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1. Introduction/Project Objectives 
 

Trusted computing hardware, such as the Trusted Computing Group’s trusted 
platform module (TPM), is increasingly being found in commodity processors. Such 
secure co-processors have the potential to create a revolution in software assurance by 
enabling (i) enforcement of strong guarantees about behavior and (ii) attribution of 
actions performed in those behaviors. Today’s operating systems, however, neither 
exploit that new hardware nor provide alternatives for building such trusted software. 

The Nexus project was intended to demonstrate how this new hardware could be 
used to build trustworthy applications. Specifically, we sought to 

• define new abstractions suitable for supporting trusted computing, 

• instantiate these abstractions in a prototype operating system, and 

• validate the approach ideas by building trustworthy applications. 
 
This agenda involved two threads of investigation. The first was concerned with 

building an operating system—Nexus—that itself is trustworthy. Such a task spans a 
broad set of issues, ranging from code security to the architecture and design of the kernel 
and operating system (OS) services. Our focus was more at the architecture and design 
end of the spectrum—we did program a prototype, but we had neither the time nor the 
resources to invest in building secure code (nor did we have new insights about such 
issues). 

The second thread concerned using our Nexus operating system to support 
trustworthy applications. Here, the challenge was to select applications that were 
somehow representative and therefore increased our assurance in the generality of our 
schemes. We elected to explore networking and document-management applications. The 
networking applications enabled us to study the tension between performance and 
richness of security functionality, subject to the constraints of existing interfaces and 
structures. The document-management applications allowed us freedom to explore new, 
surprising functionality in a setting that was easy to motivate and explain. 
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2. Methods, Assumptions, and Procedures 

 
The overall objective of the project was to produce insights—not code—and document 
those insights in technical papers, so that others could apply our research results in their 
settings. However, in the course of this project, we did implement several software 
prototypes.  This ensured that problems were not being overlooked and it allowed us to 
demonstrate the feasibility of our approach. Needless to say, various implementation 
choices for our prototypes were dictated by expedience. For example, we used the C 
programming language (which is a poor choice for building secure code), and we did not 
write code anew when there was extant code we could modify more quickly. 
 
Methods, assumptions, and procedures are further discussed under our results below. 
 
 

3. Results and Discussion 
 
3.1. Nexus Kernel Architecture 

 
We implemented a prototype Nexus kernel. It supports a process-like abstraction called 
an independent protection domain (IPD), several forms of encrypted storage, and has a 
novel input /output (I/O) device driver architecture. That device driver architecture is 
now being studied by Microsoft, since it solves a problem they are wrestling with. 

Device drivers typically are positioned inside an OS kernel and execute in 
supervisor mode, so they must be fully trusted. For Nexus, we developed a system 
architecture in which device drivers are located outside of the kernel and run without 
supervisor privileges. We employ hardware isolation and a form of reference monitor (in 
the kernel) to check the behavior of each driver against a corresponding safety 
specification. We summarize the approach in what follows; see [1] for details. 

Even in user space, device drivers execute hardware I/O operations and 
handle interrupts. These operations can cause device behavior that compromises the 
integrity or availability of the kernel or other programs. Therefore, our driver architecture 
introduces a global, trusted reference validation mechanism (RVM) that mediates all 
interaction between device drivers and devices.  The RVM invokes a device-specific 
reference monitor to validate interactions between a driver and its associated device, 
thereby ensuring the driver conforms to a device safety specification (DSS), which 
defines allowed and, by extension, prohibited behaviors. So each device driver is given 
access only to the minimum resources and operations necessary to support the devices it 
controls (least privilege), thereby shrinking the trusted computing base (TCB).1 A system 
in which device drivers have minimal privileges is easier to audit and less susceptible to 
Trojans in third-party device drivers. 

                                                 
1 Some drivers, such as the clock, provide functionality needed for defining or enforcing security policies. 
These device drivers remain part of the TCB no matter where they execute. 
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The DSS is expressed in a domain-specific language that we developed and 
defines a state machine that accepts permissible transitions by a monitored device driver. 
We built a compiler to translate a DSS into a reference monitor implemented by a state 
machine. Every operation by the device driver is vetted by the reference monitor, so 
operations that would cause an illegal transition are blocked. 

The RVM protects the integrity, confidentiality, and availability of the system, by  
preventing: 
 

o Illegal reads and writes: Drivers cannot read or modify memory they do not own. 
 

o Priority escalation: Drivers cannot escalate their scheduling priority. 
 

o Processor starvation: Drivers cannot hold the central processing unit (CPU) for 
more than a pre-specified number of time slices. 

 
o Device-specific attacks: Drivers cannot exhaust device resources or cause 

physical damage to devices. 
 
In addition, given a suitable DSS, the RVM can enforce site-specific policies to govern 
how devices are used.  For example, administrators at confidentiality-sensitive 
organizations might wish to disallow the use of attached microphones or cameras; or 
administrators of trusted networks might wish to disallow promiscuous (sniffing) mode 
on network cards.  
 
 In our user-space driver architecture, drivers, like any other user process, are 
loaded from a file system; once loaded, they execute and can be unloaded and restarted at 
any time. When a driver is first loaded, it executes a system call to find a compatible 
device. As part of this system call execution, the RVM identifies an appropriate device 
and reference monitor and returns to the driver a structure describing the device ID and 
I/O-resource assignments. The driver then uses driver system calls to perform I/O 
operations and receive interrupts. Subsequent uses of those calls cause the RVM to 
invoke the reference monitor. Reference monitors are instantiated immediately after 
endpoint enumeration, based on device IDs. Reference monitors persist, even if 
corresponding drivers are unloaded and restarted 
 
 Drivers are not trusted, but the RVM, reference monitors, and devices are. 
Moreover, reference monitors are compiled from DSSes, so DSSes and the DSS compiler 
must be trusted.  Some DSSes will be written by hardware manufacturers; others will be 
written by independent experts, including security firms or OS distributors. But 
independent of the source, a DSS ought to be small and declarative. Further, because they 
describe devices, not drivers, there need only be one DSS per device. Hence, they are 
conducive to auditing. 
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We assume devices behave safely if given sufficiently restricted inputs. Such an 
assumption is inescapable, because devices can access any memory, generate arbitrary 
interrupts, and starve hardware buses directly. The two sources of driver misbehavior we 
considered are drivers designed by malicious authors (Trojans), and drivers with bugs 
that can be subverted by users or remote attackers. Both are dealt with by our RVM. 
 
 The RVM prevents drivers from performing invalid reads and writes using 
hardware isolation and by checking driver accesses to direct memory access (DMA) 
control registers. 
 

o Hardware isolation works as with other user processes, giving each driver process 
direct access only to its own memory space. 

 
o By checking that every DMA address sent to the device is allocated to the driver, 

the RVM prevents a device driver from using DMA for illegal reads and writes. 
 
 The RVM must also defend against a device driver that attempts to escalate its 
execution priority or that starves other processes and the kernel by causing large numbers 
of interrupts or by spending too much time in high-priority interrupt handlers. A timer 
driver might set too high a timer frequency, or a sound card driver might set too small a 
DMA buffer for playback, causing frequent notifications to be generated when the buffer 
becomes empty. 
 
 Some of these unacceptable behaviors can be prevented when the driver is setting 
up the device; for example, by a reference monitor imposing a lower bound on the sound 
card DMA buffer size. But RVMs provide three additional protection measures. First, the 
RVM limits the frequency at which a driver can receive interrupts, with different limits 
for different types of devices. Second, the RVM limits the length of time that an interrupt 
handler runs. Third, the RVM ensures that each interrupt handler acknowledges every 
interrupt, to prevent devices from issuing additional interrupts for the same event.   
Finally, an RVM must prevent invocations of operations known or suspected to harm 
devices. Examples include: overclocking processors, sending a monitor an out-of-range 
refresh rate, instructing a disk to seek to an invalid location, or writing invalid data to 
non-volatile configuration registers. Other attacks against devices involve exhausting 
finite resources, such as wearing out flash memory with excessive writes or wasting 
battery power on mobile devices. The RVM prevents many such attacks by allowing only 
well-defined operations at rates presumed to be safe. 
 
 While the RVM approach is general enough to enforce rich safety properties, we 
do not anticipate that RVMs will be used to enforce driver semantics expected by 
applications.  Our reference monitor implementations do not, for example, ensure that 
network drivers only send legal transmission control protocol (TCP) packets. They also 
do not prevent a malicious driver from providing incorrect or incomplete access to a 
device (i.e. denial of service). Such protections concern end-to-end properties, hence we 
believe that they are best implemented above the driver level. 
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 We implemented user-space device drivers for the i810 sound card, e1000 
network card, universal serial bus (USB) universal host controller interface UHCI 
controllers, USB mice, and USB disks in Nexus. We quantified the ease of driver porting 
and the auditability of DSSes by counting the number of lines of code in each DSS and 
the number of lines changed to port each Linux driver to Nexus. The number of changed 
and added lines was small. 
 
 We wrote each DSS by referring to the manufacturer’s documentation about 
device behavior and to existing drivers. The DSS for USB UHCI was derived entirely 
from the documentation. The i810 and e1000 DSSes were based on documentation that 
describes features our drivers actually use; other features are disallowed by the DSS. 
Writing a DSS based on an existing driver is tempting, but risks disqualifying other 
drivers that attempt different (but safe) behavior. Writing a DSS based on all features 
described in published documentation is more time-consuming, but in theory, it admits 
any legal driver. Based on our experience, we estimate the time to develop a DSS, given 
a working driver, manufacturer’s documentation, and familiarity with the DSS language 
but not with the device, as one to five days 
 
 Our Nexus drivers exhibited performance comparable to in-kernel, trusted drivers, 
with a level of CPU overhead acceptable for most applications. For example, the 
monitored driver for an Intel e1000 Ethernet card has throughput comparable to a trusted 
driver for the same hardware under Linux. And a monitored driver for the Intel i810 
sound card is able to provide continuous playback. Drivers for a disk and a USB mouse 
have also been moved successfully to operate in user space with safety specifications. 
 
 Accepted quantitative metrics for the security of a system do not exist. 
Nevertheless, to establish the security of our RVM and reference monitors, we used two 
approaches others have used. First, we simulated unanticipated malicious drivers by 
randomly perturbing the interactions between drivers and the RVM, resulting in 
potentially invalid operations being submitted to the reference monitor and possibly to 
the device. Second, we built specific drivers that perpetrate known attacks on the kernel 
using interrupt and DMA capabilities. 
 
 We simulated unanticipated malicious drivers by changing operations and 
operands in a layer interposed between a legal driver and the RVM. This layer modified 
each operation according to an independent probability of 1 in 16,384.  Each operation 
was a read or a write; our modifications involved replacing either the address, the length, 
or the value (at random) with another value in the appropriate range. So, a write to an I/O 
port was replaced with a write to a port in the same range, a write of a different length, or 
a write of another value. Reads were perturbed similarly. Note, this approach does not 
produce repeatable experiments, because driver behavior depends on external factors like 
the OS scheduler and the arrival times of packets, which are not under our control.  
 
  



6 
 

We applied perturbation testing to the e1000 driver. When the modifications were 
benign, the driver showed no apparent failures. Sometimes, the driver itself detected an 
error (e.g., a status register read failed a sanity check) and exited cleanly. Often, the 
reference monitor detected an illegal operation, and the RVM terminated the driver. 
Finally, our perturbations sometimes caused the driver to get out of sync with the device, 
after which no further packets were sent or received. This does not compromise the 
integrity or availability of the kernel or the device, so the RVM has no obligation here. 
An unmonitored driver completed more tests with no apparent failure than a Safe driver 
(i.e., a driver being monitored with a suitable DSS) did, because the reference monitor 
used for the Safe driver blocks all unknown behaviors—even if it might be benign. 
 
 We hoped the perturbed unmonitored driver would cause kernel livelock, 
starvation, or a crash. In practice, however, the likelihood of causing driver crashes and 
stalls is much higher. The 31st run of this test rendered the device unusable: neither the 
Linux nor the Nexus driver could thereafter initialize the card.  
 
 In addition to perturbation testing, we wrote several malicious drivers to execute 
specific attacks on the kernel using the e1000’s interrupt and DMA capabilities: 
 

o Livelock: The driver never acknowledges interrupts, resulting in a flood of 
interrupt activity and starvation for all other processes. 

 
o DMA kernel crash: The driver uses the device to write to kernel memory, 

resulting in a system crash 
 

o DMA kernel read: The driver sends a sensitive page (e.g., containing a secret key) 
to a remote host. 

 
o Direct kernel read/write: The driver constructs a pointer and reads or writes 

sensitive data directly. 
 

o DMA kernel code injection: The driver points a DMA buffer pointer at system call 
code, then pings a remote machine with attack code.  The response is written over 
the target system call implementation. The attacking driver then invokes the 
system call to gain control of the kernel. 

 
o DMA read/write to other device: The driver uses a ping to overwrite video 

memory, resulting in an image appearing on the screen. 
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Not surprisingly, the livelock and DMA attacks succeed when run as unmonitored 
drivers, all the attacks succeed on drivers in the kernel, and they are all are caught by the 
RVM when it monitors a driver. The livelock attack is prevented by the RVM 
terminating any driver that does not acknowledge the interrupt by reading the interrupt 
control register. The DMA attacks are prevented by the RVM terminating any driver that 
attempts to transmit or receive packets with any invalid addresses in the transmit or 
receive buffer lists. Finally, any direct attempt to read or write the memory of other 
drivers is blocked by hardware isolation in all modes except Kernel. 
 
3.2 Trustworthy Network Protocols 
 
The techniques we employed in building trustworthy device drivers actually turn out to 
be quite general. The key ingredients are (i) a reference monitor inserted into the output 
channel of a target component, (ii) a clear specification of secure behaviors for that 
component (perhaps in terms of inputs or the state of its environment), and (iii) a strong 
isolation mechanism to separate the reference monitor from the target. We illustrated this 
generality in [2] by using the same basic approach to implement a trustworthy version of 
the Internet’s border gateway protocol (BGP).   

BGP is the protocol routers use to announce, propagate, and withdraw routes 
between autonomous systems (ASes) in the Internet. An AS is a portion of the network 
presumed to be under a common administrative control.  A BGP speaker is any router 
that participates in BGP; usually, it is a router at the edge of an AS. BGP speakers in an 
AS maintain transmission control protocol (TCP) connections to peers—BGP speakers at 
other ASes with which the AS has peering relationships. A BGP speaker is connected to 
its peers directly or by statically 
configured routes. 

Each AS controls a subset of all internet protocol (IP) addresses, represented as 
one or more IP address prefixes—contiguous sets of IP addresses with a common string 
of leading bits. Each BGP speaker maintains a table mapping IP prefixes to next-hop 
routing information. BGP speakers disseminate and discover this routing information by 
announcing their own IP prefixes and by receiving similar announcements from BGP 
speakers in peer ASes. A BGP speaker’s configuration lists all prefixes it originates, 
other BGP speakers that are its peers, and policies for choosing a preferred route to each 
prefix. 

Our secure version of BGP is called N-BGP. We built it to illustrate the utility of 
employing an external security monitor (ESM), which is a new kind of network 
component we developed for securing legacy protocols without requiring modifications 
to existing hardware, software, or the protocol. An ESM is a separate host that checks 
each message sent by a legacy host against a safety specification. There are two ways to 
add an ESM to a network. 
 

• A proxy ESM explicitly filters and forwards relevant traffic between a target and all 
other hosts. An administrator must change the target’s configuration—but normally 
not its software implementation—to send relevant traffic to the ESM rather than 
directly to a peer. Unrelated traffic (in the case of BGP, all data traffic) is not sent 
through the ESM. 
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• A sniffer ESM passively captures packets on all network links connected to some 
target. Because a sniffer ESM must capture all traffic into and out of its target, it is 
inefficient in cases where most of that traffic is not relevant to the monitored 
protocol. A sniffer ESM cannot slow or break the underlying protocol, and the 
underlying protocol continues (albeit unmonitored) if the ESM fails. But a sniffer 
ESM cannot block invalid traffic. Sending alerts on the security plane is the only 
way for a proxy ESM to make use of judgments about message validity. 

 
 

Proxy and sniffer ESMs each have advantages and disadvantages. A sniffer ESM might 
not have sufficient capacity to isolate monitored protocol traffic on a backbone link; a 
proxy ESM receives only this traffic and thus is suitable for links of any speed. Sniffer 
and proxy ESMs interoperate, forming a single security plane. 

ESMs use trusted hardware to assure remote principals that the safety 
specification is being enforced, use physical isolation to ensure integrity for the reference 
monitor, and use an overlay network to alert each other about invalid behavior and to 
initiate remedial actions. When run on commodity hardware, we found N-BGP was fast 
enough to monitor a production BGP router. And by running simulation experiments we 
established that deploying N-BGP at a random 10% of autonomous systems in the 
Internet suffices to guarantee security for 80% of Internet routes where both endpoints 
are monitored by N-BGP. 

Because ESMs do not have to implement complete protocol functionality or 
provide a rich user interface, they can have a substantially smaller trusted computing base 
than the targets they monitor. And because ESMs enforce a safety specification on 
network messages, a single ESM implementation is compatible with any implementation 
of a protocol, regardless of software version, configuration, or policy. Finally, because 
ESMs deployed in different administrative domains communicate using an overlay, 
ESMs have access to information not available at any one target, and ESMs can globally 
coordinate remedial actions. 

Our N-BGP defends against false-origination and path-truncation attacks, which 
give rise to BGP route hijacking, traffic stealing, and black holes. Although these attacks 
have been well known for more than ten years, today they are increasingly being 
exploited by spammers. Each N-BGP host intercepts all BGP messages received and sent 
by a single target BGP router and checks them against a safety specification that 
characterizes route advertisements the target may send given the route advertisements it 
has received. For example, a router that has received routes no shorter than n hops for a 
given remote destination should not announce routes shorter than n+1 hops for that 
destination. A shorter advertisement indicates a path truncation (also known as a black 
hole or traffic stealing) attack, and it will trigger NBGP to take remedial action locally, 
by notifying the site administrator, and remotely, by purging the offending route 
advertisement from the network. 
 



9 
 

3.3 Network Configuration Management 
 
Although a network’s configuration can have a significant impact on the performance, 
robustness, and security of applications, today’s networks lack support for reporting 
network configuration differences. Our NetQuery system [3] aims to correct this by 
implementing a trustworthy channel for disseminating the properties of networks and 
their participants. Specifically, NetQuery implements a distributed, decentralized, tuple-
based attribute store that records information about network entities. Operators can add 
new tuples into this store and can also annotate existing tuples with new, custom 
attributes, thus allowing the system to support network entities and properties not 
anticipated at the time of deployment. NetQuery clients can query the attribute store for 
the current network state and can install event triggers to detect future state transitions, 
thus establishing long-running guarantees over the behavior of the network. 

NetQuery is concerned with network entities, which include physical devices such 
as routers, switches, and end hosts as well as logical entities, such as flows and 
applications. Each network entity has an associated set of properties, which are 
represented in NetQuery as attribute/value pairs. These properties may be intrinsic to a 
device (such as a router’s routing tables) or they may be arbitrary labels assigned by third 
parties (such as a certificate from an audit service asserting that a router is properly 
configured).  

While NetQuery provides a globally unified interface, the implementation and 
storage of attribute/value pairs is decentralized. Every network operator deploys a 
NetQuery server dedicated to storing attribute/value pairs for its portion of the network 
and specifies an access policy to these attribute/value pairs. NetQuery enables anyone to 
tag any entity with an arbitrary property. The tuplespace NetQuery implements may thus 
contain conflicting information but this is addressed by allowing applications to ignore 
information from sources they don’t trust. Specifically, a policy language enables 
applications to assert its trust in an attribute/value pair and to control access to proprietary 
information and to sensitive operations. 

We assume all networked components are equipped with secure hardware co-
processors to serve as a root of trust for claims made by the network component. 
Admittedly, this is a “clean slate” design, since today’s network components do not have 
such secure co-processors. But we predict that limitation will be short-lived, because 
trusted platform modules (TPMs) provide a cheap way to support the creation of the 
unforgeable certificates that are the only sensible foundation on which to base a 
trustworthy network. However, we have also investigated how to integrate current 
systems equipped with management interfaces, such a simple network management 
protocol (SNMP) but no secure co-processor. 

Three scenarios we investigated illustrate the value that NetQuery can provide. 
 
 

• Checking end hosts. Misconfigured end hosts can compromise the integrity 
of a network. A NetQuery-enabled network can restrict access based on the 
configuration of end hosts. For instance, before allowing a newly connected end host 
to send packets, a switch could verify that the end host is running the latest software 
versions and a virus checker. 
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• Checking paths. Middleboxes that can perform deep packet inspection for large 
volumes of network traffic enable internet service providers (ISPs) to monitor and 
modify streams that traverse their network. A privacy-conscious user who wants to 
know how data from her web sessions will be monitored can use NetQuery to 
discover whether there are entities that can potentially access and record her sessions 
and, if applicable, to obtain guarantees from the network on how packets are 
handled. 
 
• Differentiating providers. Customers currently use reputation as the primary way 
they differentiate ISPs. And NetQuery enables ISPs to advertise the performance and 
robustness features that they provide. For instance, a wireless service provider can 
use NetQuery to advertise its backhaul capacity and traffic management techniques; 
clients can use this to select the best available network. 

 
 
3.4 Beyond Credentials-Based Authorization 
 
In credentials based authorization, requests to access a resource or obtain service are 
accompanied by credentials. Each request is either authorized or denied by a guard, 
which uses the accompanying credentials (perhaps augmented with other credentials or 
information about the state) to make that decision and enforce some given security 
policy. Authorization decisions are thus decentralized, with accountability of each 
element in the decision made explicit and with authority shared among the guard and the 
principals who issue credentials. This decentralization means the regime is ideally suited 
for use in distributed systems.  

An untrustworthy principal might attempt accesses that violate a security policy, 
whereas (by definition) a trustworthy one wouldn’t. So a guard ideally should authorize 
only those requests made by trustworthy principals. However, determining the 
trustworthiness of a principal is rarely feasible, and guards typically substitute something 
that is easier to check. 
 

• Axiomatic basis. With guards that use an access control list, we accept on faith that 
all principals appearing on the access control list are trustworthy, so the guard 
authorizes requests made by these principals. Axioms are statements that we accept 
on faith, so we might label this an axiomatic basis for trustworthiness. The same 
applies when a system uses some form of reputation to decide whether a principal’s 
request should be authorized. An axiomatic basis also is implied when a guard 
authorizes loading and running an executable only if the value of a hash indicates 
that the executable is unaltered from what comes in some standard distribution or if a 
digital signature establishes that the executable was generated by some approved 
software provider. 
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• Analytic basis. Analysis provides a way to predict whether certain behaviors by a 
program P are possible, and some guards employ an analytic basis for authorizing 
requests from principals executing P. Specifically, an analysis establishes that P can 
be trusted not to commit certain abuses and, therefore, granting the request cannot 
enable P to violate the security policy. Proof carrying code is perhaps the limit case. 
Here, a program P is accompanied by a proof that its executions satisfy certain 
properties; a request to execute P is authorized if and only if a proof checker trusted 
by the guard establishes that the proof is correct and that the property proved is 
sufficiently restrictive. As another example, some operating systems will authorize a 
request to load and execute code only if that code was type checked; type checking 
is a form of analysis, and programs that type check can be trusted not to exhibit 
certain malicious behaviors. 
 
• Constructive basis. A constructive basis for authorization is involved whenever a 
program is transformed prior to execution so that it can be trusted in ways the 
original could not. Examples of this approach include sandboxing, software fault 
isolation (SFI), in-lined reference monitors, and other program rewriting methods. 

 
The discussion above suggests that no single basis for establishing trust is used 

for all guards and security policies. Moreover, it seems reasonable to believe that no 
single basis for trust would suffice within even a single guard when authorization 
decisions are being made in a decentralized way. This led us to conjecture that substantial 
benefits could come from developing an authorization framework that incorporates and 
unifies the axiomatic, analytic, and constructive bases for trust. So we designed such a 
framework and implemented it for Nexus. Specifically, we developed a language and 
logic NAL (Nexus Authorization Logic) for specifying and reasoning about credentials 
and security policies [4]. NAL builds on Abadi’s CDD access control logic by adding 
support for axiomatic, analytic, and constructive bases for trust and by adding new kinds 
of principals (groups and sub-principals) that help bridge the gap from the simplifications 
and abstractions found in CDD to the pragmatics of actual software applications. 

 
Besides implementing support for credentials and guards in Nexus, we built a 

suite of document-viewer applications. With each, the viewer application implements a 
guard and the document (not the human user, as might be expected) is the principal that 
issues requests for document display. CertiPics (Certified Pictures) enforces the integrity 
of displayed digital images by imposing chain-of-custody restrictions on the production 
pipeline; TruDocs (Trustworthy Documents) controls the display of documents that 
contain excerpts whose use is subject to restrictions; and ConfDocs (Conf Documents) 
protects confidentiality of documents built from text elements having security labels. 
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Principals in NAL. Distinct Nexus Authorization Logic (NAL) principals are assumed to 
have distinct names, with the name of a principal inextricably linked to the worldview of 
that principal. Naming schemes that satisfy these assumptions include: 

 
o Use a public key as the name of a principal, where that principal is the 

only entity that can digitally sign content using the corresponding private 
key. A principal named by a public key adds a belief S to its worldview by 
digitally signing an encoding of S. So, a digitally signed representation of 
the NAL statement S, where public key KA verifies the signature, conveys 
NAL formula: KA says S. 

 
o Use the hash of a digital representation of a principal as the name of that 

principal. Thus, a principal Obj is named by hash H(Obj ), and the 
principal includes a belief S in its worldview by having an encoding of S 
stored at some well known position in Obj . So Obj conveys the NAL 
formula H(Obj ) says S by having S be part of Obj. 

 
Public keys are attractive for naming principals because a credential conveying KA 

says S can be forwarded from one principal to another without any need to trust 
intermediaries—after forwarding, the digital signature continues to identify the principal 
that originally created the credential. But public-private key pairs are expensive to create. 
Moreover, private keys can be kept secret only by certain types of principals. With a 
TPM, you can associate a private key with a processor and keep it secret from all 
software that runs on the processor; without a TPM, you can associate a private key with 
a processor but keep it secret only from non-privileged software. And there is no way to 
associate a private key with a non-privileged program executing on a processor yet have 
that key be secret from the processor or from privileged software being run. 

 
Hashes are relatively inexpensive to calculate and do not require keeping secrets. 

But an object Obj and credential conveying H(Obj ) says S can be easily and 
undetectably changed into an object Obj’ that instead conveys H(Obj’) says S’: locate 
and replace S in Obj by S’, and then compute the new name H(Obj’). Also, note that a 
principal named by a public key can revise its worldview and create corresponding 
credentials at any time, whereas a principal named by a hash cannot. 

 
NAL is agnostic about what schemes are used to name principals. Our experience 

with building applications for Nexus suggests that public keys and hashes both have uses. 
Nexus also implements various specialized naming schemes for some of its abstractions 
(e.g., processes) that serve as principals.  
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The decision to authorize a request can be expressed as a question about formula 
derivation in NAL. An access request by a principal A is modeled using (i) NAL formula 
A says S to convey request particulars, (ii) NAL formulas C1, C2, ..., Cn for 
accompanying credentials and (iii) NAL formula PG for the authorization policy being 
enforced by guard G. The request is granted if and only if G determines that PG can be 
derived from 

 
(A says S)  and  C1  and  C2  and  ...  and  Cn 

 
using NAL's inference rules; otherwise the request is denied. 
 

With this setup, not only does the guard make an authorization decision but, 
through the derivation for PG, the guard documents a rationale for granting the request 
and makes clear the role each credential has played. The derivation is thus a form of audit 
log—and a particularly descriptive one, at that. The wide range of possible 
implementations for this derivation-based approach to authorization gives system 
designers considerable flexibility to make engineering trade-offs when implementing 
guards. Decisions the designer must make include: 

 
o Where is each credential stored? Credentials could be stored at the 

requesting principal, at the guard, or elsewhere in the system. 
 
o How is each credential obtained by the guard? Credentials could 

accompany a request, be fetched when needed by the guard, or be sent 
periodically to the guard. 

 
o Where and how is the derivation of the guard's authorization policy PG 

performed? This could be done by the requesting principal, it could be 
done by the guard (perhaps by coordinating a distributed computation 
based on subgoals in the proof), or it could be a service provided by some 
trusted third party. 

 
o How and when is each credential generated? If a credential corresponding 

to NAL formula Ci is issued, then we might expect Ci to hold thereafter. 
But changes to the system state could cause a principal to change its 
beliefs, falsifying Ci. Guards and other principals with access to the 
credential but lacking independent means for validating formula Ci  must 
be implemented with this reality in mind. 
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Sources of Derivations. Constructing a NAL derivation for some arbitrary given formula 
is an undecidable problem, because NAL terms include integers and rich data structures 
whose axiomatizations are undecidable. However, NAL formulas PG  for authorization 
policies found in practice are often easily derived when accompanying credentials have a 
prescribed form. For example, we might specify discretionary access control for requests 
from a principal A to access an object obj by writing the following NAL formula for PG: 
 

(A says access(obj ))   and  (A  owner(obj )) 
 

Derivation of this is trivial if we prescribe that requests A says access(obj ) are 
accompanied by a credential that attests owner(obj ) says A  owner(obj ). Or, the guard 
for obj might itself store an access control list ACLobj , which is interpreted as attesting 
owner(obj ) says A  owner(obj ) for every principal A appearing in ACLobj . 
 

An alternative to having a guard G perform a derivation of PG would be to have G 
check a derivation supplied with the request. This is a decidable task because, by 
definition, inference rule applications are mechanically checkable. To illustrate, we return 
to the discretionary access control given above. Instead of accompanying a request with a 
credential that attests to the needed delegation, a principal A making a request might 
provide a set of credentials and a derivation from those credentials of what is needed for 
establishing conjunct A  owner(obj ). 

 
 The idea of having derivations accompany requests is not a panacea. In order for a 
principal to produce a derivation of PG , that principal must know what PG  is, which 
requires divulging the criteria for authorizing requests. And sometimes we may want to 
keep principals unaware that different criteria apply to each. Also, having each different 
requester independently perform the derivation of PG makes changing PG difficult, since 
all principals that submit requests to guard G would have to be identified and updated. 
 
Credential and Policy Dynamics. Possession by guard G of a credential  puts the NAL 
formula C conveyed  among G's beliefs. Therefore, NAL models G's possession of a 
credential as: G says C. One might hope that 
 

(G says C)  ⊃ C 
 

would hold as well, although this is by no means guaranteed. The principal issuing a 
credential might well subsequently change its beliefs (perhaps because the state has 
changed) but after a credential has been sent elsewhere, that credential is no longer 
available to the issuer for update or deletion. Yet if (G says C)  ⊃ C does not hold for one 
or more credentials that a guard G has received, then the guard could have a NAL  
derivation of authorization policy PG from those credentials even though PG does not 
actually hold. 
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Even if a guard G could check the truth of NAL formula C conveyed by each 
credential that G uses, there is no guarantee that PG  would hold after this checking. The 
process of checking the truth of C will take time, and concurrent actions elsewhere in the 
system could falsify the formula conveyed by one credential while the others are being 
checked. However, by restricting system execution, guard construction, and/or what NAL 
formulas credentials may convey, we can ensure that PG will hold whenever it can be 
derived in NAL from a request and accompanying credentials. 

 
System execution generally satisfies certain restrictions—time never decreases 

and the past is immutable—not to mention restrictions coupled to the semantics of 
various system functionality and applications. This means that some truths do not change 
as execution proceeds, and this can be leveraged for defining credentials that cannot be 
falsified by future execution.  By imposing additional restrictions on execution by 
principals that falsify certain predicates, we obtain a second general approach for 
constructing credentials that satisfy (G says C)  ⊃ C.  

 
 

Implications for Privacy. Credentials used for authorizing a request convey, hence 
reveal, attributes of the requester. This can impinge on privacy, where privacy is defined 
as the right of an individual to control the dissemination and use of information about that 
individual. To protect privacy, we should strive to employ authorization policies that 
minimize the information needed about individuals. 
 
 Credentials-based authorization offers the flexibility to define policies and 
credentials involving only limited information about individuals. So credentials-based 
authorization provides what is needed for protecting privacy through system designs 
that instantiate the following principle, where an identity is a set of attributes. 
 

Principle of Minimal Identity. Employ identities that embody the smallest set 
of attributes needed for the task at hand. 

 
By way of comparison, in identifer-based authorization, access decisions depend only on 
a label associated with the principal making the request—there is no flexibility to 
disclose only certain attributes of the requester (although one can employ labels whose 
connection to an individual is impossible discern). Privacy with identifer-based 
authorization is, consequently, coarser-grained. Identifer-based authorization also admits 
privacy compromises based on correlating the labels used in different requests; 
credentials-based authorization does not, because correlated credentials do not imply 
correlated requesters. 
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The contents of a credential can be seen as a kind of privilege, since it provides 
a basis for authorizing requests. Logical implication defnes a partial ordering on these 
privileges: if C ⊃ C’ holds, then a credential A says C is considered stronger than A says 
C’. We might then view credentials-based authorization through the lens of the well 
known Saltzer-Schroeder mandate: 
 
            Principle of Least Privilege. Assign each principal the minimum privileges it 

needs to accomplish its task. 
 
And, in so doing, we discover this mandate offers the same guidance as the Principle 
of Minimal Identity! So with credentials-based authorization, security and privacy are 
both well served by expecting weaker credentials from principals. This account also 
clarifies that merits of preferring analytic and constructive bases for authorization to an 
axiomatic basis. The analytic and constructive bases allow credentials to embody exactly 
what is needed for authorization, and are thus consistent with the Principles of Minimal 
Identity and Least Privilege. The axiomatic basis, however, is ultimately a form of 
identifer-based authorization and, therefore, it is going to be coarse-grained, subject to 
linking attacks, and unlikely to satisfy either the Principle of Minimal Identity or the 
Principle of Least Privilege. There are thus some strong, principled arguments in favor of 
the authorization architectures that Nexus supports. 



17 
 

 

4 Conclusions 
 
Under the auspices of this funding, progress was made toward realizing the goal of 
constructing an operating system to support the construction of trustworthy applications.  
Additional work is needed to complete the system and test the ideas.  But much of the 
research involved ideas that transcend any single operating system implementation, and 
we expect to see these ideas used in other systems.  
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7. List of Acronyms and Terms 

 
ACL: Access Control List 
AS: Autonomous System 
BGP: Border Gateway Protocol 
CertiPics: Certified Pictures 
ConfDocs: Conf Documents 
CPU – Central Processing Unit 
DMA: Direct Memory Access 
DSS: Device Safety Specification 
ESM: External Security Monitor 
I/O: Input/Output 
IP: Internet Protocol 
IPD: Independent Protection Domain 
ISP: Internet Service Provider 
NAL: Nexus Authorization Logic 
OS: Operating System 
RVM: Reference Validation Mechanism 
SFI: Software Fault Isolation  
SNMP: Simple Network Management Protocol 
TCB: Trusted Computing Base 
TCP: Transmission Control Protocol 
TPM: Trusted Platform Module 
TruDocs: Trustworthy Documents 
UHCI: Universal Host Controller Interface 
USB: Universal Serial Bus 
 




