

AFRL-RI-RS-TR-2009-260
Final Technical Report
November 2009

SOFTWARE SYSTEMS STOCKROOM

The Boeing Company

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2009-260 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
GEORGE RAMSEYER EDWARD J. JONES, Deputy Chief
Work Unit Manager Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

NOVEMBER 2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

February 2009 – August 2009
4. TITLE AND SUBTITLE

SOFTWARE SYSTEMS STOCKROOM

5a. CONTRACT NUMBER
FA8750-09-C-0026

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
63781D

6. AUTHOR(S)

James L. Paunicka, Douglas A. Stuart, Andrew M. Vandivort, Gabor Karsai,
and Christopher P. VanBuskirk

5d. PROJECT NUMBER
SSTT

5e. TASK NUMBER
BG

5f. WORK UNIT NUMBER
09

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The Boeing Company
Boeing Research & Technology
P.O. Box 516
St. Louis, MO 63166-0516

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2009-260

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2009-4792 Date Cleared: 18-November-2009

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This final report contains a record of activities and a description of project deliverables and results from the Software Systems
Stockroom (S3) Phase 1 program, which was executed by Boeing Research & Technology (BR&T) form 05-February-2009 to 02-
August-2009. BR&T subcontractors on the effort included Raytheon and Vanderbilt University. The work included development of
an open, community-driven, technically focused shared infrastructure that will encourage the capture and reuse of domain
knowledge related to development of autonomous flight systems embedded software on emerging processing systems. The domain
of autonomous flight systems extends to that of unmanned aerial vehicles (UAVs) and intelligent weapons. The S3 infrastructure
includes support for capture and use of Department of Defense domain knowledge; community and information sharing; repositories
for components, models, architectures and platforms; support for provenance and version control; and domain-specific taxonomies
and ontologies to support user interface generation and rich searching capabilities. The work also includes considerable community
engagement and development of candidate Phase 2 plans for S3 development and operation.
15. SUBJECT TERMS
Software Systems Stockroom, Unmanned Aerial Vehicle (UAV), Embedded Flight Software, Domain Knowledge, Intelligent
Weapons, Repository, Ontologies

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

107

19a. NAME OF RESPONSIBLE PERSON
George O. Ramseyer

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

Section Page

1.0 SUMMARY .. 1

2.0 INTRODUCTION .. 2

2.1. Subject... 2

2.2. Purpose .. 2

2.3. Scope ... 7

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES .. 8

3.1. Program Overview and Assumptions ... 8

3.2. Execution Summary, Methods, and Procedures ... 9

4.0 RESULTS AND DISCUSSION ... 13

4.1. Users and Use Cases ... 13

4.1.1. Users ... 13

4.1.2. Use Cases .. 15

4.2. As-Built Configuration of Prototype Stockroom and Contents 25

4.2.1. Stockroom Capabilities ... 25

4.2.2. Architecture ... 28

4.2.3. Domain Taxonomy and Ontology .. 66

4.2.4. Stockroom Contents .. 79

4.3. Community ... 92

5.0 CONCLUSIONS... 95

6.0 REFERENCES ... 96

7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 97

ii

LIST OF FIGURES

Figure Page

Figure 1: Relationships of S3 Components .. 3

Figure 2: S3 Community Members and Stakeholders .. 3

Figure 3: S3 Infrastructure Capabilities and Repository Contents .. 4

Figure 4: Evolving Autonomous Flight Systems .. 5

Figure 5: Emerging On Board Compute for Airborne Platforms .. 6

Figure 6: New and Future Autonomous Flight Systems ... 7

Figure 7: Boeing S3 Team Organization .. 9

Figure 8: S3 Prototype Home Page ... 12

Figure 9: Stockroom Roles and Potential Users ... 13

Figure 10: Artifact-centered Use Cases .. 15

Figure 11: Collaboration Use Cases ... 18

Figure 12: Administration Use Cases ... 20

Figure 13: Create User Account Use Case ... 21

Figure 14: Technical Working Group (TWG) Example ... 22

Figure 15: Example of Technology Search and Artifact Acquisition ... 23

Figure 16: Successful Stockroom Technology Search and Acquisition Scenario 24

Figure 17: Unsuccessful Stockroom Search Followed by SPRUCE Collaboration 24

Figure 18: Stockroom Notional Architecture ... 29

Figure 19: Drupal Node Hierarchy ... 31

Figure 20: Sample S3 Blog ... 32

Figure 21: S3 Theme ... 34

Figure 22: Alternative Drupal Theme ... 35

Figure 23: Web File Manager ... 38

Figure 24: Enabling/Disabling Web File Manager on For an Individual WG 39

Figure 25: Displaying the Children of an Artifact .. 41

Figure 26: Triples Associated with an Artifact ... 43

Figure 27: Search Results for Guided Search Involving Properties ... 44

Figure 28: The Triples Report PHP Source .. 46

iii

Figure 29: Creating a Password for an Artifact .. 47

Figure 30: Role Based Access for Working Group Files ... 48

Figure 31: Configuring the Web File Manager for the Formal Methods TWG 49

Figure 32: WebFM Portal for Formal Methods TWG Member ... 50

Figure 33: WebFM Portal for Administrative Account .. 50

Figure 34: S3 Workflow Engine ... 51

Figure 35: Workflow Summary .. 52

Figure 36: Workflow for an Artifact ... 53

Figure 37: Complete List of Stockroom Artifacts .. 55

Figure 38: Guided Search Results ... 56

Figure 39: Results of Incremental Search ... 57

Figure 40: Final Search Results after Unrolling ... 58

Figure 41: Generating 3.owl ... 59

Figure 42: Protégé Query .. 60

Figure 43: Daily Statistics ... 62

Figure 44: Monthly Statistics .. 63

Figure 45: Comparing Traffic by Day of Week and Time of Day ... 64

Figure 46: Traffic Source Statistics .. 65

Figure 47: Spider Visits .. 65

Figure 48: HTTP Status Codes ... 65

Figure 49: Frequently Viewed Pages .. 66

Figure 50: Dwell Time .. 66

Figure 51: Stockroom Taxonomies ... 67

Figure 52: Subset of the Licensing Taxonomy in Protégé .. 68

Figure 53: Artifact Type Taxonomy Abstract in Drupal .. 69

Figure 54: Representative Ontological Query .. 70

Figure 55: Subset of Stockroom Triples ... 72

Figure 56: Requires Predicate in Stockroom.owl ... 73

Figure 57: OCP Build Files Artifact in S3.owl ... 73

Figure 58: Early Cmap of Artifact Type Taxonomy in CmapTools ... 76

Figure 59: Early CmapTools Version of Stockroom Domain Ontology 76

iv

Figure 60: Stockroom.owl Ontology in Protégé ... 77

Figure 61: Description Logic Query Executed in Protégé .. 78

Figure 62: Taxonomy Manager Taxonomy Evolution Tool ... 79

Figure 63: Signal Processing Platform (SPP) Tool-chain... 81

Figure 64: SPP – Supported Platforms ... 83

Figure 65: OCP Infrastructure .. 84

Figure 66: Sample OCP Application .. 85

Figure 67: SOSCOE Artifact Contents ... 86

v

LIST OF TABLES

Table Page

Table 1. Significant Program Events ... 9

Table 2. Community Members Identified at Proposal Time ... 93

1

1.0 SUMMARY

The work reported herein was performed by a team led by the Boeing Company under Air
Force Research Laboratory (AFRL) Contract FA8750-09-C-0026, “Software Systems
Stockroom (S3).” The work was performed for the AFRL Information Directorate, Advanced
Computing Division, Computing Technology Applications Branch (AFRL/RITB). Other
government stakeholders involved in this program included the Office of the Secretary of
Defense (OSD), the Army Research Laboratory (ARL), the Office of Naval Research (ONR), the
Naval Research Laboratory (NRL), and consultants from the Software Engineering Institute
(SEI). The Boeing-led team included Raytheon and Vanderbilt University.

The overall objective of this S3 effort was to develop an open, community-driven,
technically focused shared infrastructure that will encourage the capture and reuse of domain
knowledge related to the development of autonomous flight systems embedded software on
emerging processing systems. The S3 infrastructure includes support for the capture and the use
of Department of Defense (DoD) domain knowledge; community collaboration and information
sharing; repositories for components, models, architectures and platforms; support for
provenance and version control; and domain-specific taxonomies and ontologies to support user
interface generation and rich searching capabilities.

The domain of autonomous flight systems includes unmanned aerial vehicles (UAVs) and
smart weapons, and was chosen as the domain to support for a number of reasons. UAVs and
smart weapons represent a DoD growth area within all the armed services. Hosting a mix of on-
board vehicle management and mission management (including functions that were performed
by aircrew on manned platforms) functions on these platforms provides significant software
producibility challenges. In terms of building and serving a wide community associated with
this domain, there is significant interest in this area from members of the mil-aero industry, as
well as other associated industries (embedded software providers, tools developers, etc.), small
business, and academia. Aspects of the supported domain associated with hosting embedded
flight software on emerging processing systems (e.g., multi-core) are also significant. With more
on-board capabilities desired on aircraft, this element of the S3 domain can provide important
support for those needing help solving multi-core development issues.

The Phase 1 work described in this report includes the activities involved in the development
of the prototype S3, in populating the prototype with an initial set of artifact contents, and in
engaging a community of domain knowledge suppliers and users working this domain. Also
included in this report is a description of the as-built capabilities that have been implemented in
the S3 prototype repository and the features inherent in the S3 repository contents that have been
populated in Phase 1.

The Phase 1 work has produced an S3 with rich repository support functions and populated
with contents useful to the domain. A diverse community has been defined and in most cases
has already engaged for participation in S3. Moving into a Phase 2 effort for development and
operation of S3 will provide an important resource for this community to support affordable
development of embedded software for the growing DoD area of autonomous flight systems.

2

2.0 INTRODUCTION

The subject, the purpose and the scope of this effort are presented in this section.

2.1. Subject

The work reported herein was performed by a team led by the Boeing Company under Air
Force Research Laboratory Contract FA8750-09-C-0026, “Software Systems Stockroom (S3)
Phase 1.” The work was performed for AFRL/RITB. The AFRL Contract Technical
Representative was Dr. George Ramseyer, of AFRL/RITB. Additional technical coordination
was done with Steve Drager and Bill McKeever, also from AFRL/RITB. Other government
stakeholders involved in this program included OSD, ARL, ONR, NRL, and consultants from
SEI.

The Boeing-led team included Raytheon and Vanderbilt University. For this effort the
Boeing Program Manager was Patrick J. Stokes, the Principal Investigator (PI) was Dr. James L.
Paunicka, and the contributing Research & Development Engineers were Dr. Douglas Stuart of
the Boeing Company, Andrew Vandivort of Raytheon, and Prof. Gabor Karsai and Chris Van
Buskirk of Vanderbilt University. All of the Boeing performers on the contract are part of the
Boeing Research & Technology (BR&T) organization. BR&T is the central research,
development, and innovation organization for Boeing, chartered with creating the future of
aerospace for both the Integrated Defense Systems (defense and space) and Boeing Commercial
Aircraft business units.

2.2. Purpose

The overall objective of this S3 effort was to develop an open, community-driven,
technically focused shared infrastructure that will encourage the capture and reuse of domain
knowledge related to the development of embedded autonomous systems flight software on
emerging processing systems. The S3 infrastructure includes support for the capture and the use
of Department of Defense domain knowledge; community collaboration and information
sharing; repositories for components, models, architectures and platforms; support for
provenance and version control; and domain-specific taxonomies and ontologies to support user
interface generation and rich searching capabilities. The relationships between key concepts
associated with this S3 effort are illustrated in Figure 1.

3

Community members and stakeholders are shown in more detail in Figure 2, many of
whom have provided guidance and assessment during the development of this S3 prototype and
its domain contents. DoD acquisition programs will benefit from leveraging this domain content
in terms of lower software development costs. The DoD contractor community, both large and
small businesses, will also benefit from more affordable systems development. Academic
researchers will be able to post their tools, algorithms, and software on the S3. The defense
community will be able to post domain specific information about their software and tools for
leverage by systems developers and other government researchers.

Figure 1: Relationships of S3 Components

Figure 2: S3 Community Members and Stakeholders

4

In Figure 3 is presented the infrastructure capabilities and a listing of envisioned types of the
repository contents of S3.

Figure 3: S3 Infrastructure Capabilities and Repository Contents

5

Figure 4: Evolving Autonomous Flight Systems

The domain of autonomous flight systems (Figure 4) includes UAVs and smart weapons, and
was chosen as the domain to support for a number of reasons, including that UAVs and smart
weapons represent a DoD growth area within all the armed services.

The aspect of the supported domain associated with hosting embedded flight software on
emerging processing systems (e.g., multi-core) is also significant (Figure 5). Multi-core
architectures will soon become the de-facto embedded processor architecture available to the
mil-aero industry, and work needs to be done to allow for safe and secure hosting of flight
software on these embedded compute platforms. With the desire for increased on-board
capabilities on existing and smaller aircraft, this element of the S3 domain can provide important
support for those needing help solving multi-core development issues.

6

Figure 5: Emerging On Board Compute for Airborne Platforms

On-board compute platforms are becoming more pervasive in warfighting, in part because
they support military objectives while keeping friendly forces out of harm’s way. The S3 goal of
supporting a mix of on-board vehicle management and mission management, including functions
that were performed by aircrew on manned platforms, provides significant software producibility
challenges for autonomous flight systems (Figure 6). The industry component of our team,
Boeing and Raytheon, has great interest in this class of compute platforms, as do our mil-aero
industry competitors. And, in terms of building a wider community, there is significant interest
in this area from other industries (embedded software providers, tools developers, etc.), small
business, and academia.

7

Figure 6: New and Future Autonomous Flight Systems

2.3. Scope

This report details the Phase 1 activities involved in the development of the prototype S3, in
populating the prototype with an initial set of artifact contents, and in engaging a community of
domain knowledge suppliers and users working this domain. Also included in this report is a
description of the as-built capabilities that have been implemented in the S3 prototype and
features of S3 contents that have been populated in Phase 1.

8

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

The program overview, assumptions, execution summary, methods, and procedures are
presented in this section.

3.1. Program Overview and Assumptions

With the S3 program, AFRL sought to “improve the capability to produce software for DoD
systems by encouraging the capture and reuse of domain knowledge and expertise through an
open, community-driven, technically focused shared infrastructure.” [1]

In support of this vision, Boeing, Raytheon, and Vanderbilt University put together a team to
build and populate an S3 that supported the development of autonomous flight systems
embedded software on emerging processing systems. Assumptions associated with this approach
included the following:

• The autonomous flight systems domain was of such importance (currently a DoD
growth area for all the armed services, software complexity is resulting in
producibility issues) that investment in this domain would be deemed beneficial.

• A concentration on support for the development of embedded flight software on
emerging processing systems (e.g., multi-core) is also of great value.

• An S3 development team that includes more than one mil-aero contractor (Boeing
and Raytheon), which are often competitors, would result in an open solution not
dominated by a single contractor.

• An S3 development team that brought in a university teammate (Vanderbilt
University) would result in an S3 that leverages the most recent developments in web
and content management technologies, and provide a contractor-neutral organization
for hosting S3 (making S3 more inviting to other contractors).

The team organization for this effort is shown in Figure 7. Boeing led program
execution, led development of autonomous flight system-related aspects of program, and
populated key domain artifact elements into S3. Raytheon led the Use Case development and the
multi-core-related elements of the effort, and also populated major domain artifact elements into
S3. Vanderbilt University led the S3 prototype development and functioned as S3 administrators
after the S3 was made available on the Internet in Mar 2009. Various consultants from our
program team in the areas of vehicle control, multi-core technology, and software reuse were
called upon during program execution, but the majority of the work was accomplished by the PIs
along with Doug Stuart and Chris van Buskirk.

9

Figure 7: Boeing S3 Team Organization

3.2. Execution Summary, Methods, and Procedures

Program period of performance was Feb to Aug 2009. Major events occurring during
program execution are summarized in Table 1.

Table 1. Significant Program Events

Event Date(s) Location
Organizations /

People Involved
Synopsis

PoP Start 05 Feb
2009 Boeing

Kickoff Meeting 26 Feb
2009

Arlington,
VA

OSD, AFRL,
ARL, NRL, ONR,
Boeing, Raytheon,
Vanderbilt

Boeing-led team briefed
program plans for prototype
development and community
engagement

Software and Systems
Producibility
Collaboration and
Experimentation
Environment (SPRUCE)
Technical Interchange
Meeting

19 Mar
2009

Telecon /
Webex

Boeing, Raytheon,
Vanderbilt,
Lockheed
SPRUCE Team

Discussed what elements of
SPRUCE that can be
leveraged by S3 and
preliminary exploration of
how to implement that
leverage in software

10

Event Date(s) Location
Organizations /

People Involved
Synopsis

S3 Stood up on Internet
with https Secure Socket
Layer protection

31 Mar
2009

Vanderbilt
servers in
Nashville,
TN

Boeing S3 team,
User Community

S3 accessible on internet with
username and password; used
by multiple members of the
user community to share
domain knowledge in files;
also used by the S3 team to
share S3 design information

AIAA InfoTech @
Aerospace Conference

09 Apr
2009 Seattle, WA Boeing,

Boeing briefed S3 in a
presentation entitled, “An
OSD Software Systems
Stockroom Instance
Supporting Autonomous
Flight Systems,” to a national
audience including industry,
academia, and government

IEEE Real-Time and
Embedded Technology
and Applications
Symposium

16 Apr
2009

San
Francisco,
CA

Boeing

Boeing briefed S3 to a
national audience including
industry, academia, and
government

Midterm Review 05 May
2009

Arlington,
VA

AFRL, ARL,
NRL, ONR,
Boeing, Raytheon,
Vanderbilt

Boeing-led team briefed
current design of the S3
prototype & current
community engagement
status, performed a
demonstration of the S3
prototype, and briefed plans
for further prototype
development and community
engagement

Safe & Secure Systems
& Software Symposium

02 Jun
2009 Dayton, OH AFRL, Boeing,

Vanderbilt

Boeing briefed S3 to a
national audience including
industry, academia, and
government

Final Review 15 Jul
2009

Boeing
Office,
Arlington,
VA

AFRL, ARL,
NRL, ONR,
Boeing, Raytheon,
Vanderbilt

Boeing-led team briefed final
design of the S3 prototype &
domain knowledge contents,
and Phase 2 plans; and
performed a demonstration of
the S3 prototype

PoP End 01 Aug
2009 Boeing

11

Throughout the execution of the program, team coordination was enabled with the use of a
number of methods, procedures, and tools. Weekly design and coordination sessions were held
over teleconferences and Webex that involved Boeing personnel in St. Louis, Missouri;
Raytheon personnel in Tucson, Arizona; and Vanderbilt University personnel in Nashville,
Tennessee. These weekly sessions were augmented with additional virtual meetings when
necessary. Sharing of data products (design information, reports, presentations, etc.) was
facilitated with an S3 SharePoint program data site hosted at Boeing, and later with a password-
protected file share on the S3 itself after it was stood up on the Internet in Mar 2009.
Teleconferences and Webex were also used for discussions with the Software and Systems
Producibility Collaboration and Experimentation Environment (SPRUCE) development and
operations team on possible leverage of their infrastructure by S3.

For major program events, such as the Kickoff, Mid-Term, and Final Reviews, we would
convene for face-to-face sessions at the Boeing Washington DC Office (WDCO) to finalize
presentation material.

For collaboration with our AFRL customer, we participated in bi-weekly teleconferences to
communicate technical status and plan future program events. These calls were open to, and
attended by, our extended team members from Raytheon and Vanderbilt University. During
these calls, our team would communicate status, raise questions and issues, and seek feedback
from our customers. AFRL would communicate important program status and plans, make us
aware of any programmatic issues, and comment on our current approach to S3.

A Basic Support for Cooperative Work (BSCW) Internet-based shared workspace site
(https://bscw.sei.cmu.edu/bscw/bscw.cgi) was used for exchanging data generated by the
multiple participants who attended government-hosted S3 meetings.

The AFRL Jiffy program management system (https://jiffy.rl.af.mil) was used by Boeing to
deliver Contract Data Requirements List (CDRL) documentation, including periodic status
reports and other technical reports, over the public internet.

The development of the prototype was driven, in part, by early definition of User Roles and
Use Cases, led by Raytheon with contributions from Boeing. At the same time, Vanderbilt
began S3 prototype development leveraging the native capabilities of the Drupal Content
Management System [2], augmented with custom tailoring to match the evolving Use Cases. To
support domain-specific repository features, Boeing led the development of domain-specific
ontologies for S3, with contributions from Raytheon. This ontological information was
integrated into S3 with tools configured by Vanderbilt.

Testing of the evolving prototype, whose home page is shown in Figure 8, was accomplished
with a semi-formal process involving initial tests by Vanderbilt, followed by additional
exercising of new functionality by Boeing and Raytheon.

https://bscw.sei.cmu.edu/bscw/bscw.cgi
https://jiffy.rl.af.mil

12

Figure 8: S3 Prototype Home Page

13

4.0 RESULTS AND DISCUSSION

The following subsections provide details on the results generated during the program. The
discussion begins with the results of our Use Case development efforts. This is followed by
details of the S3 prototype as built on the program during Phase 1, including a summary of S3
capabilities, the resulting S3 architecture, and a summary of S3 domain contents. This is
followed by a discussion of community activities on the program.

4.1. Users and Use Cases

The Stockroom prototype identifies 14 user roles (actors) and 33 system-level use cases,
which are further organized in to three categories: Artifact-centered, Collaboration, and
Administration.

4.1.1. Users

As shown in Figure 9, the Stockroom has three primary user roles: Contributor, Consumer
and S3 Administrator.

S3 AdministratorS3 Administrator

ConsumerConsumer Government Program OfficeGovernment Program Office

ResearcherResearcher

ContributorContributor

ContractorContractor

Vehicle Development
Contractor

Vehicle Development
Contractor

Subsystem
Supplier

Subsystem
Supplier

COTS VendorCOTS Vendor

Academic ResearcherAcademic Researcher

Government ResearcherGovernment Researcher

Industry ResearcherIndustry Researcher

ActorBaseActorBase

SBIRSBIR

Boeing
Raytheon
Northrop Grumman

Honeywell
Scientific Systems
Curtiss Wright

MathWorks
Green Hills Software
IBM

Boeing R&T
Raytheon MS-Adv Pgms
Lockheed Martin ATL

AFRL
ONR
NSF

Vanderbilt
UC Berkeley
Naval Postgraduate School

PMA 262
Predator SPO
PEO, Aviation

Green Hills Software
EDAptive Computing
Barron Associates

Figure 9: Stockroom Roles and Potential Users

14

Ten additional user roles are identified which are refinements of the primary roles. (These
refined roles primarily serve as taxonomy of user types for the Stockroom’s role-based access
control engine.) A top level user role (ActorBase) is also provided to capture functionality
common to all users. A brief description of each user role is provided below:

User Descriptions:
ActorBase – base user role (all other user roles inherit from ActorBase). This role primarily
serves to capture user metadata common to all users.

Contributor – contributor role submits content in the form of artifact(s) to the Stockroom,
which may include associated metadata, e.g., related keywords, artifact type (taxonomic
classification), and Resource Description Framework (RDF) triples (ontological relationships).

Consumer – content user role, which locates (via natural language, metadata, or ontology-based
search), acquires (e.g., downloads) Stockroom content; and may also use and provide feedback
on content artifacts.

S3 Administrator – Stockroom administration role, responsible for maintenance and
administration of users, working groups, content and metadata. Also maintains the taxonomic
and ontological repository data and supervises the evolution of these data structures.
Responsible for maintenance of, and enhancements to, Stockroom hardware and software
infrastructure.

Contractor – inherits from both the Contributor and Consumer user roles; provides a unique
user role for the (industrial) contracting community.

Subsystem Supplier – inherits from the Contractor user role, providing a further refined role for
subsystem suppliers (e.g., avionics, flight control sensors, algorithm suppliers, etc.).

COTS Vendor – inherits from the Contractor role, providing a further refined role for members
from the commercial-off-the-shelf vendor community. Examples would include vendors of
commercial software and hardware products (e.g., software tools, real-time operating systems
(RTOSs), embedded processor products, etc.).

Vehicle Development Contractor – inherits from the Contractor role, providing a further
refined role for contractors from the UAV and intelligent airborne weapon (e.g., missile)
community.

Government Program Office - inherits from both the Contributor and Consumer user roles;
provides a unique user role for government program office representatives.

Researcher – inherits from both the Contributor and Consumer user roles; provides a unique
user role for members of the research community.

SBIR – inherits from the Researcher user role, providing a further refined role for small business
members participating in a Stockroom-related SBIR or Small Business Technology Transfer
(STTR) program.

Industry Researcher – inherits from the Researcher role; provides a further refined researcher
role for industrial researchers (e.g., from the Mil-Aero community) conducting or participating in
Stockroom-related research activities.

15

Government Researcher – inherits from the Researcher role; provides a further refined
researcher role for government researchers (e.g., AFRL, ONR, ARL, National Science
Foundation (NSF), etc.) conducting or participating in Stockroom-related research activities.

Academic Researcher – inherits from the Researcher role; provides a further refined researcher
role for academic researchers conducting or participating in Stockroom-related research
activities.

4.1.2. Use Cases

Artifact centered, collaboration, administration use cases are presented in this section.

4.1.2.1. Artifact Centered Use Cases

The Unified Modeling Language (UML) use case diagram shown in Figure 10 identifies the
11 Artifact Centered use cases and their relationships to one another.

Contribute
technology

artifacts

Contribute with
data

reach-back«extend»

Contribute
metadata

Contribute metadata
with submision of

artifacts

«include»

«include»

Perform technology
evaluation

Provide user feedback

Artifact Centered Use Cases

Perform technology
search

Text based
search

«extend»
Taxonomy

based search
«extend»

Ontology
based search

«extend»

Acquire

Metadata

Artifact Centered Use Cases

Perform technology
search

Text based
search

«extend»
Taxonomy

based search
«extend»

Ontology
based search

«extend»

Acquire

Metadata

Collaboration_UCs

Administration_UCs

Artifact_Centered_UCs

Collaboration_UCs

Administration_UCs

Artifact_Centered_UCs

Acquire
technology

artifacts

Figure 10: Artifact-centered Use Cases

16

Descriptions of each use case are provided below:

Artifact Centered Use Case Descriptions:
Perform technology search – use case providing for the searching of Stockroom artifacts. This
use case optionally provides three alternative search capabilities: Text based search, Metadata
based search, and Taxonomy based search. (Each of these search alternatives are described
below.) The Stockroom user invokes one of the alternative search engines via the Stockroom
user interface (UI), which is a standard web interface with dialog boxes for each of the various
forms of search. Search results are returned to the user’s browser. Search results consist of a
brief summary and Uniform Resource Locator (URL) for each resultant.

Text based search – use case which performs a text based (i.e., natural language) search for
specified words and/or phrases. Search targets will include all text associated with Stockroom
artifacts, and will also include Technical Working Group (TWG) and Community Standards
Working Group (CSWG) forum and blog postings.

Metadata based search – use case which performs a search of Stockroom artifacts for specified
metadata words or phrase. Search targets include metadata types, including keywords.

Taxonomy based search – use case which performs taxonomy and ontology based searches.
Taxonomy based search is supported via the Guided Search facility, found on the Stockroom
homepage. This facility supports “drill-down” style search of the taxonomy hierarchy,
narrowing the scope of search in a step-wise manner. Full ontology-based search is currently
supported via an exported Web Ontology Language (OWL) [3] file (s3.owl) and a COTS OWL
reasoner (Protégé [4] FACT reasoning engine [5]). (The intention in Phase 2 is to fully integrate
the ontological search capability into the Stockroom web portal.)

Acquire technology artifacts – use case providing for the downloading of an artifact data
payload. Two scenarios are supported: 1) direct download of data file(s) from Stockroom via
artifact web page; 2) acquisition of data (or material) from 3rd party (e.g., intellectual property
(IP) owner, COTS vendor, etc.) via URL reference on artifact web page.

Contribute technology artifacts – use case providing for the contribution of technology artifact
to Stockroom. This use case consists of two basic steps: 1) creation of repository artifact, using
the Stockroom’s Create Content facility; 2) upload of artifact data payload using the File
attachment utility (this step is optional; artifacts are not required to have data payloads).

Contribute with data reach-back – use case which optionally extends Step 2 of the Contribute
technology artifacts’ use case to include a URL link to a 3rd party web-site instead of (or in
addition to) local data payload. This use case allows for artifact creation (and associated
metadata) without requiring collocation of artifact data payload (e.g., for purposes of IP
protection, security, International Traffic in Arms Regulations (ITAR) / Export Administration
Regulations (EAR) compliance, etc.).

17

Contribute metadata – use case which provides for the addition of relevant metadata to be
added to a Stockroom artifact. At the creation of an artifact, a minimal metadata set is required
to be supplied by the artifact author; however, it is also anticipated that additional metadata will
be supplied at other times by the artifact author and other users with sufficient user role
privileges. This could include all metadata types, but the most commonly anticipated scenario
would be the addition of relevant RDF-triples, in which the artifact in question would serve as
either the subject or object of such a relationship. This is one of the user-based mechanisms of
Stockroom ontology evolution.

Provide user feedback – a refinement of the Contribute metadata use case, which specifically
provides for user feedback with regards to a Stockroom artifact. Each artifact has a comments
metadata field, which allows user roles with sufficient privilege to enter wiki-style comments.
User comments appear on the artifact web page.

Contribute metadata with submission of artifacts – use case which includes both Contribute
technology artifacts and Contribute metadata use cases. In this use case an artifact is created as
prescribed in the former, and is simultaneously populated with additional metadata (e.g., RDF-
triples) as described in the latter, serving to “anchor” the artifact into the Stockroom ontology.

Perform technology evaluation – use case which involves the (typically collaborative)
evaluation of one or more Stockroom artifacts. This would typically be a collaborative activity
performed under the auspices of a Stockroom TWG. This use case envisions the cross-leverage
of the SPRUCE program experimental resources – to the extent this is possible.

4.1.2.2. Collaboration Use Cases

The UML use case diagram shown in Figure 11 identifies the 14 Collaboration Centered use
cases and their relationships to one another.

18

Collaboration Use Cases

Propose WG
formation

Form WG

Join WG

Participate in
TWG

Propose joint
R&D activity

«extend»

Conduct joint
R&D activity

«extend»

Propose
CSWG

Form CSWG

Propose TWG
formation

Form TWG

Join TWG Join CSWG

Participate in
WG«include»

Participate in
CSWG

«include»

Collaboration Use Cases

Propose WG
formation

Form WG

Join WG

Participate in
TWG

Propose joint
R&D activity

«extend»

Conduct joint
R&D activity

«extend»

Propose
CSWG

Form CSWG

Propose TWG
formation

Form TWG

Join TWG Join CSWG

Participate in
WG«include»

Participate in
CSWG

«include»

Collaboration_UCs

Administration_UCs

Artifact_Centered_UCs

Collaboration_UCs

Administration_UCs

Artifact_Centered_UCs

Figure 11: Collaboration Use Cases

Descriptions of each use case are provided below:

Collaboration Use Case Descriptions:
Propose WG formation – use case for the formation of a Stockroom working group. It is
envisioned that WG formation would be requested by at least two interested parties. If approved
by Stockroom governance, a request for workgroup formation would be forwarded to the
Stockroom Administrator.

Two forms of Stockroom working groups are provided for: TWGs and CSWGs. It is
believed TWGs will be the more common of the two species, and that CSWGs will be an
outgrowth of at least some TWGs – where drafting of standards becomes a community
objective.

Propose TWG formation – refinement of Propose WG formation use case in support of a
TWG.

Propose CSWG formation – refinement of Propose WG formation use case in support of a
CSWG. Similar to parent use case, except it is envisioned that CSWG formation would be
requested by an existing TWG chair, and would be an outgrowth of the TWG the chair
represents.

Form WG – use case initiated by Propose WG formation use case. Upon receipt of new request
Stockroom Administrator would set-up required forum and web file manger structures for new
working group. Administrator would also set appropriate role-based access privileges for
members of new working group.

Form TWG – refinement of Form WG use case in support of a TWG.

19

Form CSWG – refinement of Form WG use case in support of a CSWG. Formation of CSWG
would require concurrence of Stockroom governance body.

Join WG – use case which addresses request of a Stockroom user to be added to existing
working group. Request (currently in the form of an email) would be submitted to working
group chair. If approved, the chair would submit a request to Stockroom Administrator to add
user to working group. Administrator would then set appropriate role-based access privileges for
the new working group member. Concurrence of Stockroom governance may be required for
some working groups.

Join TWG – refinement of Join WG use case in support of a TWG.

Join CSWG – refinement of Join WG use case in support of a CSWG.

Participate in WG – use case addressing activities associated with participating in a working
group. In the Phase 1 Stockroom prototype two main collaboration mechanisms are provided:
1) Web-based file manager, for sharing of data files amongst the members of a working group;
2) Web-base forum communication utility, which allows for topic separated, bulletin board style
communications amongst forum members.

It is anticipated activity patterns (e.g., policies, procedures, methodologies, etc.)
associated with a specific working group will be highly specific to the objectives of that
community.

Participate in TWG – refinement of Participate in WG use case in support of a TWG.

Participate in CSWG – refinement of Participate in WG use case in support of a CSWG.

Propose joint R&D activity – use case supporting proposal of joint Research and Development
(R&D) activity. It is envisioned that proposal will be requested by one or more TWG chairs to
the Stockroom Administrator, and would be conducted under the auspices of same TWGs.

Conduct joint R&D activity – use case which supports the conduct of joint R&D activity.
Upon receiving joint R&D proposal, the Stockroom Administrator will submit proposal to
Stockroom governance body. If approved, Administrator will work with TWGs to configure
necessary artifacts and infrastructure to support and conduct joint R&D activity. As in Perform
technology evaluation use case, cross-leverage of the SPRUCE program experimental resources
will be explored where possible.

20

4.1.2.3. Administration Use Cases

The UML use case diagram shown in Figure 12 identifies the 8 Administration use cases and
their relationships to one another.

Administration Use Cases

Perform back-up of
repository data

Maintain user
accounts

Update ontology

Update taxonomy
Collect and maintain

S3 metrics

Maintain working
groups

Maintain artifacts
repository

Create working group

Create user account

Administration Use Cases

Perform back-up of
repository data

Maintain user
accounts

Update ontology

Update taxonomy
Collect and maintain

S3 metrics

Maintain working
groups

Maintain artifacts
repository

Create working group

Create user account

Collaboration_UCs

Administration_UCs

Artifact_Centered_UCs

Collaboration_UCs

Administration_UCs

Artifact_Centered_UCs

Figure 12: Administration Use Cases

Descriptions of each use case are provided below:

Administration Use Case Descriptions:
Perform back-up of repository data – use case providing for the administration and support of
daily Stockroom repository data back-up (and restore, as required).

Create user account – use case providing for the generation and configuration of Stockroom
user accounts.

The Phase 1 Stockroom prototype design intended to leverage the SPRUCE user
authentication service. Due to time and funding constraints this was not feasible for the
prototype, but will continue to be pursued during the Phase 2 implementation.

Maintain user accounts – use case providing for the maintenance of user accounts, including:
decommissioning of old accounts, adjustment and reconfiguration of role-based access
privileges, etc.

Maintain working groups – use case providing for the maintenance of Stockroom working
groups (both TWGs and CSWGs).

Maintain artifacts repository – use case providing for the maintenance of Stockroom artifacts
repository. E.g., managing the addition of processing and data storage, performing routine data
integrity checks, etc.

21

Update ontology – use case providing for the update and evolution of the Stockroom ontology.
This might include activities such as routinely examining “emerging” user supplied ontology
extensions (e.g., user generated RDF-triples) and keywords for potential modification to
“planned” ontology kernel. These decisions would be made by the Stockroom Ontology Control
Board CSWG, and would be implemented by the Stockroom Administrator.

Update taxonomy – use case providing for the update and evolution of the Stockroom
taxonomy. This might include activities such as routinely examining “emerging” user supplied
ontology extensions (e.g., user generated RDF-triples) and keywords for potential modification
to the taxonomy type hierarchy. These decisions would be made by the Ontology Evolution
Steering Committee CSWG (Section 4.2.2.2.1.2), and would be implemented by the Stockroom
Administrator.

Collect and maintain S3 metrics – use case providing for the collection and dissemination of
Stockroom usage metrics, including: number of users, number of nodes, number of repository
artifacts, number of web files, number of site visits (including pages, hits and bandwidth usage).

4.1.2.4. Example Scenarios

Figure 13 shows a UML sequence diagram of the Create User Account use case.

[if user authenticated by SPRUCE]opt [if user authenticated by SPRUCE]opt

[if unable to authenticate user by SPRUCE]opt [if unable to authenticate user by SPRUCE]opt

:S3 Administrator :S3

Create_user_account_with_SPRUCE_credentials()

approve_or_disapprove()

Create_user_account_with_S3_credentials()

Create_user_account_with_SPRUCE_credentials()

approve_or_disapprove()

Create_user_account_with_S3_credentials()

Request_user_account()

:Vehicle
Development
Contractor

Notification_of_new_user_account()

Request_user_account()

Notification_of_new_user_account()

Authenticate_user_with_SPRUCE()

:SPRUCE

Authenticate_user_with_SPRUCE()

Figure 13: Create User Account Use Case

22

In the particular example shown in the figure, a member of the Vehicle Development
Contractor user role is submitting a request for a user account to the Stockroom web portal. The
request is forwarded to the S3 Administrator for approval. In this diagram two alternative
sequences of events are shown. In the first, an attempt is made to authenticate the user via the
SPRUCE web portal. If this were to result in success, the Stockroom user account would be
created and the Vehicle Development Contractor would be notified. Alternatively, if the user
could not be authenticated through the SPRUCE web portal, then a new account would be
created with S3 credentials, and the new user would be similarly notified.

In Figure 14 we show an example scenario involving three use cases. At the top of the figure
we see the S3 Administrator initiate the Form TWG use case and create a new UAV/UAS
Autonomous Flight Systems TWG. Next, the Stockroom is seeded with domain artifacts and
related metadata in support of the new UAV/Unmanned Aircraft Systems (UAS) TWG
(exercising the Contribute Metadata with Submission of Artifacts use case). Finally, we have a
member of the Vehicle Development Contractor user role, seeking middleware technologies
suitable for a UAV flight software application, who becomes aware of the UAV/UAS TWG and
requests to join the TWG, exercising the Join TWG use case. (UAV/UAS TWG membership is
granted in this example scenario.)

Boeing_Raytheon_Vanderbilt_team
:S3 Administrator

:S3

Add_user_to_TWG()
approve_or_disapprove()

Contribute_Technology_Artifacts()

Create_UAV_UAS_Autonomous_Flt_Systems_TWG()

Seed_UAV_UAS_TWG_with_domain_artifacts_and_metadata()

Create_TWG()

Add_user_to_TWG()
approve_or_disapprove()

Contribute_Technology_Artifacts()

Create_UAV_UAS_Autonomous_Flt_Systems_TWG()

Seed_UAV_UAS_TWG_with_domain_artifacts_and_metadata()

Create_TWG()

:Vehicle
Development
Contractor

Seeking_Middleware_for_UAV_Flt_SW_application()

Notification_of_addition_to_UAV_UAS_TWG()

Request_to_join_UAV_UAS_TWG()

Seeking_Middleware_for_UAV_Flt_SW_application()

Notification_of_addition_to_UAV_UAS_TWG()

Request_to_join_UAV_UAS_TWG()

:ExternalTech
Provider

Form TWG Use Case

Contribute Metadata w/ Submission of Artifacts Use Case

Join TWG Use Case

Figure 14: Technical Working Group (TWG) Example

23

Figure 15 demonstrates the Perform Technology Search use case followed by the Acquire
Technology Artifacts use case. Here we see the Vehicle Development Contractor sequentially
perform text-based, taxonomy-based and metadata-based searches for middleware technology
solutions. The Vehicle Development Contractor then evaluates the returned search results, and
ultimately identifies a Stockroom artifact she wishes to download. The Vehicle Development
Contractor then proceeds to access the Stockroom artifact (by clicking on the artifact URL).
From the artifact web page the artifact payload is downloaded from the Stockroom database
repository if the artifact payload is hosted at the Stockroom. Alternatively, if the artifact payload
is not located at the Stockroom, the payload may be acquired from a remote site provided by an
external technology provider (data reach back example).

[if artifact resides locally]opt [if artifact resides locally]opt

[if artifact resides externally]opt [if artifact resides externally]opt

Boeing_Raytheon_Vanderbilt_team
:S3 Administrator

:S3

Perform_text_based_search()

Perform_taxonomy_based_search()

Perform_metadata_based_search()

Perform_text_based_search()

Perform_taxonomy_based_search()

Perform_metadata_based_search()

:Vehicle
Development
Contractor

Search_S3_for_Middleware_with_desired_properties()

report_search_results()
Evaluate_search_results()

Request_technology_artifact()

Provide_URI_for_requested_artifact()

download_artifact()

Search_S3_for_Middleware_with_desired_properties()

report_search_results()
Evaluate_search_results()

Request_technology_artifact()

Provide_URI_for_requested_artifact()

download_artifact()

download_artifact()

:ExternalTechPr
ovider

download_artifact()

Perform Technology Search Use Case

Acquire Technology Artifacts Use Case

Figure 15: Example of Technology Search and Artifact Acquisition

Figure 17 are graphical depictions of two related scenarios involving the search and
acquisition of technology solutions via the Stockroom, and in the latter a proposed interaction
with SPRUCE.

24

Figure 16: Successful Stockroom Technology Search and Acquisition Scenario

Figure 17: Unsuccessful Stockroom Search Followed by SPRUCE Collaboration

25

Figure 16 is essentially the graphical equivalent to the sequence diagram shown in Figure 15,
where a Vehicle Development Contractor searches the Stockroom for a technical solution. The
Stockroom is able to provide an artifact with acceptable properties, which is ultimately deployed.

Figure 17 demonstrates the case where no solution is found on the Stockroom. Events 3
through 8 depict a subsequent interaction with SPRUCE, in which a challenge problem is created
to address the contractor need. The sequence of events goes on to show a successful engagement
with the research community, followed by technology transition and maturation (via SBIR
engagement). Events 9 through 11 demonstrate how the technology developed and incubated in
SPRUCE could then be submitted back into the Stockroom (or possibly just the metadata
description), in order to support the domain specific technology search with semantic web
support available on the Stockroom.

4.2. As-Built Configuration of Prototype Stockroom and Contents

The following sections provide a detailed description of the S3 prototype as built during
Phase 1, including a summary of S3 capabilities, the resulting S3 architecture, and a summary of
S3 domain contents.

4.2.1. Stockroom Capabilities

The purpose of the stockroom is to preserve and propagate knowledge in the domain of the
development of embedded autonomous systems flight software on emerging processing systems.
All of the stockroom capabilities have been designed with this end in view. The stockroom Phase
1 prototype implementation has been developed both to provide initial capabilities and to
prototype capabilities in support of implementation and operation of the stockroom in Phase 2.
Likewise, the prototype stockroom contents have been selected both for the domain knowledge
they encapsulate and their value in supporting Phase 1 experimentation and prototyping
activities.

The use cases described in Section 4.1.2 were used to identify the stockroom capabilities
required to support the stockroom purpose. As with the use cases, the capabilities provided by
the stockroom will be treated in three categories: artifact centered capabilities, collaboration
capabilities, and administrative capabilities. The remainder of this section provides an overview
of the stockroom prototype capabilities in these three areas. Specific details of the capabilities
and their implementation are covered in Section 4.2.2, while details about their use and
configuration are available in the “User’s Guide for S3 Operation” [6] and the “Administration &
Installation Guide S3 Operation” [7].

4.2.1.1. Artifact Centered Capabilities

Artifacts are the vehicle for capture and re-use of domain knowledge. The domain knowledge
associated with an artifact includes the artifact name, a list of keywords, a description, optional
parent artifacts, an optional attachment, an optional URL, and metadata. The metadata includes
attributes such as artifact type, keywords, license, author, security and export classifications, as
well as triples that specify RDF-like relationships between artifacts and taxonomy terms.
Artifacts, particularly those that correspond to software entities such as tools or libraries, may

26

have an associated payload (e.g., the source files for a library) in the form of (i) an attachment if
the payload is actually stored in the stockroom, (ii) a URL if the payload resides at some other
location, or (iii) a point of contact or other information that identifies how the payload may be
obtained. Other artifacts, particularly those that correspond to more abstract types of domain
knowledge (e.g., the concept of a UAV), may have no associated payload. An artifact is
represented to the stockroom user as a web page.

The stockroom provides capabilities for adding artifacts and information about artifacts to the
stockroom. This corresponds to preserving domain knowledge. Stockroom users may add
artifacts to the stockroom by creating an artifact web page, supplying the appropriate information
defining and describing the artifact, including its payload if any. Stockroom users may also add
metadata about existing artifacts by editing the web page associated with the artifact, or by
defining predicates and triples that apply to the artifact.

The stockroom also provides capabilities for identifying and retrieving artifacts and
information about artifacts from the stockroom. This corresponds to the propagation of domain
knowledge. The stockroom provides four capabilities for identifying artifacts: browsing, natural
language search, metadata search, and ontological search. Once an artifact has been identified, it
may be retrieved by viewing its web page, and then using the appropriate mechanism for
retrieving its payload, if any. For artifacts hosted by the stockroom this would simply involve
downloading the payload attachment directly from the stockroom artifact web page. For artifacts
with a URL supplied for the payload, information about acquiring the artifact can be found by
following the URL. Artifacts with payloads identified in other ways (e.g., by a designated point
of contact) can be acquired by following those artifact specific instructions and processes.

In addition to the capability to browse the entire collection of artifacts, either as a complete
list or by means of one of several “tag clouds”, the stockroom provides three types of searches.
Natural language search corresponds to a “Google™ like” whole text search of the entire
stockroom contents (including non-artifact content). The result of a natural language search is a
web page with links to stockroom web pages on which the search term(s) appear. The other two
search types only search information associated with artifacts. Metadata search, which includes a
guided search capability, identifies those artifacts that match the search, and such searches can be
constructed incrementally. Metadata search also includes a guided search in which the search
terms are restricted to terms from the ontology and taxonomies. Ontological search is provided
by the stockroom as the capability to execute description logic queries against an ontology
capturing all of the metadata of the stockroom. This includes the capability to reason over artifact
attributes and relationships among artifacts.

4.2.1.2. Collaboration Capabilities

Collaboration capabilities are provided to support the direct propagation of domain
knowledge between stockroom users to supplement the indirect propagation provided by
stockroom artifacts, and to support and nurture the stockroom community. The collaboration
capabilities are primarily exercised through participation in WGs. In Phase 1, we identified two
main types of WG that would be centered around the stockroom and the stockroom community:
TWGs and CSWGs. TWGs would be focused on aspects of a particular technology, which could
be an abstract technology area, or a particular artifact or set of artifacts in the stockroom.

27

CSWGs would be focused on developing a community consensus in a particular area, in
particular, developing a stockroom community “standard” for a particular technology. Note that
the CSWG would not be considered an official standards body, nor would its product an official
standard, though it may be desirable in some instances to submit the product of a CSWG to such
an organization.

The primary collaboration capability used during Phase 1 by WGs is a file sharing capability
provided by the Drupal Web File Manager module. As configured in the Phase 1 prototype, this
provides each working group with an access controlled file sharing mechanism. It provides a
hierarchical work space to each working group, in which subfolders can be created to organize
WG content, and in which files can be uploaded for sharing with the working group. Other
collaboration mechanisms are also available, including blogs, fora, news items, and web pages,
though these were not used extensively in the Phase 1 WGs. All of these mechanisms can also be
made available for non-WG use by stockroom users, and some may be used for dissemination of
stockroom news and administrative information to the stockroom community.

4.2.1.3. Administrative Capabilities

The administrative capabilities of the stockroom are provided to ensure availability of and
access to the domain knowledge contained in the stockroom. To that end, there are four major
administrative capabilities provided by the stockroom. Account management capabilities provide
access to the stockroom domain knowledge by authorized users. Stockroom maintenance
capabilities ensure the availability of the stockroom content. Ontology and taxonomy
management capabilities ensure the continuing relevance of the stockroom and that the
taxonomies and ontology continue to support precise access to stockroom domain knowledge.
Finally, the stockroom metrics capabilities provide data to guide the evolution of the stockroom.

There are three main account management use cases that are served by stockroom
administrative capabilities. The stockroom administrators can create user accounts. This includes
both the act of creating the actual stockroom Drupal account for a new user, as well as making
the determination to grant access to the stockroom, in accordance with stockroom access policies
and, if required by those policies, in consultation with the stockroom sponsors. The stockroom
administrator will also maintain user accounts. Account creation and maintenance includes
setting and adjusting each account’s role based access settings. In addition to creating and
maintaining individual accounts, the stockroom also provides capabilities for creating and
maintaining the various stockroom working groups.

The second set of administrative capabilities centers on maintaining the stockroom, in
particular, the artifact content that is the core of the stockroom domain knowledge. This includes
maintaining the artifact content and performing backups. The Phase 1 stockroom has been
designed to include automated backups of stockroom content. Other stockroom maintenance
activities are included in the artifact management workflows, which cover activities such as
approving stockroom contributions and support for rolling back to previous versions of artifacts
if necessary.

28

As further discussed in Sections 4.2.2 and 4.2.3, especially Section 4.2.3.3, the taxonomies
and ontology that enable efficient retrieval of stockroom domain knowledge artifacts are not
static structures determined at stockroom design time. Rather, they are dynamic and evolving
snapshots of a rapidly changing domain. This stockroom concept, including the Phase 1
stockroom prototype, therefore provides a number of mechanisms to support the evolution of the
stockroom taxonomies and ontology. This includes both changing the taxonomies and ontology
themselves, as well as the migration of the existing stockroom artifact metadata.

Finally, the stockroom administrative capabilities include the ability to collect and analyze a
variety of metrics about the stockroom content, the stockroom community, and the ways in
which the community makes use of the stockroom. This information provides data to support all
of the other stockroom activities. For example, metrics on the size of the keywords taxonomy
and the number of artifacts returned by each search could be used to drive the evolution of the
stockroom ontology and taxonomies, while information about user profiles and network traffic
could be used to direct community building efforts.

4.2.2. Architecture

The Software Systems Stockroom for autonomous flight systems builds upon relevant
standards and open-source technologies to create a suite of web-based applications, which
provides the infrastructure for a virtual community for the collection and dissemination of
information relevant to complex fields such as software engineering for autonomous air vehicles.

Accessing the Stockroom by way of a web browser, geographically dispersed individuals
come together to form communities of interest, and to capture and reuse domain knowledge and
expertise through an open, community-driven, technically focused shared infrastructure.

At its heart, the Stockroom application is built upon a well-structured stack of application
service layers built upon a web server and a content management system (Figure 18). This
overall architecture is described below.

29

Figure 18: Stockroom Notional Architecture

In the following section on hardware and systems software, we begin with a quick overview
of the lowest, most generic layers of the system. Continuing from there, we work our way up to
the unique features of the Stockroom system.

4.2.2.1. Hardware and Systems Software Infrastructure

The Stockroom itself relies on a great deal of pre-built components and frameworks
necessary for composing the final system. In this section, we review the critical off-the-shelf
applications that are leveraged to form the underlying foundation upon which Stockroom is built.

30

4.2.2.1.1. The Stockroom Network Appliance

Stockroom is delivered as a network appliance on a removable storage device such as Digital
Video Disc (DVD) media. Essentially, this means that the stockroom product takes the form of
a virtual machine (VM) that contains an operating system, a web server, the content management
system and all other software layers that constitute the Stockroom. The VM exists in the form of
a set of large files that can be ‘run’ under a host operating system. Using virtualization
technology, the Stockroom application and its requisite systems software have been cleanly
separated from the hardware and host operating system that runs S3. As delivered, the prototype
VM is compatible with the VMware standard for virtualization, and thus the S3 virtual machine
may be played within any VMware compatible tool such as “VMware Player” [8] or “VMware
Server”1.

4.2.2.1.2. The Stockroom’s Systems Software

Booting the S3 VM under VMware Player will start up the virtual machine’s operating
system, which will then proceed to initialize several key pieces of systems and applications
software that Stockroom is dependent on.

The operating system deployed for the initial prototype of S3 is Ubuntu Linux. However, the
choice was somewhat arbitrary. Ubuntu is a popular, free, open-source variant of Linux, but any
OS supported by the virtualization technology, which is also compatible with the required
software described in subsequent sections, will also support an instance of the Stockroom. In
addition to the dozens of alternative flavors of Linux, this also includes the Microsoft Windows
family of operating systems. Please see the Administrator’s Guide [7] for a precise enumeration
of the various operating systems supported at the time of this writing.

Being a web-based application, S3 obviously requires a web server to fulfill incoming HTTP
requests. As delivered, the initial prototype of S3 relies on the de facto standard Apache web
server. Alternatively, in a Microsoft Windows environment, one may choose between Apache
and the Microsoft IIS product.

Not only is S3 a web-app, but it is a database backed web application. In accordance with
the model view controller (MVC) design pattern, the data of the Stockroom is cleanly separated
from any presentation layers that provide the user his interface or view into the data. All
Stockroom data is therefore stored in a relational database management system (RDBMS). The
RDBMS chosen for the S3 prototype is MySQL [9] due to its particular suitability for fronting
database-backed websites. However, any RDBMS compliant with the Drupal content
management system is suitable.

S3 is developed primarily in the PHP programming language, and therefore requires PHP5.
Additionally, some ancillary Stockroom code is written in the Java programming language. Both
PHP and Java have been pre-installed on the VM’s instance of Ubuntu.

1 Alternatively, tools exist to convert VMware virtual machines to other virtualization tool providers’ file formats.

31

4.2.2.1.3. The Content Management System

Stockroom is built upon the Drupal content management system (CMS). In general, a CMS
is an application that provides the capability for collaborative creation, publication, navigation,
and search of electronic media, and is accessible via a web server.

In particular, Drupal is a CMS system focused on configurability and extensibility. Out of
the box, Drupal can be easily configured to perform most commonly accepted, web-based
interaction paradigms such as wikis, news item publication and announcements, discussion
forums, personal web blogs, and static, corporate/organizational web sites. In addition, however,
Drupal provides a full-fledged development framework. Via well thought out abstractions and
plug-in points, Drupal may be customized and extended to provide unique capabilities and novel
services.

In the remainder of this section the common, Drupal’s out-of-the-box features are
summarized. Following that, Section 4.2.2.2 presents the unique, custom engineered
manifestations of Drupal that comprise the Software Systems Stockroom.

The most fundamental concept in Drupal is that of a Node. A Node in Drupal subsumes the
idea of a web page in the traditional world of Hyper Text Markup Language (HTML). At a
minimum, every Node has a name and a description attribute. These roughly translate to the
<title> and <body> sections of a traditional web page. Furthermore, Nodes have been
specialized in Drupal to provide a type system of specific content types available (Figure 19).
For example, News Items may have an additional attribute that specifies an expiration time, at
which point the News Item is scheduled for archiving.

Figure 19: Drupal Node Hierarchy

Stockroom uses many of these predefined, specialized content types as part of its electronic
collaboration features. For example, TWGs typically have one or more discussion fora set aside
for members to carry on threaded, virtual conversations. Additionally, web pages may be
aggregated together and supplemented with pre-defined navigational constructs to form the
equivalent of an electronic Book. Another commonly recognized web-based content type, which
Drupal supports, is the web log or Blog. Figure 20 shows an example of one user’s blog on S3.

32

Figure 20: Sample S3 Blog

In addition to the pre-defined libraries of Node types in Drupal, there also exist first class
concepts for representing Users and also for Attachments and Comments, which may both be
associated with existing Nodes.

As mentioned previously, Drupal is especially geared toward the goals of configurability and
customization. It therefore has very powerful facilities for extending the behavior of the website.

First is the ability to easily define arbitrary, new content types. Along with the name of the
new content type, one specifies what attributes are to be associated with content of this type, in
addition to the default name and description fields, which all Drupal Nodes have. For example,
a new content type called Car might be defined, which has among other attributes a
Manufacturer, Model and Color attributes. Upon creating any new Nodes of the type Car, a web
form would automatically be provided for specifying the value of these three fields. Attributes
may be specified as required or optional, with single or multiple cardinalities.

33

The content-specific fields described above have data types. They may either be primitive
data types such as Strings or Integers, or one may define new data types that are bound to a
Drupal Taxonomy. A taxonomy is an organized set of concepts that classifies content –
taxonomies are first-class content elements in Drupal. In the Car example from above, we might
choose to allow the user to type in free form text for Color (e.g. “plum”), or we could enumerate
all of the acceptable values for Color using the Taxonomy constructs of Drupal. In the later case,
the valid options might be {red, orange, yellow, green, blue, & purple}2. Additionally,
taxonomies may declare hierarchical relationships. A Ford Motor Co. vehicle taxonomy might
categorize the F-150 and the Ranger as Trucks, while the Mustang is a Sports Car. Taxonomies
are covered in detail in Section 4.2.3. At this point, the key idea is that by using Drupal’s
facilities to create custom content, the ability is provided to apply a type system to the types of
information that are typically represented in untyped web pages. This type system is the key to
programmatically manipulating knowledge.

Drupal provides a well-defined set of plug-in points to inject custom code dynamically.
These Drupal Hooks are effectively events at which one might wish to strategically modify the
behavior of the running system. For example, Drupal provides a hook named hook_delete that is
related to the user-initiated act of deleting a Node. By following a simple naming convention for
custom code, the events are specified that the code will then execute. Registering a method3 with
Drupal whose name ends with the string "_delete”, for example, would result in Drupal calling
this method (with a pre-determined set of input parameters) each time any user attempted to
delete any existing Drupal Node. Our code could then override or supplement the default
behavior for deleting Nodes (e.g. to make a backup copy, to email an administrator, or to apply
heightened security for certain types of Nodes).

The look and feel of a Drupal site can be easily customized with its theming facilities. It is
even possible to make the look and feel of a Drupal site vary between individual users. The
screenshots of

Figure 21 and Figure 22 show two of the themes used during the prototyping Phase of S3.

2 Note that taxonomies may be run-time extensible, as opposed to being required to be fully enumerated ahead of
time.
3 In Drupal, custom code is implemented using the PHP programming language.

34

Figure 21: S3 Theme

35

 Figure 22: Alternative Drupal Theme

In addition to the primary content area, Drupal themes typically divide the page up into
sidebars, footers and headers. Blocks are Drupal’s mechanism for injecting custom code into
these sidebars. In the Figure 22, there is a custom block named ‘Triples’ along the left sidebar,
which tells us that the electronic book named Dive Into Python documents the Python
programming language. This Triples block is an example of custom code developed during the
S3 prototyping phase.

Finally, Modules are Drupal’s terminology for a collection of related files containing some
PHP code. Like Blocks and Themes, Modules relying on the Hooks architecture to inject their
behavior into a running Drupal system. Unlike Blocks and Themes, Modules aren’t constrained
in their focus (i.e. sidebar navigations or presentation layer layout). Drupal is a set of Modules.
The core modules are provided with the initial download. Any additionally customized
programmed behavior will be packaged up into site-specific Modules and installed on the
running Drupal instance.

36

4.2.2.2. The Stockroom Application

The Stockroom application is a collection of Drupal modules that are configured according to
the goals of the project, plus a set of additional tools that together implement various
functionalities. Below are described the application in the form of these functionalities,
indicating the (1) Drupal modules used and configured, and (2) the custom code built to provide
the functionalities.

As shown on Figure 18 the Stockroom is a highly customized content management system
that carries the primary content in the form of Stockroom artifacts, the taxonomy and the
ontology. External tools that provide services for ontology management and semantic search are
connected to the Stockroom via an OWL/RDF bridge that allows bringing the power of state-of-
the-art semantic web tools into the system.

4.2.2.2.1. User Management

The goal of user management is to control what a specific kind of user is allowed to do with
the Stockroom. The prototype implementation accomplishes this through the use of access
control lists (ACL’s) that support role-based access control. Users must register with the
Stockroom to gain access and when registered they are assigned one or more roles. Access and
modification to every resource in the Stockroom is permitted or denied based on the role of the
user.

4.2.2.2.1.1. Roles

The overall design of the Stockroom assumes a set of roles listed below.

• Consumer: A user who reads, who searches for, and downloads content.

• Contributor: A user who creates and contributes content to the Stockroom.

• Manager: A user who can execute management decisions on the site (e.g. changes in
the taxonomy).

• Moderator: A user who can moderate (approve or disapprove) new content posted to
the Stockroom.

• Administrator: The person who has ultimate authority over the Stockroom and can
configure every detail on it (including its design and implementation).

In the prototype Stockroom we have implemented the above scheme partially to better reflect
the momentary needs of the development. The following roles are implemented:

• Anonymous user: A user who has no access to the Stockroom, except the front page
that informs him/her about what the Stockroom is for and how to request access.

• Authenticated user: A user who has logged into to the Stockroom and has rights to
create and edit content.

37

• Admin-taxonomy: A user who can administer changes to the taxonomy contained in
the Stockroom.

• S3-team: A user who can make design changes on the Stockroom (member of the
design team).

• Admin-webfm: A user who can administer changes to the virtual file system of the
Stockroom (see below).

• Admin: Same as the Administrator from the design above.

• Individual TWG Role: These users have rights to access specific parts of the virtual
file system containing files for specific working groups, detailed below.

The above implementation is considered temporary and will be refined in the next phase.

4.2.2.2.1.2. Working Groups

Early in the design of the Stockroom the requirement arose for supporting collaborative work
through a simple file exchange mechanism. Using the virtual file system module discussed
below, a file repository was created where files could be stored and manipulated using a web
browser. The repository is segmented into separate folder hierarchies that the members of the
corresponding user groups, called ‘Working Groups’, can access. Each Working Group has a
corresponding role, and when a user registers s/he will be given a role in one or more Working
Groups. Each Working Group addresses a particular need in development of cyber-physical
systems.

The following Technical Working Groups are currently configured:

• Education TWG

• Formal Methods TWG

• High-Confidence Design TWG

• MCAR TWG

• Transportation TWG.

Additional information about these TWGs may be found in Section 4.2.4.2. Additional
Working Groups were proposed and will be set up in the final Stockroom product.

CSWGs: These working groups are formed to develop and evolve standards in the
community. For example, a working group devoted to developing standards for UAV control
API-s would belong here.

The Ontology Evolution Steering Committee (OESC): This CSWG deals with designing and
evolving the taxonomy and ontology of the Stockroom. The taxonomy and the ontology used in
the Stockroom is not static, rather it should evolve as new content is added. The OESC is
responsible for managing and facilitating this evolution. See Section 4.2.3.3 on taxonomy and
ontology evolution for further details.

38

4.2.2.2.2. Custom Content for Stockroom

The purpose of the Stockroom is to provide content – software engineering artifacts for the
application domain of flight software for unmanned systems. As Drupal built-in content types are
very simple, we have defined dedicated, domain-specific new content types for the Stockroom.
As some content is inherently file-based, we have used and configured a virtual file system.

4.2.2.2.2.1. The Virtual Filesystem

In addition to the typical, web-based content types available in Drupal, the Stockroom
has been supplemented with the WebFM web file manager add-on module,

Figure 23. WebFM provides an Asynchronous JavaScript And XML- (AJAX-) enabled
virtual file system for storage of arbitrary artifacts organized within folder hierarchies.

Figure 23: Web File Manager

39

WebFM is implemented as a Drupal module, and therefore may be enabled/disabled and
configured by way of the usual administrative facilities of Drupal. Specific details of how
WebFM is configured to support role-based access are provided in the later section on technical
working groups (TWGs). For example,

Figure 24 shows that WebFM may be turned on or off using the standard Site building
section of Drupal’s administrative pages.

Figure 24: Enabling/Disabling Web File Manager on For an Individual WG

4.2.2.2.2.2. Stockroom Artifacts

As mentioned previously, all Nodes in the Drupal CMS have a name attribute and a
description field. These fields are equivalent to the commonly found <title> and <body>
sections of a standard HTML web page. Additionally, for the purposes of the Stockroom
application, we have designed and implemented customized data types for representing
Stockroom content. The principle customized content type is termed the Repository Artifact.
These Artifacts are distinguished from typical web pages by the addition of several unique facets
intended to store metadata about entities relevant to the UAV domain.

40

In addition to name and description, each Stockroom artifact page is annotated with a record
of the authorized user who created it, as well as the creation date. Furthermore, as Artifacts are
modified over time, the author and timestamp information for each editing operation are
recorded (as well as the specific differences between revisions).

For prototyping purposes, we modified the User data structures of Drupal to also track the
Organization that each user is associated with. Therefore, individual Artifacts may be associated
with not only people, but with companies also. This additional organizational information is
presented as a proof of concept; similar extensions could be implemented as needed in Phase 2.

Related to the notion of pedigrees are the related concepts of workflow management and
revision tracking. As indicated above in the section on Roles, there is a class of users in the
Stockroom who have been designated as moderators. Moderators are responsible for helping to
maintain the high degree of fidelity and relevance of the information contained in the Stockroom
knowledge base. As new information comes into the stockroom, it is flagged as a candidate for
moderation. As moderators review the content of new Stockroom information, they may reject
the material in question as unsuitable, recommend it for approval with minor modifications, or
simply approve it. In the event of rejection, the moderator may use the revision tracking system
of Stockroom to roll back to a previous version of the artifact (i.e. effectively deleting the latest
edits). This moderation process itself contributes to the pedigree of individual Artifacts. Those
Artifacts that have successfully passed the moderation process are obviously more trusted than
those that have not4.

Every Stockroom artifact is explicitly associated with its designated security classification
(e.g. Unclassified). Similarly, there are markings available for ITAR restrictions, as well as for
documenting EAR classification. These attributes are required to be specified before any new
artifact will be considered for inclusion into the Stockroom.

Additionally, there is an optional area for specifying the licensing terms for the subject of
some Stockroom metadata. This licensing attributed is tied to a complex Drupal taxonomy,
which documents all of the known licensing agreements recognized by Stockroom (see the
taxonomy sections below for more details). While quite complete, this taxonomy is of course
extensible.

For Stockroom, Drupal Artifacts have been extended so that they may have parents and/or
children. While optional, this notion is often useful for describing certain containment
relationships. In the screenshot of Figure 25 below, we see that OCP comprises several smaller,
individual artifacts.

4 Note that it is possible for Artifacts that have not yet met moderator approval to be hidden in an unpublished state,
thereby being visible to only the original author and to the moderators group. This feature is presently disabled.

41

Figure 25: Displaying the Children of an Artifact

Each Stockroom artifact has an optional URL field that may be used to reference an external
source for the target payload. As Stockroom is intended primarily to house metadata, we do not
necessarily require that the object which is the subject of this metadata, be housed within the
Stockroom itself5. The URL attribute, for example, could point to some third-party vendor’s
designated web page for purchasing license or evaluation copies of some software component.
Note that if the URL attribute is used, the string provided is validated to ensure that is conforms
to the standard uniform resource locator syntax.

In the event that it is appropriate to store the actual payload in Stockroom, we also provide
for this by way of zero or more File Attachments. When adding or editing an artifact, a section
of the associated HTML form is dedicated for managing these attachments (including the ability
to browse your local file system in a pop-up dialog when specifying a new Attachment).

5 That is, we distinguish between artifacts, the metadata and the payload.

42

Every artifact in Stockroom is associated with a type, and this type field is bound to a
taxonomy that describes the family of artifact types supported in Stockroom. Later sections
discuss the details of taxonomies and how they are used. For now, just consider that Artifacts
are further specialized into categories such as Documents, Events and Software, and that
Documents, for example, are further specialized into sub-categories such as Books, Scholarly
Journal Articles, and Users’ Manuals (which are then further refined). This provides a rich type
system for artifacts.

Interacting with the type system described in the previous section is the Triples sub-system.
Whereas until now we have been discussing statically defined attributes, the Triples facility
effectively allows the incorporation of dynamic typing into Stockroom.

A Triple is defined as a 3-tuple ‘(subject, verb, object)’, where the first and last slots are
filled by references to Stockroom elements. The second slot is tied to another Stockroom
taxonomy called the Predicates taxonomy. Using the triples notation we could say, for example,
say that some electronic book ‘documents’ some programming language. In fact, in the
prototype instance of Stockroom, the OCP Documentation is declared to describe the OCP
framework using an (‘OCP Documentation’, documents, OCP) triples. See the triples Block6
in the footer of the content pane in the following screenshot.

6 Remember that Blocks are Drupal’s term for custom engineered code packages, which display themselves
graphically within the border areas of web pages. In this case, the Block named “Triples:” is displayed in the footer
area.

43

Figure 26: Triples Associated with an Artifact

While in this example, that fact is implicit in the title of the ‘Open Control Platform (OCP)
Documentation’ artifact. By formalizing this knowledge into a Triple, we enable Stockroom
itself to become self-aware. We may then, for example, use symbolic reasoning techniques to
discover all documentation relevant to a particular technology. In the following screenshot
(Figure 27) we see that both SPP and Gedae are development environments intended to support
the IBM Cell processor.

44

Figure 27: Search Results for Guided Search Involving Properties

Furthermore, we may define expectations about what triples artifacts are expected to have
based upon the Stockroom’s type system. In the previous two examples, programming tutorials
typically have subjects that are programming languages, and integrated development
environments run-on certain types of development workstations while generating-code-for
possibly a different set of hardware architecture(s).

Support for triples is implemented with a combination of custom content types, taxonomies
and ontologies, PHP scripts, Drupal blocks, and Drupal modules.

45

Finally, each artifact is associated with zero or more keywords. As with the type field and the
triple predicates/verbs, these keywords are associated with a formal Drupal taxonomy. In this
case, the user is not required to be a member of the ‘admin-taxonomy’ role to extend the
keywords taxonomy. Keywords may be added on the fly, as needed simply by specifying a
comma-delimited list of tokens in the keywords section of the artifact editing form. If a keyword
existed previously, the index tables will simply be updated to record that another artifact
references this keyword7. Otherwise, this new keyword will be automatically appended to the
taxonomy.

We see keywords as an important component in the development of more formal ontologies.
Throughout the prototyping phase of S3, it was common to discover a keyword that was used
repeatedly, or even more likely to recognize a small group of keyword terms that appeared to
represent the same concept. By analyzing the keywords taxonomy for the meaning of these
terms, we frequently identified new concepts that were ultimately migrated from the keywords
facility into other, more formal ontologies such as the type system.

4.2.2.2.2.3. Scripts

While the default encoding of a Drupal Node’s description section is expected to be HTML,
members of the administrative group in Stockroom may define Drupal Nodes that are actually
inline PHP code. Figure 28 shows how the report that enumerates triple relations is implemented
as PHP code, which traverses the underlying RDBMS tables and filters out rows that fail to meet
a certain criteria, finally generating valid HTML on the fly, which displays the results. The links
associated with ‘Artifacts’ and ‘Triples’ in the upper-right hand navigation menu work similarly
at their core by searching through the database tables for the custom content types of Artifacts
and Report.

7 Keywords are searchable.

46

Figure 28: The Triples Report PHP Source

47

4.2.2.2.3. Policies and Procedures

Any Stockroom artifact may be protected by a user-defined password. Figure 29 shows the
password section of the artifact editing form.

Figure 29: Creating a Password for an Artifact

Additionally content types and individual features may be protected using the notion of roles.
In this way, a Stockroom administrator may grant/deny access to all members/non-members of
certain groups of users. For example, the following two screenshots show how the WebFM
virtual file system is configured to support various working groups. In Figure 30, we see that all
TWGs have been defined to have access to the WebFM feature. In Figure 31, we can see the
definition of the name of the top-level folder that is allocated for the formal methods TWG.

48

Figure 30: Role Based Access for Working Group Files

49

Figure 31: Configuring the Web File Manager for the Formal Methods TWG

When accessing WebFM as a user, one’s group membership(s) directly determines the
contents visible within WebFM (Figure 32). If I am not a member of the formal methods TWG,
the ‘fm’ directory structure will be unknown to my user account. All WebFM content is visible
to the administrator (Figure 33).

50

Figure 32: WebFM Portal for Formal Methods TWG Member

Figure 33: WebFM Portal for Administrative Account

51

4.2.2.2.3.1. The Workflow Engine

For prototyping purposes, we defined a simple, but extensible workflow (

Figure 34) to be associated with Stockroom artifact contents.

Figure 34: S3 Workflow Engine

In this case, all incoming new Artifacts are initially classified as Unreviewed.
Additionally, members of the moderators group may transition Artifacts from Unreviewed to the
Reviewed state. Toward this end, that class of users has a “Workflow summary” navigational
link within their left sidebar menus.

Figure 35 and
Figure 36 show the workflow in action.

52

Figure 35: Workflow Summary

53

Figure 36: Workflow for an Artifact

4.2.2.2.4. Search

The purpose of the Stockroom is to provide content, and the Stockroom provides three types
of search to allow users to identify desired content. Natural language search performs a simple
string matching search of the contents of the Stockroom. Metadata search adds additional
structure, and provides for search for Stockroom artifacts that are associated with terms from
various metadata vocabularies. Finally, ontological search identifies artifacts based on the
execution of sophisticated logical queries against a semantic model of the domain.

54

4.2.2.2.4.1. Natural Language Search

The right-hand sidebars in Stockroom have been configured to display various search
widgets. The most basic of these is the natural language search. This search is provided out of
the box with Drupal, and has not been extended or improved in any significant manner. It is
basically a syntactic token matching algorithm that looks for instances of patterns of characters
that are found within any section of the Stockroom website. It may be possible to improve upon
the quality of the natural language search results by modifying the default implementation of this
search engine. However that was out of scope for the prototyping phase of the S3 project8.

4.2.2.2.4.2. Metadata Search

Stockroom extends the basic syntactic search provided by Drupal with a faceted search
which has knowledge of the various Stockroom taxonomies. Using this faceted search, we may
iteratively refine a search by providing progressively more specific constraints on the desired
result set. Consider this example, where we begin the process from the list of all known
Stockroom artifacts (Figure 37).

8 Or by purchasing some 3rd party solution and integrating it into Stockroom using Drupal’s module architecture.

55

Figure 37: Complete List of Stockroom Artifacts

Next, using the Guided search feature in the right-hand sidebar, we specify that we are only
interested in software development tools that are classified as Integrated Development
Environments (i.e. using the Artifact Type facet). In this case, there are now six matches to our
query (Figure 38).

56

Figure 38: Guided Search Results

If we then refine the search to be restricted to the subset of those Artifacts that were uploaded
by someone from Raytheon that also support the IBM Cell Processor, the result set is reduced to
three (Figure 39).

57

Figure 39: Results of Incremental Search

Finally, if we then back off on the restriction that the items’ pedigrees must be associated
with Raytheon, then the Stockroom’s metadata search engine returns an additional artifact
(Figure 40).

58

Figure 40: Final Search Results after Unrolling

4.2.2.2.4.3. Ontological Search

The metadata search scenario above is much more powerful than the natural language search
described previously in the initial section on search. For example, these metadata searches,
which are driven by the underlying taxonomies, can recognize that IDEs are just one of many
forms of software development tools (other examples being static analysis tools and
programming languages). Also, the natural language search will easily miss items where a user
chooses to describe something as an “Integrated Development Environment” rather than the
synonymous “IDE” terminology.

Along these same lines, the S3 technology’s ontological search further extends the
abstraction level, and thus the power, of Stockroom’s search capabilities. The following section
discusses the ontological search architecture in detail.

59

At its core, the Drupal content management system stores all data in a relational database
management system according to a proprietary database schema. While convenient for
prototyping, the drawback of this approach is that the data is not immediately portable to tools
that do not support Drupal. To address this issue, these proprietary RDBMS tables, whose layout
is determined by the Drupal schemas, were converted to a more standard data-encoding format.
As the data housed in S3 is essentially a knowledge base, the formal mathematical logic
language chosen was OWL (Web Ontology Language). A background Stockroom daemon
executes each minute, and this component performs a simple syntactic translation to convert
from RDBMS tables and rows into the OWL format. The following screenshot shows a simple
example, where in the OWL language SPP is declared (among other things) to be a model-based
development environment that supports the IBM Cell processor (Figure 41).

Figure 41: Generating 3.owl

 By exporting the Stockroom contents to the OWL syntax, access is gained to a plethora of
off-the-shelf tools targeted at this market. While not many 3rd party tools can manipulate the
proprietary RDBMS tables of Drupal, there are many different tools that support the OWL
language. During various stages of the prototyping phase, for example, we have taken advantage
of tools such as CMap (Concept Maps) and Freemind’s OWL integration to visualize the
contents of the Stockroom database graphically.

Another 3rd party tool we used extensively in conjunction with the S3 project is the Protégé
knowledge base editor by Stanford. To make full use of Stockroom, we highly suggest you
download and install Protégé on your client machine9.

9 http://protege.stanford.edu/

http://protege.stanford.edu/

60

A primary use of Protégé in the Stockroom prototype is to actually implement the
Ontological Search feature. As a substrate for our ontological query language, we have chosen a
description logic that is defined by the OWL semantic web standard. As Protégé has support for
one particular description logic reasoner (viz. FaCT++) with minimal configuration, we again
recommend Protégé as the easiest way for a novice user to get started entering and executing
description logic queries10. The screenshot of Figure 42 shows the results of a Stockroom query
for Compilers that support the IBM Cell processor.

Figure 42: Protégé Query

10 During the development of the S3 prototype, we also evaluated and had great success with alternatives to the
FaCT++ reasoner such as Pellet and Racer.

61

The semantic web, being based upon open-world reasoning principles, facilitates the
aggregation or merging of information from different Stockroom knowledge bases. Due to this
open-world property, the various knowledge bases do not have to be complete nor do they need
be very tightly coordinated (though this doesn’t preclude the possibility). S3 therefore is
somewhat forgiving about different Stockrooms’ slightly varying views or models of the world.
So long as no facts declared at one site are in outright conflict with any facts stated in a second
site, the Stockroom reasoners are quite satisfied. In the event that a conflict does exist, this
anomaly is easily detected programmatically by the ontological reasoners, and Stockroom
administrators are notified of the conflict.

 With this in mind, we can see that multiple stockrooms may be easily federated simply by
combining their logic-based representations into a single, aggregate store. Furthermore, by
declaring and following some simple rules about which sites may or may not access other sites,
we can easily enforce some information hiding principles to create stratums of federations.
Using this strategy, the Drupal-To-Owl component combines and merges OWL declarations
from different sites to create aggregate knowledge bases.

4.2.2.3. Metrics Reporting

The Stockroom leverages AWStats, which is an open source tool for analyzing web server
logs. We provide reports that include a number of useful metrics. We track metrics such as the
number of visits, number of unique visitors, and web page hits over time. The generated reports
display graphs of these metrics on an hourly, daily (Figure 43), and monthly (Figure 44) basis,
making it easy to see how the website grows over time.

62

Figure 43: Daily Statistics

63

Figure 44: Monthly Statistics

The following report (Figure 45) shows that nearly all visits came during the workweek, and
that these visits happened mostly during normal business hours.

64

Figure 45: Comparing Traffic by Day of Week and Time of Day

From the next screenshots (Figure 46), one can glean that the primary customers of the
facility are from Vanderbilt, Boeing and Raytheon.

65

Figure 46: Traffic Source Statistics

The policy that non-authenticated users are not allowed to access Stockroom data is correctly
being enforced (Figure 47, Figure 48).

Figure 47: Spider Visits

Figure 48: HTTP Status Codes

66

The reports also showed which pages were the most visited (Figure 49), which is useful for
determining how the website is used and which features are most popular. AWStats also
computes the lengths of every visit for a given month (Figure 50). For example, 10% of visits for
July lasted between 5 minutes and 15 minutes. As the website's content grows, the average visit’s
duration may become longer.

Figure 49: Frequently Viewed Pages

Figure 50: Dwell Time

4.2.3. Domain Taxonomy and Ontology

To enable the metadata and ontology search capabilities provided by the stockroom,
metadata describing the contents of the stockroom in domain specific terms of reference must be
associated with the stockroom artifacts. The stockroom uses taxonomies to capture some of this
metadata. More general metadata is captured in an ontology. Since both the domain and the
stockroom are constantly evolving, the approach to both the taxonomies and the ontology has
been chosen with an eye to supporting their evolution.

67

4.2.3.1. Taxonomies

The stockroom taxonomies represent a constrained subset of an artifacts metadata, and
generally represent attributes that apply to all or almost all of the artifacts. Taxonomies are
generally represented natively in Drupal, with additional supplemental tools developed to
provide additional support for taxonomy evolution. Figure 51 shows the taxonomies
implemented in the prototype stockroom. Six of the taxonomies apply to stockroom artifacts:
Artifact Type, Keywords, Licensing, ITAR-Restricted, EAR-Restricted and Security
Classification. Each artifact has associated with it a single value from each of the Licensing,
ITAR-Restricted, EAR-Restricted and Security Classification taxonomies. Each artifact can have
one or more associated values from the Artifact Type and Keywords taxonomies.

Figure 51: Stockroom Taxonomies

The ITAR-Restricted and EAR-Restricted taxonomies represent the possible states of an
artifact with respect to the ITAR and EAR export control regimes, and for the purposes of the
prototype stockroom, the two values correspond to restricted and non-restricted artifacts.
Similarly, the Security Classification taxonomy characterizes artifacts as unclassified,
confidential, secret or top secret.

The Licensing taxonomy, though still associating only a single taxonomy value to an artifact,
has additional structure. There are open source and non-open source licenses. Many open source
licenses have gone through multiple versions. These relationships can be shown in a taxonomy
by means of the taxonomy hierarchy. These relationships can be the subject of queries. For
example, a search for a tool subject to an open source license would be satisfied by any artifact
with any of the specific licenses that are represented by license taxonomy terms that are
descendants of the open source taxonomy term. Figure 52 shows a subset of the licensing
taxonomy displayed using the tool Protégé, one of the tools used in developing the stockroom
taxonomies and ontology. The Licensing Taxonomy is one of the taxonomies that will clearly
evolve with the stockroom. As artifacts are added to the taxonomy, their licenses may need to be
added to the taxonomy, and new licenses are continually being created.

68

Figure 52: Subset of the Licensing Taxonomy in Protégé

The Artifact Type taxonomy provides basic classification information (a taxonomy) for
stockroom artifacts. Essentially the Artifact Type is used to capture the “IsA” property of
stockroom artifacts. Since artifacts can be of multiple types, more than one term from the
Artifact Taxonomy may be associated with each artifact. As with the Licensing taxonomy, the
Artifact Type taxonomy also has a hierarchical structure. Figure 53 shows an extract from the
Artifact Type taxonomy as displayed in Drupal.

69

Figure 53: Artifact Type Taxonomy Abstract in Drupal

The final artifact taxonomy in the prototype stockroom is the keywords taxonomy. The
keywords taxonomy is, as the name implies, a way to associate one or more keywords with a
stockroom artifact. The keyword taxonomy is used to define those attributes of an artifact that
are not covered by the other taxonomies. Unlike the other taxonomies, any user can propose a
new keyword simply by supplying it as a value of the keyword attribute when creating or editing
the metadata of an artifact. This ability of any user to propose a keyword is a manifestation of the
dynamic nature of the stockroom domain. This ensures that the structure of the stockroom does
not inhibit capture of domain knowledge.

70

4.2.3.2. Ontology

The stockroom taxonomies support more precise retrieval of stockroom artifacts by
associating identified terms with artifacts in such a way that artifacts explicitly associated with
those terms can be found. This is an improvement over natural language search in that an artifact
only matches the term if the term, in its specialized taxonomic use, has been declared to apply to
the artifact. Though more precise than natural language search, such a search is still limited in
power and scope. To fully realize the potential of the stockroom, more powerful techniques are
required, including the ability to construct queries that reason over the available information to
enable still more precise identification of stockroom artifacts. The stockroom uses an ontology,
and an ontological search, to achieve this higher level of precision. Figure 54 is representative of
the type of query the stockroom should ultimately be able to support, and the ontological
information that would enable such a query. The prototype stockroom, and its ontology, was
developed to support such queries.

Figure 54: Representative Ontological Query

The stockroom ontology is represented using a combination of RDF style triples and an
OWL ontology. The primary ontological metadata, in the form of triples, captures relationships
between an artifact and either another artifact (relations) or a taxonomy term (properties).
Individual facts (instances of properties or relations) are stored and manipulated as triples in the
stockroom.

71

Figure 55 is a subset of the set of all triples stored in the stockroom as displayed when
selecting the Triples shortcut menu option. The triples are displayed in prefix relation notation,
where Foo(bar, baz) means that artifact bar stands in relation foo to baz, where baz is either a
taxonomy term or another artifact. As an example from

Figure 55, detects(CodeHawk, PointerBufferOverflow) states that the artifact CodeHawk
detects PointerBufferOverflow, where CodeHawk is a formal methods based static analysis tool
represented in the stockroom as an artifact, PointerBufferOverflow is a concept in the domain,
also represented as a stockroom artifact, and detects is a relation in the stockroom ontology. This
triple then captures the domain knowledge that one of the kinds of errors that CodeHawk can
detect is a buffer overflow resulting from dereferencing a pointer.

The approach to formulating and executing queries on stockroom ontology data makes use of
an ontology captured in OWL. The OWL ontology is assembled from two sources, the metadata
facts about artifacts in the stockroom, represented by the taxonomic terms and triples associated
with stockroom artifacts, and an OWL ontology that captures the semantics of the triple
predicates. This file is combined with the facts to yield the complete ontology, which is stored in
the file s3.owl. The complete ontology is then the subject of ontological queries.

The stockroom prototype supports ontological queries expressed in description logic through
the use of the tool Protégé. Description logic is a logic used for describing domain concepts that
is more powerful than propositional logic but not as expressive as predicate calculus, and is
widely used in the ontology community because it has efficient decision procedures. The version
of Protégé used with the stockroom prototype includes a description logic reasoner that can
evaluate description logic queries. Referring back to the representative ontological query
example in Figure 54, a similar description logic query of the stockroom can be expressed as
Static_Analysis_Tool and analyzes value C and detects value PointerBufferOverflow. The
stockroom ontology s3.owl provides sufficient information for the reasoner to produce as result
of this query the CodeHawk stockroom artifact.

72

Figure 55: Subset of Stockroom Triples

73

Figure 56 displays the representation in stockroom.owl of the predicate requires. The OWL
fragment shows that requires is a transitive property between artifacts, and is a refinement of the
relation depends.

<!-- http://www.semanticweb.org/ontologies/2009/5/Ontology1245875834530.owl#requires -->

<owl:ObjectProperty rdf:about="#requires">
<rdf:type rdf:resource="&owl;TransitiveProperty"/>
<rdfs:domain rdf:resource="#Artifact_Type"/>
<rdfs:range rdf:resource="#Artifact_Type"/>
<rdfs:subPropertyOf rdf:resource="#depends"/>

</owl:ObjectProperty>

Figure 56: Requires Predicate in Stockroom.owl

Figure 57 shows the entry in the s3.owl ontology for a representative artifact, OCP Build
Files. Note s3.owl includes information about all of the artifacts associated taxonomic terms, as
well as triples involving property version and relations supports and requires.

<!-- http://www.semanticweb.org/ontologies/2009/5/Ontology1245875834530.owl#OCP_Build_Files -->

<Ontology1245875834530:non-EAR rdf:about="&Ontology1245875834530;OCP_Build_Files">
<rdf:type rdf:resource="&Ontology1245875834530;Build_File"/>
<rdf:type rdf:resource="&Ontology1245875834530;License_Not_Specified"/>
<rdf:type rdf:resource="&Ontology1245875834530;Unclassified"/>
<rdf:type rdf:resource="&Ontology1245875834530;non-ITAR"/>
<Ontology1245875834530:version rdf:datatype="&xsd;float">3.0</Ontology1245875834530:version>
<Ontology1245875834530:supports rdf:resource="&Ontology1245875834530;Cplusplus"/>
<Ontology1245875834530:requires rdf:resource="&Ontology1245875834530;GNU_Make_379"/>
<Ontology1245875834530:requires rdf:resource="&Ontology1245875834530;GNU_Make_38"/>

</Ontology1245875834530:non-EAR>

Figure 57: OCP Build Files Artifact in S3.owl

The current stockroom ontology (as well as the taxonomies), as reflected in s3.owl, is the
product of a number of factors. We examined a number of existing taxonomies and ontologies
relevant to the domain, including the Association of Computing Machinery (ACM) and Institute
of Electrical and Electronics Engineers (IEEE) computer science taxonomies, the Software
Development Tools And Technology Software Development Tools And Technology Information
Clearinghouse (SDTATIC) software tool taxonomy, DoD UAV taxonomies, as well as other
relevant taxonomies and ontologies. The relevant attributes and characteristics required to
describe and distinguish the set of stockroom prototype artifacts was a key driver for the final
taxonomy. Stockroom operational requirements factored in other aspects of the taxonomies, in
particular the licensing and export status related taxonomies. The need to support the evolution
and development of stockroom capabilities was another driver in the development of the final
prototype ontology.

http://www.semanticweb.org/ontologies/2009/5/Ontology1245875834530.owl#requires
http://www.semanticweb.org/ontologies/2009/5/Ontology1245875834530.owl#OCP_Build_Files

74

4.2.3.3. Evolution

One of the principles of the design and architecture of the stockroom was that the ontology
and taxonomies would not be static. All would evolve over the course of the lifetime of the
stockroom. This was borne out even over the limited experience gained during the S3 Phase 1
prototyping effort. As indicated, there are a number of reasons that the stockroom ontology and
taxonomies will change over the lifetime of the stockroom. First, the underlying domain of
software for unmanned aerial systems is not static. Second, the contents of the stockroom is not
static, and as more artifacts are added, in order for the taxonomies and ontology to distinguish
artifacts that are similar, the taxonomies and ontology may need to be refined to capture ever
finer distinctions. Finally, as the stockroom community grows and evolves, the taxonomies and
ontology that the community uses will also grow and evolve. Accordingly, it is critical that the
stockroom taxonomies and ontology are designed to grow and evolve.

The stockroom uses a two pronged approach to taxonomy evolution. Actual migration of the
ontology and (most) of the taxonomies is performed by the stockroom administrators at the
direction of a steering committee. In Phase 1, the entire Boeing stockroom team formed the
steering committee. In Phase 2, the steering committee would be formed as a CSWG with
limited membership. This ensures that the ontology and taxonomies remain coherent and evolve
in a controlled and disciplined manner. However, the steering committee does not (and will not)
have a monopoly on the domain knowledge that should drive ontology evolution. Community
members can suggest changes to the taxonomies and ontology to the committee. The keywords
taxonomy is a key part of the evolution strategy for the stockroom, allows and encourages input
from the entire stockroom community, and is the bridge between the taxonomies and the
ontology.

As discussed in Section 4.2.3.1, any user can add a new keyword by applying it to a
stockroom artifact. This allows any member of the stockroom community to easily evolve the
stockroom metadata. Because of the limited semantics associated with keywords, this has only a
limited impact. As part of the activities of the steering committee, the current keywords
taxonomy will periodically be reviewed to determine if any keywords should be “promoted” to
the more structured segments of the stockroom metadata, principally the artifact type taxonomy
and the ontology. In this way, ongoing stockroom experience can be input to the ontology and
taxonomy evolution process, which is an emerging best practice in this field.

One of the requirements on the evolution process is that existing metadata (facts in the
stockroom) must be preserved. Accordingly, one of the responsibilities of the steering committee
is to define mappings from the current ontology to the new ontology in such a way that existing
metadata can be readily mapped, ideally without requiring intervention by the original provider
of that metadata. This ideal will not always be completely achievable. If the ontology is extended
to include a completely fresh concept, then there may be no (readily) available information that
would support classification of existing artifacts, in which case the owner of the artifact may be
notified of an opportunity to supply additional metadata related to the fresh concept. Likewise, if
an existing concept is partitioned, it may not be clear to which partition an existing artifact
belongs. Tool support is required to enable the manageable migration of metadata as the
ontology and taxonomies evolve.

75

4.2.3.4. Tools

Tool support in Phase 1 and the prototype falls into three main categories: tools for
developing taxonomies and ontologies, tools for capturing and exploiting taxonomies and
ontologies in the stockroom, and tools to support evolution of the stockroom taxonomies and
ontology. The first category includes two freeware tools, CmapTools [10] and Protégé. The
second category includes Drupal itself as well as Protégé. The third category was filled in the
prototype by proof of concept tools developed during Phase 1.

CmapTools is a free tool from the Institute for Human and Machine Cognition (IHMC) for
graphically modeling concept maps. Concept maps are graphs for representing concepts and the
relationships between them, which is a natural way to view both taxonomies and ontologies.
Figure 58 shows an early version of the Artifact Type taxonomy in CmapTools. We represented
taxonomy terms as concepts (ovals). All relationships (edges) labeled ???? represent the
hierarchy of the taxonomy. Other relationships (edges with other labels) were aids to the design
of the taxonomy and were not necessarily reflected in the final taxonomy. For example, the has
relationship between Tools and Host Platform evolved into the supports predicate in the
ontology. We also used CmapTools to explore the broader stockroom ontology.

Figure 59 shows an early version of the stockroom domain ontology created in CmapTools.
Ultimately, this information was reflected in the artifact type taxonomy, the stockroom
predicates, and in the triples associated with the artifacts created in the stockroom. For example,
the CriticalityDefinition subgraph in the lower right center of

Figure 59 eventually was realized in the various stockroom artifacts of type Quality Attribute
reflecting different criticality levels.

76

Figure 58: Early Cmap of Artifact Type Taxonomy in CmapTools

Figure 59: Early CmapTools Version of Stockroom Domain Ontology

77

Protégé, or more specifically Protégé-OWL 4, the specific version used, is a free open source
ontology editor and knowledge-base framework developed by collaboration between Stanford
University and the University of Manchester. Protégé was used both for developing the ontology,
and for exploiting the ontology. The primary role of Protégé in developing the ontology was in
the development of the stockroom.owl ontology that primarily servers to capture the semantics of
the various stockroom predicates, as seen in Figure 56. Figure 60 shows the same information
about the requires predicate in Protégé.

Figure 60: Stockroom.owl Ontology in Protégé

78

The taxonomies were represented in Drupal using Drupal’s native taxonomy mechanisms.
These are shown in Figure 51 and Figure 53. The ontology is represented as both artifacts, which
are web pages and managed by Drupal as web content, and triples, which are stored in the
Drupal Content Management System database. As indicated in Section 4.2.3.2, Protégé is used to
perform ontological queries in the Phase 1 stockroom prototype. This involves the use of both
Protégé and custom generated scripts. Protégé is used to actually execute the query. Figure 61
shows Protégé performing the query of Section 4.2.3.2. The scripts are used to combine the
stockroom.owl ontology with the facts stored in the stockroom to produce the complete s3.owl
ontology.

Figure 61: Description Logic Query Executed in Protégé

The final set of tools, those supporting evolution, are represented in the Phase 1 prototype by
a collection of proof of concept tools developed during the program to explore the type of tool
support, and approaches to providing that support, required by the evolution of the ontology and
taxonomies. One such tool is a web based taxonomy manager created to support modifications to
the taxonomies. The current tool allows taxonomy terms to be added and deleted, terms to be
moved, and terms to be merged. Changes propagate to the artifacts associated with the terms.
Figure 62 is a screenshot of the current version of the Taxonomy Manager being used to modify
the Keywords taxonomy.

79

Figure 62: Taxonomy Manager Taxonomy Evolution Tool

4.2.4. Stockroom Contents

The stockroom contains two primary types of user visible content: artifacts and collaboration
content. Although the ontology and taxonomies represent reusable domain knowledge and could
be considered content, they have been addressed in Section 4.2.3 and will not be further
addressed here. One of the primary distinctions between artifact content and collaboration
content is that only artifact content is searched by metadata and ontology search. All content is
searched by natural language search.

80

4.2.4.1. Artifact Content

Artifacts are the primary form of stockroom content and are the vehicle for the capture and
re-use of domain knowledge. Artifacts can correspond to either pieces of software, documents, or
other concrete entities that a stockroom user can download and use, or can be other forms of
domain knowledge that are generally used to describe or provide context for other artifacts.
Examples of artifacts corresponding to concrete entities include the Open Control Platform
(OCP) and the Autonomous Flight Systems Stockroom User Guide. Examples of less concrete
artifacts include abstract concepts such as UAV, Fault, and Criticality Level, or concrete entities
that are not themselves available through the stockroom, such as C++ (though a particular
standard document or compiler might be available through the stockroom), the Global
Information Grid, and the RMax unmanned rotorcraft. The stockroom prototype contains
approximately 125 artifacts.

Three of the major artifacts in S3 represent reusable software platforms that would be useful
in the autonomous flight systems embedded software domain – the Signal Processing Platform
(SPP), the OCP, and the System-of-Systems Common Operating Environment (SOSCOE). For
each of these platforms, the data available through S3 includes:

• framework software

• software developer tools

• developer documentation

• example programs to help the software developer learn how to use the platform

The remainder of this section provides additional information about these platforms and other
concrete artifacts.

4.2.4.1.1. SPP

The SPP is a tool-chain, schematically represented in Figure 63, which evolved and is
maintained by Vanderbilt University through a series of Raytheon funded university research
grants. It leverages work previously developed within the Defense Advanced Research Project
Agency (DARPA) Adaptive Computing Systems (ACS) and Model-Based Integration of
Embedded Software (MoBIES) programs. SPP implements a model-based design process to
design signal processing applications running on heterogeneous, embedded platforms, composed
of high-performance Field Programmable Gate Arrays (FPGAs) with embedded processor cores,
Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), and Reduced
Instruction Set Computer (RISC) processors.

81

Target
HW

Target
HW

S
2C

Analysis ToolsAnalysis Tools

D
2S

SPML/GME
System Design

Space

CO-Active
Execution
Platform

MATLAB
Functional
Validation

DESERT
Design space
exploration

S2D

SPML/GME
Point-Design
Configuration

S2A

AIRES
Schedulability

VHDL CONF Comm
InterfLibraries

Signal Flow
Modeling

Signal Flow
Modeling

Simulink/
Stateflow

Ptolemy

Optimization
Tools

C/C++ CompilersFPGA Synthesis

SW interface
components to HW
Insertion of splitters,
forwarders, type
conversion

VHDL for hw
components
HW interface
components to SW

- Real-time Schedules
- SW communication maps
- Config files for vendor tools:

*.dsw VC++ project files
*.wpj files for VxWorks/Tornado
.pao,.bdd component
declarations for Xilinx EDK tools

Figure 63: Signal Processing Platform (SPP) Tool-chain

82

The tool chain consists of:

• Component and System Modeling Tool that supports creation of models that
describe the embedded platform - FPGAs, DSPs, ASICs, and General Purpose
Processor s (GPPs), component allocations, etc. A key feature of the tool is the
ability to model design alternatives, capturing a design space in the form of
hierarchically arranged alternatives.

• Design Space Exploration Tool (DESERT) allows exploration and pruning of the
large design spaces that are captured, based on user-supplied performance and
resource constraints. This gives the ability to obtain a custom solution from a
generic and (potentially) large design space based on the specific requirements in
a largely automated manner. It also provides an automated way of partitioning
functionality across the hardware-software boundary.

• Design Simulation Tool (Simulink/Stateflow, Ptolemy) supports a functional
simulation of the signal processing application.

• Design Analysis Tools (MATLAB, AIRES) supports event and timing analysis
(including schedulability).

• CoActive Build and Execution platform supports the synthesis of hardware and
software, and the interface for communication across the hardware/software
boundary.

• A suite of modeling support and utility plug-ins that facilitate the construction,
manipulation, and management of large models.

83

Figure 64 lists platforms currently supported by SPP.

Currently supported
platforms:

• PC
• PowerPC

(Other general purpose
processors can usually
be supported with little
effort)

• TI TMS320C6711 DSP

• Field Programmable Gate
Arrays (FPGAs) Xilinx
(V2Pro, V4 w/embedded
PPC cores), Altera

• Cell Processor

• “Matlab”

Communication
Mechanisms:

• TCP/Ethernet
• TCP/Ethernet

• TI comm ports

• TI comm ports, OPB bus ifc,
custom defined

• Element Interconnect Bus
• TCP/Ethernet

• MEX ifc

Figure 64: SPP – Supported Platforms

As previously mentioned, the SPP is maintained by Vanderbilt University and is distributed
as open-source software via the ESCHER web portal. (Detailed, web-based SPP user
documentation is also maintained on the ESCHER site as well.) Due to this preexisting
distribution mechanism, it was decided to leverage the Contribute with data reach-back use case,
and model the Stockroom SPP artifact with a URL link to the remote data payload (on the
ESCHER web portal). Aside from this, the SPP artifact is identical to artifacts with local data
payloads. The SPP is modeled on Stockroom using two artifacts – a primary artifact containing
a URL to the SPP distribution web page (on ESCHER) and a child artifact for the SPP
documentation, with URL to the SPP documentation home page.

The SPP tool-chain facilitates the rapid prototyping of high performance embedded
computing problems, and in particular may address programming challenges related to the
emerging class of multi-core processing architectures. It should be noted that the SPP
distribution includes several (working) example models, including a correlation-based Automatic
Target Recognition (ATR) algorithm, and software radio examples.

84

4.2.4.1.2. OCP

The OCP was developed on the DARPA/AFRL Software Enabled Control (SEC) program as
a multi-platform software infrastructure for advanced control technologies for unmanned fixed
and rotary winged aircraft. Specifically, the OCP provided a platform that allowed controls
engineers to focus on control algorithms, while the OCP provided scheduling, data distribution
and the other software infrastructure services required on flight platforms. The OCP was based
on the Boeing Bold Stroke infrastructure that provided a similar platform for a number of Boeing
production platforms, including the F-15, F-18, and AV-8B, as well as the Boeing X-45A J-
UCAS. The OCP itself has flown on F-15, the Boeing T-33 J-UCAS surrogate, and
Boeing/Insitu ScanEagle fixed wing aircraft, and RMax and Maverick A-160 surrogate
rotorcraft.

The OCP includes the actual OCP framework software that would be deployed to an
embedded platform, tools to architect and generate a system that uses the OCP, tools for building
the OCP, and documentation. The OCP architecture includes a component based application
layer, a component infrastructure, a collection of services tailored to the avionics domain, and
COTS middleware and abstraction layers. Figure 65 shows the layers of the OCP infrastructure,
and Figure 66 shows the component structure of a sample OCP application.

Figure 65: OCP Infrastructure

85

GPS

IMU

Magnetometer

sonar

GPS

IMU

Magnetometer

sonar

receiver commands

Vehicle Health

RMAX Attitude sensors

receiver commands

Vehicle Health

RMAX Attitude sensors

Navigation Module
Component

Navigation Module
Component

Controller
Component
Controller

Component

Sensors Serial
Interface

Sensors Serial
Interface

Vehicle Serial
Interface

Vehicle Serial
Interface

RMAX Actuator demultiplexerRMAX Actuator demultiplexerRMAX Actuator demultiplexer

Actuator Serial
Interface

Actuator Serial
Interface

ControlData_out

ControlData_in

NavControl_out

NavControl_in

NavData_out

NavData_in

50 Hz

50 Hz 50 Hz

100 Hz

I/O
Component

DataLink Interface Ethernet “Serial” Port
Serial port

Ethernet “Serial” Port

Serial port1 Hz & 10 Hz
1 Hz & 10 Hz

Figure 66: Sample OCP Application

The OCP is represented in the stockroom by over twenty different artifacts of various types.
Infrastructure components include OCP Common Services, which includes the common service
abstractions, and OCP Platform Services, which includes the COTS middleware and abstraction
layers. The Controls API Tool is the OCP tool for generating the component skeletons and
configuration and build information for an application using the OCP. OCP Development
Environment Tools and OCP Ant are among the artifacts that form the OCP build environment,
and the OCP Documentation artifact contains the full set of OCP documentation, including
user’s guide and installation instructions. The OCP Examples and OCP Capstone Demonstration
artifacts contain example component based applications built using the OCP. These are all
concrete artifacts that have attached payloads. OCP Framework is a more abstract artifact that
represents the OCP application framework, and serves as the parent artifact for the various
concrete artifacts that make up the runtime OCP infrastructure.

86

4.2.4.1.3. SOSCOE

The S3 team coordinated with the Boeing Combat Systems organization to allow the Army
Future Combat Systems (FCS) SOSCOE platform (see Figure 67) to be made available on S3.
SOSCOE is available free of charge for DoD programs, and access to the software, which is
ITAR-restricted, must be coordinated with appropriate Boeing and US Army personnel. Due to
the ITAR restrictions on SOSCOE, the payload is not resident on S3, but rich metadata
describing the platform and its utility is hosted on S3 along with appropriate point-of-contact
information for download.

Figure 67: SOSCOE Artifact Contents

87

There are three “Editions” of SOSCOE that are available through S3:

 (1) Standard Edition – contains the most services of all SOSCOE Editions; cannot run hard
real-time; not for resource-constrained systems (appropriate for UAV control stations); known to
work on a single CPU Intel x86 Pentium processor running RedHat Enterprise Edition.

 (2) Real-Time Edition – Has fewer services than Standard Edition and has specialized
capabilities for supporting real-time embedded systems. Executes with a real-time operating
system (RTOS); key design considerations include performance, resource constraints, footprint,
and composability; known to work on Radstone’s CP1A single board computer; applicable to
on-board UAV processing in mid- to large-sized UAVs.

 (3) Micro Edition – enough functionality to enable network interoperability for highly
embedded applications with small processors, low memory, and power consumption restrictions;
known to work on TI digital signal processor 6713; applicable to mini and micro UAVs, and
small Unattended Ground Sensors.

4.2.4.1.4. Embedded Processing Technology Content

To further demonstrate the ability of the stockroom to represent artifact metadata, including
taxonomic classification and ontological relationships, a number of embedded processing
technology artifacts were pre-populated into the stockroom by the Boeing team. In particular, a
variety of multi-core artifacts representing software technologies from the academic and COTS
vendor communities were created. URLs with reach-back to providers’ web sites were included,
as were RDF triples capturing dependency and supportability information for the respective
technologies.

It is envisioned that some members from this community will become members of the
stockroom and will eventually wish to actively manage the artifact metadata of their respective
technologies. However, even in the absence of such participation, it is possible for interested
parties (e.g., S3 Administration, TWG and/or CSWG representatives) to capture and maintain
artifact metadata of this type. It is expected this type of knowledge capture and representation
will be commonly practiced once the stockroom is fully deployed in Phase 2.

4.2.4.1.4.1. Embedded Processing Technology Content Descriptions

The following are brief descriptions of the embedded processing technology artifacts pre-
populated into the stockroom:

CUDA - (originally an acronym for Compute Unified Device Architecture, although this is
no longer used) is a parallel computing architecture developed by NVIDIA. Simply put, CUDA
is the computing engine in NVIDIA graphics processing units (GPUs) that is accessible to
software developers through industry standard programming languages. Programmers use C for
CUDA (C with NVIDIA extensions), compiled through a PathScale Open64 C compiler, to code
algorithms for execution on the GPU. CUDA architecture supports a range of computational
interfaces including OpenCL and DirectX Compute. Third party wrappers are also available for
Python, FORTRAN and Java.

88

RapidMind - a development and runtime [software] platform that enables single threaded
manageable applications to fully access multi-core processors. With RapidMind, developers
continue to write code in standard C++ and use their existing skills, tools and processes. The
RapidMind platform then parallelizes the application across multiple cores and manages its
execution.

Gedae - a model-based development environment which supports automatic multi-threaded
implementations for multi-core and multi-processor systems. It includes Integrated
Development Environment (IDE), programming language with graphical and symbolic UIs,
compiler, deployment support tools, static and dynamic analysis tools.

StreamIt - a programming language and a compilation infrastructure, specifically engineered
for modern streaming systems. It is designed to facilitate the programming of large streaming
applications, as well as their efficient and effective mapping to a wide variety of target
architectures, including commercial-off-the-shelf uni-processors, multi-core architectures, and
clusters of workstations.

Mercury MultiCore Framework – an Application Programming Interface (API) for
applications based on the Cell Broadband Engine™ (BE) processor. It maximizes resources and
application performance by taking full advantage of the multi-core processor's computation
model. The MCF library of functions manages concurrent processes and efficiently distributes
data.

Mercury MultiCore Scientific Algorithm Library - enables applications to achieve higher
performance from advanced multi-core processors. Source-code compatibility with existing
applications helps decrease time-to-market by minimizing the changes to existing applications as
embedded systems adopt multi-core processors.

IBM SDK for [Cell] Multi-core Acceleration IDE - built upon the Eclipse and C
Development Tools platform. It integrates the Cell/B.E. GNU tool chain, compilers, IBM Full-
System Simulator (simulator) for the Cell/B.E. processor, and other development components to
provide a comprehensive development platform that simplifies Cell/B.E. application
development.

Data Communication and Synchronization library - provides a set of services which ease
the development of applications and application frameworks in a heterogeneous multi-tiered
system, for example a 64 bit x86 system (x86_64) and one or more Cell/B.E. systems. The
services are implemented as a set of APIs providing an architecturally neutral layer for
application developers on a variety of multi-core systems. It is included with the IBM Cell SDK
(Software Development Kit).

Accelerated Library Framework - provides a programming environment for data and task
parallel libraries and applications. (It is included with the IBM Cell SDK.)

Charm++ - a machine independent parallel programming system. Programs written using
this system will run unchanged on MIMD machines with or without a shared memory. It
provides high-level mechanisms and strategies to facilitate the task of developing highly
complex parallel applications. Programs are written in C++ with library calls and an interface
description language for publishing Charm++ objects. Charm++ supports multiple inheritance,
late bindings, and polymorphism.

89

Cilk++ is three keywords and a runtime system that extend C++ to the realm of multicore (or
parallel) programming. The platform-independent Cilk++ solution addresses the key multicore
programming challenges of development time, software reliability, and performance.

Intel Integrated Performance Primitives - extensive library of multi-core-ready, optimized
software functions for digital media and data-processing applications. It offers thousands of
optimized functions covering frequently-used fundamental algorithms. Its functions are designed
to deliver performance beyond what optimized compilers alone can deliver.

Intel Math Kernel Library - library of optimized, extensively threaded math routines for
science, engineering, and financial applications that require maximum performance. Core math
functions include Sparse Solvers, Fast Fourier Transforms, Vector Math, and more. Offering
performance optimizations for current and next-generation Intel® processors, it includes
improved integration with Microsoft Visual Studio, Eclipse, and XCode. It allows for full
integration of the Intel Compatibility OpenMP run-time library for greater Windows/Linux
cross-platform compatibility.

Intel Threading Building Blocks - offers a rich and complete approach to expressing
parallelism in a C++ program. It is a library that helps you take advantage of multi-core
processor performance without having to be a threading expert. Threading Building Blocks is not
just a threads-replacement library. It represents a higher-level, task-based parallelism that
abstracts platform details and threading mechanism for performance and scalability and
performance.

VSIPL++ Library - [specification] provides C++ classes and functions for writing
embedded signal processing applications designed to run on one or more processors.
VSIPL++ contains

• containers such as vectors, matrixes, and tensors,

• mathematical operations such as addition and matrix multiplication on these containers,

• complex numbers and random numbers,

• linear algebra solvers such as LU Decomposition, and

• signal processing classes and functions including fast Fourier transforms, convolutions,
correlations, Finite Impulse Response (FIR) filters, and Internet Routing Registry (IIR)
filters.

VSIPL++ extends the Vector, Signal, and Image Processing Library (VSIPL) standard,
improving application performance, productivity, and portability. This C++ library supports
improved performance through support for execution using multiple processors and through
improved code optimization. The ability to write expressions using mathematical notation
decreases program size, improving productivity.

90

PVTOL (Parallel Vector Tile Optimizing Library) - portable and scalable middleware
library for multi-core processors, which enables incremental development. PVTOL project has
two goals: 1) Create a library that allows multi-core processors to be quickly programmed for
real signal processing applications; 2) Develop prototype multi-core VSIPL extensions for
possible adoption by the VSIPL standards body. The main features of PVTOL are:

• Parallel VSIPL++ look and feel: scalable, portable, high performance.

• Hierarchical Arrays.

• Automated Parallel Mapping.

• Heterogeneous Processors Dispatch Mechanism

OpenMP (Open Multi-Processing) - an API that supports multi-platform shared memory
multiprocessing programming in C, C++ and FORTRAN on many architectures, including
UNIX and Microsoft Windows platforms. It consists of a set of compiler directives, library
routines, and environment variables that influence run-time behavior.

OpenCL (Open Computing Language) - framework for writing programs that execute
across heterogeneous platforms consisting of Central Processing Units (CPUs), GPUs, and other
processors. OpenCL includes a language (based on C99) for writing kernels (functions that
execute on OpenCL devices), plus APIs that are used to define and then control the
heterogeneous platform. OpenCL provides parallel programming using both task-based and data-
based parallelism.

MPI (Message Passing Interface) - Written by the MPI Forum (a large committee
comprising of a cross-section between industry and research representatives), MPI is a
standardized API typically used for parallel and/or distributed computing. The MPI standard is
comprised of 2 documents: MPI-1 (published in 1994) and MPI-2 (published in 1996). MPI-2 is,
for the most part, additions and extensions to the original MPI-1 specification.

AMPI (Adaptive MPI) - an implementation of the MPI library, that supports dynamic load
balancing and multithreading for MPI applications. AMPI is built upon Charm++, a parallel C++
library.

Sieve C++ Multicore Programming System - scalable programming system aimed at those
who need to create C++ code suitable for use on a multi-core processing environment. The
Sieve System consists of an extension to a C++ compiler, a multi-core linker and a runtime to
schedule the processes.

91

4.2.4.2. Collaborative Content

Multiple TWGs were stood up in Phase 1 shortly after S3 was made available as a password-
protected entity on the public Internet. This has allowed us to quickly support collaboration Use
Case capabilities that were used in Phase 1 to:

• get users on S3,
• get feedback from users on the web interface and collaboration capabilities, and
• provide needed collaboration capability for the mil-aero industry to support current

work spanning multiple R&D programs.

More detailed information on these Phase 1 TWGs is provided below.

4.2.4.2.1. Public TWGs

The Phase 1 stockroom prototype includes non-artifact WG content from four TWGs: the
High-Confidence Design TWG, the Formal Methods TWG, the Mixed Criticality Architecture
Requirements (MCAR) TWG, and the Transportation TWG. These TWGs were used during
Phase 1 to experiment with different approaches to TWGs and stockroom enabled collaboration,
and to provide additional opportunities for community engagement and awareness. The High
Confidence Design TWG was stood up in anticipation of being used to support the HCSS
program committee, but was never actively used.

The Formal Methods TWG was established to support the development of a presentation at
the National Security Agency sponsored High Confidence Software and Systems (HCSS)
Workshop. The presentation reviewed experiments conducted with two formal methods based
Verification and Validation (V&V) tools during the Certification Techniques for Advanced
Flight Critical Systems Challenge Problem Integration program, an AFRL/RBCC sponsored
effort to demonstrate the effectiveness of advanced V&V technologies in the improvement of the
V&V and certification processes as applied to software subject to airworthiness certification.

The MCAR (Mixed Criticality Architecture Requirements) TWG was established to support
the MCAR program participants in development of a white paper describing the domain of
mixed criticality systems and research issues associated with this architecture and for use by the
program committee planning the MCAR workshop at the 2009 IEEE Real-Time and Embedded
Applications Symposium. The MCAR program is an AFRL/RBCC sponsored program defining
the high confidence real-time operating system and middleware requirements for next generation
UAVs that have an architecture combining elements of different safety criticality levels on the
same compute platform. The MCAR team, including representatives from AFRL, Boeing,
Lockheed Martin, Northrop Grumman, Honeywell, LynuxWorks and Washington University in
St. Louis, used the TWG to create and share drafts of the white paper, and to distribute
submissions to the workshop among program committee members.

 The Transportation TWG was established to coordinate writing of the Participants Report
from the Nov 2008 High Confidence Software and Systems (HCSS) National Workshop for New
Research Direction for High Confidence Transportation Cyber-Physical Systems (CPS)
organized by the Networking and Information Technology Research & Development (NITRD)
HCSS Coordinating Group. This report summarized the perspectives of the participants on the

92

workshop, including capturing research roadmaps for the Verification & Validation, Mixed
Criticality, Platforms and Infrastructure, Autonomy and Control, and Infotronics and
Infotainment aspects of CPS. The TWG was used to coordinate drafting of this Participants’
Report that was provided to the Networking and Information Technology Research and
Development (NITRD) HCSS Coordinating Group for inclusion in the final Workshop Report
that would ultimately be provided to policymakers. The Transportation TWG included
participants from Arizona State University, the University of Pennsylvania, Ford Motor
Company, Boeing, the University of Washington, Carnegie Mellon University, the University of
Arizona, General Motors, Georgia Tech and Washington University in St. Louis.

4.2.4.2.2. Admin TWG

The S3-Team TWG was used by the Boeing S3 team for internal collaboration during Phase
1. The stockroom collaboration capabilities established for the S3-Team TWG were used to
support preparation for program meetings, including the Midterm and Final Reviews. The TWG
was also used in the development of the stockroom taxonomies and ontology, including both
defining the approaches for defining the taxonomies and ontology, selecting the tools to use, and
creating the initial taxonomies and ontology. The S3-Team was also used in the development of
a number of program deliverables, including this report. In Phase 2, a separate CSWG will be
established for the Ontology Evolution Steering Committee (Section 4.2.2.2.1.2), and those
activities will move out of the S3-Team TWG. Other S3-Team TWG activities will continue in
Phase 2.

4.3. Community

Our S3 development team has recognized that community involvement is crucial to the
success of S3. With this in mind, we have been active in engaging interest among academia and
industry in participation in S3 activities and making them aware of the potential benefits of the
S3 concept. Our involvement on other programs and efforts, with multiple classes of
stakeholders in the autonomous flight systems embedded software domain, have allowed us to
get visibility for S3 and get these stakeholders to actually use the S3 itself during Phase 1. These
various classes of stakeholders are shown in Figure 2.

Many of these stakeholders actually became S3 users and community members in Phase 1
with leverage of the S3 TWG functions for collaborative development of research products. In
this way, a diverse group of large and small contractors, academia, and government became part
of the S3 community and leveraged the S3 to perform useful work.

93

Our identification of potential community members began before Phase 1 began, as shown in
Table 2.

Table 2. Community Members Identified at Proposal Time

General Category Participants

Government Acquisition, Development , and
Services Program

Navy / Marine Corps Small Tactical Unmanned Aircraft System
(STUAS) / Tier II, Army Future Combat Systems, Navy /
Marine Corps / Air Force ScanEagle, DARPA Vulture,
Unmanned Combat Air System (UCAS), Air Force Next
Generation Unmanned Aerial System (NG UAS), Navy
Tomahawk, Air Force Miniature Air-Launched Decoy (MALD)

Government Research Customers OSD, ONR, AFRL, ARL, DAPRA, NSF

Small Business / Small Contractors Insitu Group, Swift Engineering, Scientific Systems, Barron
Associates, Defense Research Associates, NextGen Aeronautics,
Draper Laboratory, Tech Team Government Solutions,
EDAptive Computing, WW Technology, Kestrel Technology

Government, Industrial and University Research
Institutions

NSF Centers for Embedded Systems and Autonomic
Computing, HRL Laboratories, Vanderbilt University,
University of California Berkeley, Georgia Tech, MIT, Arizona
State, University of Arizona, University of Maryland, Cal Tech,
University of Minnesota, University of Illinois, University of
Colorado, Cornell University, Naval Postgraduate School

Commercial Software and Software Tools
Vendors

IBM, Microsoft, MathWorks, Real-Time Innovations, Objective
Interface Systems, Mentor Graphics, Prism Tech, Wind River
Systems, Green Hills Software, LynuxWorks

Avionics and Embedded Computer Systems
Manufactures

Honeywell, Mercury Computer, Curtiss Wright, GD-AIS

Processor Manufactures IBM, Intel, TI, AMCC, Xilinx, Altera

94

Many of these organizations became S3 community members in Phase 1, and others
expressed interest in participating in S3, including:

• Industry
o Mil-Aero – BAE Systems, Boeing, Lockheed Martin, Northrop Grumman,

Honeywell, Rockwell Collins
o Software Providers – Wind River Systems, Green Hills Software,

LynuxWorks, Objective Interface Systems, Real-Time Innovations
o Tools – Math Works, Kestrel Technology, EDAptive Systems, WW

Technology Group
o Processor Manufacturers – Intel (initiated)

• Academia
o Arizona State, Georgia Tech, Naval Postgraduate School, Univ. of Arizona,

Washington University, University of Washington

Our community building activities also included pro-active participation in national
conferences to get visibility for S3. Each of these briefings was done in front of an audience that
included a mix of industry, academia, and government. These national conference briefings
included the following:

 AIAA InfoTech@Aerospace Conference, 6-9 Apr 2009, Seattle, Washington – As a
member of the American Institute of Aeronautics and Astronautics (AIAA) Software Systems
Technology Committee (SSTC), S3 PI Jim Paunicka was able to secure a spot on the agenda for
an S3 briefing at this conference. S3 was briefed at a public presentation session and was
discussed at length in an AIAA SSTC committee meeting. Committee members working space
vehicle systems showed keen interest in the Stockroom concept, including an AFRL
representative pursuing Plug-and-Play space systems and a BAE Systems engineer also working
in that area. During the conference, Jim Paunicka met with a number of academics who showed
interest in hosting domain knowledge on S3. An industry representative at the public session
commented on the issue of keeping contents searchable as volume of contents grows. Another
industry audience member followed up with an email expressing interest “in support software for
space processors, multicore software, FPGA firmware and of course plug and play”. A
Government audience member commented on the benefits of allowing users to comment on
repository contents, which could be potentially valuable feedback.

IEEE Real-Time and Embedded Technology and Applications Symposium, 13-16 Apr
2009, San Francisco – As a member of a workshop steering committee for this symposium, S3
PI Jim Paunicka was able to secure a slot for a public briefing of S3.

AFRL Safe and Secure Systems and Software Symposium, 2-4 Jun 2009, Dayton Ohio –
with the assistance of our S3 AFRL customer, we were able to brief the S3 concept to this
national audience also.

In summary, significant outreach to a diverse and large number of potential community
members was performed in Phase 1.

95

5.0 CONCLUSIONS

The S3 Phase 1 prototyping work by the Boeing, Raytheon, and Vanderbilt University team
has resulted in a rapid build-up of a feature-rich repository capability. Many of the functional
objectives of the repository are already in place, and feasible plans for maturation in a Phase 2
have been explored. As part of the Phase 1 prototype development, the powerful but general
Drupal content management system has been augmented with domain-specific taxonomies and
ontologies, tailoring the solution to the DoD domain of autonomous flight systems embedded
software on emerging processing systems.

The Phase 1 S3 repository has been augmented with useful repository contents, including 125
artifacts supporting the autonomous flight systems domain. In the development and operations
activities of Phase 2, we plan to evolve the S3 capabilities and domain-specific ontology, and
continue building the repository content collection.

Significant outreach and engagement with potential S3 community members was also
accomplished in Phase 1. Numerous talks at national conferences were delivered to increase the
visibility for the S3 concept and our domain. Groups of academic, industry, and government
people became active users of our S3 with the TWG concept, allowing these users to become
familiar with the S3 system and concepts. We engaged many of our research and business
associates, and they are willing to be active participants in the S3 should it move forward. These
include representatives from the mil-aero industry, as well as other associated industries
(embedded software providers, tools developers, etc.), small businesses, and academia.

Our targeted domain of autonomous flight systems is an important one for the DoD. These
systems represent one of the few growth areas in platform development, so a S3 investment in
this domain should be strongly considered. The complexity of the on-board software on these
platforms represents a growing challenge that could be addressed with the mechanisms for
capture and reuse of domain knowledge and expertise that S3 can provide.

Aspects of the supported domain associated with hosting embedded flight software on
emerging processing systems (e.g., multi-core) are also significant. With more on-board
capabilities desired on aircraft, this element of the S3 domain can provide important support for
those needing help solving multi-core development issues.

We believe we have a strong and dedicated team, ready for the challenges of supporting this
domain in a Phase 2 development and operations effort. Our team that includes two developers
of autonomous flight systems that are sometimes competitors, Boeing and Raytheon, provides
domain breadth and supports development of an S3 that is not dominated by a single contractor.
The academic component of our team with Vanderbilt University allows us to tap their
knowledge of the most recent developments in web and content management technologies, and
provides a contractor-neutral organization for hosting S3 (making S3 more inviting to other
contractors).

With a strong team and a credible Phase 1 effort to rapidly prototype a feature-rich S3, we
look forward to an opportunity to support the autonomous flight systems domain with a Phase 2
development and operations effort.

96

6.0 REFERENCES

[1] McKeever, William, “Software Systems Stockroom (S3)”, briefing at the Safe & Secure

Systems & Software Symposium, Dayton, Ohio, 02 Jun 2009.

[2] The Drupal Content Management System, http://drupal.org/

[3] McGuinness, Deborah L. and van Harmelen, Frank, “OWL Web Ontology Language

Overview,” W3C Recommendation 10 February 2004 http://www.w3.org/TR/2004/REC-

owl-features-20040210/

[4] Horridge, Matthew, “A Practical Guide To Building OWL Ontologies Using Protégé 4

and CO-ODE Tools Edition 1.2,” The University of Manchester, 13 Mar 2009,

http://protege.stanford.edu/.

[5] Dmitry Tsarkov, “FaCT++”, University of Manchester,

http://owl.man.ac.uk/factplusplus/.

[6] The Boeing Company, “Users’ Guide for S3 Operation”, Software Systems Stockroom

Phase 1 CLIN 0002 CDRL Data Item No. A004, 31 Jul 2009.

[7] The Boeing Company, “Administration & Installation Guide S3 Operation”, Software

Systems Stockroom Phase 1 CLIN 0002 CDRL Data Item No. A003, 31 Jul 2009.

[8] VMware, Inc., “VMware Player 2.5 Getting Started Guide,” 2008,

http://www.vmware.com/pdf/vmware_player250.pdf.

[9] Sun Microsystems, “MySql Reference Manual,” http://www.mysql.com/.

[10] Institute for Machine and Human Cognition, http://cmap.ihmc.us/conceptmap.html.

http://drupal.org/
http://www.w3.org/TR/2004/REC-owl-96
http://www.w3.org/TR/2004/REC-owl-96
http://www.w3.org/TR/2004/REC-owl-96
http://protege.stanford.edu/
http://owl.man.ac.uk/factplusplus/
http://www.vmware.com/pdf/vmware_player250.pdf
http://www.mysql.com/
http://cmap.ihmc.us/conceptmap.html

97

7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

ACL Access Control List

ACS Adaptive Computing Systems

AFRL Air Force Research Laboratory

AFRL/RBCC AFRL Air Vehicles Directorate, Control Sciences Division, Control Systems
Development and Applications Branch

AFRL/RITB AFRL Air Vehicles Directorate, Information Directorate, Advanced Computing
Division, Computing Technology Applications Branch

AIAA American Institute of Aeronautics and Astronautics

AJAX Asynchronous JavaScript And XML

AMPI Adaptive MPI

API Application Programming Interface

ARL Army Research Laboratory

ASIC Application Specific Integrated Circuit

ATR Automatic Target Recognition

BR&T Boeing Research & Technology

BSCW Basic Support for Cooperative Work

CDRL Contract Data Requirements List

COTS Commercial off-the-shelf

CMap Concept Maps

CMS Content Management System

CPS Cyber-Physical Systems

CPU Central Processing Unit

CSWG Community Standards Working Group

DARPA Defense Advanced Research Projects Agency

DESERT Design Space Exploration Tool

DoD Department of Defense

DSP Digital Signal Processor

DVD Digital Video Disc

EAR Export Administration Regulations

FPGA Field Programmable Gate Array

98

FCS Future Combat System

FIR Finite Impulse Response

GPP General Purpose Processor

GPU Graphics Processing Unit

HCSS High Confidence Software and Systems

HTML Hyper Text Markup Language

IDE Integrated Development Environment

IHMC Institute for Human and Machine Cognition

IP Intellectual Property

IIR Internet Routing Registry

ITAR International Traffic in Arms Regulations

MCAR Mixed Criticality Architecture Requirements

MIMD Multiple Instruction stream, Multiple Data stream

MoBIES Model-Based Integration of Embedded Software

MPI Message Passing Interface

NITRD Networking and Information Technology Research & Development

NRL Naval Research Laboratory

NSF National Science Foundation

OCP Open Control Platform

OESC Ontology Evolution Steering Committee

ONR Office of Naval Research

OpenCL Open Computing Language

OpenMP Open Multi-Processing

OSD Office of the Secretary of Defense

OWL Web Ontology Language

PI Principal Investigator

PoP Period of Performance

PVTOL Parallel Vector Tile Optimizing Library

R&D Research & Development

RDBMS Relational DataBase Management System

RDF Resource Description Framework

99

RISC Reduced Instruction Set Computer

RTOS Real-Time Operating System

SBIR Small Business Innovative Research

SDK Software Developer Kit

SEC Software Enabled Control

SEI Software Engineering Institute

SOSCOE System-of-Systems Common Operating Environment

SPP Signal Processing Platform

SPRUCE Systems Producibility Collaboration and Experimentation Environment

SSTC Software Systems Technology Committee

SDTATIC Software Development Tools And Technology Software Development Tools And

Technology Information Clearinghouse

STTR Small Business Technology Transfer

S3 Software Systems Stockroom

TWG Technical Working Group

UAS Unmanned Aircraft Systems

UAV Unmanned Aerial Vehicle

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

VM Virtual Machine

VSIPL Vector, Signal, and Image Processing Library

V&V Verification and Validation

WDCO Boeing Washington DC Office

WG Working Group

XML Extensible Markup Language

