

AFRL-RI-RS-TR-2009-279
Final Technical Report
December 2009

HYBRID TECHNIQUES FOR OPTIMIZING
COMPLEX SYSTEMS

University of Michigan

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2009-279 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
STEVEN L. DRAGER EDWARD J. JONES, Deputy Chief
Work Unit Manager Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

DECEMBER 2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

January 2006 – June 2009
4. TITLE AND SUBTITLE

HYBRID TECHNIQUES FOR OPTIMIZING COMPLEX SYSTEMS

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-05-1-0282

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

John P. Hayes and Igor L. Markov

5d. PROJECT NUMBER
459T

5e. TASK NUMBER
HT

5f. WORK UNIT NUMBER
OC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Michigan
503 Thompson Street
Ann Arbor, MI 48109-1340

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2009-279

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2009-5050 Date Cleared: 4-December-2009

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This is the final technical report for a three year research project on Hybrid Techniques for Optimizing Complex Systems conducted
at the University of Michigan, Ann Arbor and sponsored by the Air Force Research Laboratory. The project's overall goal was to
investigate novel hybrid techniques that combine concepts from quantum and classical computer science to solve hard computational
problems, including the handling of uncertainty. The research problems considered include design optimization and simulation of
conventional CMOS and quantum systems, fault tolerance, resource allocation and scheduling, strategy optimization and related
challenges facing the Air Force. The research focuses on accurate modeling of practical metrics of performance, robustness and
cost, and their optimization in both linear and non-linear domains, using fast exact and heuristic methods, along with highly efficient
data representations. Errors in data and control due to environmental effects, as well as uncertainty in the problem formulation, are
taken into account during system modeling and optimization.
15. SUBJECT TERMS
Hybrid Techniques, Quantum Computing, Design optimization, Simulation CMOS Circuits, Fault Tolerance, Resource Allocation,
Strategy Optimization, Error Management

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

101

19a. NAME OF RESPONSIBLE PERSON
Steven L. Drager

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 i

Table of Contents

1. Executive Summary .. 1

2. Introduction ... 2

2.1. Topics Addressed ... 2

2.2. Project Participants ... 3

3. Logic Circuits Subject to Uncertainty ... 4

3.1. Summary .. 4

3.2. Introduction .. 4

3.3. Soft-Error Rate Estimation ... 5

3.3.1. Reliable Design Methods .. 7

3.3.2. Probabilistic Circuit Analysis ... 8

3.4. Signature-based Soft-error Analysis .. 8

3.4.1. SER in Combinational Logic .. 9

3.4.2. Faults, Signatures and Observability Don’t Cares .. 10

3.4.3. SER Evaluation ... 11

3.5. SER in Sequential Logic .. 13

3.5.1. Steady-State and Reachability Analysis ... 13

3.5.2. Error Persistence and Sequential Observability .. 14

3.5.3. Empirical Validation ... 16

3.6. Design for Robustness .. 18

3.6.1. Signature-Based Design .. 19

3.6.2. Empirical Validation ... 21

3.7. Probabilistic Transfer Matrices .. 22

3.7.1. PTM Basics ... 23

3.7.2. Applications .. 25

3.7.3. Computing with PTMs .. 26

 ii

3.8. Testing for Probabilistic Faults .. 27

3.8.1. Test-Vector Sensitivity ... 27

3.8.2. Test Generation ... 28

4. Wireless Network Optimization ... 32

4.1. Summary .. 32

4.2. Introduction .. 32

4.3. Impact of Mobility on Performance ... 35

4.3.1. Constant Velocity Model .. 35

4.3.2. Mobility Metric Relationships .. 38

4.4. Distributed Power-Aware Link Maintenance .. 40

4.4.1. Introduction ... 40

4.4.2. PALM Method .. 41

4.4.3. Performance Evaluation .. 42

4.4.4. Impact of MAC Parameters .. 44

4.5. Node Placement Optimization ... 45

4.5.1. Introduction ... 46

4.5.2. Base Station Placement Optimization ... 47

4.5.3. Simulation Results .. 49

4.5.4. Distributed Relay Placement Optimization .. 50

4.5.5. Simulation Results .. 51

5. Simulation and Verification of Quantum Circuits .. 55

5.1. Introduction .. 55

5.2. Algorithms for Quantum Circuit Simulation ... 56

5.3. Equivalence-Checking for Quantum Circuits .. 59

5.3.1. Global-Phase Equivalence .. 59

5.3.2. Relative-Phase Equivalence .. 63

5.3.3. Empirical Validation ... 65

 iii

5.3.4. Summary ... 66

5.3.5. Adaptive Equivalence-Checking .. 67

5.3.6. Preliminaries ... 67

5.3.7. Reversible Miters .. 68

5.3.8. Methodology for Equivalence Checking .. 69

5.4. Summary .. 75

6. Ising Systems and Quantum Adiabatic Computation ... 76

6.1. Introduction .. 76

6.2. Previous Work .. 77

6.3. Finding Exact Ground States .. 78

6.4. GSD through Local Search .. 79

6.5. Empirical Validation .. 80

7. Conclusion .. 82

8. References ... 83

9. List of Publications ... 90

10. List of Acronyms .. 91

 iv

List of Figures

Figure 1. Ionized track in a transistor caused by cosmic radiation [34]. 5

Figure 2. Basic SER computation algorithm. .. 6

Figure 3. Summary of differences between three SER evaluation tools. 6

Figure 4. Overall design flow of AnSER. .. 9

Figure 5. Signatures, ODC masks and testability information in a small circuit......................... 11

Figure 6. Algorithm to compute SER under the TSA fault model. ... 12

Figure 7. Illustration of bit-parallel sequential simulation. .. 14

Figure 8. Illustration of time-frame expansion into three frames: C0, C1, C2. 15
Figure 9. Algorithm to compute SER in sequential circuits under TSA faults............................ 15

Figure 10. Comparison of SER (FIT) data for AnSER and ATALANTA. 16

Figure 11. SER trends on inverter chains produced by SERD and AnSER. 17

Figure 12. Runtime comparisons of four SER analyzers. .. 18

Figure 13. SER evaluation with logic and timing masking. .. 18

Figure 14. (a) Rewriting a sub-circuit to improve area, and (b) Finding a candidate cover for a.

... 19

Figure 15. Improvements in SER obtained by SiDeR. .. 20

Figure 16. Improvements in SER obtained with local rewriting. .. 22

Figure 17. (a) Two-input AND gate, (b) Its ITM, and (c) A PTM with various error probabilities

for each input vector. .. 23

Figure 18. Circuit demonstrating PTM construction; dashed lines enclose fanout gates. 24

Figure 19. PTM structure of the circuit in Figure 18. .. 24

Figure 20. PTMs for several error types: (a) Fault free 2-1 MUX, (b) First input stuck-at 1, (c) Two

inputs swapped, (d) Probabilistic output bit flip with p=0.05, and (e) MUX replaced by XOR. . 25

Figure 21. (a) Sample logic circuit, (b) PTM where each gate experiences error with probability

p=0.05, and (c) ADD encoding of the PTM. .. 26

Figure 22. Algorithm for output computation. ... 28

Figure 23. Greedy algorithm for minimizing the number of test vectors (with repetition) required

for fault detection. ... 30

Figure 24. ILP formulations for test set generation with a fixed number of expected detections: (a)

To minimize the number of test vectors, and (b) To maximize fault resolution. 30

 v

Figure 25. Number of test vectors required to detect input signal faults with various threshold

probabilities pth. .. 31

Figure 26. Examples of MANET applications. ... 33

Figure 27. Representative topology control algorithms and their methodology. 34

Figure 28. Illustration of node movements in a MANET. ... 36

Figure 29. Plot of transmission probability pcomp vs. communication time τ. 37

Figure 30. Simulation results with RWP model. ... 38

Figure 31. Communication between nodes in PALM, including route redirection. 41

Figure 32. Simulation rsults with varying node speed and a CBR of 80kbps. 43

Figure 33. Simulation results with varying traffic rate and a node speed of 20 m/s. 43

Figure 34. (a) Hierarchical network with mobile BSs, and (b) Flat network with mobile relays.45

Figure 35. Four different network structures for BSP problems. .. 46

Figure 36. Network structure with single-hop communications: (a) User nodes (white) directly

communicate with a single BS (black), and (b) User nodes communicate with their nearest BSs.

... 47

Figure 37. Examples of: (a) Optimal, and (b) Sub-optimal BS placement. User nodes (white) form

a grid structure and BS locations (black) are computed by K-SH. ... 49

Figure 38. Total power consumption after: (a) Random seeding, (b) The seeding method of [34]

(original), (c) The seeding method of [34] (modified, and (d) The farthest first method. 49

Figure 39. Simulation results for placing n relays with no radio obstacles. 52

Figure 40. Simulation results for power consumption of relay placement algorithms: (a) Total

power consumption, and (b) Power overhead due to the distributed implementation. 52

Figure 41. Relay placement with obstacles; n denotes the number of added relays. 53

Figure 42. Simulation results for the proposed DRP algorithm: (a) Total power consumption, and

(b) Ratio of power consumption levels with and without obstacles. .. 54

Figure 43. Pseudo-code for the recursive global-phase equivalence check. 61

Figure 44. (a) Runtime results and regressions for the inner product and GPRC on checking

global-phase equivalence in a Grover iteration, and (b) QuIDD size of the state vector. 62

Figure 45. Pseudo-code for the element-wise division algorithm. .. 64

Figure 46. (a) Runtime results and regressions for various algorithms to check for relative phase

equivalence of the remote EPR pair circuit, and (b) Size of the QuIDD states. 65

 vi

Figure 47. Key properties of the QuIDD-based phase-equivalence checking algorithms. 66

Figure 48. Runtime results for equivalence-checking of reversible arithmetic circuits. 71

Figure 49. Runtime results for equivalence-checking of Quantum Fourier Transforms. 72

Figure 50. Runtime results for equivalence-checking of modular multiplication. 73

Figure 51. An example of circuit restructuring after simplification. ... 74

Figure 52. Pruning by dominance in our branch and bound algorithm. 79

Figure 53. Runtime comparison of optimal Ising solvers. ... 79

 1

1. Executive Summary

The overall objective of this project was to investigate novel hybrid techniques that combine
concepts from quantum and classical computer science to solve hard computational problems,
including the handling of uncertainty. The research problems considered include design
optimization and simulation of conventional CMOS and quantum systems, fault tolerance,
resource allocation and scheduling, strategy optimization and related challenges facing the Air
Force. The research focuses on accurate modeling of practical metrics of performance, robustness,
and cost, and their optimization in both linear and non-linear domains, using fast exact and
heuristic methods, along with highly efficient data representations. Errors in data and control due
to environmental effects, as well as uncertainty in the problem formulation, are taken into account
during system modeling and optimization.

The project’s main accomplishments include the following:

• An analytical study of probabilistic fault models in digital logic and their impact on overall
circuit performance. Probabilistic faults affect electronics in high-altitude and
high-radiation environments, especially state-of-the-art deep-submicron CMOS chips.

• New algorithmic methodologies and tools for circuit synthesis and test to mitigate the
impact of probabilistic faults. These methodologies include fast evaluation of circuit
reliability based on functional simulation, and incremental modification of a circuit to
improve its robustness.

• Analysis of mobile (wireless) ad hoc communication networks, focused on network
throughput and total power consumption.

• A non-linear programming framework for spatial optimization of mobile networks, its
empirical evaluation, and visualization of results.

• A new algorithm to simulate quantum circuits which exhibits polynomial-time
performance in several important cases. This algorithm and accompanying theoretical
results have been subsequently used by other researchers to show that the Quantum Fourier
Transform (QFT) can be simulated in polynomial time on conventional computers.

• Several techniques for verification of correctness of quantum circuits. These techniques
are based on computational engines frequently used in Electronic Design Automation
Boolean satisfiability (SAT) and binary decision diagram (BDD), fall under the category of
equivalence-checking, and can verify the results of adapting known circuits to specific
device architectures, such as linear ion traps.

 2

2. Introduction

This project encompasses several topics of interest to the Air Force—from near-term to
long-term—that concern hybrid classical-quantum systems affected by uncertainty. The work
reported includes algorithmic techniques and methodologies to simulate, compare and evaluate
hybrid systems, as well as to optimize them for robustness, performance and resource utilization.

2.1. Topics Addressed

One of the near-term efforts focused on probabilistic (non-deterministic) faults and errors in
electronic devices, particularly in semiconductor chips that are manufactured with increasing
device densities and miniature devices susceptible to transient particle strikes. Our results include
an extensive suite of algorithmic techniques to represent transient faults and quickly evaluate their
impact on a large circuit. We also developed a methodology for hardening a given circuit by
inserting a small amount of redundancy in carefully chosen sections of the circuit. This
methodology improves robustness of the circuit, while decreasing area and power overhead. We
also carried out one of the first studies of circuit testing for non-deterministic faults. Observing
that existing test patterns may have to be repeated in order to observe transient faults, we
developed algorithms for calculating replication factors for given tests.

A second near-term effort focused on mobile (wireless) ad hoc networks (MANETs), whose
structure can be determined by the locations and power levels of nodes and relays. We studied the
impact of these locations on network throughput and total power consumption, as well as run-time
reconfiguration of MANETs. To this end, we developed a non-linear programming framework
which determines locations so as to achieve the best compromise between resource consumption
and network throughput. The technique was evaluated on a number of realistic test-cases under
dynamic scenarios where network parameters change. The incremental changes in network
structure can be visualized and communicated to a human operator in real time.

Longer-term topics studied in our work include algorithms for simulation and comparison of
quantum circuits. This research pursued several complementary goals, such as exploring the
limitations of quantum computing, developing engineering tools to aid in the construction of
prototype quantum processors, and exploring possible applications of quantum techniques. In
particular, we developed new algorithms for simulating quantum circuits that achieve
polynomial-time efficiency in important cases, such as all depth-three quantum circuits and certain
approximate circuits for the Quantum Fourier Transform. These results show that more
sophisticated quantum circuits are required to achieve computational speed-ups.

 3

In conjunction with the need to optimize quantum circuits to particular device architectures, such
as linear ion traps, we developed several techniques for quantum circuit verification. One of these
is based on the quantum information decision diagram (QuIDD) data structure introduced in our
past DARPA-funded project. This technique can handle several phase-equivalence relations
relevant to quantum circuits, but is relatively slow. Another technique is the use of quantum and
reversible miters, in conjunction with circuit simplification. It can significantly reduce the
complexity of quantum verification instances and is compatible with other techniques, including
QuIDD-based methods. A third technique is based on Boolean satisfiability, and capitalizes on the
ongoing success of SAT techniques in industrial verification of digital logic.

We also started exploring simulation of atomic-scale systems represented by Ising models,
especially in conjunction with number-factoring through quantum adiabatic optimization. To this
end, we developed two techniques for energy minimization in Ising spin-glasses. One is a
branch-and-bound algorithm that finds ground states on 100 spins in one day, and one is a
local-search heuristic that approximates ground states on 1,000,000 spins in one day. Both can be
easily parallelized to multi-core CPUs and distributed systems.

2.2. Project Participants

Faculty at the University of Michigan who led this research were Professor John Hayes and
Professor Igor Markov. Current and former graduate students participating in this project at the
University of Michigan included Dr. Smita Krishnaswamy, Dr. George Viamontes, and Héctor
García. Lastly, Dr. Ilia Polian from the University of Freiburg and Professor Shigeru Yamashita of
the Ritsumeikan University collaborated with us.

 4

3. Logic Circuits Subject to Uncertainty

3.1. Summary

Integrated circuits (ICs) are becoming increasingly susceptible to uncertainty caused by soft errors,
inherently probabilistic devices, and manufacturing variability. To address these issues, we have
developed methods for analyzing, designing, and testing circuits subject to probabilistic effects.
The main contributions of this work are: fast, soft-error rate (SER) analysis methods and software
tools that use functional-simulation signatures to capture error effects, novel design techniques and
software tools that improve reliability using little area and performance overhead, a matrix-based
reliability-analysis framework (probabilistic transfer matrices or PTMs) that can capture many
types of probabilistic faults, and test generation and compaction methods aimed at probabilistic
faults in logic circuits.

Further details concerning the material in this chapter can be found in Smita Krishnaswamy’s 2008
Ph.D. dissertation [12] and related publications [13-21].

3.2. Introduction

Digital systems have always been vulnerable to a variety of manufacturing and wearout defects.
Over time, IC technology scaling has increased device sensitivity to soft errors caused by external
noise or radiation that temporarily affects circuit behavior without permanently damaging the
hardware. With the advent of nanoscale computing, soft errors are beginning to affect not only
memory but also combinational logic. Unlike memory, errors in combinational logic cannot be
easily corrected and can lead to potentially disastrous failures in error-critical systems such as
aircraft, medical devices, and servers. New device technologies such as carbon nanotubes and
quantum computers exhibit inherently probabilistic behavior due to quantum-mechanical effects.
Resilience under these sources of uncertainty is vital for continued technology and performance
improvements. Due to the high cost and power consumption of ICs, the widespread addition of
redundancy is not a practical option for curtailing error rates. Instead, careful circuit analysis and
low-cost methods of improving reliability are necessary. Further, circuits must be tested
post-manufacture for their vulnerability to both transient faults and manufacturing defects.

A soft error is a signal that has an incorrect logic value but does not imply a permanent defect.
Such errors are one of the main causes of uncertainty and failure in logic circuits [34]. They can be
caused by cosmic rays, α-particles, and even thermal noise. When a particle strikes the sensitive
area of a logic gate, it can cause an ionized track known as a single-event upset (SEU), as shown in
Figure 1. An SEU is a transient or soft fault, as opposed to a permanent fault. SEU effects do not
propagate if the charge deposited is below the critical charge Qcrit required to switch the
corresponding transistor on or off. If an SEU deposits enough charge to cause a spurious signal
pulse or glitch in the circuit, it produces a soft error. Error propagation from the fault site to a
flip-flop or primary output is stopped if there is no sensitized path for error propagation. If a soft
error is transmitted to and captured (latched) by a flip-flop, it can persist in a system for many
clock cycles.

 5

 A single latched error can also fan out to multiple flip-flops. Unlike errors in memory, errors in
combinational logic cannot be rectified by error-correcting codes without incurring significant
area overhead. Hence, it becomes vital to find ways to accurately analyze and decrease the
soft-error rate of a circuit through careful design

Figure 1. Ionized track in a transistor caused by cosmic radiation [34].

3.3. Soft-Error Rate Estimation

Several factors determine the SER of a logic circuit. An SEU must have sufficient energy to
change a signal and propagate the erroneous signal value through subsequent gates; if not, the fault
is electrically masked. The signal change must propagate through the logic to affect a primary
output; if not, the fault is logically masked. The fault must reach a flip-flop during the sensitive
portion (latching window) of a clock cycle; if not, the fault is temporally masked. These various
masking effects depend on the characteristics of the gates encountered by a fault on its way to the
primary outputs, as well as on the particular paths taken. Any path taken must have
non-controlling values on side inputs, so different input vectors can sensitize different sets of
paths.

The SER can be computed using the basic algorithm shown in Figure 2. Here, Perr is the
probability of an error on a signal node. It is computed using the following variables: P(i), the
probability of vector i being applied to the input; Pstrike(n), the probability of a fault at n;
Pattenuate(path(p)), the probability of attenuation along path p; and Platch(p;o), the probability of an
error on p arriving at output o during clock latching. Neglecting to model any of these factors
leads to overestimation of the SER. This algorithm is only practical for the smallest of circuits, as
the number of possible sensitized paths grows exponentially in the size of the circuit [30].
Therefore, even determining the probability of logical masking is NP-hard.

 6

Figure 2. Basic SER computation algorithm.

Several software tools exist for estimating the SER of combinational circuits. Soft-error rate
analysis (SERA) [38] follows Figure 2 and, using designer-specified input vectors, finds all paths
from each gate to an output. SEU-induced glitches are simulated on representative inverter chains
of the same lengths as the target paths to determine the probability of electrical masking. Fast
analysis of soft-error (FASER) [39] uses binary decision diagrams to enumerate all possible input
vectors. A BDD is created for each gate in a circuit: a static BDD for gates outside a glitch’s cone
of influence, and duration and amplitude BDDs for gates within that cone. The BDDs are
combined in a way that allows the width and amplitude of glitches to be systematically analyzed
with respect to electrical masking. FASER's BDD representations can consume a lot of memory
space. Single event transient (SET) [31] proceeds in topological order and considers each gate
only once. For each gate, SET encodes the probability and shape of a glitch as a Weibull
probability density function called a SER descriptor (SERD). The Weibull parameters are
modified at each gate to account for electrical attenuation, and the new output SERDs are passed
on to succeeding gates. The SET algorithm is similar to static timing analysis (STA) and so does
not consider false paths. Figure 3 summarizes the characteristics of the tools described above, as
well as their methods for incorporating masking mechanisms. Because of their different
assumptions and vastly different ways of computing SER, they can yield very different SER values
for the same circuit.

Figure 3. Summary of differences between three SER evaluation tools.

 7

Our work aims to build SER analysis tools that are scalable and can be used early in the logic
design phase [15, 18, 19]. Due to our emphasis on reliability-driven logic design, we focus on
modeling logical masking both accurately and efficiently. We then use our tools to guide several
design techniques to improve circuit resilience against soft errors.

3.3.1. Reliable Design Methods

Techniques for transient-fault tolerance have been developed for use at nearly all stages of the
design flow. They rely on enhancing masking mechanisms to mitigate error propagation. Here,
we discuss several techniques and highlight their masking mechanisms. Faults can be detected at
the architectural level via some costly form of redundancy and can be corrected by rolling back to
a checkpoint to replay instructions from that checkpoint. Techniques that involve replicating an
entire circuit increase chip area significantly and, therefore, decrease chip yield. For example,
Mohanram and Touba [26] proposed to partially triplicate logic by selecting regions of the circuit
that are especially susceptible to soft errors. Such regions are selected by simulating faults with
random test vectors. More recently, Almukhaizim et al. [2] presented a design modification
technique, called rewiring, to increase reliability. In the spirit of [2], our work focuses on
lightweight modifications that increase reliability without requiring large amounts of redundancy.

Chip manufacturers routinely test their chips for SER [23, 36, 37]. This is normally accomplished
through field testing or accelerated testing. In field testing, many devices are connected to testers
and evaluated over several months under normal operating conditions. In accelerated testing,
devices are irradiated with neutron or α-particle beams, thus shortening test time to a few hours.
There is some difficulty, however, in translating the SER obtained by accelerated testing to that of
field testing [11]. For instance, intense radiation can cause multiple simultaneous errors,
triggering system failures more often than normal.

As an alternative to field testing, Hayes, Polian and Becker [9] propose a non-concurrent built-in
self-test (BIST) architecture for online testing. They define the impact of various soft faults on the
circuit in terms of frequency, observability, and severity. For instance, more frequent and
observable faults are considered more influential than rare faults. With this fault characterization,
integer linear programming (ILP) is used to generate tests for various objectives, such as ensuring
a minimum fault-detection probability. Researchers have sought to accelerate testing by
employing test patterns that sensitize faults. Conceptually, the main difference between testing for
hard errors rather than soft errors is that soft errors are only present for a fraction of the test time.
Therefore, test vectors must be repeated to detect faults, and they must be selected to sensitize the
most frequent faults. Sanyal et al. [33] accelerate testing by selecting a set of error-critical nodes
and deriving test sets that, using ILP, sensitize the maximum number of these faults. In our work,
which preceded [33], we developed a way of identifying error-sensitive test vectors for multiple
faults, and we devised algorithms for generating test sets to accelerate SER testing [13, 14].

 8

3.3.2. Probabilistic Circuit Analysis

Circuit design and testing calls for new types of probabilistic analysis that go beyond soft error
analysis only. In our work, we developed a novel probabilistic matrix-based model for gates, and
we use matrix operations and symbolic methods to evaluate overall circuit error probabilities, as
discussed later. In earlier work, Bahar et al. [5] propose to model and design carbon nanotube
(CNT)-based neural networks using Markov random fields (MRFs). MRFs specify joint
probability distributions in terms of local conditional probabilities, but they can also describe
cyclic dependencies. A neural network is described by an MRF with node values computed by a
weighted sum of conditional probabilities of a neighboring clique of nodes. This is known as the
Gibbs formulation and lends itself to optimizing for clique energy, which is translated into low
node error probabilities in [5]. Related to this, Nepal et al. [27] present a method for implementing
MRF-based circuits in CMOS, while Bhadhuri et al. [4] describe a software tool called Nanolab,
which uses the algorithm from [5] to automate the design of fault-tolerant architectures.

In more recent work than our’s, Rejimon and Bhanja [32] propose capturing errors in nanoscale
circuits by means of Bayesian networks. (A Bayesian network is a directed graph with nodes
representing variables and edges representing dependence relations among the variables.) If there
is an edge from node a to node b, then a is a parent of b. The joint probability distribution for n
variables x1:xn is represented as the product of the conditional probability distributions:

To carry out numerical calculations on a Bayesian network, each node xi is labeled with a

probability distribution, conditioned on its parents. The probability distribution can be given in

tabular form. Primary inputs are given pre-defined probabilities and the probabilities of other

nodes are then computed using a method called belief propagation. Joint probabilities are

computed in large Bayesian networks using sampling methods such as importance sampling.

Many tools [28] exist for Bayesian network analysis.

3.4. Signature-based Soft-error Analysis

As discussed above, it is important to be able to efficiently and accurately analyze SERs during the
actual design process. We now present our SER analyzer called analysis of soft-error rate
(AnSER). This tool uses functional simulation to estimate logic masking and to account for the
input-vector dependence in timing and electrical masking. Since exact analysis is impractical for
all but the smallest of circuits, we estimate parameters like signal probability and observability,
which are closely connected to the probability of error propagation, using a new and very efficient
signature-based method.

 9

Figure 4 illustrates the flow of computation in AnSER. Functional-simulation signatures are
computed from logical information, error-derating factors from gate-characterization information,
and error-latching windows from static-timing analysis. These smaller computations are
combined to form an estimate of circuit SER. Since AnSER is intended to be used alongside
logical and physical design tools, we pay particular attention to runtime, memory requirements,
and the incremental-use model.

Figure 4. Overall design flow of AnSER.

The remainder of this chapter develops our method for computing the SER of logic circuits by
accounting for logic masking, extends this methodology to sequential circuits, and incorporates
timing and electrical masking into our SER estimates. Further details of the techniques and results
appear in [12].

3.4.1. SER in Combinational Logic

We now consider a SER analysis method for combinational logic which, by definition, contains no
memory. We first develop fault models for soft errors. Then, we provide background on
functional-simulation signatures, which are used extensively in AnSER. Next, we derive SER
algorithms for single and multiple fault assumptions using signal probability and observability
measures that are computed using signatures.

 10

3.4.2. Faults, Signatures and Observability Don’t Cares

We first formulate a model for transient faults that is suitable for SER analysis. Formally, a
transient stuck-at (TSA) fault is a triple (g, v, Perr(g)) where g is a circuit node, v is a logic value,
and Perr(g) is the probability per clock cycle of a stuck-at-0/1 fault when the node has correct
value v. The advantage of basing a fault model on the standard stuck-at (SA) model for permanent
faults is that the same automatic test pattern generation (ATPG) tools can be used for SA and TSA
faults. The TSA fault model assumes that at most one fault occurs in any clock cycle. This
assumption is common in SER research because for most technologies, the intrinsic error rate is
very low. The contribution of each gate to the SER depends on the SEU rate of the particular gate,
as captured by Perr(g) and on the observability of the error. The TSA model can readily be
extended to several types of multiple transient multiple faults.

A signature, denoted, sig(g) = Fg(X1) Fg(X2)…Fg(XK), is the sequence of logic values observed at
node g in response to applying a sequence of K input vectors X1, X2…XK to the circuit. We use
node signatures for three purposes: to compute the SER, to identify error-sensitive areas of the
circuit, and to identify redundant nodes for resynthesis. Here, Fg(Xi) indicates the value appearing
at g in response to Xi, so the signature partially specifies the Boolean function Fg realized by g.
Applying all possible input vectors (exhaustive simulation) generates a signature that corresponds
to a full truth table. In general, sig(g) can be seen as a kind of “supersignal” composed of
individual binary signals that are defined by some current set of vectors. Like the individual
signals, sig(g) can be processed by EDA tools such as simulators and synthesizers as a single entity.
This processing can take advantage of bitwise operations available in CPUs to speed up the
computation compared to processing the signals that compose sig(g) one at a time.

Signatures with thousands of bits can be useful in pruning non-equivalent nodes during
equivalence checking [29, 40]. A related speedup technique is also the basis for “parallel” fault
simulation [7]. Figure 5 shows a 5-input circuit where each of the 10 nodes is labeled by an 8-bit
signature computed with eight input vectors. These vectors are randomly generated, and
conventional functional simulation propagates signatures to the internal and output nodes. In a
typical implementation such as ours, signatures are stored as logical words and manipulated with
64-bit logical operations, ensuring high simulation throughput. Therefore 64 vector simulations
are conducted in parallel with each signature processed. Generating K-bit signatures in an N-node
circuit takes O(NK) time.

 11

Figure 5. Signatures, ODC masks and testability information in a small circuit.

Observability don't-cares (ODCs) occur at a node g for input vectors for which the value at g does
not affect the primary outputs. For example, in the circuit AND(a; OR(a,b)), the output of the OR
gate is inconsequential when a = 0. Hence, input vectors 00 and 01 are ODCs for b. Corresponding
to the K-bit signature sig(g), the ODC mask of g is the K-bit sequence whose i-th bit is 0 if input
vector Xi, is in the don't-care set of g; otherwise the i-th bit is 1, that is, ODCmask(g) = X1 ∉
ODC(Fg) X2 ∉ODC(Fg)…XK ∉ ODC(Fg). The ODC mask is computed by bitwise inverting sig(g)
and re-simulating through the fan-out cone of g to check if the changes are propagated to any of the
primary outputs. ODC masks can be computed exactly in time O(N2) for a circuit with N gates.
We found the faster heuristic algorithm presented in [29], which has only O(N) complexity,
convenient to use. Figure 5 shows a sample 8-bit signature and the accompanying ODC mask for
each node of the example 10-node circuit.

3.4.3. SER Evaluation

We compute the SER by counting the number of test vectors that propagate the effects of a
transient fault to outputs. Figure 6 summarizes our algorithm for SER computation. It involves
two traversals of the target circuit: one to propagate signatures forward and another to propagate
ODC masks backwards. The fraction of 1s in a node's signature is an estimate of its signal
probability, while the relative proportion of 1s in an ODC mask indicates observability. The two
measures are combined to obtain a testability figure-of-merit for each node of interest, which is
then multiplied by the probability of the associated TSA to obtain the SER for the node. This
approach can be contrasted with technology-dependent SER estimates, which include timing and
electrical masking.

 12

Figure 6. Algorithm to compute SER under the TSA fault model.

We estimate the probability P[g = 1] of signal g having logic value 1 by the fraction of 1s in the
signature sig(g); this is often called the controllability of g. The observability P[obs(g)] of g is the
probability that a change in the signal’s value changes a primary output, and is approximated by
the number of 1s in g’s ODC mask. The 1-testability of g is the probability that its correct value is
1 and that it is observable.

P[test1(g)] = ones(sig(g)&ODCmask(g)/K

Similarly, 0-testability is the number of positions where the ODC mask is 1 and the signature is 0.
Consider again the circuit in Figure 5. For node g we have sig(g) = 01011011 and ODCmask(g) =
01000100. Hence, P[g = 1] = 5/8, P[g = 0] = 3/8, P[obs(g)]= 2/8, and P[test0(g)] = P[test1(g)] =
1/8.

In a circuit C, we sum the SER contributions of the gates, and weight the gate error probabilities by
the testability for each TSA fault. Hence, we can write:

For example, if each gate in Figure 5 has TSA-1 probability Perr0 = p and TSA-0 probability
Perr1 = q, then the SER is given by Perr(C) = 2p + (13/8)q. The metrics test0 and test1 implicitly
incorporate error sensitization and propagation conditions. Hence, the last equation accounts for
the possibility of an error being logically masked.

 13

3.5. SER in Sequential Logic

We can extend our SER analysis to handle sequential circuits, which contain state storage elements
(D flip-flops). The combinational logic computes state information and primary output values as a
function of the current state and primary inputs. Three factors to consider while analyzing
sequential-circuit reliability are: steady-state probability distribution, state reachability, and
sequential observability.

3.5.1. Steady-State and Reachability Analysis

In order to approximate the steady-state distribution, we perform sequential simulation using
signatures. Assume that a circuit with m flip-flops L = {l1,l2,…lm} is in state SL = {s1,s2,…sm}. Our
method starts in state S0 for each simulation run (sets of 64 states are processed in parallel), then
we simulate the circuit for n cycles. Each cycle propagates signatures through the combinational
logic and stops when flip-flops are reached. Primary input values are generated randomly from
some fixed probability distribution. At the end of each simulation cycle, flip-flop inputs are
transferred to flip-flop outputs, which are, in turn, fed into combinational logic for the subsequent
cycle. All intermediate signatures are erased before the next simulation cycle starts. The K-bit
signatures of the flip-flops at the end of n simulations cycles define K states. We claim that for
large enough n, these states are sampled from the steady-state probability distribution. Empirical
results suggest that most ISCAS benchmarks reach steady-state in 10 or fewer cycles, under the
above operating conditions [25].

Additionally, our signature-based SER analysis methods can handle systems that are
decomposable. Such systems pass through some transient states and are then confined to a set of
strongly connected closed (SCC) states. That is, the system can be partitioned into transient states
and sets of SCC states. For such systems, the steady-state distribution strongly depends on the
initial states. We address this implicitly by performing reachability analysis starting at a reset state.
Thus, each bit of the signature corresponds to a simulation that starts from a reset state and
propagates through the combinational logic, moves to adjacent reachable states, and, for a large
enough n, reaches steady-state within the partition.

 14

Figure 7. Illustration of bit-parallel sequential simulation.

Using our algorithm, simulating a circuit with g and K-bit signatures for n simulation cycles takes
time O(Kng). Note that it does not require matrix-based analysis, which is often the bottleneck in
other methods. For example, Markov matrices are used to encode state-transition probabilities
explicitly, and so can be large due to state-space explosion [25]. Figure 7 shows an example of
sequential simulation with 3-bit signatures. The flip-flops with outputs x and y are initialized to
000 in cycle T0, then the combinational logic is simulated. For cycle T1, the inputs of x and y are
transferred to the output, and the process continues. At the end of the simulation, the values for x
and y at T3 are saved for sequential-error analysis, as explained below.

3.5.2. Error Persistence and Sequential Observability

To assess the impact of soft faults on sequential circuits, we analyze several cycles through which
faults persist, using time-frame expansion. This means making n copies of the circuit C0,C1,…Cn-1,
thereby converting a sequential circuit into a pseudo-combinational one with n time frames. The
outputs of the flip-flops of the k-th frame are connected to the primary inputs of frame k + 1 for 0 <
k < n - 1. Flip-flop outputs that feed into the first frame (k = 0) are treated as primary inputs, and
flip-flop inputs of frame n are treated as primary outputs. Figure 8 shows a three-time-frame
circuit that corresponds to Figure 7. Note how new primary inputs and outputs are created,
corresponding to the inputs from flip-flops for frame 0 and outputs of flip-flops for frame 3.
Intermediate flip-flops are represented by buffers.

 15

Figure 8. Illustration of time-frame expansion into three frames: C0, C1, C2.

Observability is analyzed by considering all n frames as a single combinational circuit, thus
allowing the single-fault SER analysis described in the previous section to be applied to sequential
circuits. Other useful information, such as the average number of cycles during which faults
persist, can also be determined using time-frame expansion. After the multi-cycle sequential
simulation described above we store the signatures of the flip-flops and use signatures to stimulate
the newly created primary inputs in the time-frame expanded circuit. For instance, the x0 and y0
inputs of the circuit in Figure 4 are simulated with the corresponding signatures, marked T3 (the
final signature after multi-cycle simulation is finished). Randomly generated signatures are used
for primary inputs not corresponding to flip-flops (such as a0 and b0 in Figure 8).

After simulation, we perform ODC analysis starting from the primary outputs and flip-flop inputs
of the n-th frame Cn and moving all the way to the inputs of the 0-th frame. In other words, errors
in primary outputs and flip-flops are considered to be observable. Figure 9 gives our algorithm for
sequential SER computation. The value of n can be varied until the SER stabilizes, i.e., does not
change appreciably from frame n to frame n +1. The n-frame ODC-analysis can lead to different
gates being seen as critical for SER. For instance, the designer can deem errors that persist longer
than n cycles as more critical than errors that are quickly flushed at primary outputs. In this case,
the ODC analysis only considers the fan-in cones of the primary outputs of Cn.

Figure 9. Algorithm to compute SER in sequential circuits under TSA faults.

 16

The SER algorithm in Figure 6 runs in linear time with respect to circuit size, since each simulation
is linear and ODC analysis (even with n time frames) runs in linear time as well. To capture
electrical masking in AnSER, we derate gate-error probabilities by a factor dependent upon the
characterization of successor gates. Previous research has shown that electrical masking
eliminates low-energy SEUs in 3-4 levels of logic and has little effect thereafter [26]. This implies
that considering paths of limited length starting from the gate in question is often sufficient to
approximate this effect. We have also developed a linear-time algorithm in the spirit of static
timing analysis for computing the error-latching window (ELW) of every gate in a circuit; see [12]
for details.

3.5.3. Empirical Validation

We now report some empirical results for SER analysis using AnSER and our SER-aware
synthesis techniques. The experiments were conducted on a 2.4 GHz AMD Athlon 4000+
workstation with 2GB of RAM. The algorithms were implemented in C++. For validation
purposes, we compare AnSER with complete test-vector enumeration using the ATPG tool
ATALANTA [22]. We provided ATALANTA with a list of all possible SA faults in the circuit to
generate tests in “diagnostic” mode, which calculates all test vectors for each fault. We used an
intrinsic gate-fault value of gerr0 = gerr1 = 1 x 106 on all faults. Since TSA faults are SA faults
that last only one cycle, the probability of a TSA fault causing an output error is equal to the
number of test vectors for the corresponding SA fault, weighted by their frequency. Assuming a
uniform input distribution, the fraction of vectors that detect a fault provides an exact measure of
its testability. Then, we computed the SER by weighting the testability with a small gate fault
probability. While the exact computation can be performed only for small circuits, Figure 10
suggests that our algorithm is accurate to about 3% for 2,048 simulation vectors.

Figure 10. Comparison of SER (FIT) data for AnSER and ATALANTA.

 17

We isolate the effects of two possible sources of inaccuracy: sampling inaccuracy, and inaccuracy
due to approximate ODC computation. Sampling inaccuracy is due to the incomplete enumeration
of the input space. Approximate ODCs computed using the algorithm from [29] incur inaccuracy
due to mutual masking. When an error is propagated through two reconvergent paths, the errors
may cancel. However, the results in Figure 10 indicate that most of the inaccuracy is due to
sampling, not approximate ODCs. The last two columns, corresponding to exact ODC
computation, show an average error of 2.65%. Therefore, only 0.41% of the error is due to the
approximate ODC computation. On the other hand, while enumerating the entire input space is
intractable, our use of bit-parallel computation enables significantly more vectors to be sampled
than other techniques for the same computation time.

To characterize the gates in the circuits accurately, we adapted data from [31], where several gate
types are analyzed in a 130nm, 1.2 VDD technology via simulation program with integrated circuit
emphasis (SPICE) simulations. We use an average SER value of gerr0 = gerr1 = 8 x 10-5 for all
gates. The SER analyzers from [31, 38, 39] report error rates that differ by orders of magnitude,
SERA tends to report error rates on the order of 10-3 for 180nm technology nodes, and FASER
reports error rates on the order of 10-5 for 100nm. Furthermore, although our focus is logic
masking, we also approximate electrical masking by scaling our fault probabilities at nodes by a
small derating factor to obtain trends similar to those of [31]. In Figure 11, we compare AnSER
and SERD when computing SER for inverter chains of varying lengths. Since one path is always
sensitized in this circuit, it helps us estimate the derating factor.

Figure 11. SER trends on inverter chains produced by SERD and AnSER.

Figure 12 compares with the previous work on some ISCAS-85 benchmarks. While the runtimes
in [8] include 50 runs, the runtimes in [31] are reported per input vector. Thus, we multiply data
from [31] by the number of vectors (2,048) used there; our runtimes appear better by several orders
of magnitude. We believe that this is due to the use of bit-parallel functional simulation to
determine logic masking, which has a strong input-vector dependency. Most other work uses fault
simulation or symbolic methods.

 18

Figure 12. Runtime comparisons of four SER analyzers.

Figure 13 shows changes in SER when timing masking is considered. Incorporating timing
masking into SER is useful in guiding physical synthesis operations, while considering logic
masking alone suffices for technology-independent logic synthesis.

Figure 13. SER evaluation with logic and timing masking.

In summary, efficient analysis methods are necessary for assessing and reducing the SER of a
circuit. AnSER, our linear-time method for the logic-level soft-error analysis, achieves its low
runtimes by functional simulation signatures, which enable a fast and accurate method for
computing signal probability and observability, even in the presence of reconvergent fan-out. We
analyzed sequential circuits using AnSER and employing multicycle simulation and time-frame
expansion. In addition, we incorporated timing masking through error-latching windows which
were computed using timing analysis information. Our results on the standard benchmarks
generally showed 2 to 3 orders of magnitude speed-up over previous SER analyzers, and high
accuracy when validated against the ATALANTA ATPG tool.

3.6. Design for Robustness

At the gate level, soft errors have traditionally been eliminated via costly time or space redundancy.
However, as we show here, it is possible to achieve major improvements in reliability without
resorting to massive redundancy. In combinational logic, an SEU only affects the primary outputs
if it is propagated through the intermediate gates. A basic way that designers can improve a
circuit’s reliability is to ensure that faults are logically masked with high probability. We target
logic and timing masking to obtain soft-error-tolerant circuits in the following ways: 1) by
identifying and using partial redundancy already present within the circuit, to mask errors; 2) by
selecting error-sensitive areas of the circuit for replication or hardening; 3) by generating many
candidate rewrites for each subcircuit and selecting among them for improvements in area and
SER; and 4) by increasing timing masking during physical design.

 19

3.6.1. Signature-Based Design

We now describe a technique called signature-based design for reliability (SiDeR), which
identifies redundancy already present in the circuit and utilizes it to increase logic masking. As
previously discussed, signatures provide partial information about the Boolean function of a node.
Therefore, candidate nodes with similar functionality can be identified by matching signatures.
We exploit the fact that nodes need not implement identical Boolean functions to bolster reliability.
Any node that provides predictable information about another can be used to mask errors. For
instance, if two internal nodes x and y satisfy the property (y = 1) ⇒ (x = 1), where ⇒ denotes
“implies”, then y gives information about x whenever y = 1. More generally, if f (x0,x1, x2,…xn) =
x, then x can be replaced by f to logically mask errors that are propagated through x. However,
errors at x are only masked in cases where x does not control f.

We can increase the number of potential candidates that can replicate x by taking ODCs into
account. In terms of signatures, this corresponds to bitwise ANDing sig(f) and sig(x) by
ODCmask(x) to check for the following relation:

sig(f)&ODCmask(x) = sig(x)&ODCmask(x)

Figure 14(a) shows an example of replicated logic for node a, derived by utilizing don't-care
values and signatures.

Figure 14. (a) Rewriting a sub-circuit to improve area, and (b) Finding a candidate cover for a.

In order to limit area overhead, the function f must be efficiently constructed from x0,x1,…xn.
Therefore, we only consider cases where f is implemented by a single AND or OR gate. We add
redundant logic by transforming node x into OR(x; y). This means that either (y = 1) ⇒ (x = 1) or
(x = 1) ⇒ (y = 1), which makes candidate pairs x and y easy to identify. When OR(x; y) = x, it
follows that sig(x) > sig(y) lexicographically; otherwise, sig(y) is 1 in a position where sig(x) is not.
Therefore, sorting the signatures can narrow the search for candidate signals y. Also, sig(x) must
contain more 1s than sig(y), so maintaining an additional list of size-sorted signatures and
intersecting the two lists can prune the search. Multiple lexicographical sorts and multiple size
sorts of signatures starting from different bit positions can further narrow the search.
Consequently, signature-based redundancy identification can efficiently perform logic implication.
Generally, several candidates satisfy implication relations for each node x.

 20

Among the candidates, we choose a node y that most often controls the output of the additional
OR/AND gate, and whose fan-in cone is maximally disjoint from that of x. Once we find
candidates for resynthesis, a SAT solver is used to verify the implication relation. Our basic
process for verifying circuit optimizations with SAT follows that of [6].

AnSER also makes use of local rewriting, a general synthesis technique that optimizes small
subcircuits to obtain overall design improvements. Rewriting relies on the fact that different
irredundant circuits corresponding to the same Boolean function can exhibit different properties.
We optimize circuits for SER and area simultaneously by using AnSER to accept or reject rewrites,
following the implementation of rewriting in [1, 24]. This technique first derives a 4-input cut for
a selected node defining a one-output subcircuit. Next, replacement candidates are looked up in
hash tables that store several alternative implementations of each function. To ensure global
reliability improvement, we resimulate the circuit and update SER estimates. Computational
efficiency is achieved through fast incremental updates. As shown in Figure 14(a), the original
subcircuit with three gates can be rewritten with just two gates.

Figure 15. Improvements in SER obtained by SiDeR.

 21

3.6.2. Empirical Validation

We now report some empirical results for the various design techniques presented in this section.
Figure 15 shows SER and area overhead improvements obtained by SiDeR. The first set of results
is for exact implication relationships, i.e., not considering ODCs. The second column shows the
use of ODCs to increase the number of candidates. In both cases, AND/OR gates are added based
on the functional relationship satisfied. We see an average 29% improvement in SER with only
5% area overhead without ODCs. The improvements for the ODC covers are 40% with area
overhead of 13%, suggesting a greater gain per additional unit area than the partial triple modular
redundancy (TMR) techniques in [26], which achieve a 91% improvement but increase area by
104% on average.

Figure 16 illustrates the use of AnSER to guide the local rewriting method implemented in the
ABC logic-synthesis package [1]. AnSER calculates the global SER impact of each local change
to decide whether or not to accept the change. After checking hundreds of rewriting possibilities,
those that improve SER and have limited area overhead are retained. The data indicate that, on
average, SER decreases by 10.7%, while area decreases by 2.3%. For instance, for alu4, a circuit
with 740 gates, we achieve 29% lower SER while reducing area by 0.5%. Although area
optimization is often thought to hurt SER, these results show that carefully guided logic
transformations can eliminate this problem.

 22

Figure 16. Improvements in SER obtained with local rewriting.

3.7. Probabilistic Transfer Matrices

We now move to a more general reliability-analysis framework that treats circuits entirely
probabilistically. While this is useful for analyzing soft errors, it is also useful for analyzing
devices that periodically fail or behave probabilistically during regular operation. Examples of
such devices include probabilistic CMOS, molecular logic circuits, and quantum computers. In
general, accurate reliability analysis involves computing not just a single output distribution but,
rather, the output error probability for each input pattern. In cases where each gate experiences
input-pattern dependent errors, even if the input distribution is fixed, simply computing the output
distribution does not give the overall circuit error probability. For instance, if an XOR gate
experiences a bit-flip error, then the output distribution is unaffected, but the wrong output is
paired with each input. Therefore, we need to separately compute the error associated with each
input vector.

 23

3.7.1. PTM Basics

We analyze non-deterministic circuit behavior using a representation we introduced [20, 21] called
the probabilistic transfer matrix (PTM). A PTM for a gate or circuit gives the probability of each
output combination, conditioned upon the input combinations. PTMs can model gates exhibiting
varying input-dependent error probabilities. PTMs form an algebra, that is, a set closed under
specific operations, where the operations in question are matrix multiplication and tensor products.
These operations may be used to compute overall circuit behavior by combining gate PTMs to
form circuit PTMs. Matrix products capture serial connections, and tensor products capture
parallel connections. Also, PTM-based computations implicitly capture signal correlations that
are caused by fan-out.

Figure 17. (a) Two-input AND gate, (b) Its ITM, and (c) A PTM with various error probabilities for each input
vector.

A PTM for an n-input m-output component is a 2n × 2m matrix M whose (i,j)th element is the
probability of output j occurring in response to input i. The PTM of a fault-free component is
called its ideal transfer matrix (ITM) and the probability of every correct output value is 1. Figure
17 shows a two-input AND gate, its ITM, and a PTM with different probabilities of erroneous
output for each input combination. For example, the probability that {a, b} = (1,1) yields the
wrong output c = 0 is p4.

PTM algorithms involve several types of matrix operations, one of which is the tensor product.
Given an n × m matrix A and a p × q matrix B, their tensor product MT = A ⊗ B is an np × mq
matrix whose elements are:

MT(i0 … in+p-1, j0 …jm+q-1) = A(i0…in-1, i0…jm-1) × B(in…in+p-1…jm+q-1)

The basic tensor operation on A and B needs nmpq scalar multiplications, and consumes nmpq
memory for storing the results, for example,

ቂ1 0 2
0 1 0ቃ ⊗ ቂ1 2

3 4ቃ = ൦

1 2 0 0 2 4
3 4 0 0 6 8
0 0 1 2 0 0
0 0 3 4 0 0

൪

 24

Next we describe how the PTM of a p-level combinational circuit can be constructed from the
PTMs of its component gates and wires. First, derive ITMs or PTMs for all components. Then for
each topological level i containing k component PTMs {Mij}, form the level PTM Mi = Mi1 ⊗ Mi2
⊗ … Mik by repeated application of the tensor product. Finally, using ordinary matrix
multiplication multiply all p level PTMs together to form the circuit PTM M = M1⋅M2 ⋅… ⋅Mp.

a

b

c

d

e

g1

g2

g3

g4

g5

g6C_1

C_2

g3_1

g3_2

L1 L2 L3 L4 L5 L6

Figure 18. Circuit demonstrating PTM construction; dashed lines enclose fanout gates.

The six-level circuit C in Figure 18 shows how a circuit PTM is constructed. First, insert explicit
wiring and fanout “gates” into C as needed. Then construct level PTMs M1:M6 for each level of
logic. The PTM of gate gi is denoted by Gi; PTMs of a single wire and an n-branch fanout gate are
denoted by the identity matrix I2 and Fn, respectively in the following symbolic representations:
M1 = I2 ⊗ I2 ⊗ F2 ⊗ I2 ⊗ I2; M2 = I2 ⊗ G1 ⊗ G2 ⊗ I2; M3 = I2 ⊗ G3 ⊗ I2; M4 = I2 ⊗ F2 ⊗ I2; M5 = G4
⊗ G5; and M6 = G6. The final circuit PTM is:

M = M1 ⋅ M2 ⋅ M3 ⋅ M4 ⋅ M5 ⋅ M6

which corresponds to the 32 × 2 matrix outlined in Figure 19.

Once the overall PTM is known, output signal probabilities can be calculated very easily by
multiplying the input signal distribution (row) vector V by the circuit PTM M thus: J = V ⋅ M. For
example, if all gates in C have the same error probability, 0.1, and all input signal probabilities are
0.5, the output probability of a 1 is 0.81.

Figure 19. PTM structure of the circuit in Figure 18.

 25

Directly constructing a circuit PTM from its level PTMs may consume a large amount of runtime
and memory. To enhance the scalability of PTM algorithms, we proposed using algebraic decision
diagrams (ADDs) to reduce the memory needed for storing matrices, and developed heuristics
such as dynamic evaluation ordering and hierarchical estimation to avoid unnecessary matrix
operations [12]. Such heuristics can reduce the computational complexity by several orders of
magnitude. However, the modified PTM calculations are still restricted to relatively small circuits
because they still construct the circuit PTM by multiplying level PTMs. In addition, PTM size is
limited by the number of inputs and outputs of the circuit, so deriving a PTM from a large circuit
without a simplification scheme such as circuit partitioning may be impractical.

3.7.2. Applications

Besides the basic operations of matrix multiplication and tensor product, we introduced the
following three operations to increase the scope and efficiency of PTM-based computation:

eliminate variables: This computes the PTM of a subset of inputs or outputs, starting from a given
PTM. It can also be used to compute the probability of error of individual outputs.

eliminate redundant variables: This eliminates redundant input variables that result from tensoring
matrices of gates that are in different fan-out branches of the same signal.

fidelity: This measures the similarity between an ITM and a corresponding PTM. It is used to
evaluate the reliability of a circuit.

The PTM model can represent a wide variety of faulty circuit behaviors, including both hard and
soft errors. The fact that there are separate probabilities for each input and output, and the fact that
they are propagated simultaneously make this possible. Figure 20 lists some error types that can
be precisely represented by PTMs.

Figure 20. PTMs for several error types: (a) Fault free 2-1 MUX, (b) First input stuck-at 1, (c) Two inputs
swapped, (d) Probabilistic output bit flip with p=0.05, and (e) MUX replaced by XOR.

We can also use PTMs to derive polynomial approximations for circuit error probabilities in terms
of gate error probabilities for the purpose of determining thresholds of acceptable gate error for
specific circuits [12].

 26

3.7.3. Computing with PTMs

Circuit PTMs have exponential space complexity because they contain information about all
possible input vectors. This complexity makes direct numerical computation with PTMs
impractical for circuits with more than about 15 inputs. In order to improve scalability, we
developed an implementation of the PTM framework that uses algebraic decision diagrams to
compress matrices. We also derived several ADD algorithms to combine PTMs directly in their
compressed forms. Figure 21(b) gives a PTM for the circuit in Figure 21(a) representing the case
where all gates experience output bit-flips with probability p = 0.05. Figure 21(c) shows the
corresponding ADD. As the latter figure indicates, the same values occur multiple times in the
matrix and suggest a possibility of compression. Due to the canonicity of ADD/BDD
representation, identical subgraphs, corresponding to identical submatrices, can be automatically
identified and eliminated during the process of ADD construction. In some cases, ADDs contain
exponentially fewer nodes than the number of entries in the explicit matrix representation. In such
cases, linear-algebraic transformations can be applied exponentially faster to the ADD than to the
matrix.

 (a) (b) (c)

Figure 21. (a) Sample logic circuit, (b) PTM where each gate experiences error with probability p=0.05, and (c)
ADD encoding of the PTM.

Developing efficient ADD algorithms for PTM operations is a significant technical challenge that
we have addressed. We adapted previous ADD algorithms from [3] and [35] for tensor and matrix
products. The original versions of their algorithms handle only square matrices, while PTMs are
generally rectangular. In addition, we developed ADD algorithms for the new PTM operations
defined earlier. These operations are needed for computing marginal-probability distributions,
reconciling dimensions, and estimating overall circuit-error probabilities. For details of this work,
see [12].

 27

3.8. Testing for Probabilistic Faults

Circuits have to be tested in order to ensure that their soft error rates do not exceed an acceptable
threshold. To estimate the expected soft error rate in the field, chips are typically exposed to
intense beams of protons or neutrons and the resulting error rate is measured. However, these
types of tests take a long time to conduct because random patterns may not be sensitive to
vulnerabilities in the circuit. We have developed methods for selecting test vectors such that test
application time is minimized [13, 14].

Generating tests for probabilistic faults is fundamentally different from existing testing techniques.
Probabilistic testing requires a multiset (a set with repetitions) of test patterns, since a given fault is
only present for a fraction of the computational cycles. Another difference is that some test vectors
detect transient faults with higher probability than others due to path-dependent effects like
electrical masking. Therefore, one can consider the likelihood of detection, or the sensitivity, of a
test vector to a fault.

3.8.1. Test-Vector Sensitivity

The sensitivity sens(F,t) of a test vector t to a multi-fault set F ={fi} which occurs with probability
P = {pi} in circuit C with PTM MF and ITM M is defined as the total probability that the output
under t is erroneous. Test t can be represented by the vector vt, with 0's in all but the index
corresponding to t's input assignments. For instance, if t assigns 0s to all input signals and C has 3
inputs, then vt = [1 0 0 0 0 0 0 0]. The sensitivity of t is the probability that the ideal and faulty
outputs are different, and it can be computed by taking the norm of the element-wise product of the
correct and faulty output vectors. This operation is similar to our fidelity operation defined for
vectors rather than matrices, and the computation takes the form:

A second method of sensitivity computation begins with a pre-selected complete set of test vectors
for the permanent stuck-at faults corresponding to those in F. For each test vector in this set, we
compute the faulty output at each gate using vector-PTM multiplication through intermediate
gates. We also compute the ideal output at each gate. The ideal output is vtM, and the faulty output
vector is vtMf. The advantage of this method is that we do not have to explicitly compute the
circuit PTM and ITM, steps which are computationally expensive.

A caveat in output vector computation is that fan-out branches result in inseparable probability
distributions of the branch signals. If these signals are marginalized or treated as separate, then
inaccuracies can occur in the output probabilities. A simple method of handling this problem is to
jointly store the probabilities of these signals and then enlarge any gate PTM the signals encounter.
We accomplish gate enlarging by adding inputs to the gate that pass through unchanged, i.e.,
tensoring the gate matrix with an identity matrix I.

 28

Figure 22. Algorithm for output computation.

An algorithm for computing the output of a test vector under probabilistic faults (encoded in gate
PTMs) is shown in Figure 22. The primary input values determined by the given test vectors are
converted into input vectors. Then, in topological order, the inputs for each gate are tensored
together to form the input vector for the gate. If any of the input signals are stored jointly with
other signals, the gate in question is enlarged by the number of additional signals. The gate PTM is
multiplied by the input vector to obtain the output vector. In the case of a multiple-output gate
such as a fan-out gate, the output vector stays as a joint probability distribution. In practice, output
distributions can become very large, through the accumulation of correlated signals. However, the
joint signals can be separated by using the eliminate variables operation, which may entail some
loss of accuracy.

This process can be repeated with gate ITMs (or functional simulation) to obtain the ideal output
vector. Finally, test vector sensitivity is computed according to the foregoing equation for
sens(F,t) using the fidelity operation applied to the ideal and faulty primary-output vectors.

3.8.2. Test Generation

We use the test-vector sensitivity information computed in the previous section to generate
compact multisets of test vectors for detecting transient faults. Test-set compaction is closely
related to the standard SET COVER problem [10]. In that problem, elements of a set S are to be
covered by subsets. A minimal set of subsets must be chosen such that every member of S belongs
to at least one of the chosen subsets. In the context of test generation, the set S consists of all
possible faults, and each test vector represents a subset of faults, namely the subset of faults that it
detects. When testing for soft errors, tests may have to be repeated to increase the probability of
fault detection, therefore multisets of tests are selected.

 29

This connection between SET COVER and test compaction allows us to modify algorithms
designed for SET COVER and introduce related ILP formulations whose linear programming (LP)
relaxations can be solved in polynomial time. Furthermore, modifying the test-multiset objective
simply amounts to altering the ILP objective function.

Suppose a single fault f in a circuit C has an estimated probability p of occurrence. We confirm its
probability as follows:

1. Derive a test vector t with high sensitivity sens(f,t).

2. Apply t k = ⎣1/sens(f,t)⎦ times to C for one expected detection.

3. If we have d(f) >> 1 detections, we conclude that the actual probability of f is higher and reject
the estimated probability. We can estimate the probability that there are d(f) detections in k trials
using the binomial theorem. If the probability of d(f) detections is low, then it is likely that the
actual sensitivity sens(f,t) is higher than the estimate.

4. If sens(f,t) is higher than estimated, we can update our estimate and repeat this process.

We can extend the above method to multiple faults under two different assumptions: 1) there are
several probabilistic faults but the circuit experiences only a single fault in a clock cycle, and 2)
each circuit component has an independent fault probability, implying that multiple faults at
different locations can occur in the same clock cycle. The goal in either case is to pick a multiset of
vectors T′ taken from T such that |T′| is minimal. Recall that each test vector ti represents a subset
of F, i.e., each test vector detects a subset of faults. Under assumption 1, we minimize the size of
the multiset by using test vectors that are either especially sensitive to one fault or somewhat
sensitive to many faults. Therefore, to achieve a given detection probability of pth we need n tests,
where n satisfies (1 - p)n < 1 - pth. Figure 23 gives the greedy algorithm for generating such a
multiset of test vectors, starting from a compacted set of test vectors. Our ILP formulation for
minimal test multiset generation is shown in Figure 24.

 30

Figure 23. Greedy algorithm for minimizing the number of test vectors (with repetition) required for fault
detection.

Figure 25 shows the number of test vectors required to detect probabilistic stuck-at faults using the
method of Figure 23, and assuming probability pf = 0.05. Rand is the average number of test
vectors selected during random test generation. These results show that our algorithm requires 53
to 64% fewer test vectors than random selection, even with a small complete test vector set
(generated by ATALANTA) used as a base set.

Figure 24. ILP formulations for test set generation with a fixed number of expected detections: (a) To
minimize the number of test vectors, and (b) To maximize fault resolution.

 31

Figure 25. Number of test vectors required to detect input signal faults with various threshold probabilities pth.

Once a multiset of test vectors is generated, the actual probability of error can be estimated using
Bayesian learning. This well-established artificial intelligence (AI) technique uses observation
(data) and prior domain knowledge to predict future events. In our case, the prior domain
knowledge is the expected or modeled fault probabilities in a circuit, and the data comes from
testing.

 32

4. Wireless Network Optimization

4.1. Summary

Mobile ad hoc networks (MANETs) are wireless communication networks which are of interest
because of their flexibility and ease of deployment. MANET nodes are often powered by batteries,
whose replacement is difficult. Internode transmission power thus constrains the network
topology and the topology changes continuously due to mobility. Hence, understanding node
mobility and efficiently managing transmission power are essential for successful network
operation. First, we analyze mathematical models of node movement and propose a new metric to
quantify mobility. Existing network control algorithms are usually evaluated using random
mobility models. However, since such models employ incompatible mobility parameters, it is
hard to compare the performance of different algorithms. We show that link duration has a nearly
invariant relationship with route lifetime regardless of the adopted mobility model, and so is a
good mobility metric. Second, we investigate the issues of power control and link maintenance.
Existing power control schemes are mainly intended for (pseudo) static networks, and their
effectiveness in highly mobile networks has not been demonstrated. We develop a novel algorithm,
which adaptively controls transmission power and substantially reduces communication power.
We analyze the impact of medium access control on performance, and show that the widely used
request to send/clear to send (RTS/CTS) handshake protocol may adversely affect the network
throughput. We further present a way to maximize the network throughput. Third, we investigate
the problem of optimally placing base station and relay nodes to reduce power consumption and
improve performance. We apply non-linear optimization techniques to node placement, and
present distributed node placement techniques which place nodes among radio obstacles to
minimize energy use. Simulation results confirm that the efficiency of the proposed algorithms is
comparable to that of an existing centralized algorithm.

Further details concerning the material in this chapter can be found in Sungsoon Cho’s 2009 Ph.D.
dissertation [52] and related publications [53, 54, 55].

4.2. Introduction

A MANET is a multi-hop, wireless network consisting of a set of interacting hosts or nodes that
move through space. Its many applications include networks for sensing the environment, vehicle
tracking systems, and emergency communications in a disaster area; see Figure 26. When a node
has to send a message to another node, the sender can either directly transmit the message to the
recipient, or transmit the message to immediate nodes which relay the message to the final
destination. MANET operation differs from traditional wired networks in several respects. The
network topology constantly changes due to node movement. The links between node pairs can be
created or deleted by adjusting the transmission power of the nodes. The communication medium
(air) is shared by multiple hosts, so the transmitted data can be garbled or lost if channel access is
not controlled appropriately. For these reasons, efficient operation of a MANET poses some
unique challenges. Our research has focused on the following issues: the impact of node mobility
on network topology, transmission power control, and medium access control.

 33

Figure 26. Examples of MANET applications.

Much prior research has investigated ways to access the Internet using open access points.
Balasubramanian et al. [43] proposed opportunistic connection techniques which enable web
search in vehicles in urban areas where only intermittent connectivity is available. Banerjee et al.
[4] proposed an energy-efficient data-forwarding architecture based on fixed and battery-powered
data centers, which store and forward packets according to connection availability. However, a
serious limitation with these techniques is that connectivity is available only when open access
points exist nearby. To monitor environmental conditions over a large area, sensor networks can
be used [51, 56]. For example, at Great Duck Island, Maine, 32 wireless sensor nodes are
deployed [71] in a way that is manageable via the Internet; this habitat-monitoring network is
expected to last 9 months with two AA batteries. In [83], a mobile sensor deployment project is
presented, which delivers wireless sensors to a road using global positioning system (GPS)
controlled unmanned aerial vehicles (UAVs). The sensor nodes, controlled by TinyOS [84],
constitute a multi-hop communication network, track nearby vehicles passing on the road, and
report tracking data to a base station via a UAV. An airborne communication network is another
promising MANET application [86].

Next, we summarize the terminology and formal network models adopted in our work. Two nodes
are connected if and only if they can directly communicate with each other. A network’s
connectivity or topology is represented by a graph G = (V, E) where V denotes the network nodes
and E = {(u, v)}, where u, v א V. The data-forwarding process from a node to a neighboring node
is called a hop. A data delivery path consisting of one or more hops forms a route. We also use the
well-known 5-layer model [64] for the software and hardware parts of a network. Data generated
in the top (application) layer at host A are transferred to lower layers, and the bottom (physical)
layer transmits the data to the corresponding physical layer at host B. Then the data are transferred
up to B’s application layer via the data-link, network and transport layers. The middle (network)
layer is responsible for maintaining appropriate routes from sources to destinations. The network
topology can change over time due to node movements, so usually there is no entity that has global
knowledge of the network’s exact connection status. Hence, the delivery route from source to
destination can frequently change, and the nodes need a method ⎯ a routing protocol such as
dynamic source routing (DSR) [61] ⎯ to discover the routes to use.

 34

The physical layer of a MANET handles conversion between data bits and radio signals. The
received signal strength (RSS) of the radio signal at the receiver RX, can be expressed by:

RSS(RX) = Pow(TX)•Gain(TX, RX) = Pow(TX) •[k1•Dist(TX, RX)α + k2]

where Pow(TX) denotes the transmission power of node TX, Dist(TX,RX) the distance between TX
and RX, and α represents the radio attenuation of the environment. For successful data reception,
RSS should exceed some threshold characterized by the receiver’s sensitivity, so that receivers
within the transmission range rTX of the transmitter can successfully receive the message. In our
work, we assume that a MANET node can receive data from at most one transmitter at a time. The
main criteria for successful communication are: (1) there should be just one transmitting node
within the transmission range of the receiver, and (2) the signal-to-interference-noise ratio (SINR)
should be above some threshold.

Figure 27. Representative topology control algorithms and their methodology.

MANET connections change over time due to node movement, and the resulting network topology
changes critically affect network operation. Understanding the impact of mobility and topology on
the performance is essential for designing network control algorithms. Analysis of the impact of
mobility on network performance usually relies on simulations using artificial random mobility
models [45, 46, 91]. Unlike wired networks, MANET topology can be actively controlled by
adjusting the transmission power of the nodes. The range of the nodes should be assigned so that
power consumption and signal interference are minimized, while connectivity is maintained.

There have been many studies of how transmission range affects the network performance and
connectivity; see Figure 27. For instance, local information no topology (LINT) [79] simply
allows each node to maintain a bounded number of neighbors by incrementally adjusting its
transmission power. However, although it forms a network that is connected with a high
probability, LINT does not guarantee global connectivity. To deal with this problem, the related
local information link-state topology (LILT) method uses routing tables to maintain global
connectivity. Most control algorithms attempt to fix the network connection after a topology
change occurs, and cannot reduce the number of connection changes caused by node movements.
To remove this limitation, we have developed a proactive topology control algorithm that adjusts
the transmission power of communicating nodes, prevents frequent link breaks, and improves
communication performance.

 35

4.3. Impact of Mobility on Performance

MANET performance is highly sensitive to changes in node-to-node connections (communication
links) caused by node movement. Link instability of this kind has proven very difficult to analyze
mathematically, so previous work has relied heavily on simulation. We have constructed a
mathematically tractable model of node motion, the constant velocity (CV) model, and used it to
derive a precise relation between mobility and connection stability [52, 53]. Our analysis allows
determination of the appropriate frame length for efficient single-hop communication. We
investigated connection stability in multi-hop communication, and uncovered some underlying
properties of previously proposed mobility metrics. In particular, we demonstrated that link
duration has a nearly invariant relationship with the stability of multi-hop connections for a wide
range of mobility models, and thus forms an excellent mobility metric.

We approach the problem as follows. First, we set up the relatively simple CV model, and derive
two mobility metrics for it, link duration (LD) and link change rate (LCR) [65, 75, 82]. Then we
derive an analytic expression for successful packet delivery via single-hop communication. We
further investigate the relation between LD and multi-hop route stability. We quantify connection
stability by the mean residual duration (RD) of routes, which measures how long multi-hop routes
last under the given mobility conditions. We show that, among previously proposed mobility
metrics [42], LCR is unsuitable for estimating link stability because the relation between LCR and
RD depends on other network parameters. In contrast, by using the analytic expressions derived
from our CV model, we find that RD is a function of LD; i.e., the multi-hop connection stability is
mainly determined by single-hop link duration. We also derive simulation results which show that
LD has a consistent relation with RD for a wide range of mobility conditions. Our analysis and
simulations confirm, as suggested in [49], that LD constitutes a very good, unified metric for link
stability with many types of mobility models.

4.3.1. Constant Velocity Model

Assume that nodes are randomly placed on an unbounded plane with a density ρ. The nodes move
linearly at a constant velocity v in random directions, but do not change direction while moving;
see Figure 28. We have shown that the average LCR λLCR is given by:

λLCR = 2λgen = πρrv

where λgen is the average link generation rate. For example, if nodes move at the average speed v
=10 m/s with transmission range r =10 m, and the node density is ρ = 0.02 m−2, then λLCR = 2λgen
=10.2 s−1.

 36

Figure 28. Illustration of node movements in a MANET.

The link duration TLD is the time from link generation to link break, and is a measure of the
stability of single-hop connections [42]. We can describe the event that node Ni passes through the
transmission region of a source N0 with two parameters (X,Θ). The link duration is then given by
TLD = Y(X)/viρ(Θ) where Y(X) = 2(r2 − X2)1/2, and the mean value of TLD is:

It should be noted that LD is not the reciprocal of LCR or the link generation rate. LCR is the
reciprocal of the time between two successive link changes, whereas LD is defined as the time
between link generation and link break.

Suppose a receiver Ni enters the communication region of a transmitter N0 at time t = 0 and exits
the region at time t = TLD. For a packet with transmission time Tcomm to complete communication
before Ni moves out of range, the transmission should start at time t, where 0 ≤ t ≤ TLD(x,θ) − Tcomm.
Hence, the conditional probability of complete transmission is:

pcomp(Tcomm|X,Θ) = max[TLD(X,Θ) − Tcomm,0] /TLD(X,Θ)

and the total probability of complete transmission is:

 37

where gX,Θ(x,θ) denotes the joint probability density function of random variables X and Θ. We
can rewrite the last expression as:

where τ denotes a normalized communication time that can be interpreted as the ratio of node
mobility to communication speed.

Figure 29. Plot of transmission probability pcomp vs. communication time τ.

Figure 29 compares the foregoing analysis with simulated results using 100 mobile nodes on a 1×1
plane. The network parameters such as the transmission range r, the node speed v, and the
communication time Tcomm are varied so that τ ranges from 0 to 2.2. Comparison of the
simulated and calculated pcomp values supports the accuracy of the CV model.

Although the success rate of single-hop communication is generally insensitive to mobility,
successful data delivery over multi-hop routes critically depends on the connection stability. We
define the residual duration of a multi-hop route as the mean time from the route discovery to the
breaking of the route. RD is the key factor which determines the success of packet delivery over
multi-hop routes, and so is an important parameter in MANET design [41]. For instance, when the
RD of a multi-hop route is 100 ms, data delivery which takes 500 ms over the route will probably
fail due to the connectivity change. Hence RD is an indicator of the stability of multi-hop routes,
whereas link duration indicates the stability of single-hop links.

 38

4.3.2. Mobility Metric Relationships

We now investigate the relationship between LD and RD. It is extremely difficult to derive
rigorous expressions for RD using existing mobility models such as random waypoint, random
walk, and boundless simulation area. Hence, we conducted a series of simulations with these
mobility models, which show a strong correlation between LD and RD. Later we analyze the
relationships between LD and RD by using our CV model. The simulation is organized as follows.
First, 100 nodes are randomly placed on a 1x1 plane. The nodes start moving according to the
given mobility model. At time t = 0, the simulator computes the shortest, multi-hop path from each
node to the root node N0. When a multi-hop route is broken at time t, all routes with later hops that
pass along the broken route are also regarded as broken at time t. This procedure measures the RD
of routes from the shortest path discovery to their break times.

Figure 30. Simulation results with RWP model.

Here we only present results for the random waypoint (RWP); results for the other model can be
found in [52]. Mobile nodes in the RWP model [61] behave as follows. First a node selects a
random destination within a bounded movement area, and moves toward it at a random speed v.
Once it arrives at the destination, it pauses for a predefined pausetime. The speed v is a random
variable uniformly distributed between speedmin and speedmax. By varying r, speedmin,
speedmax, and pausetime, we can control the node movements.

Figure 30(a) shows simulation results corresponding to a high-mobility case with parameters: r =
0.138, speedmin = 0.5, speedmax = 1.0, and pausetime = 0.1, for which the link duration TLD = 0.26.
The RD/LD ratio of 0.32 for 2-hop links, for example, indicates that the average residual duration
of a 2-hop link is 0.32 × TLD = 0.0832. Figure 30(b) corresponds to a low-mobility case: r = 0.25,
speedmin = 0.1, speedmax = 1.5, and pausetime = 5.0, for which TLD = 2.37. In this case, due to the
relatively long pausetime, a considerable number of nodes are observed in their pause state. Hence,
this case has a larger LD value than the previous case. Although the two cases differ in their
mobility parameters and LDs, their RD/LD ratios are nearly identical. Instead of changing
pausetime alone, we also varied speedmin and speedmax and obtained nearly the same distribution
of RDs.

 39

From our simulation studies, we saw that LD has a consistent relation with RD for a wide range of
mobility models and parameter values. Using our CV model, we can explain the strong correlation
between LD and RD, and also the relations between LD, LCR and RD. Consider the question:
What makes LD a better mobility metric than LCR? Suppose at time t = 0, a mobile node N0
observes a neighbor node N1 within its transmission range, and at time t = T0, the neighbor leaves
the range. This exit time T0 is a random variable, and its cumulative distribution function (CDF) is
F(t). Hence, the probability that a link remains connected until time t is given by:

pcomp(t.v/r) = 1 − F(t)

Next, suppose that a k-hop route consists of k + 1 mobile nodes {Ni} and each node pair (Nj−1, Nj)
is connected by a link Lj. At time t = 0, the route is connected, and at t = T1, the route breaks. Let
Gk(t) and gk(t) denote the CDF and probability density function (PDF), respectively, of the random
variable T1. Then the probability that the route remains connected until time t is 1 − Gk(t)), and the
RD for this route is:

Assuming the generation/break processes of the links in a route are mutually independent [59], the
probability that a k-hop route remains connected until time t becomes 1 − Gk(t) = [1 − F(t)]k from
which we can deduce that:

Hence, we see that RD is a function of LD rather than LCR, which is why LD is a good indicator of
multi-hop connection stability.

It is now easily seen that the metrics LD and LCR are related by the formula λLCR •TLD = 2ρπr2,
which implies that the product of half of LCR and LD equals the average node degree. This
relation also follows from Little’s theorem, which states that the average number of customers in a
system, ρπr2, is equal to the product of the customer arrival rate, λgen = λLCR/2 and the average of the
time TLD customers spend in the system.

A recent study by Nayebi et al. cites our work and observes that the probability distribution of LD
of the RWP model is similar to that of the CV model [73]. Furthermore, using the boundless
random direction model (BRDM) derived from CV, they showed that the PDF of RWP can be
approximated fairly accurately by adding stationary nodes. From these observations, it can be
seen that LD with RWP is practically equivalent to that with CV. Therefore, we conclude that LD
is a good unified mobility metric for most types of mobile ad hoc networks, and that CV is a useful
model for mobility analysis.

 40

4.4. Distributed Power-Aware Link Maintenance

We have developed a new management algorithm for MANETs called PALM (power-aware link
maintenance), which simultaneously performs transmission power control and route connectivity
maintenance. Unlike most topology control algorithms, PALM manages the transmission power
of active nodes only, and thus eliminates considerable energy and channel resource waste. We
also investigated how medium access control (MAC) parameters affect MANET performance, and
found ways to maximize network throughput while maintaining a high energy efficiency.

4.4.1. Introduction

Topology controls [48, 67, 79, 87] have long been considered for MANET power management.
They attempt to reduce the transmission power while maintaining a connected network topology.
However, they have several drawbacks. First, they require periodic beaconing, which wastes
energy and channel resources. Second, the actual connected routes still have to be discovered by
the routing layer, so that even when the network is connected, frequent rediscovery of connected
routes may occur. Third, in order to make the network insensitive to node mobility, topology
control algorithms must allow longer transmission range, which may worsen the network
performance.

The so-called BASIC power control [62] algorithm has been proposed to mitigate the above
problems. The transmitter computes the minimum transmission power for data delivery based on
received signal strength at the receiver. Then the data packets are transmitted at minimum power,
while only control packets such as request-to-send and clear-to-send are transmitted at full power.
While BASIC reduces overall energy consumption, it still has shortcomings. The nodes must
abide by the data delivery routes discovered by the routing layer, which may not be power-efficient,
and the control packets transmitted at full power may collide with other nodes’ transmissions. The
power control MAC (PCM) protocol [62] mitigates the latter problem by allowing periodic
full-power transmission for DATA packets, but the former problem still persists.

The power aware routing optimization (PARO) algorithm [57, 58] attempts to discover
power-efficient routes in a distributed manner without periodic beaconing. PARO assumes that all
nodes are within transmission range of each other. At the start, a source node A directly sends
packets to a destination node E. If another node C overhears the communication from A to E, and
determines that route redirection via itself conserves energy, then the route becomes ACE. This
redirection may be repeated many times. Sometimes the redirected routes become inefficient as a
shorter route may exist. PARO attempts to remove unnecessary redirectors to discover
power-efficient routes in a distributed manner. However, PARO still carries the risk of generating
inefficient routes, since it cannot easily determine hop distance.

 41

Our proposed PALM scheme resolves the above problems with BASIC and PARO. We first
determine a virtual hop distance to efficiently assign and measure hop distances in the presence of
route redirections. Second, we add an accumulated energy field to packets, and enable the removal
of multiple redirectors. Third, we use different transmission power levels for control and
broadcast packets to mitigate the problems with BASIC’s power control.

4.4.2. PALM Method

The medium access control in PALM is based on IEEE 802.11. We assume ad hoc on-demand
(AODV) [77] as the routing algorithm. We also assume that transceivers are equipped to detect
received signal strength RSS, which was defined earlier and is proportional to the transmission
power. PALM’s power control method is similar to BASIC’s except for the power levels of
RTS/CTS packets. The transmitter TX records its transmission power level Pow(TX) on outgoing
packets, and receivers RXi, including overhearing nodes, estimate the channel gain Gain(TX, RXi)
from the RSS. TX sends data packets at the power level given by:

where RSSmin and β denote the minimum RSS for successful reception and a safety factor,
respectively. PALM uses the minimum power for data packets, and relatively greater power for
control packets.

Figure 31. Communication between nodes in PALM, including route redirection.

 42

PALM performs route redirection in a similar way to PARO: see Figure 31. Here node i is
forwarding data packets to next-hop node j, and node k is overhearing them. Solid lines in Figure
31 indicate intended packet flow, and dotted lines, overheard flow. The DATA packets contain the
source address i, the destination address j, and i’s transmission power Pow(i). Node j replies with
an acknowledge (ACK) message containing i, j, Pow(j) and Gain(i, j). The overhearing node k
now can determine which of the direct i → j and redirected i → k → j routes consumes less energy,
and it can estimate the energy savings ΔE. After overhearing ACK, node k sends a
request-to-redirect (RTR) packet to node i. On receiving an RTR message, i modifies its routing
table so that its new next hop node becomes k instead of j. Subsequent packets are delivered along
i → k → j instead of i → j. Note that there might be more than one overhearing node that sends an
RTR to the source. To address this, when a node that is to send an RTR message overhears another
RTR with a larger ΔE value, it does not send an RTR message, and discards its own RTR.

PALM’s redirection technique enables nodes to repair routing tables locally without propagating
rerouting requests. However, this carries the risk of generating loops in the delivery path. PALM
resolves loop problems in the following way. First, we define the virtual hop distance to the final
destination as a rational number instead of an integer. After a route is discovered, the
real-numbered virtual hop distance has the same value as the usual integer-numbered hop distance.
When redirecting a link between nodes X and Y with hop distances hX and hY, respectively, the
redirector computes its (virtual) hop distance as (hX + hY)/2. By taking this value between hX and
hY, PALM maintains monotonically decreasing hop distance numbers along routes without
propagating the redirection event to other nodes. PALM has a locking method for use when
packets are forwarded along the links or when a link entry is added. Since its route redirection
scheme tends to increase the number of hops from source to destination, PALM also employs
mechanisms to mitigate some associated problems. For example, it includes a “route-warping”
technique to prevent an excessive number of hops from being created by the redirection procedure.
Increasing the number of hops tends to increase channel contention between nodes. In particular,
the long transmission range for RTS/CTS packets may worsen this problem. PALM addresses this
by reducing transmission power for broadcast and control packets. All these techniques
collectively enable PALM to continuously construct power-efficient and loop-free routes.

4.4.3. Performance Evaluation

We conducted an extensive set of experiments to evaluate PALM. We used the ns simulator [85],
and modified its AODV, MAC 802.11, and physical layer to implement PALM. A MANET
model for the experiments was constructed as follows. The radio channel parameters are taken
from [62]: the RSS threshold RSSth = 0.3652 nW; the maximum transmission power Powmax =
281.8 mW corresponding to 250 m transmission range; and the channel bandwidth is 2 Mbps. We
assume that each node i can take any value between 0 and Powmax as its transmission power. The
following PALM specific parameters are also used: energy saving threshold α = 0.8; safety factor β
= 1.5; active neighbor window Tact = 0.5 s; usage expiration time Tunused = 0.5 s; and unlock time
Tunlock = 0.5 s. Finally, the two-ray ground model [62] was adopted as the radio propagation model.

 43

Figure 32. Simulation rsults with varying node speed and a CBR of 80kbps.

First, we carried out simulations with varying node speeds. The network consists of 35 mobile
nodes randomly distributed on a 700×700 m2 plane. Source and destination nodes are randomly
chosen and a constant-bit-rate (CBR) source sends packets at 80 kbps. Packet size is 1000 bytes,
and packet interval time is 0.1 s. The RWP was used with the following parameters: pause time =
0.0; minimum speed = maximum speed = v varying from 5 m/s to 20 m/s. Each simulation was run
for 500 s. The maximum number of active neighbors is set to k = 8. Figure 32 presents the
simulation results with respect to node speed ranging from 5 m/s to 20 m/s. For comparison,
simulation results with AODV [77], dynamic source routing (DSR) [61], and destination sequence
distance vectoring (DSDV) [76] with the BASIC power control scheme are included; also included
is a variant of PARO. It can be seen that PALM’s energy consumption is much lower than that of
other algorithms including PARO, and its packet loss rate is comparable to others.

Figure 33. Simulation results with varying traffic rate and a node speed of 20 m/s.

Next, we conducted simulations that varied the traffic rate from 32 to 80 kbps; see Figure 33. The
packet size is 1,000 bytes, and the packet interval ranges from 0.1 s to 0.25 s. The node speed is set
to 20 m/s. The energy consumption of DSDV decreases as the traffic rate grows because its
beaconing energy is amortized by the increased data traffic. However, DSDV still results in high
packet loss rate for the reason stated earlier. On the other hand, PALM produces low packet loss
rate, while it still consumes much less energy than other algorithms.

 44

We also measured the impact of the maximum number k of active neighbors on the energy
consumption and the packet loss rate, and compared it with PARO’s energy consumption and loss
rate. The simulation was done over a stationary network to isolate the effect of transmission power.
PALM’s operation with a stationary network is identical with that of PARO except for the
transmission power for control and broadcast packets. We found that PALM’s energy
consumption increases with k, but is still much lower than PAROs, even for fairly large k. On the
other hand, PALM’s packet loss rate is much lower than that of PARO. It can be concluded that
transmitting control packets to only a few of the active neighbors is sufficient to prevent signal
collision, and considerably improves communication concurrency.

4.4.4. Impact of MAC Parameters

We investigated how medium access control parameters affect the performance of MANETs in
which the transmission power for data packets is controlled to the minimum value. We considered
the impact of three factors in the MAC layer on network performance: RTS/CTS handshake,
transmission power control, and carrier-sense threshold. The RTS/CTS handshake is used to
reduce signal collisions due to simultaneous transmissions by nodes located outside each other’s
transmission range, which is called the hidden terminal problem [47]. It has been recently
observed that while the RTS/CTS handshake effectively reduces the hidden terminal problem in
local area networks, its effectiveness is limited in ad hoc networks [88, 89, 90].

For the purpose of reducing communication power consumption, the BASIC power control
method has long been considered, which adjusts the power level for DATA packets to the
minimum necessary value, while the RTS/CTS packets are transmitted at the maximum level.
However, recent studies [63, 72, 81, 93] have shown that when the RTS/CTS handshake is used
with BASIC, the overall network throughput may become worse than the networks without
transmission power control, because the RTS/CTS packets can easily interfere with other DATA
packets with the reduced power level. In addition, the carrier-sense (CS) threshold affects
concurrency of network communication, and in consequence, the end-to-end network throughput
also depends on the carrier-sense threshold [90].

We have confirmed through simulations that the optimal CS threshold is given by CSth = RSS0/6z0,
where z0 is the minimum signal-to-interference ratio (SIR) for a successful signal capture. Since
this condition does not depend on the communication distance or the radio attenuation exponent α,
once CSth is set to the optimal value, even when the network nodes continuously adjust the
transmission power, and the radio channel property changes, the optimality condition can always
be satisfied.

 45

We have shown that use of the RTS/CTS handshake with power control protocols such as PALM
may adversely affect the network performance. Our simulation results with variants of the BASIC
power control scheme confirm that the use of maximum power for control packets can reduce the
network throughput by 70%, and the total energy consumption with retransmission taken into
account is much higher than that with carrier sense multiple access (CSMA) only. Therefore,
when the transmission power for data packets in MANETs is controlled to the minimum necessary
level through the channel gain feedback between nodes, the RTS/CTS packets with the maximum
transmission power may worsen signal collision and increase energy consumption. We also have
shown that a high network capacity can be obtained by reducing the transmission power for control
packets, and proposed a means to determine the appropriate transmission power for control
packets in a distributed manner.

4.5. Node Placement Optimization

Energy conservation is a key issue in ad hoc wireless network operation. Placing additional nodes
at appropriate locations can substantially lower the power requirements of communicating nodes.
This section investigates node placement for energy-constrained networks, and presents node
placement algorithms that aim to minimize total energy consumption. We first consider the mobile
base station (BS) placement problems for hierarchical wireless networks, and develop efficient
heuristic solutions for them. We model the placement of multiple BSs as a clustering optimization
problem in which BSs and user nodes are treated as clusterheads and cluster members, respectively.
We also devise a heuristic that discovers the central area of a multi-hop network, and solves the BS
placement problem with multi-hop connectivity. Our simulation results confirm that our methods
reduce the energy consumption of wireless networks by up to 55% compared with grid networks.
By using the PALM algorithm presented above, we devise a distributed relay placement algorithm
for the flat network structure that discovers energy-efficient routes while maintaining connectivity
in the presence of radio obstruction. Simulation results show that the power consumption of the
distributed implementation is greater than that of an existing centralized algorithm by only 25%.

Figure 34. (a) Hierarchical network with mobile BSs, and (b) Flat network with mobile relays.

 46

4.5.1. Introduction

Ad hoc networks can be categorized to two classes, hierarchical and flat; see Figure 34. In
hierarchical networks as in Figure 34(a), nodes are grouped to clusters, and a clusterhead or BS
node in each cluster takes responsibility for intercluster communication. In flat networks as in
Figure 34(b), all nodes have the same communication ability, and data from the source user node
are delivered to the destination via intermediate user nodes or relays.

We first consider a two-layered hierarchical network structure consisting of user nodes and mobile
BSs, which can be moved to any location. We further assume that the BSs have a separate wireless
channel for communication between them, and they have sufficiently large energy sources.
Consider the following example. Suppose there are N sensor nodes with wireless transceivers in a
forest. We dispatch R UAVs with wireless communication capability to assist network
communication between the sensors. Where should we place the UAVs to minimize energy
consumption of the sensor devices? We model this problem as a clustering problem composed of
unconstrained convex optimization subproblems. We treat BSs as clusterheads, and aim to
minimize the energy consumption of uplink communication, i.e., communication from user nodes
to BSs. As the clustering problem is NP-hard, we develop an efficient heuristic method based on
the K-means algorithm [70, 80], which is widely used for determining clusters that minimize the
mean squared distance from points to the nearest cluster means. Simulation results show that our
BS placement algorithm produces near-optimal solutions with high probability. Then, we
investigate the relay placement problem for the flat network structure by modeling it as an
analogous mechanical system. Our goal in relay placement is to place mobile relays at appropriate
locations, and minimize the total power consumption, while maintaining network connectivity.
By emulating the artificial forces exerted on mobile relays, and utilizing the PALM algorithm, we
solve the relay placement problem in the presence of radio obstruction in a distributed manner.

Figure 35. Four different network structures for BSP problems.

 47

4.5.2. Base Station Placement Optimization

We investigate base station placement (BSP) optimization for hierarchical networks considering
four different network structures of increasing complexity, which are summarized in Figure 35.
For the node placement problem of hierarchical networks, we again adopt the radio model used
earlier. We assume that nodes expend the minimum transmission power by using the BASIC
power control scheme. We further assume that BSs have full information about the locations of all
nodes. We also allow source and destination nodes to be randomly chosen. Unlike sensor
networks in which most nodes send data to a single sink, data can be generated at any node, and
can be delivered to any other node, and the source-destination pair can frequently change over
time.

We use the following network architecture, which resembles that of the near-term digital radio
(NTDR) network [78, 92]. A source node x either directly transmits data to the nearest base station
BS(x), or sends it over the shortest multi-hop path to BS(x). Then BS(x) sends the data to the base
station BS(y) of the destination y through a separate communication channel. Eventually, BS(y)
sends the data to the final destination y. In this structure, the inter-BS network provides the
network backbone, and the clusterhead serves as the gateway.

Figure 36. Network structure with single-hop communications: (a) User nodes (white) directly communicate
with a single BS (black), and (b) User nodes communicate with their nearest BSs.

First we consider the single base station with single-hop links or 1-SH case. User nodes directly
communicate via a single BS as in Figure 36(a). Suppose that N nodes are placed at locations
denoted by vectors Ԧ. The nodes directly communicate with a BS located at ݔԦ, and we want to
minimize the uplink communication energy consumed by the user nodes by controlling the
location the BS. The BSP problem is then: What is the optimal location ݔሬሬԦ? The power consumed
by each node pi can be written as:

where τ(pi) denotes the transmission time of pi, which is the number of bits to be sent by pi divided
by the bandwidth of the transceiver, and || • || denotes the Euclidian norm. Thus the 1-SH BSP
problem becomes the following optimization problem:

 48

where BS location ݔԦ is the optimization variable. This is an unconstrained optimization problem
which turns out to be convex and can be efficiently solved with existing convex optimization
techniques.

To extend the preceding case to multiple-BS placement (the K-SH problem), assume that there are
K BSs and N nodes as in Figure 36(b). Each node communicates with its nearest BS, and there is a
separate channel for inter-BS communication. The energy cost function of the 1-SH case does not
change its form with respect to the BS location. However, such an invariant function cannot be
used for the K-SH case, as user nodes change their BSs depending on the BS locations, which
makes this problem NP-hard [74]. Define clusters {Ck} as K disjoint subsets of P ={ pi}. The
K-SH BSP problem then becomes the following clustering optimization problem:

where clusters Ck and BS locations ݔԦ are the optimization variables. This is a generalization of
the well-known K-means clustering problem. To solve it, we use the following straightforward
heuristic. First groups nodes into their nearest clusters. Then compute the BS locations by solving
the 1-SH optimization problem:

These steps are repeated until no change in clustering occurs.

Convergence of the K¬SH algorithm can be proved easily. Optimality depends on the initial BS
locations ݔԦ, just as in the K-means case [60]. For this reason, in order to obtain satisfactory
solutions, K¬SH needs to be repeated, for which we have also devised an efficient heuristic
method. Our solution methods for the 1-MH and K-MH cases further extend these ideas, and can
be found in [55].

 49

4.5.3. Simulation Results

The solution quality of the proposed BSP algorithms depends on the initial clustering seeds.
Figure 37 shows simple examples of optimal and suboptimal BSP placements produced by our
K-SH algorithm. Figure 38 gives histograms of solutions produced by (a) random seeding, (b) the
seeding method of Ostrovsky et al. [74], (c) the modified method of [74], and (d) the farthest-first
method; the resolution of the data is 15 mW. Each seeding method was repeated 1000 times, and
the solution quality was measured by the total transmission power. According to Figure 38(b), the
probability that the method of [74] produces an optimal solution is approximately 1%, which is
only slightly higher than that of the random seeding (0.4%). Figure 38(d) shows that the
farthest-first method produces the optimal solution with high probability (38%). It performs
clustering in a greedy manner, and consequently, outperforms the other seeding methods when
nodes are almost uniformly distributed. Thus, the farthest-first method was adopted for the
remaining experiments.

Figure 37. Examples of: (a) Optimal, and (b) Sub-optimal BS placement. User nodes (white) form a grid
structure and BS locations (black) are computed by K-SH.

Figure 38. Total power consumption after: (a) Random seeding, (b) The seeding method of [34] (original), (c)
The seeding method of [34] (modified, and (d) The farthest first method.

 50

4.5.4. Distributed Relay Placement Optimization

While the BS placement algorithms presented above compute optimal locations that act as
clusterheads with relatively large energy sources, the algorithms considered next try to place
mobile relays that forward data from previous hop nodes to next hop nodes. We also investigate
the distributed relay placement (DRP) problem in the presence of radio obstacles.

In this analysis, we assume that only one user node is the sink node that serves as the final
destination of all data generated by other users. Sources send new data to a sink through direct or
multi-hop routes. Relays only forward data from sources to the sink. The network attempts to
construct energy-efficient routes using PALM. We assume that nodes adjust their transmission
power to the minimum necessary level, and receiver sensitivity RSSmin is set to 1. The power cost
for communication across distance d is Cost(d) = k1•dα + k2. We also assume that relays can sense
the direction of incoming signals and the distance to the transmitter, and so can deduce the relative
locations of their neighbors. For the current network topology, relays identify their immediate
neighbors, and move toward locally optimal locations according to an artificial “force” function.
When an object is located between two nodes, direct communication may be obstructed. We
assume that when no line-of-sight communication is available, the radio gain between two nodes
becomes zero. In addition, mobile relays have full information about the locations and the shapes
of radio obstacles.

In order to formulate and solve the relay placement problem, we modeled the network as a
mechanical system with springs and a viscous damper⎯a widely used approach for solving
optimization problems [69]. Specifically, we model the communication energy cost as an artificial
potential energy stored in springs, and nodes as objects with unit mass, moving according to the
artificial force field. Movement of objects then resembles the progressive solution improvement of
the steepest descent method [50] in convex optimization. Thus, through this model, we can obtain
a locally optimal solution as the mechanical system converges to an equilibrium point.

Based on this mechanical analog, we designed a distributed controller of mobile relays as follows.
The sink node determines the area where an additional relay is needed, and dispatches a mobile
relay to that area. On arrival, the new relay starts to discover energy-efficient routes, and moves in
the direction specified by the mechanical model so that the total energy consumption decreases.
Then the sink dispatches another relay. These steps continue until the desired number of relays are
placed in the network.

In the DRP algorithm, each relay performs the following operations repeatedly: route redirection,
location sensing, energy cost estimation, and movement control. First, it continuously attempts to
discover energy-efficient routes by performing route redirection as described for PALM. Second,
both sources and relays continuously broadcast hello messages to their immediate neighbors. By
sensing the incoming hello messages, each relay can estimate the energy cost to reach its neighbors.
Third, the relay estimates the energy cost around itself, and forwards the estimated value to the
next-hop node. Each source node records its data generation rate b(s) on the data packets it
transmits. By inspecting the source address and b(s) recorded on the received data packets, relay i
can determine the data rate w(i, j) across the link (i, j), where j is a neighbor node of i. Thus, the

 51

relay can estimate the total energy cost Ep,total(i) around itself. Source nodes perform a similar
computation, and record their addresses and the energy cost on outgoing packets. Relay i inspects
the Ep,total(i’) value recorded on the packet, and if Ep,total(i) > Ep,total(i’) then it records its own
address and energy cost on the packet, and forwards it. In consequence, the sink node will receive
the address of the node that has the greatest energy cost. Fourth, each mobile relay controls its
movement according to the mechanical analog; see the references for details.

The final form of the propulsion force on the relay, including reaction forces when radio obstacles
exist, is:

where Obst(i) denotes the set of nodes adjacent to i, and the distance between a radio obstacle and
the communication link with i is less than dcritical.

4.5.5. Simulation Results

First, we first consider the network space without radio obstacles, and compare the energy
efficiency of the network structure produced by the DRP algorithm with that of Li and Cassandras’
algorithm [69]. Unlike our algorithm, their relay placement algorithm is a centralized scheme with
the assumptions similar to our mechanical model. Its operation is as follows. First, a bottleneck
node k is chosen, and their algorithm investigates all possible ways of linking nodes around the
bottleneck node, the number of which is 3•2m − 2, where m is the number of k’s neighbors. Next, it
selects the best connectivity with the minimum power cost, and adds a new relay according to the
selected connectivity. Then, for the given network connectivity, optimal node locations are
determined through the so-called inner-force method. The algorithm continues to add relays until
the intended number of relay nodes are inserted. For a fair comparison, we adopt the radio
parameters from [69]. Figure 39 shows simulation results for the DRP algorithm without radio
obstacles.

 52

Figure 39. Simulation results for placing n relays with no radio obstacles.

Figure 40. Simulation results for power consumption of relay placement algorithms: (a) Total power
consumption, and (b) Power overhead due to the distributed implementation.

Figure 40 compares the power consumption of our DRP algorithm and that of Li and Cassandras.
As Figure 40(a) shows, the power consumption of each algorithm decreases as the number of
added relays n increases, and the gap between these algorithms also decreases. Let Pdistributed and
Pcentralized denote the total power consumption of the algorithms. Figure 40(b) shows the relative
overhead of the power consumption measured as (Pdistributed − Pcentralized)/Pcentralized. When n is small,
the overhead is large, but as n grows, it decreases and becomes as small as 25%. The DRP
algorithm constructs a power-efficient network structure in a distributed manner, and its power
efficiency is comparable to that of Li and Cassandras’ centralized algorithm.

 53

Figure 41. Relay placement with obstacles; n denotes the number of added relays.

Figure 41 provides simulation results for relay placement in the presence of radio obstacles. Nine
source nodes (black) are placed in a grid structure on a plane. The sink node is at the bottom left,
and the other eight source nodes are data sources. There are eight radio obstacles (grey disks), and
n mobile relays (white) are inserted. It can be seen that the relay arrangement maintains
connectivity in the presence of the radio obstacles.

Figure 42(a) shows simulation results for total power consumption obtained by the DRP algorithm
in the presence of radio obstructions arranged as in Figure 41; results without radio obstructions
are also shown. As expected, the total power consumption monotonically decreases as the number
of relays increases. Figure 42(b) shows the ratio between the power consumption values with and
without obstructions. It can be seen that if we add about six relays, the power overhead due to
obstructions stays almost constant with respect to the case without obstructions. Thus, we
conclude that the proposed DRP technique effectively reduces the total power consumption, even
in the presence of obstructions, while maintaining the network’s connectivity.

 54

Figure 42. Simulation results for the proposed DRP algorithm: (a) Total power consumption, and (b) Ratio of
power consumption levels with and without obstacles.

 55

5. Simulation and Verification of Quantum Circuits

5.1. Introduction

The recent interest in quantum circuits is motivated by several complementary considerations.
Quantum information-processing is rapidly becoming a reality as it allows manipulating matter at
unprecedented scale. Such manipulations may create particular entangled states or implement
specific quantum evolutions — they find uses in atomic clocks, ultra-precise metrology,
high-resolution lithography, optical communication, etc. In August 2009, EE Times reported that
“researchers at the National Institute of Standards and Technology…demonstrated continuous
quantum operations using a trapped-ion processor” that stored quantum states in beryllium ions
for up to 15 seconds. A large-scale architecture for quantum computing proposed in June 2009 by
physicists from Michigan and Maryland suspends linear ion crystals in an anharmonic trap. Their
design provisions for 100 ytterbium-based logical qubits and 20 additional ions for laser cooling.
Commercial quantum communications and cryptography have so far relied on quantum-optical
implementations, where qubits are stored in photons and can be transported over great distances.

Engineers traditionally simulate new designs before implementing them. Such simulation may
identify subtle design flaws and save both costs and effort, and is therefore closely related to
verification. Both simulation and verification techniques typically use well-understood host
hardware, e.g., one can simulate a quantum circuit on a commonly-used conventional computer.
However, working with even the smallest quantum circuits (2-3 qubits) requires powerful software
tools. A quantum circuit can simultaneously process a superposition (linear combination) of many
n-bit input combinations, and its functionality is specified by a complex-valued (2n × 2n)-matrix.
Because of the apparent data explosion, simulation and verification of quantum circuits are harder
than in the case of conventional circuits. However, transformations of quantum circuits, e.g.,
adapting circuits to spin-chain architectures, may introduce errors that need to be verified.

Circuit equivalence checking is a particularly popular circuit verification technique. It is usually
considered in conjunction with circuit optimization, where an initial circuit is believed to be
correct, but the optimized circuit requires verification. One then needs to check if the two circuits
produce equivalent outputs on all inputs. Equivalence of conventional circuits can be checked by
random simulation, i.e., by looking for input combinations that would disprove equivalence.
However, non-exhaustive simulation may overlook rare corner cases where the two circuits are
different, and therefore cannot definitively conclude that two circuits are equivalent. Such
conclusions can be produced instead by formal proof techniques. To this end, our work is the first
to develop equivalence-checking techniques for quantum circuits and implement them in reusable
software. We also found that the links between quantum circuit simulation and
equivalence-checking are stronger than those for conventional circuits.

The construction of quantum information processors is often motivated by the hope that quantum
circuits can compete with conventional computing and communication. Quantum-mechanical
effects may lead to computational speed-ups, more secure or more efficient communication, better
keeping of secrets, etc. To this end, Siemens and ID Quantique announced in August 2009 the
commercial availability in Europe of quantumly-secure communication implemented in existing
“dark” optical fiber. Current research seeks new circuits and algorithms with revolutionary
behavior as in Shor’s work on number-factoring or provable limits on possible behaviors. While

 56

proving abstract limitations on the success of unknown algorithms appears more difficult, a
common line of reasoning for such results is based on simulation. For example, if the behavior of
a quantum circuit can be faithfully simulated on a conventional computer, then the possible
speed-up achieved by the quantum circuit is limited by the cost of simulation. Thus, aside from
sanity-checking new designs for quantum information-processing hardware, more efficient
simulation can lead to sharper bounds on all possible algorithms.

Since the outcome of a quantum computation is probabilistic, we clarify our notion of simulation.
By a randomized simulation, we mean a classical randomized algorithm whose output distribution
on an input is identical to that of the simulated quantum computation. By a deterministic
simulation, we mean a classical deterministic algorithm which, on a given pair of input x and
output y of the quantum computation, outputs the probability that y is observed at the end of the
quantum computation on x. To simulate a quantum circuit, one may use a naive brute-force
calculation of quantum amplitudes that entails exponential overhead. Achieving significantly
smaller overhead in the generic case appears hopeless — in fact, this has lead Feynman to suggest
that quantum computers may outperform conventional ones in some tasks. Therefore, in the
existing literature, theoretical results for simulating quantum circuits are mostly available for
restricted classes of circuits. Our work offers new such classes and new results, with application to
some of the most important quantum circuits in existence. In particular, follow-up work by other
researchers (Aharonov and Short) applied our techniques to show that the QFT can be simulated in
polynomial time on classical computers.

5.2. Algorithms for Quantum Circuit Simulation

Classes of quantum circuits that admit efficient simulation are often distinguished by a restricted
“gate library”, but do not impose additional restrictions on how gates are interconnected or
sequenced. A case in point is the seminal Gottesman-Knill Theorem [106] and its recent
improvement by Aaronson and Gottesman [94]. These results apply only to circuits with stabilizer
gates—Controlled-NOT, Hadamard, Phase, and single-qubit measurements in the so-called
Clifford group. Another example is given by match gates defined and studied by Valiant [127],
and extended by Terhal and DiVincenzo [125].

A different way to impose a restriction on a class of quantum circuits is to limit the amount of
entanglement in intermediate states. Jozsa and Linden [110], as well as Vidal [130] demonstrate
efficient classical simulation of such circuits and conclude that achieving quantum speed-ups
requires more than a bounded amount of entanglement. In this work, we pursue a different
approach to efficient simulation and allow the use of arbitrary gates. More specifically, we assume
a general quantum circuit model in which a gate is a general quantum operation (so called
physically realizable operators) on a constant number of qubits. This model, proposed and studied
by Aharonov, Kitaev and Nisan [95], generalizes the standard quantum circuit model, defined by
Yao [134], where each gate is unitary and measurements are applied at the end of the computation.
We also assume that (i) the computation starts with a fixed unentangled state in the computational
basis, and (ii) at the end each qubit is either measured or traced-out.

 57

Our simulation builds upon the framework of tensor network contraction. Being a direct
generalization of matrices, tensors capture a wide range of linear phenomena including vectors,
operators, multi-linear forms, etc. They facilitate convenient and fundamental mathematical tools
in many branches of physics such as fluid and solid mechanics, and general relativity [108]. More
recently, several methods have been developed to simulate quantum evolution by contracting
variants of tensor networks, under the names of Matrix Product States, Projected Entangled Pairs
States, etc. [118, 128, 129, 130, 131, 135]. In this framework, a quantum circuit is regarded as a
network of tensors. The simulation contracts edges one by one and performs the convolution of
the corresponding tensors, until there is only one vertex left. Having degree 0, this vertex must be
labeled by a single number, which gives the final measurement probability sought by simulation.
Unlike other simulation techniques, we do not necessarily simulate individual gates in their
original order — in fact, a given gate may even be simulated partially at several stages of the
simulation. While tensor network contraction has been used in previous work, little was known
about optimal contraction orders. We prove that the minimal cost of contraction is determined by
the treewidth tw(GC) of the circuit graph GC. Moreover, existing constructions that approximate
optimal tree-decompositions (e.g. [122]) produce near-optimal contraction sequences. Intuitively,
the smaller a graph’s treewidth is, the closer it is to a tree, and a tree decomposition is a drawing of
the graph to make it look like a tree as much as possible. Our result allows us to leverage the
extensive graph-theoretical literature dealing with the properties and computation of treewidth.

Theorem 1.1. Let C be a quantum circuit with T gates and whose underlying circuit graph is GC.
Then C can be simulated deterministically in time TO(1) exp[O(tw(GC))].

Hence given a function computable in polynomial time by a quantum algorithm but not classically,
any polynomial-size quantum circuit computing the function must have super-logarithmic
treewidth. The following corollary is an immediate consequence.

Corollary 1.2. Any polynomial-size quantum circuit of a logarithmic treewidth can be simulated
deterministically in polynomial time.

Quantum formulas defined and studied by Yao [134] are quantum circuits whose underlying
graphs are trees. Roychowdhury and Vatan [124] showed that quantum formulas can be
efficiently simulated deterministically. Since every quantum formula has treewidth 1, Corollary
gives an alternative efficient simulation. Our focus on the topology of the quantum circuit allows
us to accommodate arbitrary gates, as long as their qubit-width (number of inputs) is limited by a
constant. In particular, Corollary 1.2 implies efficient simulation of some circuits that create the
maximum amount of entanglement in a partition of the qubits, e.g., a layer of two-qubit gates.
Therefore, our results are not implied by previously published techniques. We now articulate
some implications of our main result to classes of quantum circuits, in terms of properties of their
underlying graphs. The following two classes of graphs are well-studied, and their treewidths are
known. The class of series parallel graphs arises in electric circuits, and such circuits have
treewidth ≤ 2. Planar graphs G with n vertices are known to have treewidth tw(G) = O(√|V(G)|)
[97].

 58

Corollary 1.3. Any polynomial-size parallel serial quantum circuit can be simulated
deterministically in polynomial time.

Corollary 1.4. A size-T planar quantum circuit can be simulated deterministically in exp[O(√T)]
time.

Another corollary deals with a topological restriction representative of many physical realizations
of quantum circuits. A circuit is said to be q-local-interacting if under a linear ordering of its
qubits, each gate acts only on qubits that are at most q distance apart. A circuit is said to be
local-interacting if it is q-local interacting with a constant q independent of the circuit size. Such
local interaction circuits generalize the restriction of qubit couplings to nearest-neighbor qubits
(e.g., in a spin-chain) commonly appearing in proposals for building quantum computers, where
qubits may be stationary and cannot be coupled arbitrarily. To this end, we observe that the
treewidth of any local-interaction circuit of logarithmic depth is at most logarithmic.

Corollary 1.5. Let C be a quantum circuit of size T and depth D, and is q-local-interacting. Then
C can be simulated deterministically in TO(1) exp[O(qD)] time. In particular, if C is a
polynomial-size localy-linteracting circuit with a logarithmic depth, then it can be simulated
deterministically in polynomial time.

An important limitation of our techniques is that a circuit family with sufficiently fast-growing
treewidth may require super-polynomial resources for simulation. In particular, this seems to be
the case with known circuits for modular exponentiation. Therefore, there is little hope to
efficiently simulate number-factoring algorithms using tree decompositions. As an extreme
illustration, we found a depth-4 circuit—including the final measurement as the 4th layer—that
has large treewidth.

Theorem 1.7. There exists a depth-4 quantum circuit on n qubits using only one- and two-qubit
gates such that its treewidth is Ω(n).

Note that a circuit satisfying the assumption in the above theorem must have O(n) size. Our
construction is based on expander graphs, whose treewidth must be linear in the number of
vertices. This finding is consistent with the obstacles to efficient simulation that are evident in the
results of Terhal and DiVincenzo [126], later extended by Fenner et al. [107]. In contrast, we are
able to efficiently simulate any depth-3 circuit deterministically while the simulation in [126] is
probabilistic.

Theorem 1.8. Assuming that only one- and two-qubit gates are allowed, any polynomial-size
depth-3 quantum circuit can be simulated deterministically in polynomial time.

Additional details are available in our extended paper published in the SIAM Journal on
Computing 38(3), pp. 963-981, 2008.

 59

5.3. Equivalence-Checking for Quantum Circuits

Equivalence checking is a basic task in the synthesis and verification of classical digital circuits. A
hardware designer needs to know whether a circuit’s implementation is functionally equivalent to
its specification. In addition, the equivalence of different versions of the same (sub-)circuit must
be checked throughout the complex computer-aided design process, which includes circuit
optimization, technology mapping to specific device architectures and adaptation to compact and
reliable layout. Combinational equivalence checking for conventional circuits is solved in practice
with high-performance solvers for Boolean Satisfiability, and its negative version
(non-equivalence) is NP-complete. Equivalence checking is likely to be just as important in
quantum CAD, and the non-equivalence of quantum circuits is QMA-complete. However, the
equivalence of quantum states and operators can be subtle. Unlike their classical counterparts,
qubits and quantum gates can differ by global and relative phase, and yet be equivalent upon
measurement.

Building upon our DARPA-sponsored work on QuIDD data structures for simulating quantum
circuits, we developed QuIDD algorithms to check quantum states and operators for equivalence.
Our research discovered a surprising variety of algorithms available to solve this problem. This
variety is partly due to the fact that quantum circuits require the classical concept of equivalence to
be extended to account for global and relative phase. This broader notion of equivalence creates
several new opportunities in quantum circuit design, where minimizing the number of gate
operations to achieve a given function is a fundamental goal. For example, the Toffoli gate can be
implemented with fewer controlled-NOT (CNOT) and 1-qubit gates, if equivalence is interpreted
as “equivalence up to relative phase” or, more briefly, “relative-phase equivalence.” Normally the
Toffoli gate requires an equivalent circuit of six CNOT and eight 1-qubit gates to implement it.
Any relative-phase differences present in an equivalent circuit can be canceled out so long as every
pair of these gates in the circuit is strategically placed. Since circuit minimization is being pursued
for a number of key quantum arithmetic circuits with many Toffoli gates, such as the modular
exponentiation occurring in Shor’s algorithm, this type of phase equivalence could reduce the
number of gates even further.

In our work we distinguish equivalence of quantum states up to global phase, from equivalence up
to local phases. Neither affects measurement results if measurement is applied immediately, but
may significantly alter the outcome if additional quantum gates are applied to given states.
Furthermore, a pair of quantum operators or quantum circuits can be equivalent up to local or
global phase if their outputs are respectively equivalent for all inputs.

5.3.1. Global-Phase Equivalence

We describe some algorithms that check equivalence up to global phase of two quantum states or
operators. The first two are well-known linear-algebraic operations, while the remaining
algorithms exploit QuIDD properties explicitly.

 60

Inner Product. Since the quantum-circuit formalism models an arbitrary quantum state |ψ> as a
unit vector, the inner product <ψ|ψ> = 1. In the case of a global-phase difference between two
states |ψ> and |φ>, the inner product is the global-phase factor, < φ|ψ> = eiθ<ψ|ψ> = eiθ. Since |eiθ|
= 1 for any θ, checking if the complex modulus of the inner product is 1 suffices to check
global-phase equivalence for states. Although the inner product may be computed using explicit
arrays, a straightforward QuIDD-based implementation is easily derived. The complex-conjugate
transpose and matrix product with QuIDD operands were defined in our previous DARPA-funded
work and implemented in software. Thus, the algorithm computes the complex-conjugate
transpose of A and multiplies the result with I. The complexity of this algorithm is stated in the
following lemma.

Lemma 5.2.1.A. Consider two state QuIDDs A and B with sizes |A| and |B|, respectively, in
number of nodes. The global-phase difference can be computed in O(|A||B|) time and memory.

Matrix Product. The matrix product of two operators can be used for global-phase equivalence
checking. In particular, since all quantum operators are unitary, the adjoint of each operator is its
inverse. Thus, if two operators U and V differ by a global phase, then UV†=eiθI. With QuIDD
representations of U and V, computing V† requires O(|V|) time and memory. The matrix product
W = UV† requires O((|U||V|)2) time and memory. To check if W=eiθI, any terminal value t is
chosen from W, and scalar division is performed on W as W′ = Apply(W, t, /), which takes
O((|U||V|)2) time and memory. Since QuIDDs are canonical, checking if W′ = I requires only O(1)
time and memory. If W′ = I, then t is the global-phase factor.

Node-Count Check. The previous algorithms merely translate linear-algebraic operations to
QuIDDs, but exploiting the following QuIDD property leads to faster checks.

Lemma 5.2.1.B. The QuIDD A′ = Apply(A, c, *), where c is a non-zero complex value, is
isomorphic to A, hence |A′| = |A|.

This lemma states that two QuIDD states or operators that differ by a nonzero scalar, such as a
global-phase factor, have the same number of nodes. Thus, the equality of node counts in QuIDDs
is a necessary but not sufficient condition for global-phase equivalence. To see why it is not
sufficient, consider two state vectors |ψ> and |φ> with elements wj and vk, respectively, where j, k =
0, 1, . . .N − 1. If some wj = vk = 0 such that j ≠ k, then |φ> ≠ eiθ |ψ>. The QuIDD representations
of these states can, in general, have the same node counts. Despite this drawback, the node-count
check requires only O(1) time since Apply is easily augmented to recursively sum the number of
nodes as a QuIDD is created.

Recursive Check. Lemma 5.2.1.B implies that a QuIDD-based algorithm, which takes into
account terminal value differences, checks a sufficient condition for global-phase equivalence.
Pseudocode for such an algorithm called GPRC is shown in Figure 43.

 61

GPRC returns true if two QuIDDs A and B differ by global phase and false otherwise. gp and
have_gp are global variables containing the global-phase factor and a flag signifying whether or
not a terminal node has been reached, respectively. The value of gp is only valid if true is returned.
The first conditional block of GPRC deals with terminal values. The potential global-phase factor
ngp is computed after handling division by 0. If |ngp| ≠ 1 or if ngp ≠ gp when gp has been set, then
the two QuIDDs do not differ by a global phase. Next, the condition specified by Lemma 5.2.1.B
is checked. If the node of A depends on a different row or column variable than the node of B, then
A and B are not isomorphic and thus cannot differ by global phase. Finally, GPRC is called
recursively, and the results of these calls are combined via the logical AND operation.

Figure 43. Pseudo-code for the recursive global-phase equivalence check.

Early termination occurs when isomorphism is violated or more than one phase difference is
computed. In the worst case, both QuIDDs will be isomorphic, but the last terminal visited in each
QuIDD will differ by more than a global-phase factor, causing full traversals of both QuIDDs.
Thus, the overall runtime and memory complexity of GPRC for states or operators is O(|A|+|B|).
Also, the node-count check can be run before GPRC to quickly eliminate many non-equivalences.

Empirical Results. The first benchmark considered is a single iteration of Grover’s quantum
search algorithm, where the oracle searches for the last item in the database. One iteration is
sufficient to test the effectiveness of the algorithms, since the state vector QuIDD remains
isomorphic across all iterations, as was proven in our past DARPA-sponsored work.

Figure 44 shows the runtime results for the inner product and GPRC algorithms. Results for the
node-count check algorithm are not shown since it runs in O(1) time.

 62

Figure 44. (a) Runtime results and regressions for the inner product and GPRC on checking global-phase
equivalence in a Grover iteration, and (b) QuIDD size of the state vector.

These results confirm the asymptotic complexity difference between the inner-product and GPRC
algorithms. Because the number of nodes in the QuIDD state-vector after a Grover iteration is
O(n), the runtime complexity of the inner product should be O(n2), which is confirmed by a
regression plot within only a 1% error. In contrast, the runtime complexity of the GPRC algorithm
should be O(n), which is also confirmed by a regression plot, within the same error margin.

We next compared runtimes of the matrix-product and GPRC algorithms checking the Grover
operator. Our previous work shows that the QuIDD representation of this operator grows in size as
O(n), which is confirmed in our empirical data. Therefore, the runtime of the matrix product
should be quadratic in n, but linear in n for GPRC. Regression plots verify these complexities
within 0.3% error. We also compared states that appear in Shor’s integer factorization algorithm.
In particular, we consider states created by the modular exponentiation sub-circuit that represent
all possible combinations of x and f(x,N) = ax mod N, where N is the integer to be factored. Each of
the O(2n) paths to a non-0 terminal encodes a binary value for x and f(x,N). This experiment
demonstrates how the algorithms fare with exponentially-growing QuIDDs.

In our experiments, each N is an integer whose two non-trivial factors are prime (such numbers are
often called semi-prime). a is set to N−2, but in general can be chosen randomly from the range
[2..N −2]. In our experiments, states |ψ> and |φ> are equal up to global phase. The node counts for
both states are equal as predicted by Lemma 5.2.1.B. Interestingly, both algorithms exhibit very
similar performance. Further results were produced for the cases in which Hadamard gates are
applied to the first, middle, and last qubits, respectively, of |φ>. These results show that early
termination in GPRC can enhance performance by a factor of roughly 1.5x to 10x. In almost every
case, both algorithms represent far less than 1% of the total runtime.

Thus, checking for global-phase equivalence among QuIDD states appears to be easy once the
QuIDDs are created. An interesting side note is that in modular exponentiation, some QuIDD
states with more qubits have more exploitable structure than those with fewer qubits. For instance,
the N = 387929 (19 qubits) QuIDD has fewer than half the nodes of the N = 163507 (18 qubits)
QuIDD. We also compared the matrix-product and GPRC algorithms checking the inverse QFT

 63

operator. While the inverse QFT is key to Shor’s algorithm, its n-qubit QuIDD representation
grows as O(22n), and the asymptotic differences in the matrix product and GPRC are very
noticeable. Also, the memory usage indicates that the matrix product may need asymptotically
more intermediate memory despite operating on QuIDDs with the same number of nodes as
GPRC.

5.3.2. Relative-Phase Equivalence

Like the global-phase case, the relative-phase equivalence checking problem can be solved in
several ways. Our first three algorithms adapt standard linear algebra to QuIDDs, while the last
two exploit QuIDD properties directly, offering asymptotic runtime and memory improvements.

Modulus and Inner Product. Consider two state vectors |ψ> and |φ> that are equal up to relative
phase and have complex-valued elements wj and vk, respectively, where j, k = 0, 1, . . . N−1.
Computing |φ′> = Σi=0

N−1 |vj | |j> and |ψ′> = Σk=0
N−1 |wk| |k> = Σk=0

N−1 |eiθkvk| |k> sets each phase
factor to 1, allowing the inner product to be applied. The complex modulus operations are
computed as C = Apply(A, | · |) and D = Apply(B, | · |) with runtime and memory complexity O(|A|
+ |B|), which is dominated by the O(|A||B|) complexity of the inner product.

Modulus and Matrix Product. For operator equivalence up to relative phase, there are two cases
depending on whether the diagonal relative-phase matrix appears on the left or right side of one of
the operators. Consider two operators U and V with elements uj,k and vj,k, respectively. The two
cases in which the relative-phase factors appear on either side of V are described as uj,k = eiθjvj,k
(left side) and uj,k = eiθkvj,k (right side). In either case, the matrix product check discussed above
may be extended by computing the complex modulus without increasing the overall complexity.
Note that neither this algorithm nor the modulus and inner-product algorithms calculate the
relative-phase factors.

Element-wise Division. Given the states discussed for the modulus and inner product check,
wk=eiθkvk, the operation wk/vj for each j = k produces a relative-phase factor, eiθk. The condition
|wk/vj | = 1 is used to check if each division yields a relative phase. If this condition is satisfied for
all divisions, the states are equal up to relative phase.

The QuIDD implementation for states is simply C = Apply(A,B, /), where Apply is augmented to
avoid division by 0 and instead return 1 when two terminal values being compared equal 0, and
return 0 otherwise. Apply can be further augmented to terminate early when |wj/vi| ≠ 1. C is a
QuIDD vector containing the relative-phase factors. If C contains a terminal value 0, then A and B
differ by more than a relative phase. Since one call to Apply implements this algorithm, the
runtime and memory complexity are O(|A||B|).

 64

Element-wise division for operators is more complicated. For QuIDD operators U and V , W =
Apply(U, V, /) corresponds to a matrix with the relative-phase factor eiθj along row j in the case of
phases appearing on the left side, and along column j in the case of phases appearing on the right
side. In the first case, all rows of W are identical, meaning that the support of W does not contain
any row variables. Similarly, in the second case the support of W does not contain any column
variables. A complication arises when 0 values appear in either operator. In such cases, the
support of W may contain both variable types, but the operators may in fact be equal up to relative
phase.

We now present an algorithm based on Apply, which accounts for these special cases by using a
sentinel value of 2 to mark valid 0 entries that do not affect relative-phase equivalence. These
entries are recursively ignored by skipping either row or column variables with sentinel children (S
specifies row or column variables), which effectively fills copies of neighboring row or column
phase values in their place in W. The algorithm must be run twice, once for each variable type.
The size of W is O(|U||V|) since it is created by a variant of Apply.

Figure 45. Pseudo-code for the element-wise division algorithm.

 65

Non-0 Terminal Merge. A necessary condition for relative-phase equivalence is that zero-valued
elements of each state vector appear in the same locations, as expressed by the following lemma.

Lemma 5.2.2. A necessary but not sufficient condition for two states |φ> = Σj=0
N−1 vj |j>

and |ψ> = Σ k=0
N−1 wk |k> to be relative-phase equivalent is that whenever vj =wk = 0, j = k.

QuIDD canonicity may be exploited with this condition. Let A and B be the QuIDD
representations of states |ψ> and |φ>, respectively. First, compute C = Apply(A, ۀ| · |ڿ) and D =
Apply(B, ۀ| · |ڿ), which converts every non-zero terminal value of A and B into a 1. Since C and D
have only two terminal values, 0 and 1, checking if C and D are equal satisfies Lemma 5.2.2.
Canonicity ensures this check requires O(1) time and memory. The overall runtime and memory
complexity of this algorithm is O(|A|+|B|) due to the unary Apply operations. This algorithm can
also be applied to operators, since Lemma 5.2.2 also applies to uj,k = eiθjvj,k (phases on the left) and
uj,k = eiθkvj,k (phases on the right) for operators U and V.

Modulus and DD Compare. A variant of the modulus and inner-product check, which also
exploits the canonicity of QuIDDs, provides an asymptotic improvement when checking a
necessary and sufficient condition for relative-phase equivalence of states and operators. As with
the modulus and inner product check, compute C = Apply(A, |·|) and D = Apply(B, |·|). If A and B
are equal up to relative phase, then C = D since each phase factor becomes a 1. Canonicity again
ensures that this check requires O(1) time and memory. Thus, the runtime and memory
complexity of this algorithm is dominated by the unary Apply operations, giving O(|A| + |B|).

5.3.3. Empirical Validation

We now present experimental results for the relative-phase equivalence-checking algorithms. The
first benchmark circuit creates a remote EPR pair between the first and last qubits, via
nearest-neighbor interactions. Given an initial state |00 . . . 0>, it creates the remote EPR-pair state
(1/√2)(|00 . . . 0> + |10 . . . 1>). The circuit size is varied, and the final state is compared to the state
(e0.345i/√2) |00 . . . 0> + (e0.457i/√2) |10 . . . 1>. Our data show that all of our algorithms run quickly.
For example, the inner product is the slowest algorithm, yet for a 1000-qubit instance, it runs in 0.2
seconds, a small fraction of the 7.6 seconds required to create the QuIDD state vectors.

Figure 46. (a) Runtime results and regressions for various algorithms to check for relative phase equivalence

of the remote EPR pair circuit, and (b) Size of the QuIDD states.

 66

Curve-fitting of the runtime and memory data reveal linear complexity for all algorithms to within
1% error. This is not unexpected since the QuIDD representations of the states grow linearly with
the number of qubits, and the complex modulus reduces the number of different terminals prior to
computing the inner product. These results suggest that in practice, the inner-product and
element-wise division algorithms perform better than their worst-case complexity. Element-wise
division should be preferred when QuIDD states are compact since, unlike the other algorithms, it
computes the relative-phase factors (this was also confirmed by another series of experiments
reported in our ICCAD 2007 publication detailing this work).

5.3.4. Summary

Although QuIDD properties like canonicity enable exact equivalence checking in O(1) time, we
have shown that such properties may be further exploited to develop efficient algorithms for the
difficult problem of equivalence checking up to global and relative phase. In particular, the
global-phase recursive check and element-wise division algorithms efficiently determine
equivalence of states and operators up to global and relative phase, while also computing the
phases. In practice, they outperform QuIDD implementations of the inner and matrix product,
which do not compute relative-phase factors. Other QuIDD algorithms presented in this chapter,
such as the node-count check, non-0 terminal merge, and modulus and DD compare, further
exploit decision-diagram properties to provide even faster checks, but only satisfy necessary
conditions for equivalence. Thus, they should be used to aid the more robust algorithms. A
summary of our theoretical results on equivalence-checking is given in Figure 47.

Figure 47. Key properties of the QuIDD-based phase-equivalence checking algorithms.

 67

5.3.5. Adaptive Equivalence-Checking

To develop a more efficient methodology for equivalence-checking of quantum circuits, we
exploit the reversibility of these circuits to define a new concept, called a reversible miter — a
natural counterpart of miter circuits used in equivalence-checking of conventional circuits. In
conjunction with existing techniques for iterative circuit simplification, reversible miters can
drastically reduce the size of verification instances. Our method is adaptive in the sense that it
utilizes multiple techniques appropriate for different classes of quantum circuit modules. In this
context, we study reversible circuits which are a subset of quantum circuits that map conventional
0-1 bit-strings into other such bit-strings. In particular, the largest module in Shor’s
number-factoring algorithm—modular exponentiation—is implemented as a reversible circuit, but
acting on entangled quantum states. It exceeds all other modules asymptotically in size, and thus
requires most attention of CAD tools. To verify such logic modules, we adapt conventional
state-of-the-art techniques in several ways, and significantly scale up quantum equivalence
checking. Our empirical comparisons confirm that properties of reversible circuits can enable
much faster SAT-based equivalence-checking. However, conventional techniques cannot be
applied to, for example, the Quantum Fourier Transform. Therefore, we also study
equivalence-checking of circuits with non-conventional gates (properly-quantum circuits), and the
integration of heterogeneous techniques.

5.3.6. Preliminaries

Consider gates NOT, CNOT and TOFFOLI acting on classical bits. They can be implemented
using NOT, XOR and AND gates. In the quantum case, they exchange basis states, which is why
their matrices contain only 0s and 1s. As these gates obey the same algebraic rules in both cases,
we term them conventional gates. In comparison, the matrix of the Hadamard gate contains 1/√2,
and its functionality cannot be expressed in Boolean logic. Therefore we call such gates
properly-quantum. Each properly-quantum gate maps at least one 0-1 input combination (basis
state) to a quantum superposition of more than one basis state. Measurement-free quantum
computation is reversible in nature, thus quantum circuits are reversible in that (i) they map their
input configurations to output configurations one-to-one, (ii) this property is also observed locally
for every gate and sub-circuit.

Popular quantum algorithms contain large, application-specific sections dedicated to the
computation of conventional Boolean functions. In some cases, the input to a quantum algorithm
is read by these conventional sections and later factored into quantum states. In order to embed
conventional computation into the quantum domain, it must be made reversible, and standard
procedures exist for such transformations. The resulting circuits do not use quantum properties,
except that they can be applied to quantum data (superposition states), allowing them to perform
classical operations on many inputs at once. Leveraging this quantum parallelism in useful
applications is difficult, but can be illustrated by Shor’s polynomial-time algorithm for
number-factoring [147]. This algorithm is dominated by a reversible module that performs
modular exponentiation, applied before the QFT. We call such circuits without properly-quantum
gates specifically reversible circuits here.

 68

5.3.7. Reversible Miters

To check the equivalence of two conventional combinatorial circuits, C1 and C2, one checks if the
conventional miter circuit XOR(C1,C2) implements the constant-0 function. For multi-output
circuits, corresponding output bits are XORed and the results are ORed, so that even a single
mismatch can be detected by existing powerful tools for Boolean circuit analysis. Conventional
miters can be constructed for reversible circuits by treating these circuits as AND-OR-NOT
circuits, except that the miter will not be reversible. However, this is not going to work for
properly-quantum circuits. To address these limitations, we introduce reversible miters which
exploit reversibility and can handle properly-quantum gates. We also discover synergies with
simplification of reversible circuits [140], [142], [143]. Now consider quantum (or reversible)
circuits C1 and C2. Recall that the concatenation C1・C2 of C1 and C2 is also a quantum (or
reversible) circuit.

Observation 1: Given a quantum (or reversible) circuit C = g1 ・ g2 ・ …・ gk where gi is a gate,
its copy where all gates are inverted and put in the reverse order, i.e., gk

 −1 ・ …・ g2
−1 ・ g1

−1 ,
implements the inverse transformation to what C implements. We therefore denote it by C−1. Note
that NOT, CNOT, and Toffoli gates are their own inverses. The circuit C・C−1 is equivalent to an
empty circuit. This can be confirmed by iteratively cancelling out pairs of mutually-inverse
adjacent gates. This observation motivates our new notion of reversible miters.

Definition 1: Given two quantum (or reversible) circuits C1 and C2, their reversible miter is
defined to be one of the following circuits: C1・C2

−1, C2
−1・C1, C2・C1

−1, C1
−1・C2. In

particular, for conventional miters one needs to check that the output functions implement the
constant 0 function, whereas for reversible miters one checks that each output bit is equivalent to a
corresponding input bit. Namely, C1 and C2 are functionally equivalent if and only if all of their
reversible miters implement the identity transformation. In particular, if one miter implements the
identity, then so do the remaining miters. If C1 = C2, then straightforward circuit simplification
[140, 142, 143] cancels out all gates, resulting in an empty circuit. Some of the variant miters
enable more cancellations than others, e.g., if C1 and C2 differ only in their first segments, C2 ・
C1

−1 exhibits many gate cancellations. Reversible miters speed up equivalence-checking by
exploiting similarities in circuits by two distinct mechanisms.

1) Local Reduction of Reversible Miters: When two conventional circuits end with identical gate
sequences, one cannot cancel out these sequences because of observability don’t-cares introduced
by them. However, reversible circuits do not experience don’t-cares, and identical suffixes always
cancel out. Note that a reversible miter C1 ・ C2

−1 places the last gate of C1 next to the last gate of
C2. If these two gates cancel out, the second-to-last gates from C1 and C2 become adjacent, etc.
Thus, no search is required to identify these gate cancellations, and they can be performed one at a
time. Even if the last two gates are different, it may be possible to cancel out second-to-last gates,
as long as the last and second-to-last gates do not act on the same (qu)bit lines. These are special
cases of much more general local reductions discussed in [140, 142, 143]. If C1 and C2 are
identical, an empty circuit will result, but this outcome is also possible when local reductions can
prove equivalence of two structurally different circuits. A systematic procedure for applying
reductions was introduced in [143]. Local reductions in reversible circuits are particularly easy to
perform, are fast and do not consume much memory [140, 142].

 69

In our experiments, even the simplest reduction rules can dramatically simplify reversible miters.
More sophisticated reductions from [140, 142, 143] provide an additional boost.

We experimented with the following reduction procedure. In a miter circuit, consider one gate at a
time, search for a matching inverse, and try to move them together to facilitate cancellation. Any
two gates can be swapped if they do not act on the same (qu)bit lines. Two adjacent NOT, CNOT
or Toffoli gates can be swapped if the control bit of one gate is not the target bit of the other gate
(same for properly-quantum controlled-U gates). In our procedure, for the purposes of
equivalence-checking, we temporarily consider the miter circuit to be “circular” by connecting its
outputs to its inputs. Namely, we allow moving the last gate to the beginning of the. This
transformation does not change the equivalence of the entire circuit to the identity. In other words,
if g1 ・ g2 ・ … ・ gk−1 ・ gk = I (Identity), then gk ・ g1 ・ g2 ・ … ・ gk−1 ・ gk ・ gk

−

1 = gk ・I ・g k
−1 = gk ・ g k

−1 = I. Therefore, to check equivalence between g1 ・ g2 ・ … ・
gk−1 ・ gk and I is the same as to check equivalence between gk・g1・g2・…・gk

−1 and I.

2) Reduction of Canonical Forms: Iterative circuit simplification is not guaranteed to reduce C1 ・
C2

−1 to the empty circuit in polynomial number of steps when such a reduction is possible. Finding
a short reduction may be time-consuming. However, when constructing canonical forms
(ROBDDs or QuIDDs) of reversible miters, a different kind of reduction may occur. Suppose that
C1 and C2 end with functionally-equivalent but structurally distinct suffixes that do not admit local
reductions — an example is given in [5]. In other words C1 = A1・B1 and C2 = A2・B2 where B1 ≈
B2. Then C1・C−1

2 = A1・B1・B−1
2・A−1

2 ≈ A1・A2
−1. As we traverse the miter C1・C2

−1,
adding one gate at a time to the decision diagram (DD), the size of the intermediate DDs depends
only on the transformation implemented by the current circuit prefix, i.e., the functions of the
intermediate wires. The intermediate DD for A1・B1・B2

−1 can be smaller than that for A1 ・B1 if
A1 ・B1 ・B2

−1 ≈ A1. This phenomenon was observed in our experiments.

5.3.8. Methodology for Equivalence Checking

We now introduce equivalence-checking for quantum circuits based on several techniques
appropriate for different classes of quantum circuits. The first class contains reversible circuits
that arise as key modules in quantum algorithms. To check the equivalence of two reversible
circuits, C1 and C2, one can pursue two strategies. The first strategy is to check that the
conventional miter implements the constant 0 function. A conventional miter can also be applied
to reversible circuits as explained below. The second strategy is to represent the transformations
performed by C1 and C2 in a canonical form which supports efficient equivalence-checking. The
latter strategy may use binary-decision diagrams, such as reduced ordered binary decision
diagrams (ROBDDs), and QuIDDs [149] or quantum multiple valued decision diagrams
(QMDDs) [146]. The former can be implemented with either decision diagrams or Boolean
Satisfiability solvers by reducing Circuit-SAT to CNF-SAT. In particular, for conventional miters
one needs to check that the output functions implement the constant 0 function. In addition to the
basic SAT or BDD-based approaches, finding equivalent signals in two circuits is often very
helpful [141]. Such techniques appear useful for reversible circuits as well, as shown in our
experiments. Relevant computational engines are discussed next.

 70

ROBDD. Calculate the output functions of miter circuits, using ROBDD as the primary data
structure. This technique cannot handle properly quantum circuits.

QuIDD. Build functional representations of given circuits C1 and C2, and check if the results are
identical. In particular, QuIDDPro [149, 150] builds multi-terminal decision diagrams called
QuIDDs that can capture properly-quantum circuits.

SAT. Given two reversible circuits, construct a CNF-SAT formula that is satisfied only by those
input combinations for which the two circuits produce different outputs. Then use a contemporary
SAT solver [137] to check satisfiability.

SAT-based techniques can be dramatically improved by identifying intermediate equivalences and
then using them to break up a large SAT instance for the miter circuit into several smaller
instances. The state-of-the-art implementation found in the Berkeley ABC system [136] (the
“cec” command) uses bit-parallel functional simulation to identify potentially equivalent signals,
then proves or disproves the equivalence using (incremental) SAT. Established equivalences
simplify future SAT calls, while counterexamples found are used to refine the results of functional
simulation and often distinguish seemingly-equivalent signals. ABC also uses fraiging — a fast
simplification technique based on hashing. To use ABC in our experiments, we construct a
conventional (irreversible) circuit from a reversible circuit by replacing each gate with its
AND/XOR/NOT equivalent. Common benchmarks for reversible synthesis can be verified in
milliseconds by the above techniques. Instead, we focus on scalable blocks of standard quantum
algorithms, whose optimization and equivalence-checking are critical to the success of quantum
computers being designed today. More concretely, we performed experiments with n-bit
linear-nearest-neighbor (LNN) CNOT gate circuits, a reversible ripple-carry adder circuit
proposed in [148], mesh circuits [138] and reversible multipliers. Given a (qu)bit ordering, a
linear-nearest-neighbor CNOT gate circuit is a circuit which realizes the functionality of a CNOT
gate with target and control bits k bits apart, by using only LNN gates (gates that operate only on
adjacent qubits). Studies of LNN architectures are important because several promising
implementations of quantum computation require the LNN architecture (also called the spin-chain
architecture in the physics literature) and allow only adjacent qubits to interact directly. Thus,
standard quantum circuits must be adapted to such architectures and modified to use only LNN
gates. Specific transformations and LNN circuits have been developed [138, 145]. The overhead
of the LNN architecture in terms of the number of gates is often limited by a small factor (3-5).
Such physical-synthesis optimization motivates the need for equivalence-checking against the
original, non-LNN versions. Using important components of Shor’s algorithm [138, 147] —
adders, meshes and multipliers — we build three types of equivalence-checking instances.

Same. Two equivalent circuits.

Different 1. Randomly add Toffoli gates at the end.

Different 2. Randomly add Toffoli gates at the beginning.

 71

Our empirical data for CNOT, adder and mesh circuits exhibits essentially the same trends.
Hence, we report results only for adders in Figure 48. All runtimes are for a Linux system with a
2.40GHz Intel XeonTM CPU with 1GB RAM. We implemented n-bit reversible multipliers using
5n bitlines, including 2n bits for two inputs, 2n bits for the results, and n ancillae. For example.,
the line n = 6 in the tables deals with 30-bit circuits. All methods other than “cec” timed out for n
= 8, requiring more than 1,000s.

Figure 48. Runtime results for equivalence-checking of reversible arithmetic circuits.

B. Checking Properly-Quantum Circuits

In this section, we show that our proposed techniques can handle properly-quantum gates, but
remain compatible with fast special-case methods.

1) Utility of Reversible Miters: Earlier sections focused on equivalence-checking of reversible
circuits which appear in modules of quantum algorithms and require physical synthesis
optimizations [138] that must be verified. However, other important modules in quantum
algorithms, such as the Quantum Fourier Transform, are properly-quantum, and conventional
circuits, such as modular exponentiation, can be optimized for performance using
properly-quantum gates. Fortunately, simple cancellations in reversible miters can be used with
properly-quantum circuits. Reduced properly-quantum miters can be verified using symbolic
simulation with QuIDDPro [149] or QMDD software [146]. Using reversible miters as
pre-processors can dramatically decrease overall runtime. We empirically compare the following
two methods.

 72

With Local Reduction. Before invoking QuIDDPro, reduce the miter through local
simplification.

W/o Local Reduction. Apply QuIDDPro directly to the miter.

For properly-quantum circuit benchmarks, we used QFT and modular exponentiation modules
from circuits that implement Shor’s factorization algorithm on an LNN architecture [138]. For
each benchmark circuit with n inputs, we studied five cases (new gates were added in the middle).

Same. Two identical copies of a benchmark circuit.

Different 1. A circuit and its copy with one gate added.

Different 2. A circuit and its copy with two gates added.

Different 3. A circuit and its copy with one gate deleted.

Different 4. A circuit and its copy with two gates deleted.

Empirical results in Table III, Figure 49 and Table VI Figure 50 show that in the “Same” case, our
local simplifications are sufficient to conclude equivalence. Otherwise, QuIDDPro is invoked
after simplification, even though only several gates remain. However, in “Diff. 2” many gates
remain after simplification. In columns “Same” and “Diff. 1” we report runtimes for local
simplification and the QuIDDPro calls. Time-outs are shown with “>1,000”. Local reduction is
useful even for properly-quantum circuits.

Figure 49. Runtime results for equivalence-checking of Quantum Fourier Transforms.

 73

Figure 50. Runtime results for equivalence-checking of modular multiplication.

For a more convincing example, we check equivalence between an LNN and non-LNN
implementation (without measurement gates) of Shor’s algorithm for factoring the number 15.
These equivalent properly-quantum circuits include 2,732 gates for the non-LNN version and
5,120 gates for the LNN version. Their structure is very different. For equivalence-checking, we
used QuIDDPro with and without local reduction, and these runs completed in 59.07s and
64095.22s, respectively. The results unequivocally suggest the effectiveness of local reductions
with reversible miters of properly-quantum circuits.

2) Proposed Method: Boosting Verification by Using SAT-based Combinational Tools: Local
reduction may leave many gates around, after which QuIDDPro tends to consume significant time
and memory. However, if very few properly-quantum gates remain, a more lightweight
verification procedure may be used. Generic symbolic simulators, such as QuIDDPro, do not scale
as well as state-of-the-art SAT-based combinational equivalence-checking. Hence we leverage
SAT-based tools to boost equivalence-checking of quantum circuits.

FOR TWO CIRCUITS C1 AND C2, WE DO THE FOLLOWING.

Step 1. Construct the miter circuit C = C1 ・ C2
−1.

Step 2. Perform simplification of the miter circuit.

Step 3. If properly-quantum gates remain, go to Step 4, else invoke state-of-the-art SAT-based
combinational equivalence-checking (the “cec” command of ABC system [136]) to tell if the miter
circuit is Identity.

Step 4. Find the longest sequence of conventional logic gates (NOT, CNOT, Toffoli) in the miter
circuit. Label this sequence Ca. Let the simplified miter circuit be Qa・Ca・Qb.

 74

Step 5. Transform Qa・Ca・Qb to Ca・Qb ・Qa. Note that Qa・Ca・Qb = I (Identity) iff Ca・Qb

・Qa = I as shown earlier. Move conventional gates in Qb・Qa to the front of the miter as much as
possible, creating a transformed miter C′a・Q′b, where Ca and Q are a reversible circuit and a
properly-quantum circuit, respectively.

Step 6. Check the functionality of Q′b by lightweight iterated simulation. If it is not properly
quantum, conclude that the miter circuit is not Identity. Else, go to Step 7.

Step 7. Exploit the functionality of Q′b, and let Cb be a conventional circuit which corresponds to
the exploited logic functionality. Then, check whether C′a・Cb is Identity or not.

Consider the properly-quantum circuit as shown in the left-hand side of this figure.

Figure 51. An example of circuit restructuring after simplification.

Here we assume that C1 is relatively large. Then after Step 5, we can get the right-hand side circuit
from the left-hand side circuit in Figure 51. Our miter becomes C1・Q2 where C1 is reversible but
Q2 is properly-quantum. This avoids a heavy-duty generic quantum simulator for C1. A key
observation is that the functionality of Q′b (at Step 6) should be classical (C′a inverse) if the entire
miter is Identity. Thus, if Q′b is properly-quantum, the miter circuit is not Identity. When Q′b has
few gates, this can be checked efficiently by a quantum generic simulator. By Step 7,
properly-quantum gates are reduced, and we can use state-of-the-art SAT-based combinational
equivalence-checking. By avoiding heavy-duty generic quantum simulation, our adaptive method
can achieve significant speed-ups when Ca′ is large. To validate our method, we studied circuits
implementing one iteration of Grover’s quantum algorithm for search [147] as shown in Figure 51.
A particular step of the algorithm, called the oracle, is implemented with a reversible circuit
module Cf based on a user-defined Boolean function f (search predicate). To make verification
more challenging, we configured a search predicate that contains a multiplier circuit. We then
created an equivalent variant of Cf by applying a global, rather than local, circuit transform.
Namely, we applied a certain wire permutation on inputs of Cf and its inverse on outputs of C0.
This permutation was implemented by applying SWAP gates to (all) pairs of adjacent wires and
then breaking down each SWAP gate into three CNOT gates. In our case study, the proposed
procedure goes as follows.

Step 1. Construct the miter circuit C = C1 ・C2
−1 = C f 1 ・W1 ・C1 0 ・W1 ・ (W2)−1 ・ (C0

2)−1 ・
(W2)−1 ・ (C2

f)−1.

 75

Step 2. Simplify the miter circuit. Because of the inserted SWAP gates (if we use only naive
cancellation rules), we cannot cancel the two pairs of Cf

1 and (Cf
2)−1, or C0

1 and (C0
2)−1. But we

can remove the sequence W1 ・ (W2)−1, reducing the miter to Cf
1 ・W1 ・C0

1 ・(C0
2)−1 ・(W2)−1

・(C f 2)−1.

Step 3. Since properly-quantum gates remain, go to Step 4.

Steps 4 and 5. Move (Cf
2)−1 to the input side of the circuit to maximize the conventional logic

part in the prefix. The miter becomes Ca′・Qb′ where C′a = (Cf
2)−1・Cf

1 and (Qb)′ = W1・C0
1・

(C0
2)−1 ・ (W2)−1.

Steps 6. and 7. Using techniques described earlier, combine a quantum generic simulator
(QuIDDPro [149, 150]) and state-of-the-art SAT-based combinational equivalence-checking (the
“cec” command of ABC system [136]).

The above technique is compared to constructing a miter circuit and applying the symbolic
simulator QuIDDPro [149, 150] to the miter. QuIDDPro alone does not finish in ten hours, but our
technique completes in under seven seconds.

5.4. Summary

We have studied several techniques for equivalence-checking of reversible circuits, including the
new concept of reversible miters. In particular, we have observed that state-of-the-art SAT-based
combinational equivalence-checking (cec) can be adapted to this context and outperforms generic
quantum techniques. Basic BDD-based techniques usually outperform SAT-based techniques, but
not cec. As is the case with Automatic Test-pattern Generation, reversibility can significantly
simplify equivalence-checking, while these simplifications are compatible with other techniques
and amplify them. We then proposed an adaptive method to verify quantum circuits more
efficiently than the existing quantum circuit verification tools by combining them with the
state-of-the-art SAT-based combinational equivalence-checking tool for the conventional circuits.
Experiments suggest that reversible miters are useful for the verification of reversible circuits as
well as properly-quantum circuits.

 76

6. Ising Systems and Quantum Adiabatic Computation

With the prospect of atomic-scale computing, we are studying cumulative energy profiles of
spin-spin interactions in non-ferromagnetic lattices (spin-glasses)—an established topic in
statistical and solid-state physics. Recent proposals suggest using Ising spin-glasses for
non-traditional computing as a way to harness nature’s ability to find min-energy states, and to
take advantage of quantum tunneling to boost combinatorial optimization. We therefore
developed EDA-inspired high-performance algorithms to simulate natural energy minimization in
Ising systems. Unlike previous work, our algorithms are not limited to planar Ising topologies. In
one CPU-day, our branch-and-bound algorithm finds min-energy (ground) states on 100 spins,
while our local search approximates ground states on 1,000,000 spins. We use this computational
tool to study the significance of hyper-couplings in recently implemented adiabatic quantum
computers.

6.1. Introduction

As leading CMOS foundries are gearing for mass production of 22nm and 32nm CMOS chips,
long-term EDA research has started to explore the use of atomic properties in computing. This
exploration relies on established computational models of atomic-scale phenomena, but struggles
to connect different levels of abstraction—spin-level models and energy-based statistical macro
models. The spin-glass model was proposed by Edwards and Anderson [160] as a variation of the
Ising model to study disorder and frustration in crystallized solids. Such systems are composed of
particles that can be in either of two possible energy spin states. These spins interact in pairs to
produce an energy landscape that describes the overall behavior of the system. The model is
described in graph-theoretic terms by representing atoms in a crystal with vertices and bonds
between atoms with edges. Since physical systems found in nature are often disordered, the bond
edges are assigned random weight values. Furthermore, some physical and chemical properties of
a crystal depend on the total energy of the bonds, which depend on atomic states. Thus, estimating
total energy via a graph-based function facilitates the use of graph algorithms to study properties of
solids. In particular, we are interested in finding the spin configuration that produces the least
amount of energy. This configuration is known as the ground state of the system. Barahona [155]
proved that for general Ising spin systems (spin-glasses), the ground-state determination problem
(GSD) is NP-hard.

Since many physical systems have a natural ability to find least-energy states quickly, researchers
are currently attempting to exploit this phenomenon to perform useful computation. At the atomic
scale, energy minimization can be aided by quantum tunneling, which effectively reduces the
number of local minima. Thus, GSD problems are of particular interest to quantum-information
researchers because they are suitable candidates for evaluating the performance of adiabatic
quantum computers (AQCs).

Recently developed AQCs employ an architecture based on Ising spin systems [167]. First, the
spin system is configured to represent a given combinatorial problem, i.e., the spin interactions are
carefully controlled rather than random as in spin glasses. The ground state is approximated via
quantum annealing (the quantum analogue of thermal annealing), then read off as a bit sequence
and interpreted as an answer to the problem. Since the complexity of GSD is universal with
respect to both quantum and conventional forms of computation [155, 164], it is important to

 77

consider how well an approximation to the ground-state energy can be obtained by purely classical
techniques. Consequently, Bansal et al. [154] proposed an approximation algorithm for GSD on
Ising spin lattices, which essentially simulates these AQC architectures [162], and thus limits their
potential for quantum speed-ups. To approximate the least energy with ε accuracy, the algorithm
from [154] requires runtime exponential in 1/ε, which is impractical. In contrast, we propose a
branch-and-bound algorithm and a high-performance local search that quickly finds near-optimal
energy values for arbitrary Ising topologies. Such techniques can be used to critically assess the
performance of non-traditional computing devices based on energy minimization in Ising
spin-glasses and also to determine the best implementation options.

6.2. Previous Work

In the Edwards-Anderson [160] model, spins are binary ±1 values, and the strengths of the atomic
couplings are independent and identically distributed random variables according to some
probability distribution. The most common distributions used are the Gaussian, and the
±1-bimodal distributions. Let Gising = (V,E) denote an Ising-model graph with n vertices (spins).
Each vertex u ∈ V is denoted by spin value Su ∈{±1} and is assigned a magnetization weight hu.
For u,v∈V, we define (u,v)∈ E to be an edge representing a bond between two adjacent spins with
assigned weight Ju,v chosen randomly from the standard Gaussian distribution (μ = 0, δ = 1).
Thus, we expect that half of the bonds in the graph will be negative. Usually, the same
positive-to-negative bond ratio is maintained when the ±1-bimodal distribution is used instead.
The internal energy of the system for a particular configuration of spin values σ = {Si} is given by
E(σ) = −Σi,jJi,jSiSj–Σi hiSi where the summation considers all pairs of adjacent spins.

Putting together the energies of all spin configurations gives the Hamiltonian of the system. Thus,
the ground state is given by Egs = min(E(σ) | σ ∈ πn), where πn is the set of all possible n-spin
configurations. Whether we are interested in the lowest-energy value or the n-spin configuration
with such energy, |πn| = 2n because each of the spins can take on one of two possible values.
Energy minimization is typically NP-hard. Thus, calculating the ground state exactly using an
exhaustive search algorithm is feasible only for small Ising models. To provide a scalable way of
finding ground states or approximating their energies, heuristics are required, such as those
developed in our work.

Ising-model graphs are not limited to a particular topology, but two- and three-dimensional lattices
are most commonly considered in the literature. To simulate the behavior of infinite spin glasses,
it is common to require that the spins lying on the dimensional boundary be connected to the spins
on the opposing boundary on the same dimension. This can be viewed as a type of (periodic)
boundary condition. In particular, only one periodic boundary condition is imposed for each
dimension of the lattice. However, it is sometimes desirable to have boundary conditions on some
but not all of the lattice dimensions.

 78

Although most variations of GSD are known to be NP-hard [155], there are a few cases where the
structure of the graph can be exploited to solve the problem in polynomial time. For example,
Bieche et al. [158] proved that the GSD problem on planar graphs with zero magnetization can be
solved in polynomial time by showing a reduction to the minimum-weight perfect matching
(MWPM) problem. It follows from their work that GSD instances with zero magnetization (hi =
0) and 0- or 1-periodic boundary conditions can be solved in O(n3) time. However, although
MWPM is solvable in polynomial time, the runtime is impractical for large instances and suffers
from a big memory footprint. To overcome these limitations, the work in [165] describes a
heuristic based on the MWPM reduction. Another special case considered in the literature is that
of ferromagnetic (Ji,j >0) GSD instances. Barahona [156] reduced this particular problem to
(s-t)-min-cut or max-flow.

6.3. Finding Exact Ground States

In order to better control trade-offs between runtime and solution quality obtained from heuristics,
it is important to design algorithms that are guaranteed to find exact ground states. Although such
algorithms are unlikely to scale to large instances, the exact solution obtained from smaller
instances can be used to debug and evaluate the performance of more scalable heuristics.
Branch-and-bound (B&B) algorithms consider incomplete or partial solutions, where only some
variables are assigned values. Partial solutions are systematically constructed via a branching
process that develops partial solutions that are deemed promising, i.e., those that may lead to the
optimal solution. Partial solutions, whose cost is too high, are “bounded away” or pruned.

Our branching process proceeds as follows. First, all spins are labeled as unassigned–their value
can be set in the future to either 1 or −1. The algorithm then calculates a lower bound Elb for
minimum energy. It then selects a spin I and branches on one of the possible values. In each
branch, the incremental change in Elb caused by the assignment is recorded as follows. For each
spin j adjacent to i that has already been assigned, increase (decrease) Elb by twice the amount of
the positive (negative) bond connecting i and j if they have opposing (aligned) spin values.
Similarly, the corresponding change due to the magnetization of the spin is also recorded
(formulas for these updates are available in our technical papers and source code).

Once the spin is assigned, the algorithm branches to another spin and repeats the same procedure.
When all spins have been assigned, Elb represents the energy of the spin configuration generated
by the branching process. To continue searching the configuration space, the branching process
backtracks to the last assigned spin, flips its value and updates Elb. If both spin values have already
been tried, then the algorithm continues backtracking while relabeling the spins as unassigned.
Since each spin can take one of two values, this branching process generates a full binary search
tree where the leaves correspond to all possible spin configurations in the Ising system. Initially,
we use a linear-time greedy approximation E as our bounding value. During the branching
process, if the energy of the partial solution exceeds E, then we can safely prune this branch and
backtrack without making any further assignments. The algorithm either tries the opposite spin
value or backtracks again if both spin values have already been tried. If the search assigns all the
spins in the graph and the corresponding minimal energy state is lower than E, then we set E to this
new energy value. After searching all promising branches, E will assume the ground-state energy.
In our experiments, this standard bounding technique alone improved the scalability of the
branching process by an order of magnitude over exhaustive search.

 79

To further improve the scalability of our B&B algorithm, we designed a prune-by-dominance
technique that consists of identifying partial solutions whose partial energy can be improved
(lowered) by modifying the configuration of currently assigned spins.

Figure 52. Pruning by dominance in our branch and bound algorithm.

Note that, whenever we assign a spin s, there is a set Fs of spins adjacent to s for which all
neighboring spins have also been assigned. Figure 52 shows an example of s and Fs on a small
grid. Note that |Fs| ≤ degree(s). The energy of the spins in Fs is localized in the sense that it will
not be affected by further spin assignments (since all the neighbors of the spins in Fs are assigned).
This allows us to evaluate a partial solution by flipping the values of the spins in Fs and comparing
the partial energies. If any of the partial energies are lower, then we know that the current partial
solution is unpromising and we can backtrack. Observe that in cases when different branches are
statistically unlikely to have equal partial cost (e.g., when couplings and magnetizations are
random), for two branches, the probability that the first branch dominates the second branch is
approximately 1/2. Let 0 < c ≤ 1 be the fraction of 2k partial solutions that require branching. Then
we can expect to prune c2k/2 = c2k−1 of these branches. This pruning technique improved the
scalability of our B&B algorithm by 1-2 orders of magnitude on a variety of Ising benchmarks.

6.4. GSD through Local Search

Due to the difficulty of solving GSD, researchers have developed heuristic methods typically
based on slow Monte Carlo simulations. However, because of the role that Ising models play in
simulating real-world phenomena, it is desirable to have much faster techniques.

Figure 53. Runtime comparison of optimal Ising solvers.

 80

Our local search is an iterative improvement algorithm that modifies the bipartition induced by an
arbitrary spin configuration–positive spins are placed in one partition and negative spins in the
other. Figure 53 compares the runtime of our approach with other optimal Ising solvers. The
algorithm performs a sequence of incremental changes to the bipartition, organized as passes.
These changes consist of spin-moves that remove a particular spin from its current partition and
places it in the opposite one. At the beginning of each pass, the energy differential (gain) of
performing each possible move is calculated. A positive gain implies that the move decreases the
overall energy while a negative gain increases it. During a pass, the move that produces the largest
gain is selected and executed. The corresponding spin is then labeled as locked, i.e., it cannot be
selected again in the current pass. The pass continues selecting and executing the best moves until
all spins have been locked. At the end of the pass, we save the best-seen bipartition produced by
the sequence of moves. This bipartition is then used as the starting solution of the next pass. The
entire algorithm terminates when a pass fails to obtain an improvement. Note that, in the absence
of positive-gain moves, a negative-gain move can be selected. Thus, a pass may accept a solution
that is worse than the existing solution (hill-climbing). This helps to reduce the probability of
getting trapped in local minima. The initial random solution used in our local search is generated
in linear time.

To increase the quality of solutions and the probability of finding the exact ground state, we repeat
the algorithm using multiple random initial solutions and selecting the best result. The relationship
between the number of random starts and solution quality is explored in our experiments. Each
move causes a change in the local energy surrounding the selected spin, therefore, the gains of the
neighboring spins need to be updated after each move. These gain updates are performed
efficiently using a custom heap-based data structure. The data structure consists of two arrays.
The first array implements a traditional binary heap while the second array allows quick access to
the heap-array element that contains the gain-update value of a particular spin. To perform gain
updates, we can access the specific value in O(1) time, update the value, and perform the necessary
swaps to maintain heap-order. Since only log(n) swaps are required in the worst case (where n is
the number of spins), our data structure allows us to perform gain updates much faster than naive
implementations that require scanning the entire set of n gain values. Since n moves are performed
during a pass, and only a constant number of passes are performed, the runtime of our local search
is O(n log(n)).

6.5. Empirical Validation

We have tested single-threaded implementations of the algorithms proposed on a conventional
Linux server. For small to medium-sized instances our local search finds exact ground states in
95% of independent random starts, otherwise solutions are 5% sub-optimal on average. We
compared the average solution quality of local search for 2-dimensional Ising spin glasses with
Gaussian-distributed couplings and two periodic boundary conditions. The benchmarks are
differentiated by the number of spins included. For each instance we considered five different
levels of effort with an increasing number of independent random starts (1, ln(n), 10, ln2(n) and n)
per instance per level of effort. To obtain the average solution quality we computed 1000 output
samples per instance per case considered. The exact ground states were obtained via the
University of Cologne’s Ising Spin Glass Server [168] which uses a branch-and-cut algorithm to

 81

find exact ground states on grid spin glasses with zero magnetization. As expected, the solution
quality improves as the number of random starts increases. When we consider at least ln2(n)
random starts, our local search produces high-quality solutions (> 95%) for five of the
benchmarks, while its runtime does not exceed 17 seconds for the largest benchmark with 2500
spins.

Note that the quality of the solutions decreases as we consider larger instances. This is expected
since the energy landscape gets more complicated as the number of spins is increased and the
probability of finding the exact ground state becomes exponentially small. However, this is true of
all heuristics. We also experimented with spin-glasses that have ±1-bimodal coupling
distributions. Compared to Gaussian-distributed instances, the expected solution quality observed
is better. Our heuristic finds high-quality solutions for all but one of the benchmarks using a single
random start.

Our heuristic scales to a million spins and empirical runtimes closely fit nlog(n)). We compared
the runtime of our local search against that of the MWPM-based heuristic proposed in [165]. The
solution quality of this heuristic depends on a particular choice of parameters and does not work on
Gaussian-distributed instances. In contrast, our heuristic does not have such a dependency and
works on all instances. Table IV in [165] shows the runtime and solution quality of the
MWPM-based heuristic ±1 grid graphs of size 164×164. This heuristic takes 59s on average (with
negligible deviation), producing the optimal value only 61% of the time. By comparison, our local
search heuristic on a comparable benchmark with a single random start takes about 8.5s. Thus, we
can perform 7 random starts in the same period of time.

 82

7. Conclusion

This project investigated novel hybrid techniques, combining concepts from quantum information
science and classical computer science to solve hard computational problems, including the
handling of uncertainty, such as design optimization and simulation of conventional CMOS and
quantum systems, fault tolerance, resource allocation and scheduling, strategy optimization and
related computationally challenging problems facing the Air Force. The project accomplished:

• An analytical study of probabilistic fault models in digital logic and their impact on overall
circuit performance. Probabilistic faults affect electronics in high-altitude and
high-radiation environments, especially state-of-the-art deep-submicron CMOS chips.

• New algorithmic methodologies and tools for circuit synthesis and test to mitigate the
impact of probabilistic faults. These methodologies include fast evaluation of circuit
reliability based on functional simulation, and incremental modification of a circuit to
improve its robustness.

• Analysis of mobile (wireless) ad hoc communication networks, focused on network
throughput and total power consumption.

• A non-linear programming framework for spatial optimization of mobile networks, its
empirical evaluation, and visualization of results.

• A new algorithm to simulate quantum circuits which exhibits polynomial-time
performance in several important cases. This algorithm and accompanying theoretical
results have been subsequently used by other researchers to show that the Quantum Fourier
Transform can be simulated in polynomial time on conventional computers.

• Several techniques for verification of correctness of quantum circuits. These techniques
are based on computational engines frequently used in Electronic Design Automation
Boolean satisfiability (SAT) and binary decision diagram (BDD), fall under the category of
equivalence-checking, and can verify the results of adapting known circuits to specific
device architectures, such as linear ion traps.

 83

8. References

1. Berkeley Logic Synthesis & Verification Group, ABC: A System For Sequential Synthesis &
Verification, http://www.eecs.berkeley.edu/_alanmi/abc/

2. S. Almukhaizim et al., “Seamless Integration of SER in Rewiring-Based Design Space Exploration,”
Proc. ITC, 2006, pp. 1-9.

3. R.I. Bahar et al., “Algebraic Decision Diagrams and their Applications,” Journal of Formal Methods in
System Design, 1997, vol. 10, pp. 171-206.

4. D. Bhaduri, S. Shukla, “NANOLAB - A Tool for Evaluating Reliability of Defect-tolerant
Nanoarchitectures,. IEEE Trans. Nanotechnology, 2005, vol. 4, pp. 381-394.

5. R.I. Bahar, J. Mundy, J. Chan, “A Probabilistic Based Design Methodology for Nanoscale
Computation,” Proc. ICCAD, 2003, pp. 480-486.

6. D. Brand, “Verification of Large Synthesized Designs,” Proc. ICCAD, 1993, pp. 534-537.
7. M. Bushnell, V. Agrawal, Essentials of Electronic Testing, Kluwer, 2000.
8. M. Choudhury, K. Mohanram, “Accurate and Scalable Reliability Analysis of Logic Circuits,” Proc.

DATE, 2007, pp. 1454-1459.
9. J. P. Hayes, I. Polian, B. Becker, “An Analysis Framework for Transient-Error Tolerance,” Proc. VTS,

2007, pp. 249-255.
10. J. Kleinberg, E. Tardos, Algorithm Design, Addison-Wesley, 2005, pp. 612-617.
11. H. Kobayashi et al., “Comparison between Neutron-induced System-SER and Accelerated-SER in

SRAMs,” Proc. Intl Reliability Physics Symp., 2004, pp. 288-293.
12. S. Krishnaswamy, Design, Analysis and Test of Logic Circuits under Uncertainty, Ph.D. Dissertation,

University of Michigan, Computer Science and Engineering Program, 2008.
13. S. Krishnaswamy, I. L. Markov, J. P. Hayes, “Testing Logic Circuits for Transient Faults,” Proc. ETS,

2005, pp. 102-107.
14. S. Krishnaswamy, I. L. Markov, J. P. Hayes, “Tracking Uncertainty with Probabilistic Logic Circuit

Testing,” IEEE Design & Test, 2007, vol. 24, no. 4, pp. 312-321.
15. S. Krishnaswamy, I. L. Markov, J. P. Hayes, “On the Role of Timing Masking in Reliable Logic Circuit

Design,” Proc. DAC, 2008, pp. 924-929.
16. S. Krishnaswamy, I. L. Markov, J. P. Hayes, “When Are Multiple Gate Errors Significant in Logic

Circuits?” SELSE Workshop, 2006.
17. S. Krishnaswamy, S. M. Plaza, I. L. Markov, J. P. Hayes, ‘AnSER: A Lightweight Reliability Evaluator

for use in Logic Synthesis,” Digest IWLS, 2007, pp. 171-173.
18. S. Krishnaswamy, S. M. Plaza, I. L. Markov, J. P. Hayes, “Enhancing Design Robustness with

Reliability-aware Resynthesis and Logic Simulation,” Proc. ICCAD, 2007, pp. 149-154.
19. S. Krishnaswamy, S. M. Plaza, I. L. Markov, J. P. Hayes, “Signature-based SER Analysis and Design

of Logic circuits,. IEEE Trans. CAD, vol. 28, Jan. 2009, pp.74–86.
20. S. Krishnaswamy, G. F. Viamontes, I. L. Markov, J. P. Hayes, “Accurate Reliability Evaluation and

Enhancement via Probabilistic Transfer Matrices,” Proc. DATE, 2005, pp. 282-287.
21. S. Krishnaswamy, G. F. Viamontes, I. L. Markov, J. P. Hayes, “Probabilistic Transfer Matrices in

Symbolic Reliability Analysis of Logic Circuits,” ACM Trans. Design Automation of Electronic
Systems, 2008, vol. 13, no. 1, article 8.

22. H. K. Lee, D. S. Ha, “On the Generation of Test Patterns for Combinational Circuits,” TR No. 12-93,
EE Dept., Virginia Polytechnic Institute.

23. T.C. May, M.H. Woods, “Alpha-Particle-Induced Soft Errors in Dynamic Memories,” IEEE Trans.
Electron Devices, 1979, vol. 26, pp. 2-9.

24. Mishchenko, S. Chatterjee, R. Brayton, “DAG-aware AIG rewriting: A Fresh Look at Combinational
Logic Synthesis,” Proc. DAC, 2006, pp. 532-535.

25. N. Miskov-Zivanov, D. Marculescu, “Soft Error Rate Analysis for Sequential Circuits,” Proc. DATE,
2007, pp. 1436-1441.

http://www.eecs.berkeley.edu/_alanmi/abc/

 84

26. K. Mohanram, N. A. Touba, “Partial Error Masking to Reduce Soft Error Failure Rate in Logic
Circuits,.” Proc. DFT, 2003, pp. 433-440.

27. K. Nepal, et al., “Designing Logic Circuits for Probabilistic Computation in the Presence of Noise,”
Proc. DAC, 2005, pp. 485-490.

28. Openbayes software, http://www.openbayes.org/.
29. S. Plaza, K-H. Chang, I. Markov, V. Bertacco, “ Node Mergers in the Presence of Don't Cares,.” Proc.

ASP-DAC, 2007, pp. 414-419.
30. Ramalingam, et al., “An Accurate Sparse Matrix Based Framework for Statistical Static Timing

Analysis,” .Proc. ICCAD, 2006, pp. 231-236.
31. R. Rao et al., “An Efficient Static Algorithm for Computing the Soft Error Rates of Combinational

Circuits,” Proc. DATE, 2006, pp. 164-169.
32. T. Rejimon, S. Bhanja, “Probabilistic Error Model for Unreliable Nano-logic Gates,.”Proc. NANO,

2006, pp. 47-50.
33. Sanyal, K. Ganeshpure, S. Kundu, “On Accelerating Soft-Error Detection by Targeted Pattern

Generation,” Proc. ISQED, 2008, pp. 723-728.
34. P. Shivakumar et al., “Modeling the Effect of Technology Trends on Soft Error Rate of Combinational

Logic,” Proc. ICDSN, 2002, pp. 389-398.
35. G.F. Viamontes, I.L. Markov, J. P. Hayes, “Improving Gate-Level Simulation of Quantum Circuits,”

Quantum Information Processing, 2003, vol. 2, no. 5, pp. 347-380.
36. J. Wilkinson, S. Hareland,. “A Cautionary Tale of Soft Errors Induced by SRAM Packaging Materials,”

IEEE Trans. Device & Materials Reliability, 2005, vol. 5, pp. 448-433.
37. J. F. Ziegler et al., “IBM Experiments in Soft Fails in Computer Electronics (1978- 1994),” IBM

Journal of Research and Development, 1996, vol. 40, No. 1.
38. M. Zhang, N. R. Shanbhag, “A Soft Error Rate Analysis (SERA) Methodology,” Proc. ICCAD, 2004,

pp. 111-118.
39. B. Zhang, W. S. Wang, M. Orshansky, “FASER: Fast Analysis of Soft Error Susceptibility for

Cell-Based Designs,” Proc. ISQED, 2006, pp. 755-760.
40. Q. Zhu et al. “SAT Sweeping with Local Observability Don't-cares,” Proc. DAC, 2006, pp. 229-234.
41. S. Agarwal et al. , “Route-lifetime assessment based routing (RABR) protocol for mobile ad-hoc

networks,” Proc. Int. Conf. on Communications (ICC), vol. 3, 2000, pp. 1697–1701.
42. F. Bai, N. Sadagopan, & A. Helmy, “Important: a framework to systematically analyze the impact of

mobility on performance of routing protocols for ad hoc networks,” Proc. Infocom, vol. 2. 2003, pp.
825–835.

43. Balasubramanian et al., “Web search from a bus,” Proc. Workshop on Challenged Networks
(CHANTS), 2007, pp. 59–66.

44. N. Banerjee, M. D. Corner and B. N. Levine, “An energy-efficient architecture for dtn throwboxes,”
Proc. Infocom, 2007, pp. 776–784.

45. C. Bettstetter, “Smooth is better than sharp: a random mobility model for simulation of wireless
networks,” Proc. 4th. Workshop on Modeling, Analysis & Simulation of Wireless and Mobile Systems
(MSWiM), 2001, pp. 19–27.

46. C. Bettstetter, G. Resta & P. Santi, “The node distribution of the random waypoint mobility model for
wireless ad hoc networks,” IEEE Trans. Mobile Computing, vol. 2, pp. 257–269, Jul. 2003.

47. V. Bharghavan et al.“MACAW: A media access protocol for wireless LAN’s,” Proc. SIGCOMM,
1994, pp. 212–225.

48. D. M. Blough et al., “The K-neigh protocol for symmetric topology control in ad hoc networks,” Proc.
MobiHoc, 2003, pp. 141–152.

49. J. Boleng, W. Navidi and T. Camp, “Metrics to enable adaptive protocols for mobile ad hoc networks,”
Proc. Int. Conference on Wireless Networks (ICWN), Jun. 2002.

50. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
51. Cerpa et al., “Habitat monitoring: Application driver for wireless communications technology,” Proc.

SIGCOMM Workshop Data Communications in Latin America & the Caribbean, Apr. 2001.

http://www.openbayes.org/

 85

52. S. Cho, Adaptive Management Schemes for Mobile Ad Hoc Networks, Ph.D. Dissertation, University of
Michigan, Computer Science and Engineering Program, Sep. 2009.

53. S. Cho & J. P. Hayes, “Impact of mobility on connection stability in ad hoc networks,” Proc. Wireless
Communications & Networking Conf. (WCNC), vol. 3, 2005, pp. 1650–1656.

54. S. Cho & J. P. Hayes, “Power-aware link maintenance (PALM) for mobile ad hoc networks,” Proc.
Local Computer Networks, 2007, pp. 403–410.

55. S. Cho & J. P. Hayes, “Optimizing router locations for minimum-energy wireless networks,” Proc.
Local Computer Networks, 2008, pp. 544–546.

56. D. Estrin et al., “Scalable coordination in sensor networks,” Proc. MobiCom, 1999, pp. 263–270.
57. Gomez, A.T. et al., “Conserving transmission power in wireless ad hoc networks,” Proc. Int. Conf.

Network Protocols (ICNP), 2001, pp. 24–34.
58. Gomez, A.T. et al., ‘PARO: Supporting dynamic power controlled routing in wireless ad hoc networks,”

Jour. Wireless Networks, vol. 9, Sep. 2000.
59. Y. Han, R.J. La & A.M. Makowski, “Distribution of path durations in mobile ad-hoc networks - Palm’s

theorem at work,” Proc. 16th ITC Specialist Seminar, Aug. 2004.
60. T. Hastie, R. Tibshirani & J. Friedman, The Elements of Statistical Learning: Data Mining, Inference,

and Prediction, 3rd ed. Springer, 2003.
61. D. Johnson & D. Maltz, “Dynamic source routing in ad hoc wireless networks,” Proc. Mobile

Computing, vol. 353, 1996, pp. 153–181.
62. E.-S. Jung & N. H. Vaidya, “A power control MAC protocol for ad hoc networks,” Proc. MobiCom,

Sep. 2002, pp. 36–47.
63. M. Krunz, A. Muqattash, & S.-J. Lee, “Transmission power control in wireless ad hoc networks:

Challenges, solutions, and open issues,” IEEE Network, vol. 18, Sep. 2004 , pp. 8–14.
64. J. F. Kurose and K. W. Ross, Computer Networking, 3rd ed. Addison Wesley, 2005.
65. B.-J. Kwak, N.-O. Song & L.E. Miller, “A mobility measure for mobile ad hoc networks,” IEEE

Communications Letters, vol. 7, Aug. 2003, pp. 379–381.
66. L. Li et al., “Analysis of a cone-based distributed topology control algorithm for wireless multi-hop

networks,” Proc. Symp. Principles of Distributed Computing (PODC), 2001, pp. 264–273.
67. N. Li & J. C. Hou, “FLSS: a fault-tolerant topology control algorithm for wireless networks,” Proc.

MobiCom, 2004, pp. 275–286.
68. N. Li, J. C. Hou & L. Sha, “Design and analysis of an MST-based topology control algorithm,” Proc.

Infocom, vol. 3, Mar. 2003, pp. 1702–1712.
69. W. Li & C. G. Cassandras, “A minimum-power wireless sensor network self-deployment scheme,”

Proc. Wireless Commun. & Networking Conf. (WCNC), vol. 3, Mar. 2005, pp. 1897–1902.
70. J. B. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proc.

Berkeley Symp. Mathematical Statistics and Probability, vol. 1, 1967, pp. 281–297.
71. Mainwaring et al., “Wireless sensor networks for habitat monitoring,” Proc. Int. Workshop Wireless

Sensor Networks and Applications (WSNA), Sep. 2002.
72. P. C. Nar & E. Cayirci, “PCSMAC: A power controlled sensor-MAC protocol for wireless sensor

networks,” Proc. European Workshop on Wireless Sensor Networks, Jan. 2005, pp. 81–92.
73. Nayebi, A. Khosravi & H. Sarbazi-Azad, “The impact of stationary nodes on the performance of

wireless mobile networks,” Proc. Int. Conf. Wireless and Mobile Commun. (ICWMC), 2007.
74. R. Ostrovsky et al., “The effectiveness of Lloyd-type methods for the k-means problem,” Proc. Symp.

Foundations of Computer Science (FOCS), 2006, pp. 165–176.
75. X. Perez-Costa, C. Bettstetter & H. Hartenstein, “Toward a mobility metric for comparable &

reproducible results in ad hoc networks research,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 7,
no. 4, pp. 58–60, 2003.

76. E. Perkins & P. Bhagwat, “Highly dynamic destination-sequenced distance-vector routing (DSDV) for
mobile computers,” Computer Commun. Reviews, Oct. 1994, pp. 234–244.

77. E. Perkins & E. M. Royer, “Ad hoc on-demand distance vector routing,” 2nd IEEE Workshop on
Mobile Computing Systems & Applications, 1999, pp. 90–100.

 86

78. E. Perkins, Ad Hoc Networking. Addison Wesley, 2001.
79. R. Ramanathan & R. Rosales-Hain, “Topology control of multihop wireless networks using transmit

power adjustment,” Proc. Infocom, Mar. 2000, pp. 404–413.
80. K. Sayood, Introduction to Data Compression, 3rd ed. Morgan Kaufman, 2005.
81. K.¬P. Shih & Y.¬D. Chen, “CAPC: A collision avoidance power control MAC protocol for wireless ad

hoc networks,” IEEE Commun. Letters, vol. 9, pp. 859–861, Sep. 2005.
82. D. S. Tan et al., “Design and evaluation of an individually simulated mobility model in wireless ad hoc

networks,” Proc. Commun. Networks & Distributed Systems Modeling & Simulation, 2002.
83. Univ. of California, Berkeley. 29 Palms fixed/mobile experiment: Tracking vehicles with a

UAV-delivered sensor network. http://www.eecs.berkeley.edu/˜pister/29palms0103, 2001.
84. Univ. of California, Berkeley, TinyOS Community Forum. http://www.tinyos.net.
85. USC Information Sciences Inst. The network simulator ns-2. http://www.isi.edu/nsnam/ns/.
86. Y. Wang & Y. J. Zhao, “Fundamental issues in systematic design of airborne networks for aviation,”

Proc. Aerospace Conf., 2006, pp. 1–8.
87. R. Wattenhofer, L. Li, P. Bahl & Y.-M. Wang, “Distributed topology control for power efficient

operation in multihop wireless networks,” Proc. Infocom, vol. 3, Apr. 2001, pp. 1388–1397.
88. K. Xu, M. Gerla & S. Bae, “How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks?”

Proc. Global Telecommun. Conf. (GLOBECOM), vol. 1, Nov. 2002, pp. 72–76.
89. K. Xu, M. Gerla & S. Bae, “Effectiveness of RTS/CTS handshake in IEEE 802.11 based ad hoc

networks,” Ad Hoc Network Journal, vol. 1, pp. 107–123, Jul. 2003.
90. C. Yu, K. G. Shin & L. Song, “Link-layer salvaging for making routing progress in mobile ad hoc

networks,” Proc. MobiHoc, 2005, pp. 242–254.
91. D. Yu & H. Li, “Influence of mobility models on node distribution in ad hoc networks,” Proc. Int. Conf.

Communication Technology (ICCT), vol. 2, Apr. 2003, pp. 985–989.
92. J. Zavgren, “NTDR mobility management protocols and procedures,” Proc. Military Commun. Conf.

(MILCOM), Nov. 1997.
93. L. Zhitang et al., “A novel MAC protocol for wireless ad hoc networks with power control,” Proc. Int.

Conf. Multimedia & Ubiquitous Engineering (MUE), Apr. 2007, pp. 347–352.
94. S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,” Physical Review A,

70:052328, 2004.
95. D. Aharonov, A. Kitaev, and N. Nisan, “Quantum circuits with mixed states,” In Proceedings of the

31th Annual ACM Symposium on the Theory of Computation (STOC), pages 20–30, 1998.
96. D. Aharonov, Z. Landau, and J. Makowsky, “The quantum FFT can be classically simulated,” Preprint:

quant-ph/0611156.
97. J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier, “Fixed parameter algorithms for

dominating set and related problems on planar graphs,” Algorithmica, 33(4):461–493, 2002.
98. S. Arnborg, “Efficient algorithms for combinatorial problems on graphs with bounded decomposability

- a survey,” BIT, 25(1):2–23, 1985.
99. S. Arnborg, D. G. Corneil, and A. Proskurowski, “Complexity of finding embeddings in a k-tree,”

SIAM Journal on Algebraic and Discrete Methods, 8(2):277–284, 1987.
100. H.J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Physical

Review Letters, 86, 910–913, 2001.
101. H. L. Bodlaender, “Treewidth: characterizations, applications, and computations,” Technical Report

UU-CS-2006-041, Universiteit Utrecht.
102. S. Bravyi and R. Raussendorf, “On measurement-based quantum computation with the toric code

states,” Preprint: quant-ph/0610102.
103. E. Broering and S. Lokam, “Width-based algorithms for SAT and Circuit-SAT (extended abstract),” In

Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT 2003),
Springer-Verlag Lecture Notes in Computer Science (LNCS), volume 2919, pp. 162–171, 2004.

104. R. Dechter, “Bucket elimination: a unifying framework for reasoning,” Artificial Intelligence,
113(1-2):41–85, 1999.

http://www.eecs.berkeley.edu/%CB%9Cpister/29palms0103
http://www.tinyos.net
http://www.isi.edu/nsnam/ns/

 87

105. L.-M. Duan and R. Raussendorf, “Efficient quantum computation with probabilistic quantum gates,”
Physical Review Letters, 95:080503, 2005.

106. D. Gottesman, “The Heisenberg representation of quantum computers,” In S. P. Corney, R. Delbourgo,
and P. D. Jarvis, editors, Group22: Proceedings of the XXII International Colloquium on Group
Theoretical Methods in Physics, pages 32–43, Cambridge, MA, 1999. International Press. Long
version: quant-ph/9807006.

107. S. F. F. Green, S. Homer, and Y. Zhang, “Bounds on the power of constant-depth quantum circuits,”
Preprint: quant-ph/0312209, 2004.

108. A.W. Joshi. Matrices and tensors in physics. Halsted Press [John Wiley & Sons], New York-London-
Sydney, 1975.

109. R. Jozsa, “On the simulation of quantum circuits,” Preprint: quant-ph/0603163.
110. R. Jozsa and N. Linden, “On the role of entanglement in quantum computational speed-up,”

Proceedings of the Royal Society of London, Series A, 459: 2011-2032, 2003.
111. S. Krishnaswamy, G. F. Viamontes, I. L. Markov and J. P. Hayes, “Accurate reliability evaluation and

enhancement via probabilistic transfer matrices,” Proc. Design Automation and Test in Europ(DATE),
pp. 282-287, Munich, Germany, March 2005.

112. Lubotzky, R. Phillips, P., “Sarnak. Ramanujan graphs,” Combinatorica, 8(3):261–277, 1988.
113. L. Markov and Y. Shi, “Simulating quantum computation by contracting tensor networks,” Pre-print:

quant-ph/0511069.
114. L. Markov and Y. Shi, “Constant degree graph expansions and treewidth,” Manuscript.
115. M. van den Nest, W. D¨ur, G Vidal,and H J. Briegel, “Classical simulation versus universality in

measurement based quantum computation,” Physical Review A, 75:012337, 2007.
116. M. van den Nest, A. Miyake, W. D¨ur and H. J Briegel, “Universal resources for measurement-based

quantum computation,” Physical Review Letters, 97:150504, 2006.
117. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge

University Press, Cambridge, England, 2000.
118. D. Porras, F. Verstraete and J. I. Cirac, “Renormalization algorithm for the calculation of spectra of

interacting quantum systems,” Preprint: cond-mat/0504717.
119. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical Review Letters, 86,

5188–5191, 2001.
120. N. Robertson and P. D. Seymour, “Graph minors. II. Algorithmic aspects of tree-width,” Journal of

Algorithms, 7(3):309–322, 1986.
121. N. Robertson and P. D. Seymour, “Graph minors. III. Planar tree-width,” Journal of Combinatorial

Theory, Series B, 36(1):49–64, 1984.
122. N. Robertson and P. D. Seymour, “Graph minors. X. Obstructions to tree-decomposition,” Journal of

Combinatorial Theory, Series B, 52(2):153–190, 1991.
123. D. J. Rose, “Triangulated graphs and the elimination process,” Journal of Mathematical Analysis and

Applications, 32:597–609, 1970.
124. V. P. Roychowdhury and F. Vatan, “Quantum formulas: a lower bound and simulation,” SIAM Journal

on Computing, 31(2): 460–476, 2001.
125. B. M. Terhal and D. P. DiVincenzo, “Classical simulation of noninteracting-fermion quantum circuits,”

Physical Review A, 65:32325–32334, 2002.
126. B. M. Terhal and D. P. DiVincenzo, “Adaptive quantum computation, constant depth quantum circuits

and Arthur-Merlin games,” Quantum Information and Computation, 4(2):134–145, 2004.
127. L. G. Valiant, “Quantum circuits that can be simulated classically in polynomial time,” SIAM Journal

on Computing, 31(4):1229–1254, Aug. 2002.
128. F. Verstraete and J. I. Cirac, “Renormalization algorithms for Quantum-Many Body Systems in two

and higher dimensions,” Preprint: cond-mat/0407066.
129. F. Verstraete, J. J. Garcia-Ripoll and J. I. Cirac, “Matrix product density operators: simulation of

finite-temperature and dissipative systems,” Physical Review Letters, 93:207204, 2004.

 88

130. G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Physical Review
Letters, 91:147902, 2003.

131. G. Vidal, “Efficient simulation of one-dimensional quantum many-body systems,” Physical Review
Letters, 93:040502, 2004.

132. P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A.
Zeilinger, “Experimental one-way quantum computing,” Nature, 434, 169–176, 2005.

133. N. Yoran and A. Short, “Efficient classical simulation of the approximate quantum Fourier transform,”
Physical Review A, 76:042321, 2007.

134. Yao, “Quantum circuit complexity,” Proceedings of the 34th Annual Symposium on Foundations of
Computer Science, 352–361, 1993.

135. M. Zwolak and G. Vidal, “Mixed-State dynamics in one-dimensional quantum lattice systems: a
time-dependent super-operator renormalization algorithm,” Physical Review Letters, 93:207205, 2004.

136. The ABC Home Page. http://www.eecs.berkeley.edu/~alanmi/abc/.
137. The MiniSat Home Page. http://minisat.se/MiniSat.html.
138. G. Fowler, S. J. Devitt and L. C. L. Hollenberg, “Implementation of Shor’s algorithm on a linear nearest

neighbour qubit array,” Quantum Information and Computation, 4(4):237–251, July 2004.
139. R. C. Johnson, “NIST scales up quantum computing,” EE Times, 08/06/09.
140. K. Prasad, V. V. Shende, K. N. Patel, I. L. Markov and J. P. Hayes, “Algorithms and data structures for

simplifying reversible circuits,” ACM J. of Emerging Technologies in Computing, 2(4):277–293, Oct.
2006.

141. Mishchenko, S. Chatterjee, R. Brayton, N. Een, “Improvements to combinational equivalence
checking,” ICCAD, pp. 836–843, 2006.

142. D. Maslov, G. W. Dueck, D. M. Miller and C. Negrevergne, “Quantum circuit simplification and level
compaction,” IEEE Trans. on CAD, 27(3):436–444, Mar. 2008.

143. K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation Rules for Designing CNOT-based
Quantum Circuits,” DAC, pp. 419–424, 2002.

144. G.-D. Lin et al., “Large-scale quantum computation in an anharmonic linear ion trap,” EPL, 86 (2009)
60004.

145. D. Maslov, “Linear-depth stabilizer and quantum Fourier transformation circuits with no auxiliary
qubits in linear neighbor quantum architectures,” Phys. Review A, 76(052310), Nov. 2007.

146. D. M. Miller and M. A. Thornton, “QMDD: A decision diagram structure for reversible and quantum
circuits,” IEEE Int’l Symp. on Multiple-Valued Logic, p.30, May 2006.

147. M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information,” Cambridge
University Press, 2000.

148. S. A. Cuccaro et al., “A new quantum ripple-carry addition circuit,” arXiv:quant-ph/0410184.
149. G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Improving gate-level simulation of quantum circuits,”

Quantum Information Processing, 2(5):347–380, 2003.
150. G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Equivalence checking of quantum circuits and states,”

ICCAD, pp. 69–74, 2007.
151. W. Hung et al, “Optimal synthesis of multiple output Boolean functions using a set of quantum gates by

symbolic reachability analysis,” IEEE Trans. on CAD, 25(9):1652–1663, Sept. 2006.
152. J. Yoshida, “35 people, places and things that will shape the future,” EE Times, Feb 29, 2008.
153. Bakk and J. S. Hoye, “One–dimensional Ising model applied to protein folding,” Physica A, 2003,

323(15), pp. 504–518.
154. N. Bansal et al., “Classical approximation schemes for the ground–state energy of quantum and

classical Ising spin Hamiltonians on planar graphs,” Quant. Inf. Comp., 2009(7).
155. F. Barahona, “On the computational complexity of the Ising spin glass models,” J. Phys. A, 1982, pp.

3241–3253.
156. F. Barahona, “Ground–state magnetization of Ising spin glasses,” Phys. Rev. B, 1994, 49(18), pp.

12864–12867.

http://www.eecs.berkeley.edu/~alanmi/abc/
http://minisat.se/MiniSat.html

 89

157. R. H. Baran, H. Ko, “An Ising model of transcription polarity in bacterial chromosomes,” Physica A,
2006, 362(2), pp. 403.

158. L. Bieche et al. “On the ground states of the frustration model of a spin glass by a matching method of
graph theory,” J. Phys. A: Math. Gen., 13 (1980) pp. 2576.

159. E. Caldwell et al., “Design & Implementation of the Fiduccia-Mattheyses heuristic for VLSI netlist
partitioning,” Lec. Notes Comp. Sci. 1999,1619,pp.177-193.

160. S. F. Edwards, P. W. Anderson, J. Phys. F, 1975, pp. 965.
161. K. Hartmann, H. Rieger, “New optimization algorithms in physics”, Wiley-vch, 2004.
162. W. M. Kaminsky et al., “Scalable superconducting architecture for adiabatic quantum computation,”

2004, arXiv:quant-ph/0403090v2.
163. K. K. Muller–Nedebock, H. L. Frisch, “Dynamics of stiff polymers mapped from an Ising model,”

Polymer, 2003, 44 (10), pp. 2829–2831.
164. R. Oliveira, B. M. Terhal, “The complexity of quantum spin systems on a two-dimensional square

lattice,” Quant. Inf. Comp., 8(10), pp. 900–924(2008).
165. G. Pardella, F. Liers, “Exact ground states of large two-dimensional planar Ising spin glasses,” Phys.

Rev. E 78, 056705 (2008).
166. K. Kim et al,“Entanglement and tunable spin-spin couplings between trapped ions using multiple

transverse modes,” 2009, arXiv:quant-ph/0905.0225v1.
167. X. Peng et al. “A quantum adiabatic algorithm for factorization and its experimental implementation,”

Phys. Rev. Lett. 101, 220405 (2008).
168. http://www.informatik.uni-koeln.de/ls_juenger/research/sgs/.

http://www.informatik.uni-koeln.de/ls_juenger/research/sgs/

 90

9. List of Publications

This is a cumulative list of publications prepared under the project.

1. J.P. Hayes, I. Polian and B. Becker: “An analysis framework for transient error tolerance.” Proc. VLSI
Test Symp., Berkeley, CA, pp.249–255, May 2007.

2. I. Markov and Y. Shi: “Simulating quantum computation by contracting tensor networks.” Accepted
for publication by the SIAM Journal of Computing. A version of this paper is also available at
arXiv:quant-ph/0511069.

3. S. Cho and J.P. Hayes: “Power-aware link maintenance (PALM) for mobile ad hoc networks.” Proc.
IEEE Conf. Local Computer Networks (LCN), Dublin, pp.403–410, Oct. 2007.

4. R. Das and J.P. Hayes: “Monitoring transient errors in sequential circuits.” Proc.16th Asian Test Symp.,
Beijing, pp.319–322, Oct. 2007.

5. I. Polian, J.P. Hayes and B. Becker: “Cost-efficient selection of gates for circuit hardening based on
critical soft error rate.” Digest of Papers, IEEE Workshop on RTL and High Level Testing (WRTLT-07),
Beijing, Oct., 2007.

6. G.F. Viamontes, I.L. Markov and J.P. Hayes: “Checking equivalence of quantum states and operators.”
Proc. Intl. Conf. on Computer-Aided Design (ICCAD-07), San Jose, pp.69–74, Nov. 2007. A version of
this paper is also available at arXiv:0705.0017.

7. S. Krishnawamy, S. Plaza, I.L. Markov and J.P. Hayes: “Enhancing design robustness with
reliability-aware resynthesis and logic simulation.” Proc. Intl. Conf. on Computer-Aided Design
(ICCAD-07), San Jose, pp.149–154, Nov. 2007.

8. S. Krishnaswamy, G. F. Viamontes, I.L. Markov and J. P. Hayes: “Probabilistic transfer matrices in
symbolic reliability analysis of logic circuits.” ACM Trans. on Design Automation of Electronic
Systems, vol. 13, article 8, Jan. 2008. This is a journal version of a paper presented at the Design and
Test in Europe Conf. (DATE-05) in June 2005.

9. S. Krishnawamy, I.L. Markov and J.P. Hayes: “On the role of timing masking in reliable logic circuit
design.” Proc. Design Automation Conference (DAC-08), San Diego, pp.924–929, June 2008.

10. S. Krishnaswamy, S.M. Plaza, I.L. Markov and J.P. Hayes: “Signature-based SER analysis and design
of logic circuits.” IEEE Trans. on Computer-Aided Design, vol. 28, pp.74–86, Jan. 2009.

11. S. Cho and J.P. Hayes: “Optimizing router locations for minimum-energy wireless networks.” Proc.
IEEE Conf. Local Computer Networks (LCN), Montreal, pp.544–546, Oct. 2008.

12. S. Yamashita and I.L. Markov: “Equivalence-checking for reversible circuits.” Unpublished report.
13. V.V. Shende and I.L. Markov: “On the CNOT-cost of TOFFOLI gates.” Quantum Information and

Computation, vol. 9, no. 5-6, pp. 461-486, 2009. A version of this paper is also available at
arXiv:quant-ph/08032316.

14. S. Krishnaswamy: Design, Analysis and Test of Logic Circuits under Uncertainty, Ph.D. Dissertation,
University of Michigan, Computer Science and Engineering Program, Sept. 2008.

15. S. Krishnaswamy, S.M. Plaza, I.L. Markov and J.P. Hayes: “Improving testability and soft-error
resilience through retiming.” Design Automation Conference (DAC-09), San Francisco, pp. 508–513,
July 2009.

16. S. Cho: Adaptive Management Schemes for Mobile Ad Hoc Networks, Ph.D. Dissertation, University of
Michigan, Computer Science and Engineering Program, Sept. 2009.

17. G.F. Viamontes, I.L. Markov and J.P. Hayes: Quantum Circuit Simulation, Springer, Boston and
Dordrecht, 2009. In press.

18. H. Garcia and I. L. Markov: “High-performance Algorithms for Energy Minimization in Ising
Spin-glasses.” Digest of Papers, International Workshop on Logic Synthesis (IWLS), Berkeley 2009.

 91

10. List of Acronyms

ACK – Acknowledge

ADDs – Algebraic Decision Diagrams

AI – Artificial Intelligence

AnSER – Analysis of Soft-Error Rate

AODV – Ad Hoc On Demand

AQCs – Adiabatic Quantum Computers

ATPG – Automatic Test Pattern Generation

B&B – Branch-and-Bound

BDD – Binary Decision Diagram

BIST – Built-in Self-Test

BRDM – Boundless Random Direction Model

BS – Base Station

BSP – Base Station Placement

CBR – Constant Bit Rate

CDF – Cumulative Distribution Function

CNT – Carbon Nanotube

CS – Carrier Sense

CSMA – Carrier Sense Multiple Access

CTS – Clear to Send

CV – Constant Velocity

DD – Decision Diagrams

DRP – Distributed Relay Placement

DSDV – Destination Sequenced Distance
Vectoring

DSR – Dynamic Source Routing

ELW – Error Latching Window

FASER – Fast Analysis of Soft-Error

GPS – Global Positioning System

GSD – Ground-State Determination

ICs – Integrated Circuits

ILP – Integer Linear Programming

ITM – Ideal Transfer Matrix

LCR – Link Change Rate

LD – Link Duration

LINT – Local Information No Topology

LILT – Local Information Link-State Topology

LNN – Linear Nearest Neighbor

LP – Linear Programming

MAC – Medium Access Control

MANETs – Mobile Ad-Hoc Networks

MRFs – Markov Random Fields

MWPM – Minimum Weight Perfect Matching

NTDR – Near Term Digital Radio

ODCs – Observability Don’t Cares

PALM – Power Aware Link Maintenance

PARO – Power Aware Routing Optimization

PCM – Power Control MAC

PDF – Probability Density Function

PTMs – Probabilistic Transfer Matrices

QFT – Quantum Fourier Transform

QMDDs – Quantum Multiple Valued Decision
Diagrams

QuIDD – Quantum Information Decision
Diagram

RD – Residual Duration

ROBDDs – Reduced Ordered Binary Decision
Diagrams

RSS – Received Signal Strength

RTS – Request to Send

RTR – Request to Redirect

RWP – Random Waypoint

RX -- Receive

SA – Stuck-At

SAT – Boolean Satisfiability

SCC – Strongly Connected Closed

SER – Soft-Error Rate

SERA – Soft-Error Rate Analysis

 92

SERD – Soft-Error Rate Descriptor

SET – Single Event Transient

SEU – Single-Event Upset

SiDeR – Signature Based Design for Reliability

SINR – Signal to Interference Noise Ration

SIR – Signal to Interference Ratio

SPICE – Simulation Program with Integrated
Circuit Emphasis

STA – Static Timing Analysis

TMR – Triple Modular Redundancy

TSA – Transient Stuck-At

TX – Transmit

UAV – Unmanned Aerial Vehicle

