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Abstract 
This paper presents a report of an ongoing 

research project to test and evaluate temporal and 
other dependability properties of the battlefield 
single integrated picture (SIP). It explores modeling 
and simulations of information flows in the 
battlespace with a view toward enhancing the SIP. 
The main emphasis will be on level-one data fusion, 
i.e. detection, identification and tracking of 
platforms and classifying them as friendly, neutral 
or hostile. Thus, the study will focus on metrics that 
pertain directly to the flow of relevant information 
in the battlespace during the time period of a 
particular target-classification task, and the 
dependability of that information. 

 
Keywords – Data fusion, dependability, Force-

Net, metrics, sensors, single integrated picture, 
time-criticality 
 
1.  Introduction 
 

The purpose of this paper is to report an ongoing 
research project to test and evaluate properties of 
battlefield single integrated picture (SIP) that are 
associated with dependability and time criticality. In 
general, dependability includes accuracy, safety, 
security, fault tolerance, confidence, completeness, 
consistency, timeliness, and availability. For the 
purpose of this modeling and simulation (M&S) 
study, dependability will be determined by 
simulating data sets of independent variables, 
including latencies, and analyzing the statistical 
results. 

This work supports ForceNet, which is the 
operational construct and architectural framework 
for naval warfare in the information age. [3]. The 
goal of ForceNet is to integrate warriors, sensors, 
command and control, platforms, and weapons into 
a networked, distributed combat force [3]. Part of 
Force-Net’s plan is to increase sensor coverage [5]. 

M&S provide a preliminary means to test 
methods and concepts without conducting costly 
field trials. M&S can suggest efficient field tests that 
focus on specific problem areas. M&S trials can 
provide a cost-saving tool. However, it does not 
replace all field tests; it just allows researchers to 
limit the field tests to those that are most likely to 
yield a successful outcome. 

Our focus is on the data available at the message 
level of granularity, with a view toward measuring 
and modeling the value added of process automation 
in the building of the SIP. We identify a few metrics 
that can enhance human understanding rather than to 
focus on the metrics associated, for example, with 
the absolute accuracy of each sensor. We select 
metrics to enable a tractable analysis of data from a 
simulation for level-one data fusion that will 
characterize the dependability of a SIP. Level-one 
data fusion is defined as the fusion of data related to 
detection, tracking, classification and the 
identification of platforms. (See, for example, [8]). 

The paper is organized as follows. Section 2 
explores the concept of a SIP as it relates to this 
study. Section 3 describes criteria to define the 
scope of this study. Section 4 covers characteristics 
of metrics. Section 5 covers time criticality. Section 
6 describes the methodology, variables, and 
assumptions of the simulation. Section 7 covers the 
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generation of input data sets for the simulation. 
Section 8 briefly covers the status of the model-
evaluation effort. Section 9 suggests directions for 
future research. 

 
2. Single integrated picture 
 

A general definition of the SIP is “timely, fused, 
accurate, scalable, and reliable information from the 
entire battlespace (and) area of operations – undersea 
surface, ground, air, and cyberspace – maintained 
within realistic, combat-driven timelines that can be 
tailored to meet the mission-planning, execution, and 
assessment needs of each user” [7]. 

The definition stated above is consistent with the 
more specialized definition of SIP that will be used in 
this study. Here, the SIP is defined on an event-by-
event basis using a tailored data set that will include 
only the data relevant to the task or event under 
consideration. This will exclude large quantities of 
irrelevant data that could obscure in noise the salient 
features of each classification task. In the simulation, 
data will be considered only if they are 1. available 
within a limited time period and 2. germane to each 
specific target-classification event. 

For this study, such a data set, along with its 
metadata will be considered to constitute the SIP for 
that event. A comprehensive SIP of the battle space 
can be constructed for longer time periods by 
aggregating and summarizing the information that 
pertains to the events that occur during the time 
period.  
 
3. Criteria to define scope  

 
The selection of metrics for an M&S project is 

very important to the success of the effort. Ideally, 
the metrics selected should lead to a useful result 
that provides relevant information that can be 
translated into practical applications. Of the metrics 
that appear to be desirable, one must select the 
metrics that actually can be measured or reasonably 
estimated with some degree of realism and 
tractability. Measuring time intervals, enumerating 
events, specifying event sequences, and counting the 
number of data elements in a data cluster are all 
metrics that fall into this category. 

The ability to simulate an event or scenario does 
not imply that the results necessarily will be realistic 
or accurate. Therefore any approach to this problem 
must consider the tradeoff between realism and 

tractability. Metrics will be considered if they are 
both desirable and tractable, and if they pertain 
directly to the flow of relevant information in the 
battlespace during the time period of a particular 
target-classification task. 

The following criteria will be used to select 
metrics for this study, including measures of 
effectiveness (MOE) and measures of performance 
(MOP): 

• Desirability of application, 
• Tractability for M&S, 
• Validity of comparison between M&S results 
and operationally measurable quantity,  

• Relevance to the SIP,  
• Temporal factors, such as latencies that pertain 
to time-critical scenarios.  

To maintain the study within the realm of 
tractability, we will limit the scope to cover aspects 
of the SIP with regard to level-one fusion, which 
includes target detection, localization and 
classification. Therefore, problems in the following 
domains normally associated with battlespace-
information systems are considered outside the 
scope of this study and will not be addressed:  

• Communications in networks,  
• Data elements below message-level granularity, 
• Fusion algorithms and models that process data 

at the voltage level of sensor functionality, 
• Raw data from sensor arrays,  
• Image analysis at the pixel vs. feature level. 
The focus of this study is on existing sensors and 

message data from existing communication systems 
rather than on exploratory development. 

No single authority controls all sensors because 
communities that administer the various sensor 
types each have developed independently their own 
methods of operation. Therefore, sensors operate in 
a decentralized, distributed manner. No one 
regulates the overall amount of data produced across 
sensor types. This creates a situation of information 
overload for sensor-data analysts and command-
center personnel, among all the other challenges of 
sensor-data fusion. As a result, we do not have the 
capacity to analyze in every way all of the data from 
all sensors at our disposal, especially when such an 
analysis involves heterogeneous sensor types (e.g. 
acoustic and imagery).  

Given that this is the case, selecting data that will 
be the most useful to battlefield commanders is very 
important. Until now, few studies have been 
completed to characterize data flow in the battlefield 



with the goal of finding better ways to use the data 
from these existing sensors. 

General fusion of sensor-data sets of arbitrary 
size is an NP-complete problem. However this study 
is predicated on the premise that sensor-fusion 
metrics and the application of the appropriate 
models can provide heuristics to reduce the 
complexity of the problem into the realm of 
tractability.  

 
4. Metrics characteristics  

 
Design issues associated with metrics must be 

addressed before starting the design of test-data sets.  
In this simulation, we will control independent 

variables such as the sensor data-fusion schemata, 
data-element-cluster size, cluster-formation latency, 
fusion latency, and information pedigree that 
contribute to the SIP.  

We will input these data sets into one or more 
models that relate the independent variables to 
performance on target classification tasks in which a 
platform is identified as friendly, neutral, or hostile. 
We will collect statistics suitable for receiver-
operator characteristics (ROC) analysis. These 
statistics are hits (H), missed targets (M), correct 
rejections (CR) and false alarms (FA). Metrics for 
latencies also will be important here, as they relate 
to time-critical events.  Metrics useful in level-one 
fusion include probability of detection (P(d)), false-
alarm rate (FAR), probability of correct 
identification P(CID). These probabilities can be 
generated from H, M, CR and FA. 

In general, different metrics pertain to different 
aspects of dependability. Metrics provide a means to 
measure some aspects of dependability and provide 
some evidence that a fusion methodology is 
improving over time. Thus, H and M as defined 
above constitute MOPs. 

Various dimensions associated with metrics 
include aspects and characteristics of MOEs. MOPs 
are the interactions between these dimensions and 
aspects, as well as the metrics themselves. Many 
MOPs may contribute to a single MOE. For 
example, consider the MOE, “Determine the ability 
to recognize and react to theater air and missile 
threats.” A contributing MOP is “Number of hostile 
aircraft and missiles that penetrate friendly theatre 
defenses compared to total number of threat 
presentation (% successful threat penetrations.)” 

Our dependent variables represent MOPs. In this 
example, one MOP could be the number of missed 
airborne targets counted in a given section of air 
space. Thus, an overall MOE such as the missed-
target rate for the battle can be generated. 
 

The aspects of metrics used for M&S can be 
categorized according to several factors as follows. 
• Metrics must pertain to level-one data fusion. 
• Quantitative vs. subjective - For example, a 
distance is a directly measurable quantity whereas 
combat readiness is a quality that depends at least 
partially on subjective judgement. 
• Deterministic vs. stochastic – The measurement of 
latencies, for example, is deterministic whereas the 
collection of data for ROC analysis relies on 
statistics based on many observations. 
• Accuracy and timeliness – Measures of timeliness 
must be developed to assist evaluation of when to 
ignore data that have become outdated. The use of 
outdated quantities may lead to inaccurate results. A 
measure of timeliness will need to take into account 
the time criticality of the scenario (See section 5.) 
• Theoretical vs. empirical or pragmatic – Some 
metrics have a sound basis in theory whereas others 
may be used simply because they predict events 
without necessarily knowing the reason why.  
• Conditions of usage. Some metrics pertain to 
sensors that work best in clear weather and others 
may be just as effective in bad weather. This can be 
summarized in the metadata. 
• Consider tests of ablation – If a sensor’s input, i.e. 
a data element in a fusion cluster is omitted, will this 
have an impact on the results? Such tests can be 
resource intensive if conducted in the field, but a 
simulation should be able to increase the efficiency 
by an order of magnitude. 
• Consider that a metric may consist of two parts, 
the desired goal and a minimum acceptable value.  

 
5. Time criticality  
 

The SIP changes frequently. The faster the 
OPTEMPO of the battle, the faster it changes. As 
time-critical events emerge in the battlespace, so 
evolves the requirement to reduce data collection and 
processing time to meet emerging readiness 
requirements in real time. Therefore, inextricably tied 
to the notion of SIP in a battlespace is the notion of 
time criticality (TC), a definition for which has been 
offered in [2]. Two approaches to TC will be 



considered in this study. One is to ignore how metrics 
may be used in real time and approach metrics with 
the idea of evaluating factors in an analytical mode.   

The other way to approach metrics TC is to 
evaluate their usefulness in an operational scenario, 
in which case, we can apply metric evaluations in a 
decision mode where the time to evaluate the metric 
can occur within the timeframe of a time-critical 
horizon. In M&S, tradeoffs can be explored with 
respect to this use of metrics. The usefulness of 
metrics in the operational decision mode will depend 
not only on value added but also on the efficiency of 
application. Each metric needs to be evaluated vis-à-
vis how it affects TC and how the time-critical nature 
of the situation will least indicate the metrics that 
should be used at each stage of the analysis. Thus, the 
time to calculate, measure, or estimate each metric 
will be compared to the time to determine if using 
this metric is realistic given time constraints. 
 
6. Approach and methodology 
 

Threat assessments and real-time responses today 
depend on fusing data from disparate sources. Data 
arrive in different message types at different times 
into a command center where the SIP is being 
formulated, monitored, and updated constantly. One 
metric is the latency between the arrival time of a full 
data set and updates to the data set. Latency between 
SIP updates and action to engage targets is another 
latency that can be simulated and measured. 

In this simulation, initially, we will use metrics 
such as time measurements of latencies, statistics, 
and counting objects, such as data elements, fusion 
graphic structures (called schemata), and measures of 
the completeness of the SIP. The time between 
receipt of data and action to engage targets is another 
metric that could be useful to evaluate the utility for 
use in operational scenarios. However, this would 
need to be evaluated over many simulated tests. 

A Receiver Operator Characteristics (ROC) 
analysis can be performed on data collected from 
evaluating the outcomes of a series of target 
classification tasks, i.e. the dependent variables. The 
processed data resulting from calculating statistics 
that summarize these outcomes, i.e. the values of the 
dependent variables include the following: 

a. Hits (Example: correct classification of 
hostile or friendly platform, Se = Co), 

b. Missed targets (Example: failure to identify 
hostile platform, Se ≠ Co), 

c. False alarms (Example: classification of 
neutral or friendly platform as hostile, Se ≠ 
Co),  

d. Correct rejections (Example: correct 
classification of neutral platforms, Se = Co). 

The traditional receiver-operator characteristics 
(ROC) analysis need to be modified to account for 
the three-value case that includes the alternatives of 
hostile, neutral and friendly. (See section 6.4.) 

 
 6.1 Assumptions & definition of variables  
 

To simplify the scenario, we assume that the 
independent variables for a simulation define the SIP 
on a task-by-task basis. This reduces the number of 
data elements that need to be considered for each 
target ID to the set of data that directly pertain to the 
task. Thus, for the purpose of this simulation study a 
small number of data elements can be present. This is 
the set of data elements necessary to classify or 
identify the target. This set is assumed for simplicity 
to contain fewer data elements than the total required 
for an actual case. We consider also the number of 
data elements available to make the Identification 
Friend Foe (IFF) determination. Examples of data 
elements are a frequency, pulse repetition rate, 
platform latitude, longitude, depth, altitude, and 
platform heading. 

Let Nr be the ideal cluster size, i.e. the number of 
data elements that need to be present simultaneously 
for a positive identification and/or classification. 
Thus, Nr will be a small number that will be selected 
for tractability for the purpose of generating the 
simulation, excluding the trivial case of Nr = 1. When 
the simulation is well established and positive results 
have been obtained, Nr can be increased to a more 
realistic number used in actual fusion tasks. 

Similarly, Nt is defined as the size of the actual 
data cluster at time t, i.e. the number of relevant data 
elements actually present in an information base at 
time, t, where t is assumed to be the time when fusion 
starts. Nt is either a subset of Nr, or, equal to Nr in a 
best-case situation. For this study, the information 
base consists of a collection of data sources, such as 
knowledge bases, databases, messages, intelligence 
reports, and visual observations that can be captured 
as data, sent in messages, and introduced into the 
fusion process. Given these definitions, we can define 
the “completeness” of the single-integrated picture on 
a case-by-case basis as follows: Pc = Nt / Nr. Thus, if 
the raw data set is complete, Pc = 1. 



We consider only pair-wise data fusion and ignore 
any fusion algorithm that requires an input of three or 
more data elements simultaneously. For example, 
with a maximum Nr of 6, this implies a maximum of 
five successive pair-wise fusion steps. Three-way 
fusion and higher clusters result in more complicated 
fusion schemata. They can be considered in a future 
project when the simulation of pair-wise fusion is 
understood better and has been proven to be tractable. 

The independent variables include raw data-set 
size (Nt), ideal raw data-set size (Nr), fusion schema, 
and fusion latency. The dependent variables include 
target hits (H), missed targets (M), false alarms (FA), 
and correct rejections (CR) described above. These 
variables lend themselves well to ROC analysis. One 
can define a set of H, M, CR, and FA for target 
classification and another set for target identification. 
Target classification is the determination of the 
category of a platform, where the choices are hostile, 
neutral and friendly. Target identification is the 
determination of the exact identity of a platform, such 
as the name and/or hull number of a specific vessel, 
or the number on the fuselage of a specific aircraft. 
 
6.2 Fusion schemata and latencies 
 

The graphic fusion schemata for each target ID 
task and its latencies must be characterized. For 
example, the latency during which data clusters are 
formed, tc, is defined as the time that the last data 
element is received minus the time that the second 
element was received. (N.B. Data “groups” of size, N 
= 1, are not considered because they are not clusters.) 

Similarly, td can be defined as the “delay latency” 
between cluster formation and the onset of fusion.  

Lastly, the fusion time, tf, is the time between 
fusion onset and the completion of the fusion process. 
For fusion schemata with multiple fusion steps, tf 
will be the sum of the latencies for all linear steps for 
the longest fusion chain (i.e. the section of the 
schema with the limiting factor). This excludes 
shorter (i.e. faster) branches of the fusion chain that 
occur in parallel. In practice, tf can include the time 
interval represented by tc because fusion can begin 
before the data cluster is entirely formed. If this is the 
case, tc is included in, and entirely subsumed into tf. 

In practice, tf will depend on the fusion algorithm 
as well as the input data. However, for the purpose of 
this study, tf will be varied to simulate the execution 
times of various fusion algorithms.  

 

6.3 Examples of schemata 
 

Two-variable schema. The smallest allowable 
cluster is Nt = 2. This allows, at most, one pair-wise 
fusion between two variables, A and B, which can be 
represented as graph nodes that can take values of 
“raw data elements.” (N.B. For Nr = 2, Nt can be 1 or 
2, but we ignore the trivial case of 1.) F1 is another 
graph node that represents the result of a fusion 
between A and B. The pair formed by values of A 
and B when they are used together is called a “raw 
data pair.” F1 is not a variable that represents a raw 
data element because it is the result of fusion between 
A and B. F1, however, can participate in a fusion 
event with another raw data element in a pair-wise 
manner for Nt > 2. When used graphically, A and B 
actually are nodes in the graph that we call a fusion 
schema.  

Three-variable schema. For Nt = 3, the pair-
wise fusion situation is still graphically very simple. 
Consider raw data elements, A, B, and C, and fusion 
result, F1, for A – B fusion. F2 is the result of a 
fusion between F1 and C. Because we have restricted 
fusion to pairs only, Nt = 3 is still a very simple case. 

Four-variable schemata. For Nt = 4, two 
fusion schemata are possible. One is the four-node 
analog of the three-element case that minimizes the 
number of raw-data pairs involved in fusion. Here we 
have four nodes, one for each raw data element: A, B, 
C, and D. F1 and F2 are defined as above and F3 is 
defined as the result of fusion between F2 and D. 
This fusion schema, which we call S1, minimizes the 
number of fusion events involving raw-data pairs. In 
fact, the structure of any fusion schema with only one 
raw-data pair can be specified entirely by S1 and Nt. 

In contrast, the other fusion schema for Nt = 4, 
maximizes the number of fusion events involving 
raw-data pairs. In this schema, called S2, A fuses 
with B to form F1, whereas C fuses with D to form 
F2. F3 results from a fusion between F1 and F2.  

Each fusion event, F1, F2, F3, etc. will have a 
fusion latency associated with it. We call these 
latencies respectively tF1, tF2, tF3, etc. We can treat 
these latencies as independent variables for 
simulation purposes.  

Five-variable schemata. Three different fusion 
schemata are possible: S1 (only one raw data pair), 
and two schemata that satisfy the S2 requirement to 
maximize the number of raw data pairs. These S2 
schemata, called S2.1 and S2.2 are depicted in figures 



2 and 3. They have different connectivity. The 
process is illustrated in Figures 1, 2 and 3. 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. S1 fusion schema for five variables. 

 
 
 
 
 
 
 
 
  
 

 
 

Figure 2. S2.1 fusion schema for five variables. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. S2.2 fusion schema for five variables. 
 

Encoding a schema’s structure into shorthand 
notation is necessary to reduce the graph to machine-
readable format that can be stored in a database and 
sent in a message. We can specify the S2.1 schema 
using the following notation to denote results from 
fusion: F1 = (A, B), F2 = (C, D), F3 = (F1, F2) and 
F4 = (F3, E) where A, B, C, D and E are graph nodes. 
The Fs are fusion results from pair-wise fusion of 
raw data pairs (e.g., F1), fusion between two lower-

order fusion results (e.g., fig. 2, F3), or between raw 
data and a lower-order fusion result (e.g., fig. 2, F4). 
N.B. A node depends only on its parents. 

To facilitate the information-compression process, 
we can construct more complex schemata with many 
nodes from simpler, smaller schemata. For example, 
using a shorthand notation we can say that S2.1 =  
S1(2) + S1(3), where S1(2) and S1(3) are the fusion 
schemata for Nt=2 and Nt=2, respectively. Similarly, 
for Nt = 4, the S2 schema is the same as S2.1 in fig. 2 
except that the E node is not present when Nt=4. 
 
6.4 Three-value logic for IFF 
 

ROC analysis evolved for a two-value logic 
system whereas IFF by definition involves three 
alternatives. Consider the values of X = friend, Y = 
neutral, and Z = foe. H, M, CR and FA are 
determined by comparing the selected value to the 
correct value. K, the total number of IFF events, is 
the sum of H, M, CR and FA. ROC implementation 
requires additional details for the three-value case. 

A weighting system is needed in which the 
weights are determined by the value of making a 
correct choice or the consequence of an incorrect 
choice. We propose the following weighting system, 
where the weights, wij, range from 3 in the case of a 
hit to a weight of –3 for a worst-case incorrect 
designation. The exact value of each weight is an 
open research question and initially is assumed not to 
be as important as the rank order of the weighting 
factors. Se is the selected value, determined from 
data-fusion results, and Co is the correct choice 
(ground truth). The rules are summarized in Table 1. 

These weights are based on the following 
assumptions regarding the intended actions following 
a target-classification determination:  
a. A friendly force can get help from or render 

assistance to another friendly force but it will not 
expect help from neutral entities.  

b. A friendly force will either attack or be attacked by 
a hostile force. This assumption ignores covert 
operations where an attack on a hostile force may 
compromise the mission. Even then, a unit on a 
covert operation will want to make correct 
classifications of hostile platforms to prevent the 
hostile forces from detecting them.  

c. A friendly force will not attack another friendly 
force. This assumption ignores fratricide. 

d. A friendly force will neither protect, nor attack a 
neutral force. Neither will it expect any assistance 

A 

B 

C 

D 
E 

F1
F2 

F3 
F4

A 

B 

C 

D 
E 

F1

F2 

F3 

F4

A 

B 

C 

D 
E 

F1

F2 

F3 

F4



or resistance from it. This assumption ignores the 
case where friendly forces are tasked to protect 
neutral entities from attack by hostile forces that 
may have mistaken the neutral forces for friendly.  
Action probably is not required if the target 

classification is neutral. Thus, the reward for a 
correct identification of a neutral force is not as high 
as that of a hostile force that requires immediate 
action. 

 
Table 1. Proposed weighting factors for target-

classification results  
 

Correct vs. 
selected  
classification  

Hostile 
Se = X 

Neutral 
Se = Y 

Friendly 
Se = Z 

Hostile, 
Co = X 

WXX = 3 
Hit 

WYX = -2 
Missed 
target 

WZX = -3 
Missed 
target 

Neutral,  
Co = Y 

WXY = -2 
False 
alarm 

WYY = 2 
Correct 

rejection 

WZY = -1 
False 
Alarm 

Friendly,  
Co = Z 

WXZ = -3 
False 
alarm 

WYZ = -1 
Missed 
target 

WZZ = 3 
Hit 

 
6.5 Pedigree 
 

Pedigree is essentially the history, J, of a result. 
For example, J for a five-element fusion can be 
defined as follows: J = [a, b, c, d, e, f1, f2, f3, f4, 
S2.2] where “a” through “e” are the raw data 
elements that occupy graph nodes A through E. 
Values f1 through f4 are the results of fusion 
processes depicted in Figure 3. That is, they are the 
values that occupy graph nodes F1 through F4. S2.2 
designates the fusion schema in fig. 3.  

 
6.6 Dependability of the SIP 
 

In this study, the factors that contribute to the 
dependability of the SIP are data availability 
(completeness), timeliness, and accuracy. 
Availability is expressed in terms of metrics like Pc. 
Accuracy is determined by H, M, FA, CR as 
described in Table 1. This can be depicted further in 
ROC curves when summarizing aggregated data. 
Metrics for timeliness include the various process 
latencies. These variables represent measurable 
quantities, each of which result in a single number for 

each task or a statistic for an aggregated group of 
tasks.  

In contrast, pedigree, which is a form of metadata, 
is more difficult to quantify, especially in a 
compressed format. The pedigree of a fusion result 
can require much more space allocation than the 
result itself. In this study we initially define 
confidence as the completeness of the pedigree 
information that reaches the decision maker. Certain 
aspects of pedigree can be captured in a shorthand 
notation that specifies the input variables and depicts 
the fusion schema. For simplicity, we omit from this 
characterization of pedigree the identity and quality 
of each fusion algorithm. Introducing this element 
could be the topic of a follow-on research project. 

The dependability of the SIP for a single event or 
task is given by dsip = f [Pc, Nr, Nt, tc, td, tf, Wij, J, 
∂t] where ∂t is the time period during which the task 
occurs. The exact form of the dsip functionality is an 
open research question. The overall dependability of 
the SIP for an extended time period, ∂T, can be 
expressed as a weighted average of the dependability 
functions, dsip, for each target identification or 
characterization event that occurs in the battlespace 
during ∂T. Initially, the weights can be derived from 
Table 1. However, in a more advanced stage of the 
study, more specific weighting factors can be 
assigned to denote whether a specific target is a 
center of gravity or some other high-value asset.  

Thus, Dsip = f [ ∑dsip/K, ∂T ] where K is the 
total number of IFF events that occur during ∂T. 
 
7. Simulation data-set generation  
 

A random-number generator can be used to 
construct a distribution of complete pedigrees. We 
will include in the test data set some pedigrees that 
are incomplete varying the percent of complete 
pedigrees as an independent variable. A convenient 
way to construct distributions is to very this 
percentage by quintiles according to the level of 
completeness: 0%, 20%, 40%, 60%, 80% and 100% 
complete for statistically significant data sets of 
fusable data clusters. 

Other independent variables also can be selected 
randomly. For example, we can select a distribution 
of latencies for data arrival defined as the time 
between the arrival of the second data element in a 
fusion cluster and the onset of the fusion process. 
Similarly, the other latency can be selected from a 
distribution to be the time from the onset of fusion to 



the completion of the fusion process for a single pair 
of input variables, to include raw data elements, (A, 
B, etc.) and intermediate fusion results (F1, F2, etc.).  

We can select and vary the distribution of fusion 
times and the percent of data sets for which fusion is 
incomplete.  
 
8. Models  

 
The process of model evaluation and selection is 

in progress. A survey of models that pertain to 
battlespace scenarios has been completed. Thirty-two 
models have been selected for additional 
consideration from a total of 926 surveyed. The main 
challenge here will be to select or develop a model to 
evaluate the metrics of effectiveness and 
dependability. 
 
9. Directions for future research 
 

In a future study, fusion mechanisms can be 
treated as intermediate dependent variables that 
depend on the fusion process and its inputs. Quality-
of-service metrics need to be established for data 
fusion algorithms and for sensor networks in general.  

Technologies to support data fusion include 
knowledge-based systems and intelligent agents. A 
great deal of work has been done regarding clusters 
in databases [1] knowledge bases [6] and in data 
mining [4]. One direction of further inquiry is to 
determine how these techniques can be applied to 
clustering of data into data sets for fusion algorithms, 
and the automatic retrieval of data using intelligent 
agents for fusion tasks via intelligent agents. 
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