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1. Introduction 

Battlefield operations in the foreseeable future will depend heavily on network-centric computing systems 
that link a diverse multitude of geographically dispersed resources, operating on widely varied platforms, 
into a cohesive fighting force. The war fighter at all levels will depend on these unified systems to 
conduct successful multi-force operations in the 4-dimensional battle space. Such complex and widely 
dispersed operations expose network-based systems to unprecedented levels of reliability and security 
risks. 

Computer systems and network security are often limited by the reliability of the software running on 
constituent machines. Faults in the software expose vulnerabilities, pointing to the fact that a critical 
aspect of the computer security problem resides in software. Security holes and vulnerabilities are often 
the result of bad software design and implementation. Since reliability and security are so closely 
intertwined, this research focused on analyzing the reliability and security of a system. Being able to 
assess the security and reliability of the software is essential to the overall mission of the United States 
military. 

This research proposed to extend the principal investigators' proven metrics technology, combined with 
their extensive technical resources, to address the theoretical and technological underpinnings of widely 
dispersed network-centric software component design. The goal of this research was to provide 
component-design level information to support the accurate prediction of the reliability and security of 
individual and interdependent components in a network-centric environment. Successful prediction 
involves two levels of system understanding, architectural risk analysis and implementation analysis. 
Combining both analyses provided a higher likelihood of success. 

2. Background 

2.1 Design Metrics 

The design metrics research team at Ball State University has developed a metrics approach for analyzing 
software designs that helps designers engineer quality into the design product. Two of the design metrics 
developed are an external design metric Z)eand an internal design metric £),-, The calculation of De focuses 
on a module's external relationships to other modules in the software system and is based on information 
available during architectural design. The metric £>, incorporates factors related to a module's internal 
structure and is calculated during the detailed design phase of software development. These metrics 
gauge project quality as well as design complexity during the design phase and subsequent phases 
thereafter [ZAGE90]. The primary objective is to employ these metrics to identify troublesome modules, 
or stress points, in the structure of the software. 
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To corroborate the effectiveness of the metrics as predictors of fault-proneness, the design metrics team 
reexamines the software when error reports are available to determine to what extent the stress-point 
modules were indeed fault-prone. Over an extensive metrics evaluation and validation period, on study 
data consisting of university-based projects and large-scale industrial software, these design metrics 
consistently outperformed classical, well-known metrics such as LOC, V(G), and information flow 
metrics, as predictors of fault-prone modules [ZAGE93]. 

The design metrics De and D; have been computed on a number of systems and subsystems obtained from 
our industrial collaborators, including 

• Computer Sciences Corporation Standard Financial System (STANFINS) 
• Systems from the US Army Research Lab 
• Raytheon's Advanced Field Artillery Tactical Data System (AFATDS) 
• Harris' Radar Online Command and Control (ROCC) system 
• Three Northrop Grumman projects 
• A PBX system from Telcordia Technologies 
• Telecommunications systems from Motorola 

The empirical results over the entire validation period can be summarized by stating that the design 
metrics have identified at least 76% of the detected fault-prone modules 100% of the time. 

The design metrics technology also has been applied to an SDL telecommunications environment. SDL 
is a standard language for the specification and description of systems. SDL is used in the 
telecommunications area, as well as in other real-time, distributed and communicating systems to increase 
productivity, reduce errors and improve maintainability. Mappings from SDL to code have been 
developed [FLOC95]. One of our initial objectives was to map SDL artifacts to design metrics primitives. 
In our SDL research, we conducted a metrics analysis of SDL designs and assessed the utility and 
effectiveness of our design metrics on such models [ZAGE99]. We also refined our metrics model to 
incorporate additional SDL features, analyzed extensive error reports and observed metrics patterns that 
correlated with high error density SDL components [WONGOO]. 

There have been several attempts at extracting artifacts from software designs and calculating metrics 
from them or comparing them to established patterns. Some of these attempts have focused on the 
Unified Modeling Language (UML), since it has become the de facto graphical language for specifying, 
constructing, visualizing, and documenting software systems. These efforts have been an attempt to gauge 
the quality of the design early in the lifecycle when it is economically beneficial to make changes. It is 
well known that correcting an error encountered by an end-user is an order of magnitude more expensive 
than when finding it in earlier phases [ZAGE03]. Researchers are focused on two approaches for 
analyzing the quality of the design; comparing the existing design to existing design patterns or using 
metrics to identify risky areas in the design [ZAGE99]. 

In a recent study, we asked if UML classes with high numbers of change orders were highlighted as stress 
points by De. The results indicated that De correctly classified UML classes 89% of the time, with the 
conclusion that De can accurately identify the most problematic UML classes, as given by change order 
values [ZAGE06]. 

2.2 Software Reliability 

A significant amount of software reliability research has focused on software reliability estimation 
models. Existing methods for reliability estimation use program failure data or repeated appearance of the 
faults as inputs to an estimation model to predict the reliability of the software [MUSA87, CHA093, 
YANG95].    It has been argued that existing methods for software reliability estimation may fail to 



provide accurate reliability estimates [HORG95]. This may happen, for example, in the presence of an 
inaccurate operational profile. Experiments carried out using simulations and "real" programs provided 
evidence in support of the above argument [CHEN94a, CHEN94b]. A natural question to ask then is 
"how can one obtain reasonably accurate estimates of software reliability?" 

Experimental work provides evidence in support of the hypothesis that measurable attributes of software 
and of software designs are related to the reliability of the fielded code [STIN05]. The results of this 
study indicate that a positive relationship exists between the design metric D(G), which is a linear 
combination of Dc and D„ and the number of defects found in the product after it has been fielded. The 
relationship has been identified and quantified to a first approximation. Further, it has been shown that 
D(G) can be used to predict and measure the impact of design decisions on the expected reliability of a 
software product during the code and tests phases of development. The ability to identify and measure 
stress points in the software has also been shown. The concept of design significance was introduced and 
shown to be a viable and measurable attribute that can identify those components for which design 
decisions have a significant effect on the expected reliability of the software. These findings were 
sufficient to justify development and implementation of a high reliability engineering process in a 
Software Engineering Research Center (SERC) affiliate company. 

2.3 Software Security 

Software designs can be evaluated for software protection by applying three complementary techniques. 
First, a vulnerability assessment can be performed by calculating and interpreting metrics on the designs 
to identify, categorize and analyze security weaknesses. A second technique is to measure the 
conformance of the design to a specific style or pattern. Finally, the design can be scrutinized for 
detection of anti-patterns (patterns to be avoided). 

Intuitively, one would expect that vulnerability is directly proportional to complexity. Complex systems 
are often fielded with major, undetected vulnerabilities. Even with improved verification, laboratory 
testing and user testing, security vulnerabilities are fielded in delivered systems. According to most 
researchers and practitioners, the most common category of security vulnerabilities is flaws in software. 
Many of the observed problems are a result of poor design, but there are other issues that cause security 
problems as well. 

It is important for modern system developments to integrate anti-tamper technologies in order to protect 
critical program information. This does not come without cost, however, and must be carefully planned, 
developed, and tested to achieve maximum effectiveness. The principal investigators, in collaboration 
with researchers at Arxan Technologies, have explored cost models for determining the cost of anti- 
tamper security deployments in software systems [BRYA05]. The categories of protection design 
considered were manual, semi-automated, and fully-automated. These three categories are not only major 
cost drivers for the protection, but also have a major impact on its strength. 

2.4 Security Metrics 

Much work has been done in the area of identifying potential vulnerability-enabling code. Tools such as 
ITS4, RATS and FlawFinder identify specific functions within code. However, for security evaluation 
tools, these types of function-identifying tools are only marginally useful [HEFF04]. Many of these tools 
are simply function pattern matchers and will not provide any useful barometer to future attacks. 

Michael Howard of Microsoft first introduced an attack surface metric for the Windows operating system 
[HOWA03].  Since then it has been extended by several researchers [MANA05, GOLU05]. The basis of 



this metric is the opportunities of attack measured by notion of an attack surface of the system. The 
limitations of this metric are that it is specific to one system and cannot handle configuration changes. 

For the creation of the design metrics, the question that focused the search for the selection of the 
primitives was "Where do software designers or programmers commonly make mistakes within the 
development?" For security metrics, the question is, "How do external threats (attacks) enter the 
system?" An additional question is "What are the prerequisites of an attack?" Some researchers have 
included the concept of entry and exit points. The current external design metric De also includes 
measurements of these concepts. 

2.5 Modular Assessment Process 

As modules can be composed of collections of other modules, multiple module measurement iterations 
will contribute to the overall system measurement. The result is a set of reliability and security 
measurements and information that can support operational acceptance or structural integrity of the 
individual components as they are combined. The assessment process mimics software developed 
through components or component-based software development (CBSD). Similarly, reliability and 
security measurement has to be considered over an enormous range of types of technology and 
components. For example: 

• Software at code level, bit/register level 
• Software module, object 
• Software application 
• Software system, architecture 
• System, aggregation of software and hardware components (single, monolithic entity) 
• Networked system, where communication links and nodes lie within protected environments 
• System of systems, i.e., systems that are developed to independent goals, but are required to inter- 

operate 
• Systems with specific prime function; information processing, command & control, embedded 

real-time control etc. 
• System or component with a prime function to mitigate security risk 
• Internet technology component or system, where communication links and nodes are provided by 

many other parties 
• Grid systems 
• Mobile/ubiquitous systems [MURD06] 

For systems of the types listed above, the metrics must support aggregated levels of systems and services. 
However, the properties of compositions have not yet been defined. Systems are bound to change and 
that will result in additions or removals of components. To handle these possibilities, the measurements of 
security and reliability properties also should be amenable to change. 

2.6 Visualization 

Applying visualization to software has the potential to rapidly isolate the reliability and susceptibility 
problems, quickly leading to significant program improvements. Although the motivation for designing 
visualization tools may be obvious, how to design an effective tool is not so obvious. Many visualization 
tools exist but few of them are widely used in practice. Visualizing and understanding complex software 
architecture requires an enormous amount of effort and concentration. To assist in this task, an extensive 
amount of work has been done to develop visual browsers that provide the user with hierarchical views of 
the files, classes, and calls. Although these visual browsers exist, they are not widely used and have not 



been included in current development processes [LANZ03]. Traditionally, visualization tools present 
extractable facts as graphs or charts, but do not have as their goal an analysis and interaction emphasis. 
This lack of emphasis on analysis and interaction produces visualizations that are all content, but are 
lacking context, or meaning. The comprehensive assessment proposed in this research requires a rich and 
plentiful set of data. To understand this information, a visual environment replicating dimensions and 
layers is required to present the relevant information and characteristics of the system. After the 
specification of the framework was completed, a Reliability Appraisal and Vulnerability Evaluation 
(RAVE) environment was designed. A set of heuristics was compiled to determine the selection of 
appropriate visualizations (box trees, tree and file maps, graphs and layouts, etc.). 

3. Areas of Focus 

Reliability assessment 
Vulnerability assessment 
Metrics 
Unified assessment process 
Visualization and computerization of a unified assessment process 

4. Objective 

Our overall objective of the SMART project was to create a unified reliability and security assessment 
process for software systems. To meet the overall objective of creating such a process the following sub- 
objectives must be met: 

Directly measure software reliability by quantifying component level design and implementation 
information that accurately predicts the reliability of individual and interdependent components. 

Directly measure software security by quantifying component level design and implementation 
information that accurately predicts the security of individual and interdependent components. 

Design and implement interface visualization tools for reliability and security assessments 
(RAVE prototype). 

5. Challenges 

The quantitative measurement of software reliability and security has been a long-standing challenge. As 
stated in the 2002 Computer Research Association Conference on "Grand Research Challenges" in 
Computer Science and Engineering, one grand challenge is to create systems "you can count on". This 
means that applications must be reliable and secure to enable a whole new class of critical services. The 
new systems will contain a large number of heterogeneous units that evolve, accommodate change and 
grow. This challenge is just not technology related, but is a critical national goal that depends upon and 
drives technology. Outlined from this conference were ten technical challenges to achieve the goal of 
systems you can depend on. Three of these are directly pertinent to this proposal. 

• Develop meaningful metrics of system security, stability, etc. 
• Develop system auditing and analysis techniques 
• Develop broad architectural rethinking 

To develop meaningful metrics, one of the challenges is not only to identify current vulnerabilities, but 
also to highlight future vulnerabilities. Since 1988, the Computer Emergency Response Team 
Coordination Center (CERT/CC) at Carnegie Mellon University has been tracking security incidents. The 



number of security incidents has been doubling every year. Even more significantly, the number of 
distinct vulnerabilities is also growing at an exponential rate and these statistics are only for the 
vulnerabilities reported. Even though existing tools have enabled developers to quickly identify 
suspicious signatures, the unpredictability of new attacks requires a much broader approach. 

Another challenge is the disappearance of a useful notion of a defensive "perimeter". Threats can stem 
from anywhere and attempting to exclude attackers is no longer an option. Closely related to seamless 
perimeters are composability challenges. For example, in military coalition operations, new ad hoc 
partnership structures will be created dynamically. These partnerships are necessary for flexible 
communication and coordination and can be created by adding new components to an already dynamic 
system. Rules guaranteeing that two systems operating together will not introduce vulnerabilities that 
neither have individually are either nonexistent or still in their infancy. Systems can also be constructed 
with many technologies and a single assessment technique may not be enough to handle their diversity. 

The complete assessment system must produce a synergistic evaluation where redundant detections must 
be suppressed, complementary detections combined and localization of component assessment along with 
system assessment must be available as well as accurate mappings to source. Therefore, a unified 
assessment of reliability and security also is a challenge. 

The creation of a user-friendly visualization tool is difficult and time-consuming; it depends heavily on 
the choice of visual metaphors and interface design. The metrics that will have the highest impact upon 
security and reliability are not known a priori, and so the design of the visualization tool is dependant on 
progress on the analytical front. The completion of the visualization tool will be hindered by delays or 
refactoring in any other part of the process, such as data acquisition, data analysis, metric selection and 
testing. We hypothesize that the visualizations can be based on UML and other common graphical 
languages. However, we will not force the data to fit into these models if it is inappropriate. It may be 
necessary to develop custom notations or adopt uncommon visual languages to best fit the security and 
reliability metrics. This will likely increase the amount of training required to use the tool, compared to 
cases where conventional notations are applicable. 

Meeting any of the challenges listed here will extend the boundaries of quantifying software reliability 
and security. 

6. Approach 

The objective of this research was a unified reliability and security assessment process. We believe that 
reliability and security are inexplicably linked (see Figure 1). Most vulnerabilities are unintentional, not 
all defects are exploitable vulnerabilities, and not all vulnerabilities are defects. These defects can be 
accidental, or they can be intentional, and the latter may be malicious (Trojan horses, mtrap-doors) or 

non-malicious (resulting, for example, from deliberate 
trade-offs between security and efficiency). All appear to 
have reliability analogies except malicious intentional 
defects. From previous work, a software reliability 
metrics framework had been developed. This framework 
was evaluated for its vulnerability-discovery rate. Several 
systems with data on previously discovered vulnerabilities 
were studied to examine the dynamics of vulnerability 
discovery. 

Figure 1: Defects and Vulnerabilities 



In the proposed work, we are extending the latest research in software reliability and modeling to address 
complex network-centric systems. Analysis began with the external design metric, Dc, which provides a 
reliability estimate at the component design level, and the internal design metric, Dj, which provides a 
reliability estimate at the code level. As we investigate enhancements to the design metrics related to 
security, the metric Dj will be augmented to account for the kinds of low-level attacks that can be made in 
C, C++ and Java.  As depicted in Figure 2, we see 
a definite parallel of our reliability process and the 
new security process. The most common cause of 
adversarial-initiated harm is exploitation of 
programming defects and these vulnerabilities 
overlap with fault-prone modules. Security holes 
and vulnerabilities are often the result of bad 
software design and implementation and since the 
design metrics are good at identifying fault-prone 
components, we believe we have a good start at 
identifying vulnerabilities in software. 
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Figure 2: Parallels between Reliability and 
Security in Software 

Sometimes software security engineers are given a product that they not familiar with and are asked to do 
a security analysis of it in a relatively short time. A knowledge of where vulnerabilities are most likely to 
reside can help prioritize their efforts. In general, software metrics can be used to predict fault- and 
failure-prone components for prioritizing inspection, testing, and redesign efforts. We believe that the 
security community can leverage this knowledge to design tools and metrics that can identify 
vulnerability and attack-prone components early in the software life cycle. We analyzed a large 
commercial telecommunications software-based system and found that the presence of security faults 
correlated strongly with the presence of a more general category of reliability faults. This, of course, is 
not surprising if one accepts the notion that security faults are in many instances a subset of a reliability 
fault set. 

However, security is more complicated and is a system-wide property where real attackers are actively 
trying to compromise software. The overall architecture which results from a combination of OS-level 
and third-party components needs to be reviewed and analyzed for the uncovering of security problems. 
Most applications are designed to span multiple boundaries of trust, and the vulnerability of any given 
component varies with the platform (e.g., J2EE application on Tomcat/Apache/Linux) and with the 
environment (client network versus Internet). Security must be assessed from two levels, namely the 
component level and the environment. Few security assessment frameworks address the variability of the 
core environment and this could be fatal when considering highly distributed applications, service 
oriented architectures or web services. Our assessment of the component-by-component basis (internal 
and external) is being evaluated through the original design metrics. Additionally, the environmental 
issues (language, operating system, container systems, authentication methods, network, etc.) will be 
measured through a new set of environment metrics which we call Ee and E( (external and internal). 
Whereas the metrics De and Dj assess the external and internal design complexity of a module using 
primitives such as inflows, outflows, fan-in, fan-out, data structure manipulations and central calls, the 
external environment metric Ee assesses the environment level and the internal environment metric Ei 
assesses the local architectural impact, allowing for two additional levels of system understanding. (See 
Figures 3 and 4.) 
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The attempt to quantify an objective indication of potential software reliability and security is a major 
step in the process of improving current systems. Our proposed quantification takes an aggregate 
snapshot approach instead of addressing a particular aspect of risk. This research approaches risk at two 
points, reliability and vulnerability. Additionally, reliability and vulnerability should be addressed at the 
various layers of the system starting with the individual system components and reaching to the higher 
layers of the platform and network. Each layer will be individually assessed and integrated to provide a 
robust and accurate picture of a system's reliability and security posture. 

To complete the layered approach, the metric primitives that comprise the environmental metrics Ee and 
Ei must be investigated and determined. The following items are being considered during the 
development and analysis of metrics for the purpose of measuring a software component or architecture 
on the basis of its security risk: 

• Metrics must yield quantifiable information (percentages, averages, etc.) 
• Data supporting metrics need to be readily obtainable 
• Only repeatable processes will be considered for measurement 
• Metrics must be useful for tracking performance and directing resources. 
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Figure 4: Locations of Primitive Values for Ee and Ejfor the System S Shown in Figure 3 

A comprehensible, cohesive picture of a system's reliability/security assessment requires an integrated 
knowledge solicitation consolidated into a topological framework. This framework should encompass the 
network topology, each individual system's architecture, threat data and environment data in order to link 



system level concerns to the design of the software. The framework must support our analysis for a 
module, a component, a tier, and an environment layer while also applying the different principles of 
measuring threats and vulnerabilities for the respective layers. 

6.1 SMART Visualization Concept 

This section describes the motivation behind mediated metrics, metrics whose values are specified 
interactively by a security metrics engineer. Incorporating this form of metric analysis requires tool 
support, and a conceptualization of such a tool, RAVE, is presented. 

Best practices dictate that large software systems should be developed in modules. By separating concerns 
into modules, a software engineer can reduce the coupling and cohesion between subsystems. This has 
many benefits including the facilitation of communication and maintenance. However, the definition of 
module boundaries is sometimes subjective, especially in large software systems where in a module may 
comprise many smaller modules. Component-based systems, service-oriented architectures, and all 
object-oriented software are conceptually composed of many hierarchies of modules. 

The Zage design metrics, De and Dj, combine intra- and inter-module measurements to gauge the 
complexity and error-proneness of software systems [ZAGE93]. This module-based approach to software 
analysis naturally extends to security and reliability research, where intra- and inter-module metrics can 
reveal, during design, software's proneness towards vulnerability. 

There are two primary complications to predicting vulnerabilities using metrics: 

1. the hierarchical and module boundaries may vary from system to system, and 
2. the relative impact of potential vulnerabilities may be difficult or impossible to determine 

automatically. 
A brief description of each of these complications is provided below, followed by an explanation of the 
role of visualization in ameliorating these difficulties. 

6.1.1 Complications of Module-based Metric Analysis 

The acquisition of module boundary information requires strict definitions that are dependent on 
implementation language, context, and environment. Measuring software after it is implemented is 
complicated by the separation of the original design from the actual implementation. There is strong 
potential for incremental or even fundamental changes in software design from its conceptualization to its 
implementation. The module boundary definitions that one may extract from software artifacts, such as 
directories or namespaces, may or may not reflect the semantic model of the software designer. 

Module definitions are frequently hierarchical. The libraries, packages, components, and types that make 
up a program are nearly always organized within a nested hierarchy. Depending on one's perspective, 
each level may be considered a "module." The Java API provides a convenient example of this 
phenomenon. The package javax.swing contains (most of) the Swing user-interface library, and so it may 
be considered to be a module. However, within this package are nested packages javax.swing.table, 
javax.swing.plaf, etc., and when one is considering the design of the Swing API, each of these is a 
module. 

Regarding the second complication of vulnerability prediction through metrics analysis, there are 
categories of vulnerability that are difficult or impossible to correctly analyze automatically. While 
metrics, such as inflows and outflows can be determined through static analysis (though not without their 
own complications), other classifications do not share this luxury. For example, the degree to which a 



module is shared across threads and processors is important when assessing potential vulnerabilities. 
Determining whether or not a method executes concurrently is undecidable. A similar problem exists for 
I/O vulnerabilities. Network I/O has higher potential for security vulnerabilities than local storage I/O, but 
in languages such as C, both are abstracted by integer file descriptors after the device connection is 
opened. Hence it may be difficult or impossible, especially in the context of method pointers or dynamic 
code generation, to determine exactly what kind of I/O is being performed for any primitive read or write 
operation. 

6.1.2 The Role of Visualization 

The complications of security analysis through module-based metrics can be minimized through mediated 
analysis. Rather than attempting to automatically collect metric data from software design artifacts, 
whether at design time or afterwards, a designer can use a software tool to interactively mediate the 
analysis. An obvious drawback to such an approach is that a security metrics engineer would require 
training in both security metrics and the tool itself, but the potential advantages are worthwhile. Such a 
tool could be used during early design, software implementation, and post-mortem analysis to locate 
modules with potential security vulnerabilities. 

Measurements that are difficult to collect automatically can be directly manipulated by a security metrics 
engineer. As examples, we revisit level of concurrency and I/O classification. A software designer should 
be able to estimate the relative concurrency of modules. That is, one who understands the design of a 
system should be able to differentiate between modules that tend towards high levels of concurrency and 
those that are only run on one or few threads. The reliability or security problems associated with 
concurrency, such as deadlock or race conditions, can be given appropriate weights on a per-module 
basis. Similarly, a security metrics engineer can interactively assign appropriate weights to modules based 
on an understanding of their I/O requirements. 

Hierarchical modules can be effectively visualized using established visualization techniques. Nested 
module designs can be represented using hierarchy graphs, which can be interactively visualized using 
techniques such as those described by Buchsbaum and Westbrook [BUCHOO]. For very large systems, 
where the module hierarchy is too complex for a single user to navigate, visual hierarchical aggregation 
can be used to present the user with a graph of reduced complexity that still expresses the essential 
properties of the design [NOEL04]. This strategy has been effectively used for visualizing complex attack 
graphs [SHEY02]. 

6.2 Technology Considerations 

Java was selected as the primary implementation language for this project. Static type checking is 
desirable for a large-scale, extensible, modular system. The capacity for rapid prototyping is reduced, but 
this tradeoff is a net positive: extensibility and robustness are more appropriate goals for this project. 

Eclipse (http://www.eclipse.org) will be used as a development environment. It provides a useful interface 
to the standard tools expected of a modern IDE, and support for subversion (http://subversion.tigris.org) 
can be added through the Subclipse plug-in (http://subclipse.tigris.org). These are all free, open-source 
tools, and their use does not encumber any software licensing restrictions. 

There are several options available for the module drawing engine. Popular utilities for graph drawing in 
Java include GEF (http://www.eclipse.org/gef), JGraph (http://www.jgraph.org), and Java2D 
(http://java.sun.com/products/java-media/2D). These libraries are well-known and relatively simple, but 
they do not elegantly support animation or zoomable user-interfaces (ZUIs). Java ZUI libraries include 
Piccolo      (http://www.cs.umd.edu/hcil/jazz),      prefuse      (http://www.prefuse.org),      and      ZVTM 
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(http://zvtm.sourceforge.net). Of these, prefuse is the most robust and most complicated, in analogy to 
OpenGL for 3D graphics: it is low-level enough to allow practically anything to be built on top of it, but 
because it is a low-level library, development times are increased. It is likely that prefuse is the best tool 
available, but since the visual metaphors for mediated module are not well understood, it is premature to 
tie visualization to a specific graphics engine at this time. The proposed solution is to build an abstraction 
layer for the visualization, which will allow for quick proofs-of-concept to be generated in a relatively 
simple, high-level library such as Swing, and once the user interactions are better understood, this can be 
swapped with a prefuse implementation (or another, if it is deemed more appropriate). 

As mentioned above, abstraction and extensibility are key to this project. Wherever possible, human- 
readable and verifiable data formats such as validated XML will be used, since these will facilitate 
development of modules regardless of their dependencies' being complete. For example, an engineer 
could craft an XML document describing a system's values for some metric x, even if the associated 
metric tool did not yet support the collection and analysis of x. 

7. SMART Project 

7. / Study Data Characterization 

To begin collecting data regarding vulnerabilities, a list of requirements for software selection were 
determined. First, the software had to be mature to ensure that there was a long list of vulnerabilities. 
Second, the vulnerabilities needed to be well-documented. Third, the vulnerabilities needed to span a 
wide variety of categories so that the under-lying design issues across different vulnerability types could 
be understood. Finally, the source code for the projects needed to be available so that the vulnerabilities 
could be located in the code. We selected open source systems that are typical in a network environment 
to broaden the type of applications under consideration. 
The study data include: 

• Apache http server - 
• Since April 1996 Apache has been the most popular HTTP server on the WWW. 
• As of March 2009 Apache served over 46% of all websites and over 66% of the million 

busiest. 
• OpenSolaris - an operating system 
• FireFox - 

• Firefox had 22.05% of the recorded usage share of web browsers as of March 2009, 
making it the second most popular browser in terms of current use worldwide, after 
Internet Explorer. 

• OpenSSH - Set of computer programs providing encrypted communication sessions over a 
computer network using the ssh protocol. 

• Drupal - Content Management System (CMS) 
Over 350,000 subscribed members 

• DrupalSites.net is a directory that list thousands of websites powered by Drupal 
• Winner of Best Overall 2008 Open Source CMS Award for Second Year in a Row 

Listed as one of the Open Source PHP applications that changed the world 

All of the open source systems were selected for analysis possessed multiple versions. The class diagram 
and call graph for each selected system was generated. Each system is broken down to the component 
level. For each component, a set of metrics was collected and for each problem report, components 
changed to correct the problem were identified. Problems were classified by severity (catastrophic, 
severe, major, minor, no effect), defect type, and classification of software vulnerability. 
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One of the initial steps of the project was to survey the different types of software vulnerabilities and 
place them into specific categories. During the survey process, the Common Weaknesses and 
Enumeration (CWE), a community-developed dictionary of common software weaknesses, published by 
the MITRE Corporation was selected as the basis for categorizing vulnerabilities. The CWE provided us 
a starting point at identifying the various types of software vulnerabilities in different types of software. 

In addition to the CWE, MITRE Corporation also maintains a list of standardized names for 
vulnerabilities and other information security exposures. This list, a community-wide effort, is known as 
Common Vulnerabilities and Exposures (CVE). Vulnerability names are assigned numbers. The open 
source systems that we picked had indexed their vulnerabilities using the Common Vulnerabilities and 
Exposures (CVE) nomenclature. 

Open source systems studied in this project include httpd, OpenSSH, FireFox 2.0, OpenSolaris, and GNU 
TLS. Two open source software systems, httpd and OpenSSH, were selected to begin our analysis of 
vulnerabilities. The rationale for starting with these two systems was that both systems had well- 
documented vulnerabilities and the corresponding fixes across multiple versions. They also could be used 
both as standalone products and as components in many larger systems. As seen in Figure 5, we wanted 
to represent applications that comprised typical networks: Firefox (browser), OpenSolaris (an OS), 

A OpenSSH (securing information), and httpd (server). Web technology was also 
^^ ^^^^^^ added by evaluating Drupal.   Web applications' functionality and user base has 

A^^^fl ^^ evolved along with the threat landscape. Although controls such as network 
firewalls are essential, they're insufficient for providing overall web application 
security. They provide security for underlying hosts and a means of 

" Dn,P*1 communication, but add little to aid the application in resisting attacks against its 
software implementation or design. Analyzing the various applications that may 
comprise   larger   systems   could   reveal   larger   component   interactions   and 

Figure's: Evaluated    subsequently focus aggregate system measurements. 
Applications 
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The reported vulnerabilities for the versions selected (See Table 1) were accumulated and mapped to 
CVE vulnerability names and numbers. Table 1 contains a summary of the versions used in the analysis 
and the total vulnerabilities in those versions. To gain a sense of the size of the systems under study, see 
Table 2 for sample product versions. 

Table 1: Product Versions and Number of Vulnerabilities 

Product        Versions cataloged Total Vulnerabilities 

httpd 2.0.35-2.2.2 41 

OpenSSH    1.2-4.3p2 27 

Table 2: Total Number of Modules and Files for a Product Version 

Product Approximate No. of Modules Number of Files 

httpd 2.0.45 4972 724 

OpenSSH 3.8pl 1228 243 

The accumulation and identification of vulnerabilities for the subject systems take the greatest amount of 
the effort for this project. 
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The httpd reported vulnerabilities were placed into CWE categories. The primary reason for this 
categorization process was to understand the most common types of software vulnerabilities. This 
information assisted us in the process of identifying software design and code constructs that lead to 
software vulnerabilities. The categorization led to a better understanding of types of software 
vulnerabilities, a benchmark of the range of software vulnerabilities analyzed, and to finally generate a 
list of security metrics primitives. The vulnerabilities were mapped to the most granular classification in 
the CWE. To get a better top-down view of the reported httpd vulnerabilities, we coalesced all 
vulnerabilities into categories that were a few levels up in the classification tree. Of the 41 reported 
vulnerabilities, 38 were classified into CWE categories. The remaining 3 did not fit into any CWE 
category. All 38 of the classified vulnerabilities fell under the Location category, whereas none fell under 
the Motivation/Intent and Deprecated categories. 

Of the 38 Location-based vulnerabilities, 37 were found in Code and 1 was found in Configuration. All 
37 Code based vulnerabilities were found in the Source Code and none was found in Byte/Object Code. 
The categorization of the 37 source code vulnerabilities for the httpd source code is listed in Table 3. 

Table 3: CWE Categorization for httpd Source Code Based Vulnerabilities 

Code Quality 11 
Data Handling 19 
Security Features 5 
Error Handling 1 
API Abuse 1 

The reported vulnerabilities across all versions of OpenSSH were also mapped into the most granular 
classification in the CWE. Of the 26 reported vulnerabilities, 20 were classified into CWE categories. 
The remaining 6 did not fit into any CWE category. All 20 classified vulnerabilities fell under the 
Location category whereas none fell under the Motivation/Intent and Deprecated categories. 

All 20 Location-based vulnerabilities were found in Code and none were found in Environment and 
Configuration. All 20 Code based vulnerabilities were found in the Source Code and none was found in 
Byte/Object Code. One vulnerability was classified in two different categories, Data Handling and Code 
Quality. Table 4 contains the CWE categorization of the 20 source code based vulnerabilities for 
OpenSSH. 

Table 4: CWE Categorization for OpenSSH Source Code Vulnerabilities 

Code Quality 2 
Data Handling 14 
Security Features 2 
Error Handling 1 

API Abuse 2 

The reported vulnerabilities across various versions of Firefox were also mapped into the most granular 
classification in the CWE. Of the 31 reported vulnerabilities in Firefox 2.0.0.1, 18 were classified into 
CWE categories. The remaining 13 did not fit into any CWE category. All 18 classified vulnerabilities 
fell under the Location category, whereas none fell under the Motivation/Intent and Deprecated 
categories. 

All 18 Location-based vulnerabilities were found in Code and none were found in Environment and 
Configuration. All 18 Code based vulnerabilities were found in the Source Code and none were found in 
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Byte/Object Code. The categorization of the 18 source code vulnerabilities for the Firefox 2.0.0.1 source 
code is listed in Table 5. 

Table 5: CWE Categorization for Firefox 2.0.0.1 Source Code Vulnerabilities 

Code Quality 1 
Data Handling 10 
Security Features 2 
Error Handling 5 
API Abuse 0 

Of the 35 reported vulnerabilities in Firefox 2.0.0.2, 30 were classified into CWE categories. The 
remaining 5 did not fit into any CWE category. All 30 classified vulnerabilities fell under the Location 
category, whereas none fell under the Motivation/Intent and Deprecated categories. 

All 30 Location-based vulnerabilities were found in Code and none were found in Environment and 
Configuration. All 30 Code based vulnerabilities were found in the Source Code and none were found in 
Byte/Object Code. The categorization of the 30 source code vulnerabilities for the Firefox 2.0.0.2 source 
code is listed in Table 6. 

Table 6: CWE Categorization for Firefox 2.0.0.2 Source Code Vulnerabilities 

Code Quality 0 
Data Handling 30 
Security Features 0 
Error Handling 0 
API Abuse 0 

Of the 92 reported vulnerabilities in Firefox 2.0.0.5, 91 were classified into CWE categories. The 
remaining 1 did not fit into any CWE category. All 91 classified vulnerabilities fell under the Location 
category, whereas none fell under the Motivation/Intent and Deprecated categories. 

All 91 Location-based vulnerabilities were found in Code and none were found in Environment and 
Configuration. All 91 Code based vulnerabilities were found in the Source Code and none were found in 
Byte/Object Code. The categorization of the 91 source code vulnerabilities for the Firefox 2.0.0.5 source 
code is listed in Table 7. 

Table 7: CWE Categorization for Firefox 2.0.0.5 Source Code Vulnerabilities 

Code Quality 2 
Data Handling 69 
Security Features 20 
Error Handling 0 
API Abuse 0 

We collected similar data and performed similar analysis on OpenSolaris. All 24 reported vulnerabilities 
were classified into CWE categories. Out of the 24 classified vulnerabilities, all 24 fell under the 
Location category whereas none fell under the Motivation/Intent category. 
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Out of the 24 Location based vulnerabilities, all 24 were found in Code and none were found in the 
Configuration. Out of the 24 Code based vulnerabilities, all 24 were found in the Source Code and none 
were found in Byte/Object Code. The categorization of the 24 source code vulnerabilities for the 
OpenSolaris source code is listed in Table 8. 

Table 8: CWE Categorization for OpenSolaris Source Code Vulnerabilities 

Code Quality 6 
Data Handling 5 
Security Features 8 

Time and State 5 
Error Handling 0 
API Abuse 0 

It is obvious that the majority of the reported vulnerabilities are in the source code. Since source code is a 
descendant of the software design, it seems intuitive that errors in design may have caused the majority of 
the vulnerabilities identified. 

7.2 Identifying Vulnerable Modules 

Vulnerabilities were cataloged for all versions of the selected open source software. Many references 
were consulted to identify the exact nature and location of each reported vulnerability. For example, 
vulnerability reports for httpd were collected from the Apache project's website [Apa07]. OpenSSH did 
not keep detailed vulnerability reports for the portable branch, so these were collected from Security 
Focus [Sec07]. When necessary, information from the MITRE Common Vulnerabilities and Exposures 
(CVE) database [MITR07], bug databases, and mailing lists were used. Because these systems were 
written in C, there was some difficulty in determining module granularity. Because there is no concept of 
classes or namespaces, it was decided that module granularity should be at the function level, and the 
terms \module" and \function" can be used interchangeably. Many of the vulnerabilities are documented 
in the MITRE CVE database. For each vulnerability, the corresponding CVE number (if provided) and a 
possible CWE classification were recorded. These were to help catalog the type of vulnerability. The 
affected versions of the software were also cataloged. Affected versions were not always accurately 
provided for the OpenSSH vulnerabilities, so any uncertainties were noted. In order to analyze the 
vulnerabilities, each one was narrowed down to the file and function in which it originated. Sometimes 
location information was obtained by looking at published patches to the code. When published patches 
were not available, fixed versions and vulnerable versions of the code were run through diff, and the 
resulting output was carefully analyzed. Developer mailing lists were useful in narrowing down the 
vulnerability locations. Once located, the nature and specific causes of the vulnerabilities were noted. 

There are a few limitations in cataloging the exact locations of the vulnerabilities within the code. In cases 
where the location was not published, diff output had to be analyzed to find the modified functions. Since 
we are not familiar with the code, it is possible that some functions may have been mistakenly labeled as 
vulnerable or at least contributing to the vulnerability in some way. Another difficulty in finding exact 
locations within the code is that security vulnerabilities often arise as a result of communication between 
modules, rather than the modules themselves. For example, if the responsibility for filtering input is split 
between a few modules, and part of a string is accidentally left unaltered, it is uncertain which module 
was responsible. Because of such situations, any potential participants in a vulnerability were documented 
as well.   Figure 6 displays, in general, our process of extracting the information required to validate 
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vulnerability predictiveness. The beginning tasks can be divided into two parallel processes, one 
analyzing the selected system vulnerabilities and identifying the modified code, and the other collecting 
the metrics on the selected system. Once these two tasks are performed the information is matched and 
merged to form the data for vulnerability analysis. 

Selected         am 
System's 

Published CVS    ^_ 
Vulnerability 

updates 
It 

Vulnerability 
Updates by 

module 

Selected 
representation 

Metrics 
On Modules 

Figure 6: SMART'S Data Collection and Analysis Process 

After collecting the vulnerability reports, a few patterns were noted. Vulnerabilities were often found in 
the following areas: 

1. Large functions. 
2. Areas of high complexity. 
3. Areas of input handling. 
4. Areas involving encryption protocols. 
5. Areas involving platform-dependent code. 
6. Asynchronous or concurrently called functions. 

In addition to this list, there were many vulnerabilities that didn't seem to fit into any of those categories. 
These observations, along with the CWE categories, were used as a general guideline of what to look for 
when analyzing the code. If some properties of these observations can be statically measured, then it is 
possible that these may be used as primitives for a future metric. 

7.3 Metrics to Identify Vulnerabilities 

A series of metrics were used to attempt to capture information regarding the environment and internal 
properties of a module. In particular, many of these metrics were geared at pinpointing the previously 
mentioned observations. Quantitative metrics were computed for Apache httpd versions 2.0.36 and 
2.0.48, and OpenSSH 3.2.2pl, 3.7.lpl, and 3.8pl. These specific versions were chosen because 
collectively they were representative of the types of vulnerabilities suffered by each software package. 

A commercial tool, C++ Understand, was selected to assist in the collection of other metrics. This tool 
also includes an API to customize the collection process. The tool collects various metrics such as 
cyclomatic complexity, nesting levels, knots, and in/out-flows at the function scope, as well as various 
metrics at the file and project scopes. With C as the source language, a module was restricted to that of a 
function definition. In addition to the metrics provided by the tool, other customized metrics were 
collected based on our previous list of observations. 
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We hypothesized that areas of high I/O and asynchronous events may be found by finding the appropriate 
system calls in the code. However, functions doing raw I/O in these software packages are not usually 
vulnerable to attack. It was thought that because these functions would play a large part in the attack 
surface, they would possess more vulnerabilities. Instead, vulnerabilities were found further up the call 
tree, where complex logic was applied to the input. 

A metric for pinpointing areas addressed in our initial observations was desired. We felt that scanning for 
relative positions of I/O and system calls would be helpful. Originally, a call tree metric was developed 
that counted the number of levels in the call tree above an I/O call. It is very possible that the location of a 
module relative to an I/O call may serve as a metric primitive. However, unexplained inaccuracies were 
discovered in the tool output. It is uncertain whether these inaccuracies were due to a flaw in the tool, or a 
limitation of the Understand for C++ API. Because of the inaccuracies, this metric was omitted. 

As an alternative, a neighborhood metric was developed. In the neighborhood metric, a module is scanned 
to see how "close" it is to a vulnerability. Given a module m, a call tree depth d and a list of vulnerable 
modules v, the neighborhood metric recurses d levels in the call tree above and below m, and counts the 
number of modules from v that were encountered. Such a metric may identify environmental properties of 
a vulnerability. 

To account for code complexity, the De, Dj, and D(G) metrics were used. These metrics have been shown 
to identify complexities in code with much success [ZAGE90, ZAGE93]. These design metrics also 
identify areas that may need to be redesigned. This is very useful when trying to identify design factors 
leading to security flaws. 

Metrics collected by C++ Understand were combined to form composite metrics using the definitions of 
Dc, D| and D(G) as published in [ZAGE93]. It was first assumed that the conventions that are used in 
C++ Understand to collect the primitives for these design metrics would result in design metric values 
that closely approximate those calculated by the Zages and validated over a 17-year period. This was not 
the case. In what follows, we will refer to the design metrics from C++ Understand, in italics as De, D\ 
and D(G). 

Most of the open source applications selected consisted of C files. Only Drupal consists of PHP, INC, 
JavaScript, Perl, XML files. To many, PHP is one of the most popular and wide-spread web languages. 
For each analysis, the source files are converted into a customized XML representation. For the C source 
files, there is the Design Metrics Analyzer (DMA) tool. For PHP we identified a tool, PHP-AST that 
parses a PHP document to create an XML document. The XML output is highly desired because the 
DMA tool uses XML as the fundamental input to collect metrics. After several investigations, it appears 
that PHP-AST lists the statements internal to a PHP module as an xml tag label ACTIONxc, where xx is 
an integer counter. At first, it looked as if each statement type was mapped to a particular ACTION, but 
this does not appear to be case. They are assigned and incremented as the application parses through the 
PHP modules. A defined action to tag is required for our analysis, thus the development of a PHP2XML 
was initiated. 

The C open source applications were reevaluated. The metrics were recalculated for Apache v 1.3.1. 
Version 1.3.1 consists of 144 files with an identified 8 vulnerabilities. For the De metric analysis, with 
10% of the modules highlighted, 87.5% or 7 of the 8 vulnerable modules were identified. 

The analysis of OpenSolaris began. OpenSolaris has 22,600 files in the downloadable tar file. An attempt 
was made analyze all the files. DMA ran out of memory at approximately the 5000* file. These files 
totaled several million LOC. From this fast amount of code, twenty-three modules had thirty-seven 
changes because of vulnerabilities.    To identify the vulnerabilities, we are trying to select one out of 
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every 10,000 modules! The vulnerability updates were grouped into two stems of the source code, 
eighteen modules on one stem and five modules on the other for the total of twenty-three modules. The 
"5-stem" consisted of twenty-nine files or 90,417 xml tags. The metrics were calculated for this stem. For 
the De metrics analysis, with 10% of the modules highlighted, 60%, three out the five vulnerable 
modules and 69%, nine out of thirteen changes were identified. 

The C/C++ programming language is incomplete without its macro preprocessor. With disciplined use 
the preprocessor can reduce programmer effort, improve portability and performance. It is also viewed as 
a source of difficulty for understanding, modifying and analyzing C/C++ programs. C++ is a terrible 
language for tool vendors to handle. There are only a handful of people in the world capable of writing 
an accurate parser to read and understand C++ source files in all their template-riddled complexity. 
Additionally, the preprocessor transforms the visible source code into something quite different before it 
is submitted to the compiler. Unless the exact set of preprocessor defines are known to the static analysis 
tool, an overwhelming number spurious or plain incorrect warnings can be expected or just silenced. Most 
tools make no attempt to analyze macro usage, but simply preprocess their input. Since the type of 
applications that are being analyzed for vulnerabilities are cross-platform, many of the C source files are 
riddled with preprocessor code. This may be confounding difference between tools that analyze C/C++. 

We have evidence that suggests design plays an important role in software security, since many of the 
vulnerable module design metrics primitives would be stress points in the subject system. We have also 
isolated calls within modules that use, access or modify system resources, such as 

Channels - sockets, rpc 
Services 
Executables - libraries 
Files - config, log, temp, authorization, metadata 
Scripts 
Accounts 
Symbolic link 
CGI 
Web pages 
Any persistent data 

7.3.1 Comparisons of Design and Structure 

In order to investigate the impact of design on security, it is necessary to comment on the designs of some 
of the selected software. Both OpenSSH and httpd are portable software, meaning they execute on many 
different architectures and operating systems. OpenSSH is restricted to Unix variants. In addition, each 
software suite has multiple features that can be switched on and off at compilation time or modified at 
run-time. Both software packages are written in C. The two systems have varying approaches for 
accomplishing portability. OpenSSH has two development branches, an OpenBSD branch and a portable 
branch. The portable branch is taken from the OpenBSD specific branch and modified to run on other 
supported operating systems. As a result, the design of the system is not changed for the portable branch. 
Instead, preprocessor directives are inserted into the existing code to control compilation of platform- 
specific features. This may cause code to be longer and more confusing, and possibly add complexity. 

Apache httpd is a modular system, meaning major features are implemented as separate modules. Unlike 
OpenSSH, portability is accomplished by having different implementations of commonly-used 
abstractions for each supported operating system. This allows for clean separation of portable and non- 
portable code, rather than mixing portable and non-portable code as in OpenSSH. The web server itself 
sits atop the Apache Portable Runtime (APR) library. The APR library provides an abstraction layer for 
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commonly used operations such as memory allocation, file I/O, input sanitizing, etc. These features aid in 
porting httpd to new platforms. For systems written in C/C++, it appears that the use of preprocessor 
constructs and libraries increase the probability of vulnerabilities. 

7.3.2 Design Metric D(G) Analysis 

D(G) values were computed for each module to gauge the effectiveness of this design metric at 
identifying vulnerable areas of the systems. The results are shown in Table 9. Many of the vulnerable 
modules possessed high D(G) values, suggesting once again that design plays a significant role in secure 
software. Relationships and differences between modules with high and low D(G) values need further 
exploration. A technique, which we call nearest neighbor, where the neighbors of vulnerable modules are 
explored further for identifying characteristics such as a high design metric count was implemented. 

Table 9: Effectiveness of the C++ Understand D(G) in Identifying Vulnerabilities 

Apache 
2.0.36 

OpcnSSH 
3.2.2pl 

OpenSSH 
3.7. Ipl 

OpcnSSH 
3.8pl 

Total Vulnerable 
Functions 

35 28 33 35 

# Found in top 10% of 
D(G) values 

24 12 13 13 

# Found in top 25% of 
D(G) values 

29 18 21 22) 

The design metrics analysis showed some interesting results. It was able to identify the majority of the 
vulnerabilities in Apache httpd. This strongly suggests that httpd has some large modules that need to be 
refactored. However, these same results were not reflected in OpenSSH. D(G) was more effective with 
Apache, perhaps due to the design of httpd, particularly the abstractions in the APR library (which we did 
not analyze). Many of OpenSSH vulnerabilities were in smaller functions with low complexity. Apache 
vulnerabilities were in larger, more complex modules. In httpd, most of the utility functions are in the 
APR abstractions, where the functions tended to be small and specific in their tasks. It is possible that the 
heavy use and testing of the APR may have abstracted out many potential vulnerabilities, leaving the 
remainder of the vulnerabilities in the larger, more complex areas. 

Many vulnerabilities in the code had high Dc and data structure manipulation (DSM) values. (DSMs are 
one primitive metric in the composite metric Dj.)As shown by the design metrics data, high coupling itself 
is not a factor for vulnerability prediction since there are many modules in these systems with high Dt and 
DSM values that are not vulnerable. However, this does not imply that coupling is not relevant in the 
security of a module. Good abstraction may reduce the impact a vulnerability has on the rest of the 
system. Reducing coupling and keeping De and DSM values low may be a good preventative measure 
during the design phase of a software application. 

7.3.3 Qualitative Observations 

The vulnerabilities in the systems can be divided into vulnerabilities which span multiple modules and 
those contained in single modules. No measurable commonalities and differences could be made between 
multiple- and single-module vulnerabilities. However, some common traits were noticed within each 
category. 
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Multi-function vulnerabilities often fell into two categories. In one category were the repetitive 
vulnerabilities. In these cases, either the same mistake was copied across several modules (possibly due to 
copy/paste operations by the developer), or an API call was changed and multiple modules needed to be 
updated (such as the addition or removal of a return value that needed handling). In the other category 
were vulnerabilities which resulted from failures in module cooperation. 

This first category tended to include the vulnerabilities resulting from coding errors such as buffer 
overflows, incorrect return values, and other simple mistakes in coding. These often required simple fixes 
to an individual module. However, there were cases in which a module needed to change its return value, 
and this required changes to propagate to all modules using it. 

The second category is interesting because these sometimes require refactoring to fix the issue. For other 
vulnerabilities in this category, the fix is to modify a few different modules to fix an unhandled case. 
One example of these kinds of vulnerabilities is a function that allocates a resource, and the responsibility 
to dispose of the resource is not explicitly given to another module (or the other module fails to clean it 
up, such as during the handling of an error). Therefore, the resource is leaked. A similar situation has 
occurred in the Apache httpd thread pool code. In this case, an abstraction had to be added to fix some 
function cooperation issues resulting in threading vulnerabilities. This category of multi-module 
vulnerabilities tended to include some of the more non-trivial fixes. Some vulnerabilities were also caused 
by failure to clean up resources during the handling of an error. 

7.4 Statistical Analysis 

Various statistical tests using the statistical tool, SPSS, were run on the study data. Each data set 
consisted of metrics data for each function from the system and a Boolean indicating whether or not the 
particular module had a reported vulnerability. Since the outcome for our data set is dichotomous (a 
module is vulnerable or not vulnerable), binary logistic regression was used. For a logistic regression, the 
predicted dependent variable is a function of the probability that a particular module will be in one of the 
categories (for example, the probability that module x is vulnerable, given the module's metric value for 
the set of predictor metrics). The results of the logistic regression can be used to classify modules as 
vulnerable or non-vulnerable. Our best results have allowed us to correctly classify 88% of the modules. 

The situation we encountered during the initial logistic regression runs is that the number of vulnerable 
modules is statistically insignificant compared with the number of non-vulnerable modules of the system. 
With the assistance of Dr. Darius Lecointe, a Ball State University statistician, the decision to perform 
logistic regression analyses using a number of randomly selected non-vulnerable modules equal to the 
number of vulnerable modules within each project provided improved results. 

For each project multiple runs were initiated. The results varied depending on the modules chosen 
randomly by SPSS to include in the analysis. The httpd analyses commonly included complexity metrics. 
The openSSH models were not that consistent. Data from a version of httpd and data from one version of 
openSSH were combined and a logistic regression was run on the combined data sets. Consistently in the 
models, the number of inputs and nesting levels, both indicators of complexity, were present in the 
models. 

The top thirty functions with the highest number of vulnerabilities in their first-level neighborhoods were 
taken for each system. What is interesting about the data is that it confirms the previously mentioned 
initial observations. Across all of the projects, string/buffer operations, I/O and input filtering functions, 
and some thread and mutex-related abstractions were located in the lists. Since vulnerable functions were 
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using these, coupling with these kinds of functions may serve as a future environmental metric. The 
number of times a given function couples with an item in these lists may be a valuable metric as well. 

7.5 Operational Thread Based Reliability Estimation 

The reliability of large scale computerized networks dispersed over widely scattered geographical areas is 
difficult to determine, particularly when the networks include hardware, software and human elements as 
well as the complex communications links between nodes of the network. Further, to estimate the 
reliability of such a network during the design phase of development or the effect of inserting a new 
network node is even more difficult. These types of networks are not uncommon in international 
business, industry, government and military operations, and therefore estimates of their reliability are 
important to users. 

A common foundation for uniting these diverse and scattered network elements can be based on the 
concept of the operational thread. An "operational thread" is a term used by the U.S. military services as 
a series of related operational tasks that are specifically focused to highlight the contribution of 
experimental initiatives or infrastructure systems for basic Command and Control (C2) process. This 
term can be generalized for tasks involving multiple services/components composed of hardware, 
software and human elements as well as communications links. Figure 7 depicts three hypothetical 
operational threads each completing a C2 process. 
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Figure 7: Three Hypothetical Operational Threads 

Each mission can cut through various components of a service-oriented architecture. Each node in 
Figure 7 can be comprised of several software, hardware and human elements in any order. Figure 8 
depicts one operational thread with three nodes (components), each containing different thread element 
types. Each node can be geographically disbursed and can be connected by different types of 
communication links, identified in Figure 8 as Link12 and Link 23. To compute the reliability of an 
operational thread, one must calculate the reliability of each of the individual components comprising 
the node as well as the reliability of the connecting links (RL;,j+i). Thus the estimated reliability for 
component 1, RC, in Figure 8 is 

RC| = Rhw * R-sw * Rhw 

The estimated reliability for component 2 (RC2) and for component 3 (RC3) in Figure 7 is calculated in 
the same manner. 
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Figure 8: An Operational Thread with Three Components (Nodes) 

The reliability of hardware is a well-researched field and numerous useful approaches exist. The 
reliability estimation for software and the human element contained in the equations is not as easy to 
calculate. At the design phase of the system, node or component, without previous history, these 
estimates using current reliability techniques are impossible to estimate with any degree of accuracy. 
However, through the extension of the design metrics technology, a basis for a software reliability 
estimate has been developed. This technique can provide an estimate of the reliability of the software 
component only using current design artifacts or code. In purely hardware and software operational 
threads, the missing part of the reliability equation is the link. At this point, the human element will be 
excluded from the analysis. Communication reliability estimates are again a well-researched field. 
Depending on the type of communication, standard tools are available to estimate the reliability of these 
links, for example, NIST's Link Budget Calculation. Now possessing an estimate for each of the 
components and for the links, the reliability of an operational thread, Ro, can be calculated as 

Ro, = RC, * RLI2 * RC2 * RL23 *... * RCm * RLmn* RCn. 

Finally, working upward from the reliability of operational threads, the estimated overall reliability of the 
network itself is derived. 

7.6 Extending a Reliability Model 

A software reliability model based on the design metrics De and Dj has been developed. We suspect that 
reliability and security problems have significant software weaknesses in common. For example, data 
corruption is an area where reliability and security have the same underlying technical problem with 
slightly different emphases. Reliability can be affected through the accidental corruption of data whereas 
security focuses on the malicious attacks to corrupt data. According to a preliminary analysis done by the 
SEI's CERT® group, over 90% of software security vulnerabilities are caused by known software defect 
types. The analysis also showed that most software vulnerabilities arise from common causes: the top ten 
causes account for about 75% of all vulnerabilities. Another analysis from At Stake Research of forty-five 
e-business applications showed that 70% of the security defects were software design defects. 

7.7 Testing, Vulnerabilities and Metrics 

To improve vulnerability detection, frequent testing and measurement will be required. In most 
traditional development processes the norm is poor metrics and poor visibility into the process. Testing 
itself provides a level of confidence and visibility into the process and product. We also investigated the 
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effectiveness of model-based test generation techniques in the detection of errors in implementations of 
security protocols. An experiment using GNU TLS as the product under test and generating test cases 
manually from the state chart using the test tree found in the well-known W-method was initiated. The 
result of this experiment was that 19 to 49% of the code in various components remained untested within 
the product. The coverage was measured using the FAA mandated MC/DC coverage criterion. The 
analysis also revealed that faults in the untested portions could lead to improper authentication, denial of 
service, and loss of confidentiality. For model-based testing using state charts derived from requirements, 
a simple recommendation is that this process must be augmented with coverage analysis. However, what 
is a safe amount of coverage? Combining test coverage and component metrics may provide the obvious 
answer. Component metrics and coverage will be analyzed simultaneously to determine patterns that 
allow developers and project managers to focus their testing and inspection efforts to obtain the minimum 
coverage necessary while testing the fault-prone modules. 

7.8 SMART Model 

Many security vulnerabilities are the result of defects unintentionally introduced during the development 
process. To significantly reduce software vulnerabilities, overall defects must be reduced. It is intuitive 
that defective software is seldom secure. For this reason, the SMART project combines the vulnerability 
analysis based on the outcomes of the current studies, our reliability model based on the design metrics 
and the process information derived from testing for the SMART model. Overall defect reduction, 
directed vulnerability identification and process information is the key to secure software. 

7.9 Visualization 

As mentioned earlier. RAVE is the Reliability Appraisal and Vulnerability Evaluation tool. It is the 
software that incorporates our research methodology. There are two major components to RAVE, 
referenced simply as the front-end and back-end. The back-end is used to analyze program source code 
and compute various design metrics. The front-end is the user-interface to the back-end. 

Developing the RAVE front-end involves the integration of several tools and technologies. An 
experimental, proof-of-concept system was developed that verified the feasibility and applicability of a 
three-screen methodology. This system demonstrated that three screens could be used effectively to 
explore a software system by dedicating views to program source code, software visualization, and 
metrics analysis presentations. 

The RAVE front-end uses the data and visualization architecture of prefuse, which is available under a 
BSD-style license. The overall software design applies the Visual Proxy architectural pattern, a 
specialization of the Presentation-Abstraction-Control pattern. This architecture facilitates the 
development of UI "plug-ins". The RAVE front end, then, is a shell that loads these plug-ins, of which 
there are currently three, one for each view of the software. 

The static display of program source code is straightforward. RAVE adopts a common tree-based model, 
treating directories and files as non-leaf nodes and functions as leaf nodes of a tree as seen in Figure 9. 
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Figure 9: RAVE Interface for Displaying Selected Program Source Code 

Conversely, developing usable and appropriate visualizations is a significant research problem. The 
requirement for these visualizations is that they clarify metrics-based software vulnerabilities. Based on 
our research findings thus far as well as concurrent research activities, we have adopted a visualization 
technique the highlights neighborhoods of functions. Regional call graphs are shown in 10 using a radial 
layout, and up to three levels of depth are currently supported. 

Displaying three or more levels of depth has reduced the usability of these graphs in our experimentation. 
We have also experimented with clustering, i.e., force-directed drawings of an entire software system. 
However, for our experimental data, specifically OpenSSH, the result is too cluttered to be usable. 

The metrics table information is gathered from the metrics collector specified to RAVE. This back-end 
can be replaced with any system that follows the protocol we have defined, and the current 
implementation relies upon the STI Understand packages. This allows for the collection of dozens of 
metrics, including McCabe and Zage metrics. A security engineer can select which metrics to compute, 
and these are all shown in the table. By sorting on various columns, the engineer can use the metrics to 
determine which modules to highlight as vulnerable. For example, one may wish to compare cyclomatic 
complexity against D(G), marking the highest 10% of each as potentially vulnerable. These 
vulnerabilities are then highlighted in the visualization as well, providing the user with an intuition for 
how the vulnerable modules are related. 
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Figure 10: RAVE Interface Displaying Regional Call Graphs Using a Radial Lay 

8. Conclusions 

Many of the modules with vulnerabilities in the open source systems studied had high D(G) values. While 
D(G) may not be a predictor for the degree of security of a module, the fact that many of the 
vulnerabilities in the systems had high D(G) values suggests that design plays a significant role in the 
robustness and security of software. It seems that there is no clear way to detect vulnerabilities based 
solely on design metrics. However, complex problems, such as security, often need more data and 
concentrating on a single aspect is not likely to have a high payoff. In our design metrics work, we assess 
both the external and internal complexity of a module. A module's complexity can stem from either 
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internal factors, or external factors or both. We believe that assessing a module's vulnerability also will 
require more information, since each development is essentially unique, created by new people, with 
different environments, for new applications, and more importantly, is dependent on the system's 
environment and other interplaying applications. For these reasons, we have identified enhancements to 
the suite of design metrics to capture potential environmental factors and the abstractions around data 
structures. These need to be explored further to form the basis for the Ec and E; metrics. For example, 
DSM values are important, but it may be beneficial to combine DSM counts with a measure of cross- 
module coupling to determine how much of a structure is shared. An overall data structure abstraction 
metric would be a useful addition. Neighborhood analysis enhancements may lead to a better 
understanding of vulnerability locality. Extending the neighborhood analysis to include data structures 
could prove to be useful. Since security structures may be shared by multiple modules and distributed 
throughout the application, neighborhood analysis could provide the insight into vulnerabilities that span 
multiple modules. Some integration with the attack surface concept may also enhance the design metrics, 
such as increasing the weights on I/O counts. Enhancing Dj with a system call count may increase 
vulnerability detection where software interacts with the operating system. With further research and 
development of the design metrics, the essence of the design metric qualitative observations made earlier 
may carry over to the security domain. 

Until then, based on our observations and the past work by others, the following suggestions may prove 
helpful: 

• Provide abstraction around shared and local data structures to avoid unnecessary coupling. 
• Design the abstractions in such a way as to control and restrict direct access and manipulation of 

the data. Keep them as close to "black boxes" as possible. It may be necessary to use immutable 
objects and data structures. 

• Keep all abstractions and procedures in the system small, simple, and very specific in purpose. 
Make sure their semantics are well-defined. 

• Preserve referential transparency by eliminating potential side-effects when calling functions. 
• Make all interfaces and API's easy to use correctly and difficult to use incorrectly. 
• Whenever possible, modules should clean up and dispose of all resources they allocate. When this 

is not possible, data and resources returned by functions should be returned as abstract types. 

Researchers have offered tools to detect certain vulnerabilities. Some have suggested languages or 
paradigms to solve the problems of software vulnerabilities. Security test suites have also been offered to 
help reduce the threat. However, decisions made at design time still have a large impact on the overall 
security of a system, not to mention the reliability and maintenance implications. 

9. Dependencies 

Our project was dependent upon the availability of systems with process data, including defect reports 
and vulnerability assessments. 

10. Contacts at ARL 

Our primary contact is Glenn Racine, Chief, Battlefield Communication Networks Branch, Army 
Research Laboratory, Adelphi, MD 20783-1197. 
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