design variables was obtained. The higher-
level behavioral simulation was about 10 times faster than the beam-based schematic sim-
ulation. The comparison between the resonant frequencies is shown in Figure 4.9(a) and
(b) for the drive and sense modes respectively. The difference isless than 2% for al values
of the design variables. The difference islarger for larger values of the inner spring width.
Thisisbecause, in the current implementation, only the spring stiffness value is computed.
The effective mass contribution of the beams is not taken into account in the behavioral
model. From the results obtained, it is possible to choose the beam widths so that the

design objective is achieved.
4.5.2 Example 2: Resonance Frequency Analysis of Z-axis Accelerometer

The sengitivity of an accelerometer is inversely proportional to square of the reso-
nance frequency in the sensing direction. The resonance frequency of the other modes
determine the mechanical cross-axis sengitivity of the accelerometer. Therefore, it is usu-

aly preferred to have the other modes at much higher frequencies.

The schematic built using 4 of the springs shown in Figure 4.3(b) has more than 200

beams. Two different beam widths, w; and w,, were chosen as the design variables as
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shown in Figure 4.3(a). For different settings of these design variables AC analysis was
done on both the circuit-level schematic as well as the functional schematic combined
with the spring computation. The functional behavioral ssmulation combined with the
spring computation was almost 100 times faster than the beam-based schematic smula-
tion and the resonance frequencies match within 5%. This difference is because the

springs are considered massless.

Thus, in both cases, a significant improvement in simulation time is obtained at the
expense of asmall lossin accuracy, which can be attributed to the fact that inertial effects
have been neglected. This small loss in accuracy is usually acceptable for applications
such as smulation-based synthesis. However, the improvement in simulation time will, in

turn, lead to significant reduction of synthesistime.

4.6 Inertial and Viscous Effects and Extension to Arbitrary Spring
Topologies

In this section, extensions to the stiffness computation procedure to include inertial
and viscous effects are presented. The extensions are proposed for arbitrary spring topol o-
gies. The goal isto reduce amultiple terminal network of interconnected beams to a 2-port
spring, retaining the ports at which the network of beams originally connected to other ele-

ments in the schematic while preserving the significant modes of the original network.
4.6.1 Model Formulation

A mechanical second-order system with n degrees of freedom can be written as:

] [x] 6] [x] * [K]- [ = [F] (43)

where the X vector contains the position of the n nodes and the F vector contains the

external forces acting at the n nodes, i.e.,

X1 fy
X = %2 andF = |12
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The M and the B matrices are assumed to be diagonal. The K matrix may have cross-axis

coupling terms and therefore is not be diagonal, but is a symmetric matrix. Introducing

additional state variables V = X, the above equations can be rewritten as:

X1 X1 _fl_

X, Xo fy
B M | |+[KO| | = .. (4.4)
-M 0] || OM |v| o

v, V2 8

Note that in the above equation the first matrix is skew-symmetric while the second one is
symmetric. These properties may come in handy later on to preserve the passivity of the

reduced-order models [65].

Let there be p nodes where the network of beams connects to other elements (such as
aplate or an anchor). These p nodes can have external forces applied to them. This means

that the force vector on the right hand side can have non-zero entries only at these p nodes.
The original X vector is partitioned into two sub-vectors X; of size p and X, of sizen—p.

The reduced-order model should have only p nodes. Rewriting (4.4),

X
=

X
=
T

' X
{B M]XZJ{K o] 2 _ 45)
M o] |y| oM |v

o O O

The X; and the X, vectors are not linearly independent i.e., the X, vector can be expressed

in terms of the X; and V; vectors. Similarly the V, vector can be expressed in terms of the

V, vector. If reduced-order matrices Bp for the visco-inertial properties and KIO for the

elastic properties then:
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In order to convert (4.5) into (4.6) a transformation Z with 2n rows and 2p columns is

required such that:
_Xl_
X X
Z Y = |72 (4.7)
2nx 2p
V2|

Observing the form of the above equation and recalling that V;, = X; and V, = X5, Z

can be written as;

|p><p
0. 0
Zonwop = | " Op)Xp | (4.8)
pxp
0 Qu_pxp

where, Q is a matrix whose computation is described in the following section. Substitut-

ing (4.7) in (4.5):

F1

' X
{B QWZ'>9-+$-ﬂ.z- 1 =)0 (4.9)
M 0 v, lom v, o
0

%-)q =Zz'.]0 (4.10)
Vq 0
0



Comparing (4.10) with (4.6) and using (4.8) (to verify that the right hand sides are
identical) we can compute the reduced-order B and K matrices, if the Z transformation

matrix is known. In the next section we will describe the computation of the Z matrix.
4.6.2 Model-order Reduction

This section describes the model-order reduction process which is basically the pro-
cess of expressing the state of n displacementsin the X vector and the n velocitiesin the V

vector in terms of only the p displacements and the p velocities in the reduced-order dis-

placement and velocity vectors, X; and V, respectively. The transformation matrix Z

brings about the reduction of the model order.

Expanding and rewriting (4.5):
B, 0 Mj;; O X4 Ky Ky 00 Xy F
0 By O Mzz_ x‘2 . Kyy Ky 0 0 ‘ X, _lo @11
-M;; 0O 0 O A 0 0 Mj; O \2 0
Since the derivatives are zero a steady state:
K Kag) X _ {Fl} 4.12)
Ka1 Koal [ %2 0
i.e,
(Kot Xy + KgpXpl = 0 e, [Xy| = [—(KZZ)_le xJ (4.13)
and,
X I
[X] = 4 Xy (4.14)
2l |7(Kyp) Ky

Comparing (4.14) with (4.7) and (4.8) we have:



_ | . _
-1
_ |m(Ky) "Kyy 0
Zonx2p = (4.15)
0 I
-1
I 0 —(Ky,) K21_
Now the reduced-order system matrices can be written as.
Ky +Q'Ky, 0
K= and
T
0 My, +Q M,,Q
T T
8 Bjp+Q ByQ My +Q MxQ
T
—(My1 +Q MxQ) 0
where,
- -1 4.1
Q [‘( K22) KzJ (4.16)

Thus, by computing the Q matrix the reduced order model can be obtained.
4.6.3 General Reduced-order Modeling

The reduced-order model derived in Section 4.6.2 has the same zeroth order moments
(steady state solution) as the original model. In order to match higher order moments also,
additional nodes need to be introduced into the reduced-order model. The transformation

matrix Z will then look like:

by E O O
_ Q- E, 0
Zonw 2p+r) = “‘;”Xp o - (4.17)
pxp 1
0 0 Qu_p«pEy



where, thevectorsE, . = [Ell are orthonormal within themselves and to [Q 'pxp ]
2 (N—-p)xp
and they jointly form abasisfor the first p+ r moments of the origina system. The addi-
tional vectors E, can be obtained using Arnoldi methods as shown in [65][66]. However, it
isnot clear whether thefirst p + r moments of the transformed system matrices will match
those of the original system. If the basis Z were orthonormal this has been proved earlier
[65]. But the first p columns of the basis Z are not orthonormal. Therefore, additional work
is required to prove or disprove the moment matching properties of the transformed sys-

tem matrices.

4.7 Summary

This chapter addressed the functional level of the MEM S design hierarchy and extrac-
tion from the circuit-level to the functional level. The extraction was accomplished by
combining a simple method for computing stiffness matrices for springs with an algorithm
to combine multiple beams to a spring element and multiple connected plates to a single
mass element. This stiffness computing procedure can handle any single-chain configura-
tion of beams and is accurate to within 5% aslong as all beams are at least as long as they
are wide. Using the flow from layout to circuit level schematic to functional schematic,
faster design techniquesfor inertial sensors were demonstrated. For a complex spring with
about 50 beams, the simulations using the functional schematic coupled with the spring
computation procedure were up to 100 times faster than nodal simulation using beam and
plate atomic elements. Extensions of the stiffness computation procedure to arbitrary
spring topologies and to include inertial and viscous effects have al'so been proposed to

overcome current accuracy limitations.
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Chapter 5. Electrostatic Modeling of CMOS-MEMS
Comb

5.1 Introduction

In the previous two chapters, elastic modeling was described in extensive detail par-
ticularly with regard to elastic cross-axis coupling. In this chapter, the domain of interest is
electrostatics. Electrostatic combs are used extensively in MEMS for sensing and actua-
tion. As described in Section 2.4.3, two main quantities of interest in the electrostatic
domain are the capacitance and force. A modeling methodology for capacitance and force
of complex multi-conductor structuresis developed in this chapter. M easurements on fab-

ricated variable capacitance test structures are used to verify the models.

Linear combs with dominant motion along the length of the combs [67] (Figure
5.1(a)) are used in microgyroscopes for actuation since they produce constant force over
large amplitudes [10]. Differential combs, shown in Figure 5.2, are used for sensing the
induced oscillationsin gyroscopes. Since microgyroscopes are highly sensitive to spurious
forces, it is important to estimate the multi-directional actuation forces produced by the
simple comb. Furthermore, since temperature-dependent microstructure curling in

CMOS-MEMS [7] gyroscopes can lead to drive amplitude variation with temperature,

g B 2 METAL3
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) & \
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y width (w) 5 93P (9) METAL1 /
) | EommmaTPOLY
X (@ (b)

FIGURE 5.1. (a) Top view of a simple comb with three comb fingers (the lesser of
the two numbersistaken as the number of fingersin the comb) (b) Cross-section
of acomb finger in the CMOS-MEMS process
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FIGURE 5.2. Top view of a differential comb along with the equivalent capacitive
divider schematic.

robust design requires curvature-inclusive comb actuator models. Simulation of manufac-
turing variations requires models which are valid over arange of geometrical parameters.
When used for motion sensing, differential combs require an accurate capacitance model.
The modeling problem is further complicated in a multi-layered CMOS-MEMS comb
(Figure 5.1(b)) which has multiple edges and vertices on each finger. In addition to pro-
viding accurate values for the capacitance and force, a behaviora model should also con-
serve energy [68]. Behavioral smulation can be used effectively to aid in gyroscope

design only if the comb models provide reasonable estimates of capacitance and force.

In Chapter 3 and Chapter 4 the elastic properties of beam elements were analyzed.
There are important fundamental differences between the beam and the comb models.
Unlike elastic beam differential equations, which have a commonly valid and accurate
closed-form general solution, the Laplace equation defining the electrostatic behavior of
combs has closed form solutions only for alimited number of symmetrical boundary con-
ditions, which are often restricted to two dimensions. Furthermore, while beam elements
are most commonly used in their linear region of operation in inertial sensors, comb
capacitance and force are inherently non-linear. Usually the number of comb elements (2

to 4) in an inertial sensor is much smaller compared to the number of beam elements (>
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Symmetry broken
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@ (b)
FIGURE 5.3. (a) Cross-section of a comb showing two fixed fingers (F) and one
movable finger (M) along with odd and even symmetry planes used in derivation
of confor mal-mapping based analytical models. (b) Movement in the gap direction
breaksthe symmetry

15). These differences are summarized in Table 5.1. These differences suggest that differ-

Table 5.1 Comparison of beam and comb models

Element type beam comb

Solution of physics accurate, 3D, analytical approximate, 2D, analytical
Non-linearity only for large displacements| even for small displacements
Number in schematic 44 4

ent modeling strategies be used for the beam and the comb models. Accordingly, an alter-
nate modeling methodology for electrostatic elements is presented in this chapter. Before
delving into the modeling methodology, a brief review of existing public literatureis given

in the following section.

5.2 Background

2D analyses of the comb-drive cross-section usually use conformal mapping [42][51]
techniques. These analyses are primarily aimed at the simple comb with the dominant
motion being in the direction of the length of the comb-fingers. Capacitance change due to
vertical or lateral motion has been modeled using approximate analytical equations for
single-layer comb fingers [51] or by numerical simulation of fixed-geometry 2D multi-
layer cross-sections [69][ 70][71]. Angled comb-finger side-walls (observed in polysilicon
microstructures) have been modeled by superposing curve-fits onto nominal analytical

eguations[72].

The conformal-mapping based analytical models for fringe capacitance are derived
using symmetry assumptions. However, movement in the gap direction breaks the symme-

try as shown in Figure 5.3 and therefore, the analytical models are not strictly valid. None

89



of the above-referred models take into account the fringe capacitance at the tips of the fin-
gers, and charge concentration effects at finger corners. While the numerical models
[69][70][71] take into account the multi-layer nature of CMOS comb-drives (Figure
5.1(b)), they are all valid only for fixed finger width and gap between the fingers. Further-
more, because of the 2D nature of the models, capacitance changes and vertical forces due
to temperature-dependent vertical curling of comb-fingers can only be approximated by

assuming amean vertical position of two uncurled combs.

Numerical methods such as Finite Element Analysis (FEA) and Boundary Element
Analysis (BEA) can capture charge concentration, curling and generalized motion effects
on capacitance and force. However, numerical convergence needs to be closely monitored.
Experience with BEA done in this thesis suggests that even four times higher refinement
of a boundary element mesh which yielded converged capacitance values did not yield
converged force values. This is probably because capacitance convergence requires only
that the overall charge on a conductor does not change with more refinement, however,
force convergence imposes a much stricter condition that the charge distribution remains
invariant with more refinement. Also, numerical methods requiring meshed models and
significant computation time, are not convenient for direct inclusion into a system simula-
tion loop. Therefore, the modeling goal of this work is a behavioral description of the
comb which exhibits the ease of use of analytical equationsin system-level smulation [7]

while incorporating the extended validity range of numerical methods,

In [73] Gabbay et al. have presented a genera macromodeling system, which
employs a rational fraction of multivariate polynomia as the fitting equation. However,
the proposed model consists of analytical equations at the core superposed with polyno-
mial curve fits for data obtained from 3D BEA [74]. The former approach is more suited
(and probably necessary) for arbitrary shaped, non-parameterized geometry, deformable
actuator systems. The electrostatic comb can be generaly considered to be non-deform-
able (except for curvature, which is being treated as a geometrical parameter) and also, the
model domain not only includes the position and orientation of the comb, but also the geo-
metrical parameters. Additionally, by combining analytical models with regression one

can take advantage of the existing literature on electrostatic comb models.



5.3 Modeling Goalsand Approach

The modeling methodology is intended to capture the following physical effects:
Fringe capacitance for movement in gap direction

Genera 3D motion of the combs

Multi-layer effectsin CMOS-MEM S combs

Vertical curling effects

o w DN

Charge concentration effects at corners

The model is intended to be valid for multi-layer combs across a range of comb fin-
ger geometries, combined movement in vertical and latera directions, and aso include
curling effects and fringe and corner capacitances. The model is also aimed at providing a
energy-conserving description of the electrostatic comb actuator by fitting the derivative
of the capacitance equation to numerically obtained force values. The modeling approach
isto derive an analytical equation for comb movement in the gap direction and use numer-

ical datato capture the other effects.

In Section 5.4 the library of existing analytical models is extended for movement of
the comb in the direction along the gap. The analytical equations derived, which also form
the core of the proposed model, are briefly described. The next section describes the
numerical part of the modeling methodology. Choice of design variables, variable screen-
ing, design of experiments for BEA are described in Section 5.5. Section 5.6 details the
form of the model and the approach for combined modeling of capacitance and force. The
regression results, accuracy of the fit and an application of the model to estimate manufac-
turing variation induced drive amplitude changes in a gyroscope are discussed in Section
5.9. Experimental verification is described in Section 5.10 and the chapter summary is
presented in Section 5.11.

5.4 Analytical Model for M ovement in Gap Direction

In this section, the analytical equations which will be used in the fitting formula are
described. The cross-section of a comb with three fixed (F) and two movable (M) fingers
isshown in Figure 5.4(a). The movable fingers are displaced from the nominal position to

the right by a distance x. The capacitance between the movable and fixed fingers can be
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FIGURE 5.4. Simplification of laterally displaced comb cross-section using
symmetry (a) Comb section showing 3 fixed fingers and 2 movable fingers
displaced in the x direction from the nominal symmetrical position (shown with
dotted lines). (b) Simplification by introduction of odd symmetry planes (c)
Equivalent configuration with the fixed comb-fingers replaced by odd-symmetry
plane placed midway between therotor and stator fingers

written as a sum of two 2D capacitances, the paralel plate capacitance and the fringe

capacitance. The parallel plate capacitance per unit length of overlap isgiven as.

_ t t
Cp(t, 8, ) = So(g—:(+§_—__ (5.1)

where, the parameterst, g and x are shown in Figure 5.4.

The derivation of the fringe capacitance is described below. Conformal mapping has
been used in [42][51] to derive the capacitance for symmetric 2D cross-sections of differ-
ent parts of the simple comb. However, movement of one comb in the gap direction
destroys the symmetry boundary conditions assumed in those derivations and renders the
eguations for fringe capacitance invalid. An alternative approach, whichisvalid for move-
ment along the gap direction, is used here. Assuming that there are a large number of fin-
gers, symmetry is used to simplify the geometry. By placing two odd symmetry planes the
simplified configuration of Figure 5.4(b) is obtained, which has two conductors and two
odd symmetry boundary planes. Noting the presence of more symmetry, another odd sym-
metry plane can be inserted between the two conductors yielding the configuration of Fig-
ure 5.4(c). The configuration of Figure 5.4(c) is basically a rectangular conductor placed
asymmetrically between two ground planes. Note that the configuration of Figure 5.4(c) is
symmetrical about the x axis. Therefore, an even symmetry plane can be inserted to fur-

ther smplify the geometry.
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By use of conformal mapping this geometry can be mapped onto the real axis of a
complex plane. At this point there are still too many right angles in the geometry to obtain
a simple conformal mapping equation for capacitance calculation. As a rule, a geometry
needsto have less than four right anglesfor it to have aclosed form solution for conformal
mapping [43]. Therefore, in order to isolate the fringe capacitance of only the top half of
the configuration, the conductor is assumed to be semi-infinite. Following the conformal
mapping, the parallel plate portion of the capacitance is subtracted to yield only the fringe
capacitance. Such asimplified geometry is shown in Figure 5.5(a). Note that the structure
now has only 2 right-angles, the other two turns being 180° as the edges are traversed

starting from the points labelled A to M.

Conformal mapping for asimilar problemisgivenin[75] (Figure 5.5). The conductor
is assumed to be semi-infinite for the purpose of obtaining the fringe capacitance. The
conductor and ground planes traversed in the order A-B-C-D-E-F-G-H-K-M are mapped
from the Z plane to the real axis of the W plane. Note that the coordinate axes shown in

Figure 5.5 such that the complex plane Z is defined as: z = u; +iv; and W as:
W = U, +iv,. A Schwarz-Christoffel transformation is used for this mapping [43]. The

differential form of the mapping is given as.

dz _ Jw+1)(w+p)
G = A W—5) (5.2)
u V
Zplane s p 2 W plane
K 9p2 Omak -~ T~ ~
A P N
: Ve N
. / \
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/ \
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/ / \l \ u,
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FIGURE 5.5. (a) Conformal mapping for a single conductor placed asymmetrically
between two ground planes

A A F F
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where A, 6 and 3 are computed by integration of (5.2) followed by applying the mapping

between known points shown in Table 5.2.

Table 5.2 Mapping of pointsfrom Z planeto W plane

Point | Zplane W plane Point | Zplane W plane
A —0 o0 F —0 0

B _t+j(gm2+W) -4 G —t s

C j(gm2+W) —B H 0 rH

D 1900 -1 K % 8

E _t+ng2 _rz M _t+J(gm2+W+gp2) r]_

zZ= %?(aatanh( I%}E_g((___vwviéli))) —yatanh(J%) —atanh( ,8(\/\\//v++81))) (5.3)

where,

_ g-—X, g+X
Omz = "5~ %2 = 5

__w+g . _g+X
<« (g—x)/2’y g—Xx

5 = %(az—vz—uJ(az—v2—1>2—4v2) B = §—2

y
In(r,) = —;‘—:l—zaatanh( B(Bl++68)) + 2yatanh(.JB) + |n(Bi‘_§3)
In(ry) = %@—:I+2aatanh( %—I—g) +y|n(E—}}) —2atanh(—1—BD

The total fringe capacitance is then given by:

C = tli_)m@[%(ln{%]j _Cppj 54

where, ¢, = (—t— + —t—z) isthe paralel plate contribution of the capacitance. To obtain

pp Im2 gp
separate contributions of capacitance to the top and bottom ground plane, the mapping of

the point K, where the field lines get split into the two ground planes, is required. Evaluat-
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FIGURE 5.6. Comparison of analytical model adapted from [75] and FEA for x
displacement of the comb-finger cross-section shown in Figure 5.4.

ing thelimit in (5.4) and using the mapping of point K (& inthe W plane) the contributions

of the capacitance to the left and right ground planes in Figure 5.4 are obtained as:

c = %O(Zocatanh( / 3 (31158)) —2yatanh(—[1§) _ |n(B—4:B—]) + |n(5)) (5.5)
C, = %‘3(@ (2aatanh( J%?-@ +y|n(B—}-1) —2atanh(%BD _ |n(5)) (5.6)

ci(w, g, x) = C +C, (5.7)

From this model, the equations for the lateral force between the rotor and the stator comb-

fingers are also derived.

The model is verified by comparison with 2D FEA (Figure 5.6). The x displacement
was varied from 0 to 0.9 times the gap on either side. The model matches FEA to within
2%. The maximum error of 2% is probably because of the finite number (5) of comb-fin-
gersin the smulation. The model underestimates the fringe capacitance on the end fingers
because it assumes symmetry boundary conditions. It is seen that the error is maximum for
maximum gap. This is because, the fringe capacitance of the end-fingers (and other fin-
gers too) is significant when the gap is larger. At smaller gaps, the paralel plate capaci-

tance begins to dominate. The small error suggests that the model is reasonably accurate
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even when there are only 5 fingersin the comb. Naturally, with more fingers, the accuracy

is expected to improve. The total 2D capacitance per unit length per finger is given as:
CzD(Wa t, g, X) = Cp(ta g, X) + Cf(Wa g, X) (58)

where c,(w, g, X) isasshownin (5.7). The capacitance thus derived is extended to 3D by

multiplying C,5 with the overlap between the comb-fingers. The equation shown is valid

for a single-layer structure and does not account for curling and corner capacitances. The
next section describes the design of experiments for numerical analysis used to extend
(5.8) to incorporate vertical movement, multi-layer effects, curling and 3D charge concen-

tration effects.

5.5 Design of Experimentsand Simulation

In this section the procedure for designing the experiments for BEA-based data col-
lection is described. Broadly, the design of experiments process can be viewed in 5 steps.
comb parameterization, variable selection, variable screening, choice of variable ranges

and data collection. Each of these stepsislisted below.
5.5.1 Comb Parameterization and Variable Selection

The comb is parameterized into geometrical, position and orientation variables. The

geometrical variables are: width (w), gap (g), overlap length (o) and the number of fin-

gers. The thickness of the comb depends on the composition of the multi-layer stack. For
maximizing in-plane actuation force designers include all metal layers and the polysilicon
layer. Therefore, we use the fixed comb cross-section containing all three metal layers and

the polysilicon as shown in Figure 5.1(b). The three position (X, y, z) and three orientation

variables (¢, , ¢y, ¢,) correspond to the six degrees of freedom. Additionally, tempera-

ture (T) is also chosen as a variable because the curvature of the comb fingersistempera-
ture dependent. Lateral combs are commonly used for actuation with amplitudes of the
order of 5 um. Since the force isindependent of the finger length, the finger length is usu-
ally tightly linked to the overlap length. Assuming a clearance of about 5 um at maximum

displacement, the finger length (1) is set to be:
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5.5.2 Variable Screening

(5.9)

The next step is to screen out variables which are known to have relatively small

effect on the capacitance and force. Using data collected from initial runs varying each

variable in isolation, it was decided that variables ¢y and ¢, can be kept at zero because

of the small change in capacitance produced by them. The final set of variables used for

the design of experiments are width, gap, overlap, positions x, y and z, orientation ¢, and

the temperature T.

5.5.3 Choice of Variable Ranges

The vaues chosen for the variables are summarized in two sets in Table 5.3 and

Table 5.3 Experimental plan set 1 for simple comb BEA

Intermediate

Variable type | Name (units) Lower bound | Upper bound | values

w: width (um) 2.0 4.0 3.0
Geometry | 9:gap (um) 15 2.5 2.0

O overlap (um) | 10.0 20.0 -

X (um) 0 08¢ 049
Position y (um) -4.0 4.0 0.0

Z (um) -2.0 2.0 0.0
Orientation | ¢,(°) -1.0 1.0 0.0
Temperature | temperature (K) 250 350 300

length (um) overlap + 10

numfingers 3
Constants ¢y(0) 0

¢,(°) 0
Total Number of Runs ‘ 4374

Table 5.4. Thefirst set of runs has 4374 points and has number of fingers set to 3. The sec-

ond set has 10 fingers in each run and has a total of 192 runs. Higher number of fingers

naturally lead to higher simulation times (e.g., the numfingers=10 run takes about 15 min-
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utes, while anumfingers=3 run takes about 5 minutes). Therefore, the number of runs with

higher number of fingersis kept very small.

Table 5.4 Experimental plan set 2 for simple comb BEA

Intermediate

Variabletype | Name (units) Lower bound | Upper bound | values

w: width (um) 2.0 4.0 -
Geometry g: gap (um) 15 25 -

O overlap (um) | 10.0 20.0 -

X (um) 0 04¢9 -
Position y (um) 0 4.0 -

Z (um) -2.0 20 0.0
Temperature | temperature (K) 250 350 -

length (um) overlap + 10

numfingers 10
Constants 0y (%) -1.0 1.0 0.0

¢y (°) 0

¢,(°) 0
Total Number of Runs 192

The ranges for the width and the gap reflect commonly used values. The overlap
length is limited to 20 um since actuation combs are not likely to require greater than a
few micrometers of movement, and when used for sensing, the capacitance change per
unit length of displacement isindependent of the overlap length. Larger number of fingers
lead to larger number of panels in the boundary element mesh. Therefore, the number of
fixed fingers was set to three to minimize the analysis time. Three fingers is the minimum
number for which at least one finger on the movable part has symmetrical neighbors.
Movements along the gap (X) direction are normally restricted to less than half the gap by
limit stops or other means. However, the maximum movement is chosen to be 0.8 times
the gap in order that the potential displacements are well within the validity range of the
fitted model and also, in order to capture the highly non-linear capacitance change in the
gap direction. The displacement along the length (y) was chosen to be + 4 um, with aview
to keeping a clearance as well as a minimum overlap of at least twice the gap in order to

avoid potentially non-linear regions which are undesirable for gyroscope actuation.



For maximizing sensitivity and actuation force, designers attempt to ensure maximum

vertical overlap in the comb by using curl-matching techniques [58]. However, the result-

ant curl-matching is usually never perfect and the ranges chosen for the z and ¢, vari-

ables are intended to capture curl mismatch in the combs. It should also be mentioned that

z = 0 and ¢, = O refer to the nomina curl-matched positions, from where z and ¢, are

measured. At room temperature, the comb fingers are curled upward and the curling
reduces as the temperature increases. The curvature of the comb fingers, computed using

thermal multimorph theory presented in [58][76], isinversely proportional to the tempera-

ture. For asingle finger the curvature p isrelated to the temperature T:

%OC (T=Ty) (5.10)

where, Ty is the temperature where the finger will become flat and the constant of propor-

tionality depends upon the composition of the finger and the material properties. The tem-
perature range of interest is chosen to be + 50 K around the room temperature so that the
corresponding range in curvature covers possible variations in finger composition and
material properties from sensor to sensor. Also, it should be noted that measured curva-
tures of the finger can be directly fed into the comb model rather than computing curva

ture from measured temperature.
5.5.4 Data Collection

AutoBEM software from Coyote Systems (now part of Cadence Design) [54] was
used for BEA. A number of manual iterations with the BEA mesh led to an efficient tem-
plate for the mesh which showed reduced simulation time with accuracy comparable to
that obtained by adaptive refinement and iterative solution. Convergence of BEA using
the template mesh was verified initialy by splitting each element in the mesh into two and
comparing the capacitance values obtained. A mesh generation program for electrostatic
combs was implemented in C++. Figure 5.7 shows the boundary element mesh generated
for a 10 finger curled comb. The curling and the curl-mismatch in the figure is exagger-
ated to aid visualization. The initial mesh is further refined internally inside AutoBEM to

obtain very small elements near edges and vertices. Adaptive refinement is not used
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because it requires multiple solutions which are time-consuming. However, the interna
mesh refinement commands used (listed in Appendix A3) are tailored to closely replicate
the optimal mesh produced by successive adaptive refinement. The final mesh used for

solution leads to very small elements and is not shown in the figure.

Force computation using BEA did not converge even with a mesh which was more
than four times as fine as (and therefore about 4 times dower than) the mesh which
yielded converged capacitance values. The refinement stepsfor thismesh arealso listed in
Appendix A3. Therefore, only capacitance convergence was obtained for the first set of

4374 runs. Force convergence was attempted on a smaller subset of 1458 runs, in which
o, was also kept constant at 0. However, convergence testing revealed that the force val-
ues were not accurate, though the capacitance values obtained were more accurate than

those in the first set of 4374 runs. Therefore, numerica differentiation of the well-con-

verged capacitance values in the second set of 1458 runs was used to obtain the forces (F,,
and F), in they and z directions respectively, for 972 intermediate points. Fy, values were
obtained at y = —2 and +2 um, from capacitance values at y=-4, 0 and 4 um. F, values at

z=-1 and +1 um were obtained from capacitance values at z=-2, 0 and 2 um. This method

could not be used for computing the force (Fy) in the x direction because, the capacitance

A~

FIGURE 5.7. Boundary-element mesh for a 10 finger vertically curled lateral
comb with all CMOS layers.
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change in the x direction being highly non-linear, closely spaced points are required for
precise computation of force. Therefore, a separate set of 162 runs, as summarized in

Table 5.5, was designed to compute F, at 54 points. Note that because of the rapid change

Table 5.5 Experimental plan to obtain F, valuesfor simple comb using BEA

Intermediate

Variable Type | Name (units) Lower bound | Upper bound | values

w: width (um) 2.0 4.0 -
Geometry g: gap (um) 15 25 -

Opp: overlap (um) | 10.0 20.0 -
Position X (um) 049g-01 04g+01 |04g

y (um) -4.0 4.0 -

Z (um) -2.0 2.0 0.0
Temperature | temperature (K) 250 350 -

in capacitance with x, three capacitance values were used to compute each force value.

In this section the variables used in the design of experiments to obtain numerical data

were introduced. The subsequent section detail s the modeling methodol ogy.

5.6 M odeling M ethodology

The form of the equation for the capacitance mode is described first. Following this
the combined modeling method for capacitance and force isintroduced. With this method-
ology, the force models can use the same fitting equation and coefficients as the capaci-

tance.
5.6.1 Capacitance Modeling

The two analytical equations described in Section 5.4 are used as the core of the
model. The two functions are weighted by polynomial functions of variables. The fitting

function used for linear regression is of the form:

C = ¢( ), () + Gl () + Gy ) (5.11)

where,

tisthetotal thickness of the multi-layer comb finger which is held constant

(...) indicates function of all the variablesin Table 5.3
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C;1, C, and c5 are capacitance functions of the design variables given as:
Cq(...) = (oIIO + y)cp(t, g, X) isthe 2D paralé-plate capacitance givenin (5.1)
Co(.-.) = (9 ot y)ci(w, g, X) isthe 2D fringe capacitance as given by (5.5) to (5.7)

cg(...) =1
f,(...), f5(...), f5(...) are the polynomial weighting functions. f5(...) corresponds to
that part of the capacitance which is neither due to the paralel plate nor the analytical
fringe capacitance.

L et us assume that the number of polynomial termsin f; , f, and f; arek,, k, and

ks respectively and that al the terms are sequentially numbered from 1 to k, where

k = kq +k, + k5. The polynomial weighting function can be written as:
a. a. a A, & A&~ a a
fi(...) = er(w g ‘zoléfp 14y 15y 1% ’7¢X’8) (5.12)
j

where, the summation index j goes from 1 to k; for f;, from k;+1 to ky+k, for f,, and from

ki+ko+1 to Ky+kotks for fs, r ae the coefficients and &g, ... g AL the powers to

which the respective variables are raised to in the j th polynomial term. Note that the unity
term as well as negative indices can also beincluded in the polynomial representation. The
coefficients of the polynomial terms will be obtained by regression. If the entire fitting

eguation is expanded out then it is seen that each fitting coefficient is associated with a
single term which is a product of one of the capacitance functions (c,, ¢,, c5) and one of
the terms from the corresponding polynomial weighting function. This product term is
referred to as a predictor in statistical analysis. For the above regression model, there are
k predictor terms [77] which are products of the three capacitance functionscy, c,, and c3
and the polynomial termsin fy, f, and f3 respectively, associated with that function. Evalu-
ating each of k predictor terms at the n capacitance data points, the model matrix can be

formed as;
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M
Clox = [pl P2 '~]nx|( r, (5.13)

- kX1

where,
[C] isthe vector of capacitance values corresponding to n runsin the experimental plan.

p; isthe jth predictor vector. There are k predictor vectors of size nX1 corresponding to

the n settings of the variables.

g is the regression coefficient associated with the jth predictor vector.

5.6.2 Combined Capacitance-Force Modeling
The force produced by an electrostatic actuator, assuming constant voltage, in a gen-

eralized direction & isgiven as:

Fe = %(3—@ Ve (5.14)

Therefore, we can write the regression model for the force (assuming unit voltage) in the

direction & as:

— lidp; dp
[F;Jmé)(l 2[1 dp, ”_]mé ', (5.15)

where, m. is the total number of data points for which we have the force values in the

direction &. To obtain regression coefficients which produce accurate fitted values for
both force and capacitance ssimultaneously, we combine (5.13) and (5.15) into a common

regression model:
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2p; 2p, ...

C dp, dp,
5 5 DY r'
F, 1 dx dx 1 516
Fy 2|dp, dp, f2 '
E dy dy < kX1
L z_(n+mX+my+mz)X1

dp; dp,
_d_Z dz W_(n+mx+my+mz)xk

In the above equation n, m,, m, m, correspond to the number of data points for which
capacitance, Fy, Fy and F, are respectively available. As per the experimental plan
described in Section 5.5, we have n = 4374, m, = 54, m, = 972 and m, = 972.

Since the capacitance and force obtained may differ in their relative magnitudes, weights
may be necessary to scale the residual errors corresponding to each point so that points
with smaller absolute values of capacitance or force but relatively large percentage errors

are not ignored by the regression.

5.7 Differential Comb Modeling
In the previous sections the modeling methodology for the linear comb was described
in detail. In this section modeling of the differential comb is summarized. There are some
important differences between the linear comb and the differential comb:
1. There arethree conductorsin adifferential comb as opposed to two in alinear comb
2. The comb fingers are typically much longer in adifferential comb (~60 um) thanin a
linear comb (~10 um). Therefore, in-plane rotation, which isrelatively insignificant in
asimple comb, cannot be neglected in a differential comb

3. Longer fingers lead to greater simulation times
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The design of experiments for the differential comb reflect the above differences. As

before, two sets of the experimental plan are designed as shown in Table5.6 and

Table5.7.
Table 5.6 Experimental plan set 1 for differential comb BEA
Intermediate
Variabletype | Name (units) Lower bound| Upper bound | values
w: width (um) 20 4.0 3.0
Geometry g: gap (um) 15 2.5 2.0
Opp overlap (um) | 50.0 80.0 -
X (um) 0 08¢ 04¢g
Position y (um) -4.0 4.0 0.0
Z (um) -2.0 20 0.0
0y () -1.0 1.0 0.0
Orientation
¢,(°) 0 0.5 0.25
Temperature | temperature (K) 250 350 300
length (um) overlap + 10
Constants numfingers 3
0y (°) 0
Total number of runs 7290

Table 5.7 Experimental plan set 2 for differential comb BEA

Intermediate

Variabletype | Name (units) Lower bound| Upper bound | values

w: width (um) 2.0 3.0 -
Geometry g: gap (nm) 15 2.0 -

O overlap (um) | 75.0 75.0 -

X (um) 0 04¢9 -
Position y (um) -4.0 4.0 0.0

Z (um) -2.0 20 0.0

0y (°) -1.0 1.0 0.0
Orientation ¢y (°) 0 0.5 -

¢,(°) 0 0.5 -
Temperature | temperature (K) | 300 300 -
Constants Iength (um) overlap + 10

numfingers 10
Total number of runs 224

105



(Note that in set 2, the runs with non-zero ¢y and ¢Z are only done with zero value set for all other position

and orientation variables. In other words only one run each with non-zero ¢y and ¢, for each unique differ-

ential comb geometry is done. Therefore, the total number of runsisonly 224.)

The total number of runs in set 1 is 7290. However, a few of these points have to be

dropped from the plan because of the rotor fingers crashing into the stator fingers due to

rotation. Of the 7290 points, 1458 are perfectly symmetric pointsi.e., x = 0 and ¢, = 0.
Of the remaining 5832 points the situations shown in Table 5.8 will lead to comb crashing

Table 5.8 Pointsto be omitted due to comb finger crashing

Number of
Op (nm) g (um) X (um) 90,(°) points
50 15,20,25 0.8¢g 0.5 243
50 15 0.8¢g 0.25 8l
80 15,20,25 0.8¢g 0.25, 0.5 486
80 15 049 0.5 8l
Total number of discarded runs 891

and are therefore, discarded. The total number of discarded pointsis 891. Therefore, the
number of useful data pointsis 1458 + 5832 - 891 = 1458 + 4941. Note that each of the
4941 points yields two capacitance values corresponding to the left and the right halves of
the differential comb. Similarly 114 pointsin set 2 have different values for capacitance
for the left and right halves of the differential comb. Therefore, the total number of data
points to which the regression model isfitted is 1458 + 24941 + 110 + 2*114 = 11340 +
338 = 11678. Additional runs for computing forces through numerical derivatives have
not been done for the differential comb. Instead, the derivative of the capacitance values
are used directly. This is acceptable because the displacements expected in a differential
sense comb of a gyroscope are really small (few pm) and at the same time the voltages
applied in a differential comb are much smaller than the voltages applied to the drive
combs. Therefore, we can expect the forces produced in a differential sense comb to be
modeled by using the derivatives of the fitted capacitance equation, which is very accurate

for small displacements.
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5.8 BEA Summary
The number of BEA and the type of data obtained from them for the linear comb is

summarized in Table 5.9. The times shown are for analyses run on one CPU of a450 MHz

Table 5.9 Summary of BEA runsfor smple comb

Number of Number of | No. of Memory per | Time per run
Quantity values obtained| BEA runs | panels run (MB) (minutes)
Capacitance | n=4374 4374 22000 230 5
Fy m,=54 162 90000 850 24
Fy m=972 1458 90000 850 24
F, m,=972 1458 90000 850 24

Sun Ultra-80 workstation. Multi-processor usage leads to corresponding speed up. Note

that the F, values were computed using three closely spaced capacitance data points while
the Fy, and F, values used a common set of 1458 capacitance values to compute deriva-

tives at 972 points. The runs used to obtain capacitance values for computing forces used
higher mesh refinement, and therefore, required higher memory and CPU times. The
entire set of runs was accomplished in about two weeks time using a5 CPU workstation.
The final mesh for the differential comb has about 33000 panels and takes about 9 minutes
on asingle CPU of a450 MHz Sun Ultra-80 workstation.

5.9 Results

The first part of this section describes the results of the curve fitting. The second part
discusses the implementation of the resultant capacitance and force model for the combs
in the NODAS environment and simulations to illustrate the applicability of the comb
model.

5.9.1 Model Generation by Curve Fitting

The model matrix shown in (5.16) was constructed in the S-Plus [78] environment.
Polynomia terms and fitting weights were introduced by iterative manual analysis of
residual errors. The reusability of the proposed model justifies the time investment in this
procedure. The final model for the smple comb has 106 coefficients and fits the capaci-
tance data to within £3% as shown in Figure 5.8 for 4374 points. It should be noted that
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FIGURE 5.9. Histogram of error in %
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there are very few points that lie outside the 2% band. The fitted values of force in all

three directions match the values obtained by numerical differentiation to about £10%, as

seen in Figure 5.9, Figure 5.10 and Figure 5.11. The error tends to be high for points

where the absolute values of forceis small (i.e., the difference in the capacitances used to

compute the derivative is small). This may be because the difference is close to the preci-

sion limit of the numerical capacitance values. Also, the plots indicate that the fit for Fy is

the best of the three forces and the fit for F, is the worst. This is probably because the

capacitanceis highly non-linear in the x direction and mostly linear in they direction, with

the variation in z direction being moderately non-linear leading to inaccurate numerical
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derivatives. Furthermore, the model may require more polynomial terms to capture the
non-linearities accurately. The fitting quality of the differential comb model which has 78
termsis shown in Figure 5.12. The absolute error is higher than 4% only at displacements
equal to 80% of the nominal gap, i.e., about 1 um. In microgyroscopes the full-scale sense
displacements does not exceed 1 nm and therefore, the higher error at large displacements

isof little concern.

5.9.2 Behavioral Model Implementation

The comb models were implemented in Veri IogA®, an Analog Hardware Description
Language, as part of the NODAS framework and were used in simulation of a CMOS-
MEMS gyroscope [10] (Figure 5.13). The complete listing of the comb models is pro-
vided in Appendix A4. In order to demonstrate the applicability of the model to study
manufacturing variations two sets of simulations were done. An extended study of manu-
facturing variations on the gyroscope is described in [79] and will be expanded upon in
Chapter 7. The scope of the current discussion is limited to the drive amplitude of the

gyroscope.

One of the major issues in microgyroscopes is the Zero Rate Output (ZRO) and its
variation with temperature and over time. The ZRO is closely related to the drive ampli-
tude. The linear comb is used to generate the actuation force to set the gyroscope into

oscillations. As noted earlier, vertical curl in the multi-layer structures, can lead to a verti-
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FIGURE 5.12. Histogram of capacitance error in % between model and
numerical datafor the differential comb

109



spring
I—x
H 0Ips
input gg?nsgs
rotation
y _ Inner
spring

(sense) Drive comb

FIGURE 5.13. Functional diagram of
the CMOS-MEMS gyroscope used in
simulation [10]

FIGURE 5.14. Interferometry
image showing the vertical offset in
drive comb

cal offset between the movable and fixed portions of the linear comb. Temperature

changes can lead to variation in the vertical offset leading to a corresponding change in the

actuation force. NODAS simulations using the behavioral comb model were done to cap-

ture the curvature-dependent actuation force. The vertical offset between the movable and

fixed portions of the actuation comb in the gyroscope was varied from 0 to 1 um (Figure

5.15). Asseenin Figure 5.15, a1 um offset leads to about 4% decrease in the drive ampli-

tude. This change in the drive amplitude directly corresponds to a change in the sensitivity

of the gyroscope. Thus, asignificant source of temperature-induced sensitivity variation in

gyroscopes can be estimated using the behavioral comb models.
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Anchored central portion with fingers

Movable frame with embedded heater and

fingers attached @) (c) heated

FIGURE 5.16. (&) SEM of capacitance test structure with in-built heaters. The
curling can be changed by changing the current passing through the polysilicon
wires which pass through the outer frame of the structure. Interferometry images
of a quarter of the structure at (b) room temperature and (c) heated are also
shown.

5.10 Experimental Verification

In order to validate the comb models experimentally, test structures for measurement
of capacitance changes were fabricated (Figure 5.16). Each test structure consists of two
sets of interdigitated comb fingers. The outer fingers are suspended from a frame which
has an embedded polysilicon heater. The inner fingers are attached to the central portion
which is anchored. The overall test structure is made up of two structures identical to that
shown in Figure 5.16, which are connected in series as shown in Figure 5.17. Current
passing through resistors R; and R, heats up the capacitors C; and C, respectively. Due to
change in curvature of the fingers and increased vertical overlap between the fixed and
movable finger, the capacitance values change. The capacitance change is sensed and
amplified using a chopper-stabilized amplifier circuit [69], which has a known gain set by
ratioed resistors. The output voltage isgiven as:
C, -G

—1 2 A (5.17)
C,+C,+C,

Vo .
Vm

where, V, is the fractional modulation voltage (i.e., V,, = D(Vmp—an) , Where D is

the duty cycle of the chopping waveform) and A isthe overal gain.
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The profile of the entire structure is obtained using interferometry for different values
of heating current. For the same values of heating current the output voltage of the ampli-
fier is aso noted. The comparison of the capacitance change predicted by the model and
the measured capacitance change is shown in Figure 5.18. There are two sets of curves
corresponding to voltage applied to the two heaters. In both cases the values of capaci-
tance change smulated using the model developed match the experimentally measured
values to about 10% at higher heater voltages. At lower heater voltages the larger error is
probably due to the limited accuracy of the profile of the comb fingers. All the fingersin
the comb do not have the same vertical offset, because of curling of the movable frame.
Therefore, the measurements are made on the fingers which approximately represent the
mean vertical offset. This can aso potentially contribute to the total error. Larger gaps due

to overetching can also lead to lower measured capacitance change.

5.11 Summary

A modeling methodology which combines the ease of use of analytical equations and
the higher accuracy of numerical methods has been demonstrated for ssmple and differen-
tial CMOS-MEMS combs. The models take into account the corner capacitances as well
as curling of the multi-layer comb fingers. The methodology automatically results in an

energy conserving model for the comb actuator. BEA is used to obtain capacitance values
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| | |lc + I
INMMNMNI _—1 O — ! —— Meas (Vht1)
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Vhi2 I-?eater voltage (V)
FIGURE b5.17. Capacitance change FIGURE 5.18. Comparison of
measurement schematic shown with measured and predicted
heating resistors for each structure. C, capacitance change. The two sets of
is the par asitic capacitor whose valueis measured data correspond to the
obtained using layout extraction. voltage applied to each of the two

resistors, with 0.1 V applied to the
other resistor.
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for adesigned set of 4374 runs and force values for a reduced subset of these runs for the
simple comb and a set of 5399 runs for the differential comb. The comb model fits the
BEA capacitance data to within £3% and to within £6% for the differential comb. How-
ever, the error in the useful range is even smaller. Convergence of force requires higher
mesh refinement for BEA. Therefore, BEA for alarge number of runs to obtain converged
force values was found to be infeasible. Numerical derivatives of a reduced subset of the
capacitance runs were used to obtain force values. The fitted values of force match the
numerically computed values to within £10%, though a large fraction of the points match
to within £5%. The models obtained are used to predict the capacitance change of ther-
mally actuated combs and they match measured capacitance changes to about 10%. The
comb model has been implemented in a behavioral smulation framework and its applica

bility for smulating manufacturing variations in a gyroscope has been demonstrated.
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Chapter 6. Convergence and Speed Issues in

MEMS Behavioral Simulation

6.1 Introduction

The previous chapters dealt with various aspects of MEM S modeling, focusing on the
elastic and electrostatic domains. The models derived in the previous chapters are encoded
in VerilogA, a high-level hardware description language to describe analog behavior.
Behavioral smulation using high-level hardware description languages (HDLSs) has
become very useful for mixed-domain MEMS simulation [80]. Behaviora models of
mechanical, electrostatic, optical and fluidic components have been implemented in ana-
log HDL s such as VerilogA [7], MAST [51] and VHDL-AMS[81]. Analog HDLs provide
a powerful methodology to combine different physical domains, such as electrical,
mechanical, thermal and others. Therefore, they are well-suited for integrated MEM S sim-
ulation. In this chapter, certain simulation issues arising from the use of analog HDLs in
MEMS simulation are addressed.

Behavioral simulation provides the model developer with freedom to implement the
physics of the component in a number of different ways. However, the high-level analog
HDL code renders the final simulation matrix inaccessible to the developer. Therefore, the
choice of the best implementation is not immediately apparent to the developer. Different
implementations lead to different number of equations, convergence properties and ssimu-
lation speed in transient analysis. Without a thorough understanding of the trandation of
the analog HDL code to the simulation matrix, the resulting ssmulation times may be non-
optimal and the simulation may even be non-convergent in the worst case. Such problems
can be compounded by simulation of high-Q resonant vibrations, asis the case in the drive
mode of the gyroscope. The available reference material mainly addresses syntax issues
and does not provide insight into mapping of analog HDL representation to the equations
for nodal analysis [82][83]. In this chapter, analog HDL code is correlated to the matrix
formulation during transient analysis, as presented in [84]. The convergence and smula-

tion speed of transient analysis are then explained with the aid of the matrix formulation.
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Thiswork was mainly motivated by convergence problems encountered during behavioral
simulations of the CMOS-MEMS gyroscope.

Comparisons between electrical circuit smulation and MEMS simulation for choice
of through and across variables for nodal analysis have been suggested previously
[62][81]. Force has been the preferred through variable. Displacement and velocity are
possible candidates for the across variable. From a user perspective displacement as
across variable is more convenient to observe motion. A preliminary evaluation of smula-
tions using the two choices for the across variable showed that the velocity as across vari-
able implementation has some convergence difficulties [85]. Simulation times have not
been compared previously. A more comprehensive comparison of the convergence and

simulation times for the two choicesis presented here.

The matrix equations resulting from a behavioral model may have widely different
coefficients due to the different numerical regions of interest in different domains. Wide
range in matrix element values can lead to ill-conditioned matrices and thus to conver-
gence difficulties. To overcome this problem scaling of specific domains has been imple-
mented earlier [86]. The improvement in the simulation matrix condition number

produced by such scaling is explained numerically in this chapter.

The genera procedure for linear transient analysis is briefly described in the back-
ground section. Thisis followed by an explanation of the different implementations along
with the analog HDL code and the expected matrix implementation in the smulator. Scal-
ing of quantities for better convergence is then discussed, followed by ssimulation results
and analyses. In the penultimate section, the guidelines for better convergence properties
are illustrated through two implementations of a squeeze film damping model. Finally,

conclusions and suggestions for analog HDL modeling are presented.

6.2 Background

The behavioral models in this chapter are implemented as part of the NODAS frame-
work. The MEMS designer constructs a schematic representation of the device by inter-
connecting elements from this library. The differential equations for the elements in

NODAS are encoded in VerilogA. The VerilogA language enables the model developer to
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define a number of naturesin each physical domain. Combining two natures, one for the
across variable and one for the through variable the definition of a discipline is obtained.
For example, the mechanical domain has three disciplines: displacement-force, velocity-
force and acceleration-force. Every node introduced in the VerilogA model is defined to
belong to one of the pre-defined discipline. Each nature also has associated values of

absolute tolerances, called abstols, which are used to set the convergence criterion during

simulation. The Spectre [87] simulator from Cadence is used for simulations.

The VerilogA module is based on constitutive relationships, which describe the
behavior of the element, and interconnection relationships, which describe the structure of
the network. The simulator combines constitutive relationships with Kirchhoff’s laws in
nodal analysis to form a system of differential-algebraic equations [88]. Numerical inte-
gration methods are employed to solve these equations for transient analysis. In the fol-
lowing sub-sections numerical integration in MEMS behavioral simulation is explained
briefly, with the help of examples from the electrical domain. First, the general form of
time-discretization is introduced. Following this, transient analysis of an inductor is used
to develop the analogy between MEMS behavioral smulation and electrical circuit Simu-

lation.
6.2.1 Numerical Integration

During transient analysis, circuit smulators replace the time derivative operator with
adiscrete-time finite difference approximation and solve for the node variables at individ-
ual time points. Interval between time points (time step h) is controlled by the simulator to

ensure accuracy of the finite difference approximation.

Common integration methods for time-discretization include Backward Euler (BE),
Trapezoidal rule (TR) and Gear methods [89]. BE is used in this chapter to illustrate the
formulation of transient analysis matrix dueto its ssimplicity, accuracy and stability. In BE,

the node value at time instant n, when time =t is computed based on the derivative value

at t. For example, the equation relating the velocity v to the displacement x, v = X, can

be written as.
X(t) = ﬁ)v(r)dr (6.1)
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V(1)
|

area = x(t +h)-x(t) = v(t+h)h
area = x(t)-x(t-h) = v(t)h

FIGURE 6.1. Computation of state variable using Backward Euler integration
rule. Theareas of the rectangles obtained by integration are shown.

The above equation is discretized with atime-step h. Solving for node variable displace-

ment X at time t using the BE integration rule:

vty = MO -
t t—h i
X(h) — X( - )_v(t) ie, X, = X ,_;+hv, (6.3)

where, the subscripts n and n—1 refer to time instants n and n—1 respectively.
Figure 6.1 isanillustration of the BE integration method. In the following sub-section, the
constitutive relationships which relate the through and across variables for an element are
combined with the BE integration rule to obtain the linear equations which are solved at
every time instant during transient analysis. Inductors and capacitors in the electrical
domain as well as, springs, masses and dampers in the mechanical domain are used as

examples.
6.2.2 Time Discretization of Components

Analogy Between MEM S and Circuit elementsis used in order to explain the concept
of time-discretization. Using the BE rule, the instantaneous I-V relationship for an induc-

tor iswritten as:

(v=3) = (i, =({)Va+in_s) (6.4)

Similarly for a capacitor
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FIGURE 6.2. Circuit interpretation of Backward Euler integration rule for (a)
Parallel RLC network (b) Mechanical spring-mass-damper system modeled by
use of two additional statesto hold v,, and a,

=2~ (,=(Qu -2

Note that in both the cases, the current is written in terms of the instantaneous voltage,

giving a conductance term, and voltage/current obtained as a solution of the previous time
step. Thisis because the system matrix is commonly built on the basis of Modified Nodal
Analysis (MNA) in most circuit ssimulators [89]. Figure 6.2 shows the circuit interpreta-
tion at time instant n during transient analysis using the BE integration rule for a parallel

RLC network and a mechanical second order system governed by the equation:
F = Kx+ Bx+ MX. In this implementation of the second-order system, two additional
states are used to hold v, and a,,. Elastic, viscous and inertial elements are discretized as

described above in the remainder of this chapter. A brief explanation of the transient anal-

ysis procedure using MNA is given below.

In Modified Nodal Analysis, the voltages at the nodes of the circuit are chosen as the
independent state variables. During transient analysis, the node voltages are solved for at
each timeinstant. It should be noted that the BE integration method is equivalent to afirst
order time polynomia approximation of the solution. The error in this approximation,
referred to asthe Local Truncation Error, is estimated to be of one order (i.e., quadratic for

the BE method) higher than the approximation itself [89]. The simulator chooses the time-
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step h to reduce the LTE to be less than a user-defined value. For smulations with high

accuracy the Spe(:treT'VI simulator, sets the LTE to be one-tenth of the absolute tolerance
(abstol) specified for convergence of the non-linear equation solving for that discipline.
The concept of LTE is explained below for a node belonging to the mechanical discipline
and defined to have an acceleration-force discipline. Assuming that the displacement (x)
which corresponds to the acceleration (a) at the node is sinusoidal, the LTE using the BE
integration method is estimated to be of the order of:
2
O(LTE) ~ [hzﬁ = h2w4xosin(wt)j (6.6)

dt?

where, h isthe time-step, o istheradian frequency of the sinusoidal waveform and X is

the amplitude of the sinusoidal displacement corresponding to the acceleration at the node.
Assuming typical values of o = 104(rad/ s) and Xy = 1um, maximum values of the

LTE occur when sin(ot) = 1:

O(LTE) ~ h?10™(m/s% (6.7)

To establish the significance of the LTE, it is assumed for now that the abstol for the node
is defined to the same as for other displacements. The maximum abstol for the displace-
ments has to be lessthan 1pum for the displacements to be accurate. Then, from (6.7) it is
seen that the time-step can at most be only be 10 ns. It should aso be noted that for lower
frequency displacements, the same LTE setting allows larger time-steps. Thus, it is seen
that the acceleration, derived from atime-dependent displacement, limits the time-steps, if
the same disciplineis used to define both the displacement and acceleration nodes. In gen-
era higher-order time-derivatives will limit the time-steps severely at higher frequencies,
if same discipline are used to define the original signal as well as nodes carrying the time-

derivatives. Thisissue will be revisited during the discussion of results.

6.3 Model Formulation
In this section two issues regarding the implementation of MEMSin HDL models are

discussed. The first issue arises from the presence of multiple physical domains in the
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models, such as translational, rotational, and electrical. The second issue is related to the
presence, in each physical domain, of time-derivatives such as velocity and acceleration in
the mechanical translational domain. The first sub-section addresses the issue of combin-
ing multiple domains together. The second sub-section investigates implementation of

time-derivatives by exploring several alternatives.
6.3.1 Multi-domain Smulation

In multi-domain ssimulation, implementation of behavioral models without insight
into the simulation matrix can lead to ill-conditioned matrices. For example, natural divi-
sion of nodes into mechanical and electrical arisesduring HDL implementation of MEMS.
Further sub-division of the mechanical nodes into displacements and rotations is also nat-
ural. Such classification is not only desired for clarity, but is also imperative to ensure

well-conditioned simulation matrices.

[11-conditioning of the ssimulation matrix arises due to the widely different numerical
ranges in which the various physical domains of interest in MEMS are located. Typical
values of through and across variables for electrical, mechanical and thermal disciplinesin
MEMS are shown in Table 6.1. While the ranges for the through and across variables
themselves indicate a range of about 10 orders of magnitude, they are only part of the
complete picture. The condition number of the smulation matrix is significantly impacted
by the diagonal elements, i.e., the “conductance’ entriesin the MNA matrix, which can be
loosely considered as the ratio of the through variable to the across variable. As can be

seenin Table 6.1, thereis aconsiderable spread in the ratios. Considering only the rotation

Table 6.1 Typical rangesfor various physical domainsin MEM S

through-across through variable across variable typical ratio
discipline min max unit | min max | unit unit
current-voltage 1091072 |A 100 | 102 |V 10* | Mhos
force-displacement | 10722 | 10® | N 102|108 | m 1 N/m
moment-rotation 10| 1079 | N-m | 1078 | 1072 | radians| 108 | N-m
t‘ei'ffpg‘?;"t‘cre 10° 102 |w |01 |1000 |K 1075 | WK
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(@) No scaling
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FIGURE 6.3. In-plane stiffness matrix for a beam [61]. Beam with length = 100
um, width = 2 um, thickness= 2 um and Young's Modulus E = 165 GPa. A isthe
cross-section area and | is the moment of inertia. (&) The large span of the
diagonal elements of the stiffness matrix isevident. (b) The stiffness matrix after

scaling the rotational discipline by 107° hasmuch smaller condition number.

and displacement domains, the wide variation of the diagonal matrix elements is illus-
trated in Figure 6.3 by use of the in-plane stiffness matrix for a single cantilever beam.
The cantilever beam has width and thickness of 2um, and a length of 100um. In-plane
stiffness matrix of the beam is shown with and without scaling of the rotational domain.
The condition number of the matrix is the ratio of the largest to the smallest eigen value of
the matrix and is considered to be a measure of the numerical precision to which the

inverse of the matrix can be computed [90]. It is evident that the resulting matrix is better

conditioned (smaller condition number) with scaling. The scaling factor of 10_6 for the
rotational domain was suggested prior to thiswork, and has been found to be necessary for

convergence of behavioral smulations using NODAS. Therefore, the scaling factor of
10_6 isused in al the simulations in this thesis.
6.3.2 Implementation of Time-derivatives

Five different behavioral model formulations of the second order mechanical system
shown in Figure 6.2 are studied. Broadly, the five formulations can be classified into two
groups, one using displacement as the across variable and the other using velocity as the

across variable, force being the through variable in all the cases. The latter bears a direct
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analogy to traditional electrical circuit simulation which uses current as the through vari-

able and voltage as the across variable.

VerilogA code, equivalent circuit and matrix representations for transient analysis
with BE are shown for each case. In the equivalent circuit representations, derivatives and
integrals are shown asthey are and are not expanded into their BE forms to maintain com-
pactness. Additional state variables explicitly defined and used by the model developer are
listed in the beginning of the code. In some cases, it has been seen that the simulator
inserts additional states, some of which have trivia solutions (i.e., being exactly equal to
an existing state variable). The non-trivial states inserted by the simulator are also
included in the equivalent circuit and the matrix representations. The equivalent circuits
represent the equations solved by the simulator at each time step. They are composed of
conductances which enter the diagonal elements of the matrix and voltage controlled cur-

rent sources which contribute to the off-diagonal termsin the transient analysis matrix.

6.3.3 Displacement as across variable

Implementation x1: Additional states (v, a) are used to hold the velocity and accelera
tion. In addition to the elastic force model ed as a conductance, two voltage-controlled cur-
rent sources corresponding to the damping and inertial forces also contribute to the force
flowing through node x. In the matrix, off-diagonal elements (1/h) become large when the
time-step h becomes small.

VerilogA

ki nenmatic v, a;
Pos(v) <+ ddt (Pos(x));
Pos(a) <+ ddt (Pos(v));
F(x) <+ - MPos(a)

- B*Pos(v)

- K*Pos(x);
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Equivalent circuit Matrix

K a Vo8 KB M| Fn
B Ma A P/t v/t T 10l [Fho

h V| = h
| | S 0 £ -3 Yo
V o h |

Implementation x2: One additional state (V) is used to hold velocity, leading to a more
compact matrix.
VerilogA

Ki nenmati c v;
Pos(v) <+ ddt (Pos(x));
F(x) <+ - Mddt(Pos(v))
- B*Pos(v)
- K*Pos(x);

Equivalent circuit Matrix

o oX \Y;
Myv
Mdwv/dt M n-1
1 \Y; X
— | n n-1
V " h

Implementation x3: One additional state (v) isused to hold the velocity. Thisimplemen-
tation differs from implementation 2 only in that Bdx/dt is used instead of Bv. The damp-

ing and inertia terms occur in different elements of the matrix.
VerilogA

Ki nenmati c v;

Pos(v) <+ ddt (Pos(x));

F(x) <+ - Mddt(Pos(v))
- B*ddt (Pos(x))
- K*Pos(x);

123



Equivalent circuit Matrix

R o \
de/dt: Mdv/dt: : dx/ct B M n-— -
ﬂK% K+|’—'| -ﬁ [X] Fn+ h + h
1 X
= n-1
v n El

V

6.3.4 \elocity as across variable

Implementation v1: One extra state (X) is explicitly used to hold position (obtained by
integrating velocity). Moreover, the ssimulator inserts an additional state (i) to hold the
integral of velocity.

VerilogA

Ki nenmati c Xx;
Pos(x) <+ idt(Pos(v), 0);
F(v) <+ - Mrddt(Pos(v))
- B*v;
- K*Pos(x);

Equivalent circuit Matrix

Mv
1/B Mav/at B+—K 0/|n F+ E_l
=" o =
11" 0
0 -1f{"n in—1

I mplementation v2: No epr|C|t additional states are used in the VerilogA code. However,

the simulator inserts an additional state (i) to hold the integral of velocity. Post-processing
of the velocity solution is needed in order to obtain the displacement.
VerilogA

F(v) <+ - Mddt(Pos(v))
- B*v;
- Kfidt (Pos(v), 0);
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Equivalent circuit Matrix

Vv i
Mv
i .
{7 h -=1jLn i1

6.4 Simulation Results

The z-axis CMOS-MEMS gyroscope introduced in earlier chapters [10], is used as
the benchmark for smulations. Unlike accelerometers which exhibit very small displace-
ments during operation, the drive displacements in microgyroscopes is of the order of a
few micrometers. Furthermore, the drive displacements occur at resonance, thereby
implying that the inherent damping in the system is small for a high-Q (i.e.,, Q ~50) sys-
tem. Under such conditions, the convergence properties of the behavioral models are cru-
cia.

For simulations to test convergence properties, the comb-drives are removed from the
schematic in order to eliminate non-linear physical effects. Then, the gyroscope can be
modeled as alinear nested spring-mass-damper system. By reducing the problem to alin-
ear system, convergence problems arising from device non-linearity are eliminated.
Thereby, focus is maintained on the mathematical representation of the system and its
relation to convergence and speed of simulation. Simulations of the gyroscope were done
using the five different implementations. They are abbreviated as x1, X2, x3, vl and v2. A
1 uN sinusoidal force was applied and transient analysis was done from 0 to 40 ms using
the SpectreS simulator from Cadence, version 4.43 [87]. The results of smulation are

summarized in Table 6.2.

Table 6.2 Comparison of five implementations

Type| Converged | Correct| Time (min.) No. of Egns | Time-steps
x1 | No NA NA 2751 NA

x2 | Yes Yes 180 1809 68811

x3 | Yes Yes 110 1809 59875

125



Table 6.2 Comparison of five implementations

Type| Converged | Correct| Time (min.) No. of Egns | Time-steps
vl | Yes Yes 133 2240 60023
v2 | Yes Yes 134 1556 60021

All the implementations, other than x1, converged. It should be noted that these smula-
tions were performed with the acceleration and velocity nodes having the same discipline
and therefore, the same LTE as the displacement nodes. Therefore, the simulator is forced
to take smaller time-steps to meet the LTE condition. The condition number for the matrix
for a single spring-mass-damper goes asymptotically as 1/(M.h) for x1 and as (/M) for
x2, X3, vl and v2. This explains why x1 does not converge for the gyroscope simulation.
Though the number of time-steps taken by v1 and v2 is nearly the same as those taken by
x3, the overal timetaken islarger. Thisis probably due to the fact that multiple iterations
arerequired for each time-step since, theinitia time-step attempted by the simulator is not
likely to satisfy the LTE criterion.

From the above simulations, it can be concluded that the use of additional nodes to
hold the acceleration and velocity states can be harmful to the convergence of the smula-
tions if, the acceleration and velocity states are constrained to have the same LTE as the
displacement states. Alternatively, they can be defined to have a different discipline with
independent LTE settings as shown below. In the implementation shown below, the LTE

VerilogA

Ki nematic_v v;
ki nemati c_a a;
Vel (v) <+ ddt (Pos(x));
Acc(a) <+ ddt(Vel (v));
F(x) <+ - MAcc(a)

- B*Vel (v)

- K*Pos(x);

for the acceleration and velocity states (defined using the ki nemat i ¢_a and the

Ki nemat i c_ v statementsrespectively) can be defined to be 108 and 104 timesthe
LTE of the displacement state according the analysis done in Section 6.2.2. It was found
that the smulations using this implementation also converged. This is to be expected,

because the LTE constraints have been relaxed by a few orders of magnitude. Therefore,
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the time-steps can be significantly larger than the x1 implementation, thereby preventing

the worsening of the condition number of the simulation matrix.

It should be noted that the 108 and 104 numbers arise due to the frequency of interest
for the gyroscope (~ 10 kHz). Since the frequency range of MEMS sensors range from
near DC (~ 10 Hz in low bandwidth, high resolution accelerometers) to hundreds of kHz
(in band-passfilters). The LTE setting may have to be changed depending upon the device
being smulated. This requires a certain amount of numerical expertise on part of the
MEMS designer. In contrast, the x3 implementation, shows robustness even with the LTE
settings being severely constrained and is, therefore, the preferred implementation choice

in thisthesis.

6.5 Model Implementation Example: Squeeze-film Damping

In this section, two VerilogA implementations of a squeeze-film damping models are
contrasted with respect to their convergence properties. This exercise is intended to con-
vey the overal guidelines deduced from the simulation experiments described above,
which include minimizing the number of off-diagonal elements and using appropriate dis-
ciplines for states. This is done by bringing out the equivalent circuit underlying the two
behavioral models.

A semi-empirical compact model for squeeze-film damping was proposed and imple-
mented in VerilogA by Vemuri et a. [91]. The initialy proposed damping model is con-
structed as an electrical circuit with a number of parallel branches, each branch consisting
of aresistor and an inductor in series (Figure 6.4). Dissipative damping between the two

nodes x; and X, is modeled by a resistor and the non-dissipative elasticity is modeled by
the inductor. It should be noted that the resistors can be replaced by dampers and the

inductors by springs in an equivalent mechanical representation.

The VerilogA code for the two implementations are given in Figure 6.5 and Figure 6.6
respectively. The number of controlled or dependent sources in the equivalent circuits can
be considered to be an approximate estimate of the number and location of the off-diago-
na elements in the smulation matrix. During simulation it is seen that the smulator

inserts additional states in the first implementation, which have not been shown in the
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FIGURE 6.4. Squeeze-film damping modeled by equivalent resistors and
inductors. Only thefirst two R-L branchesare shown in thefigure. More accurate
models need more number of branches.

equivalent circuit representation. Those additional states probably lead to larger number of
off-diagonal terms than is seen in the equivalent circuit. This also causes the first imple-
mentation to have severe convergence problems which completely disappear when the
second implementation is used. The second implementation is completely in the mechani-
cal domain, which is better suited to set the tolerances for convergence. Also, the off-diag-
onal elements in the second implementation are more localized (e.g., nodes n11 and vn1l

el ectrical vel;

vel = ddt (Pos(x1l, x2));
V(nll) <+ I (t1l1, bot)*L11;
I (t11, bot) : ddt(V(nll)) == vel - R11*I(t11, bot);
V(nl1l3) <+ | (t13, bot)*L13;
1 (t13, bot) : ddt(V(nl3)) == vel - R13*I(t13, bot);
5 4 X
Q 9 1
Q d d
& gr1 N3
8 dt dt
c N11 13
vV = X7 —X o =
;JS at 1 2k t1y 38 t13 38
B¢ E 5
o Z Z
i — —_—
= R b R a
- 1 - 13 -
1
v Y (t,,, bot) I(t,5, bot)
Xo .
bot

FIGURE 6.5. VerilogA code and equivalent circuit for first implementation of the
squeeze-film damping model. Only two of the RL branches are shown. The actual
circuit interpretation by the smulator is not exactly known but is probably more
complex because it is observed that additional states are implicitly introduced
during simulation.
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ki nemati ¢ di sp_node;
Pos(di sp_node) <+ di sp;

F(di sp_node, nl1ll1l) <+ (1/L11)*Pos(di sp_node, nl1l);
Pos(vnll) <+ ddt(Pos(nll));
F(nll) <+ Pos(vnll)/R11;

F(di sp_node, n13) <+ (1/L13)*Pos(di sp_node, n13);
Pos(vnl1l3) <+ ddt (Pos(nl3));
F(nl1l3) <+ Pos(vnl3)/ R13;

disp node
X1 o_
Lyg L3
~ vel vn
T <+> e - n VNis
—~ . 13
T <\
> ~ — ™
~ N ~(n
k- Qi Y & at "2
< F(vel) S t S
X2

V

FIGURE 6.6. VerilogA code and equivalent circuit for second implementation of
the squeeze-film damping model. The controlled sources insde the damping
model are more locally distributed compared to the first implementation. This
implementation shows better conver gence properties.

are directly linked, in contrast with nodes n11 and t11 in the first implementation). In fact
the nodes n1l and vnll are simply implementing the equivalent of a capacitor in the
mechanical domain since the force (current) through node n11 is proportional to the deriv-
ative of the position (voltage) at that node. The second implementation also allows better
intuitive understanding of the damping model compared to the first one. We have to keep
in mind that the non-dissipative elements L,;, L13 appear as “resistors’ in the second
implementation, because the across variable is position and not velocity. Therefore, the

capacitor-like elements model the dissipative components.

6.6 Summary

In this chapter three issues which impact the convergence and simulation time in
MEMS behavioral smulations were addressed. First, velocity and displacement were
compared for the choice of the across variable in nodal smulation. The through variableis

force. Second, three state space implementations of displacement as across variable were
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compared. Finaly, relative scaling of a domain (the rotational domain, in this case) in
order to improve convergence properties was considered. A minimal equation matrix rep-
resentation with low condition number using displacement as across variable and scaling

of the rotational domain gives the best convergence and simulation time.

It is seen that the implementation of the analog HDL encoding of the differentia
eguations describing the element behavior directly impacts the convergence and simula-
tion speed in transient analysis. There is no significant speed advantage of using velocity
as the across variable. Therefore, keeping in mind ease of use, displacement as across
variable is a better choice. On the basis of the simulations and analysis performed, the fol -
lowing guidelines are presented:

1. Additional states(a = v, v = X) to hold derivatives lead to bigger s mulation matri-
ces. They introduce large off-diagonal terms during the transient analysis and lead to
ill-conditioned matrices if the local truncation error (LTE) settings are not carefully
optimized. Therefore, care must be taken when using additional states.

2. Appropriate scaling must be used when different domains are combined together so
that the composite nodal analysis matrix remains well-conditioned.

3. Between two equivalent implementations, the one with lower number of off-diagonal

coupling terms leads to better convergence properties.
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Chapter 7. Analysis and Simulation of a CMOS-
MEMS Gyroscope

7.1 Introduction

In the previous chapters models for elastic and e ectrostatic domains have been pre-
sented and gyroscope simulation problems have been addressed. In this chapter, detailed
analyses of gyroscope non-idedlities are done. The non-idealities are quantified using
behavioral simulation of schematics composed of the previously described models. Elastic
cross-axis coupling theory, detailed in Chapter 3, is used extensively for understanding the

gyroscope.

The working of the microgyroscope and associated typical magnitudes of displace-
ment are described in Chapter 1. A brief recap is given here for convenience. Microgyro-
scopes can be functionally decomposed into a proof-mass, driving and sensing
electromechanical comb-drives and suspension springs made up of beams as shown in
Figure 7.1 [2]. Voltage applied across the driving comb forces the proof-mass into oscilla-
tion. When placed in arotational field, the Coriolisforceinduces avibration in adirection

orthogonal to the driven oscillations. The induced vibration is proportional to the angular

Outer
spring

Drive comb

LQZ X Drive comb

FIGURE 7.1. (a) Nested gyroscope design showing the drive and sense combs, the
outer and inner springs, the input axis, the direction of driven vibrations and the
direction of Coriolis-forceinduced (sense) vibrations (b) Sense capacitance bridge
for movement of inner proof-massin positive x axis
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rate and is sensed capacitively. As the Coriolis force induced vibrations are much smaller
(~ 1 ppm) compared to the driven vibrations, the proof-mass displacements can be as
small as a few picometers. Capacitive sensing of these picometer-scale displacements
requires tight integration of circuits with the Coriolis force transducer, and can be accom-
plished ina CMOS-MEMS process [ 7][10][30]. Furthermore, as the Coriolisforce is only
one of the weak coupling forces in the gyroscope, such devices are prone to imperfections
such asinput offset, linear accel eration sensitivity, vibration sensitivity and cross-axis sen-
gitivity, making microgyroscopes difficult to design. Therefore, commercialization

attempts have met with limited and much-delayed success [5][28].

Non-idealities in microgyroscopes such as offsets and senditivity to non-rotational
inputs are poorly understood. Optimal design to reject such non-idedlities is currently
hampered by the limitations of the available simulation methodologies which do not
model such effects. Though it is commonly acknowledged [5] that the coupling of the
drive motion to the sense mode needs to be as small as afew ppm, there is no comprehen-
sive study in public literature of drive motion coupling, external accelerations and cross-
axis rotations. Quadrature error arising from elastic cross-coupling has been considered in
afew studies. However, in-phase coupling may also arise in gyroscope designs with inten-

tionally mismatched drive and sense modes.

Behavioral simulations of gyroscopes have been reported in the past. Non-idealities
in the gyroscope simulations using circuit-level schematics reported in [51] are limited to
the effect of drive coupling onto the sense mode. Simulations presented in [52] are limited
to atheoretical motion analysis arising from elastic and viscous coupling. Gyroscope ssim-
ulations previoudly done using NODAS include nominal sensitivity and distortion effects
of centripetal forces and linear accelerations [33]. Intra-die thickness variation for a bulk-
micromachined gyroscope has been considered in [31]. Robust design techniquesto reject
width variations across different chips[92] cannot compensate for width mismatch within
adevice. Causes of input offset and coupling of linear acceleration to the output and cross-

axis sensitivity are not analyzed in any of the above studies.

Geometrical asymmetries in a microgyroscope may arise due to random manufactur-

ing variations. In this thesis the focus is on variations in beam width and comb gap across
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the gyroscope and metal mask misalignment effects. Data on material property variations
iseven less known than geometrical variations and are not considered in thisthesis. Thisis
the first publicly known attempt, to understand the effect of intra-die variations on micro-
gyroscope non-idealities. MEMS circuit-level smulation is employed to correlate gyro

performance measures such as zero rate output (ZRO), linear acceleration sensitivity (S,),
vibration sengitivity, (S,;) and cross-axis sensitivity (S) to elastic and electrostatic asym-

metries in the gyroscope. The correlations are then used to develop pointers for robust

design.

The rest of the chapter is organized as follows. First, the CMOS-MEMS gyroscope
and the circuit-level representation used for smulation are described. A detailed deriva
tion of the transduction equation of the CMOS-MEMS gyroscope is detailed. Thisis fol-
lowed by a discussion on the disadvantages of asymmetric drive of the gyroscope. The
subsequent sections describe the analyses and smulations for gyroscope non-idealities:
Zero Rate Output, linear accel eration sensitivity, vibration sensitivity and cross-axis sensi-
tivity. The considered sources of non-idealities are beam width and comb gap variations,
and mask misalignment. Analyses of non-idedlities are supported by behavioral smula-
tions of each individual variation as well as results of Monte-Carlo simulations. Finally, a

summary of pointers and trade-offs to be considered for robust design is presented.

7.2 Gyroscope Description and Circuit-level Representation
7.2.1 Gyroscope Description

The SEM of aCMOS-MEMS gyroscope [10] is shown in Figure 7.2(a). The NODAS
schematic representation of the gyroscope is shown in Figure 7.2(b). The atomic-elements
which are used in the schematic are rigid plates, flexible beams and attachment points
called anchors. Electrostatic comb elements are aso used to implement actuation and
sensing. The gyroscope, referred to as a “ nested-gyroscope”, consists of an inner acceler-
ometer nested inside an outer resonator. The entire gyroscope is suspended from a curl-
matching frame which is anchored to the substrate. The inner accelerometer and the outer
resonator are each composed of four compliant springs and a number of interconnected

rigid plates. Therigid platesin the outer resonator form arigid frame from which the inner
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FIGURE 7.2. (a) SEM of the nested-gyroscope (b) Corresponding NODAS
schematic obtained through layout extraction.

(drive)

accelerometer is suspended. Therigid frame is modeled by a number of plates forming an
outer ring. These plates are connected to the curl-matching frame using four identical
chains of beams which form the outer springs. In the inner accelerometer, the central
proof-mass is modeled by a row of seven plates. The plates on the extreme left and
extreme right are each connected through two identical chains of beams (inner springs) to

therigid frame.

Two linear combs, one at the top and one at the bottom, each with one set of anchored
(i.e., attached to the curl-matching frame) fingers and the other set attached to the rigid
outer-resonator frame, produce electrostatic force in the drive (y) direction, when avoltage
is applied across the two sets of fingers. This electrostatic force drives the rigid outer-res-
onator frame and the inner accelerometer into resonant oscillations in the y direction.
When attached to a rotating frame, Coriolis force produces oscillations of the inner central
plate relative to the outer resonator in the x direction. The Coriolis force induced oscilla
tions are capacitively picked up by two differential combs, one each at the top and bottom,
with one set of fingers attached to the rigid outer-resonator frame and the other set of fin-

gers attached to the central plate of the inner accelerometer. The two differential combs
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are, ideally, only sensitive to relative motion between the central proof-mass and the outer-

resonator rigid frame in the sense (x) direction.

A small note with regard to the actuation combsisin order here. The original design
intent with the two linear combs was to use one for actuation and the other to sense the
driven oscillations [10][34]. The overwhelming undesirable effects in an asymmetrical
(only one actuation comb) driven gyroscope are described in Section 7.4. To eliminate
these effects from the following analyses in this thesis, both the linear combs are consid-

ered as actuation combs only.

The ideal gyroscope has a frequency domain output as shown in Figure 7.3(a). The
final gyroscope output is obtained by demodulation as shown in Figure 7.3(b) [10]. The

modulation voltage V,, is assumed to be DC since, in this thesis the analysis is restricted

to the gyroscope. The circuits used for amplification and demodulation contribute to these

Magnitude

(J)d—(J)QZ (;)d+(nQ
O * | *
O

(a) Ideal gyroscope output spectrum

Frequency

Cy C,

| | |

| ] |
Vv

T
I}_,L

|
Cs

| |

|
Cp2
(b) Demodulation of gyroscope output

FIGURE 7.3. (a) Output spectrum of an ideal gyroscope for an input sinusoidal
rotation rate (b) sense schematic showing demodulation of gyroscope capacitance

bridge output to yield voltage proportional to input rate. The angle 6 needsto be
adjusted to maximize sensitivity and minimize offsets
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non-idealities through offsets, differential to common-mode conversion, phase errors, car-
rier feed-through and other well-understood circuit phenomena and are therefore, not
being considered here. Having studied the physical structure of the gyroscope, the system
level abstraction of the gyroscope is now described.

7.2.2 Gyroscope Parameters

At the system-level, gyroscopes are known only by their main performance character-
istics. In this sub-section, definitions for common gyroscope parameters, which are partic-
ularly relevant to thisthesis, are given [8][9].

Senditivity/Scale factor: The constant of proportionality between the input rotation rate
and the output voltage is called the sensitivity of the gyroscope. The sensitivity may vary
with the input rotation rate leading to non-linearity.

Resolution: The smallest detectable change in input rotation rate. The resolution is deter-
mined by the mechanical thermal noise and the electronic noise in the sensing circuits.
Zero Rate Output (ZRO)/Input offset/Bias: Input rate required to drive the output volt-
age to zero.

Bias Drift: The change in the Zero Rate Output or Bias over time.

Acceleration sensitivity: A linear acceleration applied to the gyroscope may result in an
output voltage indistinguishable from that produced by an input rotation. Typicaly, gyro-
scopes show a linear as well as quadratic dependence on acceleration. The linear depen-
dence on acceleration is called the Acceleration Sengitivity. The quadratic dependence on
acceleration is referred to as Mibration or Acceleration-squared Sensitivity.

Cross-axis sensitivity: Output produced by an angular rotation about an axis orthogonal

to the input axis of the gyroscope.

All the above performance characteristics depend on the operating conditionsi.e., the
ambient temperature and pressure, in addition to the gyroscope geometry. The resolution
is limited by energy leakage processes such as viscous damping and resistive loss. The
various sources of non-idealities in microgyroscopes can be broadly classified as shownin
Figure 7.4. The sensor (including the nested resonators) as well as the electrostatic actua-
tion and sensing combs) contributes to non-idealities arising from elastic, viscous or iner-

tial coupling, from elastic and electrostatic non-linearities, from electrostatic multi-
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FIGURE 7.4. Classification of sources of microgyroscope non-idealities

directional drive and sense. As mentioned earlier, the sense and demodulation electronics
can contribute to non-idealities through lack of carrier suppression, common-mode to dif-
ferential conversion, non-linearity leading to spurious side-bands and phase errors in
demodulation leading to increased Zero Rate Output. Furthermore, packaging can exacer-
bate existing non-idealities by introducing additional stress gradients in the microstruc-
ture. Of all these, this chapter attempts to understand elastic and electrostatic causes of
non-idealities. Viscous and inertial effects can be analyzed in a manner similar to that of
elastic cross-axis coupling as described in Section 3.8. Circuit non-idealities have been
well-characterized over the years and packaging effects can be modeled by adding onto
the non-idealities modeled in this chapter. The Zero Rate Output (input offset), cross-axis
sensitivity and acceleration sensitivity arising from geometrical asymmetries are the pri-

mary focus of thisthesis.
7.2.3 Notation

The symbols used in this chapter for applied voltages, displacements, external accel-

erations and rotations, and geometrical and functional parameters of the gyroscope are
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compiled in Table 7.1. Additional symbols are defined as and when they appear. For anal-

Table 7.1 Symbols used

Symbol Description

Vi, Modul ation voltage applied to sense combs

Ve Gyro output voltage

Vy Actuation voltage applied to drive combs

Ydo Drive displacement of outer resonator

Vi Drive displacement of inner resonator

X Relative displacement between outer-resonator and inner accel erometer
co in the x direction due to Coriolis force on outer-resonator frame

X . Relative displacement between outer-resonator and inner accel erometer
cl in the x direction due to Coriolis force on inner accelerometer plate

X Coriolisforce induced displacement in sense direction

Vs Relative displacement of differential sense combsin drive direction

X Lateral offset in differential sense combsin sensing direction

Q. Qy, Q, | External applied angular rates equal to 1(°/s) = (n/180)(rad/s)

Ay Ay A, External applied linear accelerations=1g=9.8 (m/ sz)

Oipd- 9 Nominal overlap and gap in drive combs
Oips+ 9s Nominal overlap and gap in sense combs
A Relative mismatch between beam widths or gaps
Q.,0Q Quality factors of the inner and outer resonator respectively in the x
IX? <X direction
Q.,0Q Quality factors of the inner and outer resonator respectively in they
ly’ ~oy direction
Qq Qudlity factor of the drive mode (Q = Qoy)
Qg Qudlity factor of the sense mode (Q =~ Q, )
o Resonant frequencies of the inner and outer resonator respectively in the

ix? ~ox x direction

o © Resonant frequencies of the inner and outer resonator respectively in the
ly’ oy y direction
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Table 7.1 Symbols used

Symbol Description
04 Gyro drive frequency (o4~ © oy
O Gyro sense mode resonant frequency (o~ ;)

K K Elements of the stiffness matrix for the inner and outer springs respec-
Céiv °Cgo | tively. ¢, & areoneof X, Y, z, Oy ¢y, b,

5 5 Elements of the damping matrix for the inner and outer resonators
G&i* TCEo | respectively. ¢, € areoneof X, Y, Z o ¢y, b,

YOURY Elements of the inertia matrix for the inner and outer resonators respec-
C&IrCEo | tively. £, & areoneof X, Y, Z, O ¢y, b,

Approximations: M, = M, = Myyo = M,,, and
o’ | - — —
IVli - Ilexi - IVlyyi - IVlzzi

ysis purposes the input angular rate and input external acceleration are considered to be

constant as given in Table 7.1.
7.2.4 CMOS-MEMS Gyroscope Design Parameters

The important geometrical and functional parameters of the CMOS-MEMS gyro-
scope reported in [10], are listed in Table 7.2 and Table 7.3 respectively. The functiona

Table 7.2 Geometrical parametersof the CMOS-MEM S gyroscope

Group Parameter name Symbol Vaue Units
Outer spring Outer spring beam length lbo 110 um
Outer spring beam width Who 18 um
Inner spring Inner spring beam length Ii 102 um
Inner spring beam width Wy, 18 um
Drive comb finger length g 11.4 um
finger width Wi g 2.7 um
overlap Ol 3.3 um
gap 9y 18 pm
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Table 7.2 Geometrical parametersof the CMOS-MEM S gyroscope

Group Parameter name Symbol Value Units
number of fingers Ny 23
Sense comb finger length P 61.5 pm
finger width (single finger attached Wiq 3.9 um
to outer-resonator rigid frame)
finger width (double finger attached Wipg 5.7 um
toinner central plate)
overlap O s 60 um
gap Js 18 hm
number of fingers Ng 21
Inner plates total length o 372.65 pm
total width Wy, 1116 um
percentage holes foi 20.87 %
Outer-resonator overall length lo 456 pm
frame
overall width W, 283.2 pm
frame width W, 22.8 pm
percentage holes fo 28.4 %
Table 7.3 Functional parameters of the CMOS-MEM S gyroscope
Group Name Symbol Value | Units
Outer spring x stiffness Kyxo 235 N/m
y stiffness Kyyo 283 | N/m
z gtiffness Kzo 16.6 N/m
Inner spring X stiffness Ky 291 N/m
y stiffness Kyyi 9.2 | N/m
z stiffness Kz 100 | N/m
Outer-resonator Mo 1.02 nkg (ng)
frame + inner mass
plate
Inner plate mass M; 0594 | nkg (ug)
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Table 7.3 Functional parametersof the CMOS-MEM S gyroscope

Group Name Symbol Value | Units

Outer resonator | x mode frequency ® oy 83820 | 2x rad/s
y mode frequency Doy 8440 | 2n rad/s
z mode frequency ® o 17110 | 2x rad/s
Quiality factor outer frame, iny Qoy 80.9 1

Inner resonator | x mode frequency Oy 11130 | 2n rad/s
y mode frequency ®jy 76440 | 2m rad/s
z mode frequency o, 25500 | 2r rad/s
Quidlity factor inner resonator, in x| Qix 16 |1

design parameters are obtained by ac smulations of the gyroscope schematic using
NODAS.

In this section, the context for the detailed analyses to follow has been set up by a
description of the gyroscope, the important performance characteristics under consider-
ation, notations used, and the geometrical, operational and functional quantities. In the
next section, the analysis of the gyroscope begins with a derivation of the gyroscope trans-
duction equation, i.e., the conversion from input angular rate to output voltage. The analy-
sisfor gyroscope sensitivity assumes that both the linear actuation combs are used to drive
the gyroscope. The effects of using only one of the two linear actuation combsto drive the
gyroscope are considered in Section 7.4. The subsequent three sections analyze the Zero
Rate Output, acceleration sensitivity and the cross-axis senditivity in terms of the func-

tional parametersin Table 7.3.

7.3 Gyroscope Sensitivity
The sensitivity of the gyroscope is derived in a step-by-step manner, listing the sm-
plifying assumptions on the way. Simultaneoudy, the relative phases of the applied actua-

tion voltage V, and the drive (y,,) and sense (x) displacements are also considered. It

is important to understand the phase relationships so that non-idealities which appear in-
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FIGURE 7.5. Anti-phase voltages applied to drive the gyroscope into oscillations.

phase with the sense signal and those which only appear in quadrature can be discrimi-

nated. Gyroscope transduction can be viewed as a succession of four steps.

1. Voltages applied to drive combs produce an electrostatic force V — Fy

2. The outer resonator is set into oscillations by the applied electrostatic force Fy - Y40

3. When placed in arotational field the Coriolis force produces vibrations orthogonal to
the driven oscillations Q, y 4, — X

4. The induced orthogonal oscillations are capacitively sensed leading to an output volt-
age xc > Ve

Equations for each of the above steps are derived below. In order to keep in mind the

actual magnitudes of various quantities as observed in a gyroscope, the equations derived

are a'so numerically evaluated at every step. Such evaluation also provides instant justifi-

cation for simplifying assumptions.

As mentioned earlier, the analyses presented here assumes that both the linear combs
are used for actuation. Anti-phase voltages applied to the two drive combs, as shown in
Figure 7.1, set the outer resonator and the inner proof-mass into oscillation in the y direc-

tion. The forces in the top and bottom combs are respectively given as.

t 2 . 2 . 2
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t 2 . 2 2

where, the constant ¢, depends on the contribution of the fringing fields to the total force.

The total force is obtained by taking the difference of (7.1) and (7.2) as:

t .
Fy = NaCyFog-4VaeVacSn(on) (7.3)

For an applied sinusoidal voltage V. = 1VIOIO and DC voltage (V) 18 Vpp and assum-

ing ¢, = 1 i.e, neglecting the force due to the fringe fields, we get Fy = 39.5nN. Note

that application of anti-phase voltages leads to symmetric drive wherein, the DC and first
harmonic components are canceled out and the resulting force only contains the funda-
mental drive frequency. Usually, the oscillations are sensed, amplified and fed back to set
up afeedback loop which leads to resonant oscillations of the outer resonator and the inner
proof-mass at the fundamental y resonant mode of the gyroscope. At resonance, the dis-
placement of the outer frame can be given as.

QqFy

Ydo = I (7.4)
° Kyyo

Note that complex number notation (j ), which is commonly used to represent sinusoidal

voltages, is used above. Using values from Table 7.3, y,, = -/1.39um. The —j in the

above equation indicates that the displacement lags behind the force by 90°, as expected,

at resonance for a second-order system. For the transduction analysisit is assumed that the

outer resonator of the gyroscope is driven in the y direction at constant amplitude y;, .

Since the inner accelerometer is coupled to the outer resonator, through the inner springs

with stiffness Kyy-

i inthey direction, the amplitude of the inner accelerometer is given as:

2 2
M, . ©® o
yyi
Ydi = Ydo| 1— 2 = Ygo| 1 - 5 wa = (7.5)
Kivi—=M, 0 +]B, . o _ iy oy
yyi — Vlyyi oy yyi - oy ®jy = gy F ] a,
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(7.6)

where, the ratio Ny = (”oy/ ®jy depends upon the stiffness Kyyi

of the coupling spring

between the two resonators. (7.6) can be derived intuitively by considering an externd

acceleration equal to —wgyydo applied to the accelerometer and obtaining the relative y

displacement between the outer-resonator rigid frame and the inner accelerometer. Nor-

mally the designer ensures that Ny « 1 and istypically of the order of 0.1. Therefore, to

thefirst order, the drive displacement is approximated to be y, given as:

Ydi = Ydo = YD (7.7)
In the presence of an angular rate Q, about the z axis, the inner rigid plate and the outer-
resonator rigid frame experience a Coriolis force in the x direction respectively given as.

Feo = 12(Mg—M)Q 00y and Fy; = j2M,Q,00.vp (7.8)
M,—M; arisesin the above equation because the M term encompasses the entire reso-

nating mass during oscillation, and therefore, includes the mass M; of the inner acceler-

ometer also. Using (7.3), (7.4) and (7.8) the magnitudes of F_, and F; can be written as:

QqF 2(M_—-M)Q. o Q
y| _ ) i’°"z oy ~d t
" j = m (Ndcosoé;mvdcvac)) and

I:co = 2(Mo_Mi)szoy[
yyo yyo

QF,) 2MQ0,Q
y| _ i=“z”oy~d t
- j - (Ndcogoéamvdcvac) (7.9)

I:ci = 2Minwoy[
yyo yyo

Numerical magnitudes are computed as: F., = 1.09pN and F = 1.53pN. The dis-

placementsdueto F ., and F; can be computed by solving the simultaneous differential
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FIGURE 7.6. Nested resonator system and dynamical equations (a) when aforce
F o isapplied to the outer frame and (b) when aforce F is applied to the inner

mass.
eguations shown in Figure 7.6 in the frequency domain. Assuming that the resonant fre-

guency of the outer frame in the x direction is much higher than the drive frequency and

that the damping force B Is insignificant compared to the spring restoring force

XX0 O

K the relative displacement between the outer and inner resonators dueto F

xx0Xo
F 2
_ coQixnix _ I:cor(nix)
Xeo = > 3 T (7.10)
Kxxi(Qixnix_QixY-"Qixnixy-"mix_mixY) XXX
where,

Nix = (”oy/ o;, istheratio of the drive frequency to the resonant frequency of the inner

resonator and v, = K,, /K,.. istheratio of the stiffnesses of the outer and inner springs

XXi
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inthe x direction. The function I'(a), which will be used repeatedly in following analyses,
is defined as:

2
Qi xa Tx

2 2 . 3 .
(Qixa _QiX’YX+QiXa ’YX+Ja _JaYX)

I'(a) =

which can be simplified for a~ 1 and y, » 1 to:

2
r'(a) = a (7.11)

1—a2+ja/QiX

For n., = 0.755 I'(n;,) = —1.32+0.201j. With the same assumptions as before, the
T]IX T]IX

relative displacement between the outer and the inner resonatorsdueto F ; is:

F.Q. F.I'(n:.,)

XCi — 5 Cl IX’YX2 - — Cl 1’]IZX (712)
Kxxi(Qixnix_QixYx-'-Qixnixyx-'-mix_mixyx) Kxxinix

X = 1.19-0.181j pm and x., = —0.0120+ 0.00181j pm. Comparing (7.10) and

(7.12) it is seen that x., and x; are exactly in phase with each other. The ratio of their

magnitudesis:

2
X (Mg—=Mm.
_co = __0____I___I_X«1 (713)
Xei IVliyx

Note that in spite of F . being larger than F; , the above ratio is much less than one. This

ci’
isbecause M, —M; and M, are of the same order of magnitude, n;, is, by design, usualy
dightly less than 1 and vy, is typically much greater than 1 because the outer springs are

designed to be much tiffer relative to the inner springs in the x direction. Therefore, for

smplicity, the total Coriolisforceinduced vibrations x~ can be assumed to consist only of

X - Simplifying (7.12) by using n;, «v,:
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=X~ itc 7.14
Xo = X ® > (7.14)
Kxxi(l_nix+1nix/Qix)

In terms of the drive displacement y, X~ can be written as:

2M; Q. » oyYD _ 2Q.0 oyYD

T K Aol tin 0 Sid-mitin.
xxi( —Mix TNy Qix) wix( —Mix T 1Mix Qix)

(7.15)

Note that (7.14) is Ssmply the response of the inner resonator asif the outer resonator was

anchored and could have been obtained directly. The numerical value of X~ for unit input
rotation rate (1(°/s)) is xo = X; = 1.18 -0.179] pm. Note that from (7.15), it is seen
that Doy should be maximized to increase the displacement produced by Coriolis force.

However, at the same time, n,, should be lessthan onei.e., o, « o;, so that thereisno

y
attenuation due to the inner accelerometer being unable to respond to the Coriolis force.

Next, the conversion of the Coriolis force induced displacement to a differential volt-
age through the sense combs is analyzed. Referring to Figure 7.3 (b), the differential volt-

age output of the sense combs can be written as:

Cl+CZ+CIol Cs+C4+CIO

\Y

@)

<

m

where, CIol and sz are the parasitic capacitances as shown in Figure 7.3(b).

Ve | Negglopg( 4xc
L= 22 L (7.17)
m T g —X

where it has been assumed that the total capacitance on the denominator is approximately

the same for the top and the bottom and is equal to C+. In order to get an idea of the mag-

nitude of the signal obtained, the parasitic capacitance at each sense node is assumed to be

about 500 fF. The sense capacitances themselves are computed as:
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N.en0; .t
0™l
4 = —— = 30.05fF (7.18)

S

The above value neglects the contribution of fringing fields, which can be expected to add
about 20% to the capacitance values. Simplifying (7.17), using X « g, the output voltage

normalized to the modulation voltage V, corresponding to the above Coriolis force

induced displacement is given as.

Ve _ N580t0|p5£4XCj _ &[i@j (7.19)

Using previously computed values for x- and C; = 560fF the relative sensitivity is

Ve _
\Y

m

obtained as (0.142p)/(°/s). Most MEM S gyroscopes operate in the circuit-noise

limited regime. Therefore, the relative sensitivity number computed above, combined with
the input-referred noise of the sense electronics, determines the resolution of the gyro-
scope. The above derivation of the output voltage of a gyroscope has also been done previ-
oudly, by others [31][34].

Starting from symmetric drive voltages applied to the two actuation combs, the output
voltage for agiven input angular rate was derived above. Before proceeding to study non-
idealities in the gyroscope caused by manufacturing variations it is instructive to look at
the effect of asymmetric drive on the non-idealities in the gyroscope. This issue is
addressed in the following section.

7.4 Effect of Asymmetrical Drive

The nested gyroscope design reported earlier [10][34] differs from the gyroscope
described in this chapter. The difference being that a sinusoidal voltage is applied only to
one of the two linear actuation combs. Sinusoidal voltage is applied to the top linear actu-
ation comb. The bottom comb is used to capacitively sense the driven resonant oscilla
tions. This sensed signal is amplified and fed back to the top linear comb thus completing

an oscillator loop to sustain the oscillations. The main drawback of this approach is that
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Actuation combs offset to one side

V,cSin(o4t)

FIGURE 7.7. Asymmetrical drive: Actuation voltage applied to only the top linear
comb

the gyroscope oscillations, being driven asymmetrically, will contain other modes (for
example x modes) which can contribute significantly to the Zero Rate Output and other
non-idealities of the gyroscope. The effect of such an asymmetric drive is analyzed in this

section.

In the previous section the drive force was computed ((7.1) and (7.2)) assuming anti-
phase voltages applied to the top and bottom drive combs and no displacement of the
combs in the x direction. Equations (7.1) and (7.2) can be rewritten for a general case,
where the rigid frame has been displaced in both the x and y direction. Let us assume that

the frame along with the drive combs is offset, as shown in Figure 7.7, in the x direction by

adistance x4 To the first order, the drive force in the y direction can be assumed to be

independent of the displacement in both the x and y directions. Therefore, the force in the
y direction produced by each drive comb remains unchanged. Before proceeding to derive
the total force for the asymmetrical drive case, the forces for each actuation comb are
derived for the symmetrical anti-phase drive case. Following this, the force produced by
the bottom comb is set to zero for the asymmetrical drive case. Assuming that the force
due to parallel-plate capacitance dominates, the forces produced in the x direction can be

written as:

_ Nggot(Opq +¥Yp)  49g%oq
xt © 2 2 2
(g —%oq)

F

2 . 2 . 2
2(Vdc + 2V VacSn(ogt) +Vsn(ogt) ) (7.20)
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If the bottom actuation comb is driven by out of phase voltage, then the force due to the

bottom comb can be written as:

_ Nggot(0pg—=Yp)  494¢%od
xb T 2

2 . 2 . 2
. 2(Vdc—2VdCV‘,Jlem(oadt)+V‘,chsm(oadt)) (7.21)
(94 —%oq)

Assuming X4 « g4 and summing (7.20) and (7.21) to get the total forcein X,

Ngeot4Xoq 2 2 2 .
d

If the y displacement of the frame, yp, is primarily composed of the fundamental

drive frequency, then the above equation is significant because, it can inferred that there is

no component of F, at the drive frequency. Components of F, exist only at DC and the

second harmonic frequency. Thus, it is seen that anti-phase voltages leading to symmetric
drive conditions result in first order rgjection of cross-axis forces at the drive frequency,
which may arise due to a position offset in the drive combs. The cancellation of cross-axis

forces due to the symmetrical drive is apparent in the above derivation.

On the other hand, if only the top comb was driven by a sinusoidal actuation voltage,

as shown in Figure 7.7, the total force on the comb in the x direction isonly F.., which

xt?
has components at DC, the drive frequency and higher order harmonics too. Once again,
assuming that the y motion is dominated by the fundamental frequency, the component at

the fundamental frequency is:

N, e t4x V2
_ d®0""od . 2 ac
Fxt, oy 2 g3 [Olpd(zvdcvacsm(wdt))+yD[Vdc+-2_D (7.23)
d

The above force will produce oscillations in the sense direction at the drive frequency and
therefore, lead to a Zero Rate Output (ZRO). The ZRO referred to the input of the gyro-

scope is denoted as Q, i.e., the equivalent input rate required in an ideal gyroscope to

produce the output observed in a non-ideal gyroscope when the external angular rate is

zero. Recall from Section 7.3 that the drive motion lags behind the applied force (also the
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applied voltage) by 90°. The resultant x force has components which are both in phase
(due to the second term in the summation in (7.23)) and in quadrature to the drive motion

(due to the first term in the summation in (7.23)). Furthermore, since the Coriolisforceis

in phase with the applied voltage, it is seen that there is a component of F,; oy which is

exactly in phase with the Coriolis force. The magnitudes of the in-phase and quadrature

components of F, o, Aegivenas

N ,ent4x
_ ''d®0 od
I:xt, ogl ~ 2 3 (Olpd(zvdcvac)) and
94
N e t4x V2
_ 'd*0 od 2 ac
Pt 0 Q = > ——93 [yD[VdCJF—z_D (7.24)
d

For an offset, x,4 = 0.lum and same voltages assumed as beforei.e, V4. = 18V

and V. =1V, F | = 4.02nN and Fxt’ 04 Q = —11.8pN. Using the response

Xt, Oy

obtained for the Coriolis force acting on the outer frame in (7.10), the relative displace-

ment between the inner accelerometer central plate and the outer-resonator rigid frame due

to Fxt’ o can be written as;
_ I:xt, mdr(nix)
Xya = K (7.25)

xxi ' x

Comparing x,,, in (7.25) with the dominant Coriolis force induced displacement in (7.12):

2
>i,§ : I:xt, codnix

x. | F (7.26)
C

ci¥x

Using (7.9), (7.23) and (7.26) the in-phase and quadrature components of the motion

coupling due to asymmetric drive can be obtained. The in-phase component is given as.
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N ent4X
d”0" ""od
2 ( Ipd(zvdcvac))n|x

2
Xva,l _ gd _ Kyyo odolpdnix
X~  2M.Q_o_ Q (7.27)
C z%Poy<d t 2M Q. o C
—-—K-—-(Ndcoaoa-mvdcvac))y 200yQqCoV9q
yyo d
The quadrature component is given as:
Nie o t4x V2 2
d2 : gd[y [Vic 2‘3‘ CD nizx Kyyoxod[yD[\/ﬁc * \ia_CD nizx
Xva, Q _ gd _ 2
X~ 2MQ. 0. Q 2
C d t
————Ri;fl——(NdcoaoéaMVdCVac )y (4M 2,0 ond)(CO(Vchac))yxgd

(7.28)

Using values from Table 7.2 and Table 7.3 the in-phase and quadrature ZRO due to asym-

metric drive are, respectively, computed to be Q = Xy |/ *c = 37.2(°/s) and

o, va,l

Qo, va,0 = Xa, Q/xC —0.109(°/s) .

Thus, it is seen that asymmetric drive results in a ZRO even when there are no manu-
facturing induced variations, i.e., even in an otherwise ideal gyroscope. Furthermore, it
can be shown similarly that, if each individual drive comb produces a vertical force, then
symmetric drive will cause the two vertical forcesto cancel out whereas asymmetric drive
will lead to a vertical oscillatory motion at the drive frequency. Vertical oscillatory motion
at the drive frequency introduces a small cross-axis sensitivity to the vertical-axis gyro-
scope, and is, therefore, not desirable. Having shown that asymmetric drive resultsin non-
idealities even in ageometrically perfect gyroscope, manufacturing induced imperfections
in gyroscope geometry and resultant non-idealities are analyzed in the following sections.
In order to isolate the effects of manufacturing variations, symmetric driveis assumed in

al the analyses and simulations in the remainder of this chapter.

7.5 Zero Rate Output (ZRO)

The causes of ZRO include beam width variations leading to elastic cross-coupling,
comb gap variations, lateral offsets of the comb position, mask misalignment leading to

in-plane to out-of-plane mode coupling. Each of these causes is analyzed in detail in this
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section. Latera offset in comb position is not considered separately but in combination
with the other causes. One sub-section is devoted to each of the three causes: beam width
variation, comb gap variation and mask misalignment. Equations relating ZRO to these
manufacturing-induced variations are derived. As before, numerical evaluations are also
carried out at each step so that the relative significances of different causes can be clearly
identified. Complex number notation is used in order to maintain information about the

magnitude as well as the phase of the signals.
7.5.1 Beam Width Variation

Beam width variation leads to in-plane elastic cross-axis coupling as explained in
Chapter 3. In general, beam width variations across awafer are modeled as a linear gradi-
ent. As discussed in Section 3.9, gradients along three directions are first considered in
this section. Following this, the effect of mismatch in a single spring, with respect to the
other three springsis analyzed. It should be noted that the mismatch of asingle spring with
respect to the other three springs is a canonical problem and can be used to solve instances

with generalized mismatch between beam widths in different springs.

The results of ZRO resulting from linear gradients along x, y and along both x and y

are shown in Table 7.4. The gradients are assumed to be such that when there is a gradient

Table 7.4 ZRO resulting from linear gradientsin beam width

Gradient direction ZRO (°/s)

X below numerical precision
y below numerical precision
9% 16

along the x direction, then the two springs on the left have their width diminished by 1%
and the two springs on the right have their widths enhanced by 1%. Similarly for gradients
along the y direction, beam widths in the two springs at the bottom are diminished by 1%
and those of the two springs at the top are enhanced by 1%. When there is a simultaneous
gradient along both x and y directions, the spring at the bottom left is diminished by 1.4%
and that at the top right is enhanced by 1.4%. The other two springs are left unchanged in

thiscase. The ZRO for gradients along the x and y directions was below the numerical pre-
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FIGURE 7.8. Example case for beam width variation and equation for coupling,
W1 = Wo = Wa# Wy.

cision of the simulation and is presumed to be zero. However, when there is a smulta-
neous gradient along both the x and y directions, there is a significant ZRO of about 16
(°/s). Thisis exactly as predicted by the analysis presented in Section 3.9 which is fur-
ther expanded below. The above result is in slight contradiction to analysis presented in
[31], wherein it is reported that variations in the thickness of springs along the direction
perpendicular to the drive axis lead to more cross-axis coupling. However, the simulations
and analysisin thisthesis show that cross-axis coupling isindeed maximum when the gra-
dient in widths has both and x and y component. The reason for this apparent contradiction
is explained below. The point at which cross-axis coupling is observed isimportant (i.e.,
the point at which the displacement is measured). The geometrical center of the layout is
the idea point to make this observation. If a point away from the center is chosen, then it
will be difficult to distinguish between cross-axis motions produced due to rotation about
the geometrical layout center and true translational motion itself. It should be noted that
cross-axis motions produced due to rotations about the geometrical center will be nomi-
nally cancelled out by the sense combs. Therefore, it is possible that an off-center point
was chosen to measure the cross-axis coupling in [31]. In the remaining ssmulations and
analyses in this chapter it is assumed that the beam widths of only one spring is mis-
matched with respect to the other three springs. Thisis a canonical problem whose solu-

tion can be used to compute the solution for any combination of beam width variations.

In any system consisting of a proof-mass suspended by mismatched springs (see Fig-

ure 7.8), there are essentially two mechanisms by which in-plane elastic cross-coupling
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can occur as discussed in Section 3.8. In both the following cases it is assumed that the
width of one out of the four springsis varied by afraction A as shown in Figure 7.8.

1. Individual springs suspending the proof-mass have a non-zero intrinsic kxy. Theratio

of x displacement to y displacement (referring to Figure 7.8) when thereis no forcein

the x direction is given as:

K. Ik,
X _ Dxy - Zi
il (7.29)

XX XXi

where, kXyi isthe cross-axis stiffness of the ith spring. The overall cross-axisterm kayi ,

which is a summation of the individual kXyi

varies linearly with A. Recaling from Sec-
tion 3.8 that a fractional change of A in the beam width produces a fractional change of

3A in the stiffness constants, the above equation can be rewritten as:

3k

_ Xy
= XA (7.30)
K.,

<X

where, kXy and k., are the stiffness constants of the nominal (ideal) spring.

2. The second case is when each individual spring has zero intrinsic kXy as proved in

Section 3.8 and [53]. Spring designs that are completely symmetrical possess this
property and are, therefore, highly recommended for reducing elastic cross-coupling.
In this case there is no direct coupling between the two in-plane trandational modes x

and y, but, there is second-order coupling through the rotational mode. In other words

the y mode first couples to the rotational mode ¢,, which in turn couples to the x
mode.

X
y - (ka)q )(Zk¢z¢z|)

(7.31)

Each of the cross-axisterms Xk

xyi ZkXd)zi and Zky%i varies linearly with the width mis-

match A. Therefore, in the first case the elastic cross-coupling is linear, whereas in the
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second case, the linear portion has been eliminated by better spring design and the remain-
ing coupling is a quadratic function of A. If theintrinsic rotational stiffness of the springs

is neglected, the stiffnesses of a single nominal spring in (7.31) can be written as (from
(3.16) and (3.17))

Keg,i = Kaxily (7.32)
Kyoi = Kyyilx (7.33)
Ko o = K y+kyyl 2 (7.34)

Note that the sign of the cross-axis terms k

Xbi and kyd> i changes with the quadrant in
z z

which the spring is located, while the diagonal term kd) 0 Is always positive.
z

J

If the springs are designed to be highly stiff in one direction (say X) and highly com-
pliant in the orthogonal direction (y), then, noting that spring stiffnesses vary as the cube
of the width, (7.31) can be smplified to:

(3K, L yA)(3knyXA) Ok, LA

X
X _ = (7.35)
Yo (k) (4k Lo 16k, Ly
Similarly,
2
y (3kXXLyA)(3knyXA) oL, A
. - = (7.36)

(4K, (4K, L3) 16Ly

where, K, and kyy are the nominal values of the spring stiffnesses.

For the nested gyroscope under consideration, there are 2 sets of springs and the mis-
match in the 2 sets are considered separately. Each outer spring is symmetric in itself,
therefore, mismatch in the outer spring corresponds to the second case above. Each inner
spring is not symmetric in itself, and therefore, mismatch in inner springs is analyzed

using case one above.
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Derivation similar to that used to derive (7.10) yields the following equations using

(7.30). Coupling of the drive into the sense mode due to relative beam width mismatch

(A) inouter (Figure 7.9) and inner springs are respectively given as:

2 2
X_SEJ _ (kad)zo)(z:kyd)zo)r(n )~9kayy0A Mix (7 37)
Yp (kaxo)(z:k(bz(bzo) > 16Lykxxo 2 +jﬂix
—Mix '(—Q_I;
k 2 3k >
Xsi _ E_&ﬂ["icyj [ 1 j = X Tiy A (7.38)
Kool o 2 . 4k . 2 . :
Yp xxi\ Piy 1_nix+mix/Qix XX|1_nix+mix/Qix
0)oy 0)oy O .
where, n;, = — n;,, = — = —, as before, o,;, is the resonant frequency of the
®jx y 0)iy 0)iy

inner resonator in the sense (X) direction, Doy and o;,, are the resonant frequencies of the

y
outer and inner resonatorsin the drive (y) direction and I' is as defined in (7.11). X, and

X respectively denote the displacement produced in the sense direction due to spring

mismatch in the outer and inner springs respectively. Using the spring stiffness computa-

tion procedure described in Chapter 4 kXyi = 0.010(N/m). The approximate numerical

valuesare X, = —0.138-0.914] pmand X; = —115.3-761.3] pm. The outer springs

being inherently symmetric, the coupling from drive to sense mode is proportional to AZ ,

Drive comb

Outer
spring
Olps
sense
combs
. y Inner
g ,\4)2 spring
S X W,=W(1+A)
(sense) Drive comb

FIGURE 7.9. Example case for beam width variation, wy = Wy = Wa# Wy.
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whereas, in the asymmetric inner springs the coupling is not only proportional to A but is
also more than 10 times higher. Also, in case of the nested gyroscope, the topology lends

itself to isolating the drive mode to the outer springs and the sense modes to the inner

springsi.e., kyyo/ Koy « 1 and kyyi /Kyi » 1. The corresponding input referred ZROs can

be computed by taking the ratios of x, and X; to X~ the Coriolisforce induced displace-

ment for unit rotation rate.

Q

0, wo 0, wi

XSO . Xsi .
= 0 = 0g45j(°/s) and Q. = = = 644.9)(°/5) (7.39)
Xe Xc

Note that Q can a'so be approximated as the ratio of the elastic cross-coupling force

0, wi

to the Coriolis force acting on the inner plate:

2
_ Xsi _ nyst _ nyniy

Q.= S = = _
0, wi Xc Fei ZJMi(”oy

(7.40)

The ZRO due to beam width mismatch is in exact quadrature with the Coriolis force

induced output as indicated by the j in the denominator of (7.40).

From the above analysis, it is seen that beam width variations lead to ZRO through
two different mechanisms in the nested gyroscope. The outer springs are symmetric, and
therefore show only second-order coupling between the drive and sense modes, while the
inner springs being asymmetric show first order coupling. Additionally, the outer springs
have been designed to attenuate sense mode oscillations resulting in much smaller ZRO
due to width mismatch in the outer springs than due to width mismatch in the inner
springs. It is aso interesting to note that the ZRO caused by beam width mismatch isin
exact quadrature with the normal gyroscope output and therefore, can be eliminated by
demodulation with appropriate phase. However, phase errors in the local oscillator of the

demodulator will lead conversion of the quadrature ZRO to final gyroscope output.

Design options to reduce ZRO include use of wider beam widths to average out litho-

graphic variations, use of symmetric springs to eliminate first order coupling and springs
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9b=9

FIGURE 7.10. Mismatch in the gapsin the drive combs on the top and bottom

which have lower ky, /K. Increasing the separation between the y modes of the inner reso-

nator and the outer resonator (i.e., decreasing niy) will aso lead to decreased ZRO.

7.5.2 Comb gap variation

In this sub-section, the impact of mismatch in the gaps between the comb fingers on
the ZRO is analyzed. All the gaps in the same comb, are assumed to be identical and vari-
ations are assumed to occur only between different combs. There are two cases.

1. mismatch between the gaps in the top and bottom linear actuation combs and

2. mismatch between the gaps in the top and bottom differential sense combs

Before analyzing the multidirectional forces produced due to mismatch in the actua-
tion combs, it is asserted here that if there is no mismatch between the two actuation
combs and if symmetrical anti-phase voltages are applied, then there is no net force pro-
duced by the actuation combs at the drive frequency other than in the drive direction. This
statement is contradictory to prior analysis [31]. Thisis because in the analysis presented
in [31], only one drive comb is considered. Therefore, the cancellation effect of the other
drive comb is not observed. Now mismatch in the gapsin the two drive combs as shown in
Figure 7.10 will be shown to produce multi-directional forces at the drive frequency in the

presence of mismatch. It is assumed that the gaps in the top and bottom drive combs are

different and are represented by g, and g, respectively. For a displacement X, in the x

direction, the x force in the top comb isgiven as:
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gol(Opg *¥p) 49g% | 2 _ 2
xt 5 55 2(Vde T 2VeVacSN(ob) + Vo sin(ot)”) (7.41)
(gt —%)

If the bottom comb is being driven out of phase, then, the x force produced by the bottom

comb can be written as:

et(Opg—Yp) 4ap*p 2 . >
W=7 53 (Vde = 2VgcVacSN(@h) + Vacsin(ot)™) (7.42)
(Ygp —%p)

Let us now consider two cases for computation of the total force in x and the total moment
about z In the following analyses a paralel plate approximation is used to compute the

forces and the moments.

The first case is a common mode x displacement for the top and bottom combs:

X = X, = X.m- Such a displacement will be produced by x translational motion. The

total force and moment are obtained by summing (7.41) and (7.42). The nominal part and

the mismatch dependent part of the force and moment are written separately as.

N,e t/8x
d”o 2 2 . 2 .
FX’ nom = __Z_—K—B%Tj((olpd(vdc+vacsn(wt) ) tYp(2VyVcSn(ot))))  (7.43)
d
N e t4x
d®o . 2 2 . 2
Fon = > g(;m(sA)((olpd(zvdcvacgn(wt))+yD(VdC+VaCS|n((nt) ) (7.44)
d
_ Naggtax yé . O pd 2 2 . 2
Td), nom ~ T 2 _;3?—2 Olpd|m+_2— (2Vdcvac9n(wt))+(Im+—2_)yD(Vdc+Vacsm(wt) )
d
(7.45)
Nge,tax, Yé 2 2 . 2 Orpd :
Toa = 5 —;3—3A o|pdlm+? (Vge t Vo Sn(ot) )+(Im+—z—)yD(ZVdCVaCsn(wt))
d

(7.46)
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|, isthe distance in the y direction from the center of the overlapped region of the actua-
tion combsto the center of the gyroscope itself. If it is assumed that x..,, hasonly low fre-

quency content and y, has only drive frequency component, then the nominal force given

by (7.43) has components only at DC and at even harmonics of the drive frequency. This

is expected from the discussion in Section 7.4. However, (7.44) shows that in the presence

of alateral offset X, in the drive combs and a mismatch A, thereis aforcein the sensing

direction at the drive frequency. Note that this force is present in spite of the symmetric
nature of the drive voltage. Such a latera offset can either arise due to manufacturing
effects or be caused by a linear acceleration thus leading to a linear acceleration sensitiv-
ity. Displacements caused by linear accelerations are usually about 2 orders of magnitude

smaller than manufacturing-induced offsets. Magnitude of the force is obtained as:

ngOt4xcm .
Fxgd,l = 5 T(gA)(OIdeVchacsm(wt)) = 0.121nN (7.47)
94
N e t4x
d“o 2 2 . 2 .
Fygdo = — ——ggm(3A)(yD(VdC+Vacsm(oat) )) = —0.459jnN (7.48)
d

where, the | and Q represent in-phase and quadrature with respect to the Coriolis force.
Reusing the analysis used to derive (7.10), relative displacements between the inner plate

and the outer frame due to Fxgd’ Q and Fxgd’ | aregivenas:

F r'm:,)
d, | _ Nom
XXI X
F r'm:,)
_ xgd, Q X7 _ i
X4 Q = <o T (0.393 + 2.57j)pm (7.50)

The corresponding ZROs are given as.

X
_ gd’ Q f— 1/©
QO, gd,Q = —)zg— = 218]( /S) and (751)

161



Xgd, | o
Qg1 = = 0572(/9) (7.52)

Since the rotational mode (¢,) frequency is usually higher than the greater of the two

translational modes (see Appendix A5) the rotation produced by Td) A Will not be large

enough to compete with the expected range of external rotation rates and is, therefore, not
analyzed further. It should be noted that the magnitudes of the forcesin (7.47) and (7.48)
are about two orders of magnitude larger than the Coriolis force. However, as will be seen
below, they do not lead to significant ZRO. The reason for thisis that the outer springs are
much stiffer in x effectively attenuating the displacement produced by the above forces.
Thisisin sharp contrast to single layer gyroscopes such as [19][28].

The second case iswhen —x,, = X; = X,4. This case corresponds to rotational move-

ment of the outer frame. Then the forces and moments are again separated into nomina

and mismatch dependent parts and written as.

4x
t7"d
Fy nom = 82 . 2((0|pd)(2Vchacsm(wt))+yD(VdC+V sn(ot)?)) (7.53)
d
st 4Xg
Fya = > A((olpd)(vdc+v sn(ot) )+yD(2VdCVaCsm(wt))) (7.54)
(gd
4x y2 0
t % 2 2 . 2 Ipd
T4, nom = §—__:%—Zﬁolpdlm-'-—Dj(vdc-"Vr':lcsm(wt) )+(I ] )yD(ZVdCVann(wt))j
2 2
(99)
(7.55)
4x y2 0
t +%qg . Ipd 2 2 2
d

(7.56)
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If it is assumed that X, has only low frequencies and x; has only drive frequency

present, then from (7.53) and (7.56) then it can be concluded that F and Td) A Will

X, nom

have only low frequency and bands centered around even harmonics of the drive fre-

guency whereas FX’ Aand T will have only bands centered around the drive fre-

¢, nom

guency and odd harmonics of the drive frequency. In general, the nominal components

F and T

% nom 4, nom € expected to be much larger than the mismatch-dependent compo-

nents FX’ A and de A+ Therefore, F having drive frequency components and

X, nom

T¢, nom naving low frequency componentsis a less acceptable situation than the two hav-

ing low frequency and drive frequency components respectively. The reason being that

FX’ nom having drive frequency components will lead to coupling of motion at drive fre-

guency to the sense mode and T having low frequency components will produce

¢, nom
rotations of the rigid frame and the inner plate. Such arotation will itself lead to a Coriolis

force asif an external rotation had been applied. From (7.53) and (7.56) it is seen that low

frequency rotations of the rigid frame lead to both FX’ nom and de nom

having compo-
nents which will interfere with normal gyro operation. Comparing (7.53) with (7.44) if

Xq = Xem» the force produced in (7.53) is significantly larger (being independent of A)

cm’
than the force produced in (7.44). Thusiit is seen that rotational offsets produce coupling
of drive motion to the sense mode, even with perfectly matched comb gaps. This com-

pletes the discussion on ZRO produced by coupling in the drive combs.

Next mismatch in the gaps between the two differential sense combs, as shownin Fig-

ure 7.11, isconsidered. The movement in the sense combsin the y direction is given as:

o

2
2
Yas = Ydo ~Ydi = ydo[a?jj ~Yphiy = 24.2nm (7.57)

It is now assumed that there is a lateral offset in the x direction (X, ) in the differential

sense combs. Rewriting (7.17) with different symbols for the top and bottom sense gaps.

163



_ S0 0S 0S
V= [(0|D5+yds)[ 2 2} * (Olps_yds)[—z___z—jj (7.58)
T Ots — Xos Ops — Xog
Assuming X,¢ « Oio Jps
VinNge ot 2%, 2X
_ m’s7o 0s 0s 1 1
V=¢ [(OI ps)[T ¥ Tj * (Zxosyds)[—z- - —Z—D (7.59)
T 9ts s Ois Yps
V_N. t
m's”0 4x 2A
V¢ [(OI DS)[—zj +(2Xyds)['§D (7.60)
T gS gs

The above equation suggests that if there is a lateral offset in the sense direction, then
there will be a voltage output proportional to the relative displacement of the sense combs
in the drive direction y. The first term in the summation produces output proportional to
the displacement in the sense mode i.e., the Coriolis force induced displacement aswell as
direct response of the inner accelerometer to external accelerations. Assuming the lateral

offset X, = 0.1um and the relative mismatch A = 0.01, the input referred ZRO is

obtained as:
X YA
_ "os’Ds™ _ _ N /o
Qo, gs = XCOIps = (0.0507 —0.335j)(°/s) (7.61)

Note that if the relative displacement in the sense combs in the drive direction was

equal to the drive displacement (i.e., there is no decoupling, therefore, y,c = yp ) thenthe

gts = gs(l + A)

FIGURE 7.11. Mismatch in the gapsin the sense combs on the two sides
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above number will be almost 100 times as large. The nested gyroscope topology shows
double decoupling i.e., drive mode is decoupled from the sense combs and the sense mode
is decoupled from the drive comb. This double decoupling is a magjor advantage over a
number of single-layer gyroscopes such as in [19][27][28] which are constrained by the
single-layer nature to have only the drive mode decoupled from the sense combs, leaving

the sense mode fully coupled into the drive combs.

It was shown in this sub-section that gap mismatch in the drive and sense combs can
lead to ZRO only in the presence of offsets in the combs. Analysis of rotationa offsetsin
the drive comb shows that low frequency rotations of the frame can be more significant
than trandational offsets and therefore, have to be avoided. Analysis of mismatched gaps
in the combs shows the importance of double decoupling i.e., isolating the drive mode to

the drive combs and the sense mode to the sense combs.
7.5.3 Mask Misalignment

Mask misalignment of the metal layers in the CMOS-MEMS beams leads to two
effects: lateral curling of the springs causing offset in the proof-mass position and mode
coupling between the in-plane modes (X, y) and the out-of-plane mode (2) due to rotation
of principal axes of elasticity as explained in Section 3.7. At their mean position, the dif-

ferential sense combs are insensitive to vertical motion. However, if the combs are offset

by asmall distance x,, dueto lateral curling (or any other reason), then they become sen-

gtiveto vertical motion (Figure 7.12). In this sub-section, the offset, x ., isassumed to be

0s’

s s 05+ Xos

C1 = CO+AC C2 = CO+AC C1 = ClO+Acl(b§32 = (:20+AC2
(@)

FIGURE 7.12. Cross-section of one set of fingers of a differential sense comb (a)
without lateral offset, vertical motion leads to common-mode capacitance
change; (b) with lateral offset, vertical motion leads to common-mode and
differential capacitance change.
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a congtant. Using a parallel plate approximation for the sense comb capacitance, the nor-

malized output voltage in such a case, can be written as:

\Y 2N.e,0
c\),/rr:m _ [ s OZIDSZS(ZXOS)j /(Cy) (7.62)

s

where, z isthe relative vertical motion in the sense combsand V., isthe output volt-
age due to mask misalignment, even when there is no rotational input. The input referred
ZRO is obtained by dividing by the output voltage for the Coriolis force induced displace-
ment in (7.19):
_ Zons

Q0.mm = e (7.63)

Using the theory described in Section 3.7, z, the relative vertical motion in the sense

combs caused due to mask misalignment is now estimated. Mask misalignment and elastic
coupling in the outer springs are considered first. It is assumed that the angle by which the

principal axes of a spring rotates is the same as the angle by which the principal axes of

each of the individual compliant beams rotates (0, ). This assumption is valid when all

oyz
the compliant beams are parallel to each other and the trusses connecting the compliant

beams are short and stiff compared to the compliant beams. With an additional assumption
that the z resonant mode (w,,) is well separated from the drive frequency (® c)y), viscous
and inertial effectsin the vertical direction can be neglected. Motion coupled to the z axis

in the outer springs can then be written as:

K
Zy = (Ry—z—:’j Yo (7.64)

Y4

If the y stiffness is assumed to be small compared to the z tiffness then, using (3.70) and
(3.72):

sin(26
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for small values of 6 oyz* Thisis a crude approximation, since typicaly, K,/ Kyy ~ 4 for

CMOSMEMS springs of width 1.8 um, but allows us to quickly simplify KyZ in (7.64).

With inclusion of inertial effects a dightly more complex expression for relative vertica

motion between the central plate and the frames is obtained:

F nz nz
_ _Z iz N iz
Zs = K 1 2 2 2 2 2 ~(eoyzyD)l 2 2 2 2 (7.66)
2201 =Mi; =Y Miz= Mozt NizMNoz —Miz=YMNiz~Noz T MiNoz
® 2 Kz ®q 2 K2z Kz
where, 1, = 2, 0, = -2 1= 2 o =22 andy, = =22 . The above
iz o, iz Mi 0z ®,, 0z Mo z Kzzo

eguation is derived using a similar system of equations as is described in Figure 7.6, with
the y subscripts replaced by z. Assuming sufficient mode separation and quality factors

much greater than 1, the damping terms in those equations can be neglected. For a 0.1um
misalignment of the METAL2 and METAL1 layers with respect to the METALS3 layer,

eoyz = 0.02 radians. Also note that the ratio o,/ Doy IS approximately proportional to

the aspect ratio of the CMOS-MEMS beams, typically between 2 to 3 for nested gyro-

scopes in a standard CMOS process. (for example width of 1.8um and thickness of

4.5um). Using valuesin Table 7.3, z; = —0.332] nm. The j term indicates that the verti-

cal motion is in-phase with the drive displacement, as expected from (7.66). Thus, it is
seen that for a 0.02 radian rotation of the principal axes due to misalignment, about 0.02%
of the drive motion couples (in phase) to the relative vertical motion in the sense combs.
Since the Coriolis force induced displacement is not in exact quadrature with respect to
the drive displacement, the vertical motion coupling leads to in-phase and quadrature

ZRO. Back-substituting values for z, in (7.63), Q = 0.840-4.62(°/s). It isseen

0, mm
that Qo, mm 1S more significant than Qo, gd and Qo, gs’ for the same value of lateral off-

set in the sense comb. So far only mask misalignment in the outer spring beams has been

considered. Mask misalignment in the inner springs is discussed next.

The long beams in the inner springs are parallel to the y (drive) direction and there-

fore, compliant in the x (sense) direction. Mask misalignment in the long beams of the
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inner springs can only lead to coupling between the x and z modes. Mask misalignment in
the shorter truss beams, which are parallel to the x direction will lead to negligible elastic

cross-axis coupling between the y and z modes, because the truss beams are short and stiff.
Furthermore, the relative y motion in the inner springs (Yys = Y4i —Yqo = yDF(nizy)) is

only asmall fraction (about 1.5%) of the total drive motion yp. Therefore, the elastic cou-

pling between y and zmodes in the inner springsis not analyzed further.
7.5.4 ZRO Summary

ZRO due to beam width mismatch in the inner (asymmetric) springs is found to be
significant, but in exact quadrature with the Coriolis force induced displacement. ZRO due
to mismatched gapsis seen to be directly related to the offset in the sense combs aswell as
the decoupling of sense mode from the drive comb and vice-versa. It is seen that mask
misalignment in the outer springs can cause greater ZRO than gap mismatch, with reason-
able assumptions for misalignment and mismatch values. It is aso seen that the quadrature
component of ZRO is more significant than the in-phase component for both gap mis-
match and mask misalignment cases. This suggests that the in-phase component can be

decreased even more by pushing the sense resonant mode further away from the drive res-

onant mode (i.e., decrease n,, ). There will, of course, be an accompanying sensitivity
reduction.

The analyses for deriving ZRO equations establishes the basic effects of beam width
mismatch, comb gap mismatch and mask misalignment. An external acceleration is added
in the next section. The resulting analyses for acceleration sensitivity are closely related to

analyses presented in this section.

7.6 Acceleration Senditivity
In this section the impacts of beam width mismatch, comb gap mismatch and mask
misalignment on the accel eration and accel eration-squared sensitivity of the gyroscope are

considered. The spectrum of anon-ideal gyroscope when subjected to an external acceler-

ation isshown in Figure 7.13. At o, the acceleration response of the inner accelerometer

is seen. The gyroscope ZRO isseen a o4, the drive frequency. Sidebandsat - o, and
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04t o, arise due to the acceleration sendtivity of the non-idea gyro and sidebands at

04—20, and o4+ 20, due to the acceleration-squared sengitivity. In Section 7.5 ZRO

was seen to arise due to completely linear phenomena. However, acceleration and acceler-

ation-squared sensitivity necessarily imply the presence of a non-linear element which

“mixes’ the low-frequency (o) acceleration signal and the drive frequency (o) to pro-

duce the side-bands a v+ w, and oyt 20, as seen in Figure7.13. While both the

drive and sense combs are non-linear elements, the drive comb is linear during actuation
even for relatively large displacements (i.e., few um), whereas, the sense comb can be
considered linear only for displacements which are a very small fraction of the gap (i.e.,
tens of nm). Therefore, in the following analyses, the major source of non-linearity is the
sense comb. Non-linearity in the beams in the outer springs, which experience significant
displacement, is a complex area of research in itself and is not considered in this thesis
[40][93][94][95].

Before the effects of variations on acceleration senditivity are considered, a brief
examination of the sense comb non-linearity isin order. From (7.17) the voltage output of

the differential sense combs can be written as a Taylor’s series expansion in terms of the

displacement x of the comb fingersin the lateral (gap) direction:

5_:1 ‘.‘_N_g_g_'a(g_ 4@2@% ) (767)

X = Xogt Xpgt Xyg+ 1S the total displacement of the comb in the sense direction, com-

a sinusoidal acceleration term Xpg = —GE and a drive
®jx

prised of a DC offset term, X

0s’

Magnitude

(J)d+(J)

. wd_zﬂ §yo

o, Frequency

FIGURE 7.13. Spectrum of output voltage of a non-ideal gyroscope when
subjected to an external acceleration.
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frequency term x, due to coupling. The cubic term in (7.67) leads to mixing of the three

components in the x direction. Furthermore, it is seen from (7.67) that periodic variation in
the overlap length o ps aong y and the overlap length along the z direction, nominally
represented by t, can give rise to additional mixing. In the following sub-sections, beam

width variation, comb gap variation and mask misalignment are considered for their con-

tributions to the mixing termsin (7.67).
7.6.1 Beam Width Variation

The cubic term in (7.67) mixes three displacement signals, al in x direction, leading
to acceleration and acceleration-squared sensitivity. From Section 7.5, it is known that
beam width variation leads to drive motion coupling onto the sense combs as described by

(7.37), (7.38). Therefore, there are at least two components of motion in the x direction:

the low frequency acceleration signal x,, and the drive frequency coupled signa X .
The presence of the cubic term requires another DC term in order to generate side-bands at
o4to,. Thus, itis seen that acceleration sendtivity due to beam width mismatch occurs
only in the presence of a DC offset term x .. Now, comparing the cubic term in (7.67)

with (7.19) the acceleration sensitivity and the accel eration-squared sensitivity, obtained
by taking the ratio of the output voltages produced by mixing to the output voltage pro-
duced by input rotation, are given by:

Sax _ 6XosXAsts
e (7.68)
Xc9:
s 3%
az2x _ XAsts
S > (7.69)
Xc9s

where, S isthe gyro senditivity. X, in the above equations can arise due to width mis-
match in the outer or the inner springs. The S,, term is usually not very significant

because the displacement produced by the acceleration x, ¢ is typically an order of magni-

tude smaller than the offset (x.), i.e., X, « X .. However, S, and S,, being strong
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functions of the sense comb gap, they effectively constrain the smallest gap that can be

2

used by designers. Also, X, o (l/oaizx) implies S,,, /S« 1/w,,, because X o« 1/(ni2X.

A lower bound on Oy

while reducing the accel eration-squared sensitivity also limits the
overall sengtivity of the gyroscope (from (7.15)). Maximizing sensitivity is vital to the

gyroscope performance, particularly in circuit-noise limited systems. When x . is caused

S _
due to mismatch in the outer springs we have: (—%3() - =)287x 10 4(("/s)/g) and
wi

S _
(_E‘SQ) = j2.67x 10 6((O/s)/gz). When x,, arises due to mismatch in the inner
WO

. Sax . SaZx . —6 2
springs, < = (40.239)((°/s)/g) ad < = j518x 10 ((°/s)/g").All theabove
guantities are in quadrature to the Coriolis force induced displacement because, as seenin
Section 7.5, X4 isin quadrature with X . It is also seen that the acceleration and acceler-

ation-sgquared sensitivities are not very significant. For example, if thereis a 1% mismatch

in the inner springs, it was seen in Section 7.5 that X . isabout 400 pm. Even with such a

large drive motion coupling (relative to the Coriolis displacement) to the sense mode, 20g

of acceleration will be required to produce a quadrature output equal in magnitude to the
output due to a 1(°/s) rotation rate. This concludes the analysis of acceleration sensitiv-

ity produced by beam width mismatch. Next the effect of comb gap variation on accelera-

tion sengitivity is studied.
7.6.2 Comb Gap Variation

Two separate cases are considered for drive comb mismatch and sense comb mis-

match; first drive comb mismatch.

If there is arelative mismatch A in the drive comb gap, g, between the top and the

bottom combs, the force produced in the sensing direction by the drive combs is obtained

from (7.44) by replacing X, by Xaq4:
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_ Nd80t4XAd
X 2 3
94

2 2
(38)(20),3VgcVac + Yo (Ve + Vac’2) (7.70)

where x, 4 is the offset in the drive comb due to acceleration in the sensing direction. The

outer springs are stiff in the x direction, and therefore, lead to small x,4 and an even

smaller response to the above force as was seen in the comparison between the displace-
ments produced by the Coriolis forces acting on the outer frame and the inner platein Sec-
tion 7.3. Therefore, this effect is not elaborated.

Once again, acceleration senditivity due to mismatch in the sense combsiis related to

ZRO due to sense comb mismatch. Non-identical gaps in the two sensing combs, cause a

response to acceleration in the sense direction, obtained by replacing x in (7.60) by X,,
as.
4N580t0| stAs + 4Ns‘gotydsXAs

2 2
9s 9s

V
— (7.71)
Vm

Thefirsttermin (7.71) isthefirst order response of the inner accelerometer to the external

acceleration. The second term mixes y,, and X, . Comparing the second term with the

output produced by the Coriolisforcein (7.19) the acceleration sengitivity is obtained as:

i’;\} - ydsXAsA

(7.72)
S O psXc
. AX
Using (7.15), (7.57) and X, ¢ = — . we get:
iy
- el 2[1—ni2x+(—3-'5j (7.73)
S .
J ZQzOI pswiy X

S
Using standard values for al quantities: (—%3() = —0.00101 + 0.00670j((°/s)/Q).
gs

This effect can be reduced by increasing the mode-separation, (niy/ ® gy OF the overlap
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length, o, ps* Note that (7.73) is independent of g, and therefore, increasing the sense

comb gap will not be very useful. The only effect of increasing the sense gap will be to

reduce the relative mismatch A, if the absolute mismatch is assumed to remain constant.

It is important to recognize that the acceleration sensitivity is not very significant

because very little drive motion couples to the sense combs (y 4, ). If one side of the sense

combs were anchored to the ground instead of being attached to the outer resonator, then

Yqs 1N (7.72) will be equal to the drive amplitude y, (unlessthere isaspecial decoupling

suspension design as in [19]) and, as a result, the acceleration sensitivity would be much
higher. This fact underscores the need for decoupling the drive oscillations from the sense
combs. The decoupling is facilitated by the availability of multiple conductors in the
CMOS-MEMS process.

7.6.3 Mask Misalignment

As described in Section 7.5.3, the differential sense combs become sensitive to verti-
cal motions in the presence of a lateral offset. If the lateral offset is caused by an input
acceleration, then the sense combs mix the vertical motion at drive frequency and the lat-
eral (X) motion at low frequency giving rise to acceleration sensitivity. Assuming only par-

alel plate sense capacitances, the equation for acceleration sensitivity is obtained by

replacing the lateral offset X . in (7.63) by X, the displacement produced by external

acceleration:
Sax ZXps . (°/s)
(__) = = (0.0168 —}0.0926) 22 (7.74)
S mm tXC g

A
Using (7.15) for X, (7.65) for z, and X, = —EX , (7.74) can be written as:

Wiy

2 .
i’;\} — eoyz(”oyAx (1_nix+mix/Qix)
S

(7.75)

2 2 2 2 2
ZQzt(”iz 1_niz_yzniz_noz+ NizNoz
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The above equation suggests that the acceleration sensitivity due to mask misalignment is

directly proportional to eoyz which is a measure of the drive motion coupled to the verti-

cal axis. Furthermore, the acceleration sensitivity isalso a strong function of the z resonant
frequency of the inner resonator, thus providing yet another reason to design the drive

mode to be well-separated and smaller than other vertical and lateral modes.
7.6.4 SJummary of Acceleration Sengitivity

The three causes for acceleration sengtivity discussed above can also be viewed as
mixing of the low frequency acceleration signal with drive motion coupled to sense comb
in three orthogonal directions: beam width mismatch leading to x coupling, comb gap mis-
match leading to sensitivity to y coupling and mask misalignment leading to z coupling.
The results of acceleration sensitivity analyses reinforce some of the inferences from the
ZRO analyses. Beam width mismatch leads to quadrature accel eration sensitivity, resulting
from the cubic term of the differential comb capacitance equations. Asaresult beam width
mismatch is not a significant cause of acceleration sensitivity. Comb gap mismatch is also
not a significant cause because arelatively small fraction of the drive motion is coupled to
the sense combs. Mask misalignment appears to cause considerable acceleration sensitiv-
ity. The main difference between the comb gap mismatch case and the mask misalignment
caseisthat, in the former the large overlap length of the comb fingers lowers sensitivity
to coupled drive motion, whilein the latter the sensitivity to both vertical motion and Cori-
olis motion is linear with overlapped length of the sense comb fingers. The only design
method to reduce the acceleration sengitivity, due to mask misalignment is to reduce the

vertical motion coupled to the sense combs, i.e., increase the mode separation.

7.7 Cross-axis Sendgitivity

Beam width and comb gap variations primarily result in in-plane elastic coupling and
forces or motion sensitivities as described in the preceding sections. In order to sense out-
of-plane rotations, the driven oscillations or the Coriolis force-induced oscillations need to
have out-of-plane components. Therefore, sensitivity to rotation about the drive (y) or the
sense (X) directions necessarily involves ether out-of-plane mode coupling (elastic, elec-

trostatic coupling or by other means) or comb sengitivity to out-of-plane motion. There-
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fore, beam width and comb gap variations are not being considered in the analysis of
cross-axis sensitivity. Instead, causes of out-of-plane motion and sensitivity to out-of-
plane motion are investigated. Two cases are considered: rotation about the sense direction

and rotation about the drive direction.
7.7.1 Rotation About Sense Axis

The gyroscopeis driven into oscillations in they direction. Just as rotation about the z

axis leads to Coriolis force in the x axis, rotation about the x axis leads to Coriolis force

along the z axis. The Coriolisforcein z produced for Q, isequal to the force produced in

X dueto Q. There are two main factors which prevent the Coriolis force due to rotation

about x from being sensed. First, the sense combs are (ideally) not sensitive to vertical
motion. Second, since the thickness of both the outer and the inner springs is about 2.5
times their width, the z resonant mode is higher than the x resonant mode leading to

reduced Coriolis-force induced displacement.

First the z motion arising in the sense combs because of the Coriolis force is esti-
mated. The zmotion arises due to Coriolis forces acting on both the outer frame aswell as
theinner plate. The motion of the outer frame due to the Coriolis force acting on the outer
frame is obtained by analysis of a dua mass system coupled with springs, as shown in

Figure 7.6 and described in Section 7.3, given as:

F nz

_ " Co iz
Zco = K 2 2 2 2 2 (7.76)

ZZO:I'_niz_yzniz_noz-"niznoz

2

F -~ 1-n

_ Ci iz
i T K 2 52, 2 2 (7.77

220Y, =Y Miz~4MNiz * MiMNoz
where, 1;, = g;oy’wiz = T\%’noz = g)‘oji(”oz = _I\_ZEQ andy, = R—Z—Zl.Usmgvalues
iz [ 0z 0 220

fromTable 7.3, z-, = 6.16 fmand z~, = 102 fm. Note that in deriving the above equa-

tionsthe effect of damping in the z direction has been neglected. Thisisindeed the case, if

itisassumed that the quality factors of both the inner and outer z resonant modes are much

175



greater than 1 (i.e., at least 10) and also that the z modes are sufficiently separated from the

drive mode (i.e., n;,«1 and n,,«1). Mode separation by a factor of 2 and minimum

quality factors of about 10 are more than adequate to render the damping force at the drive

frequency inconsequential in the above derivations.
If it is assumed that n;, and n, are very small, then the Coriolis force induced dis-
placement in the z direction, z-, is dominated by z-~; and can be approximately written

as:
I:Ci N ZwonyQx

2
iz

0= 2vg (7.78)

7207z 0

The sense combs exhibit a small sensitivity to vertical motion in the presence of alateral

offset in the combs as described in Section 7.5.3. The resultant cross-axis sensitivity is

obtained by taking the ratio of output voltage produced by z~ to the nomina gyroscope

output given by (7.19).

S X

Zeax _ “CYos _ 0.00185 + j0.000280 (7.79)
S tXc

where, the drive motion coupled to the z axis has been replaced by the Coriolis force

induced displacement z . To get some more insight, at the expense of accuracy, substitut-

ing (7.20) and (7.78) into (7.79) when Q. = Q. :

S X in;
cax os_l_)([l_ni2X+ a_lzj (7.80)
IX

The above eguation shows the dependence of the cross-axis sensitivity on the separation

[OF
—X petween the sense mode and the vertical mode. In fact given an offset x__, thisisthe

, 0S’
Oz

only design option to reduce the cross-axis sensitivity. However, for the nested gyroscope
it is seen that the cross-axis senditivity to rotation about the sense axis is not very signifi-
cant (about 0.2%), and therefore, does not need to be reduced.
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7.7.2 Rotation About Drive Axis (Qy)

While rotations about the vertical axis (z) and the sense axis (x) both produce Corio-
lis forces when the gyroscope is oscillating along the drive axis, rotation about the drive
axisitself does not produce any Coriolis force because the Coriolis force involves a cross-
product of the rotation vector and the instantaneous velocity vector. On the other hand,
rotations about the drive axis will lead to Coriolis force if some part of the drive motion

couples to a non-drive axis. For example, if the drive motion is coupled to the z direction

due to mask misalignment, Qy leads to a Corialis force in X, the sense direction. Drive

motion coupled to the x axis is not considered because that will result in a Coriolis force
that induces vibrations in z. Sensing these vibrations involves cascading of two non-ideal
effects: drive motion coupling to x axis and sense combs producing differential output due
to vertical motion. Therefore, drive motion coupled to x axisis expected to be less signifi-
cant than drive motion coupled to z axis for purposes of cross-axis senditivity. The details
of sensitivity to rotation about the drive axis due to drive motion coupling to the z axis, are

presented below.

As shown in Section 7.3, the Coriolis force acting on the outer resonator rigid frame
contributes insignificantly to the total Coriolis force induced relative displacement in x
between the inner accelerometer plate and the outer resonator rigid frame. Therefore, only
the effect of Coriolis force acting on the inner accelerometer plate is taken into account.
The vertical displacement of the plate due to motion coupled from the drive mode is

obtained by solving a dual mass spring system as shown in Figure 7.6 where a coupling

force F, = KyzoyD acts on the outer frame:

KyzoyD

5 > 5 5 = —3.39 nm (7.81)
Kzzo(l_noz_niz_yzniz-" niznoz)

Z4i =

wherein a0.1 um mask misalignment has been assumed. Note that if the inner springs are

highly rigidin z (i.e,, n;, « 1) then the above equation reduces to the case where the outer

frame and the inner plate move in unison vertically. The normalized cross-axis sensitivity

is obtained directly asaratio of the Coriolis forces acting on the inner accelerometer plate
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arising due to rotations about y and z. The Coriolis forces are, in turn, respectively propor-
tional to amplitude of driven oscillations of the inner accelerometer plate in the zand they

directions. Thus,

K
= yzo s—— = 000243 (7.82)

2 2 2
D Kzz(l_noz_niz_yzniz_niznoz)

=h

S

<

If the springs are much stiffer in zthan in y a much simpler, approximate expression can be

written:

S
—CSE‘-V =0y, (7.83)

where eoyz Is the angle through which the principal axes of stiffness of the outer resonator

have rotated to produce coupling between the y and the z modes. From (7.82) and (7.83) it
can be concluded that the normalized cross-axis sensitivity to rotations about the drive
axis is directly proportional to the angle by which the principal axes of stiffness of the
outer spring beams have rotated due to mask misalignment. From the denominator of

(7.82), the importance of separation between the vertical modes and the drive mode is yet

again seen. Similarto S

eax SCay Is found to be insignificant (about 0.25%).

7.7.3 SJummary of Cross-axis Sensitivity

Response of the vertical axis gyroscope to rotations about both orthogonal axes, x and
y have been discussed in this section. While the former is seen to occur due to sensitivity
of the drive comb to vertical oscillations the latter occurs due to coupling of drive motion
to vertical axis. Both the cross-axis sensitivities are found to be less than 1% for expected
values of comb offset and mask misalignment. In away, thisisan expected result. The dis-
placements arising from Coriolis forces in off-axis directions (X, y) are relatively so small

that thereislittle possbility of them interfering with the main axis sensitivity.

7.8 Simulation Results
In the previous sections, non-ideal manufacturing effects have been analyzed in

detail, and correlated to Zero Rate Output, acceleration and acceleration-sgquared sensitiv-
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ity and cross-axis sensitivity. In the first part of this section, results of NODAS behaviora
simulation for each non-ideal case analyzed before are presented and compared with the
analytical derivations. Non-idedlities are considered only one at atime in the first part. In
reality, all the non-ideal manufacturing effects occur in collusion, rendering hand analysis
not only tedious, but also unfruitful in terms of intuitive understanding. In order to obtain
a complete picture of manufacturing effects on the gyroscope, Monte-Carlo simulations
are employed in the second part of this section. Monte-Carlo simulations have been used
extengively in a variety of fields to understand effects of multiple, randomly varying fac-
tors[96].

In order to optimize the ssimulation time, three different schematics for the gyroscope
are used to capture individual effects. The three schematics in increasing order of simula
tiontime are:

1. 2D schematic for beam width and gap mismatch where there is no out-of-plane motion
coupling.

2. 3D schematic for gap mismatch case requiring non-zero sensitivity of differential
combs to vertical motion.

3. 3D schematic with detailed beam model capturing effects of metal mask misalign-
ment.

It should be noted that all the ssimulations can be done with the third schematic listed

above, at the expense of increased simulation time. The netlist for the 2D schematic is

givenin Appendix A7.
7.8.1 Mismatch Smulation Results
Comparison between the analytically derived numbers and those obtained from smu-

lation are shown in Table 7.5, Table 7.6 and Table 7.7 for the ZRO, acceleration sensitivity

Table 7.5 Comparison between analytical calculations and NODAS simulations of

ZRO
Mismatch case Analytical (°/s) Simulation (°/s)
Asymmetric Drive 37.2 414
Outer spring width mismatch | 0.845 2.85
Inner spring width mismatch | 645 653
Drive comb gap mismatch 2.25 2.73
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Table 7.5 Comparison between analytical calculationsand NODAS simulations of

ZRO
Mismatch case Analytical (°/s) Simulation (°/s)
Sense comb gap mismatch 0.338 0.400
Mask misalignment 4.70 4.42

Table 7.6 Comparison between analytical calculations and NODAS smulations of
acceleration senditivity

Mismatch case Analytical ( x 107> °/s/g)| Simulation ( x 107 ° /s/g)l
Outer spring width mismatch| 0.287 0.512

Inner spring width mismatch | 0.239 0.237

Drive comb gap mismatch | 0.796 1.05

Sense comb gap mismatch | 6.78 5.42

Mask misalignment 94.1 69.0

Table 7.7 Comparison between analytical calculationsand NODAS smulations of
Cross-axis sensitivity

Mismatch case Andytical ( x10°) | Simulation( x 107°)
Rotation about sense 1.87 1.44
Rotation about drive 243 2.34

and cross-axis sensitivity respectively. In the ZRO table, the smulation values are fairly
close to the hand analysis values except for the case of width mismatch in the outer
springs. Upon detailed investigation of the simulation results, this discrepancy was related
to the effect of non-zero mass of the spring beams. When the width of one out of the four
outer springs is changed by 1%, the effective mass of the spring also changes resulting in
an asymmetric mass distribution for the outer resonator. This asymmetric mass distribu-
tion is not accounted for in the analysis presented, but is captured by the NODAS behav-
ioral simulations. A similar discrepancy is also seen in the acceleration sensitivity
estimates from analysis and simulations. Among the other results, the difference between
the analytical and simulation resultsis somewhat higher for the two cases of gap mismatch
for both the ZRO and the acceleration sensitivity. This higher difference can be attributed
to the fact that the fringe capacitance and force was neglected in the hand analysis. An

additional effect not considered in the hand analysis, is the different response of the sense
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accelerometer at frequenciesat oy —o, and w4+ o,, because the sense mode resonant

frequency iscloser to w 4 + o, thanto w4 — o, . Following the above discussion, it can be

summarized that the hand analysis provides adequate estimates of the non-idealities as
well asinsightsinto the causes for designers. However, behavioral smulation yields more
accurate estimates of non-idealities and will, almost always, capture additional non-ideal
effects than hand analysis. Therefore, behavioral smulation must be an integral part of the

design process.
7.8.2 Monte-Carlo Smulations

Monte-Carlo analysis has been traditionally used by analog circuit designers to study
the effect of manufacturing variations in the threshold voltage, gate-oxide thickness and
other device parameters on the circuit performance. A similar techniqueis applied here for
gyroscope ssimulations with twelve randomly varied geometrical parameters. The four
outer spring beam widths, four inner springs beam widths, two drive comb gaps and the
two sense comb gaps comprise the twelve randomly varied parameters. As in the preced-
ing hand analysis, it is assumed that the beam widths (or gap) in a given spring (comb) are
uniform within the spring (comb). However, each spring (comb) is considered indepen-
dent. This assumption attempts to capture non-local variations in the beam widths and the

comb gaps.

The nominal gyroscope design uses 1.8 um beam widths and comb gaps. The analy-
sis for the acceleration and accel eration-sgquared sengitivities in Section 7.6 suggests that
larger gaps and larger sense mode resonant frequency will lead to lower acceleration sen-
gitivity. Monte-Carlo simulations using the NODAS schematic described in Section 7.2
and shown in Figure 7.2(b) were done with nominal beam widths and gaps of 1.8 um and
2.0 pm. In each case, beam widths in the eight springs and the gaps in the four combs
were assumed to be independent, normally distributed random variables (N(w, o)) with
common mean w, equal to the layout dimension (1.8 or 2.0 um), and standard deviation ¢
(30 = 0.05 um). Each Monte-Carlo analysis involves 59 transient analysis, with the 12
randomly generated dimensions ~ N(w, ). The 59 sets of 12 randomly distributed dimen-
sions are listed in Appendix A6. Prior to the each transient analysis, ac analysis was per-

formed in order to obtain the y resonant frequency of the outer frame, which was then used
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FIGURE 7.14. ZRO Histograms for widths and gaps = 1.8 um and 2.0 um fromr
Monte-Carlo simulation.

as the drive frequency in the transient analysis. The OCEAN scripts used to run the ac and
transient analysis arelisted in Appendix A7.

The Zero Rate Output (ZRO), acceleration sensitivity (S,, ) and acceleration-squared

sensitivity (S,,,) for the 1.8 and 2.0 pm designs are shown in Figure 7.14, Figure 7.15.

and Figure 7.16. The prominence of the third bin is nothing more than the fact that the
number of runsin each bin is not too high. If key statistical measures such as the standard

deviation of the ZRO do not change significantly as the number of Monte-Carlo smula-
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FIGURE 7.15. Acceleration sensitivity histograms for widths and gaps = 1.8 um
and 2.0 um from Monte-Carlo ssimulation.
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FIGURE 7.16. Acceleration-squared sensitivity histograms for widths and gaps =
1.8 um and 2.0 um from M onte-Carlo simulation.

tions increases, then the number of runs can be considered to be adequate. The standard
deviation of the ZRO for the first 30 runsis 781 °/s and that for the remaining 29 runsis
787 °/s. Since there is a difference of less than 1% in the two standard deviations, the
number of simulations runs can be considered to be sufficient. Since the main contribution
to ZRO is the asymmetric topology of the inner springs, it is not affected by larger width
and gap. To reduce the ZRO alternate solutions have to be adopted. Simulations with sym-
metric inner springs resulted in ZRO reduction of about 90% and greatly reduced offsets
due to lateral curling. The smulation values for cross-axis sensitivities are about 100
times smaller than the gyro sensitivity. Increased width and gaps do not have significant
impact on cross-axis sensitivity because, the cross-axis sengitivity is mainly dependent on

out-of -plane resonant modes and comb sensitivities. Now, the differences between the 1.8

um and the 2.0 um designs in acceleration sensitivity are discussed.

For equal drive displacements, the nomina gyro sensitivity S for the 2.0 um design

is smaller by about 35%. However, both the normalized acceleration sensitivity S,, /S
and the normalized acceleration-squared sensitivity S,,, /S have also reduced signifi-

cantly, as expected. The mean and standard deviation of S,, /S reduce by about 45% from

0.35 (°/s)/g to 0.19 (°/s)/g and from 0.28 (°/s)/g to 0.16 (°/s)/g respectively. The absolute

183



c 4.00
=

® =

& 3.00 «—— 9 = 10um
Y

<&

< U 200 -

E > 95 F 18um

g 2 1.00

=2 : Desirable region
2 (§ 0.00 é gs = 90um [ HighS Low S,,/S

0.00 1.00 2.00 3.00 4.00
Normalized Gyro Senditivity (S

FIGURE 7.17. Trade-off between gyroscope sensitivity and acceleration
sensitivity with varying gap

reduction in S,, is greater than 60%. Thus, it is seen that increasing the widths and the

gaps resultsin significant improvement in the acceleration and accel eration-squared sensi-
tivity. The analytical equations derived earlier can be used to optimize the gyro sensitivity
and the acceleration senditivity to arequired ratio for a given set of manufacturing varia-

tions. For instance, (7.68) indicates that, with all other things kept constant, the normal-

ized acceleration sensitivity goes as 1/ gg. It should, however, be noted that the gyro

sensitivity also reduces with increasing gap. The ideal choice of gap for a specific applica-
tion can be made using the trade-off between decreasing acceleration sensitivity and
decreasing gyro sengitivity as shown in Figure 7.17. In the figure, the acceleration sensi-
tivity is plotted against the gyroscope sensitivity, both being normalized to the respective
vaues at the sense gap g, = 1.8um. The desirable gyroscope has high sensitivity to
angular velocity and low sensitivity to linear acceleration. However, the plot shows that

this cannot be achieved by changing the sense gap. Gyroscope sensitivity has to be sacri-

ficed in order to obtain better rgjection of linear acceleration due to non-linearity in the

differential sense combs.

From the analysis and the simulations presented in the preceding sections the follow-

ing conclusions for the ZRO and S, can be deduced:

Zero Rate Output:
1. Use symmetric springs only
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2. Choose spring topology and position the springs to minimize elastic coupling

Acceleration Sensitivity:
1. Larger comb gaps are better
2. Higher sense mode resonant frequency and larger gaps are better for reduced accelera-

tion-squared sensitivity,

Both the above approaches lead to reduced sensitivity. However, the acceleration
rejection obtained is greater than the sensitivity loss. Furthermore, analysis (equation
(7.72) in Section 7.6.2) suggests that decoupling of drive vibration from sense combs can
reduce linear acceleration sensitivity significantly and potentially eliminate the need for
dual anti-phase gyroscopes. Cross-axis sensitivities are found to be about 100 times
smaller than the gyro sensitivity and are not strongly dependent on the beam widths and

the gaps unlike the acceleration sensitivity.

7.9 Summary

Detailed analyses of microgyroscope non-idealities caused by three kinds of manu-
facturing effects have been presented in this chapter. The manufacturing effects consid-
ered are. beam width variation, comb gap variation and mask misalignment. The
gyroscope non-idealities discussed are the Zero Rate Output, acceleration and accelera-
tion-squared sensitivity and the cross-axis senditivity. The analyses enable a qualitative
comparison of CMOS-MEMS and single-layer gyroscope topologies. The necessity of
complete symmetry in design (e.g., symmetric spring topologies) as well as operational
aspects (e.g., symmetric gyroscope drive) has been clearly brought out. Mode-separation,
which has always been considered important in MEMS design, has been quantitatively
linked to gyroscope non-idealities. The equations derived to explain gyroscope non-ideal -
ities can serve as examples for future work in treatment of other manufacturing effects.
Monte-Carlo simulations have been used to verify the analyses and enhance understand-
ing of design trade-offs between nominal performance and the ability to reject non-ideal
variations. They can also be used to estimate manufacturing yield for given beam width

and gap variations and alignment tolerances.
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Chapter 8. Summary and Future Work

8.1 Thesis Summary and Contributions

The thesis examines several important aspects of MEMS modeling, smulation and
design on the way to understanding of gyroscope non-idealities. Elastic cross-axis cou-
pling, temperature dependent curl macromodels and rapid computation of spring stiffness
constants, modeling method for CMOS-MEMS combs and difficultiesin MEMS behav-
ioral simulations have been addressed. The chapter on gyroscope analysis and simulation
utilizes the models and solutions described earlier to derive detailed equations correlating

gyroscope non-idealities to manufacturing variations.

The contributions of this work can be broadly classified in three fundamental direc-
tions: modeling, simulation and design. Each direction is elaborated in the following sub-

sections.
8.1.1 Modeling

Modeling of phenomena in two physical domains, elastic and electrostatic, has been
done in this thesis. The two domains required different approaches. Elastic models were
derived from a purely analytical viewpoint, with extensive verification through finite ele-
ment analysis. Elastic models for micromechanical springs, have previoudy been mostly
restricted to main axis stiffness terms. The analytical treatment presented in this thesis led
to fundamental understanding of elastic cross-axis coupling effects at the system-level and
for individual springs such as crab-leg, u-spring and serpentine shaped springs. The
important result that in-plane trandational cross-axis coupling can be eliminated through
symmetric spring design was also proved formally. Equations for out-of-plane cross-axis
couplingin CMOS-MEMS due to misaligned metal layers were derived. A computational
technique for rapid computation of spring stiffness matrices for single-chain-of-beams
springs has been presented. Extensions to arbitrary spring topologies as well as inclusion
of viscous and inertial effects have been suggested. Temperature-dependent curl macro-
model for CMOS-MEMS beams was developed and implemented in the NODAS frame-
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work. Test structures were characterized experimentally to verify the vertical and lateral

curvature predicted by the macromodel.

Modeling in the electrostatic domain has been tackled by using a combination of ana-
Iytica and numerical techniques. The method used is similar to transistor models,
wherein, each new process requires severa device-level field solutionsin order to fit the
model parameters. Curling of comb fingers, multi-layer cross-section, corner effects and
arbitrary motion of combs, which are almost impossible to capture analytically, have been
captured in the model through this method. Furthermore, the model ensures energy con-
servation between different domains through combined solution for the capacitance and
force fitting coefficients. Experimental measurements were made on variable capacitance

structures for model verification.
8.1.2 Smulation

A fundamental understanding of transient analysis with MEMS component models
encoded in an Analog Hardware Description Language (AHDL) was obtained by extend-
ing time-discretized interpretation of electrical components such as resistors, inductors
and capacitors to the mechanical domain. Pointers for AHDL implementation with better
simulation convergence and speed were deduced. Important guidelines to be considered
during AHDL modeling are: minimize the number of additional internal states during
model development, minimize the quantity and size of off-diagonal elementsin the smu-
lation matrix and use scaling in multi-domain simulations. The importance of the above
pointers cannot be overemphasized; gyroscope ssimulations reported in Chapter 7 do not

converge without making use of the above guidelines.
8.1.3 Gyroscope Design

A number of significant insights into gyroscope design were obtained following the
analyses and ssimulations reported in Chapter 7, which represent the first detailed study of
intra-die manufacturing variations and misalignments on the Zero Rate Output, accelera-
tion sengitivity and cross-axis sensitivity of a microgyroscope. Geometrical and opera
tiona symmetry were found to be crucia in reducing gyroscope non-idealities.
Importance of double-decoupling: i.e., sense mode decoupled from drive combs and drive

mode decoupled from sense modes was also quantified. The nested gyroscope topology in
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the multi-conductor CMOS-MEMS process particularly embodies the double-decoupling
concept. The effect of lateral offsets in drive comb and sense comb, when combined with
vertical coupling of drive motions was shown to cause al the three non-idealities under
consideration. The mode-separation requirement was quantified by analytically linking it
to gyroscope non-idealities. Monte-Carlo simulations demonstrated the trade-offs between

nominal gyroscope performance and reduction of gyroscope non-idealities.

8.2 Future Directions of Work

Experimental evidence of the analysis presented in this thesis is required in order to
establish leading causes of gyroscope non-idealities. Following measurements of non-ide-
alities, design techniques to further reduce the non-idealities need to be explored. Existing
commercial microgyroscopes [21][28][29] use two proof-masses which are driven anti-
phase in order to cancel out acceleration sengitivity to the first order. This entails almost a
2X increase in the MEMS area of the chip. Gyroscope designs with double-decoupling
may potentially eliminate the need for dual proof-masses in single-layer processes. Since
the acceleration sensitivity arises due to sense comb non-linearity, linear sensing mecha-
nisms such as a simple comb may also be used to suppress it, with the side-effect of
reduced gyroscope senditivity. Additionally, the low-frequency acceleration signa pro-
vided by the inner accelerometer in the gyroscope maybe used to provide electronic or
electromechanical cancellation of the acceleration sensitivity. The area efficiency of such

a solution remains to be compared with the use of dual anti-phase proof-masses.

Based on the simulations presented in this thesis, a set of basic benchmark simula-
tions to be performed on any gyroscope design can be readily constructed. Optimizing
gyroscope performance by trading off sensitivity for robustness will be facilitated by such
a benchmark suite. This will not only be useful in comparing gyroscope topologies, but

can aso help in potentially automating parts of the optimization.

Automated simulation-based optimization has already been demonstrated commer-
cialy for analog systems [97] and in academia for micromachined accelerometers [60].
Having obtained a basic understanding of gyroscope non-idealities due to manufacturing
effects, we can now look at automating gyroscope size optimization. Model-order reduc-

tion techniques proposed in Chapter 4 and by others[98], can be combined with the simu-
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lation-based synthesis tools to facilitate rapid sizing of microgyroscopes. Synthesis tools
can illuminate trade-offs between various performance metrics such as gyroscope area,
operating frequency, sensitivity, resolution, bandwidth, Zero Rate Output, acceleration

sensitivity.
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Appendix A1l Mathematica program to derive Crab-leg

stiffness matrix

(* Computes the in-plane spring constants for the crab leg. *)

(* Ltisaong the x direction,
Lsisaong they direction
Lt is attached to the plate *)

Clear[Ab, At, It, Is, Lt, Ls, Mb2, Ms, Mt, Ubl, Ub2, Ub3, Ly, Lx, tt, EY];
Clear[dtheta, dx, dy, Fx, Fy, M(];

Mt =MO + Fx*Ly - Fy*Lx - Fy t;

Ms=MO + Fx*Ly - Fy*Lx - Fy Lt + Fx t;

Ubl =\[Integral]\_0\%Lt Mt"2/2 *EY * It \[DifferentialD]t;,
Ut = \[Integral]\ O\%LsMs*2/2 *EY * Is\[Differential D]t;,
Ucomp = Fx"2 Lt/2 EY Ab + Fy"2 L2 EY At;

U =Ubl+ Ut;

dtheta=\[Partial D]\_MO U;,
dx =\[Partid D]\_Fx U;,
dy = \[Partid D]\ _Fy U;\n

(* kkkkkkhkkkkhkkhkkkk*k Comput|ng kXX ****************)
tmp = Solve[{ dy == 0, dtheta== 0}, { Fy, MO} ];

tmpl =dx /. tmp;

Kx = Simplify[ Fx/tmpl]
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(******************* End Of kXX ******************)

(***************** Computlng kyy ***************)

tmp = Solve[{ dx == 0, dtheta == 0}, { Fx, MO}];,
tmpl=dy /. tmp;,
Ky = Simplify[ Fy/tmpl]

(******************* End Of kyy ****************)

(***************** Comput|ng ktt or kthetaz ************)
tmp = Solve[{dx == 0, dy == O}, {Fx, Fy}];

tmpl = dtheta/. tmp;

Kt = Simplify[MO/tmp1]

(******************* End Of ktt or kthetaz *************)

(******************* Computlng kxy ********************)

tmp = Solve[{ dx == 0, dtheta== 0}, { Fy, MO} ];
tmpl=dy/. tmp;
Kxy = Simplify[ Fx/tmp1l]

(******************* End Of kxy ***********************)

(FHHFFRREER R RRHE COMPULING Kyt OF Kythetaz **** % %k kkkxxx 4%
tmp = Solve[{dx == 0, dy == 0}, { Fx, MO}];,

tmpl = dtheta/. tmp;

Kyt = Simplify[Fy/tmpl];

(******************* End Of kyt or kythetaz *****************)

(***************** Computlng kxt or kxthetaz *****************)
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tmpl = dtheta/. tmp;,
Kxt = Simplify[Fx/tmp1];

(***************** End Of kxthetaz ***************************)

(FX*FFFREEE KRR RHE CompUting Kty OF Kthetazy *** %+ ¥k sk kxxx x k%Y
tmp = Solve[{ dx == 0, dtheta== 0}, { Fx, Fy}];,

tmpl=dy /. tmp;

Kty = Simplify[MO/tmpl]

(******************* End Of kty or kthetazy ******************)
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Appendix A2 Equationsfor out-of-plane off-diagonal

stiffness constants

For crab-leg springs:
BElyylyo(GIeL, + ElyL )(2El gLy + GIL (L +2L,))

ys—t-y
k,, = (A2.1)
20 Dcop
= OBl GRLYQEI (L + L) + GIL(L +2L) £22)
20y Deo
p
Jys(REL L L+ GIL (2L, + LO)2El L (L + L)+ GIgL (L +2L,))
k¢ ) y ys yS t s y S yt—s X (A23)
xTy Dcop
where,
2
Doy - AE°1 1Ly S(|yS|_t +|yt 5+ G2 L |_S(|ys|_t 1L 5+ (A24)
EG(Idely + Igydila+ 41l (LELE L+ I L)

is the common denominator for out-of-plane coupling coefficients for the crab-leg.

For u-springs

6EGI 1,1 Ip(Gy(Lpyy * Lpp) + ElpLy)
(GIpLy(Ly+2L) + 2Bl (Lps Ly + Lyo(Ly+ L))

Kzg, = 5 (A2.5)
uop
[ ~6EGI I Jp(El y(Lp + Lyp) + GIpLy) J
2
(2Bl ypLi(Lpy + L)+ GI(Lpy —Lpo(Lpp =2L,) + 2Ly (Lpp + L))
Ko, = . (A2.6)
Y uop

[ ~3EGI ply Jp(GIpL(2Ly + L) + 2Ely(LpgLy + Lpp(Ly + L)) x J

2
(2Bl ypli(Lpy + L) + Gy(Lpy = Lpp(bpy =20, + 2Ly (Lpp + 1))

Koo, = D

(A2.7)

uop

where,
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32 2
12E°1, | ytLblLbZLt +

3.2 4 3 4 3

G IpdiLy(y(Liy *+ 4LpyLpp—BLp; Loy + 4Ly Ly + Loy + lyp(Lp1 + Lpo)bi) +

D = |c~2. .2 5 4 3 2 > 3 4 5. 2.5
uop ~ |EG Jp(lyJi(Lpg + SLpglpp = 2LpqLyp = 2LpqLpp + Shpgbpy + L) + lypdply) +

2 2 .2 2
EG Jp(4l,plxi(Lps + Lp2)Li Gplps = Ipbpilpz + Jpbpa + Jilpili + Jilpol ) +

2 3 3 3
4E Gl plyi(Lpg + Lpp)Li(lypdple + 1yi(Iplpg + Iplpp + 3JibpiLlpoly))

(A2.8)
For serpentine springs for even n:
o = BEGlyalypdady(2Ly +nky) (A29)
20y D '
seop
—6EGI, I, ,J.J (L, + 2L
kz¢ - ya'yb“a b( b x) (A2.10)
y D
seop
y —3EGl,lypdadp(Lp + 2L,)(2L, + L) (A2.11)
¢X¢y Dseop
where,
Dyooy = (LG 1)+ 3n°LL2El 1, J, + n°L3GI, 3 3 +nL2L 0 1, d (n—3n+2
seop ( yaab(n_ )+3n a-b yaybb-"n a ybab+nabyayba(n_n+ )
(A2.12)
Serpentine springs with odd n:
o BEGlalypdadn(2Ly + Nl ((n-1)GJaLy + NElyply) (A2.19
20 Dsoop .
o, = —6EGI 5l yhJadp(Gla(Lp + 2L ) (N = 1)Ly, + ElpL(Ly(n—1) + 2nL,)) (A214)
by Dsoop
y —3EGI ol pdadp(2L, + ML) (GI,(Ly + 2L, ) (N = 1)Ly + El pLo(Ly(n—1) +2nL,))
¢X¢y Dsoop
(A2.15)
(n-1)°G%, 323, L¢ +4n(n DEGI, I pJ dpL Lo+ n*EGIZ I3 Lo+
ya a b ya yb b yb¥a“b*-a
Dsoop = n’(n— Dlypdly 3L (E? lyalyp(N—2) + G 23,3,0) + (A2.16)
(N=1El | ybLaLb(3EbeJb(n+ 1) +GJan(n —3n+2))
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FEA verification results for out-of-spring stiffness constants are shown in Table2.1

Table A2.1 Comparison of FEA and analytical stiffness (out-of-plane) valuesfor the crab-leg
spring

w oL L g ( x 107 °N) Kz x 10 °N) K, x 10 ?N-m)
Error Error
um | um| umj| A S (%) | A S (% |A S Error(%)
2 |40 |40 | 3205 | 3325 | -3.61] 564.1 | 576.7 | -2.18 | 2.66e4 | 2.74e4 | -3.10
2 |400|40 | 117 |1203 |-274]8.061| 8226 |-201 | 324.7 |331.9 |-2.17
2 |40 | 400] 6.166 | 6.394 | -3.57| 2.605 | 2.675 | -2.62 | 553.2 | 573.4 | -3.52
2 | 400| 400] 0.8598| 0.9072 | -5.22| 2.704 | 2.742 | -1.39 | 319.7 | 334.1 | -4.31
5 |40 |40 | 877.8 | 929.1 |-552] 1457 | 1514 | -3.76 | 7.12e4 | 7.48¢e4 | -4.81
5 1400|40 | 3208 | 3.306 |-2.96]21.61 | 22 -1.77 1 860.1 | 880.7 |-2.34
5 |40 |400]17.88 | 184 -2.83| 7.268 | 7.412 | -1.94 | 1612 1652 | -2.42
5 |400| 400] 3.071 | 3.156 | -2.69] 7.289 | 7.369 | -1.09 | 1059 1082 | -2.13

for the crab-leg spring, Table 2.2 for the u-spring and Table 2.3 for the serpentine spring

Table A2.2 Comparison of FEA and analytical stiffness (out-of-plane) valuesfor the U spring

—6 6 -12
w | Lot | Lp2| Lt Kzp, L 10 °N) Kap, L ¥ 10 N) Kp,9,0 X 10" N-m)
Error Error Error
um | pum | um|um| A S (% |A S (% |A S (%)

40 | 40 | 10 | 480 502 | -4.29 | -727 | -755 | -3.71 | -3.56e4| -3.71e4 -3.91

40 | 400110 | 165 |168|-1.85]262 |269 |-2.64|140.7 |144.7 | -2.76

400{ 40 |10 | 1353 | 137 |-1.38 | -840 | -849|-1.08 | -371.3 | -375.8 | -1.20

400| 400| 10 | 0936 | 0.95 | -1.48 | -4.87 | -493 | -1.26 | -238.8 | -241.8 | -1.24

40 |40 |50 | 1214 | 130 | -6.33 | -142 | -150 | -5.66 | -9784 | -1.04e4 -5.92

40 | 400 50 | 2155 | 221 | -262 | 1.57 | 167 |-569]|1396 |1481 | -574

400{ 40 |50 | 120 | 123 |-268 |-7.18 |-730|-1.71]-354.1 | -361.2 | -1.97

400| 400( 50 | 105 | 108 |-2.60 | -408 |-416|-2.09 | -281.2 | -287.3 | -2.12

40 | 40 | 10 | 1207 | 1278| -5.56 | -1825 | -1913| -4.60 | -8.94e4| -9.44e4 -5.26

40 | 40010 | 424 | 433 |-219 |6.67 |686 |-284]|3656 |3786 |-343

400{ 40 |10 | 333 |338|-133]|-211 |-21.3|-0.75|-912.1 | -923 | -1.18

400 4001 10 | 236 |24 |-1.71]-123 |-124|-1.29|-600.2 | -609.4 | -1.51

QOO OO NINIDNIDNDNDNDNDN

40 |40 |50 | 394 418 | -5.71 | -451 | -471 | -4.35 | -3.11e4| -3.29¢e4 -5.33

204



Table A2.2 Comparison of FEA and analytical stiffness (out-of-plane) valuesfor the U spring

w | Lo | L g x 10°°N) K, x 10°N) Ko x 10 *N-m)

Error Error Error
um | pum| um|fum| A S (% |A S % |A S (%)
5 40 | 400| 50 | 5.87 6.02 | -2.36 | 490 | 5.078| -3.60 | 433.1 | 4515 | -4.08
5 400| 40 | 50 | 3.29 335 |-1.79 | -19.0 | -19.2| -0.94 | -941.3 | -956 -1.54
5 400| 400| 50 | 2.87 293 |-198 |-109 |-11.1|-153|-7528 | -765.8 | -1.70

Table A2.3 Comparison of FEA and analytical stiffness (out-of-plane) valuesfor the

serpentine spring

w L L Ky ( x 10 °N) Kz x 107 °N) K0, x 10 2N-m)
Error Error Error
um| um | um| A S (%) A S (%) A S (%)
2 |10 | 10 | 1513 | 1662 | -8.97 ] -1038 | -1140 | -8.95 | -7.26e4 | -7.98e4| -8.97
2 |10 | 100] 35.08| 37.66| -6.85] -46.6 | -50.03 | -6.86 | -3262 -3502 | -6.85
2 |100| 10 | 9.726| 9.856| -1.32| -1.867 | -1.892 | -1.32 | -466.8 | -473.2 | -1.35
2 | 100| 100} 5.405| 5.628| -3.96] -2.011 | -2.094 | -3.96 | -502.6 | -5235 | -3.99
4 |10 |10 | 3658 | 4173 | -12.3| -2561 | -2802 | -8.60 | -1.79¢5 | -1.96€5| -8.57
4 |10 | 100| 83.52| 91.16| -8.38| -112.1 | -119.8 | -6.43 | -7850 -8383 | -6.36
4 |100| 10 | 19.88| 20.19| -1.54| -3.897 | -3.794 | 2.71 |-974.3 | -946.9 | 2.89
4 | 100| 100| 13.06| 13.39| -2.46| -4.912 | -4.925 | -0.26 | -1228 -1231 | -0.24

respectively.
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Appendix A3 Mesh Refinement Steps

In this appendix the mesh refinement steps carried out inside AutoBEM are listed for
three cases: simple comb capacitance, simple comb force runs (for numerical differentia-

tion), differential comb capacitance

Mesh refinement for smple comb capacitance.

(* Before starting with the refinenent procedure we have to formthe
ROTORTOTAL and STATORTOTAL regions *)
sel ecti on{type{panel }, clear};

(* Make ROTORTOTAL *)

sel ection{type{panel}, add{regi on{"ROTOR"}}};

sel ection{type{panel}, add{regi on{"ROTOROXI DE"}}};

regi on{ nane{ "ROTORTOTAL" }, panel s{},};

sel ection{type{panel }, operati on{add, regi on{" ROTORTOTAL"}}};
sel ecti on{type{panel }, clear};

set{ property{ region{ visual{ name{ "ROTORTOTAL"}, val ue{
0.701960784314,0.0, 0.0, 1.00, 0.10, 10, 0.62, 0.59} } } } };

(* Make STATORTOTAL *)

sel ection{type{panel}, add{region{"STATOR'}}};

sel ection{type{panel}, add{regi on{" STATOROXI DE"}}};

regi on{ name{ "STATORTOTAL" }, panels{},};

sel ecti on{type{panel }, operation{add, regi on{" STATORTOTAL"}}};
sel ecti on{type{panel }, clear};

REFINE4
REFINES

REFINEO

REFINE1
REFINE2

FIGURE A3.1. Regions defined in the boundary element model for mesh refinement. REFINEO is
the most finely meshed region, followed by REFINE1 and REFINE3 and finally REFINE2 and
REFINE4 are the most coar sely meshed regions.
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set{ property{ region{ visual{ name{ "STATORTOTAL"}, value{ 0.0,0.0,
0.701960784314, 1.00, 0.10, 10, 0.62, 0.59} } } } };

(* The following is the refinement algorithm
Steps are as foll ows:
1. REFI NEO:
snoot hness>0. 5 edge refinenent with AR 1000 min diagonal of 0.2

*)

refine{
si mul ati onSpecification{"conmputationl"},
el enent Snoot hness{
opti on{
m ni murEl ement Di agonal { 0. 2}, i ncl udeRegi on{" REFI NEO", }
1
type{ edge{aspect Rat i 0o{ 1000} } },
absolute{ 0.5 },

N —
H % =

REFI NE3:
snmoot hness>0.5 edge refinenent for AR > 1000 min diagonal of 0.2

*)

refine{
si mul ati onSpeci fication{"conmputationl"},
el ement Snoot hness{
opti on{
m ni murEl enent Di agonal { 0. 5}, i ncl udeRegi on{" REFI NE3", }
},
type{ edge{ aspect Rati 0{ 1000} } },
absolute{ 0.5 },

(*
3. REFI NE1:
smoot hness>0.5 edge refinement for AR > 1000 min di agonal of 0.4

*)

refine{
si mul ati onSpeci fication{"conputationl"},
el ement Snoot hness{
option{
m ni munEl ement Di agonal { 0. 4}, i ncl udeRegi on{" REFI NE1"}
8
type{ edge{aspect Rati 0{ 1000} } },
absolute{ 0.5 },
}
1

207



(*
4. REFINE5 and REFI NE6
snoot hness > 0.5 edge refinenent for AR > 1000 min diagonal of 0.1
*)
refine{
si mul ati onSpecification{"conmputationl"},
el enent Snoot hness{
opti on{
m ni murEl ement Di agonal {0. 1}, i ncl udeRegi on{" REFI NE5", " REFI NE6", }
1
type{ edge{ aspect Rati 0{ 1000} } },
absolute{ 0.5 },
}
1

Mesh refinement for smple comb forceruns.

(* Before starting with the refinement procedure we have to formthe
ROTORTOTAL and STATORTOTAL regions *)
sel ecti on{type{panel },clear};

(* Make ROTORTCTAL *)

sel ection{type{panel}, add{regi on{"ROTOR"}}};

sel ection{type{panel}, add{regi on{"ROTOROXI DE"}}};
regi on{ nane{ "ROTORTOTAL" }, panel s{},};

sel ecti on{type{panel }, operati on{add, regi on{" ROTORTOTAL"}}};
sel ection{type{panel }, clear};

set{ property{ region{ visual{ name{ "ROTORTOTAL"}, val ue{
0.701960784314,0.0, 0.0, 1.00, O0.10, 10, 0.62, 0.59} } } } };

(* Make STATORTOTAL *)

sel ection{type{panel}, add{region{"STATOR'}}};

sel ection{type{panel}, add{regi on{" STATOROXI DE"}}};

regi on{ name{ "STATORTOTAL" }, panels{},};

sel ection{type{panel }, operati on{add, regi on{" STATORTOTAL"}}};

sel ecti on{type{panel }, clear};

set{ property{ region{ visual{ name{ "STATORTOTAL"}, value{ 0.0,0.0,
0.701960784314, 1.00, 0.10, 10, 0.62, 0.59} } } } };

(* The following is the refinement algorithm
Steps are as foll ows:
1. REFI NEO:
snmoot hness>0.5 edge refinenent with AR 1000 m n di agonal of 0.05

*)

refine{
si mul ati onSpeci fi cati on{"conputationl"},
el ement Snoot hness{
opti on{
m ni murEl enent Di agonal { 0. 05}, i ncl udeRegi on{" REFI NEO", }
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1
type{ edge{ aspect Rati 0{ 1000} } },
absolute{ 0.5 },
}
1

(*
2. REFI NEO:
snmoot hness>1.5 edge refinenent with AR 1000 m n di agonal of 0.02

*)

refine{
si mul ati onSpeci fication{"conmputationl"},
el enent Snoot hness{
opti on{
m ni munEl ement Di agonal { 0. 02}, i ncl udeRegi on{" REFI NEO", }
}
type{ edge{aspect Rat i 0o{ 1000} } },
absolute{ 1.5 },

}
b
(*3. REFI NE3:
snmoot hness>0.5 edge refinenent for AR > 1000 min diagonal of 0.2
*)
refine{

si mul ati onSpeci fication{"conputationl"},
el ement Snoot hness{
opti on{
m ni murEl enent Di agonal { 0. 5}, i ncl udeRegi on{" REFI NE3", }
},
type{ edge{aspect Rati 0o{ 1000} } },
absolute{ 0.5 },

4. REFI NE1:
smoot hness>0.5 edge refinement for AR > 1000 min di agonal of 0.4

*)

refine{
si mul ati onSpeci fication{"conputationl"},
el ement Snoot hness{
option{
m ni munEl ement Di agonal { 0. 4}, i ncl udeRegi on{" REFI NE1"}
}
type{ edge{aspect Rati 0{ 1000} } },
absolute{ 0.5 },
}
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s

(*
5. REFI NE5 and REFI NE6
snoot hness > 0.5 edge refinenent for AR > 1000 min diagonal of 0.1
*)
refine{
si mul ati onSpeci fication{"conmputationl"},
el enent Snoot hness{
opti on{
m ni murEl ement Di agonal {0. 1}, i ncl udeRegi on{" REFI NE5", " REFI NE6", }
}
type{ edge{ aspect Rati 0{ 1000} } },
absolute{ 0.5 },

}
1
(*
6. Al h-refinenent
*)
refine {
si mul ati onSpeci fication{conputationl},
al | {
type{ h },
}
b

Mesh refinement for differential comb capacitance.

(* Before starting with the refinement procedure we have to formthe
ROTORTOTAL and STATORTOTAL regions *)
sel ecti on{type{panel }, clear};

(* Make ROTORTCTAL *)

sel ection{type{panel}, add{regi on{"ROTOR"}}};

sel ection{type{panel}, add{regi on{"ROTOROXI DE"}}};
regi on{ nane{ "ROTORTOTAL" }, panel s{},};

sel ecti on{type{panel }, operati on{add, regi on{" ROTORTOTAL"}}};
sel ection{type{panel}, clear};

set{ property{ region{ visual{ name{ "ROTORTOTAL"}, val ue{
0.701960784314,0.0, 0.0, 1.00, O0.10, 10, 0.62, 0.59} } } } };

(* Make STATORTOTAL *)

sel ection{type{panel}, add{region{"STATOR'}}};

sel ection{type{panel}, add{regi on{" STATOROXI DE"}}};

regi on{ name{ "STATORTOTAL" }, panels{},};

sel ecti on{type{panel }, operation{add, regi on{" STATORTOTAL"}}};

sel ecti on{type{panel }, clear};

set{ property{ region{ visual{ name{ "STATORTOTAL"}, value{ 0.0,0.0,
0.701960784314, 1.00, 0.10, 10, 0.62, 0.59} } } } };
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(* The following is the refinement algorithm
Steps are as foll ows:
1. REFI NEO:
snmoot hness>0. 5 edge refinenent with AR 1000 min diagonal of 0.2

*)

refine{
si mul ati onSpeci fication{"conmputationl"},
el enent Snoot hness{
opti on{
m ni muEl ement Di agonal { 0. 2}, i ncl udeRegi on{" REFI NEO", }
}
type{ edge{aspect Rat i 0o{ 1000} } },
absolute{ 0.5 },

N —
H % =

REFI NE3:
snmoot hness>0.5 edge refinenent for AR > 1000 nmin diagonal of 0.2

*)

refine{
si mul ati onSpeci fication{"conmputationl"},
el ement Snoot hness{
opti on{
m ni murEl enent Di agonal { 0. 5}, i ncl udeRegi on{" REFI NE3", }
},
type{ edge{ aspect Rati 0{ 1000} } },
absolute{ 0.5 },

(*
3. REFI NE1:
snoot hness>0.5 edge refinement for AR > 1000 m n di agonal of 0.4

*)

refine{
si mul ati onSpeci fication{"conputationl"},
el ement Snoot hness{
option{
m ni munEl ement Di agonal { 0. 4}, i ncl udeRegi on{" REFI NE1"}
8
type{ edge{ aspect Rati o{ 1000} } },
absolute{ 0.5 },
}

b
(*
4. REFINE5 and REFI NE6
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snoot hness > 0.5 edge refinenent for AR > 1000 min diagonal of 0.1
*)
refine{
si mul ati onSpeci fication{"conmputationl"},
el enent Snoot hness{
opti on{
m ni muel ement Di agonal {0. 1}, i ncl udeRegi on{" REFI NE5", " REFI NE6", }
},
type{ edge{ aspect Rati 0{ 1000} } },
absolute{ 0.5 },
}
b
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Appendix A4 Comb Modd Listing

In this appendix the VerilogA® implementations of the curve-fit based capacitance
models as described in Chapter 5 arelisted. Models for the smple comb are presented first
followed by models for the differential comb.

The ssmple comb model with curling effects consists of 4 files.

comb_curl_cyy l.va Main model filewhich “includes’ the 3 other files
2. efringe.va File containing functions for computing the fringe capacitance. The func-

tionsin thisfile are derived analytically
3. cap.va File containing numerically curve-fit coefficients and equation for capacitance
4. force.va File containing equation for force

Comb_curl cyy lva

/1 VerilogA for “conb_1" “veril oga”

/1 Modified on January 1, 2002

/1 1. Changed the cal cul ati on of capacitance froma function cal

/1 to sinmple inclusion of the file

/1 2. Added another include file containing derivatives for conputing
force

“include “../../constants.h”
“include “../../discipline.h”
“include “../../process.h”
“include “../../design.h”

/1l “a” side has nore fingers
/1 “b” side has less fingers
/1 nominally ais to the left of b

nmodul e conb_curl _cyy_ 1(OMG a, phia, phib, va, vb, xa, xb);
/1 Pin definitions
/1 Inertial Pins
i nout [0:2] OMG
rotational [0:2] OMG
inout [0:2] a;
kinematic [0:2] a;

/1 Position and voltage pins

i nout

i nout

i nout

[0:2] phia;
rotationa
[0:2] phib;
rotationa
[0:3] va;

[0:2] phia;

[0:2] phib;
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electrical [0:3] va;
i nout [0:3] vb;

el ectrical [0:3] vb;
i nout [0:2] xa;
kinematic [0:2] xa

i nout [0:2] xb;
kinematic [0:2] xb

/] Parameter Definitions;

par anet er real finger_width = ‘default_conmb_finger_wi dth;
par anet er real finger_length = ‘default_conb_finger_Iength;
par anet er real overlap = ‘default_conb_overl ap

par anet er real gap = ‘default_conb_gap;

par anet er real fingers = ‘default_conb_fingers;

par anet er real angle = ‘default_conb_angl e;

par anet er real poly cut_in = “default_poly_cut _in;

par amet er real Xc = ‘default_conmb_Xc;

par amet er real Yc = ‘default_conmb_Yc ;

par amet er real wng_length_a
par anet er real wng_length_b
par amet er real truss_width_a
par amet er real truss_w dth_b

‘default_conb_wi ng | ength_a;
‘default_conb_w ng_| engt h_b;
‘default_conb_truss_wi dth_a;
‘default_conb_truss_wi dt h_b;

par amet er real al pha = 0;
par amet er real beta = 0;
par anet er real gamma = 0;

par anet er integer flip_about_y =0 from([O0:1];// If flip is zero
that nmeans that there is no flipping

par amet er real rho_a = 0; // Radius of curvature of a side

par amet er real rho_b = 0; // Radius of curvature of b side

par amet er real za 0;

par amet er real zb 0;

/1 These angles are the static angul ar displacements at the
/1 base of the a side and the b side respectively
par anet er real angle_a = O;
par aret er real angle b = 0;
/1 gap(air)
paranmeter real air_gap = ‘default_air_gap;

//Viscosity of air at Atnospheric pressure and at T=288K

paranmeter real visc_air = ‘default_visc_air;
paranmeter real ntv_ox_t = ‘default_ntv_ox_t;
paranmeter real delta = ‘default_delta,;
paranmeter real E = ‘default_E cnos;

paraneter real den_netal = default_den_netal;
paraneter real den_pol y='default_den_poly;
paranmeter real den_oxide='default_den_oxi de;
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_overpoly = ‘aefault_t_nQ_nﬂ_overpon;

paranmeter real t_nB = ‘default_t_nB;

paranmeter real t_n2 = ‘default_t_n®;

paranmeter real t_nl = ‘default_t_ni;

paraneter real t_poly = ‘default_t_poly;
paranmeter real t_n8 _nm2 = ‘default_t_nB_ne;
paraneter real t_n2_ml

paranmeter real t_nl _poly = ‘default_t_nil_poly;
paranmeter real t_poly sub = ‘default_t_poly_sub;

parameter real t_cnos =

t_nmB+t_nmB_nR+t_nmR+t _n2_ml _overpol y+t _nil+t_ml pol y+t _pol y+t _poly_sub;

paraneter real den_cnpbs =

(den_netal *(t _nmB+t_nR+t _ml) +den_pol y*t _pol y+den_oxi de*(t_nB_m2+t _n2_ml_o

verpoly+t _ml_pol y+t _poly_sub))/t_cnos
/1 Call sub-nodul es
mass_conb_3D # (.angl e(angle),
.finger_wi dth(finger_wi dth),
.finger_length(finger_Iength),
. gap(gap),
.fingers(fingers),
.truss_width(truss_wi dth_a),
.wi ng_Il engt h(wi ng_I ength_a),
.thi ckness(t_cnos),
.density(den_cnos),
lip(l),
.nunmber (1)) mass_a(xa, phia, OMG a);

mass_conb_3D # (.angl e(angl e),
.finger_w dth(finger_wi dth),
.finger_length(finger_Iength),
. gap(gap),
.fingers(fingers),
.truss_wi dth(truss_wi dth_b),
. W ng_| engt h(wi ng_I| engt h_b),
.thickness(t_cnos),
.densi ty(den_cnos),
glip(-1),
.nunber (0)) mass_b(xb, phib, OM5 a)

vi scous_danpi ng_conb #(.angl e(angl e),
.finger_wi dth(finger_w dth),
.finger_length(finger_Iength),

. gap(gap),
.fingers(fingers),

.truss_wi dth(truss_wi dth_a),
.wing length(wing |length_a),
. nunber (1),

.top_gap(delta),

.bottom gap(delta)) danmp_a(xa[0], xa[l],

vi scous_danpi ng_conb #(.angl e(angl e),
.finger_wi dth(finger_width),
.finger_length(finger_Iength),

- gap(gap) ,

phia[2]);
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.fingers(fingers),

.truss_width(truss_wi dth_b),

.wi ng | ength(wi ng_length_b),

. nurber (0),

.top_gap(delta),

.bottom gap(delta)) danp_b(xb[0], xb[1], phib[2]);

coutte_danpi ng #(.angl e(angl e),

.l ength(overl ap),

. Wi dt h(t_cnos),

. gap(gap),

.multiplierl(fingers),

.multiplier2(2)) side_wall_danmp(xa[0], xa[l], phia[2], xb[0], xb[1],
b[2]);

ph

sq_danp_nodel _general #(.|ength(overl ap),

.wi dth(t_cnos),

. gap(gap),

. Pamb( 1. 0eb),

.multiplierl(fingers),

.multiplier2(2),

.angl e(angl e)) damp_sq_finger(xa[0], xa[1], xb[0], xb[1]);

“include “/afs/ecelusr/sital.vol 1/ model s/ conb/ curvefit/efringe.va”

/1 definition of user parameters (with default val ues)

/1l Euler angles (al pha, beta and gamma, in degrees) are used

/1l to specify beamorientation and to formcoordination transformation
mat ri x

/1 Order of rotation:

/1 stepl: rotate by gamma degree about z-axis

/1 step2: rotate by beta degree about y-axis

/1l step3: rotate by al pha degree about x-axis

/1 Follow ng variables will be used in going fromthe chip frame to
the local frame of the nopdel

r eal cos_al pha, cos_beta, cos_ganmg;

r eal si n_al pha, sin_beta, sin_gamms;

r eal 1, ml, nl ;

real 2, m2, n2

real 3, nB, n3

r eal inv_ |1 inv_ml, inv_nl

real inv_ |2, inv_n2, inv_n2

real inv_ |3, inv_n3, inv_n3

real ganme_of fset; // is 90 degrees because the simulations
wer e done

/1 with the conmbs rotated by 90 degrees

real al pha_l ocal _nodel; // This angle is required to convert

t he di spl acenents in the |oca
/] frame to that in the nodel frane
/1 Variables for holding position in chip and | ocal franes
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r eal | _phixa, | _phixb, | _phiya, | _phiza, | _phiyb, | _phizb

r eal | _phiz, | _phiy;

r eal chi p_phi xa, chip_phiya, chip_phiza

r eal chi p_phi xb, chi p_phiyb, chip_phizb

r eal | xa, | _xb, | _ya, |_yb, | _za, | _zb;

r eal | _dx, | _dy, | _dz;

real dx, dy, dz;

r eal chip_x, chip_y, chip_z;

r eal chi p_xa, chip_ya, chip_xb, chip_yb, chip_za, chip_zb

/1 Variables for holding force and torque in | ocal frane

r eal | _Fxa, | _Fxb, | _Fya, | _Fyb, | _Fza, |_Fzb

r eal | _Tgxa, | _Tgxb, | _Tqya, | _Tqyb, | _Tqza, | _Tqgzb

/1l Variables for holding force and torque in chip frame

r eal Fchi pxa, Fchi pxb, Fchi pya, Fchipyb, Fchipza, Fchipzb

r eal Tqchi pxa, Tqchi pxb, Tgchi pya, Tqchi pyb, Tqchi pza,
Tqchi pzb;

r eal w 0: 9], thickness, Earray[0:9], tce[0:9]; // width, thick-
ness

i nt eger nm3_id, m2_id, mL_id, poly_id, ox3_id, ox2_id, oxl id,

ox0_id, ox_poly left_id, ox_poly right_id; // indices for array

r eal sumE wt z, sumE wt, sumE alphawt z, sumEI; // sum
variables for computing neutral axis

r eal zc, z_top[0:9], new z[0:9]; // z coordinates: neutra
axis, fromthe top, top - neutral axis

i nt eger i; /1 loop variable

real cyy_per_degree_T, deltaT, cyy, // Tenperature and tip
defl ecti ons

r eal | total _comb, | _rotor, | _base, | _stator, | _plate_to_rotor

r eal z_matched_rotor, z_matched_stator, phix_nmatched_rotor

phi x_matched_stator; // Curl matched coordinates

real dz1; // varies fromthe curl-matched position

real dphi x, dphix1, dphiy, dphiz; // dphix is the total angle
of a in the nodel frame

/1 dphix1l is the mismatch angle i.e. dphix - phix_matched_rotor

r eal cap, dCx, dCy, dCz, dCphix, dCphiy, dCphiz, viltg
real Fx, Ry, Fz;

r eal moment _arm a, noment_arm b;

i nteger flip;

/1l Variables for calculation of capacitance and force

r eal fwidth, g, olp, dtx, dty, dtz, dtxl1l, cap_curl, epsO;
real cO, c1, c2, c3, c4, c5, c6, ¢c7, c8, c9
real c10, c11, cl1l2, cl13, cl14, cl15, c16, cl17, cl18, cl9
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real c20, c21, c22, c23, c24, c25, c26, c27, c28, c29

real c30, c¢31, c32, ¢33, c34, c35, c36, c37, c38, c39
real c40, c4l, c42, c43, c44, c45, c46, c47, c48, c49
real c50, c¢51, cb52, c¢53, c54, cb55, c¢56, c57, c58, c59
real c60, c61, c62, c63, c64, c65, c66, c67, Cc68, C69
real c70, c¢c71, c72, c¢73, c74, c75, c76, c77, c78, c79
real c80, c¢81, c82, ¢83, c84, c85, c86, c87, c88, c89
real c90, ¢91, c92, c93, c94, c95, c96, c97, c98, c99
real c100, c¢101, c102, c103, c104, c105, c106, c107, c108, c109;
real c110, c111, c112, c113, cl1l14, c115, c116, cl1l17, c118, c119;
r eal ppcaptotal, efcaptotal, defcaptotal, dppcaptotal x, dppcap-
totaly;

// internal states
electrical vlt;

anal og begin
@initial_step) begin
epsO = 8. 85e-12;
/1 flip_about _y 1 =>flip
/1 flip_about _y 0=>flip
flip = 1-2*flip_about _y;

cyy = (1.0/2.0)*(1/(2.0*rho_a) + 1/(2.0*rho_b));

/1l Can also calculate the tip deflection and the angle to be applied at
the end of the rotor

/1 so that in the nom nal case the two conbs are perfectly matched

/1l First calculate the position of the matched conbs with rotor at a
fi xed di stance fromthe point of

/1 zero z deflection and angle

| plate to_ rotor = 100.0e-6; // This is a value which was used in the
Coyote sinulation runs

| _total _conb = 2*finger_length - overlap + truss_ width a +
truss_wi dth_b;

| rotor = | _plate_to rotor;

z_matched_rotor = (l_rotor*l _rotor)*cyy*1le6; // in microneters

phi x_matched_rotor = (2*I _rotor*cyy)*180/* M PI; // in degrees

| _stator =1 _plate_to_rotor + | _total _conb;
z_matched_stator = (| _stator*|l_stator)*cyy*1e6; // in mcroneters
phi x_matched_stator = (2*|_stator*cyy)*180/'MPI; // in degrees

/1 Three angles need to be conputed:
/1 1. The angle of the stator - phix_matched_stator

/1 This will tell us by what angle the entire conmb reference frane
shoul d be rotated

/1 so that we are in the reference franme of the sinulation data. Note
that this includes

/1 rotati on of displacenents, conputation of forces and finally,

reverse rotation of forces
/1 2. rotor angle (after transformation by 1.) - phix_nmatched_rotor
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/1
si mul ati ons

This angle will give us the value corresponding to dtxl in the

/1 3. rotor angle itself (after transformation by 1.)
/1 This angle will give us the value corresponding to dtx in the sim
ul ations

/1 Il translational displacenent in chip frame

/1 Compute the angle which has to be added to the value of beta to
/1 transformthe displacenments in the chip frame to the local frame

/1 For comb_1111 1 the “a” side will be considered equivalent to the
rotor
/1 and the “b” side will be considered equivalent to the stator

/1 angl e between |local frame and frame in which the nodel is built
al pha_l ocal _nmodel = (angle_a - phix_nmatched_stator); // in degrees
/1 rot
gama_offset = -90; // i.e, gamma = 90 inplies no rotation and
/1 gamma = 0 inplies -90 rotation

ation of simulation data

/1 coordination transformation matrix based on eul er angles
cos_al pha = cos((al pha + al pha_l ocal _nodel)/180** M PI);
cos_beta = cos(beta /180* M PI);

cos_ganmma
si n_al pha

cos((gamma + gamma_of fset)/180* M Pl );
sin((al pha + al pha_l ocal _nmodel )/ 180** M PI );

sin_beta = sin(beta /180* M Pl);
sin_gamma = sin((gamma + gamma_offset)/180* M Pl);

/1 transformation matrix fromchip frame to |ocal frane

1 =

m =

nil

ne

2

n2 =

ns

3

n3 =

cos_bet a*cos_ganmms,;

cos_bet a*si n_ganmms,;

si n_beta;

si n_al pha*si n_bet a*cos_ganma- cos_al pha*si n_gamm;
si n_al pha*si n_bet a*si n_ganma+cos_al pha*cos_gamms;
si n_al pha*cos_bet a

cos_al pha*si n_bet a*cos_gama+si n_al pha*si n_gamms;
cos_al pha*si n_bet a*si n_gamma- si n_al pha*cos_ganms;
cos_al pha*cos_bet a

/1 transformation matrix fromlocal frame to chip frane

nv_|1
nv_| 2
nv_| 3
nv_ml
nv_ng
nv_nB
nv_nl
nv_n2
nv_n3

cyy =

e
Cc
Cc

= cos_beta*cos_ganmg,;

cos_bet a*si n_ganmg,;
-sin_beta;
= sin_al pha*si n_bet a*cos_ganmma- cos_al pha*si n_gamm;
= sin_al pha*si n_bet a*si n_gamm+cos_al pha*cos_ganmm;
= sin_al pha*cos_beta;
= cos_al pha*si n_bet a*cos_gamm+si n_al pha*si n_ganmm;
= cos_al pha*si n_bet a*si n_gamm-si n_al pha*cos_ganmm;
= cos_al pha*cos_bet ga;

cyy*le-6;

nd

hi p_x = Pos(xa[0], xb[0]);
hip_y Pos(xa[ 1], xb[1]);
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chip_z = Pos(xa[ 2], xb[2]);

chip_xa = Pos(xa[0]);

chip_ya = Pos(xa[1]);

chip_za = Pos(xa[2]);

chip_xb = Pos(xb[0]);

chip_yb = Pos(xb[1]);

chip_zb = Pos(xb[2]);

/1l rotational displacenment in chip frame all in radians
chi p_phi xa = 1le6*Theta(phia[0]);

chi p_phiya = 1le6*Theta(phial[l]);

chi p_phi za = 1le6*Theta(phia[2]);

chi p_phi xb = 1e6*Thet a(phi b[0]);

chi p_phiyb = 1le6*Theta(phib[1]);

chi p_phi zb = 1e6* Thet a( phi b[2]);

/1l transformfromchip frame into local frame

| xa = 1|1*chip_xa + ml*chip_ya + nl*chip_za

| _ya = 12*chip_xa + mR*chip_ya + n2*chi p_za

| _za = 13*chip_xa + nmB*chip_ya + n3*chi p_za

| _xb = 11*chip_xb + ml*chi p_yb + nl*chip_zb

| _yb = 12*chip_xb + m*chip_yb + n2*chip_zb

| _zb = 13*chip_xb + nmB*chi p_yb + n3*chip_zb

| _dx = 1l1*chip_x + ml*chip_y + nl*chip_z;

| _dy = 12*chip_x + nR*chip_y + n2*chip_z;

| _dz = 13*chip_x + nB*chip_y + n3*chip_z;

| _phixa = | 1*chi p_phi xa + nil*chi p_phi ya + nl*chi p_phiza
| _phiya = | 2*chi p_phi xa + nR*chi p_phi ya + n2*chi p_phi za
| _phiza = | 3*chi p_phi xa + nB*chi p_phi ya + n3*chi p_phi za
I _phixb = | 1*chi p_phi xb + ml*chi p_phiyb + nl*chi p_phizb
| _phiyb = |2*chi p_phi xb + nR*chi p_phiyb + n2*chi p_phi zb
| _phizb = |3*chi p_phi xb + nB*chi p_phiyb + n3*chi p_phi zb

/1 phix and z displacenments tota
/1 za and zb are the changes fromthe curl-matched positions of the

a conb and the b conb respectively
/1 Note that dzl and dphix1l to be passed to conb_curl
base of the truss

/1 beamwhich is asunmed to be 10 umin the Coyote simulations,

here t

tively

hey are at

/1 the position of the “truss_width_a and truss_w dth_b”

/1 This is not being taken into account

dz1l = zb -

/ in mcroneters

dz = dz1 + z_matched_rotor

m croneters
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/1 angle_a and angle_b are the changes fromthe curl-matched angle
of the

/1l bases of the a conb and the b conb respectively

/1l They are multiplied by le-6* M PI/ 180 to convert themto Megara-
di ans

/1l so that they can be added to | _phixa - | _phixb

dphix1l = (-(angle_a - angle_b) - (phix_matched_rotor -

phi x_mat ched_stator))** M PI/180 - (I _phixa - | _phixb); // in radians
dphi x = phix_matched_rotor** M PI/180 + dphix1; // in radians
dphiy =1 _phiya - | _phiyb;
dphiz =1 _phiza - | _phizb
monment _arma = truss_width_a + finger_length - (overlap + | _dy)/
2.0;
monment _armb = truss_ width_b + finger_length - (overlap + | _dy)/
2.0;

/1 Note that 8.85e-12 is used here instead of ‘P_EPSO because
8.85e-12 is used in the perl script to

/1 scale down the coefficients

/1l 1le-6 is required because cap_curl assunes all dinmensions are
nmeters and therefore returns a capacitance

/1 value for all dinmensions equal to neters

/1 In other words it returns uF and we have to multiply that by le-
6 to get F

/1 cap = 8.85e-12*1e-6*((fingers)/(3.0))*cap_curl (finger_wi dt h*1e6,
gap*1e6, overl ap*le6, cyy*le-6,
/1 | _dx*1e6, | _dy*le6, dz*1le6,
/1 -dphix*1e6*180/‘ M Pl , dphiy*1e6*180/‘ M PI, dphi z*1e6*180/‘ M PI,
/1 dzl*1e6, -dphix1*1e6*180/‘ M PI);
fwidth = finger_wi dth*1e6; // Needs to be in um
g = gap*le6;
ol p = overl ap*1e6;

dx = (| _dx - dphiz*noment _arm a) *1e6
dy = | _dy*1le6;

dz = dz;

dtx = -dphix*180/"' M_PI

dty = dphiy*180/‘ M PI

dtz = dphiz*180/‘ M_PI

dz1l = dzl,

dt x1 = -dphi x1*180/‘ M_PI
“include “cap.va”
cap = epsO*le-6*(fingers/3.0)*cap_curl

/1 Note the - sign before dphix and dphix1l in the above function
call, have to keep in mnd that

/1 the actual matching of rotation in this frame and t he nodel
frame will be nore invol ved

/1 and has to be worked out |ater
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/1l Current conputation

V(vlit) <+ V(va[0], vb[O0]);

I (va[0],vb[0]) <+ ddt(cap*V(vlt));
vitg = V(vlit)*V(vlt);

/1 Force and torque conputation in |ocal frame

Fx = 0;
Fy = 0;
Fz = 0;
dCphi x = 0;
dCphiy = 0;
dCphiz = 0;

“include “force.va”

Fx = 0.5*eps0*(fingers/3.0)*Fx;
Fy = 0.5*epsO0*(fingers/3.0)*Fy;
Fz = 0.5*epsO0*(fingers/3.0)*Fz;
/1 $di spl ay(“Fx=%g Fy=%g Fz=%g\n", Fx, Fy, Fz);
/1 $di spl ay(“w=% g=% 0=%g cyy=% dx=%g dy=%g dz=%g dz1l=%g dt x=%g
dt x1=%g\ n",
/1 fwidth, g, olp, cyy, dx, dy, dz, dzl, dtx, dtx1);
| _Fxa = Fx*vltg;
| _Fya = Fy*vltg;
| _Fza = -Fz*vltg;
| _Fxb = -Fx*vltg;
| _Fyb = -Fy*vltg;
| _Fzb = Fz*vltg;
| _Tgxa = dCphix*vlitg + | _Fza*1*nonment _arm a;
| _Tgya = dCphiy*vltag;
| _Tgza = dCphi z*vltg + | _Fxa*1*nonment _arm a;
| _Tgxb = -dCphix*vlitg - | _Fzb*1*nonent _armb;
| _Tgyb = -dCphiy*vltg;
| _Tgzb = -dCphiz*vlitg - | _Fxb*1*nonent _armb;

/I bendi ng forces/ nonments transformed fromlocal franme back to chip
frame

Fchi pxb = inv_l1*1I _Fxb + inv_nil*l _Fyb + inv_nl*|_Fzb;
Fchi pyb = inv_|l2*I _Fxb + inv_n2*I _Fyb + inv_n2*| _Fzb;
Fchipzb = inv_I3*l _Fxb + inv_nB8*l _Fyb + inv_n3*l _Fzb;
Fchipxa = inv_|l1*] _Fxa + inv_nml*l _Fya + inv_nl*l_Fza
Fchipya = inv_I2*l _Fxa + inv_nR*l _Fya + inv_n2*l _Fza;
Fchipza = inv_I3*l _Fxa + inv_nB*I _Fya + inv_n3*l _Fza;
Tqchi pxb = inv_I 1*| _Tgxb + inv_nil*l _Tqyb + inv_nl*l_Tqzb
Tqchi pyb = inv_I2*] _Tgxb + inv_nR*| _Tqyb + inv_n2*l_Tqzb
Tqchi pzb = inv_I3*l _Tgxb + inv_nB*l _Tqyb + inv_n3*l_Tqzb
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Tgchipxa = inv_I1*l _Tgxa + inv_ml*l _Tqya + inv_nl*l _Tqza;
Tgchipya = inv_I2*l _Tgxa + inv_m*| _Tqya + inv_n2*l _Tqza;
Tgchipza = inv_I3*l _Tgxa + inv_nmB*l _Tqya + inv_n3*l _Tqza;

/1 bending forces/torques applied to the conb termnals
F(xa[ 0]) <+ Fchipxa;
F(xa[ 1]) <+ Fchipya;
F(xa[2]) <+ Fchipza;

F(xb[ 0]) <+ Fchi pxb;
F(xb[1]) <+ Fchi pyb;
F(xb[2]) <+ Fchipzb

Tau(phia[2]) <+ Tgchi pza;
Tau(phi b[ 2]) <+ Tqgchi pzb;
Tau(phia[1]) <+ Tgchi pya;
Tau( phi b[ 1] ) <+ Tgchi pyb;
Tau(phia[0]) <+ Tgchi pxa;
Tau(phi b[0]) <+ Tgchi pxb;

end

endnodul e // conb_curl

efringe.va

function real efringe;
i nput width, gapl, dxi1;
r eal wi dt h, gapl, dx1;

real Pi, gplus, gm nus, alphal, gamml, q, p, fringeO, fringel
begi n

Pi = 3.14159;

gplus = (gapl + dx1)/2.0;

gm nus = (gapl - dx1)/2.0;

al phal = (width + gapl)/gm nus;

gamal = gpl us/ gm nus;

g = (1.0/2.0)*(al phal*al phal - gamal*ganmml - 1 +
sqrt ((al phal*al phal - ganmal*gammal - 1)*(al phal*al phal - gamml*gamal
- 1) -
4* gammal* gamual) ) ;
p = g*ag/ (gamml*ganmal) ;

/1 gapl m nus dx1
/1 Keep in mnd that this contains the fringe for both the top and the
bottom
fringeO = (1.0/Pi)*(2*al phal*atanh(sqgrt(p+q)/sqart(p*(1+q))) -
2*gammal*at anh(1/sqrt(p)) -
In(4*p/(p-1)) +
In(a));
/1 gapl plus dx1
fringel = (1.0/Pi)*((1.0/gamml)*(2*al phal*atanh(sqrt((1+q)/(p+q))) +
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gammal*In((p-1)/(4)) -
2*atanh(1/sqrt(p))) - In(q));
efringe = fringeO + fringel

/1 $display(“w dth=%g gap=%g dx=% al phal = % ganmal = %g q = %9 p = %@
fringeO = %g fringel = %g\n”,
/1 width, gapl, dx1, alphal, gamml, g, p, fringeO, fringel);

end

endfunction // efringe

function real defringe;
i nput wi dth, gapl, dxi1;

r eal wi dt h, gapl, dx1;
real Pi, gplus, gm nus, alphal, gamml, q, p, fringeO, fringel
r eal dal phal, dgammal, dal phal_gammal, dqg, dp, dfringe0,
df ri ngel;
begi n
Pi = 3.14159;

gplus = (gapl + dx1)/2.0;

gm nus = (gapl - dx1)/2.0;

al phal = (width + gapl)/gm nus;
gamal = gpl us/ gm nus;

g = (1.0/2.0)*(al phal*al phal - gamal*gamml - 1 +
sqgrt ((al phal*al phal - ganmal*gammal - 1)*(al phal*al phal - gamml*gamal
- 1) -
4* gammal* gammual) ) ;
p = gq*ag/ (gamml*ganmal) ;

dal phal = 2*(gapl+w dth)/((gapl-dx1l)*(gapl-dxl));

dgammal = (gapl+dx1l)/((gapl-dx1l)*(gapl-dx1l)) + 1/(gapl-dxl);

dal phal_ganmmal = -2*(gapl+w dth)/((gapl+dx1l)*(gapl+dxl));

dg = (1.0/2.0)*(2*al phal*dal phal - 2*ganmal*dgamml +

(1.0/2.0)*(2*(al phal*al phal - ganmal*gammal - 1)*(2*al phal*dal phal -

2*gammal*dgammal) -
8*gammal*dganmal)/

sqrt ((al phal*al phal - ganmal*gamal - 1) *(al phal*al phal - gamal*gamml

- 1)-4*gamml*ganmal));

dp = 2*qg*dqg/ (ganmal*gammal) - 2*qg*q*dganmal/ (ganmal*gammal*gammal) ;

/1 gapl m nus dxl1
/1 Keep in nmind that this contains the fringe for both the top and the
bot t om
fringeO = (1.0/Pi)*(2*al phal*atanh(sqgrt(p+q)/sqrt(p*(1+q))) -
2*gammal*at anh(1/sqrt(p)) -
I'n(4*p/(p-1)) +
I'n(a));
dfringe0 = (1.0/Pi)*(2. 0*dal phal*atanh(sqgrt(p+q)/sqrt(p*(1+q))) +
2. 0*al phal*((p+p*q)/(-gq+p*q))*(1.0/2.0)*
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(sqrt(p*(1+q))/sqart(p+q))*(p*(1+q)*(dp+dq)-(p+q)*(dp+p*dg+g*dp))/
(p*p*(1+q)*(1+q)) -

2. 0*dgammal*at anh(1/sqrt(p)) -

2. 0*gammal*(p/ (p-1))*(-1.0/2.0)*pow(p,-3.0/2.0)*dp +

dp/(p-1) - dp/p +

da/q);

/1 gapl plus dx1

fringel = (1.0/Pi)*((1.0/gammal)*(2*al phal*atanh(sqgrt((1+q)/(p+q))) +
gamal*ln((p-1)/(4)) -
2*atanh(1/sqrt(p))) - In(q));

dfringel = (1.0/Pi)*((1. 0/ gamml)*(2*dal phal*atanh(sqrt((1+q)/(p+q))) +
2*al phal*((p+q)/(p-1))*(1.0/2.0)*
(sart((p+q)/ (1+q))*((p+q)*dq - (1+q)*(dp+dq))/((p+q)*(p+q))) +
dganmal*I n((p-1)/4) + gammal*(4/(p-1))*dp/4 -
2*p/(p-1)*(-1.0/2.0)*dp/ (p*sart(p))) -
(dgammal/ (gammal*gammal) ) * (2*al phal*at anh(sqgrt ((1+q)/(p+q))) +
gamal*In((p-1)/(4)) - 2*atanh(1/sqrt(p))) -
da/q);

defringe = dfringe0O + dfringel

/1 $display(“alphal = %9 gammml = %9 q = %9 p = % fringe0 = % fringel =
% dfringe0 = % dfringel = %g\n”,
/1 al phal, gamml, q, p, fringeO, fringel, dfringe0, dfringel);

end

endfunction // defringe

function real pptotal
i nput thickness, overl ap, gapl, dx1, dy;
real thickness, overl ap, gapl, dx1, dy;

begi n
pptotal = thickness*(overlap + dy)*(2*gapl/(gapl*gapl - dx1*dx1));
end
endfunction // pptota

function real dpptotalx;
i nput thickness, overl ap, gapl, dx1, dy;
real thickness, overl ap, gapl, dx1, dy;

begi n
dpptotal x = thickness*(overlap + dy)*(4*gapl*dx1l/((gapl*gapl -
dx1*dx1) *(gapl*gapl - dx1*dx1l)));

end
endfunction // dpptotal x
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function real dpptotaly;
i nput thickness, overl ap, gapl, dx1, dy;
real thickness, overl ap, gapl, dx1, dy;

begi n

dpptotaly = thickness*(1/(gapl - dx1) + 1/(gapl + dx1));
end
endfunction // dpptotaly

/1l Single sided functions
function real efringep
i nput width, gapl, dxi1;

r eal wi dt h, gapl, dx1;
real Pi, gplus, gm nus, alphal, gammal, q, p, fringeO, fringel
begi n

Pi = 3.14159;

gplus = (gapl + dx1)/2.0;

gm nus = (gapl - dx1)/2.0;
al phal = (width + gapl)/gm nus;
gamal = gpl us/ gm nus;

/1 $strobe(“w dt h=%g gap=% dx=%g al phal = % gammml = %9 q = %9 p = %
fringeO = %g fringel = %g\n”,
/1 width, gapl, dx1, alphal, gamml, g, p, fringeO, fringel);

g = (1.0/2.0)*(al phal*al phal - gamal*ganmml - 1 +
sqgrt ((al phal*al phal - ganmal*gammal - 1)*(al phal*al phal - gamml*gamal
- 1) -

4* gammal* gammual) ) ;
p = g*q/ (gammal*ganmmal);

/1 gapl m nus dx1
/1 Keep in mnd that this contains the fringe for both the top and the
bott om
fringeO0 = (1.0/Pi)*(2*al phal*atanh(sqrt(p+q)/sqrt(p*(1+q))) -
2*gammal*at anh(1/sqrt(p)) -
In(4*p/(p-1)) +
In(a));
/1 gapl plus dx1
fringel = (1.0/Pi)*((1.0/gamml)*(2*al phal*atanh(sqrt((1+q)/(p+q))) +
gammal*in((p-1)/(4)) -
2*atanh(1l/sqgrt(p))) - In(q));
/! Return gap + dx val ue
efringep = fringel;

end
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endfunction // efringep

function real defringep
i nput width, gapl, dxi1;

r eal wi dt h, gapl, dx1;
real Pi, gplus, gm nus, alphal, gammal, q, p, fringeO, fringel
r eal dal phal, dgammal, dal phal_gammal, dqg, dp, dfringe0,
df ri ngel;
begi n
Pi = 3.14159;

gplus = (gapl + dx1)/2.0;

gm nus = (gapl - dx1)/2.0;
al phal = (width + gapl)/gm nus;
gamal = gpl us/ gm nus;

g = (1.0/2.0)*(al phal*al phal - gamal*ganmml - 1 +
sqrt ((al phal*al phal - ganmal*gammal - 1)*(al phal*al phal - gamml*gamal
- 1) -
4* gammal* gammual) ) ;
p = gq*qg/ (gamml*ganmal) ;

dal phal = 2*(gapl+w dt h)/((gapl-dx1l)*(gapl-dxl));

dgammal = (gapl+dx1l)/((gapl-dx1l)*(gapl-dx1l)) + 1/(gapl-dxl);

dal phal_ganmmal = -2*(gapl+w dth)/((gapl+dx1l)*(gapl+dxl));

dg = (1.0/2.0)*(2*al phal*dal phal - 2*ganmal*dgamml +

(1.0/2.0)*(2*(al phal*al phal - gammal*gamml - 1)*(2*al phal*dal phal -

2*gammual*dgammal) -
8*gamual*dgammal) /

sgrt ((al phal*al phal - gammal*gamml - 1) *(al phal*al phal - gamml*gamml

- 1)-4*gammal*ganmal));

dp = 2*qg*dqg/ (ganmal*gammal) - 2*qg*q*dganmal/ (ganmal*gammal*gammal) ;

/1 gapl m nus dxl1

/1 Keep in mnd that this contains the fringe for both the top and the

bottom

fringeO = (1.0/Pi)*(2*al phal*atanh(sqrt(p+q)/sqrt(p*(1+q))) -
2*gammal*at anh(1/sqrt(p)) -
In(4*p/(p-1)) +
In(a));

dfringe0 = (1.0/Pi)*(2. 0*dal phal*atanh(sqgrt(p+q)/sqrt(p*(1+q))) +

2.0*al phal*((p+p*q)/ (-g+p*q))*(1.0/2.0)*

(sart(p*(1+q))/sqrt(p+q))*(p*(1+q)*(dp+dq)-(p+q)*(dp+p*dg+qg*dp))/

(p*p*(1+q)*(1+q)) -

2. 0*dganmal*at anh(1/sqgrt(p)) -

2. 0*gamal*(p/ (p-1))*(-1.0/2.0)*powm p,-3.0/2.0)*dp +

dp/ (p-1) - dp/p +

da/q);

/1 gapl plus dx1

fringel = (1.0/Pi)*((1.0/gammal)*(2*al phal*atanh(sqrt((1+q)/(p+q))) +
ganmal*In((p-1)/(4)) -
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2*atanh(1/sqrt(p))) - In(q));

dfringel = (1.0/Pi)*((1. 0/ gamml)*(2*dal phal*atanh(sqrt((1+q)/(p+q))) +
2*al phal*((p+q)/(p-1))*(1.0/2.0)*
(sart((p+a)/ (1+q))*((p+q)*dg - (1+q)*(dp+dq))/((p+q)*(p+q))) +
dganmal*I n((p-1)/4) + gammal*(4/(p-1))*dp/4 -
2*p/ (p-1)*(-1.0/2.0)*dp/ (p*sqrt(p))) -
(dgamml/ (gammal*gamml) ) * (2*al phal*at anh(sqgrt ((1+q)/ (p+q))) +
gammal*In((p-1)/(4)) - 2*atanh(1/sqgrt(p))) -
da/q);

/1l Return gap + dx val ue
defringep = dfringel

/1 $display(“alphal = %9 gammal = %9 q = %g p = % fringe0 = % fringel =
% dfringe0 = % dfringel = %\n",
/1 alphal, gamml, q, p, fringeO, fringel, dfringe0, dfringel);

end

endfunction // defringep

function real pptotalp
i nput thickness, overl ap, gapl, dx1, dy;
real thickness, overl ap, gapl, dx1, dy;

begi n
pptotal p = thickness*(overlap + dy)*(-1/((gapl + dx1)*(gapl + dx1)));
end
endfunction // pptotalp

function real dpptotal px;
i nput thickness, overl ap, gapl, dx1, dy;
real thickness, overl ap, gapl, dx1, dy;

begi n

dppt ot al px = thickness*(overlap + dy)*(-1/((gapl + dx1)*(gapl + dx1)));
end

endfunction // dpptotal px

function real dpptotalpy;
i nput thickness, overl ap, gapl, dx1, dy;
real thickness, overl ap, gapl, dx1, dy;
begin

dpptotal py = thickness*(1/(gapl + dxl1));

end
endfunction // dpptotal py

cap.va
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t hi ckness = 4.5;
ppcaptotal =
dppcapt ot al x
dppcaptotal y
ef captotal = efringe(fwidth, g, dx);
defcaptotal = defringe(fwi dth, g, dx);
@initial _step(“ac”,”dc”,”tran”)) begin

cO0 = 0.0276373107344633;
cl = -0. 036654;
c2 = -0.0363877;
c3 = -49. 4764;
c4 = 114. 19;
c5 = -4586. 57;
c6 = -0.00139927;
c7 = 0.926732;
c8 = 0. 094436;
c9 = -0. 0572805;
clo = 1.31469;
cll = -1.88933;
cl2 = 0. 00653463;
cl3 = 97. 8598;
cl4 = -1248. 49;
cl5 = -4.8071
clé = -0.00433067;
cl7 = 0. 254919;
cl8 = -0. 215126;
cl19 = -0.00244782;
c20 = -0.00601334;
c21 = -0.00252484;
c22 = -4.89106;
c23 = 0. 0343773;
c24 = 136. 489;
c25 = - 0. 0350893;
c26 = -0.011512;
c27 = 0. 0103864;
c28 = -0.12185;
c29 = - 0. 0306053;
c30 = 369779;
c31 = 0. 0019406;
c32 = - 304. 803;
c33 = -0.177552;
c34 = 0. 012253;
c35 = -0.000267055;
c36 = 0. 00242414,
c37 = -2742. 33;
c38 = 850666;
c39 = 879.931;
c40 = 10. 7562;
c4l1 = -0.000721616;
c42 = -0.0073036;
c43 = 0.0177324;
c44 = -11096. 8;
c45 = 0. 0285413;
c46 = - 0. 24904;

dppt ot al x(t hi ckness, ol p, g, dx, dy);

thi ckness*(olp + dy)*(1/(g + dx) + 1/(g -
= dpptotal y(thi ckness, ol p, g, dx, dy);

dx));
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c47 = 202. 283;
c48 = 0. 012807;
c49 = 0.000136373;
c50 = 100. 469;
c51 = -1.69623;
c52 = 63. 838;
c53 = 0. 445681,
c54 = -206898;
c55 = 0.0276114;
c56 = 13. 0536;
c57 = 0. 959911;
c58 = -0.00741532;
c59 = 1.19818;
c60 = 0. 0803255;
c6l = 32432. 5;
c62 = 5.49038;
c63 = -5.23022;
c64 = 2.99633;
c65 = -0.0239581;
c66 = -0.230001;
c67 = 153. 515;
c68 = 1.78854;
c69 = - 0. 0455665;
c70 = 1.14643;
c71 = 0.036121;
c72 = - 858. 224;
c73 = -7.32389;
c74 = -24.7476;
c75 = -0.0874021;
c76 = 90599. 6;
c77 = -0.00403123;
c78 = -5.02762e-06;
c79 = -6.24865e+07;
c80 = 0.000903951;
c81 = 0. 0135729;
c82 = 0.000232695;
c83 = 0.0010447s;
c84 = -0.0032409¢;
c85 = 0. 184985;
c86 = - 32.5984;
c87 = 0. 084973;
c88 = 0. 01552;
c89 = -26.5471;
c90 = - 33. 4237,
c91 = 0. 0022785;
c92 = -50. 8039;
c93 = -51. 879;
c94 = -3746. 48;
c95 = 11108. 5;
c96 = -0.000548988;
c97 = -1.17128;
c98 = 4149. 19;
c99 = -362530;

cl100 = 0. 00312093;
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(c46

ppcaptotal *(g*g)) +

cl0l = -0. 0539101

cl02 = 0.276848

c103 = 0. 00182284;

cl04 = 17. 6506

cl05 = 0.0136148
end
cap_curl = (c0 * ((ol p+tdy) *efcaptotal )*(dtx1)) +
(cl * (dy*dzl)) +
(c2 * ppcaptotal *((g/fwi dth)*dz1l)) +
(c3 * ((ol p+tdy) *ef captotal )*((g/fwi dth)*dzl*cyy)) +
(c4 * ((ol p+tdy) *ef captotal ) *(cyy*dtxl)) +
(c5 * ((ol prcyy*dzl)/(g-dx)+(ol p*cyy*dzl)/(g+dx))) +
(c6 * ((ol p+tdy) *ef captotal )*(ol p*dz1*dtxl)) +
(c7 * (dzl*dtx1)) +
(c8 * (ol p*dzl)) +
(c9 * ((ol ptdy) *ef captotal )*((g/fwi dth)*dz1*dtx1l)) +
(cl0 * ppcaptotal) +
(cll * (dy)) +
(cl12 * (ol p*fwi dth*dzl)) +
(c13 * ((cyy*dy*dy*dzl)/(g-dx)+(cyy*dy*dy*dz1l)/(g+dx))) +
(cl4 * ((g/fwidth)*dz1l*dtxl*cyy)) +
(cl5 * ppcaptotal *((g/fwi dth)*dzl*cyy)) +
(cl6 * ((ol p+dy)*efcaptotal )*(dz1l*dtx1l)) +
(cl17 * (dtx1*dtx1)) +
(cl1l8 * ((ol p+dy)*efcaptotal )*(fwidth)) +
(cl9 * (dy*dy)*((ol p+tdy)*efcaptotal )) +
(c20 * ((ol p+dy)*efcaptotal )*(dy*dz1l)) +
(c21 * ((ol p+dy)*efcaptotal )*(ol p*dtxl)) +
(c22 * ppcaptotal *(cyy*(dy*dy))) +
(c23 * (ol p*rdz1*dtx1l)) +
(c24 * ((ol p+tdy)*efcaptotal )*((g/fwi dth)*dz1l*dtxl*cyy)) +
(c25 * ppcaptotal *(dtx1*dtx1)) +
(c26 * (ol prdtxl)) +
(c27 * (dy*fwi dth*dzl)) +
(c28 * (g*fwi dth*dtx1)) +
(c29 * ((ol ptdy)*efcaptotal )*(g*dz1*dtx1)) +
(€30 * (cyy)) +
(c31 * ((ol ptdy)*efcaptotal )*(g*fwi dth*dzl)) +
(c32 * ((ol p*rcyy*dtx1*dy)/ (g-dx) +(ol p*cyy*dtx1*dy)/ (g+dx))) +
(c33 * (g*dzl*dtx1l)) +
(c34 * (dy*dy)) +
(c35 * ppcaptotal *(g*fwi dt h*dtx1)) +
(c36 * ppcaptotal *(ol p*dz1*dtx1)) +
(c37 * ((ol p+dy)*efcaptotal ) *(cyy*(g*g))) +
(c38 * (cyy*cyy)*((ol p+dy)*efcaptotal )) +
(c39 * ppcaptotal *(cyy)) +
(c40 * ((ol p+dy)*efcaptotal)) +
(c41 * (g*fwidth*dy*dz1l)) +
(c42 * ppcaptotal *(dy)) +
(c43 * (dtx1*dtx1)*((ol p+dy)*efcaptotal)) +
(c44 * ((ol p+dy)*efcaptotal )*(cyy)) +
(c45 * ppcaptotal *(g*dz1l)) +

*
*

(ca7

ppcaptotal *(cyy*(g*g))) +
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(c48
(c49

(g*fwi dth*dz1l)) +

ppcaptot al *(ol p*dz1l)) +

(c50 * (9)) +

(c51 (dz1)) +

(c52 * ((ol p*cyy*dz1l*dz1*dtx1*dy)/ (g-dx) +(ol p*cyy*dz1l*dz1*dt x1*dy)/
(g+dx))) +

(c53 * (fwidth*fwidth)) +

(c54 * ppcaptotal *(cyy*cyy)) +

* % x X

(c55 * ((ol p+dy)*efcaptotal )*(dy)) +
(c56 * ppcaptotal *(cyy*dy)) +
(c57 * ppcaptotal *(g)) +
(c58 * ppcaptotal *(dzl)) +
(c59 * (g*g)*((ol p+tdy) *efcaptotal )) +
(c60 * ((ol p+tdy)*efcaptotal )*(dzl)) +
(c61l * ((cyy*dzl)/(g-dx)+(cyy*dzl)/(g+dx))) +
(c62 * ((ol p+tdy)*efcaptotal )*(cyy*(dy*dy))) +
(c63 * ((ol p+tdy) *efcaptotal )*(g)) +
(c64 * ((ol p*cyy*dy*dy*dzl)/(g-dx)+(ol p*cyy*dy*dy*dz1)/(g+dx))) +
(c65 * ((ol p+dy)*efcaptotal )*(g*dzl)) +
(c66 * ppcaptotal *(dz1*dzl)) +
(c67 * ((((ol ptdy)*(ol p+dy))*cyy*dzl)/(g-
dx) +(((ol p+dy) * (ol p+dy)) *cyy*dz1)/(g+dx))) +
(c68 * ppcaptotal *(cyy*dtx1l)) +
(c69 * (ol p*fwi dt h*dz1*dz1l)) +
(c70 * (dtx1l)) +
(c71 * ((ol p+tdy)*efcaptotal )*((g/fwi dth)*dzl1l)) +
(c72 * ppcaptotal *(cyy*g)) +
(c73 * ppcaptotal *(cyy*dz1l)) +
(c74 * (g*g)) +
(c75 * (g*dzl)) +
(c76 * (cyy*(g*9))) +
(c77 * ppcaptotal *(g*fwi dth*dz1)) +
(c78 * ppcaptotal *(ol p*dtx1)) +
(c79 * (cyy*cyy)) +
(c80 * ppcaptotal *(dy*dy)) +
(c81 * ppcaptotal *(g*dz1*dtx1l)) +
(c82 * ppcaptotal *(g*fwi dt h*dy*dz1)) +
(c83 * ppcaptotal *(dtx1)) +
(c84 * ((ol p+tdy)*efcaptotal)*(ol p*dz1l)) +
(c85 * (dx*dx)*((ol p+dy)*efcaptotal)) +
(c86 * ((ol p+dy)*efcaptotal )*(cyy*dy)) +
(c87 * ppcaptotal *(dz1*dtx1)) +
(c88 * ppcaptotal *((g/fwi dth)*dz1*dtx1l)) +
(c89 * (cyy*(dy*dy))) +
(c90 * ((ol p*cyy*dz1l*dtx1*dy)/ (g-dx)+(ol p*cyy*dz1*dt x1*dy)/ (g+dx))) +
(c91 * ((ol p+dy)*efcaptotal )*(g*fwi dt h*dtxl)) +
(c92 * ((ol p+dy)*efcaptotal )*(cyy*dzl)) +
(c93 * ppcaptotal *((g/fwi dth)*dzl*dtxl*cyy)) +
(c94 * (cyy*dtxl)) +
(c95 * ((ol p+dy)*efcaptotal )*(cyy*g)) +
(c96 * ((ol p+dy)*efcaptotal )*(g*fw dt h*dy*dzl)) +
(c97 * (dzl*dz1l)) +
(c98 * (cyy*dzl)) +
*

(c99 * (cyy*g)) +
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(c1l00 * ppcaptotal *(fwidth)) +
(c101 * (dy*fw dth*dz1l*dzl)) +
(cl02 * (dzl*dzl)*((ol p+tdy)*efcaptotal)) +
(c1l03 * ppcaptotal *(dy*dzl)) +
(c104 * (fwidth)) +
(cl05 * ppcaptotal *(dx*dx));
forceva
Fx =

c6l*((cyy*dz1l)/((-dx + g)*(-dx + g)) - (cyy*dzl)/((dx + g)*(dx + g))) +
c13*((cyy*((dy)*(dy))*dz1)/((-dx + g)*(-dx + g)) -
(cyy*((dy)*(dy))*dz1)/((dx + g)*(dx + g))) +
c32*((cyy*dtx1*dy*ol p)/ ((-dx + g)*(-dx + g)) - (cyy*dtxl*dy*olp)/((dx +
9)*(dx + g))) +

c5*((cyy*dzil*ol p)/ ((-dx + g)*(-dx + g)) - (cyy*dzl*olp)/((dx + g)*(dx +
9))) +

c90* ((cyy*dt x1*dy*dzl*ol p)/ ((-dx + g)*(-dx + g)) -

(cyy*dt x1*dy*dzl*ol p)/((dx + g)*(dx + g))) +
c64*((cyy*((dy)*(dy))*dzl*ol p)/((-dx + g)*(-dx + g)) -
(cyy*((dy)*(dy))*dzl*ol p)/((dx + g)*(dx + g))) +

ch52* ((cyy*dt x1*dy*((dzl)*(dzl))*olp)/((-dx + g)*(-dx + Q)) -
(cyy*dtx1*dy*((dz1)*(dz1))*olp)/((dx + g)*(dx + g))) +
c67*((cyy*dz1*((dy + olp)*(dy + olp)))/((-dx + g)*(-dx + g)) -
(cyy*dz1*((dy + olp)*(dy + olp)))/((dx + g)*(dx + g))) +
2*c85*dx*(dy + ol p)*efcaptotal +

2*cl105*dx*ppcaptotal +

c40*(dy + ol p)*defcaptotal +

c44*cyy*(dy + ol p)*defcaptotal +

c38*((cyy)*(cyy))*(dy + olp)* defcaptotal +

cO*dt x1*(dy + ol p)*defcaptotal +

c4*cyy*dt x1*(dy + ol p)*defcaptotal +
c43*((dtx1)*(dtx1))*(dy + olp)* defcaptotal +

c85* ((dx)*(dx))*(dy + ol p)*defcaptotal +

c55*dy*(dy + ol p)*defcaptotal +

c86*cyy*dy*(dy + ol p)*defcaptotal +

cl9*((dy)*(dy))*(dy + ol p)*defcaptotal +
c62*cyy*((dy)*(dy))*(dy + olp)* defcaptotal +

c60*dz1*(dy + ol p)*defcaptotal +

c92*cyy*dz1*(dy + ol p)*defcaptotal +

cl16*dt x1*dz1*(dy + ol p)*defcaptotal +

c20*dy*dz1*(dy + ol p)*defcaptotal +

c102*((dz1)*(dzl))*(dy + olp)* defcaptotal +

cl18*fwi dth*(dy + ol p)*defcaptotal +

c63*g*(dy + ol p)*defcaptotal +

c95*cyy*g*(dy + ol p)*defcaptotal +

c65*dz1*g*(dy + ol p)*defcaptotal +

c29*dt x1*dz1*g*(dy + olp)* defcaptotal +

(c71*dz1*g*(dy + ol p)*defcaptotal)/ fwidth +
(c3*cyy*dz1*g*(dy + olp)* defcaptotal)/fwidth +

(c9*dt x1*dz1*g*(dy + olp)* defcaptotal)/fwidth +
(c24*cyy*dt x1*dz1*g*(dy + olp)* defcaptotal)/fwidth +
c91*dt x1*fwi dt h*g*(dy + ol p)* defcaptotal +

c31*dz1*fwi dth*g*(dy + olp)* defcaptotal +

c96*dy*dz1*fwi dth*g*(dy + olp)* defcaptotal +
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c59*((g)*(g))*(dy + olp)* defcaptotal +
c37*cyy*((g9)*(g))*(dy + olp)* defcaptotal +
c21*dt x1*ol p*(dy + olp)* defcaptotal +
c84*dz1*ol p*(dy + ol p)*defcaptotal +
c6*dt x1*dzl*ol p*(dy + olp)* defcaptotal +
cl0*dppcaptotal x +
c39*cyy*dppcaptotal x +
c54*((cyy)*(cyy)) *dppt ot al x(thi ckness, ol p, g, dx, dy) +
c83*dt x1*dppt ot al x(t hi ckness, ol p, g, dx, dy) +
c68*cyy*dt x1*dppt ot al x(t hi ckness, ol p, g, dx,dy) +
c25*((dtx1)*(dtx1))* dppcaptotal x +
cl105*((dx)*(dx))*dpptotal x(thickness, ol p,g,dx, dy) +
c42*dy*dppt ot al x(t hi ckness, ol p, g, dx, dy) +
c56*cyy*dy*dppt ot al x(t hi ckness, ol p, g, dx,dy) +
c80* ((dy) *(dy)) *dppt ot al x(thi ckness, olp,g,dx,dy) +
c22*cyy*((dy)*(dy))* dppcaptotal x +
c58*dz1*dppcaptotal x +
c73*cyy*dzl*dppcaptotal x +
c87*dt x1*dz1l*dppcaptotal x +
c103*dy*dz1*dppcaptotal x +
c66*((dz1l)*(dzl))*dpptotal x(thi ckness, ol p, g, dx, dy) +
c100*fwi dt h*dppt ot al x(t hi ckness, ol p,g, dx,dy) +
c57*g*dppt ot al x(t hi ckness, ol p, g, dx,dy) +
c72*cyy*g*dppt ot al x(thi ckness, ol p, g,dx,dy) +
c45*dz1*g*dppt ot al x(t hi ckness, ol p, g, dx,dy) +
c81*dt x1*dz1*g* dppcaptotal x +

(c2*dzl*g*dppcaptotal x)/ fwidth +
(cl15*cyy*dz1*g*dpptotal x(thi ckness, olp,g,dx,dy))/fwidth +
(c88*dt x1*dz1*g*dppt ot al x(t hi ckness, ol p,g, dx,dy))/fwidth +
(c93*cyy*dt x1*dz1*g* dppcaptotal x)/fwi dth +
c35*dt x1*fw dt h*g*dppt ot al x(t hi ckness, ol p, g, dx,dy) +
c77*dz1*fwi dt h*g* dppcaptotal x +
c82*dy*dz1*fwi dt h*g*dppt ot al x(t hi ckness, ol p, g, dx,dy) +
c46*((g)*(g))* dppcaptotal x +
c47*cyy*((g)*(g)) *dppt ot al x(t hi ckness, ol p, g, dx,dy) +
c78*dt x1* ol p*dppt ot al x(t hi ckness, ol p, g, dx, dy) +
c49*dz1*ol p* dppcaptotal x +
c36*dt x1*dz1*ol p*dppt ot al x(t hi ckness, ol p, g, dx, dy)

Fy =
cll +
2*c34*dy +
2*c89*cyy*dy +
cl*dz1l +
c27*dz1*fwi dth +
c101*((dz1)*(dzl))*fwidth +
c4l1*dz1*fwi dth*g +
cl3*((2*cyy*dy*dz1)/(-dx + g) + (2*cyy*dy*dzl1l)/(dx + g)) +
c32*((cyy*dtx1l*ol p)/(-dx + g) + (cyy*dtxl*olp)/(dx + g)) +
c90* ((cyy*dtx1l*dz1l*olp)/(-dx + g) + (cyy*dtxl*dzl*olp)/(dx + g
c64* ((2*cyy*dy*dz1l*olp)/(-dx + g) + (2*cyy*dy*dzl*olp)/(dx + g
ch52*((cyy*dt x1*((dz1l)*(dz1l))*ol p)/(-dx + g) +
(cyy*dtx1*((dz1)*(dzl))*ol p)/(dx + g)) +
c67*((2*cyy*dzl*(dy + olp))/(-dx + g) + (2*cyy*dzl*(dy + olp))/(dx + Q))
+

~— ~—

) +
) +
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c40*ef captotal +

c44*cyy*ef captotal +
c38*((cyy)*(cyy))*efcaptotal +

cO*dt x1*ef captotal +

c4*cyy*dt xl*ef captotal +

c43*((dt x1)*(dtx1))*efcaptotal +

c85* ((dx)*(dx))*efcaptotal +

c55*dy*ef captotal +

c86*cyy*dy*ef captotal +
cl9*((dy)*(dy))*efcaptotal +
c62*cyy*((dy)*(dy))*efcaptotal +

c60*dzl*ef captotal +

c92*cyy*dzl*ef captotal +

clé*dt x1*dz1l*ef captotal +

c20*dy*dz1l*ef captotal +
c102*((dzl1l)*(dzl))*ef captotal +
cl18*fwi dt h*ef captotal +

c63*g*ef captotal +

c95*cyy*g*efcaptotal +

c65*dz1*g*ef captotal +

c29*dt x1*dz1l*g*ef captotal +
(c71*dzl*g*efcaptotal )/fwidth +
(c3*cyy*dzl*g*efcaptotal )/fwidth +

(c9*dt x1*dzl*g*efcaptotal )/ fwidth +
(c24*cyy*dtx1l*dzl*g*efcaptotal )/fwidth +
c91*dt x1*fwi dt h*g*ef captotal +
c31*dz1*fw dt h*g*ef captotal +
c96*dy*dz1*fwi dt h*g*efcaptotal +
c59*((g)*(9g))*efcaptotal +
c37*cyy*((g)*(g))*efcaptotal +
c21*dt x1*ol p*refcaptotal +
c84*dzil*ol p*ef captotal +

c6*dt x1*dz1*ol p*ef captotal +

c55*(dy + ol p)*efcaptotal +

c86*cyy*(dy + ol p)*efcaptotal +
2*c19*dy*(dy + ol p)*efcaptotal +
2*c62*cyy*dy*(dy + ol p)*efcaptotal +
c20*dz1*(dy + ol p)*efcaptotal +
c96*dz1*fwi dt h*g*(dy + ol p)*efcaptotal +
c42*ppcaptotal +

c56*cyy*ppcaptotal +

2*c80*dy*ppcaptotal +
2*c22*cyy*dy*ppcaptotal +
c103*dz1*ppcaptotal +
c82*dz1*fw dt h*g*ppcaptotal +
clO0*dppcaptotaly +

c39*cyy*dppcaptotaly +
c54*((cyy)*(cyy))*dpptotal y(thickness,olp,g,dx, dy) +
c83*dt x1*dppt ot al y(t hi ckness, ol p, g, dx, dy) +
c68*cyy*dt x1*dppt ot al y(t hi ckness, ol p, g, dx,dy) +
c25*((dtx1)*(dtx1))* dppcaptotaly +
c105*((dx)*(dx))*dpptotal y(thickness,olp,g,dx, dy) +
c42*dy*dppt ot al y(t hi ckness, ol p, g, dx, dy) +
c56*cyy*dy*dppt ot al y(thi ckness, ol p,g, dx,dy) +
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c80*((dy)*(dy))*dpptotal y(thickness, olp,g,dx,dy) +
c22*cyy*((dy)*(dy))* dppcaptotaly +
c58*dzl1*dppcaptotaly +
c73*cyy*dzl*dppcaptotaly +
c87*dt x1*dz1l*dppcaptotaly +
c103*dy*dzl*dppcaptotaly +
c66*((dz1l)*(dzl))*dpptotal y(thickness,olp,qg,dx, dy) +
c100*fwi dt h*dppt ot al y(t hi ckness, ol p,g, dx,dy) +
c57*g*dppt ot al y(t hi ckness, ol p, g, dx,dy) +
c72*cyy*g*dpptotal y(thi ckness, ol p, g,dx,dy) +
c45*dz1*g*dppt ot al y(t hi ckness, ol p, g, dx,dy) +
c81*dt x1*dz1*g* dppcaptotaly +

(c2*dzl*g*dppcaptotaly)/ fwidth +

(cl5*cyy*dzl*g*dpptotal y(thickness, olp,g,dx,dy))/fwidth +
(c88*dt x1*dz1l*g*dpptotal y(thi ckness, ol p,g, dx,dy))/fwidth +
(c93*cyy*dt x1*dz1*g* dppcaptotaly)/fwi dth +
c35*dt x1*fwi dt h*g*dppt ot al y(t hi ckness, ol p,g, dx,dy) +
c77*dz1*fwi dt h*g* dppcaptotaly +
c82*dy*dz1*fw dt h*g*dppt ot al y(t hi ckness, ol p, g,dx,dy) +
c46*((g)*(g9))* dppcaptotaly +
c47*cyy*((g)*(g))*dpptotal y(thickness,olp,g, dx,dy) +
c78*dt x1*ol p*dppt ot al y(t hi ckness, ol p, g, dx, dy) +
c49*dz1*ol p* dppcaptotaly +
c36*dt x1*dz1*ol p*dpptot al y(thi ckness, ol p,g, dx,dy) ;

Fz =
c51 +
c98*cyy +
c7*dtx1 +
cl*dy +
2*c97*dz1 +
c27*dy*fwi dth +
2*c101*dy*dz1*fwidth +
c75*g +
c33*dt x1*g +

(cla*cyy*dtx1*g)/fwidth +
c48*fwi dth*g +
c4l*dy*fw dth*g +
c61*(cyy/(-dx + g) + cyy/(dx + g)) +
c13*((cyy*((dy)*(dy)))/(-dx + g) + (cyy*((dy)*(dy)))/(dx + g)) +
c8*olp +
c23*dtx1*ol p +
cl2*fwi dth*ol p +
2*c69*dz1*fwi dth*ol p +
c5* ((cyy*olp)/(-dx + g) + (cyy*olp)/(dx + g)) +
c90* ((cyy*dt x1*dy*ol p)/(-dx + g) + (cyy*dtxl*dy*olp)/(dx + g)) +
c64*((cyy*((dy)*(dy))*olp)/(-dx + g) + (cyy*((dy)*(dy))*olp)/(dx + g))
+
c52* ((2*cyy*dt x1*dy*dzl*ol p)/ (-dx + g) + (2*cyy*dtxl*dy*dzl*olp)/(dx +
9)) +
c67*((cyy*((dy + olp)*(dy + olp)))/(-dx + g) + (cyy*((dy + olp)*(dy +
olp)))/(dx + g)) +
c60*(dy + ol p)*efcaptotal +
c92*cyy*(dy + ol p)*efcaptotal +
cl16*dt x1*(dy + ol p)*efcaptotal +
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c20*dy*(dy + ol p)*efcaptotal +
2*c102*dz1*(dy + ol p)*efcaptotal +
c65*g*(dy + ol p)*efcaptotal +

c29*dt x1*g*(dy + ol p)*efcaptotal +
(c71*g*(dy + olp)*efcaptotal)/fwidth +
(c3*cyy*g*(dy + ol p)*efcaptotal )/ fwidth +
(c9*dt x1*g*(dy + ol p)*efcaptotal)/fwidth +
(c24*cyy*dtx1*g*(dy + ol p)*efcaptotal )/fwidth +
c31*fwi dth*g*(dy + ol p)*efcaptotal +
c96*dy*fwi dt h*g*(dy + ol p)*efcaptotal +
c84*ol p*(dy + ol p)*efcaptotal +

c6*dt x1*ol p*(dy + ol p)*efcaptotal +
c58*ppcaptotal +

c73*cyy*ppcaptotal +

c87*dt x1*ppcaptotal +

cl103*dy*ppcaptotal +

2*c66*dz1*ppcaptotal +

c45*g*ppcaptotal +

c81*dt x1*g*ppcaptotal +

(c2*g*ppcaptotal )/fwidth +
(cl5*cyy*g*ppcaptotal )/fwidth +

(c88*dt x1*g*ppcaptotal )/fwidth +
(c93*cyy*dt x1*g*ppcaptotal )/fwidth +
c77*fw dt h*g*ppcaptotal +
c82*dy*fw dt h*g*ppcaptotal +

c49*ol p*ppcaptotal +

c36*dt x1*ol p*ppcaptotal ;
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Appendix A5 Comparison of Rotational and

Trandlational M odal Frequencies

In this appendix we show through approximate analysis that the rotational mode fre-
guency is usually higher or of the order of the higher of the two in-plane translational
modes. To the first order we can write the overall rotationa stiffness of arectangular plate

suspended by four springs at its corners as.

_ 2 2
Koo = Kby KL+ 4k (A5.2)

z¢z ¢Z¢Z

where, K isthetotal stiffness of the four springs in the x direction, Kyy isthetota stiff-

ness of the four springs in the y direction and k¢ is the stiffness of each individual

Z¢Z
spring for rotation about the z axis. The total moment of inertia of the plate is given by:

2 2
L, +L
szmflg;q (A5.2)

where, M isthe total mass of the plate. Without loss of generality we can assume that the

springs are much stiffer in x than in'y and that the lengths L, and L, are comparable. Then

we can write asimplified equation for the resonant frequency of the first ¢, mode as:

2 2
> KXXLy + KnyX + 4k
(0¢ -

T e

3

0,0, K 2
~—2 > (A5.3)

PR

FIGURE A5.1. Rectangular plate suspended by four springs
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Note that since we assumed the springs to be stiffer in xthaniny, o, > ®, Thus we see that

the rotational mode is of the same order of the higher trandational mode. Normally there
will be comb fingers attached to the plate, as is the case of the gyroscope drive mode.
However, if the comb fingers are not very long compared to the plate, our result is still

approximately valid.

239



Appendix A6 Beam Widthsand Comb Gapsfor Monte-

Table A6.1 Fractional variation of beam widths and gaps used for Monte-Carlo simulations

Carlo Analysis

No. | Wo1 Wo2 Wo3 Wo4 Wi Wiz Wiz Wigq ot Ydb Ot O

1 -0.433| -0.588| -0.692| 1.191 | -2.171| 0.000 | -0.377 | 0.212 | 0.781 | -0.947 | 0.129 | -0.990
2 -0.546 | -0.079| 0.133 | -0.465| 1.957 | 0.086 | 0.944 | 0.587 | 0.485 | 0.262 | -0.011 | -1.021
3 -0.548 | -0.896 | -0.275| -0.020 | -2.449| -0.957| -0.981 | 1.635 | 0.702 | -0.637 | 0.672 | 1.381
4 -0.209| -0.964 | 0.229 | 0.652 | -2.424| -1.863| -0.146 | 1.751 | 1.259 | -0.570 | -1.301 | 0.330
5 -0.351| -0.249| 1.142 | -0.006 | 1.682 | 0.249 | 0.485 | 0.723 | 0.018 | -0.711 | 1.151 | -0.243
6 0.533 | -1.723| 0.755 | 0.411 | 0.285 | -0.607 | -0.583 | 0.900 | 0.399 | 0.406 | 0.760 | -0.803
7 0.339 | -1.430| 0.289 | 0.441 | -0.453| -1.384| 0.709 | -0.598 | -1.008 | 1.259 | -1.414 | 0.065
8 -1.227| -0.151| -0.911 | -0.908 | -0.703 | 1.008 | -0.258 | 0.448 | -0.339 | -0.720 | -0.535 | 0.256
9 -0.395| -1.333| 1.958 | -0.650| -1.666 | 2.183 | 0.858 | -1.202 | -0.059 | -0.318 | -0.296 | 0.238
10 | 0.569 | -0.374| 0.656 | 1.340 | -0.847 | 1.535 | 1.593 | 0.371 | 0.505 | -2.005| -2.120| -0.251
11 -0.005| 1.213 | -0.001| -0.402| 0.261 | 0.135 | 2.213 | 0.279 | 0.473 | 1.293 | -0.688 | -1.256
12 | -0.488| -1.003 | -0.508 | 1.320 | 0.756 | -2.379| -0.959 | -0.377 | -0.224 | -0.454 | 0.248 | 0.753
13 | 0.044 | -1.499 | -0.605| 0.599 | 0.892 | -0.150 | 1.552 | 0.524 | 0.594 | 0.102 | 0.599 | 0.039
14 | 0.818 | -1.170| -0.608 | 0.173 | 1.033 | 1.263 | 0.508 | -1.307 | 0.826 | 0.687 | -0.896 | -2.123
15 1.116 | 1.216 | -1.713| -1.665| 0.290 | -0.150 | 1.165 | 0.565 | 1.399 | 0.460 | -0.748 | -0.482
16 | -0.665| 0.858 | -0.384 | -1.758 | -0.190 | 0.316 | -1.631 | -1.044 | 0.563 | 0.158 | -1.372| 0.581
17 | 0.730 | 0.758 | 3.203 | -0.191 | -0.144 | -0.724 | -0.073 | 0.623 | 0.125 | -0.136 | 1.254 | -0.020
18 | -1.011 | 1.095 | -1.475| -1.008 | -0.822 | -1.186 | -1.168 | 0.290 | -0.246| -0.606 | 1.018 | 0.728
19 1.865 | -0.493 | -0.645| 0.480 | -0.276 | -0.275| -0.249| 0.174 | -0.013| -0.139| 1.509 | 1.058
20 | 0.117 | 0.441 | 1.339 | -0.214| 1.862 | -0.186| 0.856 | -0.909 | 0.376 | -0.838 | -0.146 | -0.661
21 | 0.058 | -0.652| -0.077| 0.065 | -0.314| -0.050| -1.489| 0.147 | 1.578 | -1.258| 1.384 | 1.364
22 | 0.790 | -0.041| -0.086| 1.541 | 0.702 | 1.065 | 0.806 | 0.923 | -1.052| -0.600| 0.132 | 0.384
23 | -0.008 | 0.020 | 0.249 | 0.285 | 0.620 | 1.448 | 1.537 | -0.901 | 0.662 | -0.505| 0.806 | -0.694
24 | -0462| 0.629 | 0.229 | 0.983 | 0.558 | -2.105| -0.458 | 1.687 | -0.302 | 1.344 | -0.359 | 0.374
25 | -0.050| -0.587 | -1.268 | 0.857 | 0.294 | -1.643| 0.439 | -0.079| -2.334| -0.664 | 0.939 | -1.335
26 | 0.288 | 0.114 | -1.594 | -0.157 | 0.614 | -1.874| -0.234| -0.742| -0.266 | -1.056 | -0.461 | 1.479
27 | 0.663 | -1.347| -1.580| 2.112 | -0.340| 0.462 | -0.704 | 0.668 | 1.276 | -0.133| 0.397 | -0.116
28 | -0.580| -1.163| -1.945| 0.622 | -0.591| 1.281 | -0.909 | -0.199 | 1.107 | -1.054| 0.269 | -2.306
29 | -1.345| 0.257 | 0.745 | 0.249 | -0.425| 0.103 | 1.738 | -0.293 | 0.227 | 0.553 | 0.559 | -0.101
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Table A6.1 Fractional variation of beam widths and gaps used for Monte-Carlo simulations

No. | Wo1 Wo2 Wo3 Wo4 Wi Wiz Wiz Wigq ot Ydb Ot O

30 | -1.108| 0.313 | -0.758 | 0.482 | 0.105 | -2.248 | 0.325 | -1.701 | -0.231 | -0.680 | 0.217 | -0.179
31 | 0.362 | -2.064 | 0.280 | 0.500 | 0.858 | 1.064 | -1.490| -0.733| -0.288 | -1.025| -1.610| 0.588
32 | -0581| -1.729| -1.356 | 0.834 | 0.033 | 0.380 | -0.223| 1.762 | -1.189| -0.361| -0.291 | 0.327
33 | 0.957 | -2.238| -0.398 | 0.902 | 1.164 | 1.574 | -0.895| -0.266 | -0.849 | -1.057 | -1.150 | 0.700
34 | -1.358| 0.198 | -0.080| 1.048 | -1.146| 1.067 | -1.441| -1.604 | 0.508 | 0.428 | 0.118 | 1.082
35 | -1.188| 1.472 | -0.262 | 1.138 | -0.854 | 0.469 | -0.079| -1.357| -1.140| -0.321| -1.018| -0.078
36 1.863 | -1.271| -0.264 | 1.064 | 2.136 | 1.184 | -1.681| -1.751| -0.655| -0.498 | -0.413| 0.307
37 | -1.228| -0.072| 0.625 | 1.789 | 1.482 | -0.184| -0.890| -0.384 | -0.203 | -0.221| 1.622 | 0.083
38 | 0.997 | 0.083 | -0.277 | -2.635| -0.026 | 2.690 | 0.443 | -0.787 | -0.159 | -0.511| -0.335| -1.034
39 | -0114| -1.726| -0.373| -0.522| -0.037| 0.111 | -0.983| -0.511 | 0.775 | -1.341| 0.314 | -0.773
40 | -1.372| 0.205 | 1.110 | 0.554 | 0.888 | -0.417 | 0.121 | -2.237| 0.799 | -1.013 | -0.853 | 1.427
41 -0.775| 0.554 | -0.301| 0.716 | -0.533| 1.293 | -1.161 | 1.279 | 0.659 | -0.517 | 0.589 | -0.417
42 | -2534| -0.252| 0.887 | -0.797| -1.816| -1.795 | -0.801 | 0.863 | 1.191 | 0.059 | 0.571 | 0.257
43 1.692 | 0.896 | 0.315 | -0.131| -2.202 | 0.056 | -1.213| -0.684| -1.201| -0.904 | -0.682 | -1.023
44 | -0.211| 1.237 | -0.182| 0.889 | -0.523| -1.664 | -1.664 | -0.245 | -0.258 | -0.015 | -0.574 | 0.697
45 | -1.081| -1.119| -0.506 | -0.572| -0.670| 0.279 | -1.047 | 0.391 | 0.033 | -0.168 | 0.139 | -0.528
46 | -1.513| -0.279| 0.626 | 0.766 | 1.216 | 1.578 | -1.294 | 0.028 | -1.111 | 0.290 | 0.911 | 0.752
47 | 0.871 | 0.249 | -0.322| -0.764 | 0.128 | 0.813 | -0.832 | 1.432 | -1.228 | 1.488 | -0.944 | 0.235
48 1.306 | 0.480 | -2.025| 0.152 | -0.686 | 0.589 | -1.110| -0.415| 0.172 | -0.615| -0.222 | 1.098
49 | 0.897 | -0.347| 0.346 | 0.912 | 0.271 | -1.556 | -1.589 | 1.599 | -0.901 | -0.378 | -1.110 | -0.128
50 | -1.550| 1.228 | 1.843 | -0.206 | -2.379| -1.298 | -0.283 | -0.801 | 1.108 | -1.388 | 0.309 | -0.642
51 1.189 | -0.096 | -0.400 | -1.056 | 0.591 | 0.731 | 1.444 | 0.390 | 0.986 | -1.217| -1.319| -1.292
52 | -0.120| 0.036 | -1.025| 1.038 | 1.190 | -0.631| 1.521 | 2.309 | 0.103 | -0.704 | -1.029 | -1.518
53 | -1410| 0.536 | -0.186| 0.811 | -0.048 | 0.808 | 1.620 | -0.978| 1.341 | 1.373 | 1.536 | 0.020
54 | 1.870 | -0.117 | -0.236 | 0.055 | -1.126 | -0.734 | 0.092 | 2.237 | -0.543 | -0.331 | -0.888 | -0.876
55 | 0.751 | -1423| -1.074| -0.167 | -0.195| 0.369 | -0.382| 2.176 | -0.799 | 1.442 | 0.287 | -0.870
56 | -0.275| 0.053 | -0.013| -0.598 | 1.232 | -1.634 | 0.529 | -0.337| 0.332 | -0.264 | 0.385 | 0.062
57 | 0.849 | 0.721 | 0.572 | -0.002 | 0.138 | 0.442 | 0.110 | 0.327 | 1.535 | -0.207 | 1.094 | -2.065
58 | -0.893| 0.003 | 0.291 | 0.613 | -3.029| 1.584 | 1.348 | -0.174 | -0.346 | 1.233 | 1.035 | -0.008
59 | -0.142| 0.198 | 1.052 | 0.660 | -0.038 | -0.832| 0.690 | 1.415 | -0.644| 0.578 | -0.351| 0.088
60 | -0.519| -0.041| 0.931 | -0.073| -0.065 | -0.628 | -1.234| -0.390 | -1.116 | -2.325| -0.038 | 0.525
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Appendix A7 OCEAN Scriptsand Sample Netlist for

Gyroscope Monte-Carlo Simulations

A7.1 OCEAN Script

simul ator( “spectre” )
runname = “./sigma_0.05/runl”
design(strcat(runname “/netlist/netlist”))
resultsDir( runnane )
desVar( “tenper” 0 )
desVar ( “n2ma_x" 0.1u )
desVar ( “mlma_x" 0.1u )
desVar( “n2ma_y” 0.1u )
desVar ( “nmilna_y” 0. 1lu)
desVar( “zframe” 0 )
desVar ( “zanchor” Ou )
desVar ( “zpni 0)

desVar( “ifactr” 1.0000 )
desVar( “ifactl” 0.9799 )
desVar ( “ifacbr” 1.0020 )
desVar ( “ifacbl” 0.9965 )
desVar( “g_s_r” 1.7835u )
desVar( “g_s_|” 1.8021u )

desVar( “g_dr_r” 1.7842u )
desVar( “g_dr_|” 1.8130u )
desVar ( “overetch” 0 )
desVar( “msn 0 )
desVar ( “fdrive” 8.4k )
desVar ( “fext” 500 )
desVar( “offs” 0.0 )
desVar( “w_i” 1.8000u )
desVar( “w_o” 1.8000u )
desVar ( “of achl” 0.9936 )
desVar( “ofactr” 0.9946 )
desVar( “ofactl” 0.9960 )
desVar( “ofacbr” 1.0110 )
desVar( “_gpar3” 0)
desVar( “ax_sin” 0)
desVar( “ax_dc” 0)
desVar( “ay_sin” 0)
desVar( “ay_dc” 0)
desVar( “az_sin” 0)
desVar( “az_dc” 0)
desVar ( “phi _dc” 0 )
desVar ( “phi _amp” 0 )
desVar ( “phix_sin” 0)
desVar( “phiy_sin” 0)
desVar( “fx_fr_sin” 0)
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desVar( “tphi _fr_sin” 0)
desVar( “tphi _fr_ac” 0)
desVar( “tphi _frame” 0 )
desVar ( “tphi _disp” 0)

desVar( “fz_pmac” 0 )
desvar( “fz_fr_ac” 0)
desVar( “fy_pm.dc” 300.0000n )
desVar( “fy_pmac” 0 )
desvar( “fy _fr_ac” 0)
desVar( “fx_pmac” 0 )
desVar( “fx_fr_ac” 0)

desVar( “drive_sin” 2 )
desVar ( “drive_dc” 0 )
desVar( “drive_sin_r” -2)

desVar (“fx_fr_ac” 1u)

saveOption( ‘save “sel ected”)

anal ysis(‘ac ?start “1k” ?stop 100k ?dec 500 )
run()

sel ectResult( “ac-ac” )
x_fr_freql = xmax(vm(“10.x_frane_left_0"), 1)
fd = 50*round(x_fr_freql/ 50)

anal ysis(‘tran ?maxstep lu ?stop 60m ?errpreset “conservative”)
desVar( “fx_fr_ac” 0u)

desVar( “fdrive” fd)

desVar( “ay_sin” 98 )

desVar( “fy_pm.dc” 300.0000n )

run()

fa = 500;

fdnfa = fd - fa;

fdpfa = fd + fa;

fdm2fa = fd - 2*fa;

fdp2fa = fd + 2*fa;

sel ect Resul t( “tran-tran” )

drive_wave = dft(v(“10.x_franme_left_0") 40m 60m 2048 “Rectangul ar” )
drive = value( drive_wave fd)

dft_wave = dft( (v(“inp”) - v(“inn”)) 40m 60m 2048 “Rectangul ar” )

| sb = val ue(dft_wave fdnfa)

carrier = value(dft_wave fd)

rsb = value(dft_wave fdpfa)

| 2sb = val ue(dft_wave fdnfa)

r2sb = val ue(dft_wave fdp2fa)

printf(“RESULT: % %bd 90.4g %i.2f 98©.4g %. 2f 99. 49 %i. 2f 9@. 49 %l. 2f
9%9. 49 %. 2f 9©.4g %l. 2f\n”, runnane fd mag(drive) phase(drive) mag(l 2sh)
phase(l 2sb) mag(lsb) phase(lsb) mag(carrier) phase(carrier) mag(rsh)
phase(rshb) nmag(r2sb) phase(r2sh))
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A7.2 Gyroscope 2D netlist

/1 Library name: bikramgyro
/1 Cell name: gyro_nens
/1 View nane: schematic_sinple

/1

Inherited view |list: spectreS cdsSpice spice verilog behaviora

[/ functional hdl systemverilogNetlist schematic cnps.sch cnpbs_sch
/lveriloga ahdl aulLvs
subckt gyro_nens ax_ext ay_ext az_ext inn inp phi_disp

phi _ext phix_ext phiy_ext
v_act _bias v_act |
v_act _r vdc_neg _n vdc_neg_p vdc_pos_n vdc_pos_p x_disp y_disp
83 (0 net0693) angl e_source dc_val ue=0 ac_nmag=0 ac_phase=0 of f set=0
anpl i tude=752f frequency=8.4k phase=0
160 (0 phi _frame) torque_source dc_val ue=0 ac_mag=t phi _fr_ac
ac_phase=0 of fset=0 anplitude=tphi _fr_sin frequency=8.4k phase=0
61 (0 phi_disp) torque_source dc_val ue=0 ac_mag=t phi _di sp ac_phase=0
of fset =0 anplitude=0 frequency=0 phase=0
165 (0 x_proof left) force_source dc_val ue=0 ac_mag=fx_pm ac
ac_phase=0 of fset=0 anplitude=0 frequency=0 phase=0
167 (0 x_frame_left) force_source dc_value=0 ac_mag=fx_fr_ac
ac_phase=0 offset=0 anplitude=fx_fr_sin frequency=8.4k phase=0
72 (0 y_frame_bot) force_source dc_value=fy fr_dc ac_mag=fy fr_ac

ac_phase=0

of fset=fy fr_dc anplitude=0 frequency=0 phase=0
I 75 (net 01619 net1202) force_source dc_val ue=fy pm.dc

ac_mag=fy_pm ac

ac_phase=0 offset=fy_pm.dc anplitude=0 frequency=0 phase=0

56 (net679 net 695 net 686 net 1830 net 693 net 1832 net 698 net 682 net 692
net 691 net 696 net 677 net 683 net676 net 678 net 689 net 681 net 1831
net 675 net 697 net 700 net 685 net 699 net 687 net 684 net674 net 694
net 680 net 713 net 702 net 703 net 704 net 705 net 706 net 707 net 708
net 709 net710 net 711 net712) plate_1000 unitl=7.6u unitw=9.9u
uni t num x=24 uni t num y=3 angl e=0 joi nt _offset=7.05u
per cent age_hol es=0. 295853 fracti on_nB8=1 fracti on_n2=0.00604
fraction_nl=0. 00604 fraction_poly=0 Xc=0 Yc=0 nei ghbor_x=1
nei ghbor _y=0

I 52 (phi_ext ax_ext ay_ext phi_franme net929 x_frane_|l eft net738

net 722
net 732 net 731 net 736 net 717 net723 net 716 net 718 net 729 net 920
y frame_left net715 net 737 net 740 net 725 net 739 net 727 net 724
net 714 net 734 net 720 net 753 v_act _bi as net 743 net 744 net 951
net 746
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net 747 net 748 net 749 net 750 net 751 net 752) pl ate_1000
unitl=44.9e-6 unitw=7.6u unitnum x=3 unitnumy=1 angl e=0
joint_of fset=0u percentage_hol es=0. 284072 fracti on_nB=1
fracti on_nR2=0.18459 fraction_nil=0.13085 fracti on_pol y=0 Xc=0 Yc=0
nei ghbor _x=0 nei ghbor_y=2

140 (phi _ext ax_ext ay_ext phi _frame net773 net770 net778 net 762
net 772 net771 net776 net757 net763 net 756 net 758 net 769 net 761
net 781 net 755 net 777 net 780 net 765 net 779 net 767 net 764 net 754
net 774 net 760 net 793 net 782 net 783 net 784 net 785 net 786 net 787
net 788 net 789 net 790 net 791 net 792) plate_1000 unitl =37.65u
uni tw=7.6u unitnum x=3 unitnumy=1 angl e=0 j oi nt_of f set =10. 45u



141

| 48

| 50

| 44

151

|74

per cent age_hol es=0. 284072 fracti on_nB8=1 fracti on_nR2=0. 15583
fracti on_ml=0.16524 fraction_poly=0 Xc=0 Yc=0 nei ghbor_x=0

nei ghbor y=2

(phi _ext ax_ext ay_ext phi_frame net 849 net810 net 818 net 802

net 812 net811 x_frane_right net 0865 net 803 net 1791 net 798 net 0720
net 840 net 821 net 795 net 817 net820 net805 y frame_right net0875
net 804 net 1789 net 814 net 0708 net 833 net 822 net 823 net 824 net 871
net 826 net 827 net 828 net 829 net 830 net 831 net 832) plate_1000

uni tl=44.9u uni tw=7. 6u unitnum x=3 unitnumy=1 angl e=0

j oi nt _of f set =22. 45u per cent age_hol es=0. 284072 fracti on_nB8=1
fracti on_nm2=0. 15583 fraction_nil=0.16524 fracti on_pol y=0 Xc=0 Yc=0
nei ghbor _x=0 nei ghbor _y=2

(phi _ext ax_ext ay_ext phi_frame net 1249 net 850 net 858 net 842
net 852 net 851 net 856 net 837 net 843 net 836 net 838 net 849 net 1241
net 861 net 835 net 857 net 860 net 845 net 859 net 847 net 844 net 834
net 854 net 840 net 873 net 862 net 863 net 864 net 1271 net 866 net 867
net 868 net 869 net 870 net871 net872) plate_1000 unitl=127. 35u+offs
uni tw=7. 6u unitnum x=3 unitnumy=1 angl e=0 j oi nt_of f set =34. 45u
per cent age_hol es=0. 284072 fracti on_nB8=1 fracti on_nm2=0. 15583
fracti on_ml=0.16524 fraction_poly=0 Xc=0 Yc=0 nei ghbor_x=0

nei ghbor _y=2

(phi _ext ax_ext ay_ext phi_frame net 969 net 890 net 898 net 882

net 892 net 891 net 896 net 877 net 883 net 876 net 878 net 889 net 960
net 901 net 875 net 897 net 900 net 885 net 899 net 887 net 884 net 874
net 894 net 880 net 913 net 902 net 903 net 904 net 991 net 906 net 907
net 908 net 909 net 910 net 911 net912) plate_1000 unitl=9.4125u

uni tw=7. 6u unitnum x=3 unitnumy=4 angl e=0 j oi nt_of fset =15. 15u
per cent age_hol es=0. 284072 fracti on_nB8=1 fraction_n2=0.18459
fraction_nl=0.13085 fraction_pol y=0 Xc=0 Yc=0 nei ghbor _x=0

nei ghbor _y=2

(phi _ext ax_ext ay_ext phi_frame net1329 net 930 net 938 net 922
net 932 net 931 net 936 net 917 net 923 net 1856 net 918 net 929 net 1321
net 941 net 915 net 937 net 940 net 925 net 939 net 927 net 924 net 1857
net 934 net 920 net 953 net 942 net 1862 net 944 net 1351 net 946 net 947
net 948 net 949 net 950 net 951 net 952) plate_1000 unitl =127. 35u+offs
uni tw=7. 6u unitnum x=3 uni tnumy=1 angl e=0 j oi nt _of f set =34. 45u
per cent age_hol es=0. 284072 fracti on_nB8=1 fraction_n2=0.18459
fraction_nl=0.13085 fraction_pol y=0 Xc=0 Yc=0 nei ghbor _x=0

nei ghbor _y=2

(phi _ext ax_ext ay_ext phi_frame net1689 net 970 net 978 net 962
net 972 net 971 net 976 net 957 net 963 net 1844 net 958 net 969 net 1680
net 981 net 955 net 977 net 980 net 965 net 979 net 967 net 964 net 1845
net 974 net 960 net 993 net 982 net 1843 net 984 net 1711 net 986 net 987
net 988 net 989 net 990 net 991 net992) plate_1000 unitl =9.4125e-6
uni tw=7.6u unitnum x=3 unitnumy=4.0 angl e=0 joi nt_of fset =10. 45u
per cent age_hol es=0. 284072 fracti on_nB8=1 fracti on_nR2=0. 18459
fraction_ml=0.13085 fraction_poly=0 Xc=0 Yc=0 nei ghbor_x=0

nei ghbor y=2

(phi _ext ax_ext ay_ext phi_frame net 0720 net 0717 net 0725 net 0709
net 0719 net 0718 net 0723 net 0704 net 0710 net 0703 net 0705 net 0716
net 0708 net 0728 net 0702 net 0724 net 0727 net 0712 net 0726 net 0714
net 0711 net 0701 net 0721 net 0707 net 0740 net 0729 net 0730 net 0731
net 0732 net 0733 net 0734 net 0735 net 0736 net 0737 net 0738 net 0739)
pl ate_1000 unitl =82.45u-of fs unitw=7.6u unitnum x=3 unitnumy=1
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angl e=0 joi nt_of fset =22. 45u percent age_hol es=0. 284072
fraction_nmB=1 fracti on_nR2=0.15583 fracti on_nl=0. 16524
fraction_pol y=0 Xc=0 Yc=0 nei ghbor _x=0 nei ghbor_y=2

(phi _ext ax_ext ay_ext phi_frame net 1013 net 1616 net 1018 net 1003
net 1012 net 1011 net 1016 net 998 net 1004 net 997 net 999 net 1253

net 1002 net 1619 net 996 net 1017 net 1020 net 1006 net 1019 net 1008
net 1005 net 995 net 1014 net 1242 net 1033 net 1628 net 1023 net 1024
net 1025 net 1026 net 1027 net 1028 net 1029 net 1030 net 1265 net 1032)
pl ate_1000 unitl=22.8u unitw=7.6u unitnum x=3 unitnumy=1 angl e=0
j oi nt _of fset =0u per cent age_hol es=0. 284072 fracti on_nB8=1

fracti on_nm2=0. 18459 fraction_nil=0.13085 fracti on_pol y=0 Xc=0 Yc=0
nei ghbor _x=1 nei ghbor_y=1

(phi _ext ax_ext ay_ext phi_frame net 1053 net 1050 net 1058 net 1043
net 1052 net 1051 net 1056 net 1038 net 1044 net 1037 net 1039 net 1049
net 1042 net 1061 net 1036 net 1057 net 1060 net 1046 net 1059 net 1048
net 1045 net 1035 net 1054 net 1041 net 1073 net 1062 net 1063 net 1064
net 1065 net 1066 net 1067 net 1068 net 1069 net 1070 net 1071 net 1072)
pl ate_1000 unitl=22.8u unitw=7.6u unitnum x=3 unitnumy=1 angl e=0
j oi nt _of fset =0u per cent age_hol es=0. 284072 fracti on_nB8=1

fracti on_nm2=0.18459 fraction_nil=0.13085 fracti on_pol y=0 Xc=0 Yc=0
nei ghbor _x=1 nei ghbor _y=1

(phi _ext ax_ext ay_ext phi_frame net1093 net 1656 net 1098 net 1083
net 1092 net 1091 net 1096 net 1078 net 1084 net 1077 net 1079 net 1089
net 1082 net 1659 net 1076 net 1097 net 1100 net 1086 net 1099 net 1088
net 1085 net 1075 net 1094 net 1081 net 1113 net 1668 net 1103 net 1104
net 1105 net 1106 net 1107 net 1108 net 1109 net 1110 net 1111 net1112)
pl ate_1000 unitl=22.8u unitw=7.6u uni tnum x=3 uni tnum y=1 angl e=0
joint_of fset=0u percentage_hol es=0. 284072 fracti on_nB3=1
fraction_n2=0.18459 fracti on_nl=0.13085 fraction_pol y=0 Xc=0 Yc=0
nei ghbor _x=1 nei ghbor _y=1

(phi _ext ax_ext ay_ext phi_frame net1369 net1130 net 1138 net 1123
net 1132 net 1131 net 1136 net 1118 net 1124 net1117 net 1119 net 1129
net 1361 net 1141 net 1116 net 1137 net 1140 net 1126 net 1139 net 1128
net 1125 net 1115 net 1134 net 1121 net 1153 net 1142 net 1143 net 1144
net 1391 net 1146 net 1147 net 1148 net 1149 net 1150 net 1151 net1152)
plate_1000 unitl =22.8u unitw=7.6u unitnum x=3 uni tnumy=1 angl e=0
joint_of fset=0u percentage_hol es=0. 284072 fracti on_nB8=1
fraction_n2=0.18459 fracti on_nl=0.13085 fraction_pol y=0 Xc=0 Yc=0
nei ghbor _x=1 nei ghbor _y=1

I 6 (phi_ext ax_ext ay_ext phi_disp net1569 net1170 net 1178 net 1163

angl e=0

net 1172 net 2204 net 1176 net 1158 net 1164 net 1157 net 1159 net 1169
net 1561 net 1181 net 1156 net 1177 net 1180 net 2205 net 1179 net 1168
net 1165 net 1155 net 1174 net 1161 net 1193 net 1182 net 1183 net 1184
net 1591 net 1186 net 1187 net 1188 net 1189 net 1190 net 1191 net 1192)
pl ate 1000 unitl =9.55u unitw=9.3u unitnum x=12 unitnumy=1

j oi nt _of fset=0.9u percentage_hol es=0. 208716 fracti on_nB8=1
fracti on_nR2=0.59043 fraction_nil=0.53222 fracti on_pol y=0 Xc=0 Yc=0
nei ghbor _x=0 nei ghbor_y=1

I5 (phi_ext ax_ext ay_ext phi_disp net1213 net 1210 net 1218 net 1203
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net 1212 net 1211 net 1216 net 1198 net 1204 net 2084 net 1199 net 1209
net 1202 net 1221 net 1196 net 1217 net 1220 net 1206 net 1219 net 1208
net 1205 net 2085 net 1214 net 1201 net 1233 net 1222 net 1223 net 1224
net 1225 net 1226 net 1227 net 1228 net 1229 net 1230 net 1231 net 1232)



pl ate_1000 unitl =9.55u unitw=9.3u unitnum x=12 unitnumy=1
angl e=0

j oi nt _of fset=0.9u percentage_hol es=0. 208716 fracti on_nB8=1
fracti on_n2=0.59043 fraction_nil=0.53222 fracti on_pol y=0 Xc=0 Yc=0
nei ghbor _x=0 nei ghbor_y=1

1967 (phi _ext ax_ext ay_ext phi_franme net 1253 net 1250 net 1258 net 1243
net 1252 net 1251 net 1256 net 1238 net 1244 net 1237 net 1239 net 1249
net 1242 net 1261 net 1236 net 1257 net 1260 net 1246 net 1259 net 1248
net 1245 net 1235 net 1254 net 1241 net 1273 net 1262 net 1263 net 1264
net 1265 net 1266 net 1267 net 1268 net 1269 net 1270 net 1271 net 1272)
pl ate_1000 uni tl=55.4u unitw=7.6u unitnum x=3 unitnum.y=1 angl e=0
j oi nt _of f set =15. 15u per cent age_hol es=0. 284072 fracti on_nB8=1
fracti on_nm2=0. 15583 fraction_nil=0.16524 fracti on_pol y=0 Xc=0 Yc=0
nei ghbor _x=0 nei ghbor_y=2

1968 (phi _ext ax_ext ay_ext phi_franme net1729 net 1290 net 1298 net 1283
net 1292 net 1291 net 1296 net 1278 net 1284 net 1277 net 1279 net 1093
net 1720 net 1301 net 1276 net 1297 net 1300 net 1286 net 1299 net 1288
net 1285 net 1275 net 1294 net 1082 net 1313 net 1302 net 1303 net 1304
net 1751 net 1306 net 1307 net 1308 net 1309 net 1310 net 1105 net 1312)
pl ate_1000 unitl =25u unitw=7.6u unitnum x=3 unitnumy=1 angl e=0
j oi nt _of fset =0u percent age_hol es=0. 284072 fracti on_nB8=1
fracti on_m2=0. 15583 fraction_nil=0.16524 fracti on_pol y=0 Xc=0 Yc=0
nei ghbor _x=0 nei ghbor _y=2

1971 (phi_ext ax_ext ay_ext phi_frane net 1049 net 1330 net 1338 net 1323
net 1332 net 1331 net 1336 net 1318 net 1324 net 1317 net 1319 net 1329
net 1041 net 1341 net 1316 net 1337 net 1340 net 1326 net 1339 net 1328
net 1325 net 1315 net 1334 net 1321 net 1353 net 1342 net 1343 net 1344
net 1071 net 1346 net 1347 net 1348 net 1349 net 1350 net 1351 net 1352)
pl ate_1000 unitl =55.4u unitw=7.6u uni tnum x=3 uni tnum y=1 angl e=0
joint_offset=15. 15u percentage_hol es=0. 284072 fracti on_nB=1
fraction_n2=0.18459 fracti on_nl=0.13085 fraction_pol y=0 Xc=0 Yc=0
nei ghbor _x=0 nei ghbor _y=2

1972 (phi_ext ax_ext ay_ext phi_frame net889 net1370 net 1378 net 1363
net 1372 net 1371 net 1376 net 1358 net 1364 net 1357 net 1359 net 1369
net 880 net 1381 net 1356 net 1377 net 1380 net 1366 net 1379 net 1368
net 1365 net 1355 net 1374 net 1361 net 1393 net 1382 net 1383 net 1384
net 911 net 1386 net 1387 net 1388 net 1389 net 1390 net 1391 net 1392)
pl ate_1000 unitl=25u unitw=7.6u unitnum x=3 unitnumy=1 angl e=0
joint_offset=0u percentage_hol es=0. 284072 fracti on_nB8=1
fraction_n2=0.18459 fracti on_nl=0.13085 fraction_pol y=0 Xc=0 Yc=0
nei ghbor _x=0 nei ghbor _y=2

1973 (phi_ext ax_ext ay_ext phi_disp x_proof_top net1410 net 1418
net 1403 net 1412 net 1411 net 1416 net 1398 net 1404 net 1397 net 1399
net 1409 y_proof _top net1421 net 1396 net 1417 net 1420 net 1406
net 1419 net 1408 net 1405 net 1395 net 1414 net 1401 net 1433 net 1422
net 1423 net 1424 net 1471 net 1426 net 1427 net 1428 net 1429 net 1430 O
net 1432) plate_1000 unitl=5.7u-offs unitw=9.3u unitnum x=12
uni tnum y=1 angl e=0 j oi nt _of f set =0u percent age_hol es=0. 208716
fraction_nmB=1 fracti on_n2=0.59043 fraction_nil=0.53222
fraction_pol y=0 Xc=0 Yc=0 nei ghbor _x=0 nei ghbor_y=2

1974 (phi _ext ax_ext ay_ext phi_disp x_proof_bot x_proof |eft net1458
net 1443 x_di sp net 1451 x_proof _right net1438 net 1444 net 1437
net 1439 x_proof _top y_proof _bot y proof |eft net1436 net 1457
y_disp netl1446 y_proof right net 1448 net 1445 net 1435 net 1454
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y_proof _top net1473 net 1462 net 1463 net 1464 net 1511 net 1466
net 1467 net 1468 net 1469 net 1470 net 1471 net 1472) plate_1000
uni tl=284. 7u uni tw=9. 3u unitnum x=12 uni tnumy=1 angl e=0
j oi nt _of fset =0u percentage_hol es=0. 208716 fracti on_nB8=1
fracti on_nm2=0.59043 fraction_nil=0.53222 fracti on_pol y=0 Xc=0 Yc=0
nei ghbor _x=0 nei ghbor_y=2

| 975 (phi_ext ax_ext ay_ext phi_disp net1529 net 1490 net 1498 net 1483
net 1492 net 1491 net 1496 net 1478 net 1484 net 1477 net 1479
x_proof bot net 1521 net 1501 net 1476 net 1497 net 1500 net 1486
net 1499 net 1488 net 1485 net 1475 net 1494 y_proof bot net 1513
net 1502 net 1503 net 1504 net 1551 net 1506 net 1507 net 1508 net 1509
net 1510 net 1511 net 1512) plate_1000 unitl =5. 7u+of fs unitw=9. 3u
uni tnum x=12 uni tnum y=1 angl e=0 j oi nt _of f set =0u
per cent age_hol es=0. 208716 fracti on_nB8=1 fracti on_nm2=0.59043
fracti on_ml=0.53222 fraction_poly=0 Xc=0 Yc=0 nei ghbor_x=0
nei ghbor y=2

1976 (phi_ext ax_ext ay_ext phi_disp net1209 net 1530 net 1538 net 1523
net 1532 net 1531 net 1536 net 1518 net 1524 net 1517 net 1519 net 1529
net 1201 net 1541 net 1516 net 1537 net 1540 net 1526 net 1539 net 1528
net 1525 net 1515 net 1534 net 1521 net 1553 net 1542 net 1543 net 1544
net 1231 net 1546 net 1547 net 1548 net 1549 net 1550 net 1551 net 1552)
pl ate_1000 unitl=9.575u uni tw=9. 3u unitnum x=12 unitnum y=3
angl e=0 j oi nt _of fset =16. 95u per cent age_hol es=0. 208716
fraction_mB8=1 fracti on_nm2=0.59043 fraction_nil=0.53222
fraction_pol y=0 Xc=0 Yc=0 nei ghbor_x=0 nei ghbor _y=2

1977 (phi_ext ax_ext ay_ext phi_disp net1409 net 1570 net 1578 net 1563
net 1572 net 1571 net 1576 net 1558 net 1564 net 1557 net 1559 net 1569
net 1401 net 1581 net 1556 net 1577 net 1580 net 1566 net 1579 net 1568
net 1565 net 1555 net 1574 net 1561 net 1593 net 1582 net 1583 net 1584 0
net 1586 net 1587 net 1588 net 1589 net 1590 net 1591 net 1592)
pl ate_1000 unitl=9.575u unitw=9.3u unitnum x=12 unitnumy=3
angl e=0 j oi nt _of fset=16. 95u percent age_hol es=0. 208716
fraction_nmB=1 fracti on_n2=0.59043 fraction_nil=0.53222
fraction_pol y=0 Xc=0 Yc=0 nei ghbor_x=0 nei ghbor _y=2

1982 (phi_ext ax_ext ay_ext phi_franme x_frane_bot net 1056 net 1618
net 1603 net 1959 net 1611 net 1616 net 1598 net 1604 net 1597 net 1599
net 01627 y_frame_bot net 1059 net 1596 net 1617 net 1961 net 1606
net 1619 net 1608 net 1605 net 1595 net 1614 net 01619 net 1633 net 1068
net 1623 net 1624 net 1625 net 1626 net 1627 net 1628 net 1629 net 1630
net 1631 net 1968) plate_1000 unitl=7.6u unitw=9.9u unitnum x=24
uni t num y=3 angl e=0 joi nt _offset=7.05u percentage_hol es=0. 295853
fraction_nB=1 fraction_n2=0.14949 fracti on_nl=0 fraction_pol y=0
Xc=0 Yc=0 nei ghbor _x=2 nei ghbor _y=0

1 1028 (phi_ext ax_ext ay_ext phi_frame net01671 net 1136 net 1658
net 1643 net 1652 net 1651 net 1656 net 1638 net 1644 net 1637 net 2324
Xx_frame_top net 01660 net 1139 net 1636 net 1657 net 1660 net 1646
net 1659 net 1648 net 1645 net 1635 net2325 y frame_top net 1673
net 1148 net 1663 net 2330 net 1665 net 1666 net 1667 net 1668 net 1669
net 1670 net 1671 net 1672) plate_1000 unitl=7.6u unitw=9.9u
uni t num x=24 uni tnum y=3 angl e=0 j oi nt _of f set =7. 05u
per cent age_hol es=0. 295853 fracti on_nB8=1 fracti on_nR2=0. 14949
fraction_ml=0 fraction_poly=0 Xc=0 Yc=0 nei ghbor_x=2 nei ghbor_y=0

I 53 (phi _ext ax_ext ay_ext phi_frame net 729 net 1690 net 1698 net 1682
net 1692 net 1691 net 1696 net 1677 net 1683 net 1676 net 1678 net 1689
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net 720 net 1701 net 1675 net 1697 net 1700 net 1685 net 1699 net 1687
net 1684 net 1674 net 1694 net 1680 net 1713 net 1702 net 1703 net 1704
net 751 net 1706 net 1707 net 1708 net 1709 net 1710 net 1711 net1712)
pl ate_1000 unitl =82.45u-of fs unitw=7.6u unitnum x=3 unitnumy=1
angl e=0 joint_of fset =0u percentage_hol es=0. 284072 fracti on_nB=1
fracti on_n2=0. 18459 fraction_nil=0.13085 fracti on_pol y=0 Xc=0 Yc=0
nei ghbor _x=0 nei ghbor_y=2

147 (phi _ext ax_ext ay_ext phi_frame net 769 net 1730 net 1738 net 1722
net1732 net1731 net1736 net1717 net1723 net1716 net1718 net 1729
net 760 net 1741 net 1715 net 1737 net 1740 net 1725 net 1739 net 1727
net 1724 net 1714 net 1734 net 1720 net 1753 net 1742 net 1743 net 1744
net 791 net 1746 net 1747 net 1748 net 1749 net 1750 net 1751 net 1752)
pl ate_1000 unitl=9.4125u unitw=7.6u unitnum x=3 unitnumy=4
angl e=0 joint_of fset=15. 15u percent age_hol es=0. 284072
fracti on_mB=1 fracti on_n2=0. 15583 fracti on_nl=0.16524
fracti on_poly=0 Xc=0 Yc=0 nei ghbor_x=0 nei ghbor_y=2

1 1047 (phi _ext ax_ext ay_ext phi_frame netl1762 v_act_bias v_act_bias
v_act _bias v_act_bias v_act_r v_act_r v_act_r v_act _r
x_frame_right netl757 y frame_right netl764) conb_1111 2
finger_w dth=2.7u finger_length=11.4u overl ap=3. 3u gap=g_dr _r
fingers=23 angl e=0 Xc=0 Yc=0 wi ng_Il ength_a=0u wi ng_I| engt h_b=0u
truss_wi dth_a=0u truss_w dt h_b=0u

1 1046 (phi _ext ax_ext ay_ext net 1836 phi_frame v_act_| v_act_|

v_act _|

v_act | v_act_bias v_act_bias v_act_bias v_act_bias net 1838
x_frame_left net1837 y_frame_left) conb_1111 1 finger_w dth=2.7u
finger_length=11.4u overl ap=3. 3u gap=g_dr_| fingers=23 angl e=0
Xc=0 Yc=0 wi ng_|l ength _a=0u wi ng | ength_b=0u truss_wi dth_a=0u
truss_wi dth _b=0u

1045 (phi_ext ax_ext ay_ext phi_disp phi_frane inn inn inn inn
vdc_pos_n vdc_pos_n vdc_pos_n vdc_pos_n vdc_neg_n vdc_neg _n
vdc_neg_n vdc_neg_n x_proof _right net810 y_proof right net821)
conb_di ff_1111 2 finger_wi dth_a=5.7u finger_w dth_b=3.9u
finger_ | ength=61. 5u overl ap=60u gap=g_s_r fingers=21 Xc=0 Yc=0
angl e=0 wi ng_l ength_a=0u w ng_| engt h_b=0u truss_w dt h_a=0u
truss_wi dt h_b=0u

| 1044 (phi_ext ax_ext ay_ext phi_frame phi_disp inp inp inp inp
vdc_neg_p vdc_neg_p vdc_neg_p vdc_neg_p vdc_pos_p vdc_pos_p
vdc_pos_p vdc_pos_p net 736 x_proof left net739 y_proof |eft)
conb_di ff_1111 1 finger_width_a=3.9u finger_wi dth_b=5.7u
finger_l ength=61. 5u overl ap=60u gap=g_s_| fingers=21 Xc=0 Yc=0
angl e=0 wi ng_l ength_a=0u wi ng_l| engt h_b=0u truss_wi dth_a=0u
truss_wi dth_b=0u

I 57 (net 1830 net 1832 net 1831) anchor

1978 (net1762 net 1757 net1764) anchor |=32.4u w=27u

1 1032 (net 1836 net 1838 net 1837) anchor | =32.4u w=27u

I 10 (net 2166 phi _frane net 2163 net 1844 net 2165 net 1845 nt 2172 net 1843
net 2164 net 1843 net 2171 net 1843) beam 1110 | =6. 0u w=5. 1u angl e=0

|7 (net1930 phi_frame net 1928 net 1856 net 1929 net 1857 net 1934 net 1862
net 1933 0 net 1927 0) beam 1110 | =6. 0u w=5. 1u angl e=0

19 (phi_frame net1870 net 757 net 1868 net 767 net 1869 net 787 net 1874
net 787 net 1873 net 787 net 1867) beam 1110 | =6. 0u w=5. 1u angl e=0

I 8 (phi_frame net 1882 net 837 net 1880 net 847 net 1881 net 867 net 1886
net 867 net 1885 net 867 net 1879) beam 1110 | =6. 0u w=5. 1u angl e=0
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1981 (net1914 net 1894 net 1911 net 1892 net 1913 net 1893 net 1920 net 1898
net 1912 net 1897 net 1919 net 1891) beam 1110 | =5. 1u+1. 8u w=5. 1u
angl e=0

1 983 (net 1938 net 1906 net 1935 net 1904 net 1937 net 1905 net 1944 net 1910
net 1936 net 1909 net 1943 net 1903) beam 1110 | =5. 1u+1. 8u w=5. 1u
angl e=0

1984 (net 1914 net2110 net 1911 net 2108 net 1913 net 2109 net 1920 net 2114
net 1912 net 2113 net 1919 net2107) beam 1110 | =105u+5. 1u
w=of acbl *1. 8u- overet ch angl e=90

1 985 (net 1894 net 1930 net 1892 net 1928 net 1893 net 1929 net 1898 net 1934
net 1897 net 1933 net 1891 net 1927) beam 1110 | =105u+5. 1u
w=of acbl *1. 8u- overet ch angl e=90

| 986 (net 1938 net 1882 net 1935 net 1880 net 1937 net 1881 net 1944 net 1886
net 1936 net 1885 net 1943 net 1879) beam 1110 | =105u+5. 1u
w=of acbr*1. 8u- overetch angl e=90

1 987 (net 1906 net 1954 net 1904 net 1952 net 1905 net 1953 net 1910 net 1958
net 1909 net 1957 net 1903 net 1951) beam 1110 | =105u+5. 1u
w=of acbr*1. 8u- overet ch angl e=90

1 988 (phi_frame net 1966 net 1959 net 1964 net 1961 net 1965 net 1968
net 1970 0 net1969 0 net1963) beam 1110 | =5. 1u+0. 9u w=5. 1u

angl e=90

1989 (phi_frane net2002 net 1618 net 2000 net 1596 net 2001 net 1630
net 2006 0 net 2005 0 net1999) beam 1110 | =5. 1u+0. 9u w=5. 1u

angl e=90

1990 (net1966 net 1990 net 1964 net 1988 net 1965 net 1989 net 1970 net 1994
net 1969 net 1993 net 1963 net 1987) beam 1110 | =102u w=1. 8u*ifach
angl e=0

1991 (net2022 net2002 net 2019 net 2000 net 2021 net 2001 net 2028 net 2006
net 2020 net 2005 net 2027 net 1999) beam 1110 | =102u w=1. 8u*i facbr
angl e=0

1992 (net 1990 net 2038 net 1988 net 2036 net 1989 net 2037 net 1994 net 2042
net 1993 net 2041 net 1987 net 2035) beam 1110 | =5. 1u+1. 8u w=5. 1u
angl e=90

1993 (net2022 net2026 net 2019 net 2024 net 2021 net 2025 net 2028 net 2030
net 2020 net 2029 net 2027 net 2023) beam 1110 | =5. 1u+1l. 8u w=5. 1u
angl e=90

1994 (net2058 net 2038 net 2055 net 2036 net 2057 net 2037 net 2064 net 2042
net 2056 net 2041 net 2063 net 2035) beam 1110 | =102u w=1. 8u*ifach
angl e=0

1995 (net2026 net 2050 net 2024 net 2048 net 2025 net 2049 net 2030 net 2054
net 2029 net 2053 net 2023 net 2047) beam 1110 | =102u w=1. 8u*i f acbr
angl e=0

1 996 (net2058 net2062 net 2055 net 2060 net 2057 net 2061 net 2064 net 2066
net 2056 net 2065 net 2063 net 2059) beam 1110 | =5. 1u+1. 8u w=5. 1u
angl e=90

1 997 (net 2050 net 2098 net 2048 net 2096 net 2049 net 2097 net 2054 net 2102
net 2053 net 2101 net 2047 net 2095) beam 1110 | =5. 1u+1. 8u w=5. 1u
angl e=90

1 998 (net 2062 phi _di sp net2060 net 2084 net 2061 net 2085 net 2066

net 2090
net 2065 net 2089 net 2059 net 2083) beam 1110 | =53. 4u+2. 55u w=1. 8u
angl e=0

1999 (phi_disp net2098 net 1198 net 2096 net 1208 net 2097 net 2100

net 2102
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net 2092 net 2101 net 2099 net 2095) beam 1110
angl e=0
| 1002 (net 1836 net2110 net 1838 net 2108 net 1837
net 2114
net 2104 net2113 net2111 net2107) beam 1110
angl e=0
| 1005 (net 1954 net1762 net 1952 net 1757 net 1953
net 2126
net 1957 net 2125 net 1951 net2119) beam 1110
angl e=0
| 1006 (net1836 net2134 net 1838 net 2132 net 1837
net 2138
net 2128 net 2137 net 2135 net2131) beam 1110
angl e=0
1 1009 (net2190 net1762 net2187 net 1757 net 2189
net 2150
net 2188 net 2149 net 2195 net2143) beam 1110
angl e=0
11010 (net2134 net2158 net 2132 net 2156 net 2133
net 2162
net 2137 net 2161 net 2131 net2155) beam 1110
w=of act | *1. 8u- overetch angl e=90
1011 (net2166 net2350 net 2163 net 2348 net 2165
net 2354
net 2164 net 2353 net 2171 net 2347) beam 1110
w=of act| *1. 8u- overetch angl e=90
1012 (net 1870 net2182 net 1868 net 2180 net 1869
net 2186
net 1873 net 2185 net 1867 net2179) beam 1110
w=of actr*1. 8u-overetch angl e=90
1013 (net2190 net2362 net 2187 net 2360 net 2189
net 2366
net 2188 net 2365 net 2195 net 2359) beam 1110
w=of actr*1. 8u-overetch angl e=90

| =53. 4u+2. 55u w=1. 8u

net 2109 net 2112

| =5. 1u+0. 9u w=5.

net 1764 net 1958

| =5. 1u+0. 9u w=5.

net 2133 net 2136

| =5. 1u+0. 9u w=5.

net 1764 net 2196

| =5. 1u+0. 9u w=5.

net 2157 net 2138

| =105u+5. 1u

net 2349 net 2172

| =105u+5. 1u

net 2181 net 1874

| =105u+5. 1u

net 2361 net 2196

| =105u+5. 1u

1lu

1lu

1lu

1lu

1 1016 (net2226 phi_disp net2223 net 2204 net 2225 net 2205 net 2232 0

net 2224 0 net 2231 0) beam 1110 | =53. 4u+2.55u w=1. 8u angl e=0

1017 (phi_disp net2218 net 1163 net 2216 net 1177 net 2217 0 net2222 0

net 2221 0 net 2215) beam 1110 | =53. 4u+2. 55u
1 1018 (net2226 net2230 net 2223 net 2228 net 2225
net 2234
net 2224 net 2233 net 2231 net 2227) beam 1110
angl e=90
1019 (net2218 net2266 net 2216 net 2264 net 2217
net 2270
net 2221 net 2269 net 2215 net2263) beam 1110
angl e=90
1 1020 (net 2230 net2254 net 2228 net 2252 net 2229
net 2258
net 2233 net 2257 net 2227 net2251) beam 1110
angl e=0
1 1021 (net2286 net2266 net 2283 net 2264 net 2285
net 2270
net 2284 net 2269 net 2291 net 2263) beam 1110
angl e=0

w=1. 8u angl e=0
net 2229 net 2232

| =5. 1u+1. 8u w=5.

net 2265 net 2222

| =5. 1u+1. 8u w=5.

net 2253 net 2234

1u

1u

| =102u w=1. 8u*i factl

net 2265 net 2292

| =102u w=1. 8u*ifactr
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1 1022 (net2254 net 2302 net 2252 net 2300 net 2253 net 2301 net 2258
net 2306
net 2257 net 2305 net 2251 net2299) beam 1110 | =5. 1u+1. 8u w=5. 1u
angl e=90
1 1023 (net 2286 net 2290 net 2283 net 2288 net 2285 net 2289 net 2292
net 2294
net 2284 net 2293 net 2291 net 2287) beam 1110 | =5. 1u+l1. 8u w=5. 1u
angl e=90
11024 (net2322 net 2302 net 2319 net 2300 net 2321 net 2301 net 2328
net 2306
net 2320 net 2305 net 2327 net2299) beam 1110 | =102u w=1. 8u*i fact|
angl e=0
1 1025 (net 2290 net 2314 net 2288 net 2312 net 2289 net 2313 net 2294
net 2318
net 2293 net 2317 net 2287 net2311) beam 1110 | =102u w=1. 8u*ifactr
angl e=0
11026 (net2322 phi _franme net2319 net 2324 net 2321 net 2325 net 2328
net 2330 net 2320 net 2329 net 2327 net 2323) beam 1110 | =5. 1u+0. 9u
w=5. 1u angl e=90
1 1027 (net2314 phi_frane net2312 net 1644 net 2313 net 1645 net 2318
net 1666 net 2317 net 2341 net 2311 net 2335) beam 1110 | =5. 1u+0. 9u
w=5. 1u angl e=90
[ 1029 (net2158 net 2350 net 2156 net 2348 net 2157 net 2349 net 2162
net 2354
net 2161 net 2353 net 2155 net2347) beam 1110 | =5.1u+1. 8u w=5. 1u
angl e=0
| 1030 (net2182 net 2362 net 2180 net 2360 net 2181 net 2361 net 2186
net 2366
net 2185 net 2365 net 2179 net 2359) beam 1110 | =5. 1u+1. 8u w=5. 1u
angl e=0
ends gyro_nens
/1 End of subcircuit definition

/1 Library nane: bikramgyro

/1 Cell name: gyro_simno_ckt

/1 View name: schematic

/1 Inherited view list: spectreS cdsSpice spice verilog behaviora

[/ functional hdl systemverilogNetlist schematic cnps.sch cnos_sch

//veriloga ahdl aulLvs

6 (0 ax_ext) position_source dc_val ue=ax_dc ac_nag=0 ac_phase=0
of f set =ax_dc anplitude=ax_sin frequency=100 phase=0

|7 (0 ay_ext) position_source dc_val ue=ay_dc ac_nag=0 ac_phase=0
of fset =ay_dc anplitude=ay_sin frequency=fext phase=0

Az (0 az_ext) position_source dc_val ue=az_dc ac_nag=0 ac_phase=0
of fset=az_dc anplitude=az_sin frequency=fext phase=0

CA (inp dr_bias) capacitor c=nisnt23.4501le-15

C5 (inn dr_bias) capacitor c=mi sntl. 09296e-16

CO (inp 0) capacitor c=500. 0f

ClL (inn 0) capacitor c=500. 0f

117 (0 phi_ext) angle_source dc_val ue=phi _dc ac_mag=0 ac_phase=0 off-

set =0
anpl i t ude=phi _anp frequency=fext phase=0

Phi x (0 phix_ext) angl e_source dc_val ue=0 ac_mag=0 ac_phase=0 of fset =0
anpl i t ude=phi x_sin frequency=fext phase=0
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Phiy (0 phiy_ext) angle_source dc_val ue=0 ac_mag=0 ac_phase=0 of fset =0
anpl i tude=phiy_sin frequency=fext phase=0

10 (ax_ext ay_ext az_ext inn inp phi_disp phi_ext phix_ext phiy_ext
dr _bias drive_| drive_r net90
net 90 net92 net92 x_disp y_disp) gyro_nens

V8 (drive_r 0) vsource dc=-drive_dc nmag=10 phase=0 type=si ne del ay=0
si nedc=0 anpl =drive_sin_r freqg=fdrive

VO (drive_| 0) vsource dc=drive_dc mag=10 phase=0 type=si ne si nedc=0
anpl =drive_sin freg=fdrive

V7 (net086 0) vsource dc=0 mag=0 phase=0 type=dc

V6 (net088 0) vsource dc=0 mag=0 phase=0 type=dc

V2 (net90 0) vsource dc=-2.5 mag=0 phase=0 type=dc

V3 (net92 0) vsource dc=2.5 nag=0 phase=0 type=dc

V1 (dr_bias 0) vsource dc=18 mag=0 phase=0 type=dc

save 10.phi _frame ay_ext x_disp y_disp phi_disp 10.x_frame_Ileft
0.y frane_left 10.x_franme_bot 10.y_franme_bot 10.x_frame_right
0.y franme_right 10.x_frame_top 10.y frame_top 10.x_proof |eft
10.y_proof left 10.x_proof_bot 10.y_proof_bot 10.x_proof_right
0.y _proof _right 10.x_proof_top 10.y_proof _top 10:4 10:3 inp inn
ax_ext
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