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Welcome! 

The National Computer Security Center (NCSC) and the National Computer 

Systems Laboratory (NCSL) are pleased to welcome you to the Thirteenth Annual 

National Computer Security Conference. We believe that the Conference will 

stimulate a vital and dynamic exchange of information and foster an understanding 

of emerging technologies. 

The theme for this year's conference, "Information Systems Security: Standards -- 

The Key to the Future," reflects the continuing importance of the broader 

information systems security issues facing us. At the heart of these issues are two 

items which will receive special emphasis this week -- Information Systems Security 

Criteria (and how it affects us) and Education, Training, and Awareness. We are 

working together, in the Government, Industry, and Academe, in cooperative efforts 

to improve and expand the state-of-the-art technology to information systems 

security. This year we are pleased to present a new track by the information security 

educators. These presentations will provide you with some cost-effective as well as 

innovative ideas in developing your own on-site information-systems-security 

education programs. Additionally, we will be presenting an educational program 

which addresses the automated information security responsibilities. This 

educational program will refresh us with the perspectives of the past, and will 

project directions of the future. 

We firmly believe that security awareness and responsibility are the cornerstone 

of any information security program. For our collective success, we ask that you 

reflect on the ideas and information presented this week; then share this 

information with your peers, your management, your administration, and your 

customers. By sharing this information, we will develop a stronger knowledge base 

for tomorrow's foundations. 

—< ^F^S^CW^K^A 
"JAMESH. BURROWS PATRICK R. GAttAGHPR,$S 

Director Director 
National Computer Systems Laboratory National Computer Security Center 
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UNIX SYSTEM V WITH B2 SECURITY 

Craig Rubin 

AT&T Bell Laboratories 
190 River Road, Summit NJ 07901 

Abstract 

This paper describes the feature changes needed for UNIX® System V to meet the 
Trusted Computer Systems Evaluation Criteria (TCSEC) [1] B2-level requirements 
while still maintaining original UNIX System design objectives and flexibility. 
Implications for users and administrators are discussed. 

1. Overview 

Traditional UNIX System users contend that the introduction of B2-level security 
features will negate many positive aspects of the UNIX System; security purists doubt 
that the UNIX System can meet the B2 criteria [2]. This paper addresses these issues, 
discusses the B2 features that have been added to UNIX System V, and explains the 
effects of these features on users and administrators. 

2. Background 

The UNIX System was originally developed in an open R&D environment in which a 
paramount concern was the free and easy exchange of information. Unpassworded 
guest logins, unprotected source and system files, and unrestricted dial in lines are 
typical in such an environment. Although security features were available, they were 
usually viewed as unfriendly and consequently were rarely used. 

Lax security administration was only made worse by operator errors, an inadequate 
amount of security and administrative documentation, software holes through which 
hackers could gain unauthorized privileges, and the ability of unprivileged users to 
read the password file (which contained encrypted versions of the passwords). 

UNIX is a registered trademark of AT&T. 



3. Motivation 

Customer demand for improved operating system security motivated the development 
of improved security in UNIX System V. Security requirements specified by foreign 
and domestic governments, the business sector, and other security-conscious data 
processing environments provided the impetus for standards and policy groups (such as 
IEEE P1003.6, ISO, X/OPEN, and the NCSC TRUSIX working group) to address 
security needs as they apply to the UNIX System. 

4. Goals 

AT&T has committed to produce a UNIX System that meets the needs of both 
government and commercial data processing operations. The goal of this system is to 
provide all (TCSEC) B2-level features, close any known security holes, and include 
improved operational procedures and monitoring tools. These features will be 
incorporated into the standard UNIX System V product, preferably as options, 
allowing sites to determine the best mix for size and performance constraints. Another 
critical factor is compatibility with existing releases of UNIX System V. 

In addition to full B2 functionality, the discretionary access control (DAC) and trusted 
facility management (TFM) B3-level features will be available in the standard System 
V product. 

5. Approach 

AT&T's approach in addressing the security requirements has been to work closely 
with UNIX International to identify needs and evaluate functionality. A parallel effort 
has proceeded with government and industry leaders to establish standards through 
bodies such as IEEE POSIX and X/OPEN. 

6. Operating System Engineering Improvements 

Operating system engineering improvements go beyond individual feature development 
and involve changes in the structure and architecture of UNIX System V that result in 
improved maintainability, performance, flexibility, and portability. Typically, though 
not always, these improvements will be visible only to system porters and not to end 
users or application developers. Thus, while such improvements may benefit end users 
and developers, they are of direct interest to UNIX System V source code customers 
who plan to port or change the operating system. 

The UNIX System has been renowned as a modular, highly portable operating system. 
To meet the exacting requirements on operating system modularity at the B2-level, 



however, the UNIX System V operating system will be further partitioned into 

modules. 

Improved modularity impacts more than the security feature. It improves the entire 
operating system and benefits all source code customers. Modular code is easier to 
interpret, maintain, and port. 

A modular system is one that is internally structured into well-defined, independent 
modules, where each module [3]: 

— has a well defined function, 

— has a well defined interface, 

— has well defined parameters, and 

— is called whenever its function is required. 

Other related modularity improvements include restricting the use of global variables 
and allowing the use of nested header files. A tool was created to assist in the 
detection and examination of all global variables in the kernel. The information 
generated by this tool allowed many global variables to be changed to a local scope 
and provided justification for those global variables that remained. 

7. Feature Specific Requirements 

The following work is required for the development of a B2-level system and will 
require procedural changes on the part of users and/or administrators. 

7.1 System Architecture 

The system architecture criteria places several requirements on the internal design and 
structure of the Trusted Computing Base (TCB). A key feature that will be introduced 
in this area is a least privilege mechanism that breaks up the single super-user 
privilege into many smaller, well-defined privileges. A second new architectural 
feature is the aforementioned improved system modularity. These changes will have 
little procedural impact on users and administrators, however they will improve system 
assurance. 

7.2 Discretionary Access Control (DAC) 

The existing UNIX System provides the ability to distinguish permissions for the 
object owner, object owning group, and all others. This mechanism may be viewed as 
a fixed length, three entry, Access Control List (ACL). In order to meet the B3-level 
requirements, the B2 system provides full access control lists.   This new mechanism 



interacts compatibly with the existing mechanism, preserves the meaning of the 
existing file permission bits, and allows the existing mechanism to work as before [4]. 

7.3 Security Labels 

All processes, files, and IPC objects must have a security label. Device types must be 
designated as single-level (such as a tty) or multilevel (such as a special device file for 
a disk partition). When exporting data to a multilevel device, the data's sensitivity 
label will be exported with the data.  This is not necessary with a single-level device. 

7.4 Mandatory Access Control (MAC) 

In addition to the Discretionary Access Control (DAC) facility, a Mandatory Access 
Control (MAC) facility is required. While the DAC mechanism allows permissions to 
be set at the discretion of the owner of an object and enforced by the system, the 
MAC mechanism is set by the system administrator and enforced by the system. The 
existing UNIX System did not provide any mechanism for MAC. The mandatory 
access control policy follows a modified Bell-LaPadula model [5] that can be 
summarized as "read equal or down" and "write equal." For instance, a process at 
level "top-secret" can read a file at level "secret," and a process at level "secret" would 
only be able to write to a file at level "secret." 

Administrators are responsible for determining and setting up the discrete set of labels 
at which a user can log in. An administrator also sets a login level range on a 
terminal line, such that when a user attempts to login, the label specified by the user 
must dominate the login-low label on the terminal line and in turn be dominated by 
the login-high label on the terminal line. 

Since the addition of mandatory access control labels will limit creation of files in a 
directory to processes at the same level as the directory, a new type of directory 
referred to as a multilevel directory (MLD) has been added to the system. A 
multilevel directory involves the addition of an extra, normally hidden layer in the 
directory hierarchy for directories. 

When a process attempts to reference an MLD (e.g., /tmp) the kernel automatically 
translates this reference to a level-specific, hidden subdirectory known as the effective 
directory. For ease of use the effective directory is created automatically by the kernel 
if it does not already exist. An effective directory will exist for each process level 
which has accessed the multilevel directory. Since the effective directory is hidden, 
the process can not directly access it. However, some processes will have to perform 
maintenance on multilevel directories so they must be able to determine which 
effective directories are present and be able to directly access these directories.  This is 



known as the real view of the multilevel directory and is accomplished by the process 
placing itself in real multilevel directory mode. The only difference from the existing 
method is that the process can not see all files in the MLD directory, but only files at 
the same label as the process. The standard MAC and DAC checks apply to 
multilevel directories and the files that they contain. This implementation conforms to 
the MAC policy, in that a process should only be able to see files (such as in /tmp) 
that are dominated by the label of the process. Public directories (writable and 
readable by all processes), such as /tmp must be MLDs. The use of MLDs eliminates 
many covert channels associated with public directories. 

The mandatory access control facility is used along with the discretionary access 
control facility to mediate access to objects. When an access is attempted, both 
mandatory access and discretionary access checks are performed. If both checks pass, 
access is then granted. 

7.5 Identification and Authentication 

The existing Identification and Authentication mechanism (login and password) meets 
most of the B2-level requirements. However, the method had to be modified to 
support the new features being introduced. These include the specification of a MAC 
label at login time and recording login attempts in the audit trail. Furthermore, to 
support a trusted path, users are able to change their password only at login time, as 
this is the only time that the user will have a trusted path. 

7.6 Audit 

The existing UNIX System's accounting mechanism does not produce the finely- 
grained information that is required by the B2 criteria. Therefore, a new auditing 
mechanism was added. 

The audit mechanism will have no impact on users. Administrators will select and set 
the events that are to be audited for all users and optionally set an audit mask for 
specific users. The events audited for any specific user can be changed by the 
logged-in administrator in real time. The system provides facilities for both pre- 
selection and post-selection of audit event data. 

7.7 Object Reuse 

When a storage object is assigned to a subject, the object must contain no data. This 
requirement is met by the existing UNIX System V. 



7.8 Trusted Path 

A trusted communication path between the TCB and a subject is required. This 
affects both the user and administrator. The administrator is responsible for defining a 
secure attention key (sak) for each terminal line. When a user or administrator wants 
to log in to the machine, they must first enter the sak. When the system detects the 
sak, it will initiate the login sequence on the terminal. If login is not completed 
within the login timeout period, the login program will terminate and the user is once 
again required to enter the sak in order to reinitiate the login process. 

7.9 System Integrity 

Proper operation of the hardware and firmware parts of a system must be verifiable. 
This will be achieved with the existing diagnostics available with the evaluated 
machine. 

7.10 Trusted Facility Management 

Separate operator and administrator functions are required at B2; to meet B3 
requirements, a security administrator function must also be added. The current 
capabilities of the super-user login were separated into the aforementioned functions 
through a database maintained by the trusted system programmer. This Trusted 
Facility Management (TFM) database contains information specifying the commands 
that may be executed with privilege by various administrators. This database must be 
properly configured by the trusted system programmer before the system is used in the 
B2 configuration. A command that mediates the access given to a particular program 
must be used by the administrator to perform privileged operations. 

8. Non-Feature Specific Requirements 

The following work is required for the development of the B2-level system; this will 
not require any direct action on the part of users or administrators. 

8.1  Covert Channel Analysis 

A thorough search must be performed to identify all covert storage channels and 
determine their bandwidths. Covert channels must be closed, reduced, audited, or 
documented depending on the bandwidth. For those being audited, the auditor must be 
aware of the potential disclosure that may occur through the use of these covert 
channels and watch for their use in the audit trail. 



8.2 Design Specification and Verification 

A formal model of the security policy enforced by the TCB is required. This model 
was developed by AT&T with the NCSC TRUSIX working group. Also, a complete 
specification that describes the TCB "in terms of exceptions, error messages, and 
effects" is required for a B2 system. The model and the specification will be shown to 
be consistent. 

8.3 Configuration Management 

A configuration management system for use during the development and maintenance 
of the TCB is required. All documentation, code, and hardware must be controlled by 
this system. Tools to generate a new version of a system and to compare versions 
must be available. These requirements will be achieved by several complementary 
methods described in a product development methodology handbook. These methods 
(which are used for code, documents, and hardware) include the use of a source code 
control system, a change tracking system, and a change control committee. 

8.4 Testing 

Extensive testing of the security features at each level is required. In general, the 
testing must: 

1. show that security features work as documented, 

2. show that there are not obvious ways to bypass security mechanisms, and 

3. show that identified flaws have been removed and that no new ones have been 
introduced. 

The system should also be compatible with the existing UNIX System and with 
current standards such as POSIX. The development organization runs multiple test 
suites on the system to test for conformance to all of the required objectives. To test 
the new features that are being introduced, new test suites were added or existing test 
suites modified. 

8.5 Documentation 

The documentation required to describe the security mechanism is incorporated into 
the existing UNIX System documentation. The following list roughly summarizes the 
end user documentation required at the B2-level and identifies the existing UNIX 
System documents that it appears in. 

• The UNIX System V User's Guide, along with manual pages in the UNIX System 
V  User's  Reference  Manual,  contains  the  information required  of a  security 



features user's guide. This information explains how a user is affected by the 
security mechanisms and their proper use (e.g., MAC and DAC). In addition, 
changes required for the existing system to meet the B2-level and their impact on 
the user are described (e.g., changes to the line printer subsystem). 

• The UNIX System V System Administrator's Guide, Programmer's Guide, 
Programmer's Reference Manual, System Administrator's Reference Manual, and 
the newly introduced Audit Trail Administrator's Guide contain the information 
required in a trusted facility manual. 

8.6 New File System Type 

A new file system type, the Secure File System (SFS) has been added as the means of 

supporting the MAC and DAC security capabilities described previously. The new file 
system type is based on the UNIX File System (UFS) that was introduced with UNIX 
System V Release 4. The features of the new file system type that were added 
specifically to support security are: 

• increasing the size of the inode so that labels and ACL's can reside in the inode, 
and 

• adding support for multilevel directories (e.g., /tmp). 

This addition will be invisible to users, and will require minor changes for 
administrators. Since the existing UNIX System already supports various file system 
types, administrators are familiar with different file system types. 

On a non-B2 system, the new file system type can be mounted read-only as an 
ordinary UFS file system. Similarly, an ordinary file system can be mounted on a 
secure system as a single-level file system, and will not support ACLs. This is 
primarily needed to support the transition to a B2 secure system. 

9. Conversion to a B2 System 

Conversion of an ordinary system to a B2 secure system will require administrative 
set-up, especially in the areas of MAC, TFM, and privilege. 

10. Summary 

Although numerous changes have been made to incorporate the B2-level security 
features into UNIX System V, the system will still maintain the original UNIX System 
design objectives and provide the flexibility expected by users and administrators. 
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Abstract This paper presents an overview of the methodology used in a formal 
covert storage channel analysis of the GEMSOS Security Kernel. A synthesis of 
several well known covert channel approaches has been applied: the resulting 
methodology provides a significant reduction in effort relative to the techniques 
from which it was derived. 

The method involves reducing the analysis to the information flows that can produce 
covert channels. The analysis is shown to be effective for systems whose direct 
illegal flows (as opposed to transitive flows) are both limitable and auditable. 

A similar informal analysis technique is briefly described. This informal analysis can 
be used independently from the formal analysis or in conjunction with the formal 
analysis for confirmation of results. 

Background 

The Gemini GEMSOS TCB is in evaluation, targeted at the Trusted Computer System Evaluation Criteria 
class Al rating. As part of this evaluation, a class Al Trusted Network Interpretation [TNI87] "M- 
Component" evaluation of a product based on the kernel portion of the TCB is taking place as an 
incremental step in the overall TCB evaluation. This product is the GEMSOS Trusted Network Processor 
(GTNP). 

The GEMSOS Trusted Network Processor (GTNP) consists of the GEMSOS Security Kernel and 
hardware base [SCHEL85], along with a non-kernel interface to define and support trusted and single- 
level processes [THOM90]. The GEMSOS Kernel provides a mandatory access control reference monitor. 
For the class Al evaluation, a covert storage channel analysis has been performed on the GEMSOS 
Kernel. This report summarizes the approach used in that effort and is offered as a worked example of an 
efficient means of doing covert storage channel analysis. 

Covert Channel Analysis Within the Reference Monitor Paradigm 

Analysis of information flow is examined in this paper relative to the concept of the reference monitor 
("RM")[TCSEC]. Within this context we can identify a taxonomy of information flows. Flows can be 
classified as legal or illegal relative to the security policy. Some illegal flows are not exploitable at the RM 
interface; these are not of concern to this discussion. Exploitable illegal flows can be classified as either 
covert channels or RM flaws (discussed below). 

The RM creates the subjects and data storage objects of the system, and mediates access between them. 
The RM maintains "attributes" of subjects, objects and system resources. These attributes are defined to 

This paper reflects work performed while Mr. Padilla was an employee of Gemini Computers, Inc. 
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be outside of the domain of subjects and objects protected by the RM. Operations that the reference 
monitor supports can be classified as legal (i.e., correct mediation of subjects' access to storage objects) or 
flawed (i.e. a subject bypasses the reference monitor, or there is improper mediation in a subject's access 
to a storage object, as shown for operation "b" in the following diagram). Illegal flows resulting from 
flawed operations are RM flaws. The next diagram illustrates these differences. 

S^     —      —O r---»S2 a                         b n 

• 

c :                                                    :d 

^ >• ATTRIBUTES  >: 

Domain of subjects and 
objects mediated by RM 

RM interface 

Reference Monitor 

S  = subject Level of S = syshi 
O  • object Level of O = syshi 
S2 = subject Level of S2 = syslo 
- - = RM flaw      Level of ATTRIBUTE = syshi 
... = covert channel 

a, b, c and d are RM operations with disjoint effects (the effects are flows represented by arrows going to 
or from the calling subject), a, c and d are legal operations (RM functions correctly), b is an operation 
with an RM flaw (access is mediated incorrectly), b and d are operations which produce illegal flows. 

An example of a or b is a file-open operation which returns data from the object. An example of c is an 
operation to change a file's size. An example of d is an operation to return a file's size. 

In this paradigm, covert channels result from information passing through a system attribute which is not 
mediated as a storage object. Examples of system attributes might be: file size, volume space availability, 
or CPU availability. A covert channel is induced and interpreted by a series of legal operations which 
reference such attributes. 

Covert storage channels are distinct from covert timing channels. The manner in which the information 
from the covert channel leaves the reference monitor determines whether the channel is a storage or 
timing channel. For storage channels, information is passed out of the reference monitor through a change 
to a storage location (e.g., return value or error message); for timing channels, the information is returned 
outside of the reference monitor through a delay (i.e., a measurable change in response time). 

Typically, timing channels and some storage channels are created through contention for finite system 
resources (the availability of the resource is a system attribute). In this type of channel, a high-level 
subject signals to a low-level subject by modulating its use of the resource, thus controlling the low-level 
subject's ability to use the resource. If contention is resolved through a delay to the low-level calling 
subject (e.g., the CPU is busy and the subject is made to wait), a timing channel is created. On the other 
hand, if the low-level subject receives a return value or error message when the resource is not 
available(e.g., "disk_full" error message), then we consider it a storage channel. One approach to closing 
resource exhaustion channels is to partition the resources by process or by security level (see "Channel 
Bandwidth Estimation" and "Informal Identification of Covert Storage Channels," below). This approach 
can have a significant negative effect on system performance when applied to timing channels. 
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Other storage channels are not based on resource contention. In these cases, system attributes other than 
"resource-busy" (for some given resource) are read and written. Information can thus be channeled 
through a change to file size, or object security classification. These are storage channels since the 
information passes out of the system through a change to a storage location (i.e., the change in file size is 
returned to the caller in a output parameter, or is signalled through the return of an error message). These 
channels can be (and in a secure system should be) avoided through rigorous system security engineering. 

In a complete FTLS (as required by [TCSEC]), all storage-based information flows at the interface (e.g., 
inputs, return values and error messages) are represented, typically as changes to state variables. Since all 
of the interface flows are represented and covert storage channels are signalled through a change to a 
storage location at the interface, the formal covert channel analysis of a complete and accurate FTLS is 
assured of revealing the covert storage channels of the system represented. 

On the other hand, the type of delays that drive a timing channel are not specified in a DTLS or FTLS 
using current specification and verification methods [HAIGH86, p. 17]. Thus, unlike covert storage 
channels, covert timing channels cannot be identified from an FTLS but must be identified informally by a 
careful examination of system internals. 

Description of Approach 

The covert channel analysis of the GEMSOS Kernel utilized the FDM tool set. Included in this set are the 
Ina Jo specification language and processor [SCHEI88], the Ina Flow tool [ECKM87] (including the MLS 
flow theorem generator and the SRM matrix generator) and the Interactive Theorem Prover 
(ITP)[SCHOR88]. 

Theoretical Approach 

The FDM tools are designed to be used in the following general method to analyze information flow in a 
system [ECKM87]: 

1. Describe the system interface in the Ina Jo Specification Language in terms of exceptions, error 
messages and effects. Use the Ina Jo processor to check the syntax of the specification. 

2. Define security labels for all variables within the specification. 

3. Produce flow theorems from the labeled specification using the MLS tool. 

4. Prove flow theorems using the ITP (unproven theorems are theoretical, "formal," flow violations). 

5. The exploitability of theoretical flow violations is determined manually. 

Alternatively, the SRM tool produces a "Shared Resource Matrix" (as defined by Kemmerer [KEMM83]) 
from an input specification. The matrix lists all transforms (representing system functions that can 
produce state changes) and variables, and shows whether a variable is read or modified in each transform. 
The tool output includes a transitive closure of the references [']. Finally, the legality of flows and the 
exploitability of flow violations are determined. 

1. Reference transitivity is illustrated with two transforms and three variables (VI, V2 and V3). One transform reads 
VI and writes V2. The second transform reads V2 and writes V3. Information flows transitively from VI to V3, via 
V2. The output from the SRM tool would show that the second transform reads VI. A transitive closure of 
references provides all of the references derivable through the transitivity of information flow. 
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Actual Approach 

In the covert storage channel analysis of the GEMSOS Kernel, the first two steps of the MLS theoretical 
approach were completed and the labeled specification was processed with the MLS flow tool. For various 
reasons owing to the immaturity of the tools at the time, they were unable to correctly process the 
specification. For example, MLS had difficulty with non-determinism and the Ina Jo language did not 
allow structure fields to be included in the label ("clearance") statements (see example below). 

An alternative approach of working from a Shared Resource Matrix derived from the specification was 
investigated. It was found that the SRM tool at that time could not generate a single matrix for all of the 
transforms due to the size of the specification. After some experimentation it was determined that the tool 
was able to generate the matrix one column (i.e., transform) at a time. This discovery lead to a closer look 
at utilizing the Shared Resource Matrix methodology. 

A problem with the SRM approach was our lack of access to a tool that could generate the required 
transitive closure of references (i.e., the SRM tool could only deal with one transform at a time). 
Performing the transitive closure by hand was considered beyond the scope of effort for the project. After 
this problem was resolved (see "Transitive Closure," below), we defined an approach which combined the 
methods of SRM and flow analysis [DENN76, MILL76]. First, we used the SRM tool to detect all of the 
variable references (read, write) generated within a transform. Next, we labeled the variables, and 
performed a semantic analysis of the context of the references within the specification to detect illegal 
flows. This analysis included the criteria identified by Kemmerer to determine the suitability of the flows 
as covert channels. Finally, to help determine the fastest way to drive the channels, a reduced SRM was 
produced (see "Matrix Reduction," below). 

Transitive Closure 

Transitive closure of the flows in the shared resource matrix is normally provided by the Ina Jo tool used to 
create the matrix. Since our matrix was created by hand, the issue of transitive closure was considered 
independently. We determined, much as did Tsai [TSAI87], that transitive closure was not necessary. It 
was clear that transitive closure would only provide illegal flows based upon other already known direct 
illegal flows (See Appendix for a formal proof of this property). 

The point of covert channel analysis is to identify information leakage such that it may be limited (in the 
best case, closed) and/or audited. In the case of audit, since each transitive flow utilizes one or more direct 
illegal flows, the usage of each transitive channel will trigger the audit mechanism for its direct flow(s). 
For the limitation of transitive-flow based channels, we concluded that since the transitive flows result 
from a serial concatenation of direct flows [2], the overall transitive channel could not operate any faster 
than the direct flows upon which they were based. Thus, limitation and audit strategies for a direct 
channel will similarly limit and provide audit for its associated transitive-flow based channels. 

If the direct illegal flows of a system are both auditable and limitable, the only obvious benefit to 
performing transitive closure is if a direct illegal flow is dismissed as unusable (i.e., not considered a covert 
channel) because a variable involved could not be seen directly or manipulated at the interface. If this 
rationale were used for elimination of a possible channel then it seems that one would be forced to analyze 
the transitive closure on the matrix before reaching the conclusion that the illegal flow is unusable. Since 
we did not eliminate any illegal flows this way, the requirement for transitive closure was obviated. 

Note that the transitive flows discussed herein utilize the serial concatenation of flows to produce a channel, 
whereas channel aggregation [TSAI88, p. 113] refers to the parallel and symbiotic exploitation of different covert 
channels. 
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For the GEMSOS Kernel, we found that the direct illegal flows were both auditable and limitable. The 
measurement of direct flows also provides input, in conjunction with knowledge of system configuration 
information, to perform various sorts of channel aggregation measurements should such measurements be 
desired. 

Generation of Variable References 

Each transform of the specification was run through the SRM tool. This generated a list of references for 
each transform, somewhat like the following partial output for a transform (swapin_segment) for moving 
data from secondary storage into main memory. 

T6 KEY 

VI I RM VI : proc_table(pid).mem_avaiI 
V2 I RM V2 :  a_table(pid, sn).swapped_in 
V3 I RM V3 :  global_mem_avail 
V4 I M V4 :  success(pid) 

T6 :  swapin_jsegment 

Shown is an SRM with one transform and four variables, along with a key to the transform and variables. 
In the SRM, "R" indicates read and "M" indicates modify; "pid" is an identifier of type process ID, "sn" 
is an identifier of type process_local_segment_number. 

Labeling of Variables and Semantic Analysis 

After the lists of references within each transform was generated, the variables were labeled. We 
developed the following conventions for this process: 

1. All constants (i.e., variables that were only read but never written) were labeled, "sys-low" 

2. All variables that were read by all processes were labeled "sys-low" 

3. All variables that were written to by all processes were labeled "sys-hi" 

4. All variables that were indexed by process were labeled "at the process level" which we assumed to 
be in the range sys-hi to sys-lo 

5. All variables that were both written and read by all processes were labeled "syshi." Note that it 
doesn'i matter whether the bidirectional illegal flows are considered bad reads or bad writes since 
either way they are flagged as potential contributors to covert channels. 

The variable's labels were compiled in a global list, such that each variable was treated consistently across 
all of the transforms. Examples of the variable labels are shown below in the syntax of Ina Jo. A variable 
to the left of an "at" sign is assigned the label to the right of the "at" sign. The function "secjabel" 
returns a label for the process ID argument (pid). 

a_table(pid, sn) @ sec_label(pid), 
global_mem_avail @ syshi, 
proc_table(pid) @ sec_label(pid), 
success(pid) @ sec_label(pid) 

A semantic analysis of each flow identified by the SRM tool was performed. This analysis was done by 
hand due to the immaturity of the flow tool. The semantic analysis of the references was documented in a 
list which gave a brief rationale for the outcome. Usually, the analysis involved comparing the process and 
variable labels directly. In some cases a more detailed rationale was required, such as relying on system 
invariants or explicit security checks in the specification to infer the relationship of the process and 
variable labels; these rationales were formulated as closed deductive arguments. The following rationales 
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reflect a security policy for single-level processes which requires a process to be at or above the level of an 
observed object, and at or below the level of a modified object. 

VI I RM I legal because proc_table(pid) is at level of pid 
V2 I RM I legal because a_table(pid,sn) is at level of pid 
V3 I RM I ILLEGAL because global_mem_avail is at system high 
V4 I M I legal because success(pid) is at level of pid 

The semantic analysis included meeting the following requirements to be the source of covert channels 
[KEMM83]: 

1. Sending and receiving processes must be able to access the same attribute of a shared resource. 

2. The sending process must be able to write to the shared attribute. 

3. The receiving process must be able to read the shared attribute. 

4. There must be some mechanism for initiating the sending and receiving processes and for sequencing 
the events correctly. 

5. The sending and receiving processes must be in distinct protection domains and must not be allowed 
to communicate with each other directly. 

Matrix Reduction 

A matrix was created consisting of all variables involving direct illegal references, and all transforms with 
references to those variables. 

Tl    T2   T3   T4   T5   T6   T7   T8   T9 T10 

gast_total 

global_mem_avail 

last_total 

local_mem_avail 

total_active_processes 

total_mounted_volumes 

vol_space_avail 

R Rm m rm Rm 

rm Rm m m rm Rm 

R Rm m rm Rm 

rm Rm m m rm Rm 

rm Rm 

rm Rm 

R rm Rm 

r = read 
R = illegal read 
m = modify 

The reduced matrix had 10 transforms and 7 variables. This is in contrast to the output of the SRM tool, 
which would have shown 30 transforms and 738 variables and constants. A similar reduction in the 
number of references (e.g., r, m) recorded is also apparent. 

As explained above and in the Appendix, the excluded variables and transforms do not need to be 
included in the covert channel analysis: any operations that indirectly reference a variable are not of 
interest because the auditing and reduction of the covert channels is accomplished relative to the direct 
illegal reference. 
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We have found that the reduced matrix provides significant information necessary for covert analysis of 
the system. A covert channel involves complementary actions: reading a variable in question and writing 
the variable. The reduced matrix includes all direct illegal references and shows all of the transforms that 
can be utilized in the complementary action to each illegal reference. For example, in the case of the 
above matrix where all of the illegal references are illegal reads, one can determine which operations can 
be used to directly write to the variable. This information can be used in bandwidth estimation (see 
"Channel Bandwidth Estimation," below) as well as limiting and auditing of the channel. 

The reduced matrix is a subset of the full transitive closure matrix. This will be true in general since a 
transitive closure matrix is an expansion of a matrix of direct flows, and a reduced matrix takes as input a 
direct flow matrix, and reduces it (by eliminating variables without illegal references). 

The entries in the matrix were then analyzed to determine the best scenario for exploitation of the illegal 
flows in the form of covert channels. 

Channel Bandwidth Estimation 

The analysis of illegal direct flows revealed that they were primarily resource exhaustion channels. The 
one exception was considered a design flaw. Security checks were added to the kernel interface to 
eliminate this channel, and the analysis was adjusted accordingly. The resource exhaustion channels were 
found to be closeable through proper system configuration choices and were all auditable. However, in 
order to provide customers with a basis for deciding if the restrictions imposed by configuration options 
were necessary, analysis was performed to estimate the maximum theoretical bandwidth of each of the 
channels. 

In some cases, a single covert channel (relative to a system variable) could be exercised through multiple 
pairs (reader and writer) of kernel calls (see the matrix, above). In order to determine which of these pairs 
would provide the highest estimated bandwidth, the speed of each kernel call was tested. The fastest pair 
that exercised a given channel, based on those listed in the matrix, was then used in the estimation of the 
channel's bandwidth. 

The actual bandwidth estimates and exploitation scenarios resulting from this analysis are proprietary and 
are not included in this report. 

Informal Identification of Covert Storage Channels 

In a separate effort from the formal covert storage channel analysis based on the FTLS, an informal 
engineering analysis of the DTLS was performed. This separate analysis involved the evaluation of the 
order of outputs described in the DTLS to determine whether the outputs represent illegal flows and could 
be used for covert channel exploitation. The relevance of the "output ordering" analysis to the covert 
channel analysis is based on the assumption that all illegal flows are detected at the interface through 
outputs returned by the kernel. The illegal flows thus discovered corresponded to the illegal reads 
identified in the SRM matrix, above. 

The analysis method is particularly applicable for systems below the class Al level where an FTLS and the 
associated formal analysis are not available. At the Al level, the informal analysis can provide a useful 
counterpoint to, and a further validation of, the formal analysis. Although the informal analysis is 
necessarily less reliable than formal analysis, it was far less time consuming. 

Description of Approach 

For this analysis, the DTLS has the following characteristics: 
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1. All state variables are identified as "process-local" or "global." 

2. The security level of each state variable is identified (the conventions used are as described for the 
formal analysis). 

3. For each output, the state variables that are observed in order to return the output are identified. 

Outputs are either error messages (indicating exception conditions) or return values. The return of an 
output by the kernel typically indicates observation of one or more state variables (i.e., attributes) within 
the kernel. "Process-local" state variables are observed and modified by a single process only. Outputs 
returned to a process as a result of observation of "process-local" state are legal since the information is at 
the same level as the process. 

"Global" state variables are observed and modified by more than one process. An output returned to a 
process as a result of observation of a "global" state variable may be part of an illegal flow. For each 
kernel output so identified, an ordering analysis is performed to confirm that the design prevents the illegal 
flow. 

Tn the GEMSOS Kernel, outputs are ordered: in the event of an exception, only an error message is 
returned as an output; the order in which exception conditions are checked determines the order of the 
their corresponding outputs; in the event of two or more exceptions, only the condition that is checked first 
will be reflected as output. 

Each output associated with the observation of a global state variable must be ordered to occur AFTER a 
corresponding output representing a system security check (the specific checks are described below). If a 
"global-observing" output is out of order with respect its corresponding system security check, or the 
check is absent, then a covert channel is identified. 

The outputs were divided into two classes for this analysis: those indicating global resource exhaustion, 
and "other." For global resource exhaustion, the corresponding system security check determines whether 
the process-local allocation of the resource is exhausted. This ordering reflects the kernel mechanism for 
partitioning global resources on a per-process basis, such that with proper system configuration (i.e., initial 
allocation), a process will always exhaust its local resource allocation before exhausting the global 
resource. 

For outputs other than global resource exhaustion exceptions, (for example, the return of file size), the 
corresponding system security check must confirm that the calling process is at a security level sufficient to 
observe the global state. 

Conclusion 

Although the tools exist today for performing analysis of specifications with respect to flows and covert 
channels, these tools are not of sufficient maturity to be used effectively in the automated analysis of an 
commercially-sized operating system kernel. We have shown that it is feasible to work with the currently 
evolving tools and complete a formal covert channel analysis on a relatively large specification. Informal 
"output ordering" analysis yielded results that were consistent with the formal covert channel analysis 
results. 

We chose to base our analysis on the direct illegal flows rather than on the transitive closure of flows 
because: 1) direct illegal flows are the fundamental leakages of the system (all illegal flows evolve from 
direct illegal flows); 2) we were able to address (audit and limit) those flows directly; and, 3) we wanted to 
limit the level of effort of the analysis. 

By adapting the analysis methodology to the capabilities of the tools and methods available today, one can 
arrive at a significant reduction in effort relative to theoretical covert channel analysis approaches. The 
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methodology outlined here presents a viable alternative for use while analysis tools mature. The authors 
recommend continued research and development in automated analysis systems. It is hoped that the 
techniques introduced here to reduce the necessary amount of analysis can be incorporated into future 
tools. 
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Appendix: Proof of Transitive Closure 

This appendix provides a proof that no illegal flows will be created by taking the transitive closure on a shared 
resource matrix that has no illegal direct flows. This shows that if one eliminates the direct illegal flows from an SRM, 
the transitive closure will introduce no new illegal flows. Therefore, if there exist illegal flows in the transitive closure 
of an SRM, they are derived from the illegal direct flows in the base SRM. The proof is trivial but is included for 
completeness. 

We begin by defining: 

T = finite set of all transforms (fixed for appendix) 
V = finite set of all variables (fixed for appendix) 

Fix atoms, R and M, intuitively denoting the notions of read and modify. Fix a set of labels and a partial ordering 
relation on this set, "<." Fix a function, "label," which maps elements of V to elements of the set of labels. 

DEFINITION 1. A shared resource matrix, F is a matrix indexed by T x V such that for all t in T, v in V: F(t,v) is a 
subset of {R,M}. We will use F, F etc., to denote shared resource matrices. 
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DEFINITION 2. A flow for a shared resource matrix, F, is a triple, (t.vl ,v2) where R is an element of F(t,vl) and M 
is an element of F(t,v2). We will also denote the flow (t,vl,v2) as (vl t-> v2). 

DEFINITION 3. A flow (vl t-> v2) is said to be a legal flow iff label(vl) < label(v2). 

DEFINITION 4. A "contains" relation which provides a partial ordering on shared resource matrices is defined such 
that P contains F iff for all t in T, v in V: F(t,v) is a subset of F(t,v). 

DEFINITION 5. A shared resource matrix, F, is transitively closed iff for all tl and t2 which are elements of T, vl 
and v2 which are elements of V: [R is an element of F(tl ,vl) and M is an element of F(tl ,v2) and R is an element of 
F(t2,v2)] implies [R is an element of F(t2,vl)]. 

DEFINITION 6. If F is a shared resource matrix, then F' is the least shared resource matrix that contains F and is 
transitively closed. 

The construction of F" is typically performed in steps. These steps will be called transitive closure steps. A transitive 
closure step takes F to F if there exists a tl, t2, vl, v2, such that: 

R is an element of F(tl,vl) and M is an element of F(tl,v2) and R is an element of F(t2,v2) and R is not an 
element of F(t2,vl) 

and for all t which are elements of T, v which are elements of V: [t not equal t2 or v not equal vl] implies 
[F(t,v) * F(t,v)]. 

and F(t2,vl) = ( F(t2,vl) Union (r)) 

If one begins with a resource matrix and repeatedly applies the transitive closure step until no more transitive closure 
steps can be applied to the matrix then the resulting matrix is transitively closed. 

THEOREM 

If all the flows for F are legal then all the flows for F" are legal. 

PROOF 

Suppose a sequence FO, Fl, ..., Fn where each F is a transitive closure step of the previous F, and Fn = F", and FO = 
F. We will show by induction on k that all flows in Fk are legal. For k=0 this is obvious. 

Suppose there exists a tl, t2, vl, v2, v3 which are appropriate for some F(k-l) to Fk and all flows in K-l are legal (see 
next figure). All flows for Fk that are not flows for F(k-l) are of the form: (vl t2-> v3). It is easy to see that (v2 t2- 
> v3) is a flow for F(k-l), so label(v2) < label(v3). 

F(k-l)     VI V2 V3 
Tl r  m (vl tl-> v2) 
T2     r  m     (v2 t2-> v3) 

F(k)       VI V2 V3 
Tl r  m (vl tl-> v2) 
T2 r  r  ra     (v2 t2-> v3) 

(vl t2-> v3) 

Example Matrices 

Also, (vl tl-> v2) is a flow of F(k-l), so label(vl) < label(v2). 
By transitivity on <: [Iabel(v2) < label(v3) and label(vl) < label(v2)] implies [label(vl) < Iabel(v3)]. 
Which means that the flow is legal and all flows in Fk are legal. 
Q.E.D. 
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Verification of the C/30 Microcode Using the State Delta 
Verification System (SDVS)1 

Jeffrey V. Cook 
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Los Angeles, CA 90009 

Abstract 

We present the formal verification, using the State Delta Verification System (SDVS), of 
the microcode for the Bolt Beranek and Newman, Inc. (BBN) C/30 computer. The C/30 has a 
high-level instruction set architecture that is emulated by microcode resident on BBN's Micro- 
programmable Building Block (MBB) computer. A large majority of the C/30's instructions 
were proven to be correctly emulated, but some microcode errors were discovered during the 
verification process. This verification effort, which demonstrated SDVS' ability to check the 
correctness of microcoded computer implementations, is a significant milestone on the path to 
correctness proofs that span the hardware/firmware/software hierarchy. 

1     Introduction 
This paper describes the C/30 Microcode Verification Project, which was initiated at The Aerospace 
Corporation in October 1984 and was completed there in November 1986. The project involved 
formally proving the correctness of microcode that emulates the instruction set architecture of the 
C/30 computer. The C/30 computer [1], designed by Bolt Beranek and Newman, Inc. (BBN), 
was implemented by microcode for BBN's Microprogrammable Building Block (MBB) [2, 3]. The 
proof of microcode correctness was specified and verified using the State Delta Verification System 
(SDVS) [4], a system developed at The Aerospace Corporation. SDVS is a system for writing, and 
checking the correctness of, proofs of statements written in its internal temporal logic, the state 
delta logic [5]. 

The C/30 Microcode Verification Project was of major significance for at least two reasons. 
First, the MBB is a production computer, not a toy computer, for which the emulation of the 
C/30 architecture is only one of its many uses. The C/30 has been in operation for many years 
as a packet switching node2 on the Arpanet. The second significant aspect was the amount 
of microcode involved. Approximately 1000 MBB microinstructions implemented the portion 
of the C/30 instruction set that was verified during the project. A large majority of the C/30's 
instructions were proven to be correctly implemented by the microcode, but a number of microcode 
errors were discovered during the verification process. 

Two other significant hardware and microcode verification efforts have been undertaken in 
recent years. One consisted of the use of the HOL system to verify the correctness of the Viper 
microprocessor in 1987 [6, 7, 8]. Another consisted of the use of the Boyer-Moore system to verify 
the correctness of the FM8501 in 1986 [9, 10]. 

'This research was supported by the National Computer Security Center under contracts FO4701-83-C-0084 and 
FO4701-85-C-0086. 

The terminology "IMP," or "interface message processor," may be more familiar to some readers, as it predates 
"packet switching node." 
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SDVS is briefly discussed in Section 2, followed by a discussion of SDVS's microcode verification 
paradigm in Section 3. The MBB and C/30 computers are described in Section 4. The formal 
specifications of the architectures of these two computers are described in Section 5. The formal 
statement that the microcoded MBB correctly implements the C/30 is given in Section 6. The 
proof of this statement of implementation correctness is discussed in Section 7. Finally, Section 8 
concludes this paper with observations concerning the verification process. 

2    SDVS and State Deltas 
A good general introduction to SDVS is given in [11], even though some information specific to 
an older version of SDVS is found there. Reference [12] is the SDVS Users' Manual in effect at 
the time the C/30 Microcode Verification Project was completed. A recent paper that describes 
SDVS, state deltas, and the translator for a subset of Ada3 is given in [13]; most of the material 
in this section is taken from this paper. 

SDVS is a system for checking proofs about the course of a computation. SDVS is based on a 
specialized form of temporal logic whose temporal formulas are called state deltas. A state delta 
is a description of a transition from one computation state to another. Its precondition describes 
a state from which the transition can be made, and its postcondition describes the state resulting 
from the transition. Technically, SDVS checks proofs of state deltas, which provide an operational 
semantic representation of computation. SDVS can handle proofs of claims of the form, "if P is 
true now, then Q will become true in the future." If P is a program (perhaps with some initial 
assertions) and Q is an output assertion, then the above claim is an input-output assertion about 
P. SDVS can also handle claims of the form "if P is true now, then Q is true now."4 In this case, 
if P is a program and Q is a specification, then the claim asserts the total correctness of P with 
respect to Q. SDVS is also capable of handling proofs that one computer program (or description) 
correctly implements another, i.e., multilevel correctness proofs. 

A state delta is a formula consisting of a precondition P, a comodification list C, a modification 
list M, and a postcondition Q. P and Q are non-empty lists of formulas taken from the language 
of the state delta logic. C and M are (possibly empty) lists of places. A place contains (abstract) 
values, the place's "contents." Places can be viewed as, for example, abstract memory locations 
or program variables. SDVS displays state deltas using the following notation: 

[SD pre:   P 
comod:   C 

mod:  M 
post:   Q ] 

Let the times ii and t2 denote a state delta's precondition and postcondition times, respectively. 
A state delta's modification list M specifies those places whose contents are allowed to change 
between precondition and postcondition time as a result of the transition. The truth value of any 
assertion about these places cannot be assumed to be preserved during the transition. The contents 
of places not listed in the modification list must remain unchanged during the state transition. 
State deltas assert the total correctness (in the Floyd-Hoare sense) of programs whose transitional 
behavior they characterize with respect to the state delta pre- and postconditions (together with 

3Ada is a registered trademark of the U. S. Government - Ada Joint Program Office. 
4In addition, SDVS can handle claims of the form "for every time in the future Q is true" for arbitrary predicates 
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the implicit assertions that the places not in state delta modification lists preserve their contents 
across the associated state transitions). The role of a state delta's comodification list C is more 
subtle and is explained in detail in [13]. 

Note that SDVS is not only a system for checking the correctness of proofs, but it is also a 
system for interactively developing proofs. A user may interactively guide SDVS's proof-checker 
with high-level proof commands (e.g. symbolically execute, induct, prove by cases), while many 
low-level deductions are made automatically. In particular, SDVS contains decision procedures 
for the theories of propositional logic and equality between uninterpreted function symbols, and 
partial decision procedures for the theory of Presburger arithmetic, a theory of arrays, and a theory 
of bitstrings, among others. 

3    Microcode Verification 

In this section we discuss the microcode verification paradigm of SDVS, and then relate it to 
the C/30 Microcode Verification Project. This paradigm entails proving that the instruction set 
architecture (ISA) of a virtual computer is correctly emulated by a microcoded computer. We 
shall use the terms emulated and microcoded to refer to these two computers, respectively. Proofs 
in this category are referred to as proofs of implementation correctness [14]. 

In order to prove properties of a computer, SDVS requires a formal description of that com- 
puter. When the C/30 Microcode Verification Project was initiated in 1985, the only hardware 
description language recognized by SDVS was ISPS (Instruction Set Processor Specification), de- 
scribed in [15]; ISPS had been in use for over a decade as a language for describing hardware at 
the register transfer level. A translator was developed and implemented for a nontrivial subset of 
ISPS. This translator converts ISPS statements into state deltas and other logical formulas. Thus, 
SDVS has the capability to prove correctness properties of computers described in the accepted 
subset of ISPS. 

In addition to the ISPS descriptions, two other items are necessary to construct the statement 
of implementation correctness: the constants of the microcoded computer (such as its microcode), 
and a formal mapping from the emulated computer to the microcoded computer. This mapping 
shows the relationships between states and storage locations in the two machines. 

The microcode verification paradigm for the C/30 is shown in Figure 1. The Micropro- 
grammable Building Block (MBB) emulates the instruction set architecture (ISA) of the C/30 
via a microprogram tailored for that purpose. We refer to this microprogram as the C/30 Mi- 
crocode; the proof of implementation correctness for this microcode is referred to as the C/30 Proof. 
As shown in the figure, the user provides the ISPS descriptions of the C/30 and of the MBB, a 
formal mapping between the two machines, and the actual binary microcode for the C/30. From 
these are constructed the statement of implementation correctness, designated the C/30 State 
Delta. The two inputs to SDVS are the C/30 State Delta and the C/30 Proof. 

Although Figure 1 has been greatly simplified for the purposes of this discussion, we emphasize 
that the verification process was a task of considerable magnitude. For the C/30 State Delta to be 
constructed, the ISPS descriptions of the C/30 and the MBB had to be written and the mapping 
between the states and registers of both machines had to be determined. Only then could we begin 
to develop and verify the C/30 Proof using SDVS, which required a high degree of interaction 
between the author and the proof system. 

For complicated computers, the development and verification of such a proof is an arduous 
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Figure 1: C/30 Microcode Verification using SDVS 

process, requiring an in-depth understanding of the microcoded computer, its microcode, and the 
emulated computer. If an emulated computer instruction is improperly microcoded, no correctness 
proof can be achieved. 

One utility of microcode verification is demonstrated when the verification process uncovers 
microcode errors. Of course, the gross errors are the more easily recognized, and are usually uncov- 
ered by machine-language programmers when certain microcoded machine-language instructions 
are discovered to operate incorrectly. If an erroneous instruction is not crucial, that is, if its oper- 
ation can be implemented by some other combination of instructions, then the machine-language 
programmer must bypass the erroneous instruction until the microcode is fixed. Thus subtle mi- 
crocode errors may or may not be discovered by machine-language programmers, and may lie in 
wait for years before causing a serious program malfunction. 

4    The MBB and the C/30 

As noted above, the Microprogrammable Building Block (MBB) emulates the instruction set archi- 
tecture (ISA) of the C/30 via the C/30 Microcode. The C/30 was chosen for verification because 
of interest in the verification of certain aspects of the Defense Data Network (DDN), and because 
of the existence of a formal ISPS description of a version of the MBB. 

The MBB is a general-purpose microprogrammable computer that can be used for a variety 
of applications. The MBB's main purpose, as envisioned by the designers, is to emulate other 
computers. In particular, it is capable of emulating the ISA of the C/30. For each computer 
emulated, the MBB requires the insertion of two custom-designed "daughter" boards, the MIRDB 
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(Macroinstruction Registers Daughter Board) and the MARDB (Memory Address Register Daugh- 
ter Board). 

The C/30, specifically designed to serve as a packet switching node on the DDN, is one of 
a family of computers developed by BBN. The C/30 is a 16-bit/word machine with 64K words 
of addressable memory and three addressing modes. It has a number of special-purpose and 
general-purpose registers, and a set of 128 instructions, including sophisticated instructions for 
manipulating queue data structures and controlling multiprocessing. It operates a polled interrupt 
system with clock, I/O, and scheduling interrupts. 

5 Formally Specifying the MBB and the C/30 

In this section we discuss the ISPS descriptions of the MBB and the C/30. A discussion of the 
problems that arose from the use of ISPS as a hardware description language are presented in [16] 
and [17]. 

5.1 ISPS Description of the MBB 

The C/30 Microcode Verification Project took advantage of an existing description of another 
machine, the C/70 MBB [18]. Converting the ISPS description of the C/70 MBB into an ISPS 
description of the C/30 MBB required changing two components of the C/70 MBB description, 
the ISPS descriptions of the MIRDB and the MARDB. In addition, the size of the main memory 
of the MBB was reduced from 1M to 64K. The ISPS description of the C/30 MBB is given in [19], 
with commentary on the computer's operation. This ISPS description occupies 30 pages of text, 
or 15 pages in the absence of text formatting. 

A portion of the C/70 MBB description that was excised before the C/30 Proof began was that 
of the error detection and correction (EDAC) algorithm that checks for data errors during main 
memory reads. Thus, the C/30 Proof assumes that no data errors (e.g. parity errors) occur during 
main memory reads. Henceforth, the term "MBB" shall refer solely to the C/30 configuration of 
the MBB computer. 

5.2 ISPS Description of the C/30 

The ISPS description of the C/30 computer [20] was written from documentation supplied by the 
C/30 Programmer's Reference Manual [1], and from interactions with BBN employees involved in 
the C/30 Microcode Verification effort. Ten of the 128 instructions in the C/30 instruction set were 
not included in this description. These ten included instructions that manipulate the I/O system 
of the C/30, whose actions were difficult to specify formally, .and the maintenance and diagnostic 
instructions, which had the capability of altering the C/30 Microcode (the C/30 Microcode was 
assumed to remain unchanged during the C/30 Proof). This ISPS description occupies 41 pages 
of text, or 17 pages in the absence of text formatting. 

6 The Statement of Implementation Correctness 

Once the ISPS descriptions of the MBB and the C/30 were available, the formal statement of 
implementation correctness for the C/30 could be constructed. Let c30micro. isp denote the 
name of the file containing the ISPS description of the MBB, and let c30macro.isp denote the 
name of the file containing the ISPS description of the C/30. The notations isps (c30micro. isp) 
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and mpisps(c30macro. isp) represent state delta translations of these descriptions; these nota- 
tions are discussed in more detail below. The statement of implementation correctness for the 
C/30 is then represented in SDVS by the state delta shown below. (This is a stylized, abbreviated 
representation of the actual C/30 State Delta; italics have been used to represent missing formulas.) 

[SD pre:   (isps(c30micro.isp)  A 
MBB constants, e.g., the C/30 Microcode A 
mapping from C/30 to the MBB) 

comod:   () 
mod:   () 

post:   (mpisps(c30macro.isp)) ] 

Informally, this state delta says that the MBB computer, with the C/30 Microcode and cer- 
tain other constants, implements the C/30 computer, via a mapping that relates the states and 
architectures of the two computers. The exact statement of implementation correctness for the 
C/30 is given in [21]. 

The two unary SDVS predicates isps and mpisps are used to capture the semantic output of the 
ISPS translator as follows. The formula isps (c30micro. isp) denotes the incremental translation 
of the ISPS description of the MBB. This predicate is useful only for the symbolic execution of 
ISPS descriptions, because it incrementally translates ISPS descriptions one statement at a time. 
The notation mpisps (c30macro. isp) denotes the mark-point to mark-point5 translation of the 
ISPS description of the C/30. This predicate is useful when one wishes to prove properties (such 
as correct implementation) of an ISPS description of a computer. The mpisps translation yields 
a set of logical formulas that describe the static architecture of the emulated computer, as well as 
a set of state deltas, one state delta for each possible execution path between successive labels in 
the ISPS description. 

7    C/30 Proof 

The primary purpose of the C/30 Microcode Verification Project was to produce a verified proof 
of correctness of the C/30 Microcode. This section discusses the portions of the C/30 ISA not 
verified by the C/30 Proof, some of the strategy for the C/30 Proof, a summary of the proof, and 
the C/30 Microcode errors discovered during the verification process. 

7.1     C/30 Proof Omissions 

For reasons discussed briefly below, the complete verification of certain C/30 instructions was not 
attempted. Full details are supplied in [22]. 

Certain long-running C/30 instructions, in particular the shift instructions and the CCRO 
(Convert and Clear Rightmost One) instruction, are interruptible by the clock and I/O interrupts. 
These instructions were verified under the assumption that no interrupts occurred during their 
execution, because the exact method and timing of their interruptibility were not documented, 
and because in 1985 SDVS lacked capabilities for modeling their interruptibility in a way that was 
independent of a specific implementation. 

5ISPS labels are mark-points.   SDVS introduces implicit mark-points to label the beginning and end of ISPS 
descriptions. 
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However, the interruptibility of four block-transfer and block-checksum instructions (BLT, 
TRB, CHK, and ECK), whose interruptibility was explicitly mentioned in the documentation, 
was modeled in the ISPS description of the C/30. Their interruptibility was modeled in a manner 
dependent on the C/30 Microcode implementation; this permitted the development of correctness 

proofs for these four instructions. 

Time constraints and difficulties in accurately modeling certain aspects of the C/30 architecture 
prevented the verification of four multiprocessing instructions (NMFS, DPR, SPR, and GPR), 
and resulted in only a partial verification for one multiprocessing instruction (ENB). In addi- 
tion, because of time constraints alone, the actions of the clock interrupt and the programmable 
(multiprocess scheduling) interrupt were not verified. The difficulties in modeling were due to the 
complexity of the instructions involved and incomplete documentation of their operation. 

7.2    C/30 Proof Strategy 

The strategy for developing the C/30 Proof is the topic of another report [23]. The actual text of 
the proof and the theorems proved during the verification of this proof appear in [21]. 

To prove the truth of the C/30 State Delta, one must prove the truth of the formulas denoted 
by mpisps(c30macro.isp). In the ISPS description of the C/30, the label c30macrocycle marks 
the beginning of the C/30 instruction-interpretation loop. In this particular description, it also 
marks the end of the loop, because execution returns to the label after each iteration. Thus, 
the contents of some of the state deltas denoted by the predicate mpisps(c30macro. isp) are 
determined by the execution paths within the C/30 instruction-interpretation loop, with the label 
c30macrocycle delimiting the beginning and endpoints of each of these state deltas. 

The proof process is best illustrated by an example. Consider the C/30 instruction IAB (Inter- 
change A and B registers). The 16-bit binary operation code for this instruction is 0000000010000001, 
or 129io- An abbreviated representation of the state delta describing the actions of IAB, derived 
directly from the set of state deltas denoted by the predicate mpisps(c30macro. isp), is shown 
below. (Note that while italics are used to represent missing formulas, ellipses are used to represent 
missing or irrelevant portions of the state delta.) 

[SD pre:   (at label cSOmacrocycle in ISPS desc. of C/30 A 
•MEM[|.PC|]=129(16)   A 

...) 
comod:   (...) 

mod:   (A.B.PC,...) 
post:   (.at label cSOmacrocycle in ISPS desc. of C/30 A 

#A =   .B A  #B =   .A A 
#PC =   (.PC ++  1(2))<15:0>)   A 

• ••)  ] 

Let IABSD denote the above state delta. IABSD's precondition states that the C/30 is at the 
beginning of its instruction-interpretation cycle and the operation code of the current instruction 
has the value 129; its modification list permits changes to the A and B registers, and to the pro- 
gram counter (PC); and its postcondition states that the C/30 is once again at the beginning of 
the instruction-interpretation cycle, the contents of the A and B registers have been swapped, and 
the content of the PC register has been incremented by 1, modulo 216. 
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The primary objective of the C/30 Proof is to prove the C/30 State Delta, which contains a 
representation of IABSD in its postcondition. To prove IABSD, under the assumption that the 
C/30 State Delta's precondition holds (the ISPS description of the MBB is available for symbolic 
execution, the C/30 Microcode has a certain value, and a mapping holds between the C/30 and 
the MBB), one must perform the following steps: 

1. Assert the truth of the IABSD precondition. 

2. Symbolically execute the ISPS description of the MBB. 

3. Determine if the IABSD postcondition holds. 

The mapping is used to map C/30 states onto MBB states, and to map C/30 registers (such as 
A and B) onto MBB registers. Mapping the IABSD precondition results in the positioning of 
the MBB's state at the top of its microinstruction-interpretation loop, at the point where the 
next C/30 instruction is to be emulated; it also ensures that the proper operation-code value is 
in the memory location of the instruction to be emulated. One then symbolically executes state 
deltas from the translation of the MBB description; this process interprets the binary microcode 
that comprises the microroutine for the IAB instruction. When the entire IAB microroutine 
has been interpreted, the mapping is again used to determine whether the IABSD postcondition 
indeed holds. During symbolic execution, certain static deductions may need to be performed. To 
perform a static deduction, one must prove that a state 52 at time t was a consequence of another 
state S\ at time t, with no intervening state transition. We determined that the IAB instruction 
was correctly implemented by the C/30 Microcode. 

For C/30 instructions that are more complicated than the above example, the corresponding 
state deltas are also more complicated, and their proofs are more difficult. For instance, the 
C/30 shift instructions, which were implemented by iterative microcode, required inductive proofs. 
Certain C/30 instructions whose operation was contingent upon the current state of the machine 
required proof by cases. In addition, most proofs and their subproofs required static deductions. 

7.3 C/30 Proof Summary 

In all, 89 of the 128 C/30 instructions were proved to be correctly implemented by the C/30 Mi- 
crocode. For the reasons stated in Section 5, the ten I/O, maintenance, and diagnostic instructions 
were not even considered. For lack of time, the verification of five multiprocessing instructions 
(NMFS, DPR, SPR, GPR, and ENB) was never completed. Minor microcode errors appeared 
in the microcode for 17 instructions; however, these errors did not affect the normal operation of 
the C/30. The microcode for five instructions was incorrect, and could result in fatal errors; an 
additional two instructions had microcode of dubious correctness. The erroneously microcoded 
C/30 instructions are the topic of the next section. 

7.4 C/30 Microcode Errors 

Two classes of microcode errors were discovered during the course of developing the C/30 Proof. 
These two classes consist of the microcode errors associated with crash situations and the microcode 
errors that lead to fatal errors. 

In the MBB, the system crashes when an unrecoverable error is detected during microcode 
execution; a numeric crash code is computed before the crash occurs.   Such crashes cause the 
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MBB to revert to a crash state under which an MBB system programmer may perform debugging 
operations. Most of the errors in the C/30 Microcode were associated with these crash situations. 
In some cases, the microcode would crash after detecting such an error, but would incorrectly 
set the crash code. In other cases, the microcode would not crash where a crash situation was 
documented; these cases may have occurred because the documentation was overly restrictive in 
defining errors, since in many of these situations crashing was not intuitively necessary. The C/30 
instructions emulated by microcode containing crash-related errors are described as follows: 

RETN, SRETN, IRETN, PUSHA, POPA, JMP, JST, PUSH, CALL, and POP all set 
the error code to the wrong value in the event of error.  The error code values for "illegal 
stack pointer" and "jump to location zero" were swapped. 

APR, PCB, TPR, ENB, MME, INH, and MMD did not cause a microcode crash if the 
MBB was not in multiprocessing mode when the instruction was executed. In addition, 
APR did not cause a crash if the process being activated was not in the idle state. 

The C/30 instructions emulated by microcode containing fatal errors are described as follows: 

SRC, SZC, SSC, and ACA were incorrect because of a timing error in the microcode. The 
parity computation for these instructions took one more microinstruction execution cycle 
than had originally been anticipated by the MBB microprogrammer(s). 

SZO was assigned the wrong dispatch (microroutine) location by the microcode, off by one. Ex- 
ecuting this instruction caused an "illegal instruction" trap. 

LRS dispatched to one of four microprogram locations, each of which should have contained the 
address of the LRS microroutine, but instead contained the value zero. No dispatch memory 
location contained the real address of the LRS microroutine. 

There were two problematic C/30 instructions, MEMHI and CALL, whose microcode could 
not be verified correct, but whose execution would not result in errors that could be considered 
fatal. 

First, the MEMHI instruction should have assigned the highest allowable main-memory ad- 
dress to a C/30 register. However, the C/30 Microcode assigned the value 32K, even though the 
size of the C/30 main memory is 64K. Note that this anomaly is not to be considered a fatal error, 
as BBN advised us that the MBB microcode boot sequence patched the C/30 Microcode to correct 
this problem in the machine we verified. 

Second, the CALL instruction, after pushing a return address onto the C/30's built-in stack, 
causes the program to branch to some memory location. Consequently, the next instruction 
executed would not necessarily be the instruction invoked by the call, because pushing a return 
address onto the stack could overwrite this memory location (i.e. the stack top location could 
overlap the memory location addressed by the CALL instruction). Note that this anomaly is also 
not to be considered a fatal error, as the proper management of the stack is the responsibility of 
the C/30 programmer. 

All the fatal microcode errors were discussed with BBN, and were identified as being actual 
errors in the version of the microcode being verified. Because of the three-year time lag between 
the use of this microcode in the field and its verification, we were not surprised to learn that all 
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of the fatal microcode errors had been reported to BBN and had been corrected in newer versions 
of the microcode. 

8     Conclusions 

The major successes of the C/30 Microcode Verification Project were the formal verification of 
the correctness of approximately 1000 lines of C/30 Microcode (proving the correctness of the 
microcode that implements a majority of the C/30's instructions, and identifying numerous mi- 
crocode errors), as well as a demonstration of SDVS's ability to tackle large-scale verification 
efforts. 

With respect to the design of the computers and microprograms at issue in this study, the 
correctness of hardware and software could never be certified solely by testing. However, if tests 
of such descriptions or programs are coupled with formal verification in CAD/CAM or CASE 
environments, then the physical implementation of computers and their software will have a much 
higher probability of being correct. In particular, coupling the testing and debugging process with 
microcode verification should result in microcode whose reliability is significantly increased, with 
greatly reduced maintenance costs and a need for fewer microcode updates. 

Other issues of concern involve aspects of SDVS and ISPS. The ISPS specifications of the MBB 
and the C/30 took more than two years to write and required additional time to debug. More than 
one year was required to develop the C/30 Proof and theorems, which consists of approximately 
600 pages of text. The actual computer time required to check the correctness of the C/30 Proof 
on a Symbolics 3640 was approximately 85 hours. Of course, the computer that verified the 
C/30 Proof is now at least four years old, and we have observed current computers capable of an 
eight-fold increase in the execution speed of SDVS. Further reductions in the time required for 
verification can be achieved by simply having in hand the hardware and software specifications of 
a given design. 

All of these times could be reduced, however, because ideally hardware and software specifica- 
tions would provide the basis for computer and software design, and the verification process could 
be folded into the design and implementation process. 

The C/30 Microcode Verification Project was completed in 1986. Since then, many improve- 
ments have been made to SDVS. Given the proper data, SDVS is now capable of automatically 
constructing the statement of implementation correctness. In addition, SDVS has a new translator 
for a larger subset of ISPS. A formal denotational semantics [24] for the new translator has been 
specified in the internal language of DENOTE [25], which automatically generates a Common Lisp 
[26] implementation of the translator. Because of the inadequacies of ISPS as an HDL, VHDL 
(VHSIC hardware description language) is now being considered by the developers of SDVS for 
the verification of hardware designs [27, 28]. In addition, as described in [13], we have added Ada 
verification capabilities to SDVS, and are continuing to incorporate larger subsets of the language. 
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Executive Summary 

Data Categorization and Labeling 
PANEL SESSION OVERVIEW 

Dr. Dennis K. Branstad, Chairman 
Senior Computer Science Fellow 

National Institute of Standards and Technology 

The purpose of a security label is to 

provide information for an intended 

recipient of a document or data 

regarding the desired protection to be 

provided. A label can explicitly state 

what protection to provide, e.g., DO 

NOT FOLD, MUTILATE OR DESTROY. A 

label can implicitly state what 

protection to provide, e.g., SECRET. The 

explicit protection requirements for 

implicitly labeled data are contained in 

separate legislation, policy, directives 

and instructions. This session outlines 

several categories of information 

requiring protection and discusses 

security labels for the categories that 

would implicitly include the protection 

required. Security labels that could be 

used for routing purposes in an Internet 

is presented. 

I. Security Labels: Scope and Purpose 

A security label is a short-hand notation 

denoting either a category of 

information to be protected or the 

protection to be provided. IBM 

PROPRIETARY and   U.S.  SECRET  are 

examples of the former and DO NOT 

COPY is an example of the latter. The 

Internet Protocol Security Option (IPSO) 

Label is an example of an electronic 

label that can be attached to every 

Network Layer packet of data that 

denotes its classification and certain 

other relevant security information. 

This label can be used by network 

intermediate systems (e.g., routers, 

gateways) to determine which route a 

packet will take to its destination. 

A security label should contain enough 

information, either explicitly or 

implicitly, for any potential, intended 

receiver to know how to protect the 

received data. Standards are required 

for security labels so that this protection 

can be universal, or nearly so. The 

standards either need to specify the 

format and contents of a label 

completely or provide an extensible 

format so that the contents can vary 

widely within certain ranges. The 

semantics of a label can then be 

obtained  from  some  source  (e.g.,  a 
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registration  authority) so that the 

proper protection is provided. II. Panel Presentations 

The results of Federal standards 

development should include an 

extensible security label format that 

would satisfy a wide range of protection 

requirements. Protection must include 

confidentiality and integrity and in 

some circumstances would include 

availability and timeliness. A label itself 

requires integrity and availability 

protection but should not require (at 

least preferably) confidentiality 

protection. In addition, a wide range of 

commercial security requirements 

should be considered when defining the 

label format. 

This session includes three presentations 

on information categorization and 

labeling. The first presentation will give 

a broad overview of information 

protection requirements and various 

security categories into which 

information may be placed. The second 

presentation will include considerations 

of security labels in the Open Systems 

Interconnection (OSI) communications 

model. The final presentation will cover 

security labeling in unclassified 

networks and dwell upon the results of 

a NIST hosted workshop on security 

labels held in May, 1990. 
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INFORMATION CATEGORIZATION AND PROTECTION 

The need to understand the value of information. 

Warren Schmitt 
Sears Technology Services, Inc. 

Information can be represented in many 
forms. It can originate from the spoken 
word, it can be written, or it can be 
digitized and transformed into electronic 
form. In some situations, the same 
information may have different meaning to 
different people. Hard-copy information 
seems to engender a different reaction from 
"invisible" information that is transmitted 
and stored electronically. Sometimes the 
old expression, "out of sight, out of mind" 
seems to take precedence with electronic 
information printed on paper would be well 
protected. No sooner having said that, then 
someone would give an example where 
there is substantially greater protection 
given information on a computer than when 
the information produced in a report. 

Maybe these differing perceptions are some 
reasons why it is difficult to place a value 
on information. And why in some 
communities, like the intelligence 
community and the Department of Defense, 
they take great pains to protect information 
from disclosure, while others treat 
information with a rather cavalier attitude, 
and pay little attention to protecting it. 
And still others take the position that all 
information should be free and available to 
anyone who wishes to have access. 

These widely differing points of view may 

explain in part why there hasn't been any 
substantive effort to analyze both the 
vulnerabilities and the related protective 
measures that are associated with 
information and to understand to what 
degree the three major risks, destruction, 
modification, and disclosure, may impact 
the     asset     called     information. A 
categorization process such as this would 
identify how valuable or susceptible the 
information is, and provide bench marks for 
its protection. 

In the commercial sector and the civilian 
government agencies, the value of 
information is not substantially different 
today than it was forty years ago. The 
confidentiality surrounding salary 
information, for example, is about the same 
today as then. Research findings that 
would lead to the envelopment of a new 
product were as valued then as now. The 
integrity of financial records still demand 
great care and diligence and the ability to 
recover information from a damaging event 
still remains a significant management 
concern. 

However, many things about information 
have changed in the last forty years. Most 
notably, how we gather, manipulate, 
distribute, and store information. And most 
of   these    changes    center    around    the 

©opyright Sears Technology Services, Inc. 
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subscription fees etc., the information does 
not command the same degree of 
confidentiality as would seismic information 
about a future drilling site, or the plans for 
corporate mergers or acquisitions. 

The categorization for some risks can be 
done at relatively high levels. For 
example, an entire application may be 
categorized as high/low as it pertains to 
availability (disaster recovery) while a more 
detailed break-down, to isolate a program 
or process, may be necessary to identify 
the degree of concern for the integrity or 
confidentiality of the information. 

The guardian, or the organizational entity 
that is responsible or the accuracy and 
integrity of the information, is the best 
source to categorize the information for 
each of the major risks. He may need 
some help from his application development 
staffs to better understand the applications 
and programs. 

The flip side of the categorization process 
is the identification of the controls that 
would best protect the information from the 
agreed upon risks. By and large this has 
been left up to the application designer 
with some limited input from the internal 
auditor. The control identification process 
needs to be greatly strengthened to include 
the Guardian, the application designer, the 
custodian (usually data processing), the 
user, and internal auditing. Many of the 
controls can be pre-approved for use in all 
applications, while other controls will have 
to be selected based on the individual 
application. 

As the categorization process progresses, a 
data base should be established. This data 
base would identify the information, the 
categorization assigned, the authority who 
established the categorization (usually -the 
Guardian), and the date it was 
approved.This     data     base     should     be 

periodically reviewed to insure its accuracy, 
usually on an annual basis. If there is a 
question as to whether the categorization is 
appropriate, the data base will be the 
source to identify the author. Additionally 
it would also be used by the application 
programmer to identify the categorization 
and be able to understand the level of 
controls that are appropriate for the 
application. 

The establishment of categories as they 
relate to information is often referred to as 
labels. The labels could become an 
integral part of the information, particularly 
when new applications are designed, to 
ensure that the proper controls are 
established, or they could reside in a 
repository. Establishing labels in this 
manner would help ensure that, once the 
information had been categorized and the 
appropriate controls had been established, 
this information could be carried forward as 
the applications are revised or rewritten. 

Information Technology is a very complex 
discipline and as this technology becomes 
more complex we must establish a 
systematic process whereby we can analyze 
the risks to which information is exposed 
and identify the appropriate controls. 
Unless we approach Information Security 
differently than we've done in the last 15 
years, we're destined to manage information 
the same way during the next 15 years. In 
the long term we will be judged by how 
well we managed our information rather 
than on how uniquely it was processed. 
Concentrating on the value of information 
may be the key. 
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innovations embodied in Information 
Technology. 

By contrast with today, at the half-way 
point in this century, the person responsible 
for the accuracy and the integrity of the 
information was the person who most often 
had the information in his custody and 
intimately knew its value and associated 
risks. This enabled him, in many cases, to 
personally apply the controls he deemed 
appropriate to protect the information. The 
information technology revolution has, 
however, dramatically changed the way we 
must manage information. The person 
today who is responsible for the accuracy 
and integrity of the information (whom we 
shall call Guardian) frequently does not 
have the information in his custody. He 
must rely on data processing and 
networking personnel who have the 
physical custody and control of the 
information, the input, the transmission, and 
the processing. These persons should be 
thought of as custodians of the information 
with highly skilled functions to perform. 
Other than in very general terms, these 
technicians are not aware of the value of 
the information. If the value of the 
information and appropriate controls are not 
stipulated by the Guardian, it is not 
reasonable to expect that all the necessary 
controls will be in place. 

Twenty years ago, before networking and 
distributed processing become major 
implementation strategies, the data 
processing functions, by default, usually 
assumed the responsibility for protecting 
information. And by and large, because of 
the centralized nature of the processing, 
they did a rather effective job. Today, the 
user has become accustomed to relying on 
his information technology support staffs to 
design his applications and provide 
processing and telecommunications 
capabilities.    Each of these functions has 

developed into highly technical functions 
whereby we have become specialist in our 
own domains. And as a result, we have 
become insulated from the true value of the 
information as it relates to the enterprise. 

Tomorrow, as the control of applications is 
vested in the end-user, we will see even 
greater changes in the field of Information 
Technology. If we are to place ourselves 
in a position to properly manage our 
information assets in this rapidly changing 
environment, we need to implement a well- 
organized, systematic approach to the 
identification of the risk factors associated 
with information and the generally accepted 
controls that may be employed to protect 
the information. 

One solution would be to categorize the 
information we maintain on computer 
systems in terms of the information's 
susceptibility to each of the major risks 
mentioned above i.e., destruction, 
modification, and disclosure. For the sake 
of this discussion I have reserved the 
normal order in which these risks are 
usually listed in order to place emphasis on 
the fact that disclosure is not the major 
concern of the commercial sector. From 
the business community's perspective, each 
of the risks can be generally considered as 
equally important. 

An important aspect to remember is that 
not all information is equally susceptible to 
each of these three major risks. For 
example, airline reservation information 
may be ranked very high from the 
standpoint of integrity and availability. The 
providers of this information would 
naturally be very concerned with the 
correctness of the information and would 
want the information to be readily available 
in both a printed and an on-line format. 
Although the service provider has strong 
concerns about disclosure from the stand 
point of authorized users and the related 
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Security Labels in Open Systems Interconnection 

Russell Housley 
Xerox Special Information Systems 

McLean, Virginia 

INTRODUCTION 

This paper presents a security labeling framework 
for open systems interconnection (OSI)[1].  The 
framework is intended to help protocol 
designers determine what, if any, security 
labeling should be supported by their protocol. 
The framework should also help network 
architects determine whether or not a particular 
collection of protocols fulfill all of their security 
labeling requirements. 

SECURITY LABELS 

Data security is the measures taken to protect 
data from accidental, unauthorized, intentional, 
or malicious modification, destruction, or 
disclosure.   Data security is also the condition 
that results from the establishment and 
maintenance of protective measures[2].   Given 
this two-pronged definition for data security, 
security labeling as one mechanism which 
provides data security will be examined.   In 
general, security labeling by itself can not 
provide sufficient data security; it must be 
complemented by other security mechanisms. 

In OSI, security labels tell the protocol 
processing how to handle the data 
communicated between two open systems. 
That is, the security label indicates what 
measures need to be taken to preserve the 
condition of security.   "Handle" denotes the 
activities performed on data such as collecting, 
processing, transferring, storing, retrieving, 
sorting, transmitting, disseminating, and 
controlling(3|. 

The definition of data security includes 
protection from modification and destruction. 
That is, protection from writing and deleting. 
These protections are the data integrity service 
defined in the OSI Security Architecture^]. 

Biba[5] has defined a data integrity model which 
includes security labels.   The Biba model 

specifies controls for writing and deleting in 
order to preserve data integrity.   The model also 
specifies control for reading to ensure that data 
is not copied to a container where integrity can 
not be guaranteed. 

Our definition of data security also includes the 
protection from disclosure.   That is, protection 
from reading.   This protection is the data 
confidentiality service defined in the OSI Security 
Architecture^]. 

Bell and LaPadula[6| defined a data 
confidentiality model which includes sensitivity 
labels.  The Bell and LaPadula model specifies 
controls for reading in order to preserve data 
confidentiality.   The model also specifies control 
for writing to ensure that data is not copied to a 
container where confidentiality can not be 
guaranteed. 

Notice that in both the Biba model and the Bell 
and LaPadula model, the security label is an 
attribute of the data.   In general, the security 
label associated with the data will remain 
constant.   Exceptions will be discussed later in 
the paper, but any relabeling is always the result 
of some network entity handling the data. 

INTEGRITY LABELS 

Integrity labels (like those defined in the Biba 
model) support rule-based access control (RBAC) 
policies.   The integrity label tells the degree of 
confidence that may be placed in the data and 
also tells which measures the data requires for 
protection from modification and destruction. 

As data moves through the network, it may be 
relabeled with a lower integrity label as a result 
of being handled by an entity with an integrity 
label lower than the data's integrity label.   When 
this happens, the data is relabeled with the label 
of the entity.   As data moves through the 
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network, it may never be relabeled with a higher 
integrity label. 

One of the rules in the access control policy 
might prohibit this relabeling.   In this case, data 
may only be handled by entities which have the 
same or a higher integrity label than the data. 

Each of the open systems on a network must 
include RBAC policies and the protocol suite 
must transfer the integrity label with the data if 
the confidence of the data is to be maintained 
throughout the network.   Each of the open 
systems on a network may have it's own internal 
representation for a integrity label, but the 
protocols must provide common syntax and 
semantics for the transfer of the integrity label 
(as well as the data itself). 

To date, no protocols have been standardized 
which include integrity labels in the protocol 
control information. 

SENSITIVITY LABELS 

Sensitivity labels (like those defined in the Bell 
and LaPadula model) support rule-based access 
control (RBAC) policies.   The sensitivity label tells 
the amount of damage that will result from the 
disclosure of the data and also tells which 
measures the data requires for protection from 
disclosure. 

As data moves through the network, it may be 
relabeled with a higher sensitivity label as a result 
of being handled by an entity with a sensitivity 
label higher than the data's sensitivity label. 
When this happens, the data is relabeled with 
the sensitivity label of the entity.   As data moves 
through the network, it may never be relabeled 
with a lower sensitivity label. 

One of the rules in the access control policy 
might prohibit this relabeling.   In this case, data 
may only be handled by entities which have the 
same sensitivity label that the data.   (Entities with 
lower sensitivity labels may not handle the data; 
this would be disclosure.   Entities with higher 
sensitivity labels may not handles the data either; 
this would cause the data to be upgraded.) 

Each of the open systems on a network must 
include RBAC policies and the protocol suite 
must transfer the sensitivity label with the data if 

the protection from disclosure is to be 
maintained throughout the network.   Each of the 
open systems on a network may have it's own 
internal representation for a sensitivity label, but 
the protocols must provide common syntax and 
semantics for the transfer of the sensitivity label 
(as well as the data itself). 

Sensitivity labels, like the ones provided by the 
IP Security Option (IPSO)[6], have been used in 
networks for years. 

SECURITY LABEL REQUIREMENTS 

OSI defines two major types of systems: end 
systems and intermediate systemsfl].   These 
terms should be familiar to the reader.   For this 
discussion, however, the traditional definition of 
intermediate system will be broadened to 
include routers, packet switches, and bridges. 
End systems and intermediate systems have 
different security label requirements. 

END SYSTEM SECURITY LABEL REQUIREMENTS 

When two end systems communicate, a 
common security label syntax and semantics are 
needed.  The security label, as an attribute of the 
data, indicates what measures need to be taken 
to preserve the condition of security.   The 
security label must communicate all of the 
integrity and confidentiality handling 
requirements.   These handling requirements can 
become very complex. 

Some operating systems label the data they 
process.   These security labels are not part of 
the data, rather they are attributes of the data. 
Some database management systems (DBMSs) 
perform similar labeling.   The format of these 
security labels is a local matter, but they are 
usually in a format different than the one used 
by the network protocols. 

Trusted operating systems which implement 
RBAC policies require security labels on the data 
they import[8,9].   These security labels permit 
the Trusted Computing Base (TCB) in the end 
system to perform trusted demultiplexing.  That 
is, the network traffic is relayed from the TCB to 
a process only if the process has sufficient 
authorization for the data.   In most cases, the 
TCB must first translate the network security 
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label into the local syntax before it can make the 
access control decision. 

labels can be used.   Also, security labels can 
either be connectionless or connection-oriented. 

INTERMEDIATE SYSTEM SECURITY LABEL 
REQUIREMENTS 

This is a discussion of "user" data security labels 
within the intermediate system.   The labeling 
requirements associated with intermediate 
system-to-end system (IS-ES) traffic, intermediate 
system-to-intermediate system (IS-IS) traffic, and 
intermediate system-to-network management (IS- 
NM) traffic are not included in this discussion. 

Intermediate systems make routing choices or 
discard traffic based on the security label.   The 
security label used by the intermediate system 
should contain only enough information to make 
the routing/discard decision and may be a subset 
of the security label used by the end system. 
For example, handling restrictions (like 
WNINTEL) are unlikely to effect routing 
decisions, but they may effect processing done 
within the end system. 

In most networks, very few intermediate systems 
actually make access control decisions.   For 
performance reasons, only those intermediate 
systems which do make access control decisions 
should be burdened with parsing the security 
label.   That is, information hiding principles 
apply. 

Intermediate systems do not usually translate the 
network security labels to a local format.   They 
use them "as is" to make their routing/discard 
decisions.   However, when two classification 
authorities share a network by bilateral 
agreement, the intermediate systems may be 
required to perform label translation.   For 
example, assume that there are two Department 
of Energy (DOE) accredited subnets attached to 
a Department of Defense (DOD) wide area 
network (WAN).   Routers between a DOE subnet 
and the DOD WAN must translate DOE labels to 
DOD labels so that the routers within the DOD 
WAN can make appropriate routing decisions. 

APPROACHES TO LABELING 

There are several tradeoffs to be made when 
determining how a particular network will 
perform security labeling.   Explicit or implicit 

EXPLICIT VS. IMPLICIT SECURITY LABELS 

Explicit security labels are actual bits in the 
protocol control information (PCI).  The IP 
Security Option (IPSO) is an example of an 
explicit security label[7].   Explicit labels may be 
either connectionless or connection-oriented. 

Implicit security labels are not actual bits in the 
PCI, rather some attribute is used to determine 
the security label.   For example, the choice of 
cryptographic key in the SP4 protocol[10,11] can 
determine the security label.   Implicit labels may 
be either connectionless or connection-oriented. 

CONNECTIONLESS VS. CONNECTION- 
ORIENTED SECURITY LABELS 

When connectionless security labels are used, 
the security label appears in every protocol data 
unit (PDU).  All protocols have limits on the size 
of their PCI, and the explicit security label may 
not exceed this size limit.   It can not use the 
entire PCI space either; the protocol has other 
fields that must be transferred as well.  This size 
limitation may prohibit explicit connectionless 
security labels from meeting the requirements of 
end systems.   However, the requirements of 
intermediate systems are fully satisfied by explicit 
connectionless security labels.  The IP Security 
Option (IPSO)[7] is an example of 
connectionless labeling. 

Connection-oriented security labels are attributes 
of virtual circuits, connections, and associations 
(for simplicity, all of these are subsequently 
referred to as connections).   The security label is 
defined at connection establishment, and all data 
transferred over that connection inherits that 
security label.   This approach is more compatible 
with end system requirements than intermediate 
system requirements.   One noteworthy 
exception is X.25 packets switches; these 
intermediate systems could associate 
connection-oriented labels with each virtual 
circuit.   One example of connection-oriented 
security labels involves two protocols: the SDNS 
Key Management Protocol (KMP)[12,13,14) can 
be used to associate security labels with each of 
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the transport connections protected by the SP4 
protocol[10,11] (using SP4C). 

Connectionless security labels may be used in 
conjunction with connectionless or connection- 
oriented data transfer protocols. However, 
connection-oriented security labels may only be 
used in conjunction with connection-oriented 
data transfer protocols. 

LABELING WITHIN THE OSI REFERENCE 
MODEL 

Each of the seven OSI layers will be examined 
with respect to security labels.   Figure 1 
illustrates the well known reference model. 
Layer 1, the physical layer, will be examined first. 
Then, each successively higher layer will be 
examined. 

LAYER 1, THE PHYSICAL LAYER 

Explicit security labels are not possible in the 
Physical Layer.   The Physical Layer does not 
include any protocol control information (PCI), 
so there is no place to include the bits which 
represent the label. 

Implicit security labels are possible in the 
Physical Layer.   For example, all of the data that 
comes in through a particular physical plug could 
inherit one security label.   Most physical 
connections are connectionless (they support 
only bit-at-a-time or byte-at-a-time operations), 
so these implicit security labels are 
connectionless. 

Implicit security labels in the Physical Layer may 
be used to meet the requirements of either end 
systems or intermediate systems so long as the 
physical connection is single level.   That is, only 
one security label is associated with all of the 
data received or transmitted through the physical 
connection. 

LAYER 2. THE DATA LINK LAYER 

Explicit security labels are possible in the Data 
Link Layer.   In fact, the IEEE 802.2 Working 
Croup is currently working on an optional 
security label standard for the Logical Link 
Control (LLC) protocol (a.k.a. IEEE 802.2)[15|. 
These labels will optionally appear in each LLC 
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Figure 1.   OSI Reference Model. 

frame.   These are obviously connectionless 
security labels. 

Explicit connection-oriented security labels are 
also possible in the Data Link Layer.   One could 
imagine a security label standard which worked 
with LLC Type II. 

Of course, implicit security labels are also 
possible in the Data Link Layer.   These implicit 
labels could be either connectionless or 
connection-oriented.   One attribute that might 
be used in IEEE 802.3 (CSMA/CD)[16| to 
determine the implicit security label is the source 
address of the frame. 

Security labels in the Data Link Layer may be 
used to meet the requirements of end systems 
and intermediate systems.   Explicit security labels 
in this layer tend to be small, so end systems 
with requirements for large security labels should 
use a higher protocol layer.   However, label- 
based routing decisions made by bridges are 
best supported in this layer. 
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LAYER 3, THE NETWORK LAYER 

Explicit security labels are possible in the 
Network Layer.   In fact, the IP Security Option 
(IPSO) has been used for many years.   These 
labels optionally appear in each IP datagram. 
IPSO labels are obviously connectionless security 
labels. 

Explicit connection-oriented security labels are 
also possible in the Network Layer.   One could 
easily imagine a security label standard for 
X.25[17]. 

Of course, implicit security labels are also 
possible in the Network Layer.   These implicit 
labels could be either connectionless or 
connection-oriented.   One attribute that might 
be used to determine the implicit security label 
is the X.25 virtual circuit. 

Security labels in the Network Layer may be used 
to meet the requirements of end systems and 
intermediate systems.   Explicit security labels in 
this layer tend to be small, so end systems with 
requirements for large security labels should use 
a higher protocol layer.   Alternatively, the 
Network Layer (especially the the Subnetwork 
Independent Convergence Protocol (SNICP)) is 
an excellent place to carry a security label to 
support trusted demultiplexing because many 
implementations demultiplex from an system- 
wide daemon to a user process after network 
layer processing.   The SNICP is end-to-end, yet it 
is low enough in the protocol stack to aid 
trusted demultiplexing. 

Label-based routing decisions made by routers 
and packet switches are best supported in the 
Network Layer.   Routers can also add security 
labels at subnetwork boundaries.   However, 
placement of these security labels must be done 
carefully to ensure that the addition of the 
security label does not degrade overall network 
performance by forcing routers that do not make 
label-based routing decisions to parse the 
security label. 

LAYER 4, THE TRANSPORT LAYER 

Explicit security labels are possible in the 
Transport Layer.   In fact, the SP4 protocol! 10,11] 
includes them.   These security labels can be 
either connectionless (using SP4E) or 

connection-oriented (using SP4C).   SP4 is an 
addendum to the TP[18) and CLTP[19] protocols. 

Implicit security labels are also possible in the 
Transport Layer.   These implicit labels could be 
either connectionless or connection-oriented. 
One attribute that might be used to determine 
the implicit label in the SP4 protocol (when 
explicit labels are not used as discussed above) 
is the choice of cryptographic kev. 

Security labels in the Transport Layer may be 
used to meet the requirements of end systems. 
The Transport Layer, being end-to-end can not 
be used to meet the requirements of 
intermediate systems.   Connection-oriented 
explicit security labels in this layer are especially 
good for meeting end system requirements 
where large labels are required.   The label is only 
transmitted at connection establishment, so 
overhead is kept to a minimum.   Yet, in many 
implementations the Transport Layer is low 
enough in the protocol stack to aid trusted 
demultiplexing. 

LAYER 5, THE SESSION LAYER 

Explicit security labels are possible in the Session 
Layer.   Session Layer security labels could be 
either connectionless or connection-oriented. 
However, it is unlikely that a standard will ever 
be developed for such labels because the OSI 
Security Architecture^] does not allocate any 
security services to the Session Layer. 

Implicit security labels are also possible in the 
Session Layer.   These implicit labels could be 
either connectionless or connection-oriented. 
Again, the ISO Security Architecture makes this 
layer an unlikely choice for security labeling. 

Security labels in the Session Layer may be used 
to meet the requirements of end systems, but 
the Session Layer is too high in the protocol 
stack to be used to meet the requirements of 
intermediate systems.   The Session Layer is also 
too high in the protocol stack to support trusted 
demultiplexing. 

LAYER 6, THE PRESENTATION LAYER 

Explicit security labels are possible in the 
Presentation Layer.   The presentation syntax may 
include a security label.   This approach naturally 
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performs translation to the local label format. 
This approach supports connectionless and 
connection-oriented security labeling. 

Implicit security labels are also possible in the 
Presentation Layer.  These implicit security labels 
could be either connectionless or connection- 
oriented. 

Security labels in the Presentation Layer may be 
used to meet the requirements of end systems, 
but the Presentation Layer is too high in the 
protocol stack to be used to meet the 
requirements of intermediate systems.  The 
Presentation Layer is also too high in the 
protocol stack to support trusted demultiplexing. 

LAYER 7, THE APPLICATION LAYER 

Explicit security labels are possible in the 
Application Layer.   The CCITT message handling 
system includes security labels in message 
envelopes[20].   Other Application Layer 
protocols will probably include security labels in 
the future.  These security labels could be either 
connectionless or connection-oriented.   It is 
most likely that transaction processing protocols 
and message handling protocols will include 
connectionless security labels; other application 
protocols will most likely include connection- 
oriented security labels. 

Application layer protocols are unique in that 
they can include security label information which 
is specific to a particular application without 
burdening other applications with the syntax or 
semantics of that security label. 

Implicit security labels are also possible in the 
Application Layer.  These implicit security labels 
could be either connectionless or connection- 
oriented.   One attribute that might be used to 
determine the implicit label is the application 
title. 

Security labels in the Application Layer may be 
used to meet the requirements of end systems, 
but the Application Layer is too high in the 
protocol stack to be used to meet the 
requirements of intermediate systems.   The 
Application Layer is also too high in the protocol 
stack to support trusted demultiplexing. 

SUMMARY 

As we have seen, very few hard rules exist for 
security labels in OSI. Protocol designers and 
network architects are faced with many tradeoffs 
when making security label placement decisions. 
A few guidelines can be derived from the 
preceding discussion. 

Security label-based routing decisions are best 
supported by explicit security labels in the Data 
Link Layer and the Network Layer.   It is no 
surprise that when bridges are making the 
routing decisions, the Data Link Layer should 
carry the explicit security label; when routers are 
making the routing decisions, the Network Layer 
should carry the explicit security label. 

When security labels are specific to a particular 
application, it is wise to define them in the 
application protocol where these security labels 
will not burden other applications on the 
network. 

When trusted demultiplexing is a concern, the 
Network Layer (preferably the SNICP) or 
Transport Layer should be used to carry the 
explicit security label. 
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Executive Summary 
Security Labeling in Unclassified Networks 

Noel A. Nazario 
Protocol Security Group 

National Institute of Standards and Technology 

Introduction 

As computer networks become 
widespread, government agencies 
and commercial operations are 
expressing a need to safeguard 
unclassified information that is 
sensitive to their operations. 
Security labels are used to provide 
data handling instructions to the 
network protocol processing [4]. 
These handling indications reflect 
the security policy of the 
organization that owns the data. 
Existent systems that use labeling 
reflect the security policies of the 
Department of Defense which do not 
address the needs of the unclassified 
community.   A different set of 
requirements must be considered in 
addressing the needs of this 
community.   In order to stimulate 
the development of off-the-shelf 
products that provide appropriate 
protection, it is necessary to devise 
an approach to security labels that 
can be acceptable to both the 
classified and unclassified 
communities. 

The National Institute of Standards 
and Technology has taken an active 
role in the development of the U.S. 
Government Open System 
Interconnection Profile (GOSIP) [8]. 
This profile attempts to define a set 
of requirements, which include 
security, that will be used by the 
U.S. Government in the procurement 

of computer communications 
equipment.   The development of 
GOSIP is also being watched closely 
by non-government users of secure 
computer communications.   NIST 
works in partnership with the 
National Computer Security Center 
drawing upon its technology and 
products to provide solutions to the 
computer security needs of the 
government unclassified and 
commercial communities.   Security 
labels was identified by NIST as one 
of the areas that need prompt 
attention in the development of a 
unified approach to Open Systems 
Interconnection (OSI) security. 

On May 30 and 31, 1990, NIST 
hosted an invitational workshop to 
address security labels for open 
systems.   This workshop provided a 
forum for users to express their 
needs as well as to receive the 
technical contributions of experts in 
network security.   After publishing 
the proceedings of this workshop [6] 
NIST staff will draft text on security 
labeling for Chapter 6 of GOSIP. 

Background Information 

Any standardization activity for 
network security labels has to take 
into consideration previous work in 
this area.   The labeling approach 
most widely used is the Internet 
Protocol Security Option (IPSO). 
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Initially the IPSO was described in 
the original TCP/IP protocol 
specifications in the DDN Protocol 
Handbook [2].   It was probably 
never implemented until Captain 
Michael St. Johns, USAF, drafted 
RFC 1038 [7] in 1988.   The Arpanet 
Request for Comment (RFC) 1038 
defines the IP Basic and Extended 
security option fields and indicates 
how to use them in enhancing 
network security. 

Other related efforts, such as the 
Commercial IPSO (CIPSO) [5], have 
been undertaken recently in attempt 
to expand the applicability of the 
original specification. 

Currently, the GOSIP document 
defines a security option for the 
Connectionless Network Protocol 
(CLNP) which is almost identical to 
the Revised IPSO. 

Two specifications for secure 
protocols for OSI, SP3 and SP4 [3], 
are currently been presented by 
NIST to the American National 
Standards Institute (ANSI) and the 
International Standardization 
Organization (ISO).   These 
specifications were created under the 
Secure Data Network System 
(SDNS) program and released to the 
public domain with NIST as the 
custodian.   They describe two secure 
protocols for the Network and 
Transport Layers of the OSI 
architecture and include fields for 
security labels that are not well 
defined but are nevertheless 
available.   It seems likely that SP3 
and SP4 labels will be accepted in 
some form as international 
standards and eventually included in 
GOSIP.   It has been suggested that 
the final format adopted for security 
labels at both layer 3 and layer 4 

should be the same. 

Classified vs. Unclassified 
Requirements 

When looking at unclassified 
network security we find that one of 
the main problems is the 
introduction of multiple security 
domains.   A security domain is a 
collection of interconnected systems 
that operate under a common 
security policy.   This means that the 
definitions of clearances and 
sensitivity categories may be 
different and, in some instances, 
non-transferable across domains. 
User organizations can define 
security policies appropriate to their 
operations that may not necessarily 
apply to any other organization.   In 
the classified sector, for instance, 
there are four basic classification 
levels: unclassified, confidential, 
secret, and top-secret.   These basic 
classifications are complemented 
with categories, or compartments, 
and markings.   The definition and 
usage of these attributes are given 
in a well defined security policy 
oriented towards the needs of the 
classified community. 

Even though some of the differences 
are fundamental, they are not 
necessarily unsolvable.   A good 
number of similarities do exist. 
Both communities need to make rule 
based access control (RBAC) 
decisions based on the information 
carried by the label.   There is a 
common requirement to indicate 
what measures are needed to protect 
information against unauthorized 
disclosure.   Also common is the need 
to indicate measures against 
unauthorized modification and the 
confidence that may be placed on 
the information. 
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Communications within the same 
security domain, as in the case of 
Department of Defense (DoD), do 
not represent much of a problem 
since all the systems will support 
compatible labeling options.     Cross- 
domain communications complicate 
the problem since labeling schemes 
could be incompatible.   Translation 
of clearances and sensitivity 
categories may be possible by 
obtaining pairwise inter-domain 
agreements.   This may require the 
intervention of a third party acting 
as a registration authority for 
labeling sets.   Such an organization 
will provide guidelines for the 
definition and identification of 
security label sets so that an 
acceptable translation can be agreed 
upon.   The National Institute of 
Standards and Technology (NIST) is 
considering providing such a service. 

Already work has been done by 
organizations such as the Trusted 
Systems Interoperability Group 
(TSIG) in adapting the IPSO label 
to reflect the needs of the 
commercial sector.   This proposed 
solution is referred to as the 
Commercial Internet Protocol 
Security Option (CIPSO).   The 
CIPSO will be very influential in 
the process of standardizing security 
labels for OSI. 

Security Labels Workshop 

The National Institute of Standards 
and Technology hosted an 
invitational workshop called Security 
Labels for Open Systems.   The scope 
this workshop went beyond security 
labels for Open Systems 
Interconnection (OSI) by looking at 
security labels in the more general 

context of open systems.   NIST's 
main goal was to gather enough 
information from users and experts 
in network security as to draft 
sections on security labeling for 
Chapter 6 of GOSIP [8]. 

Among the attendees to this 
workshop were representatives from 
several DoD agencies, DoE, NIST, 
and companies such as Oracle 
Corporation, MITRE Corporation, 
Digital Equipment Corporation, 
Sears Technology Services, Xerox 
Special Information Systems, IBM, 
etc.   A number of position papers 
were presented covering topics such 
as security policy, a DoE proposal 
for security labeling, OSI-based 
labeling strategies, CIPSO, security 
labels in database management 
systems, end-to-end encryption (E3), 
the Defense Message System, 
information identification and 
protection, labeling in open 
heterogeneous distributed systems, 
information labels, etc.   In addition, 
NIST personnel discussed Security 
and the Portable Operating System 
Interface (POSIX), and Labels for 
Confidentiality, Integrity, and 
Availability. 

One of the main issues discussed 
during this two-day workshop was 
whether or not confidentiality, 
integrity, and availability services 
should be handled by security labels. 
There was agreement in using labels 
within OSI to indicate integrity and 
confidentiality but not in regard to 
availability.   Even though the value 
of the availability service was 
acknowledged it was argued that it 
does not belong in a network 
security label.   The rationale for this 
is that no rule based access control 
(RBAC) decisions can be made based 
on an availability parameter. The 
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alternative is to rely on quality of 
service (QOS) parameters to handle 
this service.   Billing codes, 
authorization and authentication 
mechanisms, and identity-based 
access control all of which had been 
discussed in other forums were also 
said to be out of the scope of 
security labels for the same lack of 
RBAC support. 
The problem introduced by multiple 
security domains with incompatible 
sensitivity level and clearance 
definitions was also an important 
topic of discussion.   Security labels 
directly reflect the definition of 
sensitivity levels.   It seems that the 
use of a registration authority to 
address this problem is of general 
acceptance. 

Towards the end of the workshop 
the group agreed to make several 
statements that would constitute its 
output.   Those statements are 
presented below. 

The overall scheme for 
security labels should identify 
country versions for security 
labels. 

Given that a unified labeling scheme 
for secure OSI would be presented 
to the international community as 
an U.S. contribution, provisions have 
to be made for distinguishing 
between label versions for different 
countries.   This would be done by 
means of a Country- 
Version/Registration Authority field 
at the beginning of the label.   Such 
a field would contain hierarchical 
information expanded to identify 
registration authorities. 

Options 130 and 133 (Basic 
Security and Extended 
Security Options) should be 

enhanced with the TSIG's 
Commercial IPSO options. 

The IPSO based CLNP label already 
fulfills a number of basic 
requirements for security labeling. 
By merging this well established 
labeling scheme with the industry- 
developed CIPSO we can obtain a 
consensus standard for security 
labeling that will address the needs 
of the different user communities. 

SP4 and CLNP should use the 
same kind of security label. 

By using the same kind of label at 
both layers 3 and 4 compatibility 
concerns could be eased. 

NIST should be the 
Registration Authority for 
security labels. 

The use of registration authorities is 
necessary to allow the use of 
security labels tailored to a specific 
security domain and still be able to 
perform secure inter-domain 
communications.   Given the 
neutrality of NIST and its 
responsibility for unclassified 
computer and network security the 
workshop attendees agreed that it 
should act as the U.S. registration 
authority. 

This group [the workshop 
attendees] should review 
sections on security labels 
added to GOSIP by NIST. 

At NIST's request the workshop 
attendees agreed to provide expert 
review and comment on text to be 
drafted by NIST for inclusion in 
GOSIP. 
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The Next Steps 

There has already been progress in 
the standardization of security labels 
for OSI and from the U.S. 
Government perspective the next 
step is to initiate the process of 
updating chapter 6 of GOSIP 
accordingly.   New text is being 
drafted and will be available for 
expert review and comment shortly. 
As we have already mentioned the 
attendees to NIST's workshop on 
security labels have agreed to 
provide feedback on this text.   The 
outcome of this work will also be 
presented to the American National 
Standards Institute (ANSI) and the 
International Organization for 
Standardization (ISO). 

Workshop, NISTIR 90-4362, pp. 117- 
121, June 1990. 

[6]   Nazario, N., Security Labels for 
Open Systems: An Invitational 
Workshop, NISTIR 90-4362, June 
1990. 

[7]   St. Johns, Capt. M., RFC 1038: 
Draft Revised IP Security Option, 
DDN Network Information Center, 
January, 1988. 

[8]   U.S. Government Open Systems 
Interconnection Profile (GOSIP), 
Version 1.0, FIPS Publication 146, 
National Institute of Standards and 
Technology, June 1988. 

After accomplishing this focus will 
be shifted to other areas such as 
key management. 
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Proposed Key Management Protocols using Public Key and Symmetrical Key Techniques 

Abstract 

This paper describes a key management protocol that combines public key techniques with the symmetrical key 
techniques. The key management protocol standard for wholesale financial institutions, X9.17, serves as a basis for the 
proposed protocol. X9.17 uses manually delivered symmetric key encrypting keys to initially exchange keys. 
Subsequently, encryption keys, while encrypted under key encrypting keys, can be electronically transferred. TheCylink 
CIDEC-LS link encryptor's key management system serves as a basis for a an practical, initial model of incorporating 
public key techniques as a supplement to X9.17. The protocol permits the establishment of initial key encrypting keys 
using the Diffie-Hellman public key algorithm. The paper then discusses the further enhancements to achieve a key 
management system suitable for a dynamic network such as a Local Area Network (LAN). A recently proposed companion 
standard to X9.17 and a suggested method for Key Management to IEEE 802.10, SILS, have been developed from the 
concepts present in this paper. Additionally, the paper discusses the various properties of the available public key 
algorithms. 

Introduction 

Currently X9E9 and the LAN Security Working Group for IEEE 802.10, Standard for Interoperable LAN Security (SILS), are 
studying key management methods using public key techniques to establish mutually shared secret keys. This paper 
outlines one of the suggested approaches. 

A Description of the Existing Kev Management Protocols based on X9.17 

X9.17, Wholesale Financial Institute Key Management 

X9.17 is the Standard for Wholesale Financial Institute Key Management. It is published as the Financial Institution Key 
Management (Wholesale) X9.17-1985 by the American Bankers Association and is referred to as either ANSI X9.17 or 
X9.17. X9.17 is a key management system that uses a symmetrical keying algorithm (DES [1 ]) in a two level encrypting 
key system The system is comprised of manually delivered key encrypting keys (KKs) that then permit the encryption 
of other keys (both KKs and traffic keys (KDs)) for their subsequent electronic distribution. The KOs are used singly to 
encrypt transmitted data, while the KKs are used in pairs (a pair of KKs is symbolized as *KKs). 

The *KKs are 128 bits long and are composed of two 64 bit DES keys. The *KKs encrypt keying material by encrypting the 
keying material with the *KK's first DES key, then decrypting the result with the *KK's second DES key and finally re- 
encrypting the result with the *KK's first DES key. To retrieve the encrypted key material, the process is reversed; 
decrypting with the *KK's first key, encrypting with the *KK's second key and finally decrypting the result with the *KK's 
first key. 

X9.17 requires that at least one initial *KK be manually distributed to each user (i.e., end encryption device). 
Subsequently, other keying material (both *KKs and KDs) can be exchanged over the public network encrypted under 
*KKs. The requirement for the initial manual transmission of secret information makes this system is susceptible to a "key 
purchase" attack or "spoofing". 

Within X9.17, there are three methods for electronically exchanging encryption keys: 

1. Direct, user to user: If the two users share a common *KK and one of them is capable of generating keys, they 
may establish a commonly shared KD between themselves as needed. The common *KK Is used by one party 
to encrypt the traffic key which is then sent to the second party. 

2. Indirect, user through the Key Distribution Center (CKD) to user: If the two users do not share a common *KK 
and neither has the facility to generate keys, but they individually share a *KK with the CKD, they may establish 
shared keys through the CKD. One of the parties asks the Key Distribution Center for a KD. The CKD generates 
2 copies of the new KD, encrypting one under the first party's *KK and the other under the second party's *KK. 
Both these encrypted KDs are then sent to the first party, who subsequently sends the second encrypted KD 
to the second party. When both parties decrypt the new KD, they will share it and both will use it for traffic 

50 



encryption. 

3. Indirect, user through the Key Translation Center (CKT) to user: If the two users do not share a common *KK 
but one of them has the ability of generating keys and each party possesses a *KK with the CKT, they may 
establish shared keys through the Key Translation Center. One user originates and sends *KKs or KDs to the 
CKT. The CKT then translates the keys (i.e. encrypts the keys) to a *KK that only the second user can read. 
Subsequently, the first user sends the encrypted keys to the second user to establish the keying relationship. 

X9.17 meets the need for "peer entity authentication" (i.e. verification of with whom you are communicating) by requiring 
manually distributed initial *KKs as well as "notarization" of keys which occurs when the keys are transferred through a 
CKT or CKD. Possession of shared *KKs as well as process of CKT or CKD "notarization* of electronically delivered keys 
guarantees the mutual authenticity of the connected users. X9.17, however, does not protect users from repudiation. 

One problem with X9.17 is that there is no provision for two parties to communicate if they do not share either a *KK 
between themselves or *KKs with a common CKT or CKD. The proposed ANSI Standard X9.28 "Multiple Center Key 
Management standard addresses this problem, and has been recently voted out for balloting by the X9E9 working group, 
the X9.17 parent committee. 

The Cvlink CIDEC-LS Kev Management System 

The Cylink CIDEC-LS link encryptor is an example of a practical key management system combining X9 17 with public 
key techniques. The system has been successful in use in major financial institutions for several years. The CIDEC-LS 
Key Management Protocol eliminates the need to manually distribute secret *KKs by using a variation of the Diffie- 
Hellman Key Exchange System ([2] and [3]), called "SEEK•" (Secure Electronic Exchange of Keys) to establish mutually 
shared secret *KKs (The Dlffie-Hellman algorithm will be explained in a later section of this paper. The section will 
describe the various public key systems.) Once the shared *KKs are established subsequent key exchanges are done 
using the faster X9.17 key exchange protocols. 

The CIDEC-LS Kev Exchange Commands 

There are three types of command sets within the CIDEC-LS key management protocol: 

1. The SEEK• commands. These commands are used to establish the mutually shared, secret variable. 

a. request to establish a secret key using SEEK•. This command contains the initiating party's public key. 

b. response to the request to establish a secret key using SEEK•. This command contains the responding 
party's public key. 

Each party then calculates a shared secret number Z. In this implementation, the CIDEC-LS Key Management 
Protocol splits Z into several DES keys. Some of the keys are used as *KK pairs and the remaining pair of DES 
keys is saved for future authentication. This arrangement is arbitrary and Z may be split into KDs or any 
combination of *KKs, KDs or authentication variables as desired. 

2. The symmetrical key negotiation commands. These commands are used to negotiate how to allocate the 
symmetrical (DES) keys derived from the shared, secret variable Z. In this application, using X9.17, this 
command set only specifies *KKs. If X9.17 is not used, this command can be used to negotiate KDs. 

a. request of a specific symmetrical key (KD) or key pair (*KK). 

b. response to the request for a specific KD or *KK. This response may be either positive or negative and 
permits the two units to negotiate which key to use and to align their key lists. 

The authentication keys are used to form a Message Authentication Code (MAC) in the next exchange of public 
key variables. 

3. The X9.17 symmetrical key exchange protocol commands. X9.17 defines these messages. These messages 
are used to exchange KDs. 

a.      Request Service Initiation (RSI): request to establish a KD. 
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b. Kay Service Message (KSM): response with an encrypted KD. 

c. Response Service Message (RSM): acknowledgement of correct receipt of the Data Key. 

d. Error Service Message (ESM): response to a RSI. 

e. Error Service Message (ESM): response to a KSM. 

f. Error Service Message (ESM): response to a RSM. 

Other CIDEC-LS Kev Manaoement Protocols Facilities 

The CIDEC-LS Key Management Protocol, written for link encryptors, wasdesigned for a static environment with dedicated 
communication pairs, although it can be used in a star configuration. Because the communication partners are fixed and 
known there is no facility for non-repudiation. However the protocol does call for out-of-band authentication to eliminate 
a "person in the middle" attack or "spoofing". 

The out-of-band authentication takes place after the initial key exchange. An 8 bit hash is made of Y, and Y,. Each 
encryptor then displays the hash. The installers telephone each other and mutually verify their authenticity by voice 
recognition. Then one installer reads the beginning part of the display to the other and then the second installer reads 
back the last part of the hash. Because it is computationally inf easible for anyone but the two connected encryption units 
to show the correct displays, the procedure proves there is no "person in the middle'. Once installed only these two 
devices communicate; any properly encrypted messages received must have originated from the other partner. 

The CIDEC-LS uses a self-synchronizing DES encryption mode and consequently this protocol has no facility for 
generating or sending cryptographic synchronization vectors. 

Concepts for the Kev Management Proposal 

Kev Manaoement Requirements for a Dynamic Network 

A dynamic network such as a LAN requires additional security features to those offered by the CIDEC-LS Key Management 
Protocols. In many LANs, users (i.e. end user devices) are frequently added and deleted, and the LAN itself may be 
frequently reconfiqured. Therefore, "message origin authentication" (i.e. the verified identity of who originated the 
message) becomes a serious concern. Public key techniques offer message origin authentication with digital certificates 
as well as protection from repudiation with digital signatures. 

Electronic Digital Signatures 

Electronic digital signatures protect the recipient from repudiation by the sender. 

A digital signature consists of a piece of data encrypted in such a manner that only the sender could have encrypted it. 
The signature contains at least: 

1. a hash that is dependent on the entire message. This hash is a publicly known function and its reproducibility 
by the receiver indicates that the message has not been modified in transit. This idea has been proposed as 
part of the authentication directory system in the Annex D of the CCITT Recommendation X5.09 (ISO 9594- 
8 The Directory - Authentication Framework). 

2. a unique message identifier such as a time stamp or message sequence number to protect against replay 

The signature is encrypted using the sender's secret key so that anyone can decrypt the signature using the sender's 
public key. Two methods for digital signatures are RSA [4] and EIGamal [5]. 

Digital Certificate 

Although electronic digital signatures protect against repudiation and message modification, they do not guarantee the 
sender's authenticity. Proof of authenticity is supplied by a special case of signature called "certificates". Certificates 

52 



originate from a trusted Certification Center. The Certificate Center system requires the user to communicate with the 
Certification Center only once during the life of the certificate. Once certified, a user may freely establish secret 
communication, without the assistance of the Certification Center, with any other certified user. 

When first logging onto a network and then periodically, as required thereafter, each new member to the network applies 
for a Certificate from the Certification Center. This initial communication may be out-of-band or may be a secret 
conversation with the Center, possibly using a public key techniques. During this initial communication thenew subscriber 
and the Certification Center mutually prove their identities to each other. This communication need not contain secret 
information; it need only contain the information required to assure the party's identity (for exampleafinger or voice print). 
However, this communication must be secure against modification in transit. (See [6] for a discussion of a possible 
scheme for authentication and identification.) 

The Center then formulates a certificate that contains the new member's public key and other pertinent information about 
the member such as its identification number, privileges, address, and expiration date. The certificate is then encrypted 
using the Certificate Center's secret number. Henceforth, anyone on the network can decrypt the certificate using the 
Certification Center's public number. The user can attach to a message a signature, providing repudiation protection, 
and a certificate, providing data origin authentication. The message recipient now has the protection afforded by the 
signature and certificate, plus the added benefit of obtaining the sender's public key within the certificate, thus saving 
the time require to look it up. 

A further extension of the certification concept establishes a hierarchy of Certificate Centers, with each higher center 
certifying its "children". This would greatly reduce the amount of work required by any one Certificate Center. This idea 
has been proposed as an authentication directory system in CCITT Recommendation X.500 (ISO 9594/1-8 The Directory- 
Overview of Concepts, Models and Services). 

In contrast to a com promise of X9 17 sCKD or CKT. a com promise of a Certification Center compromises only the validity 
of its certificates because the encryption keys, both *KKs and KDs, are generated independently by the end users. The 
compromise of X9.17 's CKT or CKD compromises not only the identity of the system s users, but also all the traffic within 
the system. 

Certification Revocation 

To revocatea certificate, a Certification Centerwould broadcast a dated, signed message containing a list of compromised 
or not-to-be-trusted users whose certificates are suspect. Linn and Kent [7] suggests that the broadcast message contain 
the time of the next expected broadcast message to insure that none of these compromise lists are missed. The individual 
users would check the validity of their communication partners to confirm that they are not on this list. Additionally, each 
certificate has a finite life, requiring each user to periodically verify its identification with the Center. 

Outline of the Kev Management Proposal 

The key management proposals requireonly one casefor establishing a mutually shared key between two partners instead 
of the three described for X9.17. When a pair of users wish to communicate, they simply exchange authorization and 
authentication information and then establish a mutually shared *KKS and KDs using public key techniques. This 
exchange does not require any previous secret knowledge to be shared between users nor does it require the continuous 
assistance or availability of centralized key management. 

As with the centralized key management, each individual user must have an initial contact with the central authority, or 
its delegate, to obtain a certificate. However, in contrast to the initial manual exchange in X9.17, this authorization need 
not be secret, only secure. 

Based on the previous discussion the Key Management System must support four basic functions: 

1. A procedure for logging onto the network by obtaining: 

A. a Certificate 
B. a Broadcast Key (required for LANs) 
C. Multicast Key(s) (required for some specialized uses in LANs) 

2. A public key procedure for establishing initial secret keying associations between users. Neither proposal 
specifies which public key algorithm is to be used. 
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3. A symmetrical key exchange procedure for exchanging data (traffic) keys. The X9 proposal will use DES with 
*KKs to encrypt transmitted *KKs and KDs. 

4. A procedure for facilitating encrypted traffic using the data keys. The X9 proposal will use OES. 

These requirements can be met by: 

1. Establishing a hierarchical Network Management system that provides Certificates and the necessary common 
multiuser keys. The initial contact between users and the Network Management might be through public key 
techniques although at thistime an out-of-band communication seems most practical. Additionally, provisions 
are needed for both updating and revoking certificates. 

2. Initial contact between entities within the network would be through a defined public key technique (s), thereby 
exchanging or mutually developing shared secret keys. 

3. The conventional (symmetrical) encryption technique to encrypt traffic. This Is currently within the X9.23 
Wholesale Banking Message Encryption standard and supplement to X9.9 Wholesale Banking Message 
Authentication standard. 

4. Definitions and procedures for digital signatures and certificates would have to be specified. This requires 
public key techniques and would be used in the key exchange process. These techniques would be available 
at the Application Layer for other uses such as digital signatures and certificates for fund transfers and 
contracts. 

Description of the Public Kw Algorithms 

Table 1 presents a summary of the properties of the three major public key algorithms. The mathematics for each 
algorithm are shown in the Figures 1 through 5. The Diff ie-Hellman algorithm is described in only one figure because it 
is mainly applicable for establishing a secret key between users and not for signatures. Both the RSA and EIGamal 
algorithms have two figures a piece because they are readily applicable for both sending messages and signatures, see 
Table 1. 

As shown in Table 1, the three algorithms differ in the requirement of mutual participation in establishing a shared secret 
key. The Diff ie-Hellman algorithm requires the mutual participation of the parties to establish a com monkey (Asan aside, 
it is possible to establish a common key among several user with the Diff ie-Hellman algorithm. Each user simply submits 
its public number to the collective pool and then each user exponentiates the other's public number to calculate the 
commonly shared number "Z".) The EIGamal and RSA algorithm do not require the mutual participation in the 
establishment of a mutually shared secret key. These two algorithms permit one user to unilaterally send the second a 
secret number. This secret number is only received by the second party and the second user is not responsible for its 
selection. However, it is possible for the two parties to mutually calculate a shared secret number with the EIGamal and 
RSA algorithms. The mutual established key requires that the second user to send an additional message containing a 
second secret number to the first user. Then each of the users calculates the commonly shared secret number based on 
the two newly exchanged secret numbers. 

The three algorithms also differ in their ability to produce different ciphertext with each exchange. With the proper 
implementation of the EIGamal algorithm each encrypted message or signature is random. RSA encryption and signature 
can also produce random ciphertext from the same plaintext but this requires that a unique character string must be 
appended to the plaintext message. The Diff ie-Hellman algorithm can also supply different "public key" numbers for each 
key exchange. Each user selects a new pair of secret and public numbers solely in each exchange, but maintains its 
"permanent" secret and private key pair for signature purposes (using EIGamal signatures). The calculations would be 
exactly that shown in Figure 1, but with each variable having an "," to show that the variable only exists for this particular 
key exchange. For example, Alice selects for this exchange a one-time random secret number S, and calculates a new 
public number P,. Alice sends P„ to Bob In a message that Alice signs with an EIGamal signature based on Alice's 
permanent secret and public numbers S, and PA and her certificate, if required. Similarly, Bob would reply with the one- 
time public number P. calculated from the one-time secret number S,. Then Alice and Bob calculate the shared secret 
number Z,. 

The algorithms differ in the number of messages required to establish a shared secret key. The Diff ie-Hellman algorithm 
only requires two messages to establish a mutually shared and computed secret key. Additionally, the Diffie-Hellman 
algorithm does not require the prior knowledge of the recipient's public number. For instance, if Alice wishes to establish 
a mutually computed shared secret number with Bob, she computes a one-time public number S» then composes a 
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message containing S, signed with her permanent public-secret key pair (P.. SJ and her EIGamal certificate. If Bob 
wants to establish the keying with Alice, he responses with a message containing his one-time public number S» signed 
with his public-secret key pair (P„ P.) and his EIGamal certificate. Then Alice and Bob can mutually compute their shared 
secret number Z,. 

The RSA and EIGamal algorithms require at least three messages to establish a shared secret key and four to establish 
a mutually computed shared secret key. First Alice must determine Bobs public number. This query could be sent to one 
of a number of places, for instance a central data base containing certificates or to Bob requesting Bob's certificate. 
Regardless of the source, the second message, i.e. the response, would be Bob's certificate. Then Alice would compose 
and send to Bob a third message containing Alice's one-time secret number encrypted with Bob's public number, Alice's 
signature and certificate. If it was desired to establish a mutually computed shared secret number, Bob would reply with 
a fourth message composed of his one-time secret number, Bob's signature and certificate. Then Alice and Bob would 
mutually calculate a shared secret number based on their two one-time secret numbers. 

Discussion 

Besides the Cylink CIDEC LS modification of the X9.17 key management system, there are at least four key management 
systems that have been reported in the literature [7, 8 and 9, 10, 11] having similar two tiered key systems. The key 
encrypting keys are initially constructed or exchanged using public key techniques. Data is then encrypted using 
symmetric traffic keys. 

The key management systems differ on what algorithm they use to exchange keys. The SDNS [8 and 9], uses a secret 
algorithm called FIREFLY for its key exchange and authentication. DARPA Internet Mail [7] and the Digital Distributed 
System Security Architecture [10] use RSA as the public key technique. The CIDEC-LS system and MEMO (in the non- 
PKF approach) [11] use the Diffie-Hellman technique to construct and exchange its key encrypting keys. The proposed 
companion standard to X9.17 is, at least at this time, algorithm independent. 

SDNS, the DARPA Internet Mail and the proposed companion standard to X9.17 use a broadcasted revocation list to notify 
users of invalid certificates. The DEC system revokes certificates by omission, i.e. invalid users are deleted from a list of 
users having permission to access a process and the entity offering a service must verify that a user is on its permission 
list before performing the requested service. 

Conclusions 

This paper presents a practical implementation of a key management system for link encryptors that successfully 
combines public key techniques with the wholesale financial standard, X9.17, which uses symmetrical key techniques. 
The key management requirements for a dynamic network are discussed. The paper then describes the key management 
system proposed in the proposed companion standard to X9.17 that uses combined symmetrical and public key 
techniques. The three available public key algorithms are compared. The Diffie-Hellman algorithm is the best suited for 
establishing a mutually calculated shared secret key. The EIGamal and RSA algorithms are best suited for the calculating 
digital signatures and certificates. The methods f or produci n g vari able ciphertext for each of the algorithms are discussed. 
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Table 1: A Brief Description of the Publicly Available Public Key 
Algorithms 

Public Key Technique 

Key Exchange Capability 

Signature Function 

Generation of strong primes 
required for each public- 
private key pair 

Mutual party participation 
in secret key formation 

Random encryption in each 
cryptographic exchange 

Piffie- 
HeHman 

RSA ElGamal 

yes yes yes 

no yes yes 

no 

yes 

no 

yes  no 

no   no 

no yes 

Known To Alice 

SA, a secret random 
number 

PA = a
sxmod u 

Z = PB
9*mod u 

(Z = aVxmod u) 

Public 

a, a random 
number 

u, a strong prime 
(u = 2w+l, where 
w is a prime) 

P„ 

Known to Bob 

SB, a secret random 
number 

P„ = asBinod u 

Z  = P>mod u 
(Z = asAs

Bmod u) 

Figure 1;   Diffie-Hellman Algorithm: Alice and Bob mutually 
establish a secret shared key. 
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Known To Alice 

r1#   a secret random 
number 

vt = arimod u 

Z1 = PB
rimod u 

Kit   the message 
Ct, the ciphertext 

Cj = M/imod u 

Public 

a, a random 
number 

u, a strong prime 
(u = 2w+l, where 
w is a prime) 

Known to Bob 

idom s„ a secret rai 
number 

PB 
= aHmod u 

Zi = v^Binod u 

z* = Z^'modCu- -1) 

M, = C^i'mod u 

Figure 2:  ElGamal Message Encryption Algorithm:  Alice sends an 
encrypted message to Bob. 
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Known To Alice 

SA, a secret random 
number 

PA = aa*mod u 

r,,   a  secret  random 
number 

v,  = arimod u 

M1# the signed 
message 

hlf the hash of 
(MjlvJ 

h, - H (Mjlvj 

Sign, = r, + 
hjSA mod u 

Public 

a, a random 
number 

u, a strong prime 
(u = 2w+l, where 
w is a prime) 

M. 

Sign, 

Known to Bob 

h*  = H (Mj |vj 

Bob verifies that: 

a,l9nimod u = 
vtPA

hi*mod u 

Figure 3:  ElGamal Signature Algorithm:  Alice sends a signature 
(SignJ for message Mj to Bob. 
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Known To Alice 

Mt, the message 
Ct, the ciphertext 

C1 = M^Binod nB 

Public 

nB 
<  

<  

 > 

Known tP PQE 

uB and vB, both strong primes 
uB = 2wB + 1 
vB = 2xB + 1 

w and x are primes 

nB = 
U
B
V

B 

p
B = SB

(-B-1H^-D-imod (u-l)(v-l) 

ML =  C/amod nB 

Figure 4:  RSA Encryption Algorithm:  Alice sends an encrypted 
message to Bob. 
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Known To Alice 

uA and vA, both strong 
primes 
uA = 2wA + l 
VA = 2xA + 1 
wA and xA are primes 

n* = u*v* 

PA=SA
<-*-1><)'A-1)-1mod(uA-l)(vA-l) 

M4, the message 

h4, the hash of M4 

h4 = H (M4) 

Sign4, the signature 

Sign4 = hi
sxmod nA 

Public 

n 

M, 

Sign4 

Knovm to Bob 

h*   = H (M4) 

h4 = Sign/xmod nA 

Sign4 verified if 

ht = h* 

Figure 5:  RSA Signature Algorithm:  Alice sends a signature for 
message Mt to Bob. 
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Abstract 

This paper discusses an implementation of Electronic Document Authorization (EDA), a workable meth- 
odology for managing authority in a distributed environment. This methodology may be applied to the 
exercise and delegation of generalized authority. This paper especially focuses on specialized authority for 
money-responsibility. 

EDA is a protocol using RSA public key digital signatures, which allows any electronic material, including 
that conforming to various EDI (Electronic Data Interchange) data formats, to be "provably authorized" 
based on the prima facie contents of the data itself. 

The EDA protocol allows a document or file to be digitally authorized so that any recipient is able to prove 
to themself, or to others: the identity of the signer(s); whether the signer(s) actually had adequate authority 
within their organization to perform the authorization; and whether the signer(s) are in compliance with 
constraints their organizations may have imposed on them. 

This methodology provides comprehensive authorization, verification, and authentication support to en- 
hance EDI processing. It permits the full use of automated digital systems for creating, authorizing, dis- 
tributing, receiving, validating, and otherwise processing electronic documents. Once the initial global "trust 
criteria" have been established, EDA validation may then be tested automatically by computer software. 

EDA overcomes certain inherent weaknesses that occur in relying on a digital system to supplant conven- 
tional paper-based transactions — for example, it can reduce the exposure even when an encryption key is 
compromised. 

In addition to being immediately applicable to value-related EDI, the EDA methodology is also designed 
for specialized authority needs unique to particular organizations. EDA allows organizations to define dis- 
tributed, built-in, safeguards to forestall the possibility of corruption, fraud, misdirection, or other misuse 
or misrepresentation of the organization's resources. Such safeguards may be implemented in a multilevel 
fashion as deemed appropriate by the organization. 

Background 

EDI — Electronic Data Interchange — is a rapidly emerging technology which allows automated commercial 
transactions to be conducted within organizations and among enterprises. Using EDI, a business document 
can be created as an electronic file in the sender's system, sent via any of several possible transmission modes, 
and processed directly by recipients' computers. Among the potential benefits of this technology are cost 
savings, information accuracy, and improved timeliness (to name only a few). 

Actually, the technology needed to implement EDI is here today. However, among the major obstacles to 
its widespread application has been a lack of security features — including authentication, non-repudiation, 
authorization, and provability. Because security is lacking, most uses of EDI to date seem to be between 
well-known trading partners across secure channels. 

To fully realize the potential of EDI, some tough issues need to be resolved: How can we guarantee the 
accuracy and enforceability of EDI transactions such that they provide a natural substitute for conventional 
paper-based transactions between all business concerns? How can EDI transactions be validated when they 
are transferred across unsecure, or questionably secure channels? How can recipients of an EDI document 
prove — either to themselves, to others within their organization, or to someone outside their organization 
— whether a received document is authentic; who authorized the document; and whether the authorization 
was performed according to the guidelines and constraints dictated by the originating organization or by 
some third party such as a government agency? 

© 1990 Addison M. Fischer. 
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As EDI becomes more widely used, so does the opportunity for misuse and corruption. As the population 
of EDI users increases, more and more traffic will pass between organizations which have dissimilar back- 
grounds, security needs, and security controls. 

This paper focuses primarily on how EDA (Electronic Document Authorization) is used in conjunction with 
commercial EDI. However, the techniques developed for EDA are general in scope, and are not limited to 
EDI. EDA may be readily applied to any environment or situation in which it is useful to administer au- 
thority over digital material, so that authorization can be immediately verified on a prima-facie basis. 

Motivation for EDA 

EDA offers workable solutions to the problems involved with authentication and management of authority 
in a distributed environment.   EDA brings the following features to the EDI environment: 

• EDA enables adaptation of current business practices to entirely digital techniques. 

• EDA fully distributes authentication and authorization across systems and networks of varying degrees 
of inherent security. For purposes of this article, authentication means verification of the identity of a 
communicating party, or validation of a communication. Authorization is permission, granted by a 
properly appointed person or persons, to perform some action. 

• EDA provides full and provable responsibility and accountability for all authorizations. 

• EDA minimizes the shared trust/knowledge necessary between recipient and sender. It requires no 
contractual or ongoing business relationship between sendor and recipient. 

• EDA's basis in public key technology allows document authorization to be proved based solely on the 
digital contents of the document and its EDA seal. 

• EDA allows document correctness, authenticity, and authorization to be proved without presuming 
continuous, unbroken access control. 

• EDA allows document signatures and authorization to be proved at any future time, by any party, if 
a dispute or question should ever arise. 

• EDA provides inherently strong safeguards to reduce the possibility of corruption, or other misuse, to 
whatever levels an organization deems appropriate. It allows a variety of safeguards to enable appro- 
priate security treatments for differing risks. 

• EDA allows each organization to regulate, tailor, and administer their own internal security controls 
in whatever manner they deem appropriate. EDA allows organizations to delegate control in a fully 
distributed manner, permitting appropriate safeguards to be applied at each step. 

• EDA allows received documents to be validated automatically, by computer. 

• EDA is not tied to any particular framework. It applies to any digital file or document, independent 
of format or contents. 

• EDA provides upward compatibility with X.509 standards. (X.509 relates to implementation of security 
measures in electronic directory services.) 

Conventional business practices generally include certain built-in safeguards which are implemented and 
evaluated by persons having specific responsibility and authority. For example, a purchase order is usually 
produced on an "official"' form printed with the issuer's logo. Purchase order forms themselves may bear 
serial numbers and may be stored under lock and key. As part of the requisition process, the purchase order 
is signed by an individual — possibly by an individual recognized by the recipient. Often it is signed by se- 
veral persons, in accordance with the rules of the issuing organization. The document is likely to be stored, 
at least until the entire business transaction, including payment, is complete. Finally, it is likely to be ar- 
chived for some period thereafter, in case some dispute or question regarding the transaction should ever 
arise. 

In the brave new world of EDI, many of these safeguards are lost. To start with, in principle, a digital file 
containing any data can be created by anyone at any time. With EDI, the pre-printed company form, and 
the handwritten signature are gone. 

In most commercial EDI applications, security is rudimentary: the recipient must trust that the document 
was honestly sent, and received over the selected media (network, floppy, etc.). Furthermore, once the 
document arrives, it is up to the recipient to ensure that it is safely stored under adequate access control at 
all times (to guard against tampering by internal personnel). 
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EDA is a single, comprehensive methodology that answers major concerns arising from EDI's lack of in- 
herent security. EDA provides authentication and authorization that is fully compatible with EDI's digital 
format.  As a side benefit, the security of transmission and storage methods are rendered irrelevant. 

Although the implementation of EDA digital authorization is strongly analogous to paper authorization, it 
is not identical.   In many respects it provides stronger proof of authorization than paper would. 

One of EDA's guiding principles is a recognition of the truth that individuals wield power and authority on 
behalf of organizations. EDA also realizes that individuals are unpredictably fallible, and in some cases, 
corruptible. 

The Technology Behind EDA 

EDA is a protocol which uses RSA Public Key Digital Signature technology. Because RSA public key 
technique is fundamental to understanding EDA, this section briefly describes its history and essential 
properties. Readers who desire more detailed information may see the References cited at the end of the 
paper. 

The concept of public key technology was first proposed by Whitfield Diffie and Martin Hellman at 
Stanford University in 1976. Diffie and Hellman did not produce a working public key system, but less than 
a year later, the RSA public key system was invented at MIT by Professors Rivest, Shamir and Adleman. 
Although a number of other various public key techniques have been proposed, most of them have quickly 
fallen by the wayside. Only RSA has withstood over a decade of intense scrutiny. RSA has already been 
accepted, or is in the process of being accepted, by a number of standards committees worldwide. Where 
it has not already been made the official standard, it has become the de facto standard. 

RSA has important implications for security in many different areas, including data privacy (encryption), 
data integrity, and authentication. Although many aspects of the RSA public key system are of interest from 
a security perspective, we will confine ourselves to the facets of the system relating to digital signatures. 

RSA public key technology is based on the creation of two large numeric values known as the "public 
key" and the "private key," which are related under special mathematical operations in remarkable ways: 
Performing the "signature" operation with the private key on any arbitrary digital value "A" produces a 
result "S" (the signature). Once this "S" value is created, anyone can perform the "verification" operation 
on "S" using the public key and get the original signed value "A" as the result. 

What makes this special is that the signature value "S" can only be computed using the private key. The 
signature "S" is a number hundreds of digits long. Given any particular message, there is one and only one 
signature value for any public/private key pair. 

The strength of RSA is that the signature value can only be computed using the private key. Knowing the 
public key provides no help whatever in determining the value of "S". However, once the value is known, 
the public key will easily verify it. Another way of saying this is that the public key operation is not 
"invertible" — i.e., given an arbitrary document, there is no way to "run the public key operation 
backwards" to compute the signature value; it can only be computed with the private key. 

Other important properties of RSA Digital Signatures are these: 

• The slightest alteration of any kind in either the signature or the signed data causes the verification 
process to fail. 

• Given any file (or any signature), it is equally impossible to find any different file that leads to the same 
signature. 

(Those who wish to pursue the mathematics further may consult the References cited at the end of this paper. 
Although the mathematics is not simple, it involves no calculus, and only elementary number theory.) 

Application of RSA to EDA 

The upshot of RSA Digital Signature operations is this: I can digitally sign any file. If everyone knows 
what my public key is, then anyone can verify the signature and conclude that the signature was produced 
only by the holder of the private key - namely, me. Furthermore, I can be assured that my digital signature 
can never be applied to any data without the use of my private key. 

The preceding statement defines the powerful capabilities of RSA technology. But these capabilities alone 
cannot meet the security-related needs of EDI — needs which the EDA protocols solve. 
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Some of the more obvious problems include: 

• Even if a recipient is convinced that a signer is accurately identified, how can the recipient be assured 
that the signer is acting within the scope of his authority? 

• How can an enterprise ensure that authority is properly controlled, administered, and executed 
throughout their organization? 

• How can a recipient trust that a signer's public key actually belongs to that signer? 

• Because digital signatures depend on the confidentiality of private keys, how can an organization 
ameliorate the danger of a private key being revealed (accidentally or otherwise)? 

EDA provides security in the face of the new challenges posed by EDI. As inter-enterprise document han- 
dling becomes more automated, and human scrutiny is reduced (or eliminated), the opportunity for new 
forms of mischief increases. Digital verification techniques need to be suitable for computer checking, reli- 
able, as failsafe as appropriate, and effective. 

The Structure of EDA 

Every signature used in EDA is accompanied by an "authorizing certificate" (which we may call either an 
"EDA authorization," or an "EDA certificate"). 

Each EDA certificate identifies: 

• The public key associated with the signer's private key. 

• The name of the associated user. 

• The organization of the associated user. 

• Other optional identifying information. 

Each EDA certificate also specifies the authority which is granted to the user, and the limitations and re- 
strictions on this authority which have been placed by the organization on the user. Each EDA certificate 
defines the following authorities granted (if any): 

• The ability to authorize expenditure ("money").1 

• The ability to further identify other users. 

Each EDA certificate defines the following restrictions/limitations: 

• The expiration date of the certificate. 

• The maximum amount of money which may be authorized by this user for any given transaction. 

• Whether, and to what extent, each of the authorities may be further delegated. 

• A set of co-signers, whose digital signatures are required on any object signed under authority of this 
certificate before any digital signature performed under this certificate may be considered fully author- 
ized. 

This last restriction allows organizations to define and enforce checks-and-balances as part of their under- 
lying authority structure. For authority in matters of unusual gravity or far-reaching effects, it can ensure 
that no single user is able to take unilateral action. Co-signature requirements can be null (with no re- 
quirement), simple (with only a single co-signer), or quite complex (with different groups of possible 
co-signers, from which various subsets may be used to satisfy the requirement). 

In performing an EDA signature, a user specifies the certificate (if he possesses several of differing charac- 
teristics) he intends to use. This certificate is then incorporated into the signature data, so that its authori- 
zations (and limitations) become inherently bound into the EDA signature value. No one will be able to 
verify the signature without having both an unaltered copy of the signed data, and an unaltered copy of the 
certificate. 

1 Although financial or fiduciary authority is used throughout this paper as an example of the kind of authority that 
may he defined by a certificate, other types of authority could just as well be specified (e.g., authority to commit 
troops or to release classified information in a military scenario). 
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(Henceforth, we will frequently speak of a signature being performed "by a certificate." It should be under- 
stood that this actually refers to a digital signature which is performed by the private key associated with 
the public key which is named in that certificate.) 

In general, a certificate itself is merely another digital object which has no intrinsic value. A certificate ob- 
tains validity in two ways: by being signed by other certificates which delegate authorization to it, or by 
being "universally" recognized and accepted. 

The first type of certificate, known as a regular certificate, must be signed by other users with sufficient ag- 
gregate authority (as witnessed by their own respective certificates and restrictions) to properly grant the 
authorities.   Regular certificates derive their authority through delegation from a higher level. 

The second type, known as meta certificates, are not signed by other certificates. These certificates derive 
their "authority" from the fact that they are well-known and usually well-publicized. They must be directly 
recognized by participants in the EDA population. 

The primary duty of a meta-certifier is to accurately certify the top-level keys associated with participating 
EDA organizations. In a sense, the meta-certifiers act as the ultimate "glue" which binds together EDA 
participants. 

Meta-certificates can be subject to the same type of restrictions and safeguards as any other authorizing 
certificate. In the interests of overall reliability and trust, our recommendation is that meta-certifiers be 
subject to co-signature requirements at least as stringent as any to be found in any organization. This way, not 
even a single high-level meta-certifier can corrupt the system — either deliberately or inadvertently. 

Explicit Delegation 

The concept of explicit delegation is a feature of EDA which allows controlled distribution of authority 
throughout a hierarchy. For each authority class (of which there are presently two explicitly defined — the 
ability to authorize money expenditure, and the ability to further identify other users) there are four possible 
delegation levels that may be assigned (1 through 4). These levels are named (NONE, DEPUTY, OFFI- 
CER, MASTER) and have the following attributes: 

NONE(l)   The authority may be exercised by the user to the extent it was granted. It may not be delegated 
to other persons' certificates. 

DEPUTY(2) The authority may be exercised, and the user may also delegate its exercise; however, the user 
is not permited to sub-delegate further sub-delegation authority. 

OFFICER(3) The authority may be exercised, its exercise may be delegated, and Deputy sub-delegation 
authority may be granted.  However, Officer authority may not be created. 

MASTER(4) The authority may be exercised and further delegated as the user sees fit.  This allows possible 
sub-delegation to any number of levels. 

This delegation scheme allows exercise of authority to be granted, while managing the risk of losing control 
of the authority. The Deputy level allows delegation of exercise, without raising the question of whether a 
Deputy has the proper perspective to further judge the wisdom of others. The distinction between the Officer 
and the Master is possibly slight, but the distinction has been made available. However, further gradients 
between the Officer and Master seem to be pointless. 

Money Authority Specification 

Certificates may have an indefinite number of distinct "money authorizations." Each money authorization 
has three segments:  currency, limit, and delegation. 

This defines a particular currency2 and the maximum value (amount) which may be specified in the digital 
signature by this user. The degree to which money authority may be delegated, if any, is specified by the 
"delegation." Certificates may, of course, be created without money authority. 

Currency of all nations is supported as regards ISO 4217. 
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Certificates may be created with a single money authority, e.g.: 

(USD, 500, No Delegation) 

would allow a user to directly authorize 500 U.S. dollars on his EDA signature.  No delegation is allowed. 

Whereas, a certificate with: 

(CAD, 500, No delegation) 
(CAD, 200, Deputy) 

would allow $500 Canadian direct authorization, and the ability to authorize other certificate holders to 
exercise up to $200 Canadian. 

A user in a multinational corporation might have a multiplicity of authorities for various currencies: 

(USD, 10000, No delegation) /* U.S. Dollars */ 
(CAD, 12000, No delegation) /* Canadian Dollars */ 
(GBP, 8000, No delegation) /* British Pound Sterling */ 
(FRF, 40000, No delegation) /* French Franc */ 
(DEM, 30000, No delegation) /* Deutsche Mark */ 

Identification Authority 

EDA allows control of the authority to identify users on behalf of an organization. 

The power to "Identify other users" is the authority to create certificates for them. The identifier also has 
the primary responsibility for cancelling its certificates should the need arise (this is further discussed later). 

An installation may either grant or deny this authority. If an installation allows Identification authority, 
then it may (or may not) also choose to allow delegation in accordance with the general delegation rules. 
This leads to 5 different levels of identification authority: 

0 No Authority No sub-Identification is permitted. 

1 Identification The user may create certificates only with NO Identification Authority.  The user is trusted 
to identify individuals, but not to judge whether they can be trusted to perform identification. 

2 Identify/Deputy The user may create certificates with simple Identification 1) authority, but not with de- 
legation authority. 

3 Identify/Officer The user may create certificates with up to Deputy authority. 

4 Identify/Master The user may create certificates with any delegation authority. 

Co-signarures 

When a certificate is created, it specifies the authorizations which are granted to the associated user. How- 
ever, just as important, the certificate is also constructed with co-signature requirements. These requirements 
name other persons who must exercise their own digital signatures to "ratify," or "approve," any material 
authorized through use of the certificate. This ensures (subsequent) verifications will be aware of what other 
signatures are necessary before signed material is to be considered authorized. 

A co-signature requirement is a list of zero or more items (zero, of course, indicating the absence of a 
co-signature requirement) together with a number specifying the number of items which must be satisfied. 
Each item may be one of three things: a reference to a public key, a reference to a certificate, or an embedded 
co-signature list (another list of items with its own satisfaction count). 

The ability to inherently specify and enforce co-signatures is a strong and flexible protection with many 
benefits: 

• It is a digital analog to the time-honored tradition of multiple "paper" signatures. 

• Because digital signatures are always accompanied with their underlying certificate, any recipient will 
be able to instantly confirm (or not) that the signer's corporate policy has been fulfilled. This confir- 
mation provides strong assurance that the authorization is trustworthy and can be acted upon. 
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• By requiring multiple co-signatures, individuals cannot make unilateral decisions. This substantially 
reduces the possibility of policy violations, misuse of authority, economic mischief, computer fraud, 
embezzlement, and other forms of corruption — generally before they can ever happen. Such acts will 
require collusion among the co-signers. 

• It provides effective controls over the organization's resources. 

• It provides enforced auditing of exercise of the user's authority. Several users, possibly on different 
platforms, in different geographic locations must concur on a particular authorization in order to make 
it effective.   Checks and balances ensure that corporate policy is followed. 

• If a user compromises the password to his private key, then co-signature requirements substantially re- 
duce risk of misuse, since other users are always required to concur. This is true even if the compromise 
is never detected. 

• It allows access-control security risks within an organization to be distributed across several hardware 
platforms, perhaps in different locales, governed by different personnel. Even if security is breached 
at one location, other systems are apt to remain uncorrupted. The impact of vulnerabilities on one 
platform are diluted. 

• With fully distributed security, risks are substantially reduced. 

A basic co-signature list might look like this: 

1 of the following are required: 
Joe's public key hash: 568AB678 AF317CEF 756301F6 5518891A 

A simple co-signature list might be: 

2 of the following are required: 
Joe's public key hash: 
Bill's certificate hash: 
Sue's certificate hash: 

568AB678 AF317CEF 756301F6 5518891A 
0A37D687 46E7436A 8763E876 287D687E 
7E2D36C8 A35E821B 537C2A38 6A3D21E7 

A more complicated example with a nested list might be: 

of the following are required: 
Joe's public key hash: 568AB678 
Bill's certificate hash: 0A37D687 
Controller's sublist: 
2 of the following are required: 

Sue's certificate hash: 7E2D36C8 
Bob's certificate hash: 64765457 
Sam's certificate hash: D583A87F 
Jill's certificate hash: E87342D2 
Dot's certificate hash: 346D7D16 

AB317CEF 756301F6 5518891A 
46E7436A 8763E876 287D687E 

A35E821B 537C2A38 6A3D21E7 
56418765 87165815 47174657 
7E82582C 7E287A78 2B872681 
832D72C6 74A6276A 7825B216 
78A16875 C2C2C687 A873B753 

which would require that Joe. 
is valid. 

Bill, and at least two of the controller's staff must sign before the signature 

Signing with an EDA Certificate 

Invocation of authority is explicit: In signing an object which requires authority, a user must explicitly in- 
dicate the authority which is bestowed. In signing an Electronic Purchase Order for $325, for example, that 
amount (at least) must be stipulated at the time of signing. If the user is signing to delegate money powers 
to another certificate, then he must so state that he is invoking his authority. 

A signature is not ratified until all co-signature requirements are satisfied. If the user signs an object (a file, 
an EDI document, or possibly another certificate), and the user has no co-signature requirements, then the 
signature is immediately ratified. However, if the user's certificate stipulates signatures by other parties are 
required, then the signature remains in an unratified state until sufficient signatures have been obtained to 
satisfy the requirement(s). 
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Contents of an EDA Signature Proof Packet 

Whenever an object (file, certificate, etc.) is signed, the EDA signature information is typically carried as a 
separate object (file, or record). 

In addition to the new information created by the private key operation, the EDA signature information 
contains the certificate associated with the signature, together with the signatures and certificates which 
"prove" the certificate (show that it is authorized). The proof-information for each of these, in turn, is also 
included.  This hierarchy stops with the meta-certificates. 

The EDA proof packet is condensed so that the implicit tree-structure described above does not contain 
duplication. In practice, the EDA proof packet contains only about 4 to 11 certificates and signatures, al- 
though the number could increase depending on the complexity and depth of the counter-signature rules 
which an organization wishes to use.  It could be as few as two, in the simplest case. 

Acceptance Criteria 

Each person that verifies documents defines the meta-certificates which they choose to accept as valid. 
Meta-certificates, like all certificates, are computer records, containing a public key, rules, restrictions re- 
quirements, flags, and other data. In its raw form, this is not an easy object for a human to verify — espe- 
cially since any subtle difference might have a large impact on the overall validity. 

To overcome this, meta-certificates (in fact all EDA objects) are identified with their one-way "hash" value. 
There are several well-known and effective hash functions: EDA presently uses MD4 (developed by Ron 
Rivest, the co-inventor of RSA). 

This hash function produces a string of 32 hexadecimal digits from any digital data. 

Important properties of the hash function include: 

• Because of the one-way nature of the hash, it is effectively impossible to construct an object with a hash 
matching a given value. I.e., it is impossible to create a "forged" object having the same hash as an- 
other. 

• These properties allow the hash value of an object to be treated as its unique "fingerprint." If two ob- 
jects have the same hash value, we can assume the two are the same — bit for bit. 

Therefore, in accepting a certificate, the user actually specifies (or verifies) a string of 32 hexadecimal digits. 
Users can accept any number of certificates. Acceptance is based on the user comparing the 32-digit number 
to some trusted source, such as a widely published listing. Once accepted, the user may then sign the hash 
so that it will be automatically recognized as accepted in the future. 

By accepting a meta-certificate, a user demonstrates his trust that the associated meta-certifier will accurately 
identify organizations who are part of the EDA network, and constructs certificates for them in accordance 
with their wishes.  Beyond this, the meta-certifier has no function. 

If a certificate has co-signature requirements, the user is accepting the certificate's signatures only if the 
co-signature requirements are met. 

Although most users will only need to accept meta-certificates, there are specialized reasons when it may be 
desirable to accept particular regular certificates. 

Validating EDA Signatures and Certificates 

Ultimate validity checking of a digital signature always lies with the recipient. It can be checked anytime, 
as many times, and by as many people as desired. Checking or displaying a signature in no way compro- 
mises any part of the system. 

Although the following description omits substantial detail, it gives the flavor of how EDA signature 
proof-analysis proceeds: 

Given a signed object and its proof packet (as constructed above) the entire signature and certificate struc- 
ture is analyzed — toward the goal of deciding whether or not the object is acceptable. 

In the first step, all certificates and signatures are validated with RSA to ensure the contents are accurate, 
and unaltered. This includes verifying that each RSA signature(s) accurately reflects the data value of its 
object. Verification fails if there is a mismatch at any point, since such a mismatch would imply data 
damage (loss or tampering). 
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The unique hash of each certificate is also checked against the user's database to determine if it has been 
cancelled.  (Cancellation is discussed later.) 

In the next step, a reasonableness check, each signature is examined to ensure that the power it authorizes 
is in compliance with its certificate. Meta-certificates, which have no antecedent, are always presumed rat- 
ified. 

Then, in an iterative process, an analysis is done to determine which other signatures and certificates are 
actually ratified according to the various respective certificate powers and rules; and when each ratification 
is scheduled to expire (based on the expiration dates of the certificates). (Although we are typically inter- 
ested in whether a signature is presently ratified, in reviewing an archived document, we may want to verify 
that the signature was ratified when, say, the document was received, even through associated certificates 
may have expired in the interim.) 

Finally, the user's Acceptance criterion (criteria) is applied selectively to ratified certificates. It is then 
percolated down through the hierarchy. Any ratified certificate which has been signed by an accepted cer- 
tificate is also considered accepted. 

The result of this validity checking process determines whether the primary object in question is signed by 
ratified and accepted certificates. If the object is signed by ratified and accepted certificates, the user may 
act on it as valid, and properly authorized. The acceptance process is completely "mechanical," and takes 
as input only the digital object, its proof packet, and the list of acceptance criteria. 

If the object is only ratified but not accepted, then it cannot be accepted at face value. — It could be ac- 
ceptable if the user were willing to enlarge his acceptance criteria (e.g., by accepting additional 
meta-certificates); however, this is not something to be done lightly. The determination of whether a 
(meta-)certificate is valid cannot be made simply by reviewing a certificate — it requires external knowledge 
and belief which must come from elsewhere. 

If the object's authorization is not even ratified, then the EDA proof packet is inherently faulty or incom- 
plete. This may be either because of tampering, or because various mandatory rules have not been entirely 
fulfilled. 

Cancellation and Expiration Dates 

From time to time, it will be necessary to cancel certificates before their natural expiration. This can occur 
for a number of reasons, including: 

• Users cease to be affiliated with the organization which issued the authorization for their key.   For ex- 
ample, employment is terminated. 

• Users change position within an organization, requiring a reduction or alteration in authority. 

• Users compromise their private key. This may be due to personal carelessness, or to penetration of local 
access-control security. 

Under present EDA protocol, a certificate can be cancelled by: 

• The user himself (for example, in the case he discovers he has accidentally compromised the key). 

• The certificate creator (whose public key hash is embedded in the certificate), of the certificate being 
cancelled. 

• Any direct ancestor certificate-creator of the certificate being cancelled (i.e., defined by recursive ap- 
plication of the previous rule). 

Cancellation notices are special files, signed by an appropriate authority, specifying the certificate they can- 
celled, the reason for cancellation, the effective cancellation date, and the date the notice was issued. These 
notices must be made available to the population at large. Once received and ratified, only the hash of the 
cancelled certificate need be retained (and that, only until the expiration of the certificate). Any verification 
process should have access to the list of hashes. 

Compatibility with X.500 

EDA authorizing certificates can be treated as a superset of the X.500 directory certificates specifications. 
Since X.500 does not speak to the issue of generalized authority distribution, or co-signature capability, then 
these features are not applicable when using EDA certificates in "X.500 compatibility mode." 
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However, all EDA control objects — public and private keys, certificates, signatures, acceptance definitions, 
cancellation notices, and other miscellaneous EDA objects — are all designed as X.209 structures to allow 
maximum flexibility and compatibility with X.400 and X.500. (X.209 defines the "syntax" for transfer of 
information between X.400 applications.) 

Analysis of the Potential EDA Weaknesses 

EDA was designed to allow full use of digital signatures in actual business, in such a way that authorization 
could be automatically validated across a large and diverse population of enterprises. 

Where EDA deviates most from conventional paper signatures is that the instrument for signing becomes 
the private key in a computer, rather than a pen. Since the private key is stored in encrypted form under a 
password invented by the user, inadvertent or unauthorized disclosure of this password becomes the weakest 
point in the system. Obviously, every user must be educated and encouraged to view their password as the 
signature to a "blank check," and to treat it accordingly. 

However, the EDA concept of co-signature requirement substantially reduces this risk. Any user who has 
significant EDA authority can be given ample co-signature requirements to reduce the risk as much as nec- 
essary. For example, if the risk that an arbitrary user's password is compromisable is, say, 1% (probably 
a large overestimate), then requiring 2 co-signatures reduces the risk to 1 in a million. 

Of course, digital co-signatures also reduce the possibility of human corruption, for the same reason that 
paper co-signatures do. EDI without the safeguards of EDA could pose a much greater risk for economic 
crime and misuse than paper business. A cleverly insinuated digital file (without digital signatures, but which 
is taken at face value) leaves very little physical evidence — unlike forged paper instruments. In this area, 
EDA arguably a/fords stronger protection against white-collar fraud than paper signatures. 

Although there is still a need for the ability to cancel certificates, and distribute and maintain lists of can- 
cellation notices, the urgency becomes less when "powerful" certificates are controlled with co-signature 
stipulations. As soon as co-signers are alerted, the risk of misuse becomes minimal. As mentioned earlier, 
this safeguard is also effective even if a certificate is compromised by an opponent without anyone else's 
knowledge. 

Summary 

Electronic Document Authorization is designed as a generalized technology for distribution of authority, the 
control of authority, and the validation of authority. 

By defining co-signature requirements in conjunction with authorizations, EDA provides resilient security 
against corruptions and faults — in persons, computers, and their associated access control systems. 

In this paper we discussed EDA primarily in relation to EDI. There are a large number of other applications 
where EDA's distributed authorization and automatic digital testing can be beneficially used (one example 
would be the use of multiple co-signatory guardians who must concur in order to grant access to computer 
data. This could be valuable where the data is kept in a single repository, and even more so if the data itself 
as well as the authorizers, were distributed). 

EDA is a new kind of security — unlike many existing data security applications which rely strictly on access 
control, and where decisions must be rendered by one key individual at one focal point. EDA allows security 
to be distributed across many platforms, connected in arbitrary ways. Before allowing an action, EDA can 
force a consensus, based on flexible rules. Once a decision is reached, then whoever or whatever acts upon 
it, is assured that all appropriate rules were followed, and can even prove this to a third party if the need 
should arise. In particular, this has widespread application in business EDI, by regulating money authori- 
zations among large organizations. 
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Introduction 

In recent years we have seen an increasingly 
pervasive use of computers throughout the in- 
dustrial and financial communities, the gov- 
ernment, and our schools. With the increased 
use, there has been an increase in networking 
and dependence on the ability to move informa- 
tion reliably between systems. Unfortunately, 
this increased use of networks has also broad- 
ened the nature and scope of attacks that can 
be leveled at a computer system. While the na- 
ture and extent of threats is a rich and complex 
area of study, we can represent the threat sim- 
ply as: (1) attacks against the user (e.g., steal- 
ing the credit card), and (2) attacks against the 
object (e.g., robbing the bank). 

In this paper we concentrate on the user and 
how to ensure that identification and authen- 
tication are carried out properly. We present 
a taxonomy of various authentication tech- 
niques. Our thesis is that authentication tech- 
niques that work perfectly well in the local en- 
vironment with stand-alone systems may be 
wholly inadequate to support authentication 
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in a network. Our concern is that the cur- 
rent popularity of biometric schemes may al- 
low them to be used in inappropriate ways. 

In particular, we argue that biometrics is use- 
ful only as a local authentication technique un- 
less assisted by other mechanisms such as en- 
cryption. That is, remote biometric authenti- 
cation requires trust that: (1) the human is 
presently at the device that reads the biomet- 
ric characteristic (2) the biometric reader itself 
is properly authenticated, and (3) the commu- 
nication path between the reader and the au- 
thenticating system is of adequate integrity. 

User Authentication Taxonomy 

Authentication is the verification of a user's 
identity (to a given level of assurance). User 
authentication can be based on: 

• What the user knows (e.g., a password) 

• What the user has (e.g., a smartcard) 

• What the user is (e.g., a biometric charac- 
teristic) 
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• Combinations of these (e.g., a smartcard 
that requires a PIN to be supplied) 

The authentication techniques that corre- 
spond (more or less) to this taxonomy are pass- 
words, smartcards and "see-through" authen- 
tication devices, and biometric devices, as de- 
scribed in the following sections. 

Passwords 

Passwords are the most common authentica- 
tion mechanism and have several advantages: 

• They are essentially free (no special hard- 
ware or equipment is needed). 

• They are a familiar paradigm (they have 
been used on computers for years; PINs are 
used in conjunction with ATM cards). 

• It is possible to make them relatively secure 
(e.g., using a one-time pad as the source for 
passwords! 11 ). 

• They have been successfully used as part 
of encryption-based authentication schemes 
(they are used to "unlock" the key in the Ker- 
beros system[2] [3] ). 

The disadvantages and limitations of pass- 
words are: 

• Passwords (excluding those taken from a 
one-time pad) do not provide strong authenti- 
cation1. 

• Passwords are subject to eavesdropping on 
communication lines (not a problem if a one- 
time pad is the source for passwords). 

• Passwords are vulnerable to an external dic- 
tionary attack unless software is designed 
to prevent the selection of easily-guessed 
passwords (this disadvantage disappears if 
a one-time pad is used as source for pass- 
words). Unfortunately, bad passwords often 
result from the use of personal information 
about the user, e.g., spouse's name, date of 
birth, etc., and it is not clear how software 
could be designed to prevent the selection of 
such passwords. 

CCTTT X.509(4] describes the approach to strong authentication as "oorrob- 
oration of identity by demonstrating possession of a secret key." We believe 
the most Important aspects of strong authentication between two principals 
are that: (1) neither principal gains sufficient knowledge to subsequently im 
personate the other and (2) observation of any or all authentication by a third 
party does not yield sufficient information to enable subsequent im personation 
of either principal. 

• Passwords can be subject to internal attack 
as well. If clear text passwords are stored 
on the host, they are subject to compromise 
in the event of a breakin or in the case of 
an untrustworthy user who is able to ac- 
cess the files that contain the passwords. 
Even where only hashed or encrypted pass- 
words are stored, care must be taken to: (1) 
limit the bandwidth of brute-force attacks 
on passwords and thus reduce the vulnera- 
bility to attack (e.g., with some control over 
the number of retries before evasive action is 
taken, as in VMS), and (2) guard against the 
theft of the entire password file and a subse- 
quent brute-force dictionary attack against 
the stolen copy. 

• Passwords are often written down and thus 
their security is potentially limited by the 
physical security of the office. If users write 
down the password in a particularly bad 
place (e.g., writing down the PIN on the back 
of the ATM card), then compromise is even 
more likely. 

• Passwords depend on schemes in which the 
host system must be trusted to "forget" the 
password the user supplies and terminate 
the authorization when requested (e.g., by 
a logout command). Thus, once a password 
is divulged, the user has no solid protection 
since the limit on the user's liability is en- 
tirely based on the trustworthiness of the 
host system. 

Most of the above concerns can be addressed 
by enhanced password mechanisms. For ex- 
ample, the problem of broadcasting passwords 
on LANs can be addressed by encrypted con- 
nections, one time passwords, a Kerberos-like 
scheme and so forth. Dictionary attacks can 
be foiled by pass-phrase generators and a good 
pass-phrase generator might obviate or reduce 
the need to write down passwords as well. 

See-Through Authentication 

The see-through authentication approach may 
be characterized as a smartcard system that 
does not need a smartcard reader. In essence, 
the user acts as the conduit between the au- 
thentication device (often called a "see-through" 
card) and the computer. See-through authen- 
tication provides strong authentication of the 
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user to the system. Two forms of see-through 
authentication have been widely discussed: (1) 
challenge/response, and (2) time-based. One 
example of the challenge/response approach is 
Polonius from Sytek, Inc. [5] . 

The Polonius system uses cryptographic tech- 
niques to mediate a challenge/response proto- 
col in which: 

• The user establishes a connection with the 
host system (e.g., via a keyboard and dis- 
play). 

• In response to a prompt from the host, the 
user enters an ID. 

• The host passes the user ID to an authenti- 
cation server, which determines whether the 
ID is valid. If so, the authentication server 
passes a challenge and the proper response 
to the host (the challenge and response are 
computed using a key known to the authen- 
tication server and the user's see-through 
card). 

• The host issues the challenge to the user and 
prompts for the response. 

• The user enters a PIN and the challenge into 
the see-through card, which computes the 
proper response and displays it to the user. 

• The user types in the value displayed by 
the see-through card and the host compares 
that value to the value the supplied by the 
authentication server, thus determining the 
authenticity of the user. 

In some implementations, e.g., WATCHWORD 
from RACAL-GUARDATA Ltd. (an implemen- 
tation of the Polonius scheme), [6] the same 
device can be set up so that it may be used to 
authenticate to more than one service, using 
the same PIN. 

An example of a time-based see-through au- 
thentication scheme is the Access Control En- 
cryption (ACE) system from Security Dynam- 
ics [7] . In the Security Dynamics product, 
there are two components, the Access Control 
Module (ACM), plugged into the computer, and 
the SecurlD® card, carried by the user. 

In the Security Dynamics scheme, the Access Control Modulo can be config- 
ured to support strong authentication of the ACM to the user as well. 

10 SecurlD la a registered trademark of Security Dynamics, Inc. 

Each SecurlD has an LCD that displays a 
pseudo-random number (PRN) at regular in- 
tervals. In addition, each user is provided with 
a PIN. At login, the user is asked to enter both 
the PIN and the PRN. (The PIN is associated 
with the serial number of the SecurlD card.) 
Note that it is the device, not the user, that 
is authenticated to the system. There is an 
implicit assumption that the user is authenti- 
cated to the device (e.g., via the the PIN) and 
therefore that the device is correctly asserting 
that the user is present. 

The card's generating algorithm is synchro- 
nized with the ACM. Thus the system "knows" 
that only the possessor of that card could pro- 
vide that value (assuming the secrecy of the 
generating algorithm). The PIN, of course, also 
prevents use of the card in the event of loss or 
theft. 

There are provisions for the use of an alter- 
nate "duress PIN." In addition, there is a pro- 
vision for protecting the system from unautho- 
rized attempts (the user may be asked to enter 
two valid PRNs in a row). 

The Security Dynamics system also has a pro- 
vision for authentication of the ACM to the 
user. In this configuration, the user first types 
the SecurlD serial number, after which the 
ACM will display the pseudo-random number 
that is currently on the SecurlD card. The user 
then enters the next PRN along with the PIN 
for authentication to the ACM. 

The advantage of both see-through authenti- 
cation schemes and smartcards is that strong 
authentication of the device is an intrinsic 
characteristic of the scheme. User authenti- 
cation to the device involves: (1) possession of 
the device and (2) use of a PIN (typically). The 
disadvantages of both are: (1) the cost of the 
authentication devices, (2) the fact that it is 
necessary to carry the device, and (3) the user 
needs to remember the PIN. The particular ad- 
vantage of see-through over smartcards is that 
no new hardware is required (i.e., you do not 
need a reader). 

The obvious disadvantage to see-through au- 
thentication, as compared to smart cards, is 
that the user must enter some amount of infor- 
mation correctly in an exchange that may re- 
quire greater care than a simple password en- 
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try. The problem can he compounded by noisy 
communication lines. 

Another major disadvantage to see-through 
authentication, at least with current devices, 
is that it depends on symmetric encryption, 
which has several drawbacks: 

• We know of no method that allows the use of 
symmetric keys for digital signatures with- 
out having to trust some kind of on-line no- 
tary or verification service. Such a service 
would have to store large numbers of secret 
keys and would therefore be a major tar- 
get of attack. (If asymmetric keys are used, 
names and public keys can be paired and 
then encrypted off-line with verification ser- 
vice's public key. In this approach, only the 
public portion of the key must be available 
to software on the network; thus the server 
need not be trusted to protect the private 
portion of the key. See [8] for more informa- 
tion.) 

• Symmetric encryption means that the au- 
thentication server possesses the encryption 
key; thus the authentication server must be 
trusted. Though replication of the server 
can prevent its being a single point of fail- 
ure, it remains a single point of attack. 

• Key distribution centers (for the manage- 
ment of symmetric keys) do not scale well 
for large networks. 

While asymmetric (or public key) systems 
such as RSA solve these problems, it does not 
appear likely that asymmetric encryption can 
be used to add security value to a see-through 
authentication scheme. Public-key algorithms 
generate large blocks of information, therefore 
a challenge or response must be hundreds of 
bits in length. To enter a challenge of, for 
example, 512 bits, a user would have to type 
128 hexadecimal digits, which results in an un- 
bearably cumbersome user interface. 

Smartcards 
Smartcards provide strong authentication as 

well as solutions to all the disadvantages men- 
tioned in the Passwords section. While not an 
authentication issue per se, an additional ad- 
vantage of a smartcard based on public key 
cryptosystems is the ability to digitally sign 
documents. [9] 

In addition, pnblic-key smartcards allow an 
architecture in which no principal is given the 
means to impersonate another principal, nor 
are private or secret keys stored in an online 
server that, if compromised, could provide the 
means for impersonation.[8] 

The main disadvantages of smartcards are: 

• Smartcard readers must be integrated into 
new workstations, PCs and terminals, and 
integration with a significant set of existing 
equipment will be necessary as well. 

The smartcard reader will be a potential 
point of attack as long as it must provide 
some of the "smarts" (e.g., PIN entry, dis- 
play, etc.). At the time of this writing, smart 
cards with keypads, LCD displays, and the 
computing power necessary for digital sig- 
natures are not widely available. 

• Each user must be given a smartcard at a 
potentially substantial aggregate cost. 

• Some scheme is needed in the event that a 
smartcard is forgotten, lost, or stolen. 

• Some scheme (e.g., PIN codes) is needed to 
prevent use by others and to ensure that the 
user is authenticated to the device. With- 
out such a scheme, the smartcard can only 
authenticate itself and cannot validly assert 
the presence of a particular user. The man- 
agement of any such scheme incurs some 
cost. 

More details about authentication based on 
asymmetric encryption can be found in [10] 
and [11] . 

Biometric Devices 

The use of biometric devices rather than 
smartcards has been proposed to address many 
of the issues mentioned above. Biometric de- 
vices read pome physical characteristic of the 
user and can be categorized as reiving on ei- 
ther: (1) passive characteristics such as fin- 
gerprint, the pattern of blood vessels on the 
retina, etc., or (2) active characteristics such as 
handwritten signature or voice characteristics. 
Biometric authentication uses some form of 
pattern recognition to determine whether the 
biometric characteristics presented are consid- 
ered equivalent (within some threshold or tol- 
erance) to the stored values for that individual. 
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The advantages of biometric devices are: 

• The system is easy to use. Although a bio- 
metrics system requires some training and 
perhaps the use of a PIN, the essence of the 
system is that a machine reads some char- 
acteristic from a passive user (e.g., retina or 
finger prints) or a from a user's action (e.g., 
a manual signature). 

• The user does not need to carry a token 
that could be forgotten, lost, or stolen. Bio- 
metric characteristics can potentially pro- 
vide the strongest binding yet known be- 
tween the user and the authentication in- 
formation. This makes a biometrics scheme 
very attractive in certain applications, e.g., 
entry to a building. 

• If used to control entry to a physically se- 
cure area, there is essentially no additional 
cost per user, once the biometric reader is 
purchased (except for storage of biometric 
characteristics). However, the cost of bio- 
metric readers rises quickly if they must be 
installed at each point of login to a computer 
system. 

We argue that biometrics, by itself, is unsuit- 
able for any application outside the bounds of 
local authentication for the following reasons. 
If biometrics is to be used for remote rather 
than local authentication, the design must pro- 
tect against two distinct kinds of attack: 

• Spoofing the biometric reading mechanism 
itself (e.g., providing the thumbprint with- 
out the thumb's owner being present or us- 
ing a high quality voice generator to fool 
voice recognition circuitry) 

• Bypassing the biometric reader entirely 

These threats are specific to biometric schemes 
because they are based on the fact that bio- 
metric characteristics are not secrets and must 
not be thought of as secrets. (It is absurd, for 
example, to think that one can protect one's 
thumbprint from disclosure.) Even for more 
"sophisticated" biometric characteristics such 
as retina prints or handwritten signature anal- 
ysis, the average person could not protect those 
characteristics from being "read" or captured 
by a malicious party. 

The threat of spoofing is made possible by 
the fact that once biometric characteristics are 
known, somebody can design devices capable 
of supplying those characteristic to within the 
tolerance of the reader. The only defenses 
against such an attack are to: (1) guard the 
reader, thus ruling out obvious biometric by- 
passing equipment or duress (discussed below), 
and (2) use biometric readers that are very dif- 
ficult to spoof. An organization's policy toward 
such readers must balance the cost of a reader 
that has the necessary level of discrimination 
(including guards, if appropriate) against the 
value of the resource being protected. 

The threat of bypassing the reader does not 
apply to passwords, see-through devices, or 
smartcards because in those cases, the reader 
is only a conduit for a secret. If properly imple- 
mented, possessing or replacing the password 
reader (the keyboard) or the smartcard reader 
should never provide a means for obtaining the 
secret. 

For remote biometric authentication, how- 
ever, bypassing the reader is a serious threat. 
Since biometric characteristics are not secret, 
mere possession of the bits that correspond to 
an individual proves nothing. The authenti- 
cation value comes from the knowledge that 
the bits are coming directly from a valid reader 
that is known to be securely connected to the 
machine that uses the bits for authentica- 
tion. Without adequate protection, an attacker 
could: (1) physically replace the reader with 
one that emits the characteristics of a specific 
target individual or (2) compromise the au- 
thentication at the host to which the reader is 
connected or via nodes elsewhere on the net- 
work (e.g., by a replay attack). 

To protect against such attacks, some means 
must be used to place the biometric reader 
within the same security perimeter as the re- 
mote node to which the user is authenticat- 
ing. That is, a "secure connection" is needed 
between the reader and the remote node that 
guarantees both the authenticity of the reader 
itself and of the bits it sends authenticating the 
user. In most cases, the most practical method 
of affording protection from these threats in- 
volve encryption and timestamps. Thus to 
guarantee both the authenticity of the reader 
and the integrity of any information it trans- 
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mits, we argue that the reader must be able 
to employ encryption (either encrypt the entire 
message or digitally sign some kind of message 
digest). 

Using encryption to protect the biometric au- 
thentication protocol appears to result in a par- 
ticularly thorny problem. Since biometric au- 
thentication does not (indeed cannot) require 
that the read characteristics exactly match 
the stored characteristics, it would seem that 
an authenticating server must have the un- 
encrypted biometric available. I.e., the server 
must either have the "cleartext" biometric bits 
or the decryption key available—and in the 
event that the server is compromised, these 
are equivalent (this is true for both symmet- 
ric and asymmetric encryption schemes). The 
reason for this requirement is that a "variation 
threshold algorithm," which allows authentica- 
tion for a close (but not perfect) match between 
the stored and read values, would not be able 
to deal with a comparison of two "close" values 
in their encrypted form.[12] 

To avoid the above problem, it is conceivable 
that the reader might carry out the biomet- 
ric algorithms and simply send an "accept" or 
"deny" message to the remote system. How- 
ever, any requirement for carrying out the 
actual biometric authentication locally rather 
than simply shipping the bits read could sig- 
nificantly increase the cost of the biometric 
reader. The local node could help in the pro- 
cessing, but the node would then also have 
to be trusted by the remote system. Note 
that in any of these implementations, the mes- 
sage from the reader (or local node) must also 
be protected by encryption. Thus for secure 
remote biometric authentication, the cost of 
encryption must be added to the processing 
costs associated with the biometric authenti- 
cation. In fact, any remote authentication 
scheme must incur the overhead cost (usually 
encryption) associated with authenticating the 
device (see-through device, smart card, or bio- 
metric reader). 

The following list describes other disadvan- 
tages to biometric authentication: 

• The readers are relatively costly—currently 
at least an order of magnitude more than 
the simplest smartcard reader (to achieve a 

reasonable level of correct biometric authen- 
tications). 

• In the event of compromise, changing bio- 
metric characteristics is essentially impos- 
sible. 

• With injuries (e.g., a cut on the finger or a 
sprained wrist), it may become difficult to 
authenticate. 

• The scheme is not readily adapted to other 
uses such as digital signatures (as is also 
true of passwords, of course). 

• A potentially significant amount of computa- 
tion is required to verify the biometric bits to 
the threshold needed to allow for a close (but 
not perfect) match between the stored and 
read values in order to ensure that only the 
right individual is "passed." (While asym- 
metric encryption also requires a significant 
amount of computation, we have shown that 
for remote biometric authentication, encryp- 
tion is required anyway; thus the biometric 
verification is additional overhead.) 

• Some biometric devices, such as those read- 
ing fingerprints, could be defeated using 
available techniques for faking fingerprints. 
Since biometric information is not secret, it 
can be argued that given enough incentive, 
it is only a matter of time before someone 
builds a device that defeats a given biomet- 
ric authentication scheme. Whatever the 
biometric pattern chosen as the "authenti- 
cator," that pattern might either be obtained 
(e.g., fingerprints from a bar glass) or fabri- 
cated as technology evolves. 

• While all authentication methods can be 
subverted by coercion of the user, certain 
biometric approaches appear to be even 
more vulnerable than most methods. E.g., 
an unconscious user cannot be made to di- 
vulge a password or PIN but a fingerprint or 
retina print could be obtained. (The follow- 
ing section touches on the interesting topic 
of authentication under duress.) 

Active biometric systems (as opposed to static 
characteristics like fingerprints or retina prints) 
are more difficult to defeat. For example, it is 
possible to identify a user based on the anal- 
ysis of typing patterns. However, typing pat- 
tern analysis might have problems in commer- 
cial systems (especially), where complex oper- 
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ations are reduced to invocation by a very few 
keystrokes or even a point-and-click interface 
and typing patterns become more difficult to 
discern. 

Handwritten signature verification, voice recog- 
nition, and typing analysis all need to be able 
to deal with foreseeable changes to the biomet- 
ric characteristics. E.g., a broken arm or even 
a sprained finger could make authentication 
difficult for the manual signature or keystroke 
analysis approaches. A head cold or dental 
work might cause problems for a voice recog- 
nition system. 

Authentication Under Duress 
Some authentication systems incorporate the 

idea of having available two different PINs, 
one for normal use and one to be used when 
under duress. The issues are: 

1. Does authentication require only a pas- 
sive user role (could a criminal accomplish 
authentication with a drugged or uncon- 
scious victim, possibly without the victim 
ever knowing that authentication informa- 
tion had been obtained by the criminal)? 

2. Will stress (likely to be present with duress) 
make some biometric schemes (e.g., voice 
recognition and signatures) impossible to 
use under duress? 

3. Is there some means for appearing to cor- 
rectly authenticate while really warning the 
system of the duress condition (e.g., Polo- 
nius)? If so, how many users would really be 
willing (or remember how) to use the duress 
warning with a gun pointed at their head? 

Any biometric scheme for which the answers 
to 1 and 2 could be "yes" is potentially less ef- 
fective than other authentication choices. Note 
that if the answer to 2 is "yes," the authentica- 
tion scheme is still effective from the system's 
point of view; i.e., it is fail-safe. However, in a 
duress situation, the user's security may be in 
jeopardy. In fact the larger question of whether 
the systems should work when the user is un- 
der any form of stress must still be examined. 
This is essentially a matter of security policy. 
All authentication schemes we have examined 
except for biometrics could easily be adapted 
to allow for alternate PINs or passwords to be 
used as a duress warning.   For biometrics, it 

would be necessary to add some kind of PIN 
mechanism, which reduces the simplicity of 
biometrics. 

The question of notifying the system about 
a duress situation is clouded by the knowledge 
that if a gun is pointed at one's head, there is a 
good chance that one will hand over password, 
smartcard (with the "real" PIN), or anything 
else the gun wielder wants. 

Conclusions 

The disadvantages to biometric authentica- 
tion are rooted in the fact that biometric char- 
acteristics are not secret. Because they are not 
secret, a biometric characteristic by itself can- 
not be unforgeable proof that the user is at 
a particular remote node. Confidence in the 
presence of the user is based only on trust in 
the node (or biometric reader) that makes the 
assertion. Thus, the disadvantages to biomet- 
rics become apparent only in the context of a 
computer network, in which a user might want 
to authenticate to a remote node. 

In applications where no remote authentica- 
tion is contemplated and physical security is 
assured (e.g., entry to a building or entry to a 
computer room that is guarded 24 hours a day), 
biometric authentication is a valid application 
and could be a very attractive option because 
of its potential ease-of-use characteristics. 

It has been suggested that biometrics (rather 
than a PIN) would be a good way for a user 
to authenticate to a smartcard. If the biomet- 
rics approach uses "static" characteristics, the 
advantages when balanced against the threat 
of a serious attack are dubious. If someone is 
willing to drug or knock the user unconscious, 
that user's biometric characteristics are much 
more vulnerable than a password or PIN. On 
the other hand, a dynamic biometric, such as 
handwriting analysis, might be reasonable. 

If the probability of attack on the smart- 
card itself is low, then biometric authentica- 
tion to the smartcard might be considered. The 
advantage is that such an approach protects 
against mild cases of incompetence, e.g., users 
who share a PIN or who might scratch the PIN 
into the casing of the smartcard. 
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In either case, in order to be secure, the bio- 
metric reader would have to be "local" to the 
card; that is, either actually on the card or di- 
rectly connected to the card. If the biometric 
reader is connected to the smartcard via the 
host, the reader is now "remote" in the sense 
that, without protection, the host could com- 
promise the authentication exchange. Without 
that protection, the scheme is more expensive 
and less secure than a smartcard that uses a 
PIN. 

In the context of a computer network, the 
idea of a permanent compromise of one's bio- 
metric characteristics is frightening. The in- 
ability to use the device for digital signatures 
is also a serious drawback. The cost for a 
"good enough" implementation to resist spoof- 
ing could be high. The major advantages of 
biometric devices are: (1) ease of use (poten- 
tially), (2) low additional cost per user, and (3) 
no problem with loss or theft. 

We believe that loss or theft of smartcards 
could be dealt with using a reasonable tempo- 
rary card process administered by security per- 
sonnel, coupled with a PIN code. While theft 
is not an issue with biometric devices, injury 
could have the same impact, at least temporar- 
ily. When smartcards can be obtained for $10, 
their advantages are likely to override other 
cost considerations, at least in the area of dis- 
tributed authentication. 
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NON-FORGEABLE PERSONAL IDENTIFICATION SYSTEM 
USING CRYPTOGRAPHY AND BIOMETRICS 

Glenn Rinkenberger and Ron Chandos, Motorola Government Electronics 
Group, 8201 E. McDowell Rd. Mail-Stop H1102, Scottsdale, AZ 85252 

ABSTRACT 

This paper describes a concept for combining cryptographic and 
biometric techniques to provide an unforgeable set of authentication 
credentials absolutely linked to only the rightful owner. These 
credentials can then be presented at a remote site, and provide 
convincing proof that the presenter is who he claims to be and that 
he holds the privileges he claims to hold. A fully operational 
feasibility model, based on facial image and fingerprint biometrics, 
is described. Also discussed is a method for adapting the concept to 
validate users of the STU-III secure telephone, and a multi-user 
computer network. 

PROBLEM 

Modern societies often experience the problem of positive 
identification of a single individual and determining privileges 
associated with that individual. In the government realm, the 
problem of personal authentication is closely coupled to security 
issues involving physical access control, obtaining classified 
material, visiting off-site facilities, and logging onto classified 
multi-user computers or networks. Within the public domain, the 
problem is most evident during everyday financial transactions such 
as the use of credit cards, check cashing, and automatic tellers. 

In both the government and public domain, there exists a strong need 
for personal authentication. The authentication process enables a 
person requesting a service or privilege to prove positively that he 
is entitled to that privilege or service. An ideal authentication 
system provides convincing proof that an individual is who he claims 
to be, and that he is entitled to the privileges he claims to have. 

The most pervasive systems in use today are exemplified by the 
credit card application. In this application, privileges are 
identified by the type of card, and the requester identified by 
having possession of the card.  Many retail sites also employ card 
readers linked via modems over phone lines to access a central 
computer base to verify card validity.  Note that this procedure 
validated the card, with no regard for whether the bearer of the 
card is the rightful owner.  Consequentially, these types of systems 
offer limited security, and are defeated or compromised when the 
credential is modified, lost, stolen, or forged. 

In addition to possessing the card, systems like the automatic 
tellers used by the banking industry require a second authentication 
step in the form of a password or identification number, presumably 
known only by the valid holder of the card. 
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The issuance of personal identification in the government sector is 
particularly complex due to the desire for compartmentalization of 
access to classified data and facilities. Another complication is 
created by the lack of a central authority to control identification 
methods and policy. The systems in use by various government 
agencies are generally different and non-interoperable, causing 
inconvenience, delays, and extra procedures and paperwork when 
inter-agency transactions are required. 

Motorola has developed a concept for combining cryptograpy and 
biometrics to provide an unforgeable set of authentication 
credentials absolutely linked to only the rightful owner. These 
credentials can then be presented at a remote site to provide 
convincing proof that the presenter is who he claims to be and that 
he holds the privileges he claims to hold. 

THE NEW CONCEPT 

The motivation for the proposed authentication system is based on 
severe shortcomings of identification systems in common usage today. 
All of today's systems appear deficient in one or more of the 
following areas. 

- Ease in forging the identification credentials- 
- Lack of positive authentication tied to a physical person- 
- Vulnerability due to lost, stolen, or forged credentials- 
- On-line linkage to a central data base- 

The new concept provides a biometric and cryptographic basis for 
proving that the bearer of the credentials is the individual to whom 
they were issued, and that the attributes or privileges conveyed by 
the credentials were certified and bound to the individual. 

The new approach, shown in Figure 1, involves a trusted credential 
issuing agency (Authorization Segment) and numerous transaction 
sites (Validation Segments). The Authorization Segment is 
responsible for validating the identity, attributes, and privileges 
for an individual requesting credentials. When validated, the 
credential media is generated and given to the requestor. The 
credential media can then be tendered at any of the Validation 
Segment sites where the holder desires to complete a transaction. 
The Validation Segment equipment then processes the information 
contained in the credentials and determines whether the presenter 
should be allowed to complete the desired transaction. 

Specific details describing this concept follow the background 
information presented below. The recommended system is based on 
three proven technologies, biometrics, public key cryptography, and 
memory cards. 

BIOMETRICS- 

The biometric contribution allows basing the identification decision 
on some immutable trait unique to the specific individual. Commonly 
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Figure 1- System Concept 

used biometric techniques include facial features, fingerprints, 
voice prints, retinal scans, static and dynamic handwriting 
characteristics, and hand geometries. 

All of these biometric traits are currently able to be digitized and 
stored in a ^reasonably' sized data base (reasonableness defined in 
terms of the capacity of existing and proven memory cards, with 
allowances for other data, described later). The resulting biometric 
data base is uniquely linked to one specific individual. Table 1 is 
a brief and somewhat qualitative survey of some of the currently 
available published biometric industry data[l]. Since testing, 
decision thresholds, and reporting methods differ widely between 
vendors, this data should be viewed in a conceptual rather than a 
comparative manner. 

Table 1- Biometric Industry Survey Information 

Biometric 
Template 

Fingerprint 
Hand Geometry 
Retinal Scan 
Voiceprint 
Dynamic Signature 

False  Re- ect False  Accept 
Rate Rate Size 

2% 0 10  Kbits 
1% 0.4% 1  Kbits 
3% 0 1  Kbits 
4% 0.5% 10  Kbits 

e         1% 0 1  Kbits 

82 



PUBLIC KEY CRYPTOGRAPHY- 

The concept of public key cryptography provides several benefits to 
the proposed personal authentication concept. The important property 
of the public key cryptography is the separate and distinct encrypt 
and decrypt keys, where one element of the key pair can be made 
widely available without providing information related to the other 
half of the key pair. In the typical public key communications 
scenario, the encrypt key is made available to the public, while the 
decrypt key is tightly guarded by the owner. This allows anyone to 
send secure information to the owner, with the owner being the only 
party able to read the data message. 

For the authentication system, the cryptographic key pair usage is 
opposite from the communications scenario. That is, the encrypt key 
is held privately and the decrypt key is distributed. The credential 
issuing agency is the sole possessor of the encrypt key, while 
distributing the decryption key to all personal identification 
sites. 
The resulting cryptographic benefit is two-fold. First, the threat 
of forged credentials is removed, since forgery is impossible 
without knowledge of the encryption key (held and protected by the 
trusted issuing agency). Next, the transaction site, upon decrypting 
and validating the presented credentials, can safely conclude that 
the credentials were indeed generated by the trusted issuing agency 
and can therefore trust all information on the credentials. 

MEMORY CARD TECHNOLOGY 

The memory card technology is rapidly advancing, with several 
million memory cards in use in Europe and Japan. The cards provide a 
conveniently portable medium, allowing the holder to transport large 
quantities (hundreds of kilobytes) of digital information in a 
credit card sized unit. The proposed system uses the credential to 
contain the encrypted biometric trait information for the proper 
holder, and numerous encrypted data files indicating attributes 
and/or privileges validly held by the holder. 

Although these three technologies are individually mature and well 
understood, the authentication system uses them in a unique 
combination, allowing unforgeable proof that the individual and his 
claimed privileges are valid. 

AUTHORIZATION SEGMENT 

The authorization segment (Figure 2) will be one or at most a 
limited number of sites that produce the credentials.  The 
authorization segment must first either generate or receive from 
some other source properly certifiable information about the 
individual for which credentials are to be prepared.  Existing 
methods presently used to grant security clearances or credit cards 
are examples of possible certification methods. 

The biometric (s) used for identification are application dependent 
and are influenced by the required security, the degree of human 
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involvement at the transaction site, and human factors 
(inconveniences) tolerable by the presenter.  For example, facial 
images are applicable to manned sites where a guard is available to 
make a match/no-match decision.  This biometric is very unobtrusive 
from the presenter's point of view.  For unmanned sites, biometrics 
such as fingerprints or retinal scans are more amenable to machine- 
based match/mismatched decisions.  These biometrics are somewhat 
more inconvenient to the presenter.  Note that the credential may 
contain several biometric files, allowing combining the traits for 
very high security applications, or using the biometrics 
individually for several applications with differing security 
levels. 

Once the trait method(s) is selected, it is necessary to gather the 
trait data.  This data may be collected directly on site from the 
individual or may be communicated to the site via mail or electronic 
means.  Fundamental to the process is the conversion of this trait 
data to digital data in a fixed format.  Existing commercial 
equipments are available which perform this operation. 

After the t 
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biometric information is passed to an encryption function. Note that 
multiple levels of public key encryption can be applied to various 
portions of the attribute or privilege data base.  That is, the 
trait data and general portion of the data base (example, name) can 
be encrypted in one key.  Additional portions (example, special 
privileges) can be encrypted on a second key.  The second decrypt 
key is only available to a subset of the validation segment, such as 
a site where special privileges are needed and recognized.  In this 
way, the general validation site is unaware that the card holder 
possesses any special privileges. 

The encrypted data represents the unforgeable credential data for a 
given individual.  This data may be written to a suitable digital 
storage medium to be used by the individual as his personal 
identification and attribute or privilege credentials.  Many forms 
of the medium, such as a credit card, may also contain the commonly 
used printed information on the medium, as well as the encrypted 
biometric and attribute electronic data. The printed information and 
pictures makes the credentials look like the traditional badge or 
driver's license ID, allowing it to be used in a non-electronic 
manner for low security transactions. 

VERIFICATION SEGMENT 

The Verification Segment (Figure 4) consists of one or a 
multiplicity of sites which provide authentication or access control 
functions based on the presentation of credentials.  The nature of 
the verification site will vary considerably based on the type of 
traits used for the identification process. The simplest case is a 
manned site where a facial photograph is used as the identification 
trait.  The presenter would provide his credentials to a reading 
device which reads the digital data from the medium and performs the 
decryption function.  The more complex sites would include biometric 
sensors and automatic authentication comparison software. Figure 5 
is a typical description of the processing performed at the 
verification site. 

In many applications the verification site will provide a "log" or 
audit trail function.  This function would replace the current 
sign-in procedure and provide a recorded history, most likely via 
hard disk and diskette storage.  The audit trail information could 
also be written onto the credential providing a personal record of 
all the places where the credential had been used. 

PROOF OF CONCEPT SYSTEM 

This research effort has resulted in the development of a proof of 
concept hardware/software system using the facial photograph and the 
finger print as the identification traits.  Figure 6 illustrates the 
hardware structure.  The system is capable of capturing both the 
front and profile pictures of the individual as well as one or more 
finger prints.  The biometric data is augmented with text 
information, encrypted and written onto a memory card.  The text 
information contains a complete drivers license and passport as well 
as security 
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information, emergency medical information, and personal 
information.  Also included on the memory card is data that allows 
the holder to authenticate himself while he is logging onto a secure 
computer system.  Note that there are multiple records being stored 
on the credential with each record encrypted using a different key. 
Also the concept of multiple linked records has been implemented. 

Multiple linked records are useful for situations such as a DOD 
security clearance. The basic clearance information is contained on 
the first record, with special access or additional clearance 
information contained in a second record. The general DOD site has 
the ability to decrypt and use the general information. Only certain 
selected sites have access to the key needed to decrypt the second 
tier information. In fact, sites not needing the special access 
information are unaware that such information is contained on the 
card. 

Finally, the system demonstrates it is possible for a holder of a 
credential to withhold information from a verification segment if 
the data recorded on the credential is covered by a personal 
identification number known only to the valid holder. 
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POSSIBLE APPLICATIONS 

The demonstration system is oriented toward an access control or 
transaction site (credit card) application. The same technique is 
applicable to other applications, and provides significant benefits 
when there is a large, mobile group of users, numerous equipments to 
be used, and difficulty in linking all users and equipments into a 
centralized and/or on-line data base. Two examples are discussed 
below, one for STU-III user validation and another for a secure 
computer network. 

STU-III USER IDENTIFICATION 

The current STU-III includes an ignition key, assigned to a valid 
user of the equipment and associated with one particular STU-III. 
The key, containing a small EEPROM, is carried by the assigned user 
and inserted into the telephone when a call is placed. The key 
contains digital data which is read and processed by the STU- III if 
the key is valid, the secure call is allowed to proceed. As in 
similar credit card applications, these checks insure that the key 
is valid, but not guarantee that the holder of the key is the 
individual to whom it was originally issued. 

The proposed extension to this concept  involves writing additional 
biometric data as well as user privilege data onto the ignition key. 
A compatible biometric sensor would also be added to the STU-III. 
The voice print is an attractive biometric for this application, 
since speech digitization and processing is an inherent part of the 
STU-III architecture. For high security applications, a fingerprint 
reader is another viable candidate. 

Irrespective of the biometric chosen, the valid user's biometric 
data would be encrypted and stored onto the data key. In addition, a 
small text file containing his identity, security clearances, etc. 
would also be encrypted and stored. In operation, the user would 
insert his key into the modified STU- III, and render his biometric 
sample. (For voice prints, a phrase would be spoken into the 
microphone; for fingerprints, the finger would be placed on the 
sensor plate). The local STU-III Terminal would decrypt the datakey 
biometric information and compare it to the directly collected 
information. If matched, the secure call would be allowed to 
proceed, with the user's text data sent to the destination terminal. 

The destination terminal would decrypt the text file at the end of 
the current call set up protocol, with the resulting information 
presented via the display. This information would indicate the name 
and affiliation of the caller, as well as his security clearance 
levels. The person receiving the call then has cryptographic proof 
indicating the STU-III from which the call was placed (part of the 
current STU-III approach), biometric proof that the person placing 
the call is the assigned holder of the datakey, and cryptographic 
proof as to the attributes and characteristics of the caller. These 
benefits are obtained with minimal hardware impact to the current 
STU-III (possibly adding a biometric sensor and additional ROM 
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space) and appear compatible with the current cryptography and call 
set- up protocols. 

Note that this concept can be extended to allow a mobile user to 
place a call from any STU-III, rather than in the current scenario 
where the data key is associated with one specific telephone. 

SECURE NETWORK LOG-ON SYSTEM 

For this application, it is desired that the requestor validate 
himself to the computer and that the computer validate himself to 
the requestor. To accomplish this, valid users would be enrolled 
into the system and given a portable medium such as a datakey or 
memory card which would hold their biometric data. 

The requestor to machine validation is similar to the STU-III case 
discussed above. The machine to user validation is accomplished by 
the machine obtaining a set of encrypted text (in principle, a user 
unique sort of password) from the credential, decrypting it, and 
displaying the resulting plain text to the user. If displayed 
correctly, the user knows that the machine possesses the proper key 
needed for the validation, and is therefore a valid machine. This 
decrypted password could also be tied in to an audit or transaction 
recording system to provide a cryptographically secure proof that 
the transaction did occur. 

In this application, it may be desireable to store a large privilege 
vector along with the security clearance information. This 
information is then used by the machine for discretionary access 
control decisions, to allow access to certain data bases on a 
selective read or write basis, and other similar uses. Again, the 
unforgeable and cryptographic basis of this concept permits the user 
to convey his privileges to a distributed processing network without 
a central data base or distributed directory. The user carries his 
directory information around with him. 

CONCLUSIONS 

The current state of the art in biometrics, public key cryptography, 
and low cost memory cards allow a revolutionary breakthrough in 
non-forgeable credentials.  The ability to own a credential that is 
entirely non-forgeable, certifiably correct, and immune to being 
lost or stolen certainly has some virtue in a society such as ours. 
The demonstration system proves that the technology to accomplish 
this is available today, for such low end applications as a 
department store credit card station, to high security access 
control points.  This type of technology is bound to have an impact 
to secure communication and secure network technology as well. 
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1. Introduction 

Most audit trail mechanisms record a variety of about 20-40 [1,2,5] types of events, generally 
providing a pre-selection feature based on event-type and services for post-selection and 
manipulation of the audit trail data, possibly in real-time. In current systems, pre-selection of 
events is performed based strictly on event type and/or user-id with no consideration to relations 
between events. 

Automated analysis of an audit trail includes statistical and rule-based methods with respect to a 
maintained database of user profiles of past activities [4]. The motivation for the reduction 
paradigm is to reduce the amount of data to be analyzed, without any degradation in the quality of 
the analysis. If redundant lower level events are removed in a consistent manner, the quality of the 
anomaly analysis might even improve while reducing the load on the analysis process/machine. 

This paper presents a paradigm for audit trail reduction, which is composed of an informal (but 
sufficiently complete) model of a computing environment, and a list of reduction rules. The 
reduction rules can be employed either as a pre-selection process or as a post-selection process. 
Employing the reduction rules as a pre-selection process means that the rules are applied to each 
event generated, before it is written to the audit trail. Employing the reduction rules as a 
post-selection process means that the rules are applied to the audit trail after it was generated, 
producing a reduced audit trail. 

This paradigm evolved from a feasibility study for developing an intrusion detection system for a 
Bellcore application system which primarily performs transaction processing. Analysis of the 
available audit data revealed that many of the lower level events in the audit trail were redundant. 

Section 2 presents a model of a "typical" computing environment, and an audit trail mechanism 
with the events generated. Section 3 presents a situation analysis based on various events, and the 
resulting reduction rules. Section 4 shows that the reduction paradigm is also adaptable for more 
advanced computing environments which include multi-level security (MLS) [3]. 

2. Computing Environment and Audit Trail Mechanism 

This section presents a set of assumptions which together constitute an informal model of a 
computing environment and its audit trail mechanism. These are required in order to present the 
audit trail reduction rules. Readers might find some of the assumed audit trail mechanism features 
(e.g., every event contains the process-id of the parent-process) to be non-existent in current 
computing environments. Most of the assumed features, however, already exist in experimental or 
new systems [2,5]. The model presented for the computing environment enables presentation of 
the reduction rules in the simplest possible way. Most of the assumptions about the computing 
environment can be modified at the expense of making the reduction rules more complicated. 
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2.1 Computing Environment 

The following is the computing environment: 

a. A "typical" multi-user computing environment, used for general computing and/or 
transaction processing. In particular, no multi-level security (MLS) is assumed; this subject 
is addressed later. 

b. For simplicity of the reduction paradigm, it is assumed that users are allowed a single login 
and only a single active interactive session. The reduction paradigm requires a data 
structure of two lists and a boolean switch per interactive user session. The above 
assumption enables the maintenance of only one such data structure per user. It permits 
emphasizing the reduction techniques and avoiding the complexity of managing multiple 
data structures per user. 

If multiple logins and multiple sessions are allowed, logins by the same user must be 
differentiated with additional attributes such as line number, terminal number, or login time; 
and sessions within the same login must be differentiated by session number. 

c. Users are either privileged (for example, root or superuser in a Unix® system) or not 
privileged. Privileged users can login either as privileged or non-privileged. Changing 
privilege requires a login-like process. This ensures that the audit mechanism knows the 
correct current status of every user. 

Network security issues including auditing of network activity are not addressed in this paper. 

2.2 Command Classification 

User commands and transactions (either line oriented or form oriented) are generally of two types: 

a. Commands transferred by the command-line-interpreter directly to the kernel for execution. 
Such commands do not spawn any process, but might cause terminal events (i.e. events 
which cannot spawn other events) which are auditable. Examples of such commands 
include commands to change the working directory, or display the date. 

b. Commands which spawn a process. This process can spawn many more subprocesses and 
terminal events. Examples of such commands include transactions in a transaction 
system, or a mail command which automatically invokes an editor. 

We assume that all user commands (and their parameters) and/or the main processes spawned by 
user commands generate auditable events which are recorded in the audit trail. 

We are interested in characterizing user activities/commands that can spawn in the audit trail many 
events (sometimes hundreds) that are not required for anomaly analysis. This is typical in 
transaction processing systems, but also can happen in general computer systems. 

2.3 Processes 

Initially it is assumed that processes are either trusted or not trusted. Later the concept of relative 
trust in an MLS environment is introduced. 

Unix is a registered trademark of AT&T. 
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Trusted processes have the following two properties: 

a. They reside (as programs) in files that cannot be modified by non-privileged users. 
b. They are trusted to obey all the system's security policies, and never violate these policies. 

Untrusted processes are processes which evolve from programs that can be modified by non- 
privileged users. Therefore, they are not trusted to obey all the system's security policies. 

It is also assumed that processes cannot be modified in memory while running or waiting for an 
event, while waiting to gain CPU access, or while being swapped to a disk (either because the 
swap-area is trusted or it is impossible to "catch" them in the swap-area). 

These simple assumptions and definitions can be changed, at the expense of making the "trusted" 
predicate in the reduction rules more complicated. 

The definition for trusted program can also be simplified, at the expense of some risk. For 
example, transactions in transaction systems might be comprised of* application programs and 
general operating system utility programs. Generally, a deployed transaction machine does not 
contain the source code of the application programs. In this situation, it is possible to define 
application programs as trusted, and utility programs as untrusted even if no source code is 
available for them on the deployed machine. The rationale behind such a policy is that it is 
possible to replace a utility program with one which contains a Trojan horse, but it is more 
difficult to do this for an application program. 

2.4 Audit Trail Mechanism and Events 

The audit trail mechanism generates events. All generated events include (at least) the following 
information: event-type, object-id(s), user-id, process-id, parent-process-id (when available, 
otherwise same as process-id), success/failure, date, and time. Process-id is generally a unique 
identifier or number assigned to each process when it is created. As mentioned in Section 2.1, a 
single login and a single active session per user are assumed. Otherwise, an additional attribute to 
differentiate among multiple logins and a session-id are also required. 

When a process is initiated, it is certainly possible to find out if the process is trusted or not. For 
simplicity of the presentation, it is assumed that the process-id and parent-process-id in an event 
contain an attribute indicating whether or not they represent a trusted process. 

Events can be classified along a few dimensions. The following are the event classifications and 
event-types which are used by the reduction rules: 

a. Login and logout events: 

These are important because they introduce/delete a user to/from the computing 
environment, and therefore require special actions by the reduction rules. 

b. Process-events versus non-process events: 

There are two kinds of process-events: start-process and end-process. Processes are the 
only subjects (other than users) that can perform actions leading to auditable events, so 
their creation and deletion is important. Examples of non-process events are object creation, 
object access, object deletion, etc. 
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c. Initiation by a user versus a process: 

As mentioned in Section 2.2, user-commands are considered very important audit data. For 
completeness, assume that user command events and non-process events spawned by user 
commands transferred directly to the kernel, have a process-id of the user's 
command-line-interpreter. 

d. By success/failure: 

Failed events are always recorded. All events have a success/failure indication. We assume 
that failure of an event is a potential indication of an attempted security violation (even if the 
event is spawned by a trusted process), or it might be related to a user error which serves 
as a  good indication of user behavior. 

3. Audit Data Reduction 

3.1 Situation Analysis and Possible Policies 

As mentioned, we are interested in characterizing commands that can spawn in the audit trail many 
events (sometimes hundreds) that are not required for anomaly analysis. The simplest case is 
when the main process spawned by a user command and all the subprocesses are trusted, and all 
events are successful. Then, only the original user command (with all its parameters) is needed for 
anomaly analysis, possibly with the start-process and end-process events of the main process 
invoked by the command. 

In the above case, all events except those at the top level are redundant. In general, the definition 
of which events are redundant is a matter of policy related to the way that untrusted processes and 
failed events are viewed. The following two cases specify possible policies describing which 
events are to be considered non-redundant when an untrusted process is spawned, or an event 
fails. 

a. An untrusted process is spawned. 

There are a few possible policies concerning which events should be recorded. A 
reasonable one is the following: Record the start-process and end-process events of the 
untrusted process and all events spawned by the untrusted process. It is not necessary to 
record events spawned by trusted subprocesses (these are considered redundant). The 
rationale is that it is normal for a user command or transaction to spawn both trusted and 
untrusted processes.This is a chosen policy. It is possible to adopt stricter policies similar 
to the ones adopted in situation b for a failed event. 

b. An eventfails. 

As mentioned, this is a potential indication of an attempted security violation. A few 
alternative policies are possible. The two policies handled by the reduction rules are: 

Alternative 1: 

Record the failed event, and then start to record all events for this command/transaction. 
This means that events following the main start-process event until the failed event are not 
recorded in the audit trail, except for events of untrusted processes as described in case a. 
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Alternative 2: 

All events relating to the current transaction should be recorded in chronological order. 
The strategy and required data structures for this alternative are described in the next 
section. 

3.2 Required Data Structures 

Alternative 1, for handling a failed event, requires only a simple switch per interactive user 
session, for indicating when all events are to be recorded. The switch is turned on after a failure, 
causing all events to be recorded until the command/transaction terminates. At this point, the 
switch is turned off. 

Alternative 2 requires that ajl the events of a transaction be recorded in chronological order when 
an event fails. This requirement implies that two lists must be maintained: one for potentially 
redundant events i.e. events that will be redundant if no event fails in the course of executing the 
transaction, and a second list for events that are to be recorded due to untrusted processes. The 
events due to untrusted processes cannot be written directly to the final audit trail, because if a 
failure occurs the two lists have to be merged in a chronological order. 

If an event failure occurs, the two lists are merged, written to the final audit trail, and from that 
point all events (for this user and the particular session) are written to the final audit trail. If no 
event fails, then only the second list is written to the final audit trail upon completion of the 
transaction. Alternatively, in order to eliminate the merge operation, all events can be written to the 
first list. However, the data structures and the reduction rules are presented for a first list which 
contains only the potentially redundant events. This first list is merged with the second list when a 
failure occurs. 

The complete data structure has the following three components: 

a. SW is a switch to indicate when all events must be recorded, following a failed-event. 
SW=on means record all events. SW=off means no automatic recording. 

b. LI is a list for recording potentially redundant events. This list is used only for Alternative 
2 of failed event processing. It is recorded in the audit trail only when an event fails. 

c. L2 is a list for recording events due to untrusted processes. This list is used only for 
Alternative 2 of failed event processing. If it is not empty, it is always recorded in the audit 
trail whether an event fails, or at the completion of the transaction. 

Both lists are initialized to () (the empty list) every time an event of a user-command is detected. 

Note that if simple sequential recording is performed in a multi-user system, then the 
chronological order of the entire audit trail might be incorrect (although this can be fixed). The 
chronological order per user, however, is correct. 

3.3 Reduction Rules 

The reduction rules are given assuming that events are either read from an existing audit trail (a 
post-selection process), or acted upon when generated by the audit mechanism (a pre-selection 
process). As mentioned in Section 2.1, for simplicity of the reduction paradigm, it is assumed that 
users are allowed a single login and only a single active interactive session. The above 
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assumptions enable maintenance of only one data structure per user, emphasizing the reduction 
techniques and avoiding the complexity of managing multiple data structures per user. 

The decision about the action needed for a given event depends on the following: 

a. Event-type (process, non-process, user-command, login, logout). 
b. The value of the switch. 
c. Success or failure of the event. 
d. Whether the process-id represents a trusted process. 
e. For a process-event, whether the parent-process-id represents a trusted process. 

This calls for a multi-dimensional decision table, or a complicated state machine, or a complicated 
tree-structure or if-statement. After some experiments, a simple rule-list was derived. For every 
event, rules are tried in order and once a rule succeeds the next event can be processed. 

Predicates and selectors are used freely and they are self explanatory. The write(event) operation 
means writing of the event to the final audit trail. In order to make this process complete, all 
actions of privileged users are recorded. This is a customary precautionary measure because 
privileged users can modify trusted programs. The reductions rules are presented in two versions, 
one for each of the two alternatives for failed event processing. 

Rule-List per Event (Failed event processing Alternative 1) 

1. If login(event) then create SW for user-id(event); write(event). 
2. If logout(event) then delete SW of user-id(event); write(event). 
3. If privileged-user(user-id(event)) then write(event). 
4. If user-command(event) then SW:=off; write(event). 
5. If SW=on then write(event). 
6. If failed(event) then write(event); SW:=on; 
7. If non-process(event) & trusted(process-id(event)) then do nothing. 
8. If non-process(event) & not-trusted(process-id(event)) then write(event). 
9. If process(event) & trusted(process-id(event)) & trusted(parent-process-id(event)) 

then do nothing. 
10. If process(event) & (not-trusted(process-id(event)) or not-trusted(parent-process-id(event))) 

then write(event). 

Note that the success of rule 9 for a main process spawned by a user command depends 
(according to our assumptions) on whether or not the process of the user's 
command-line-interpreter (which is the parent process of this spawned process) is trusted or not. 

Alternative 2 for a failed event requires the use of two lists, as described in Section 3.2. 
Write(LIST) means writing the entire list to the audit trail, and merge(Ll, L2) means merging the 
two lists based on the time stamps. Note that the assignment of the null list to L2 in rule 6 is done 
in order to simplify rules 2 and 4. It enables performance of a write(L2) in rules 2 and 4 without a 
check of the SW. L2 is empty if SW=on, and it is non-empty if SW=off. 

Rule-List per Event (Failed event processing Alternative 2) 

1. If login(event) then create SW and lists LI and L2 for user-id(event); write(event). 
2. If logout(event) then write(L2); delete SW & LI & L2 for user-id(event); write(event). 
3. If privileged-user(user-id(event)) then write(event). 
4. If user-command(event) then write(L2); SW:=off; Ll:=(); L2:=();write(event). 
5. If SW=on then write(event). 
6. If failed(event) then write(merge(Ll,L2)); write(event); SW:=on; L2:=(). 
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7. If non-process(event) & trusted(process-id(event)) then add event to LI. 
8. If non-process(event) & not-trusted(process-id(event)) then add event to L2. 
9. If process(event) & trusted(process-id(event)) & trusted(parent-process-id(event)) 

then add event to LI. 
10. If process(event) & (not-trusted(process-id(event)) or not-trusted(parent-process-id(event))) 

then add event to L2. 

3.4 Examples 

In order to demonstrate the working of the reduction rules two examples are given, with and 
without a failed event. The events are given as a list of events triggered by a specific transaction 
for a specific user. The following information is given for each event: number (can be viewed also 
as a time stamp), event name/type, process-id, parent-process-id, Trusted/Untrusted (T/UT), 
Success/Failure (S/F). The trace shows the number of the rule triggered and the action taken for 
each alternative. The same rule number is triggered in both alternatives. The actions are for the 
transaction trans 1, the actions for the previous and next transactions are not shown. Finally, the 
reduced audit trail for the transaction is shown. 

Example 1 - Without failed events 

# Event proc-id parent-id T/UT S/F Rule# Alt 1-Action Alt2-Action 

1 start-proc trnsl 100 shell* T S 4 init;write(event) init;write(event) 

2 start-proc 101 100 T s 9 - add to LI 

3 open file 101 101 s 7 ~ add to LI 

4 read file 101 101 s 7 - add to LI 

5 start-proc 102 101 UT s 10 write(event) add to L2 

6 write file 102 102 s 8 write(event) add to L2 

7 start-proc 103 102 T s 10 write(event) add to L2 

8 write file 103 103 s 7 ~ add to LI 

9 write file 103 103 s 7 - add to LI 

10 end-proc 103 102 T s 10 write(event) add to L2 

11 end-proc 102 101 UT s 10 write(event) add to L2 

12 end-proc 101 100 T s 9 - add to LI 

13 end-proc 100 shell T s 9 - add to LI 

14 start-proc trns2 104 shell T s 4 init write(L2);init 

It is assumed that the shell is a trusted process. 
"init" means SW:=off for Alternative 1, and SW:=off; Ll:=(); L2:=() for Alternative 2. 
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The final reduced audit trail is composed of the following events: {1,5,6,7,10,11}. It is the same 
for both alternatives for handling failed events, since no failure occurred. 

To demonstrate the difference between the two alternatives for handling failures, the same 
sequence of events is used, but event number 9 fails. Obviously, the trace is identical to Example 
1 until event number 8. 

Example 2 - With failed events (Events 1-8 as in Example 1) 

# Event proc-id parent-id T/UT S/F Rule# Alt 1-Action Alt2-Action 

9 write file 103 103 F 6 write(event) w(m(Ll,L2));w(e)* 

10 end-proc 103 102 T F 5 write(event) write(event) 

11 end-proc 102 101 UT F 5 write(event) write(event) 

12 end-proc 101 100 T F 5 write(event) write(event) 

13 end-proc 100 shell T F 5 write(event) write(event) 

14 start-proc trns2 104 shell T S 4 ink write(L2)#;init 

w(m(Ll,L2));w(e) = write(merge(Ll,L2)); write(event) 
# L2 is empty, it was set to () when processing event 9. 

Note that it is assumed that the failure of event 9 is propagated back through the end-proc events 
following it. But it is the first failure that affects the reduction, subsequent event failures have no 
consequences. The final reduced audit trail for Alternative 1 is composed of the following events: 
{1,5,6,7,9,10,11,12,13), and for Alternative 2: (1,2,3,4,5,6,7,9,10,11,12,13). 

4. MLS and Relative Trust 

In the previous two sections it was assumed that a process is either trusted or not, and that users 
are either privileged or not. A user cannot change his privilege without a login-like process. The 
situation is similar in Multi Level Security (MLS) schemes [3]. 

In such systems there exists the notion of a Trusted Computing Base (TCB), which contains 
absolutely trusted programs and data files. Users may be assigned a range of security levels. Each 
user logs in at one specific security level, and a change of the security level requires a login-like 
process. 

What does all this mean to the predicate "trusted" used in the reduction rules? 

Obviously, processes evolving from programs in the TCB are trusted. We also need not be 
concerned about the relations between processes and other objects. These fall under the basic 
assumption (stated in Section 2.3) that trusted processes never violate the security policies. There 
is the question of when is a process (which evolves from a program not in the TCB) to be trusted 
with respect to a specific user. 

For a process evolving from a program which is not in the TCB, the predicate "trusted" succeeds 
if the process evolves from a program which is relatively trusted with respect to the user. A 
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program is relatively trusted with respect to a user if the user, when attaining his/hers highest 
security level, cannot modify this program. 

Therefore, the reduction paradigm is also suitable for MLS computing environments, with some 
modifications and adaptations of the assumptions and predicates. 

5. Conclusions and Further Research 

The reduction paradigm described is certainly not a unique one. It is based on a set of 
assumptions, and definitions which probably require modifications in order to fit a specific 
environment. Of course, the critical predicate used in the reduction rules is the "trusted" predicate. 
The definition and implementation of "trusted" must be carefully evaluated in each computing 
environment. 

The goal of the paper is to convince the reader that current pre-selection features (based 
exclusively on event type and user-id) are insufficient for audit trail reduction, and might be 
harmful by removing critical low level events. A reduction paradigm which takes into account 
relations between events, the amount of trust attributed to processes, and success/failure of 
events, is needed for a meaningful reduction with no harm to the quality of the anomaly analysis. 

A detailed model of the reduction process CPU time requirements and the data recording (to disk) 
time requirements, and probably some experimentation, are needed to determine the practicality of 
a reduction paradigm for pre-selection. If the extent of the overhead is too high, the method is 
adequate only for post-selection. 
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Abstract 

This paper presents the design of the first commercial software package that assists the security officer in 
monitoring a system security audit trail. Developed by the Secure Systems Department at AT&T Bell 
Laboratories, the ComputerWatch Audit Trail Analysis Tool provides both audit trail data reduction 
and intrusion-detection capability. 

The ComputerWatch Tool reduces the amount of data viewed by the security officer without the loss 
of any informational content. This enables security officers to focus their attention on areas they are 
most concerned about as possible avenues of security compromise. The detection mechanism highlights, 
in report format, the system activity that could indicate possible security-related compromises. 

INTRODUCTION 

This paper describes the design of AT&T's ComputerWatch Audit Trail Analysis Tool - an add-on 
package to the secure System V/MLS Operating System. 

System V/MLS is a Bl-evaluated version of UNIX® System V that provides multi-level security features 
that comply with the National Computer Security Center (NCSC) orange book B1 security criteria. 

One of the security requirements for a Bl-evaluated operating system is that it provide an audit trail that 
records all security-relevant events occurring on the system. The amount of data generated by such an 
audit trail can get quite large and thus, difficult for a system security officer (SSO) to monitor the 
activity and interpret it in a timely manner. 

The ComputerWatch tool assists the SSO by reducing the amount of data viewed without loss of 
informational content. It does this by providing a mechanism for examining different views of the audit 
data based on information relationships. This enables the SSOs to focus their attention on areas they are 
most concerned about in terms of security-related compromise. 

Although the ComputerWatch tool was designed for the System V/MLS audit trail, the tool can easily 
be modified to operate on an audit trail from another system. 

The tool was written to assist an SSO but not to replace him/her. It is instead an expert system approach 
to summarizing security sensitive events and applying detection rules to generate warning messages 
highlighting anomalous behavior. It also provides a method for detailed analysis of user actions to track 
suspicious behavior. 

CURRENT SYSTEM 

System V/MLS Audit Trail Structure 

The level to which events are audited affects both the processing speed and the detection accuracy of 
any audit trail analysis tool. 

The detection accuracy of an analysis tool is limited by the types of data being audited.  The System 
V/MLS Security Audit Trail (SAT) generates an audit record for all security-relevant events and all data 
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accesses.  Twenty-five selectable trace channels record the types of security-relevant information shown 
in Figure 1. 

Channel Event Channel Event 

00 clock sync record 12 IPC access failure 
01 fork executed 13 removal of IPC object 
02 exec executed 14 user level trace record 
03 exit executed 16 file declassification 
04 system call failure 17 IPC object declassification 
05 file unlink/remove 18 mount/unmount of file system 
06 file creation 19 signals sent by root 
07 additional link to file 21 creation of unnamed pipe 
08 successful file access 22 modification of effective uid or gid of a process 
09 file access failure 23 change of owner, group, or mode bits of a file 
10 IPC object creation 24 change of owner, group, or mode bits of an IPC 
11 successful IPC access object 

Figure 1. System V/MLS Audit Channels 

Since the audit trail for a Bl-rated system can cause significant impact on performance, a major design 
goal of a good security audit trail should be to minimize performance overhead by using a compact 
record format 

In System V/MLS, the overhead of the audit trail is less than 4%. This is achieved by double buffering 
in kernel memory to optimize disk I/O as well as using a binary format to reduce individual records to 
an average size of 16 bytes. 

The size of an audit trail varies depending on the types and amount of events being audited. The 
amount of events being recorded is dependent on the type of machine the data is generated from, the 
length of time covered in the trail, and the amount of activity occurring on the system. With System 
V/MLS, it is also a function of the amount of activity being recorded (i.e., the types and number of audit 
channels turned on). 

The storage format of the System V/MLS audit trail is constructed to save disk space. The audit trail 
structure consists of a header followed by audit records. This header is used as an internal name map 
for each object in the system (i.e., user, group, label, tty, file system). The audit records represent deltas 
or changes to the original information in the header. The objects in the audit records are represented by 
their abbreviated names; the actual names are reconstructed during processing of the audit trail by the 
formatter module (e.g., inodes are mapped to their actual file pathnames). 

Although the compact binary record format saves system disk space and decreases the amount of time 
required to write out the binary records, there is a drawback to the compact form of audit trail. The 
trade-off is that it takes time to convert the binary data to a human readable format. Because this 
conversion is usually a one time occurrence, the advantages of a compact format outweigh the 
drawbacks. 

The size of the audit trail buffer also affects system performance and audit trail integrity. By making 
the audit trail buffer small, the time for writes to disk and the amount of data potentially left in buffers 
as a result of a system crash is reduced, but unfortunately system performance is severely degraded (i.e., 
more writes are required to save the same amount of data to disk)). 

Finally, because of the sensitive nature of the data in an audit trail, it must be protected from 
compromise. System V/MLS maintains the integrity of its audit records by only generating records 
through two secure paths - via the secure system kernel, and through a trusted user-level interface. 
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Security Feature 

Super-user access is required for the ComputerWatch program to access the System V/MLS audit trail 
data and protect its own results. System V/MLS restricts the super-user to operating at the system level, 
and to logging in as a regular user for added security protection. In addition, both the SSO, and the 
terminal that the SSO is using, must be cleared to operate at System High (SysHi), the highest security 
level on the system. 

Operational Scenarios 

The following describes how the ComputerWatch tool would typically be used: 

— The SSO formats and loads the set of audit trail data he or she is interested in analyzing. 

— The SSO generates a system activity summary report to get an idea of the types and amount of 
activity occurring on the system. He/she runs it with detection mode off to perform his/her own 
analysis of what is happening on the system. He/she then, runs the report with detection mode on to 
see how the tool evaluates the system activity. 

— Based on the results highlighted in the summary report, the SSO runs several standard queries against 
the audit data to isolate the activity of individual users on the system. The SSO then determines 
which user(s) are responsible for the security-relevant activity that looks suspicious. 

— If the SSO detects some disturbing events as a result of running queries triggered by the results of 
the summary report, he or she may decide to execute several queries against the individual user. If 
the results of the queries targeted to a single UID show abnormal behavior, the SSO may decide to 
reload several files of data from a previous day's SAT files. 

— As a result of evidence collected by the SSO concerning a particular UID, the SSO may decide to 
create several custom queries to keep a close track on future behavior exhibited by this particular 
user. 

In addition, the SSO can shape the tool to fit his/her environment and needs by performing the following 
tasks: 

— The SSO can modify the format of the System Activity Summary Report to suit local needs. 

— The SSO can modify or add to the detection rules used to highlight values and produce analysis 
messages in the summary report; He/she can tune the rules to best detect suspicious activity on 
his/her particular system. 

— After perusing the summary report and the results of several provided queries, the SSO may decide to 
build a custom query to view the audit data. Using this important feature, the SSO creates an 
extension to the basic set of queries to satisfy special needs. 

The ComputerWatch tool includes sample cron scripts that allow the user to execute the tool in a 
batch mode out-of-hours to ease the performance impact. Cron scripts are routines that allow the user to 
program the machine to run a job at a particular date and time or on a regular basis. The cron scripts 
can get data from another machine, format and load the data, and send to a printer, a summary report 
analyzing the events occurring in the audit trail. This enables the SSO to pick up the summary report, 
scan it (perhaps, first thing in the morning), and decide if further audit data study is needed. 

User Interface 

The user interface is an important part of any auditing tool. If it is awkward or difficult to learn, it will 
quickly be abandoned in day-to-day operations. 

The user interface for the ComputerWatch tool was constructed using the AT&T ETIP Designer• 
Package (ETIP stands for Extended Terminal Interface Prototype) to create a hierarchal structure of 
menus.  This off-the-shelf utility features pop-up menus, built in choice selection, and both function key 
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and arrow key movement to provide an intuitive feel. The ETTP Designer also provides a character- 
based interface allowing the package to run on a variety of different terminals. 

The ETTP Designer places menus on the screen to conserve space, but allows the user the capability to 
change the size, shape, and screen location of the menus. The user can leave menus on the screen and 
traverse between them or bring up a new menu at each invocation. 

At installation time, the user specifies default parameters that can be overridden at execution time. On 
terminals that have programmable function keys, the program downloads a pre-defined set of functions 
to the user's terminal keyboard making maneuvering through the menus easier. 

Dataflow Diagram 

Figure 2 shows a dataflow diagram of the components of the ComputerWatch tool. Each of the 
components will be discussed in following sections. 

DB Schemas 

Dynamic Set of 
Intrusion-Detection 

Rules 

Formatter/Filter Loader 

Audit Trail 
(Raw) 

Audit Trail 
(8 Tables & 

Warnings File) 

Audit Trail 
(DBMS) 

Report 
Generator 

Built-in 
Intrusion-Detection 

Queries 

Custom 
Queries 

System Activity 
Summary Report 

(w/ suspicious 
activity highlighted) Different Views 

of User Activity 

Figure 2. Dataflow Diagram of ComputerWatch Components 

Formatter/Filter Module 

System V/MLS generates an audit trail made up of raw binary data. The ComputerWatch formatter 
converts the raw data into eight human-readable database files. As part of this conversion process, key 
fields are indexed for faster data retrieval. Analysis of audit data determined that eight tables were 
optimal for queries based on the various combinations of data items most frequently referenced together. 
The following lists the eight files and their contents: 

— the exec.tab file contains process execution information. 

— ihefork.tab file contains process fork/exit information. 

— the alias.tab file contains listing of all files that were accessed and have links or alias names. 

102 



— the ipc.tab file contains interprocess communication information (i.e., message, semaphore, and 
shared memory read/writes). 

— the syscall.tab file contains system call failure information. 

— the uli.tab file contains user level record information (i.e., logins, password changes, printer 
disabling, changes in user clearances and privileges). 

— the io.lab file contains all read/write success and failure information. 

— the other.lab file contains the remaining audit trail information not fitting the data characteristics of 
the previously mentioned files (i.e., mounts, umounts, kills, chmods, chgrps, chowns, setuids, setgids, 
links, unlinks, un-named pipes, mknode/creates, and reclassifications). 

In addition to the eight audit files, a WARNINGS file is produced containing any unrecognized record 
formats found in the audit trail. Strange records in the WARNINGS file may indicate that someone is 
tampering with the integrity of the audit records. 

The most time-consuming part of the analysis tool is the conversion of binary audit data to DBMS 
format. In terms of speed, on a AT&T 3B4000, it currently takes on the order of four minutes to format 
one megabyte of binary audit data. Fortunately formatting is a one-time event, and formatting can be 
done off-line using a cron script. 

Although the ComputerWatch tool was designed for the System V/MLS audit trail, it can easily be 
modified to operate on an audit trail from another system. ComputerWatch was written as separate, 
independent modules. By modifying a single module, the format/filter module, the tool can be made to 
handle a new format of audit trail. 

Loader Module 

A loader is provided to select and load the particular set of previously-formatted audit data to be 
analyzed. 

The SSO selects which system to view, and uses the loader to link the necessary set of audit data into a 
work directory along with the schemas which interpret and provide structure to the data. 

DBMS Module 

The ComputerWatch utility comes with a small relational data base management system (DBMS) that 
runs under the UNIX Operating System. Emphasis in building the DBMS was placed on ease of use, 
and making it simple to understand and maintain. The query language under the DBMS is SQL-like. 
The types of query operations provided include: 

— join - joining of multiple tables along a common field or set of fields. 

— project - selecting particular fields or columns of a table. 

— select - selecting particular rows of data from a table. 

— index - indexing on particular fields for faster data retrieval time. 

— asort - sorting in descending/ascending order by field. 

— dist - calculating totals, averages, and maximum and minimum values of fields. 

— print - printing out resultant tables. 

While there is no true project command, the select command performs both selection and projection. A 
simple query may be answered by executing one of the DBMS commands. However, there is frequently 
a need for queries that require a sequence of these commands. The shell language provides the means to 
build complicated transactions from simple DBMS commands. These complicated transactions can be 
built by: 
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— having commands execute singly in sequence with output stored in an intermediate file to serve as 
input to the next command. 

— using a shell procedure consisting of a sequence of DBMS commands which will execute as if a 
single command had been given. 

The DBMS code size was kept to a minimum to be able to place a level of trust in the code. The 
ComputerWatch DBMS only includes the database operations that should be used on an audit trail. It 
does NOT contain data field modification routines because they are not necessary and could be used to 
compromise the audit trail data. 

The DBMS operates on flat data files that get their structure from schemas. The advantage of flat files is 
their interpretation can easily be changed by modifying the DBMS schemas. Also, this allows the DBMS 
to operate on files from other machines or ones generated by a UNIX System editor. 

System Activity Summary Report 

The purpose of the System Activity Summary Report is to provide a summary of the security-relevant 
activity happening on the system (i.e., activity that causes a user to gain or modify his/her access 
privileges or activity that causes the privileges associated with an object to change). It can indicate what 
types of system events need a closer look on the SSO's host machine(s). 

The System Activity Summary Report operates in two modes - detection mode on or off. Running with 
detection mode on causes a set of intrusion-detection rules to highlight areas of concern in the report and 
to send explanatory messages to an analysis file. Running with detection mode off allows the SSO to 
perform his/her own analysis on the audit data. 

Figure 3 is an example of a summary report (Note: The report format can be modified to meet site- 
dependent needs). 
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ACTIVITY SUMMARY REPORT 

DATE: Thu  - August  31,   1989        TIME: 09:24 AVI     SYSTEM: Mars 

Log ins: Successful 

5 

Fa iled 

7 

% Failed 

58 

5 Known User(s) 

2 Unknown User(s) 

Processes: # spawned 

258 

# exi ted 

248 

File Accesses: Successful 

1203 

971 Read(s) 

232 Write(s) 

Fa iled 

27 

2 Read(s) 

25 Wriie(s) 

% Fa i1ed 

2 

TCB Accesses: Successful 

1165 

Fai led 

27 

%  Failed 
2 

Superuser Activity: SU's Failed 

1 

SU's Successful  Setuid Execs 

5 220 

2 Root 
3 Non-Root 

181  uid=Root 
39 uidoRoot 

User Reclass. Activity: # of at tempt s 

2 

1 Failed 

1 Successful 

# at sys tern 

1 

File Reclass. Activity: # of at tempt s 

0 

0 Failed 

0 Successful 

# at sys torn 

0 

New Obj ects : # created 
37 

# at sys tern 

34 

Chmod: # setuids 
0 

# at sys tern 

0 

Lps: # outputs 
0 

# class I fit-ti 

0 

Mount s: # of mount s 

0 

Figure 3. Sample ComputerWatch Summary Report 

The following shows the detection messages that would be output if the report program was executed 
with detection mode on: 

(58%) Too HIGH - Percentage of failed logins 

(28%) Too HIGH - Percentage of unknown users 

attempting access 

(10) Too HIGH - Number of Non-exiting processes 

(50%) Too HIGH - Percentage of failed newprivs 
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*** False HIGH - Number of failed newprivs 
(0)   Too LOW - Number of successful chprivs 

The SSO can add, delete, or modify any of the textual field descriptions in the report. The user can also 
delete or move around the data item fields. Adding new data field items is a planned future 
enhancement. 

There are three basic levels of detection statistics (system, group, user). Statistical information for each 
event system-wide is provided by the previously discussed summary report. Statistical information for 
each event based on users is provided by the detection queries which are discussed in the next section. 
Statistical information for each event based on user groups will be a future enhancement. 

There is some controversy over whether viewing statistics at a system level can detect intrusions. For 
some systems, the values may be too erratic to derive much from them in terms of detection. We have 
found it to be useful in showing what areas do not require attention rather than what areas do. For 
example, since little or no file declassification is evident, declassification obviously does not need more 
careful study. The ComputerWatch tool can maintain a different copy of the summary report for 
each machine being analyzed and it has been found that in some cases, the typical activity of a machine 
forms a recognizable pattern. 

Queries Module 

The detection queries provided are designed to assist an SSO in detecting "simple" system security 
breaches involving intrusion, disclosure, and integrity subversion. The queries were designed to display 
similar security-relevant system activity as that shown in the summary report, but at a user-level. 

There are two types of detection queries provided by the tool: 

— Queries that output the uid of users and the number of times they caused the occurrence of a 
security-relevant event (i.e., uid eventcount); 

— Queries that output detailed information about a particular user and security-relevant event (i.e., 
Process ID, terminal, date, time, User ID, Group ID, event, event-objects); 

The detection queries provided by the product package are as follows: 

1. Failed LOGINS - For all users or each login ID. 

2. Failed SUS - For all users or each login ID. 

3. Failed NEWPRIVS - For all users or each login ID. 

4. Failed CHPRIVS - For all users or each login ID. 

5. Failed FILE ACCESSES - For all users or each login ID. 

6. Successful LOGINS - For all users or each login ID. 

7. Successful SUS - For all users or each login ID. 

8. Successful NEWPRIVS - For all users or each login ID. 

9. Successful CHPRIVS - For all users or each login ID. 

10. EUID=ROOT - For all users or each login ID. 

11. USER Session Query - Display entire user session. 

12. WHO modified a GIVEN FILE - For any individual file. 

13. FILE ALIASES - For any individual file. 

The ComputerWatch Tool provides the user with the capability to design his/her own queries for 
intrusion-detection.   An SQL-based query language is provided for this purpose. 
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User-defined queries can be targeted to the standard tables as well as to temporary tables created by 
custom queries. The following sample query gives information about system users who have executed 
any given system command. Note that the command and a threshold value are passed as shell variables 
to the query making it very flexible: 

select uid from exec.tab into sl.tmp where file = "$]" 
dist count by uid in sl.tmp into sl.tmp 
select aid from sl.tmp into s3.tmp where count gt "$2" 
asort -r count in s3.tmp into syscom.tmp 
print syscom.q 

For example, by filling in a menu form it is possible to run this query with the arguments query 
/bin/who 3 to see which users have executed the "who" command more than 3 times. Similarly, 
filling in query /bin/ps 0 displays users that have executed the "ps" command. Both types of 
queries are important in detecting intruders; intruders often will check to see if anyone else is on the 
machine they have gained access to and logoff if someone else is logged on. Intruders also frequently 
check to see what their activity looks like to other users on the system by running the "ps" command. It 
is also used to check that they have left no processes running that could indicate that they ever occupied 
the system. 

Rules Module 

The SSO has the ability to do his/her own analysis of the System Activity Summary Report or to have 
the ComputerWatch tool provide him with an analysis. A set of user-modifiable and user-tunable 
detection rules are provided with the tool that highlight areas of the System Activity Summary Report 
that can be of concern from a security perspective. 

Rules fire (or execute) when a given equation is satisfied and the rules in their predecessor list have 
fired. The firing of detection rules causes a value in the Summary Report to be highlighted in a 
particular color and/or generates an analysis message. 

The following lists the fields that make up a rule: 

1. rule id - a unique number used to identify a rule. 
2. active? - an on- or off-bit indicating whether the rule is capable of being fired.  The user can use 

it to temporarily turn off a rule. 
3. rule type - indicates the type of equation that should be satisfied in order for the rule to fire. 
4. screen box id - indicates a box to highlight in the summary report if the rule fires. 
5. threshold - a threshold value used in the equation to be satisfied by the rule. 
6. predecessor list - a list of rules that must fire before the current rule fires. 
7. message - message to be output if the rule fires. 
8. equation values - indicates the statistical value fields in the summary report to be used in the 

equation. 

There are 5 rule types which operate on the specified value(s). The equations associated with the rule 
types are as follows: 

1. value > threshold. 
2. value < threshold. 
3. ((valuel / (valuel + value2)) * 100) >= threshold 
4. valuel - value2 >= threshold 
5. Always true. 

The rules are contained in a separate data file and executed such that: 

— Rules that depend on other rules must have their predecessors fire and have their equation be 
satisfied before being evaluated. 
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— Error-checking prevents the creation of rules with a predecessor list that would result in a loop. 

A detection rules editor is provided to enable a user to create/modify/delete/list rules, and to better tune 
the rules provided by modifying thresholds to fit the characteristics of a particular host machine. A 
different set of rules is maintained for each machine to be analyzed. 

FUTURE SYSTEM 

There are three levels of statistical observation that will ultimately be provided by the 
ComputerWatch tool (system, user, group). Each statistical level will have its own set of detection 
rules and profile characteristics. 

Ongoing development of the tool will include the analysis of network activity as well as that of a single 
system. The System V/MLS Trusted Network Utility (TNU) already outputs audit trail records that are 
capable of being analyzed by the ComputerWatch tool. 

The next major release of the tool will feature both batch and real-time execution modes. A security 
workstation will be able to monitor and apply intrusion detection rules to audit trail data as it is being 
generated by several host systems. The security workstation can either be a separate machine connected 
to the hosts or be a virtual system residing on one of the hosts. 

CONCLUSION 

The design of a security audit trail needs to be carefully considered because it can consume large 
amounts of storage and exhaust much of the power of the CPU. 

Because audit trail data is repetitious, without a means of reducing and analyzing it, a security officer 
has little chance of finding security compromises. The ComputerWatch Audit Trail Analysis Tool 
can detect anomalies and alert a security officer in a timely fashion. 
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Abstract: 

Protocol data arc generated in many application areas by com- 
puter systems. In most cases, it is impossible to analyze the re- 
sulting huge amount of data without computer support. In this 
report, we discuss the principles of an Al-based tool for the 
anlysis of protocol data, which we have implemented. Al- 
though being general in nature, the tool will first be used for 
analyzing audit data generated by secure computer systems. 

The tool was designed with flexibility and ease-of-use in 
mind. Flexibility is provided by allowing users to define the 
incoming data format as well as the evaluation criteria. Users 
may link actions to evaluation criteria which will be executed 
if the criteria is satisfied. All user definable items are entered 
via a menu based human interface. 

1 Introduction 

There are many (computer) systems that generate some kind 
of protocol data. The mechanism producing the data is usually 
called audit or protocol mechanism, the data are called audit 
or protocol data. In most cases the amount of data produced is 
so large that it is impossible to analyze the data by hand. 

Computer systems satisfying the criteria C2 or higher of the 
Orange Book [DoD 1985] must have an audit mechanism 
which records every security relevant action. Similar require- 
ments are defined in the IT-Sicherheitskriterien [ZSI 1989], 
the German equivalent of the Orange Book. These audit me- 
chanisms are usually distributed with some kind of analysis 
tool, since the Orange Book and the NCSC guide to auditing 
[NCSC 1987] requires this. However, the functionality of 
these tools is mostly very restricted. They support only the da- 
ta analysis on a record-by-record basis. 

Related Work 
More advanced tools are described by T. Lunt and D. Denning 
[Denning 1987], [IDES 1988] and by Liepins [Liepins 1989]. 

There statistical analysis is used to detect anomalous user be- 
haviour, working on the premise that anybody abusing a sys- 
tem will show abnormal user behaviour. An survey of existing 
analysis tools is given in [Lunt 1988]. 

Pupose of the Analysis Tool 
We describe a Protocol Data Analysis Tool (PDAT) that uses 
methods from artificial intelligence to analyze protocol data 
very thoroughly. The analysis tool is designed such that it can 
be applied for almost every system generating protocol data. 
The are only few requirements that the audit data have to ful- 
fil. 

Since secure computer systems from different manufacturers 
generate audit data with very different formats, a major aspect 
while designing the PDAT was its configurability. Thus a very 
flexible tool was designed. PDAT is in fact so flexible and 
powerful that it can be used for analyzing not only audit data 
but almost any kind of protocol data. Protocol data are gener- 
ated during the auditing of secure computer systems, test anal- 
ysis, diagnosis, optimization, validation and operational con- 
trol. 

Implementation details have been left out of this report in fa- 
vour of discussing requirements and showing how they are 
fulfilled by the PDAT. 

Terminolgv 
Let us now clarify some terminology. There will be some kind 
of setup that is monitored. This setup is called "system", the 
monitoring mechnism is called "audit mechanism", the infor- 
mation generated is called "audit data". Something or some- 
body acting in the system will be called cither "user" or "pro- 
cess". 

The program described in this report doing the analysis will be 
called PDAT. The person analyzing the protocol data using 
the analysis tool will be called the "operator" (of the analysis 
tool). 

The terminology in this report is taken from the analysis of 
audit data generated by secure computer systems. The reader 
should always keep in mind that this is only an example and 
that the analysis tool is applicable in much more general cases. 

Overview 
In section 2 we describe the architecture of the PDAT. Section 
3 and 4 describe the configurability and human interface. Scc- 
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tion 5 describes the different types of evaluation criteria. Reac- 
tions the PDAT can take and the different work modi are de- 
scribed in section 6. Sections 7 and 8 provide a summary and 
present an outlook into possibilities which will be explored in 
the future. 

2 Architecture 

The following picture shows the data flow in the PDAT. Audit 
data are transformed into the internal format. They are then an- 
alyzed by applying criteria which have been defined and 
stored in the data base. Satisfaction of any criterion leeds to 
operator definable actions, 

audit data -•(niter)-* 

output 
data 

,  ^~7~^ 
inormed I analysis of ] 

audit data       ^1 audit data    I 

*~~f~~^        Sa 
( actions ) 

evaluation V _ / 
criteria 

[criteria I 
I editor  J 

Format of the Audit Records 
There are only very few assumptions made about the format of 
the audit data. It is assumed that the data come as a sequence 
of records each one describing a relevant event for the system. 

The audit records can be described best by saying that they 
must have a structure similar to variable records used in Pas- 
cal. It is not assumed that all records have the same format. 
Records can look different depending on the information 
stored in the record itself. 

The records have to be in the same logical order in which they 
are to be analyzed. Usually this means ordering according to 
the time when the event described by the record took place. 
But any other form of ordering is definable by the operator. 

By saying that each record describes an event we mean that 
each record contains the logical information about one event. 
Events are the smallest logical entities that are recognized by 
the audit mechanism. 

For the example of analyzing audit data this means that each 
record contains all logical information about a single security 
relevant event executed by the system. Thus the name of the 
action, user, time, object, success or failure have to be record- 
ed along with any other important information. A record in the 
internal data format might look like: 

[(user,bob),(action.login),.(time,,7':34),(terminal,p7), 
(success/ailed)...] 

This record describes an unsuccessful login attempt of the user 
bob at 7:34 on terminal p7. 

In a secure environment it is the operators responsibility to 
ensure that the data generated by the audit mechanism arc 
transferred securely to the analysis tool. We do not provide for 
this because almost every secure system does have 
mechanisms to ensure this. 

3 Configuration 

A major aspect of the PDAT is its configurability. This was 
already mentioned when we described the record format. But 
obviously such a tool has to provide flexibility in other aspects 
as well. 

The PDAT is able to analyze audit data from different systems 
which are set up in different environments. Thus the PDAT 
has to be able to be configured. Special demands stemming 
from the different environments have to be met. The better 
one can adjust the PDAT to ones special circumstances, the 
more useful will the analysis tool be in supporting the analysis 
of the audit data. 

When using the PDAT to analyze audit data of secure comput- 
er systems, the security administrator is thus able to reduce the 
number of false alarms (i. e. reducing the amount of incidents 
the security administrator has to check) to a minimum while 
still having a high detection rate of real system abuse. 

There is an other aspect to configurability. Obviously applying 
the PDAT will use resources. Manpower will be needed to 
check the deteced abuse of the system. Computing resources - 
i. e. CPU time, memory, disk space etc. - will be needed to run 
the PDAT. When considering secure computer systems, this 
means loss of preformance of the system when the PDAT is 
running. 

Thus configurability empowers the operator to adjust the thor- 
oughness of the analysis. The more thorough the analysis, the 
more resources are needed. The system administrator can do a 
risk assessment before configuring the tool. When configuring 
the tool he can measure the resources needed and can make a 
cost versus effectiveness analysis. He can thus tune the perfor- 
mance of the tool to the requirements. 

In an open research environment one may just want to detect 
outside break-in attempts. This will be possible with the use of 
few resources. 

In a highly secure system, on the other hand, containing sensi- 
tive data one may be more interested in the internal abuse of 
the system. Banking systems for example suffer most losses 
by legitimate employees abusing their rights. It may even be 
possible that in such system external break-in attempts are 
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ruled out by organisatorial procedures or other control me- 
chanisms like smart cards etc. . Thus making it unnecessary to 
look for outside break-in attempts. But one may want a very 
thourough analysis of the internal threats. The security admin- 
istrator may in this case decide to spend a considerable 
amount of the resources on the analysis to detect abuse and 
prevent losses of capital or to ensure the integrity of the infor- 
mation on the system. 

Configurability is supported by the menu-guided interface of 
the PDAT which is described in the following section. 

4 Human Interface 

All logical constructions described in section 5 are operator- 
definable. This can be best explained by considering the 
following example. 

Assume you want to search for the occurence of certain 
events. This means that you have to search the data for records 
that confirm to a certain specification. Then the analysis tool 
does two things: 

First it provides a menu-guided interface for describing 
requirements for the records that are to be selected. These 
requirements are thus completely operator-definable. Each 
description of requirements is stored under an operator-given 
name by the analysis tool. There are directories and paths 
under which named criteria can be stored like in many ordi- 
nary hierachical file systems. 

The second step is applying criteria which have been defined 
beforehand. Here the operator has to tell the analysis tool 
which list of previously defined criteria is to be checked for 
occurrences against the actual audit data. 

Defining new criteria in a system for a special application will 
be a major part of the work. It is planned to include sample 
configurations for some of the more common applications to 
facilitate the configuring. 

Obviously configuration is crucial for the success of the 
analysis tool. But it is not sufficient to offer the possibility of 
configuring the system. One has to make configuring as obvi- 
ous and intelligible as possible. Thus the human interface is of 
major importance. Special care has been taken to make these 
menus self-explicable and easy to understand. However, for 
each menu there is a help facility describing the workings of 
the particular menu. 

5 Types of Evaluation Criteria 

In this section we will describe the different types of evalua- 
tion criteria offered by PDAT. We will start by describing the 
simplest evaluation mechanisms which can be characterized as 

recordwise selection. 

5.1 Selecting Records Satisfying Certain Criteria 

The basic selection mechanism is record based, but goes far 
beyond the capabilities of a UNIX grep over a file pipe. 

First the user interface will be much more comfortable. The 
tool allows the logical description of fields in the record. The 
contents of the fields can then be described by metacharacters. 
To select all unsuccessful login attempts one would specify a 
selection criterion as follows: 

Select all records where the action field contains login and 
the sucess field contains failed. 
There will be a menu where the operator just has to fill in the 
contents of the fields. 

From now on such a description will be called a "selection 
criterion". 

Next, one will be able to combine selection criteria using 
normal logical operators. Thus new selection criteria can be 
built up in easy steps from simple selection criteria, making it 
easier to generate exactly the right selection criteria. 

Defining the right selection criterion is very important since 
selection criteria form the basis of all of the following analysis 
methods. 

5.2 Dynamic Table and Static Data Base 

The analysis tool relies on a static data base and a dynamic 
table to store information about the system. The data base con- 
tains static information about the system which is rarely 
changed. It can be used to store the home directory, full user 
name, address, telephone number, normal working hours, 
times of absence for every user (e. g. holidays, or business 
trip), public holidays etc. . This data base can only be changed 
by the operator of the tool himself. 

Dynamic Table 
The dynamic table, as indicated by the name, is dynamically 
updated by the tool depending on the contents of the analyzed 
records. Any tool for analyzing data must be able to store 
information about the state of the system that is to be 
analyzed. This is mandatory since it is impossible to store all 
information about the state of a system at a certain point of 
time in every single record. 

Taking our example of analyzing audit data, it is likely that 
only relative paths are given for all objects referenced in a 
record. Thus the analysis tool has to maintain the current path 
for any active process. This means maintaining some kind of 
internal table which contains every active process and its 
corresponding current path. 
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We will give a simple example for an application using the 
dynamic table. Assume the operator wants to know whenever 
somebody accesses a file /bin/admin/secure/secret. The selec- 
tion criterion would then have to be defined using the dynamic 
table as follows: 

Look up the current path of the process accessing a file, 
compute the absolut name of the file using this current path 
and the relative path found in the record. The selection cri- 
terion becoming satisfied when the resulting name is Ibinlad- 
minl secure! secret. 

Step 3: The first user writes into the same file 
Step 4: The second user reads from the file. 

This sequence of actions may indicate an attempted illegal 
communication. 

The situation is made more difficult by the requirement that 
arbitrary many records can lie between the different steps of 
the behavioural pattern. The importance of this requirement 
can be seen when considering our example of the analysis of 
audit data of a multi-user environment. 

A simple dynamic table storing only the relative paths of all 
processes might not be enough. Other things like currently 
opened files or other objects, access rights, etc. may have to 
be stored. 

The information needed to be kept in the dynamic table 
depends on the audited system. It has thus to be configured by 
the operator. He can define which information is kept in the 
dynamic table by the PDAT. 

Note that it is not suffcient to define what is to be kept in the 
dynamic table. One also has to define rules how to update the 
dynamic table. This means looking for records which contain 
information that will change the contents of the dynamic table. 

For our simple example, in which only the current path is 
maintained, this would mean selecting all records that contain 
the action change_directory. The information of each of these 
records then has to be used to update the dynamic table. 

Definition and update rules are stored by the PDAT. The oper- 
ator can define different dynamic tables and can specify which 
one to use in the actual analysis. 

5.3 Searching for Behavioural Patterns 

In many cases it is not sufficient to be able to select single 
records. One may wish to look through the data for (a single 
occurence) of a pattern consisting of several records, i. e. one 
is looking for a sequence of records describing the pattern. 

In a bank system for example one may look for the following 
pattern: 

Step 1: Somebody transfers a large amount of money inter- 
nally to his account. 

Step 2: A few days later the money is transferred back. 
In this situation there will be no money missing in the bank 
accounts, but somebody has illegally collected quite a lot of 
interest. 

A more complicated example in a system containing secure 
information is the following: 

Step 1: One user opens a file 
Step 2: A second user opens the same file 

A point worth keeping in mind is that several instances of the 
same behaviour criterion can be active at the same time. 
Consider the case where one record for userl fits the first step 
in a behaviour and the next record, a record for user2, fits the 
first step as well. Then both records could be the beginning of 
a behavioural pattern in which the operator is interested. 

Solution 
After having discussed the problem we want to describe the 
solution, which will take into consideration all of the points 
above. Behaviour criteria are described as a succession of 
arbitrarily many steps. Each step is defined as a selection 
criterion in the simplest case but may again be a behaviour. 
Once the first step of the behaviour is satisfied, all relevant 
information about this is stored in the internal data base. 
Again it is up to the operator to specify which information is 
relevant. 

Whenever there is an entry in the data base saying that the 
first step of the behavioural pattern has been found the 
analysis tool is looking for records satisfying step 2. 

It is crucial that the analysis tool still searches for records 
satisfying stepl, because there might be another sequence of 
records satisfying the behaviour criterion, running 
concurrently with the first one. Thus each record is checked 
against all behaviours that are currently in the list of criteria 
applied by the operator. 

When describing behaviours that run concurrently it is 
necessary to include variables in the definition of behaviour 
criteria. Thus it must be possible to define a variable called 
Ul, that is to contain the value of the field containing the user 
name in the record satisfying the first step of the behaviour. 

The effect of this can be demonstrated in our example. 
Imagine we find a record satifying stepl for userl. We then 
have to define a variable containing the name of the file. Then 
we look for a record satisfying step2, where we have to check 
that the filename is identical to the contents of the variable 
from the first step, but where the user name is different. 

Defining the behaviour criterion one can thus say: Look for a 
record satisfying step2 where the contents of the field object is 
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identical with the contents of the variable objectl defined in 
the first step, and where the contents of the field user is not 
identical to the variable userl. This allows us to select records 
describing a behaviour, where all records describe actions on 
the same file. 

Complex Case 
Of course this is only a special and simple case. More 
complex cases can be defined by using logical operators on 
the variables. Variables can thus be set depending on the 
information in the records. Records can then be selected 
depending on the contents of the variables defined beforehand. 
It is not only possible to test for identity, but it is also possible 
to test the contents using metacharacters. 

Again care has been taken that arbitrarily many of these 
behaviours can be checked at the same time. These can be 
many copies of the same behaviour or copies of different 
behaviours containing the same selection criteria in different 
steps. The internal storage in the data base enables unique 
identification of behaviours and variables. Each behaviour 
criterion for which the first record is found, is automatically 
given a new set of variables. 

The behaviour criteria are created and then stored under an 
operator defined name in the data base, as we already 
described for the case of selection criteria. Again a menu- 
guided interface greatly eases the task of defining behaviour 
criteria for the operator. 

In genera] it is possible to define behaviour criteria whose 
steps can either be selection criteria or behaviour criteria that 
have been defined beforehand. Moreover, any step can be 
defined by a logical conjunction or disjunction of such 
previously defined criteria. 

Obviously it is also possible to select information about the 
dynamic table and static data base for selecting records which 
satisfy the requirements for one step. 

Stop Criteria 
There is a problem of size here. The number of started criteria 
can grow quickly. Therefore it is required to define so called 
"Stop Criteria" for each behaviour. Essentially these criteria 
are used for describing in which cases a started behaviour can 
no longer become fulfilled. 

In the above case of the bank, a stop criteria could be a quater- 
ly revision of all accounts. If nothing suspicious has been 
found in this revision, all behaviours that started before this 
revision may be stopped. 

In the second case of illegal communication, a stop criterion 
would be if userl does a logout before user2 accesses the file 
in question. 

5.4 Statistical Analysis 

Statistical methods play a major part in analyzing audit data. 
The analysis tool can be used for statistical analysis which is 
based on a sequential work-through of the audit records. The 
statistical method used are operator definable. 

It is possible to analyze the number of occurences of selection 
or behaviour criteria as well as analyzing the contents of 
records satisfying certain criteria. 

To see the usefulness of statistical analysis consider the fol- 
lowing example. Measure the percentage of unsuccessful 
login attempts among all login attempts. This is relevant when 
searching for break-in attempts. Usually the number of 
unsuccessful logins will be below 10%, mostly resulting from 
people mistyping their password. If the percentage suddenly 
increases to over 99% a break-in attempt is almost certain. 

In a second example one might be interested in the login times 
of the users. One would have to define a selection criterion 
selecting all successful login attempts. The statistical method 
would be to find the average login time and the variance of it. 
A great discrepancy between the actual login lime and com- 
puted average login time may indicate that an illegal user has 
logged in under a legal user name. 

Statistical methods can also be used to discover the use of 
covert channels by for example detecting high rates of file 
creation and deletion. 

5.5 Learning Normal System Behaviour 

Based on the statistical analysis of audit data, "normal behavi- 
our" can be derived from the audit data. This can be defined 
on a per user basis as well as for the entire system. 

Thus one can derive the average working hours of a user. The 
PDAT can then detect for example that a certain user almost 
always works between 7.00 a.m. and 5.00 p.m. . A login for 
this user at 5.00 a. m. would be regard as not normal by the 
PDAT. 

To use this method the operator has to define a selection, 
behaviour or statistical criterion which is to be used to deter- 
mine the normal user or system behaviour. Thus the PDAT 
can record the average number of processes during the differ- 
ent times of the day. This can then be averaged over a longer 
period of time. The average would be weighted so that the 
more recent operating days would be of greater importance. 

Unusual activity like many more active processes at a certain 
time might be an indication that something unusual, like a 
worm invasion, is going on. By using weighted averages over 
the past, the system will continually update its knowledge 
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about normal behaviour. For any such criterion one has to 
define the difference to the normal behaviour that is 
considered acceptable. Anything above the acceptable limit 
will be reported. 

Simple statistical analysis as described in the previous section 
is not sufficient to perform this task. Additional methods like 
trend analysis and methods from artificial intelligence are 
used to be aware of changes in the behaviour which are 
interesting for the operator. 

5.6 Time Considerations 

Obviously time is precious when analyzing large amounts of 
audit data. The operator therfore is given the choice to define 
a set of evaluation criteria. When applying such a set of crite- 
ria obviously all criteria are checked at the same time. 

An advantage of these sets is, that one can "compile" them to 
get an optimal search order for the criteria. Finding the right 
search order is a problem wich grows exponentially with the 
number of criteria in the set. Therefore it is impossible to fig- 
ure out the exact optimal solution. One can however use tech- 
niques from artificial intelligence to fond an almost optimal 
solution, which fulfills the speed requirements. 

6 Actions and Work Modi 

If the PDAT finds any criterion fulfilled it executes an opera- 
tion called action. This action can be set differently for every 
applied criterion. There are predefined operations like "write 
on the console", "write into a file" etc.. An action can also be 
to start any program outside the PDAT, shuting down termi- 
nals etc.. 

Actions are thus operator-defineable and stored using names 
just like the evaluation criteria. When applying an evaluation 
criterion the operator has to define which action is to be taken 
when this criterion is found to be true. 

In principle the action can consist of executing any utility or 
defined subroutine that has been bound to the analysis tool or 
calling any program outside the analysis tool. 

The tool can be used as an offline analysis tool as well as an 
online analysis tool. Online meaning, that the audit data are 
written into a buffer from which the PDAT reads. Offline 
means the audit data have already been written into a file and 
are now read from this file. 

It is also possible to analyze several different incoming data 
streams at the same time. This is needed when the operator is 
responsible for several machines in a network. He is then able 
to anlyze the audit data from these different machines at the 
same time. 

7 State of the implementaion 

A prototyp with reduced functionality has been implemented 
using a Prolog system. This prototyp is used to demonstrate 
that the ideas above are realisable. 

The menu interface has been implemented on an X-Window 
based workstation. It is beeing tested by a separate group to 
assure consistancy and ease-of-use. 

At the moment this prototype is tested with data from a secure 
UNIX operating system. 

8 Summary 

This report describes an audit anlysis tool that is being devel- 
oped by the Central Research Laboratories of the Siemens 
AC, West-Germany. A prototype implementation has been 
finished. The prototype is used to demonstrate the capabilities 
and functionality and for performance measurements. 

This report is part of the work of the ESPRIT-project Com- 
mandos. 
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ABSTRACT 

Secure systems and networks generate vast amounts of audit information that may reveal 
unusual situations or patterns of use. While the required analysis is usually performed only 
after other evidence is uncovered, a strong need exists for real-time analysis. The need is 
driven by the reality of the situation: the "trusted" user is often the weak link in otherwise 
trusted systems and networks. Such a situation is referred to as the "insider threat problem." 
This paper describes a prototype real-time network and host security monitor that supports 
automated as well as interactive audit trail analysis. Audit records, representing tokens of 
actual user (or host) behavior, are examined in context of user profiles, which represent 
expected behavior. The essential problem in the analysis of audit records is the timely 
correlation and fusion of disjoint details into an assessment of the current security status of 
users and hosts on a network. In our system, audit records, or indications of actual events, are 
correlated with known indicators organized in hierarchies of concern, or security status. As 
indications are matched with indicators, a more detailed examination at the next level of 
indicator granularity is triggered. Thus, as recognized indicators and/or sets of indicators are 
matched, concern levels increase and the system analyzes increasingly detailed classes of audit 
events for the user or host in question. Analysis capabilities include statistical as well as expert 
systems components. These cooperate in automated examination of the various "concern 
levels" of data analysis. Cooperation and cross-tasking of statistical and rule-based 
components is believed to be unique in such systems. The system combines a sophisticated, 
graphical user interface with a series of analytical tools to provide unprecedented support for 
monitoring and auditing user and host activity in secure networks. 

1.0     Introduction 

This paper describes the Information Security Officer's Assistant (ISOA), a functioning 
UNDC-based prototype for centralized real-time network security monitoring [1,2]. Section 1 
is a brief overview of the field of intrusion/anomaly detection and discusses some of the 
functional requirements for such systems. A high-level technical description of the architecture 
of the ISOA implementation is presented in Section 2. Section 3 concludes with a description 
of planned extensions to the ISOA. 

The field of intrusion/anomaly detection in secure systems and networks is relatively 
young, with few related projects reported to date [3,4,5,6,7,8,9]. In systems that process 
sensitive information, the technical means for implementing security include access controls, 
sensitivity labeling, and related measures. Once a user is granted access, such "secure" 
systems only enforce the security policies that they implement. Clearly, technical measures for 
affecting system protection are not effective where die trusted user is the weak link in otherwise 
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trusted networks [10]. Individuals with normal privileges can do considerable damage as well 
as misuse their legitimate privileges. 

Audit records are often used as a means for warning and for maintaining a record of 
security relevant events. Typically, such audit information is examined by a systems 
administrator some time after the events have transpired. Unless the audit record indicates an 
immediately recognizable security violation, most security relevant situations are difficult to 
discern. This is due to the overall volume of audit information that is generated. As audit 
collection granularity increases, the analysis problem becomes correspondingly difficult. At 
this point the collection, storage, and analysis of audit data incurs the application of significant 
resources.   Problems associated with low level collection and analysis of audit events include: 

• Audit data volume — at the finest levels of granularity, audit data for a single user can 
exceed 10MB of data per day. Common methods for reducing the required storage are 
compression and selective collection. 

• Timely analysis — most audit trails receive at best a cursory examination, often only 
long after the events have transpired. 

• Identifying "Suspicious" behavior — the difficulty in formulating useful definitions of 
"suspicious behavior" is especially apparent when one examines events that are within 
the domain of permitted user actions, but suspect when placed in context of the normal 
behavior for users in the same role. 

In order to facilitate the identification of suspicious or unusual behavior, audit events 
should include more than the date and time of user sessions, or the occasional message 
regarding failed access to data. Although examining date and time of login can often identify 
masqueraders [3,7], numerous other measures can identify unusual usage of resources by 
legitimate users. The identification of abnormal usage and the correlation of diverse events 
buried in the audit trail presents a nearly impossible situation without the use of automated 
analysis. 

In monitoring events that do not constitute direct violations, it is necessary to have a means 
for assessing observed behavior. One way that this can be achieved is to specify expected 
behavior on a per user and host basis. Expected behavior can be represented via profiles that 
specify thresholds and associated reliability factors for discrete events. Actual observed events 
then can be compared to expected measures, and deviations can be identified via statistical 
checks of expected versus actual behavior [11]. However, statistical measures are incapable of 
identifying situations that can not be identified by monitoring thresholds. In addition, 
combining individual statistical measures seldom results in a readily comprehended meta-view 
of the overall security status. It therefore becomes necessary to effect second-order analysis 
oriented toward correlating and resolving the meaning of diverse events. The application of 
expert systems technology lends itself to this, since a rule-base can specify the possible 
relations and implied meaning of diverse events. 

In Artificial Intelligence (AI) terminology, a rule-base consists of numerous individual 
reasoning rules that are encoded in an if-then or condition-action form. Such rules then serve 
as the criteria for forming conclusions as indicators. The rule-based approach lends itself to the 
posing of sophisticated queries based on known scenarios or recognized patterns of behavior. 
Rule-based analysis can be effectively used in both evaluating the meaning of a group of 
events, and in prospecting for unusual behavior. Where statistical measures can quantify 
behavior, rule-based analysis can answer conditional questions based on sets of events. By 
combining statistical and rule-based analysis, the results of statistical measures of activity can 
be examined to achieve a more encompassing view. 
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The monitoring and analysis of user behavior in system usage is fundamentally different 
and outside the domain of technical security measures (access controls, security labels, etc.). 
Such analysis and real-time monitoring can serve as a powerful adjunct to security 
mechanisms. 

1.1      Functional Requirements 

The effective monitoring and analysis of behavior requires both a method of data collection 
and a strategy for data analysis. The system design, or technical approach to addressing these 
issues, is dependent on the functional requirements for the gathering and analysis of the audit 
data. The number of audit records processed, or examined, varies with the level of current 
activity, with the current collection granularity, and with the current security concern level. At 
the finest level of granularity, the volume of records becomes overwhelming. It is thus 
necessary to employ selective collection in order to limit the collection of audit events to a 
reasonable, manageable level. However, selective collection must be managed and controlled 
to allow the collection of information at the finest level of granularity, when such information is 
necessary for critical analysis. Selective collection would be specified best on a per user and 
host basis. 

At increasing levels of granularity, additional kinds of audit events must be captured and 
sent to the monitoring system. These kinds of events can be organized in various classes with 
sub-types identified within the classes. One method of controlling the level of collection 
granularity can be affected by specifying that collection should include, or exclude, an indicated 
class or type of audit event. 

Once audit records have entered the monitoring system, it is necessary to have a strategy 
for deriving meaning from the vast number of related and unrelated events that arrive over time. 
Such a strategy for analysis should be flexible, such that the analysis is responsive to the 
current view of the overall security situation. This entails maintaining an abstract view of the 
current security relevant actions for each monitored user and host. In view of the volume of 
data managed and the resulting analytical limits, the strategy should incorporate a means for 
directing analysis to different levels, depending on the current concern levels and volume of 
data received. Analysis should be performed in a variety of dimensions. At the lowest level, it 
is necessary to examine the incidence of outright violations. At higher levels, one can perform 
various statistical analysis and various rule-based analyses. 

Further, the processing involved in statistical and rule-based analysis could be optimized if 
they are applied in concert. This is in line with the desire to have a capability for the resolution 
of individual statistical measures. Concerted statistical and rule-based analysis could be 
realized under the direction of an intelligent process that would need to have an understanding 
of the meaning of distinct audit events as well as of their possible relations. Optimization 
would most likely be based upon a framework for analysis that depends on both an 
organization inherent in the definitions of the audit event classes and sub-types, and a hierarchy 
of security concern levels. Various schemes for defining hierarchies of security concern levels 
are possible. 

Ul System Design 

The ISOA system design is based on the previous discussion of the functional 
requirements, and was implemented on a UNIX-based workstation. Numerous processes 
interact in a complex manner built on interprocess communication (IPC) and sockets. A high- 
level description of the underlying processing model and some of the system features follows. 
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As implemented in the ISOA audit records represent tokens of actual behavior that are 
analyzed and compared with expected behavior as represented by user and host profiles. Each 
monitored host produces audit records of security relevant events. These audit records are sent 
to the ISOA for central collection and analysis (Figure 1). The current security status of the 
network is displayed in a graphical user interface that affords the Information Security Officer 
(ISO) the capabilities for further interactive analysis as well as for direct control over any host 
and user session. 

Audit  Information 
• System Status Info 
• Security-relevant audit records 

(User/process/host activities) 

Audit Information 

ISOA Security Control 

Monitored   Network 

9 999 
Emmmmmmmmmmmmmmtm mmmmmmmmt 

gnnn 
Users 

ISOA 
• Monitor security status of network 
• Identify anomalous behavior 

(Users/processes/hosts) 
• Interactive analysis of activity 
• Security control of network  

Directed Control of Monitored Hosts: 
• Force Biometric re-verification 
• Force user logout 
• Lock/unlock user account 
• Shutdown host 
• Terminate processes 

Figure 1. Central Monitoring and Control 

2.1     Overview of Processing Model 

In this system ,we have adopted the general Indications and Warning (I&W) model to track 
events at the level of the individual user and host (Figure 2). The term indicator is used to refer 
to abstract events that are identified in advance of monitoring. In contrast, indications represent 
actual occurrences of the corresponding events. In our model, we have grouped both 
individual indicators as well as sets of related indicators at the user and host levels. These are 
organized such that as events occur, corresponding indications are triggered or set to the 
appropriate level of concern. 

Dissemination 
Situation Display/Alerts 
• Graphic representation. 
• Audit Traffic display 
• Warning Notices 

Direction 
ISO directed action 
• Collection granularity    
• Reaction: intervention 
• Interactive analysis 

Collection 
Monitoring components 
• Audit record generation 
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• Host performance data 
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Indications and Threat Assessment 
• Indicator Analysis 
• Situation Assessment 
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• Resolution 

Processing 
Information from data 
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Increase in information 
scope  and complexity 

Figure 2. I&W Based Monitoring and Anomaly Detection 
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One of the difficulties we encountered is that there is seldom a direct match of indicators 
with real-world events. Perhaps the most obvious class of examples is the set of thresholds 
that the system maintains. The system receives audit records for a particular event (for instance 
the UNIX "access" system call with mode set to "read") and maintains a count for the number 
of these events during a given session. At various points in time, session statistics are 
calculated against these events in light of the expected measures as specified in the appropriate 
profile. Since we maintain both user and host profiles, it is possible to exceed a threshold for a 
given measure for a user, a host, or both. The fact that a given threshold has been exceeded 
does not in and of itself necessarily indicate that a user is engaged in "suspicious" behavior. 
Consequently, it is important to organize these indicators to allow the modeling and 
identification of various classes of suspicious behavior. To this end, we support a number of 
distinct threat profiles for suspicious behavior (aggregator, imposter, misfeasor, etc.) and a 
separate means for identifying that overall measures of various events are at unusual levels. 

Beyond tracking user and hosts individually, two major classes of measures are defined — 
real-time and session. Real-time measures require immediate analysis and examination, while 
session measures require at minimum start-of-session and end-of-session analysis. In practice, 
session-level measures are examined more often, as driven by the need for resolution. 

In summary, the underlying processing model of the ISOA consists of a hierarchy of 
concern levels constructed from indicators. Analysis is structured around these indicators to 
build a global view of the security status for each monitored user and host. 

1A Centralized Monitoring and Analysis 

The functioning of the prototype can be seen as the interaction of the audit process 
(AUDIT), the profile checker (PROCHK), the statistical components (STATS), the expert 
system (HADES), and various other system components. Briefly, ISOA receives audit records 
from monitored nodes. The AUDIT process then converts these to a compact, canonical form 
we call a 'thread'. The term 'thread' is used since related audit records can be viewed as a 
'thread of behavior'. 

Audit events are organized according to classes of events with each class having a defined 
set of types of events. For each class and type, a set of valid statuses and associated 
completion codes exist. Classes of audit events include: 

• Log events, includes: login, logout 
• System calls 
• Data access— a subset of system calls, includes: read, write, append, delete 
• Privileged operations 
• Unusually privileged operations— operations requiring exceptional privileges 

Node control events, includes: node up, node down, reset clock, lock user account 

Each audit event class/type is identified in a common ISOA header file. Each event listed in 
this file defines: a text description of the event (used by the AUDIT process for generating 
human readable audit records), a distinct code identifying the event, and a code that controls 
processing by AUDIT. 

After converting audit records to canonical form, AUDIT appends the resulting record to 
the appropriate thread, performs a table lookup of the audit event, extracts the appropriate text 
description of the event, formats a human-readable audit record, displays this text audit record, 
and proceeds to perform additional checks on the event. These additional checks are dependent 
on the processing code associated with the audit event in the audit table. 
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As audit records are appended to a given thread, they are reviewed for outright violations 
(real-time measures or events), which are reported directly to the ISO and broadcast to other 
analytical components via a standard mechanism. When the processing code indicates that 
profile checking is required, AUDIT either performs simple profile checking directly, or if 
complex checking is required, notifies PROCHK. Subsequently, AUDIT and/or PROCHK 
inform the appropriate system components when significant events are identified. In an attempt 
to identify suspicious behavior, further examination of the audit records is performed by 
PROCHK and the analytical components. 

The broadcast mechanism consists of an extensible request queue mechanism, and is 
implemented in shared memory. A standard interface allows any ISOA processes to request 
specific functions from other ISOA processes. This forms the basis for controlling the current 
depth of analysis for individual users and hosts. As indications warrant, AUDIT, PROCHK, 
and/or HADES can request resolution of indications and inter-session profile checking. 

In order to effect concerted problem solving, current processing information is maintained 
globally, listing concern levels for various indicators. Maintaining a per user and per host view 
of the current security status allows us to define concern levels for individual users and nodes, 
and identify how individual ISOA processes view these. Naturally, these concern levels vary 
from process to process. Consequently, an overall resolution strategy is necessary. 

U Preliminary Anomaly Detection 

Preliminary anomaly detection takes place in real-time during the collection of audit data. 
Pre-determined events such as login and logout trigger the AUDIT process to notify PROCHK 
when audit records relating to these events arrive. AUDIT places "request" packets on 
PROCHK's pending request queue that contain information required to investigate the current 
indicator or event of interest. 

PROCHK will, depending on the type of event, loop though a table of profile data to 
determine if an analysis is warranted. Analysis is specified by table parameters that can be 
modified by the ISO via the PROEDT profile editor. If analysis is specified, further table 
elements are tested against current parameters to check for real-time violations, or to trigger 
indicators representing deviations from expected behavior. A failed login attempt would 
constitute a real-time violation, while a login attempt at a time outside the parameters of the 
user's profile for login times is an example of the need to trigger an indicator. In contrast, a 
data read threshold exception is an example of the kind of indicator that requires an increase in 
the current depth of analysis and/or drives the need for resolution. 

1A Secondary Anomaly Detection 

Secondary anomaly detection is invoked at the end of a user login session or when required 
for resolution. At session end, the current session statistics are checked against the appropriate 
profiles by PROCHK. Session exceptions are determined in much the same way as PROCHK 
identifies primary indicators, the difference being the statistics being compared. 

Also, while resolving primary indicator states (discussed below), HADES may need more 
information than is currently available in the form of indicator states. HADES can request 
PROCHK to perform various sub-sets of session level checking. PROCHK will subsequently 
signal HADES in the event that such checking resulted in changed indicators. In addition, the 
ISO can force PROCHK to poll session metrics periodically on a clock basis or at will. 
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U Anomaly Resolution and Control 

As stated above, HADES is notified by AUDIT, PROCHK, and other system components 
when the state of indicators changes significantly. In essence, HADES attempts to resolve the 
meaning of the current state of indicators. This is done by evaluating the appropriate subset of 
the overall rulebase. The rulebase consists of a number of individual rules that relate various 
indicator states with each other and with established threat profiles. Currently, forward 
inferencing is used in the evaluation of current security status. If ambiguous situations are 
encountered, HADES can initiate further low-level indicator analysis by signaling other 
systems components (most notably, PROCHK and STATS). 

The end result of anomaly resolution is presented to the ISO in the form of a graphical alert, 
advice, and explanation as to why HADES thinks the current security level is appropriate. The 
graphical interface (figure 3) consists of numerous other windows for monitoring audit traffic, 
directing control of the ISOA system, and for effecting direct control of monitored user 
sessions and hosts. As monitoring indicates anomalous activity on a given host, the ISO can 
obtain more in depth information by using the mouse to click on a graphical representation of 
the host. Graphical representations of monitored hosts are color coded to depict their current 
security status. 
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Figure 3. Overview of user interface 

A significant characteristic of this system is the monitoring and control of remote hosts on a 
network. Locking user accounts, killing processes, forced logouts, re-synchronizing 
monitored system's clocks, and forcing shutdown of remote monitored hosts from ISOA, are a 
few of the functions performed. 
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iJQ Future Directions and Summary 

By comparing the statistical measure of a user's past behavior with their current actions, 
significant deviations from a user's established norms are recognized as anomalous and may 
indicate misuse/espionage. Most of the existing anomaly and intrusion detection systems are 
oriented towards detection of anomalous user behavior [3,4]. While a few anomaly detection 
prototypes have addressed anomalous behavior via host monitoring, discriminating between a 
users behavior and the effects of malicious software has not been demonstrated to date. To this 
end we are currently in the midst of an R&D effort to extend the current ISOA prototype to 
include program/process monitoring capabilities. 

A process can be defined as an instance of a program in execution, which can be expected 
to exhibit a range of predictable behaviors. These behaviors are in part dependent on the 
execution environment. Analyzing software at the levels of source code, object code, and 
executable code can reveal increasingly detailed information about expected process behavior. 
Such analysis can lead to the listing of the system calls, resources, etc. invoked or accessed by 
the software. A system that "tags" software in this manner, and performs run-time capabilities 
checking could be implemented as an extension to the operating system. 

While analysis of source code will reveal overall functionality that is useful for 
understanding a piece of software, it is unlikely that any analysis short of monitoring a 
currently executing program will reveal the true range of behaviors for some software. 
Unexpected run-time situations (bugs), self modifying code, run-time libraries, and dynamic 
linking of software modules preclude the exhaustive specification of actual behaviors that will 
be exhibited by software. While this description represents the extreme case, the possibility of 
obtaining useful measures of expected behavior has yet to be demonstrated. 

We are developing a tiered model for process behavior monitoring. Figure 4 depicts this 
model as consisting of the following levels: 

• Process Capabilities — Real-time process capability checking based on an analysis of 
the process; in UNIX, this includes permitted system-calls and information about valid 
file-system resources. The goal of real-time process monitoring is to identify 
unexpected process behavior. 

• Profile Specified Behavior — Performance and usage metrics (similar to user 
profiling); this level consists of statistical and rule-based descriptions for expected 
behavior. Monitoring at this level would be "session" based, i.e., at process 
termination. 

• Life-cycle — Information about the process, including: originator(s), modification 
history, known bugs, security implications of interaction with other specific processes, 
etc. Thus, program development information would be used as an adjunct to 
monitoring active processes. 

Real-time monitoring Capabilities 

increasing 
granularity 

Process lifespan monitoring Profiled Behaviors 

Program development Life-cycle Life-Cycle Information 

Figure 4. Tiered model for process monitoring 
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Given these levels, analyzing the behavior of processes requires both collection of 
information about the program and collection of information to permit process monitoring. 
Information from any one of these levels would be useful at the other levels. Briefly, a digital 
record of observed behaviors could be invaluable during software updating/maintenance. 
While some information available from the development environment would likewise support 
real-time and session monitoring. Since the performance penalties of low-level auditing of 
processes are overwhelming, it is unlikely that the capabilities level can be reasonably 
implemented outside of the operating system kernel. 

We currently monitor users and hosts in a UNIX network environment. However, since 
we convert all audit records into a canonical form it will be relatively simple to monitor non- 
UNIX hosts by adding the equivalent daemon and audit support as required. Differences in the 
kinds of auditable events could be easily handled since profiles are currently specified on a per 
user and host basis. 

The goal for the analysis of audit records is the reduction of massive amounts of audit 
records into a form that is meaningful and readily comprehended. As presented in this paper, 
the ISOA offers a rich environment for the collection and analysis of audit traffic in networks 
that require security monitoring. By integrating direct security control of individual user 
sessions and host operations, the ISO has available the necessary tools for intervention as 
indicated by the monitoring and analysis of user and host behavior. 
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Abstract 

Current generation intrusion detection technology primarily relies on audit, trail analy- 
sis techniques to determine if an intrusion has occurred. Neural networks afford a flexible 
pattern recognition capability that can be adapted for intrusion detection purposes. A pro- 
totype anomaly detection system using self-organizing feature maps is described, and an 
architecture for a general intrusion detection system based on this prototype is discussed. 

1     Introduction 

In this paper we discuss a unique approach towards computer intrusion detection, damage 
assessment, and removal. The approach is a host-independent monitoring system which uses 
neural networks to learn and track the system-normal state, coupled with a expert system for 
in-depth intrusion analysis. The system may also make use of existing static analysis tools for 
post-incident prevention activities. There are several advantages to this approach: 

t.  Adaptive modelling of the users and the system. 

2. Ability to deal with unknown viruses or intrusions. 

3. Determination of when to use the more computationally expensive expert system. 

We begin with an analogy between biological and silocon-based infection characteristics, 
and continue with an examination of the state-of-the-art for intrusion/virus detection mecha- 
nisms. We then describe the functionality of the expert system and the neural network in our 
proposed architecture. We conclude with an outline of the ideas for future research. 
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2 An Analogy 

Computer 'viruses' are aptly named when one considers the similarities between the infec- 
tion and propagation methods1 between silicon and biological viruses. However, a biological 
organism has much better defensive mechanisms against viruses and other infections than 
computers currently have. 

A biological organism defends itself against infections and viruses by producing antibod- 
ies. Antibodies are molecules whose chemical and morphological properties enable them to 
recognize, bond to, and destroy (or at least deactivate) infectious molecules. Antibodies are 
not general in nature; rather, they are targeted to a specific infection. An organism "learns" 
a virus through exposure to that virus; thus, vaccinations are meant to introduce a controlled 
amount of a virus to the organism so that antibodies will be produced against it. The next 
time that virus appears, the existing antibodies enable the organism to quickly recognize it 
and respond. Of course, if an organism is affected by a new infection, it may not be able to 
react in time to prevent the infection from spreading and causing damage. 

We feel that certain Artificial Intelligence techniques could be effectively employed to 
mimic the biological response to viruses and infections. Specifically, an artificially intelligent 
computer could be made to monitor itself, recognize foreign invaders, and formulate the ap- 
propriate defense. Through the integration of Artificial Intelligence and Computer Security, 
we believe that a dynamic system can be built which can be trained to recognize a virus attack 
and to take the required action. 

3 Existing Systems 

Young [15] describes two types of monitors which can be used to recognize viruses and other 
intrusions: appearance monitors and behavior monitors. Appearance monitors perform a 
static analysis of computer systems to detect anomalies in source or executable files, such 
as replicated code. Behavior monitors dynamically examine the behavior of processes for 
dangerous actions, such as reading a directory or writing to an executable file, or suspicious 
activity. Both types of monitors could run as background processes, or be interleaved into the 
operating system. 

3.1     Appearance Monitors 

Appearance Monitors are generally static analysis tools. There are many proposed methods 
of examining a system for damage with an appearance monitor. There are virus killers 
which will search for and remove a specific virus. With this approach, one is always playing 
'catch-up' with the viruses; when a new virus starts making the rounds, an appropriate virus 
killer must be developed and distributed. 

'And, unfortunately, the potential for damage. 
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There are more general source and object code analysis tools which look for discrepancies 
such as increased executable image size, common or repeated code in files, and inconsistent 
coding styles. Garnett [4] proposed a selective disassembly scheme which would look at con- 
ditional statements in object code. His claim is that illicit code requires a trigger, such as 
a check for previous infection, or a check for an activation date. Thus, illicit code may be 
detected by disassembling and examining conditionals. 

Static analysis tools have several disadvantages. The analysis is computationally expensive 
since it needs to examine a major portion (if not all) of the system's files. Analysis must be 
invoked manually or by some after-the-fact trigger. Someone who knows what these tools 
look for may be able to subvert the system with a more clever virus. The advantage of such 
tools is that they can perform a very in-depth analysis of the system and that they can be 
implemented relatively quickly. 

3.2     Behavior Monitors 

Some work has been done using statistical analysis to determine if an intrusion is occurring, 
or to assist in pinpointing the source of an intrusion [5, 8]. In general, these systems identify 
a set of auditable system parameters, ingest the data for some period of time, and come up 
with a profile of the system and user 'acceptable' states. Monitors will then, either statically 
or dynamically, examine a snapshot of the system and take some action if limits have been 
exceeded. 

One example of a real-time monitor is IDES (Intrusion-Detection Expert System) from 
SRI [3]. IDES is "based on the hypothesis that any exploitation of a computer system's 
vulnerabilities entails behavior that deviates from previous patterns of use of the system; 
consequently, intrusions can be detected by observing abnormal patterns of use" [9]. IDES 
updates its profiles of user activity periodically and has a rule-based expert system to examine 
abnormalities. 

MIDAS (Multics Intrusion Detection and Alerting System) monitors user commands on 
DOCKMASTER. It uses heuristic rules to identify various types of intrusions, including Im- 
mediate Attack, User Anomalies, and System State. Again, MIDAS maintains user 
statistical profiles. MIDAS runs in real time, and is slightly oversensitive because of the 
brittleness of statistical profiling [11]. 

4     Expert Systems 

As seen in previous examples, one artificial intelligence approach to the problem of intrusion 
detection is the use of expert systems. Rule-based diagnostic systems in particular are one 
of the most successful types of expert systems. For example, the MYCIN project, (12] during 
the mid-70's developed an expert system for diagnosing and treating blood infections. The 
process of detecting and treating silicon infections is the same abductive process: generate a 
hypothesis of the infection type based on available data and knowledge, and suggest a plan 
for treatment. 
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Such a system requires knowledge from human experts on intrusion/virus detection and 
removal. For example, a human expert might recognize not only the direct effects of a virus 
(aborted processes, wiped-out hard disk), but also subtle side effects of a clever virus (oc- 
casional missing files, high CPU utilization). By exploiting this knowledge while monitoring 
the computer, an expert system monitor could respond to intrusions more quickly and accu- 
rately. Further, the rule-based form of knowledge in an expert system simplifies the process 
of modifying and extending the system to recognize new threats. 

A problem with expert systems is that they are computationally expensive. An expert 
system with a reasonably large rule base could not feasibly run as a background monitor 
without degrading system performance. The MIDAS project has installed their expert system 
on a Symbolics computer which obtains Multics process information via a download procedure. 
This approach does not degrade the main computer's performance, but it does require the 
maintenance of a separate and expensive Lisp machine. In our proposed architecture, the 
expert system would reside on the host computer and would be invoked only when necessary. 

Although rules in an expert system are easy to add, delete, and modify, the rule base also 
clearly defines the situations that the system can react to. It would be very difficult, if not 
impossible, to implement an expert system which is general enough to recognize and respond 
to any sort of virus or intrusion. Such a rule base would be infeasible, both from a development 
and execution standpoint. We believe that a neural network would provide an efficient and 
elegant front-end status monitor which is also general enough to recognize unknown viruses 
and possible malicious user behavior patterns. 

5     Artificial Neural Networks 

Neural networks are a model of computation that roughly models biological neural connections 
in the brain. This approach is radically different from the traditional sequential models because 
it is composed of many highly parallel nonlinear computational nodes. 

In an artificial neural network, information representation occurs as connection weights 
between processing elements in the network, and information processing consists of the ele- 
ments transforming their input into some output as modulated by the weights of connections 
to other units2. 

5.1     General Architecture 

Neural networks are constructed of many small computing elements and connections between 
the elements. Each node has a simple state associated with it and, depending on the neural 
network, some algorithm or heuristic for updating the state. Weights, or strengths, are associ- 
ated with the input connections of each node. This construction is patterned after biological 
neurons and synapses. It is believed that biological memory is stored in the weights between 

2Lippman's "An Introduction to Computing with Neural Nets," [7j, is an excellent introductory article on 
neural networks for those interested in learning more. 
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neurons. A pattern will trigger a memory in a biological system because the strengths among 
a set of neurons have been increased to respond to that pattern. This is the same process 
artificial neural networks use. 

Neural networks can be implemented which learn patterns over time. Generally, these 
models will use activation rules which compute a new value based on the old value as well as 
on the set of inputs. Thus, new states are functions of experience. 

Biological neural networks are constructed of neurons and synapses, with acetocholine 
controlling the connection strengths. Artificial neural networks may be simulated in software, 
or built from "simple electronic components: operational amplifiers replace the neurons, and 
wires, resistors, and capacitors replace the synaptic connections. The output voltage of the 
amplifier represents the activity of the model neuron, and currents through the wires and 
resistors represent the flow of information in the network" [14]. 

5.2     Self-Organizing Neural Networks 

The Self-Organizing Feature Maps of Kohonen belong to that class of artificial neural network 
classifier which is unsupervised during learning. (See Table 1, taken from Lippman, [7].) This 
network differs from the more familiar Perceptron and the Multi-layer Perceptron which learn 
via supervised training. 

Neural Net Classifiers For Fixed Patterns 
Binary In DUt Continuous-Valued Input 

Supervised Unsupervised Supervised Unsupervised 
Hopfield 

Net 
Hamming 

Net 
Carpenter/ 
Grossberg 
Classifier 

(ART) 

Perceptron Multi-layer 
Perceptron 

Kohonen's 
Self-Organizing 

Feature Map 

Table 1: A taxonomy of six neural networks that can be used as classifiers. 

The Self-Organizing Feature Map (SOFM) networks consist of a single layer of neurons, 
referred to interchangeably as neurons, processing units, nodes, etc. Each processing unit in 
the SOFM network is specifically matched or sensitive to a particular domain of input signals 
in a regular order. These networks represent knowledge from a particular domain in the form 
of a Feature Map that is geometrically organized. This organization is achieved during the 
training without supervision by the use of lateral feedback, thus providing a general collective 
phenomena. 
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5.3     Applications 

We have identified two potential uses for Neural Networks in an intrusion detection application. 
The first use would be to learn specific virus patterns and to take some action if that virus 
(or a similar mutation) appeared. The second use would be to adaptively model the normal 
state for users and the system, and take some action when any abnormality is noted. 

5.3.1 Specific Viruses 

Biological antibodies essentially perform pattern matching against viruses. If a reasonable 
taxonomy of viruses can be developed, an artificial neural network could be trained to recognize 
them. Neural networks are ideal for fast, parallel pattern recognition and for adaptive learning. 
The use of a neural network would allow the computer to be "vaccinated" against viruses. 
The network would be trained by introducing samples of existing viruses to the system. Their 
patterns would be learned and associated with a human-prescribed antidote in each case. The 
next time the pattern appears in the system, the neural network monitor would trigger (or 
suggest) the defense. 

A neural network could be trained to recognize a wide variety of virus patterns, from 
mail messages beginning with an "X", to sustained high CPU utilization. The advantage of 
a neural network is that if a new virus appears which the computer hasn't been vaccinated 
against, the network should still be able to recognize it as suspicious activity and notify the 
operator. At the same time, it would be able to learn the new pattern for future use. 

5.3.2 Modelling System and User Normalcy 

We believe that a more efficient and powerful use of neural networks is to adaptively model 
system and user normal state. Other systems, such as MIDAS and IDES, perform this mod- 
elling through statistical analysis of audit data. Our work in neural networks and a prototype 
of our ideas applied to a distributed system architecture have convinced us that Kohonen Self 
Organizing Feature Maps are ideally suited for this task. 

One of the advantages offered by the use of the Self-Organizing Feature Maps is that, while 
an appropriate (or comprehensive) list of system parameters for monitoring by the network is 
required, it is not necessary that the features be weighted. The network can learn relationships 
between features by learning similarities according to some user-defined metric. 

6     Proposed Architecture 

In this section we elaborate on the system architecture alluded to in previous sections. The key 
concept is that a Kohonen Self Organizing Feature Map will be used as a real-time background 
monitor to adaptively model system and user normalcy. When deviations occur, an operator 
can be notified who may choose to invoke the expert system to perform a more in-depth 
analysis of the possible problem. The expert system, in turn, may make use of other static 
analysis tools. As soon as the neural net notices a deviation, it may be configured to notify the 
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operator, log a report, or take a more drastic preventive measure such as temporarily freezing 
all processes while static analysis proceeds. Figure 1 shows our proposed system architecture. 

NEURAL 
NETWORK 
MONITOR 

SYSTEM 
PARAMETERS 

Something's 
Wrong!!" 

Suspend 
Processes 

Figure 1: Proposed System Architecture 

Hypothesis, 
Action 

The purpose of the neural net is to learn the normal system activity and adapt to gradual 
changes. Rapid changes would trigger invocation of an expert system. The expert system's 
purposes would be to: 

• Verify the intrusion, perhaps with other static analysis tools. 

• Classify the virus or attack type. 

• Suggest a defense, or automatically employ the defense. 

• Provide an explanation facility for the operator. 

The expert system component would be able to draw upon previous work in this field, 
including the IDES and MIDAS systems. 

Once again, the advantages this system would have over existing intrusion detection sys- 
tems are: efficiency; the ability to adaptively model both specific users and the system as 
a whole; the ability to deal with unknown viruses; and the integration of detailed expert 
knowledge. 

7     A Prototype 
We have prototyped the neural network portion of our architecture to demonstrate its appli- 
cability to current generation computer system architectures.   We identified a set of eleven 
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system parameters which are accessible from the system statistical performance data and are 
also likely to change during an intrusion attempt. These parameters are: 

1. CPU Utilization 7. Number of Users 
2. Paging Activity 8. Absentee Jobs 
3. Mailer Activity 9. Reads of "Help" Files 
4. Disk Accesses 10. Failed Logins 
5. Memory Utilization 11. Multiple Logins 
6. Average Session Time 

For our initial prototyping efforts, appropriate statistical simulations for each parameter 
(for a pseudo-VAX machine) were developed. The models were tri-modal, with peaks at 
mid-morning, mid-afternoon, and at midnight. We set up this input vector on a SOFM tool 
developed internally on a Symbolics computer. After some initial experimentation, a SOFM 
network with 144 nodes (arranged in a 12 x 12 array) was selected. All nodes in the network 
were initialized with with weight vectors ()t 3c11. The network was trained using Kohonen's 
learning algorithm [6] with model parameter data for four days, with samples drawn every 
minute. After the completion of the learning phase, the network was run in a classification 
mode on data for one day. At approximately 10:10 am, a simulated virus attack was launched. 
It ended at approximately 10:55 am. 

One aspect of the prototype is a graphical representation of the input's deviation from 
'normalcy'. The upper left-hand corner of the screen contains a window labeled Distance. In 
this window we plot a moving average of the distance from the input vector and the weight 
vector of the node which was classified as the winning node. Prior to an attack, the plot of 
the distance is relatively flat. As an intrusion progresses, the distance graph increases sharply. 
When the intrusion subsides, the distance graph will decrease to illustrate 'normal' levels of 
activity. The Feature Map window displays a 12 x 12 network of nodes, with the number 
displayed at each node representing the frequency of a particular node being the winning 
node during learning. Additional windows allow user interaction with the SOFM network 
during its learning phases, and permit monitoring of its operation when the network is used 
autonomously. 

8     Results of the Prototype 

The neural network monitor simulation worked as expected and was successful in detecting 
suspicious activity in a general purpose user environment. Future plans for our prototype 
activity include: 

• Distillation of the monitoring code to its minimum configuration. The neural network 
simulator used for the prototype is more robust than our intrusion detection monitor 
requires, and subsequently is not tuned to our application in CPU utilization or memory 
constraints. 
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• Implementing the prototype monitor in a multi-user system to determine its impact on 
system performance. 

• Developing the rule base for subsequent attack diagnosis. 

• Exploring use of the architecture for network monitoring/management in distributed 
environments. 

• Applying the architecture to operational systems. 

The neural network approach is not without its drawbacks. A network that can self- 
organize may, in time, be subject to a very subtle attack without recognizing that an attack 
is occurring. In this scenario, an intruder would take actions slightly out of tolerance with a 
system's normal behavior over a period of time. Such gradual changes may not be detectable 
by the monitor unless it is also being monitored by a less tolerant neural network. 

When connected with network management functions in a distributed environment, the 
propagation rate of the infestation or intrusion may make the monitor's notification of ab- 
normal activity too late for the system security officer to prevent subsequent infection. One 
solution to this problem would be to remove a suspicious node from the network immediately 
upon suspicion of attack, make a short, preliminary assessment, and then determine if further 
investigation is warranted prior to reconnection. 

9     Conclusions 

The self-organizing feature map has provided a basis for our preliminary work in neural net- 
work based intrusion detection techniques. Early results indicate that this architecture is 
most promising, and our future research is concentrating on refining the neural network for 
unobtrusive background monitoring. 
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ABSTRACT 

This paper introduces a framework for studying and constructing access control 
policies for automated information systems. This framework provides a view of 
access control policies as rules specified in terms of access control information 
and context by authorities. 
• Access Control Information (ACI) — Characteristics or properties of subjects 

and objects. Their names are used in specifying the rules of the system; their 
values are used by the access control rules. 

• Access Control Context (ACC) — Additional information, such as time of 
day, used in access control decision making. 

• Access Control Authorities (ACA) — Agents who specify ACI, ACC, and 
rules. 

• Access Control Rules (ACR) — The set of formal expressions of policy for 
adjudicating requests by subjects for access to objects. 

These four factors cover the key choices and constraints for the designer of a sys- 
tem. All of the potential policies we have examined can be expressed in their 
terms. 

INTRODUCTION 
The thesis of this paper is that a more general, uniform approach to access control in 

Automated Information Systems (AIS) can lead to trusted systems of greater utility. Tradi- 
tional access control policies, such as Mandatory Access Control (MAC) and Discretionary 
Access Control (DAC)1, are merely two possible points in a broad space of access control poli- 
cies. This paper provides a general, informal description of an approach for constructing 
access control policies that can be used to satisfy a wide range of complex security policies. 
This paper incorporates prior work [1] updated by continuing research. 

While studying existing access control policies (such as DAC and MAC), several proposed 
modifications and enhancements to these policies, and other proposed access control policy 
models (such as the Clark-Wilson integrity model [4]), a framework for a uniform approach to 
access control took shape, which we have named the Generalized Framework for Access Con- 
trol (GFAC). Using this framework to examine the similarities, differences, strengths, and 
weaknesses of existing policies, we derived general concepts that may improve existing policy 
models and create new policy models, leading to improved access control mechanisms. GFAC 
includes MAC and DAC as specific designs which can be implemented by choosing the 
appropriate design parameters. Existing systems, their models and evaluations, are not affected 
by GFAC — except, perhaps, as to how we think about them. We believe that a major contri- 
bution of GFAC is a change in emphasis and viewpoint.   Like those programming languages 

This paper was supported by the National Computer Security Center under contract F19628-89-C-O0O1 and by The MITRE Cor- 
poration.   The opinions expressed do not necessarily represent the position of either organization. 

1 In this paper, MAC and DAC are treated as reserved words referring to Mandatory Access Control and Discretiopary Access 
Control respectively, as defined in [12]. 
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that try to reduce the probability of programmer error by providing an environment that 
encourages some practices and discourages others, GFAC provides a framework that 
encourages explicit inclusion of desired security functionality in the rules. 

Schaefer [16] and Landwehr [8] have previously commented on the use of trusted subjects 
and processes in order to overcome some of the overly restrictive axioms of the models (e.g., 
Bell-LaPadula (BLP) Model [2, 3]) used for secure system development. These trusted subjects 
and processes are endowed with special exemptions from some or all of the policy enforcement 
by the reference validation mechanism or other parts of the Trusted Computing Base (TCB). 
These exemptions are necessary for the trusted subjects to perform their intended functions. 
When the policy enforced by the trusted subject is different from the policy described in the 
system security model, the validity of the model as a representation of the system is comprom- 
ised and assurances derived from formal analysis of the model are rendered invalid. By directly 
addressing the policies associated with these trusted subjects and processes in the formal model 
and specifications, no exceptions or special cases are necessary. 

Organization 
The next section presents GFAC in terms of its fundamental components, using DAC and 

MAC as examples to illustrate concepts. Then we discuss two applications of GFAC — the 
Clark-Wilson integrity model, and handling restrictions used in the DOD/intelligence commun- 
ity.   We close with some comments on continuing and future GFAC research. 

COMPONENTS OF THE GENERALIZED FRAMEWORK FOR ACCESS CONTROL 
The main premise of GFAC is that all access control is rule-based. This idea has been 

suggested elsewhere in various forms. [7, 14, 15, 18] GFAC is consistent with the framework 
for access control in open systems being developed in the standards community [6], and adopts 
the terminology from that work. 

There are four principal components used in the implementation of access control, cover- 
ing the key choices and constraints for the designer of a system — access control information 
(ACI), access control context (ACC), access control rules (ACR), and access control authority 
(ACA).  Each component is discussed in more detail in the following sections. 

Access Control Information (ACI) 
ACI is associated with subjects and objects; it reflects their characteristics and security 

attributes. The names of ACI items are used in specifying the security rules of a system; the 
values of these items are used by the rules to determine whether a given subject may access a 
specific object. A set of named ACI items is associated with a class of subjects or objects and 
a particular access control policy. 

ACI related to subjects might include identification data (e.g., user ID, name, employee 
number), authentication data (e.g. password, smart card PIN, fingerprint), biographic data 
(e.g., department, nationality), clearance, location, access permissions relative to classes of 
objects (e.g., capabilities), and role (e.g , user, system administrator, security officer). 

ACI related to objects might include classification, handling restrictions (e.g., EYES 
ONLY, CLOSE HOLD), classification authority, source/originator, document number, owner, 
a list of programs allowed to access the object and their access permissions (e.g., Clark-Wilson 
model to enforce the well-formed transaction), and identities of users and their access permis- 
sions (e.g., access control list). 

Access Control Context 
The ACC contains information not associated with an subject or object but necessary to 

the access control decision process.   The information becomes security relevant by virtue of 
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being used by ACR.   The integrity of this context information must be protected by preventing 
unauthorized changes.   Security policy may also require secrecy protection. 

The access control context might include time — access to the information (i.e., sensitivity 
of the information) may vary with time (e.g., the Department of Labor Statistics information 
on last month's unemployment rate is sensitive until 9:00 am on Tuesday morning when it is 
made public), status — the access control restrictions depend on a status variable which is offi- 
cially changed to reflect some condition in the real world (e.g., crisis or exercise status), and 
group membership — the names of groups are ACI associated with objects, but the definition 
or enumeration of membership in a group is part of the context. 

The ACC represents aspects of the physical and logical environment, including status vari- 
ables representing the condition of the real world (e.g., whether there is a real crisis or a prac- 
tice exercise is in progress) as well as information representing the state of the AIS. Although 
context information can be regarded as another kind of access control information, ACI and 
ACC are differentiated by their association with subjects and objects. ACI is associated with 
subjects or objects; ACC is not. 

Access Control Rules (ACR) 

Access control rules (ACR) are the regulating principles that define the access control pol- 
icy. In a trusted AIS, access to an object by a subject is controlled by a TCB. The TCB will 
often provide some set of system functions (e.g., open file, activate process, delete file) as its 
interface to user processes. As a part of the normal operation of these functions, they also 
adjudicate the request for access according to built-in security policy rules. These system func- 
tions are sometimes referred to as the security or access control "rules" of the system; how- 
ever, this terminological convention tends to be confusing.2 In this paper, we use the term rule 
to identify only the portion of the function that adjudicates the access control requests. That is, 
we separate the system function into two operations: one in which adjudication of the access is 
requested (i.e., the ACR are invoked) from some TCB-resident security "rule-base," and a 
second that performs the requested non-policy-related functions (e.g., establishing access 
between a subject and a file, initializing a new subject, or removing a file object from the sys- 
tem). In this view, the rule-base adjudicates requests according to the following general princi- 
ple: 

A subject is permitted to access an object in access mode M only if the ACI of the 
subject, the ACI of the object, and the current state of the ACC satisfy the rules. 

Combination of Rules 
Rules implementing multiple security policies must reflect how these policies relate to each 

other. For example, in combining MAC and DAC, neither MAC nor DAC takes precedence 
with respect to denying access. The MAC and DAC decisions are logically ANDed together; 
either decision process may deny access. Since MAC and DAC decisions are usually imple- 
mented to operate sequentially, their temporal sequencing is sometimes mistaken for pre- 
cedence. Another form of combination occurs when there are multiple conditions for adjudi- 
cating access. For example, consider conditions A and B. It is a business decision whether 
access should be granted based on A AND B or A OR B. 

Precedence does exist in the Trusted Computer System Evaluation Criteria (TCSEC) [12], 
which requires for DAC (at class B3) the ability to specify (for a given object) specific users 
and groups and their respective modes of access to the object, including no access. This policy 
can lead to a number of possible interpretations, as discussed in [10]. Briefly, in one interpreta- 
tion, if an individual user is specifically granted or denied authorization for an object, this takes 
precedence over any authorizations for the object that are granted or denied in groups to which 
the user belongs.   In another interpretation, denials take precedence; that is, user or group's 

2 The "rules" described in the Multics interpretation of the Bell-LaPadula model [3] can be seen to include some of the non- 
policy-related functionality described above. 
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denial of authorization for an object takes precedence over any authorizations that the user or 
group may have been granted for the object. 

Inheritance Rules 

An important concept in creating new subjects and objects is "inheritance" [13]. A new 
object may be simply a copy of an old object, may be created anew, may be created by changing 
or editing an existing object, or may be formed by combining two or more existing objects. 
Inheritance rules are concerned with establishing the ACI associated with the new object. The 
MAC inheritance rule may be inferred from the TCSEC in a rather straightforward manner: a 
new object is labeled at the sensitivity level at which the user is operating, usually the level at 
which he or she logged in. 

There is no DAC inheritance rule in the TCSEC, a consequence of the discretionary 
nature of DAC policy. Some implementations, however, provide defaults. UNIX , for exam- 
ple, allows a user to specify default user/group/world (UGW) protection for all new objects and 
a copy of an object inherits the old object's ACI when they have the same owner and inherits 
the owner's ACI otherwise. 

Configuring A System's Rules 
In principle, GFAC gives the person configuring an AIS's security controls the freedom to 

specify any rules desired. In practice, the ability to configure security controls is extremely lim- 
ited in today's trusted systems. Once a system has been evaluated there can be no significant 
changes made to the configuration under which it was evaluated. It is, of course, a goal of this 
effort to bring this kind of flexibility to trusted systems. Some work, in a complementary vein, 
has been done in this area; see [14] on security rule bases. 

Our vision is that vendors will provide sets of rules suitable for market segments. For 
example, rule sets may be produced for DOD, civil government, message system, office auto- 
mation system, and commercial environments. In this scenario, the system security architect 
would pick the rule set from the catalog and initialize variables to implement the organization's 
policy. 

An organization with a unique policy, however, might be forced to add or modify rules. 
Our current research is addressing the question of how such a change in rules would impact the 
formal assurance of the system. On inspection it appears that any change in the rules should be 
approached with considerable caution. Manual or automated examination for completeness, 
consistency, and functionality appears warranted. 

Authority 
One may associate the notion of span of authority with originators, owners, Information 

System Security Officer (ISSOs), commands/agencies, and national or corporate policy. In 
general, higher authority levels will be responsible for establishing the policy, information sys- 
tem architects will translate the policy into rules, the system modelers/designers will represent 
these rules in a formal manner and will design their implementation, and the ISSO will be 
responsible for entering and maintaining the subject/object ACI. The structure of the authority 
for a given system will be determined in part by the rules established for that system, affecting, 
for example, whether the ISSO is allowed to delegate some of his authority to owners and the 
exact form and extent of that delegation. 

It could be argued that authority considerations are just a subset of the rules, i.e. those 
rules governing who has the right to change rules and ACI. This may be correct in a formal 
sense. However, authority has been inadequately addressed in the past and is of fundamental 
importance equal to the other principal components of GFAC. GFAC makes a significant con- 
tribution toward the ability to judge the quality of a real system's policy by explicitly recognizing 
the rules for authority. 

UNIX is a registered trademark of AT&T. 
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Control of Access to the Access Control Information 

Control of access to the ACI is essential. Controlling the ability to read and modify ACI 
is key to the strength of a trusted system's access controls. One can organize ACI into sets of 
attributes with access control authority trees attached to selected attributes. These trees define 
the authority and privileges in the system. Three levels of hierarchy appear reasonable, 
although one can imagine more or fewer levels depending on the needs of a particular situation. 

Figure 1   Partial Authority Tree 
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Figure 1 shows an example of a partial ACA tree. Assume that when Subject_l creates 
Object_l, the three levels of ACI are created as shown in the figure, except that Subject_l is 
the only entry in the ACL-access (level 2) attribute at this time. Assume that the policy 
includes the concept of owner of an object, and creates an object with the owner having read, 
write, and modify access permission on all three levels. Similar access control trees may be 
associated with some or all of the other attributes as well. 

Let us examine the meaning of the three levels. At level 1, the object ACI includes the 
access control list on Object_l as one attribute. Figure omits the contents of the ACL; let us 
assume that the policy puts Subject_l on this ACL. Additional entries may be made on this 
ACL. But who is allowed to access the ACL? GFAC treats the ACL, an attribute of 
Object_l, as a specific object.   All objects have ACI associated with them.   In this example we 
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are interested in the ACL ACI (level 2), to which is attached the ACL-access ACI (level 3). 
Under the assumed policy, level 2 is initialized granting Subject_l read, write, and modify 
privileges on the ACL. Subject_l, choosing to share one of its privileges with Subject_2, enters 
Subject_2 in the level 2 ACI with the privilege of deleting users from the ACL. Further, Sub- 
ject_l gives everyone the privilege to read the ACL. 

But what controls access to the level 2 ACI? The assumed policy includes the creation of 
one more level of ACI, level 3 ACL-access ACI. Level 3 is initialized granting Subject_l the 
ability to read, write, and modify the ACL-access attribute. The ISSO is also given read, write, 
and modify permission, since, in this example, the ISSO is viewed as the ultimate authority 
within the AIS. 

APPLYING THE GENERALIZED FRAMEWORK FOR ACCESS CONTROL 
The GFAC view of trusted systems emphasizes four factors in the design of access con- 

trols: access control information, context information, rules, and authority. We believe these 
factors encompass what is needed to define many useful access control policies. This section 
demonstrates this thesis by discussing 1) a commercial integrity policy and 2) polices for apply- 
ing dissemination and handling controls common in the intelligence community. 

Clark-Wilson Integrity Model 

The Clark-Wilson integrity policy [4] is a fairly recent policy introduced as one model of 
what integrity means to the commercial data processing world. It centers on two main concepts 
for maintaining integrity: the well-formed transaction and separation of duty, both modeled after 
well established practices from the general accounting world. 

Clark-Wilson Integrity (CWI) provides for both external and internal consistency of data. 
Measures for external consistency, such as their Integrity Verification Procedures (IVPs), 
ensure that the data stored in the computer system correctly models the state of the real-world 
systems it relates to. The IVPs reflect generally accepted audit practices in general accounting. 
Measures for internal consistency, the well-formed transactions, called Transformation Pro- 
cedures (TPs) in their model, ensure that data in a valid state is modified in such a way that the 
resulting state of the data is again valid. The TPs embody accepted practices like double entry 
bookkeeping. Separation of duty is also reflected in their integrity rules: An agent that can cer- 
tify an entity (e.g., determine that a TP is correctly implemented) may not have any execute 
rights with respect to that entity (i.e., is not allowed to run the TP program as a user of the sys- 
tem). 

The data that are integrity-controlled under CWI are called Constrained Data Items 
(CDIs). A CDI, likely to be realized as a file on most computer systems, is validated by an 
IVP to ensure that the values of the data items in the CDI are in a correct state. This would be 
done when the CDI is first created and periodically thereafter to ensure that the data 
corresponds correctly to the real-world aspects of the application of which it is a part. Transac- 
tions against a CDI may be performed only by specified TPs and TPs may be operated only by 
authorized users. 

Thus, CWI policy within the computer system is based on 

• integrity-controlled programs called Transformation Procedures (TPs) and Integrity Verifi- 
cation Procedures (IVPs) 

• integrity-controlled objects called Constrained Data Items (CDIs) 

• user permissions to apply certain TPs to specified CDIs. 

These computer controls are clear candidates for GFAC implementation, involving signifi- 
cant use of integrity roles, rules, and authorizations. 
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Handling Restrictions 

In the paper world of classified documents within the DOD/intelligence community, 
numerous dissemination and handling restrictions are applied to documents. Examples include 
NOFORN (No Foreign Nationals), ORCON (Originator Controlled), and REL XX (Release to 
nationals from country XX). Williams and Day [17] give an excellent discussion of the complex- 
ities of such markings for classified documents, and the inadequacies of current automated sys- 
tems in handling them. Graubart [5] and McCollum [11] each present detailed arguments 
demonstrating why DAC, hierarchical MAC, and MAC categories are inappropriate and inade- 
quate for handling ORCON; their arguments apply to other markings as well. 

Some efforts have attempted to incorporate the handling of markings into a trusted system. 
MITRE's CMW prototype [19], based on security requirements of the intelligence community, 
includes the capability to provide markings in an "information label" that is separate from the 
MAC sensitivity label. Thus, the CMW prototype includes a labeling policy in addition to the 
usual MAC and DAC policies, providing a real-world demonstration of the GFAC claim to that 
effect. 

Under GFAC, the appropriate markings and other supporting information needed to make 
the access control decision would be included as subject/object ACI or additional context infor- 
mation. The implementation of the needed access controls is conceptually straightforward 
under GFAC. Just as a traditional MAC policy based on a lattice of sensitivity levels can be 
viewed as a MAC rule (ACR) that uses the sensitivity levels of the subject and object (ACI) to 
adjudicate access requests, so an extended MAC policy based on a set of markings in addition 
to the lattice can be viewed as a set of MAC rules (ACR) that use sensitivity levels and mark- 
ings as well as other subject ACI, like nationality and affiliation, to adjudicate requests. Note 
that the strength or universal applicability of access control rules is independent of the informa- 
tion on which the rules base their decisions. Thus, the implementation of a labeling policy can 
be just as strong and pervasive in a trusted system as is the implementation of a traditional 
MAC policy. 

THE NEXT STEP: FORMAL MODELING AND PROTOTYPING 

We are taking two directions in our continuing GFAC effort — formal modeling and pro- 
totyping. Through formal modeling, the concepts of GFAC will be made more precise; through 
prototyping, the concepts of GFAC will be made more tangible. 

Formal Modeling 

One of the main objectives of the GFAC vision is the ability to produce trusted systems in 
which it is possible to configure the security policy of the system to meet the particular needs of 
the owners/operators and users. A principal motivation here is the conviction that current 
trusted systems do not adequately implement the various security policies that people managing 
documents and other forms of information use and enforce. Two issues, then, for formal 
modeling are: 

• Can we model a useful policy that current trusted systems do not implement and prove 
that, at least according to an appropriate interpretation of the TCSEC, the resulting system 
is secure? 

• Can we model in a way that will allow configurable security policies for an AIS without 
having to do a formal evaluation of the AIS for each configuration of policy? 

Our preliminary work [9] models system functions like open, read, and write as a policy-free 
reference validation mechanism. This set of functions appeals to a rule base that expresses 
access control policies for for the AIS system. The purpose of [9] was to develop a structure 
for a formal model, with special attention to the form and use of access control rules to support 
the goals of the GFAC vision. 

Our formal modeling approach shows promise of addressing some of the issues that critics 
of the Bell-LaPadula (BLP) models have raised over the years, specifically the fact that much of 
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the security policy of the system according to BLP is embedded in the system functions. Our 
formalism uses a separate rule base that explicitly expresses the security policies for the system. 
Our results, while addressing some issues not dealt with by BLP, do not suggest that BLP is 
invalid. 

Prototyping 

To provide a tangible proof-of-concept, we plan to prototype GFAC concepts. It seems 
both prudent and efficient to use a system that already provides a B-level MAC policy. Thus, 
we plan to modify a preexisting TCB to implement several additional policies. Many of the 
mechanisms used to implement conventional sensitivity labels might carry over, or at least pro- 
vide inspiration, to the handling of the ACI for these policies. The rest of the TCB outside the 
kernel (i.e., the implementation of the reference monitor) should be directly useful. AT&T 
System V/MLS [13] has been selected. 

SUMMARY 

This paper is a snapshot of our thinking about GFAC. We are continuing with the work. 
Our thinking has already changed since our first publication [1]. We expect that it will change 
further as the work progresses. Another version of this paper with more details and examples 
is available from the first author. 

We have only scratched the surface of GFAC, integrating earlier concepts of access con- 
trol into a general framework. Generalized Framework for Access Control identifies four com- 
ponents — Access Control Information (ACI), Access Control Context (ACC), Access Con- 
trol Rules (ACR), and Access Control Authority (ACA) — as the key factors in the design of 
access controls. By making design decisions about each of these variables and their combina- 
tions, alternative access control policies can be implemented. GFAC provides an improved 
framework for expressing and integrating multiple policy components. Associating access con- 
trols with an explicit inheritance policy opens up many possibilities for enforcing additional poli- 
cies. 

The simplicity and symmetry of the concept of GFAC is encouraging and indicates that 
further work is warranted. The correspondence of the ideas expressed in this paper with prior 
work further reinforces this belief. GFAC continues the mainstream of access control, extend- 
ing concepts from prior work in a logical evolutionary manner. 
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Abstract 

Extension in the Trusted Heterogeneous Architecture (THETA) is accomplished by the in- 
troduction of new types and type managers. We outline a method to automate development of 
type managers in THETA. If types are supported by multi-level secure (MLS) managers then the 
TCB would be extended. We argue that automating the extension not only enhances function- 
ality but provides for higher security assurance. THETA renames SDOS, a Secure Distributed 
Operating System. 

1    Introduction 

The Trusted Heterogeneous Architecture (THETA), formerly known as the Secure Distributed 
Operating System (SDOS), is in experimental development at Odyssey Research Associates, Inc. 
(ORA). The system is being designed and built to meet TCSEC B3 [12] security and assurance 
requirements. This is in contrast to an earlier phase of the project [6], [7] which produced a design 
targeted towards the TCSEC Al criteria. 

THETA is intended to support many kinds of applications, but in particular, Command and 
Control applications potentially needed by the Air Force. These applications motivate extensibility 
in several ways. First, C2 applications span many types of computer systems and require surviv- 
ability, scalability and interoperability. Second, they involve diverse aspects of the use of secure 
information including collection, selection, aggregation and analysis. Additionally, these applica- 
tions involve monitoring and controlling physical devices that collect and use secure information. 

This paper focuses primarily on our philosophy and mechanisms for extensibility in THETA. 
We discuss in detail a methodology that helps achieve this extension with high assurance. The 
system overview, architecture and the security policy will be dealt with in enough detail to build 
the background for the emphasis of the current topic. The reader is referred to [7], [14], [15] and 
[5] for a detailed exposition of the system goals, design, and security policy. 

*This work was supported by the Air Force Systems Command at Rome Air Development Center under Contract 
No F30602-86-C-0146. The views and conclusions contained in this paper are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the Air Force or the U.S. 
Government. 

144 



UNTRUSTED 

CLIENT 

SINGLE 

LEVEL 

MANAGER 

THETA TCB 

(per HOST) 

NETWORK 

COS TCB 

|   THETA KERNEL 

SWITCH 

LOCATOR 

PROCESS 

MANAGER 
II        ^**-~^^ 

V                                 "^x-*. 

COS TCB 

COS TCB 

TRUSTED 

CLIENT 

COS TCB 

Figure 1: THETA System Components - Schematic 

2    System Overview 

THETA is based on the object-oriented, client-server paradigm. THETA borrows many of its con- 
cepts from Cronus, a distributed operating system developed at BBN Systems & Technologies, Inc. 
[2]. Indeed, the concept of auto-generation of type managers used in THETA is due to the Cronus 
effort at BBN. THETA, however, has been designed to provide multi-level security, enhanced sub- 
ject identification, discretionary access control, configuration security, audit, COMSEC protection 
and TCSEC assurance. 

THETA objects are instances of abstract data types. The definition of a type includes the set 
of operations that are possible for objects of that type. There is a hierarchy of types. Each type 
with the exception of the root type, has exactly one parent. A type may inherit operations from 
its ancestor types. A type may also define new operations. 

Figure 1 illustrates the major system components and the communication paths in THETA. In 
this figure, the THETA TCB boundary is marked by dashed lines and only one host is shown. 

Objects can be accessed by invoking operations on them. Client programs act on behalf of 
users to issue such invocations. THETA users interact with the system through the user interface 
which permits execution of THETA system client or user-written application client programs. The 
invocation of an operation is the only way to meaningfully access an object. Operations are imple- 
mented by type managers. A manager insulates client applications from the internal representation 
of objects of a given type, and provides a precisely defined interface to the object.   The kernel 
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(which is the component of THETA that runs on every THETA host) is made up of the Switch, 
Locator, and Process Manager.1 The Locator is responsible for locating objects in support of 
location transparency offered in THETA. The Switch routes invocations and replies. The Pro- 
cess Manager maintains attributes of THETA processes and operations on THETA hosts. All 
resources in the system are represented as objects, and all operations are carried out as described 
above. 

3    THETA Architecture 

THETA is implemented using a layered architecture, which is illustrated in Figure 2. The THETA 
clients, managers, and the kernel processes are implemented on top of an existing trusted Con- 
stituent Operating System (COS). A COS process becomes an THETA process by interacting with 
the THETA kernel via the Register Process protocol (see [11]). The current design calls for THETA 
to be implementable without modifications to the COS. All COSs in an THETA network must meet 
TCSEC B3 security and assurance requirements for the combined THETA system to be B3. The 
following features of the COS are used: 

• assured process separation — direct interprocess communication that is not controlled by the 
system must be disallowed. To achieve this the MAC, DAC, and user and process identifica- 
tion mechanisms of the COS will be used. 

• non-interference with process operation — processes responsible for security must not be 
tampered with. The same COS mechanisms mentioned previously are used. 

• stable storage — data needed for enforcing security and for maintaining object representations 
must be protected. The COS file system will be used to achieve this. 

• IPC support — trusted path, local IPC and TCP/IP facilities of the COS are used to support 
THETA IPC primitives and protocols. (Note: in the initial demonstration version of the 
system secure transport facilities for communications networking are not available for use 
in the design. As an interim measure, non-secure TCP/IP was used—with the provision 
that the file system protections were set up so that use of TCP/IP was restricted to trusted 
processes only. In the future, trusted interhost communication at the B3 level will be needed 
to complete the implementation.) 

4     Constituents of the TCB 

The TCB for the system is the TCB's of all the COS's and the TCB that THETA introduces. 
The current phase of the project does not make any modifications to the COS's TCB. Since the 
THETA TCB is configurable, by choosing which managers are trusted, it is important to determine 
what is necessarily in the THETA TCB. The Switch is the only necessarily MLS component of 
THETA. The Switch is a small piece of software with a single thread of execution and hence does 
not add greatly to the size or complexity of the TCB. The configurable part, of course, involves 
the managers. All MLS managers will be part of the TCB. Each THETA site can determine which 
managers it wants to run as MLS. 

1other transient processes are part of the kernel. We shall discuss them in a forthcoming publication of the detailed 
design [11]. 
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5    Extending THETA Securely 

A fielded THETA system has certain built-in types. Support for each of these types could be 
provided by MLS or MSL (Multiple Single Level — multi-level service offered by running a manager 
instance for each level in a given range). At a particular site the Security Administrator (SECADM) 
must decide the mix of MLS and MSL manager instances. These decisions affect the size of a host's 
TCB. In addition, the SECADM may decide to add to the built-in set of system types to meet 
particular needs. Also individual users may, with SECADM approval and manual installation 
assistance, create their own types and managers. As new types are introduced and managers and 
clients are built, the THETA system is extended. It is important that extensibility be a simple 
exercise that does not invalidate the trust already placed in the TCB being extended. 

5.1    THETA Security Policy 

The THETA security policy is outlined in [5] and formally addressed in [10]. This policy in- 
cludes provisions for Discretionary Access Control and Security Administration functions as well 
as Mandatory Access Control. It is the MAC policy that we will consider here. 

Ideally, the mandatory policy constraint on information flow is that the THETA system be 
restrictive [3]. Restriction is a formally defined security policy that prevents highly classified in- 
formation from flowing to lower security levels, either accidently or maliciously and either through 
overt or covert channels 2. Restriction is a composable property, which means that the hook-up [4] 
of restrictive processes within the TCB forms a larger restrictive process. Hence, so to show that 
the TCB is restrictive it would then be sufficient to show that every component process of the TCB 
is restrictive. Processes outside the TCB are at a single-level and therefore are trivially restrictive. 
Thus, to show that the THETA is restrictive, it is sufficient, by the Ijook-up property, to show that 
all THETA processes are restrictive. 3 

The problem is guaranteeing that the new components are restrictive. For that matter, every 
MLS piece of the system has to be proven restrictive. Let us examine the THETA system to 
identify such pieces. THETA client processes are single level entities and therefore trivially restric- 
tive. In the kernel, the Switch is the only non-manager component and it does need to be MLS 
(restrictive). The Switch is a small piece of software that implements a simple design and hence 
can be shown restrictive without much difficulty. Single level managers (managers implemented 
under the MSL scheme are single level too) are trivially restrictive. That leaves the case of MLS 
managers. Therefore, extending THETA by adding MLS managers would entail establishing that 
any such managers are restrictive; the restrictivness of the extended TCB is then automatic because 
of composability. 

Since managers can be fairly complex pieces of software, it is legitimate to ask why should they 
be part of the TCB? This question has been considered in [14]. The main point in favor of the 
MLS scheme is an increased efficiency obtained by minimizing the number of processes contending 
for system resources. The MSL scheme can potentially flood the host with processes for each level 
AND each type. When considered in conjunction with the IPC processes' used to ensure secure 
communications, it is easy to see that throughput could suffer drastically. However, on those 
systems where the SECADM deems security issues to supercede considerations of efficiency or until 
MLS managers have found their place in the sun, the MSL scheme is an option that THETA will 
provide. 

2probabilistic information flow is not addressed. 
While this approach is sufficient, there are some problems in implementing it.  Our approach to deal with the 

problems is outlined in [10] 
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5.2    Assurance 

The astute reader may have figured out that a large chunk of manager activity would be invariant 
over types. Indeed a THETA manager consists primarily of 

• A framework or skeleton, which consists of the process' main program, initialization functions, 
IPC functions, an operation processing package, audit functions, and possibly replication 
protocols. 

• Autogenerated as well as hand coded functions that manipulate the managed objects, deal 
with issues of message construction and formatting, and provide a uniform user interface for 
the operations. 

However, not all managers need detailed functionality — so they could have uncomplicated designs. 
If manager generation were largely automated, then a significant amount of the design and imple- 
mentation is invariant over types and so can be reused. Type-specific components that provide 
standard functionality can be auto-generated. The security and audit checks required for specific 
manager operations could also be auto-generated or included in the manager skeleton and possibly 
both options can be employed. (We will elaborate on these in the following sections.) The assur- 
ance of security for MLS managers is now divided between the manager generation tool, which is 
a one-time assurance effort, and the manager operations, whose assurance must be determined on 
a manager by manager basis. 

To explore automated extensibility further, one has to understand the design, functionality, 
and the implementation strategy for the managers. We shall do that in the following sections. In 
this discussion we shall present the main components in detail enough to help make the case for 
automated extensibility. The reader is referred to [11] for a detailed exposition on the managers. 

6    Manager Design 

We shall discuss the manager design by outlining two phases of manager operation: the initialization 
phase and the operational phase. Figure 3 shows the components and the interaction among them 
during the initialization phase. The operational phase set up is shown in Figure 4. The components 
that are shown in the two figures are for managers with maximum THETA functionality. (See 
section 6.3 for a discussion of core and optional manager functionality.) 

A brief discussion of the components follows. 

• Initializer: The initializer is responsible for setting the stage for the manager to manage 
objects. This involves creating databases for the types and security levels that the manager 
is responsible for, registering the manager process with the kernel, creating and starting up 
the network server, message server and the automatic replication tasks. 

• Object Database: All THETA objects reside in the Object Database (ODB). Also present 
is a collection of routines by which managers access the object database. The ODB may be 
implemented by persistent COS files or in memory. 

• Replication Protocol: The replication protocol provides for meaningful communication with 
the managers on the other hosts in order to maintain replicated objects in synchrony. 

• Message Server: The message server is responsible for routing all messages between the kernel 
and the various tasks in a manager process. It also keeps track of tasks awaiting replies, starts 
up new tasks to service incoming invocations and audits operation invocations. In addition, 
since the Message Server is the main communications port between operations and the kernel, 
it also makes sure that the levels stamped on a message are appropriate for the intended 
operation. 
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• Network Server: The network server detects IPC activity over the communication channel(s) 
connecting the manager to the kernel. 

• Operation Processing Task: When a manager receives an operation invocation, the Message 
Server starts a new Operation Processing Task (OPT) to handle the request. The OPTs call 
the code for type dependent operations on objects, perform Mandatory Access Control (MAC) 
checks to ensure that the particular access is within the constraints imposed by the THETA 
security policy, and perform Discretionary Access Control (DAC) checks to verify that the 
invoker is authorized to perform the particular operation on the particular object as per the 
THETA DAC policy. The OPTs also perform auditing as required. It should be noted that 
all OPTs are constructed from a non-autogenerated task framework, called InvokeRequest 
and the hand written operation specific code. The InvokeRequest function is part of a 
manager's skeleton and will be shared by all manager operations. The manager skeleton 
source need not be available to manager developers, and so it will not be easy to circumvent 
manager MAC and audit functions. In MLS managers one must also trust the operation- 
specific code. However, once the skeleton code has acheived trusted status, one need only 
maintain its integrity. 

6.3 Manager Functionality 

Functionality common to all managers includes sending and receiving messages, processing mes- 
sages, replication support, consistency/availability support and ODB support. Optional function- 
ality would include security — being MLS, concurrency, and multi-tasking support. Even in the 
common functionality, there is a lot of freedom to tailor the manager. For instance, there are several 
kinds of replication support to choose from. The ODB for instance could be on disk or in memory. 
The THETA design approach is to: incorporate common and optional functionality as part of the 
trusted support library. Functionality is to be supported in a modular fashion so that users can 
tailor the managers with only the desired functionality, and of course — to automate development. 

6.4 Manager Implementation 

We have identified sizable chunks of the manager that can be selected from pre-built components 
or chunks that can be auto-generated. We will use a specification language in which to state the 
required parameters and hints. We will then build a tool that would parse the specification and 
build most of the files that go into making a manager. 

We have collected reusable components and routines into manager support libraries. These 
THETA Managers support libraries have been stripped of extraneous functions to comform to the 
TCB minimization criterion that will be in force in the case of MLS managers. However, MSL 
managers will also share in this minimization, since the same manager skeleton is used in this case. 
These libraries include routines for Hash and Cache table management, THETA IPC, Message 
Formatting, and Queue Management. 

As a final implementation issue, we must note that it is the operation-specific code would not 
be auto-generated. This will have to be hand coded. 

6.5 Security Critical Issues 

The address space that a manager executes in is not partitioned by security level. If managers are 
single level (or implemented by the MSL scheme), then the single address space poses no concern. 
For MLS managers, however, care must be exercised in design and implementation so as to avoid 
any illicit information flow. 
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Our approach is part brute force and part sophisticated. In section 6.4 we said that the support 
library is a pool of reusable components from which all managers can draw. The brute force part 
of ensuring security is to guarantee that the algorithms used in the reusable manager components 
are trusted; the security level of various data structures in a manager must be identified and 
the implementation of the reusable manager components must be capable of forming a restrictive 
manager in the presence of operations that transfer data from structures at one level to structures 
at greater or equal levels. 

It is true that ensuring the trusted behavior of the library components is a formidable task. 
But the exercise has to be undertaken just once. Also note that THETA does not force use of MLS 
managers. If a site administration does not want to go through the assurance exercise, it is free to 
offer multi-level services in a MSL fashion. 

Ensuring that the THETA libraries are trusted is only half the problem. Sophistication in 
addressing manager security comes into play in dealing with pieces other than the support library. 
As stated earlier (section 6.4), these components are mostly auto-generated from a specification. 
The operation processing routines are partly hand coded. The challenge is to assure that these are 
trusted. More complicated operations that access data at many levels can be useful; but assuring 
that these are restrictive is also more difficult. 

MAC, DAC and Audit requirements are specific to every operation routine. If the manager 
generation tool inserted these MAC, DAC and Audit checks from hints in the specification, we 
could make the case for increased assurance. We would of course have to deal with security of the 
tool — which again is a one time exercise using brute force techniques. Additionally, if the support 
libraries are shown to be trustworthy, good software engineering practice of using the standard 
library primitives to compose the operation processing routines would contribute to high assurance 
of security. 

7    Concluding Remarks 

Trusted extensibility is natural in a kernelized, trusted system like THETA. The trusted kernel will 
provide all the secure functionality needed and in minimal form. However, MLS object managers 
are nonetheless very desirable to provide additional trusted functionality, and to increase the overall 
efficiency of the system. Conformance of such MLS managers to the THETA security policy 
(restriction) provides the formal justification that such trusted extensions preserve security. The 
hard problem that remains is justifying that each trusted, MLS object manager added to the system 
is restrictive. This is the problem addressed by this paper. 

A software tool is used to generate the framework of each THETA manager automatically. Input 
to the tool is a specification of the operations that the manager will implement, and specifications of 
some properties of each operation. The specification language is not expressive enough to describe 
the semantics of each operation in detail, so functionality that is specific to the manager must be 
coded by hand and called at the appropriate points from the automatically generated code. 

The goal in THETA has been to include security-relevant features of operations as part of the 
manager specification language. The features that can be specified include the direction of data 
flow (read, write, read-write), and the manager's approach to concurrency control of invocations 
at different security levels. The former are used to select the Bell-LaPadula access control checks 
automatically, and the latter are used to resolve automatically multi-level contention for resources 
in ways that limit or close all covert channels. These two features of the specification language are 
sufficient for automatically selecting the security-relevant manager code in many cases. All that 
remains in these cases is to show that the manager-specific code inserted for each operation does 
not interfere with or subvert the MAC security checks that are automatically generated. 
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Are the generated managers guaranteed to be trusted TCB extensions? No. It is still necessary 
to inspect the manager-specific code inserted manually for each operation. Because the specification 
language does not completely define the semantics of each operation, it is possible for the program- 
mer to write code that maliciously or unintentionally changes the manager's security properties. 
It may be possible in the future to automate checks that reduce or (in some cases) eliminate this 
possibility. 
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Abstract 

For some critical applications, it is sometimes necessary to override security protections. Security override 
is in general only necessary when assets are threatened in such a direct way that security concerns are of 
secondary importance. In these situations, a system which does not provide a security override fails to 
adequately address system requirements. Relazation security is a security property expressed in terms of 
the guarantees that a trusted system may provide; guarantees are statements about the conditions under 
which information may flow. Relaxation secure systems permit dynamic, incremental relaxation (and partial 
reimposition) of security constraints by authorised users. The use of guarantees permits security damage 
sustained during a period of constraint relaxation to be expressed in terms of guarantees violated; the set 
of violated guarantees may then be used as input for security recovery. This paper extends the definition of 
relaxation security to include relaxation of integrity policies and relaxation of supporting security require- 
ments such as user authentication and auditing. The extended definition of relaxation security is presented 
using a state machine formulation. An example application demonstrates the utility of the approach. 1 

Introduction 

For some critical applications, it is sometimes necessary to override security protections. Security override 
is in general only necessary when security controls prevent critical tasks from being performed and when 
assets are threatened in such a direct way that security concerns are of secondary importance. In these 
situations, a system which does not provide a security override fails to adequately address system require- 
ments. Controlling such security overrides is problematic: the conditions under which security override is 
a lesser evil may be surprising when they occur; the inability to predict specific needs for security override 
precludes deciding in advance how to trade off security and other goals. An alternate approach is to allow 
designated users to selectively override security protections at the time when those protections conflict with 
more pressing system requirements. Such security overrides should be as tightly constrained as possible. 
In particular, it is important to reimpose security controls at the nearest opportunity to minimise security 
damage. For systems that provide multiple security policies, such as secrecy, integrity, and supporting poli- 
cies such as user authentication and audit, it is important be able to condition the relaxation of one policy 
on the maintenance of another. Additionally, the security interface used to adjust security controls must 
be simple: users should not need to make detailed examinations of system security policy during periods in 
which security relaxation is necessary. 

When security controls are relaxed, the security properties of the ensuing state must be examined. These 
fall into two broad classes: 1) measures of how much security damage has occurred, and 2) techniques for 
ameliorating security damage to support continuing operations. Relaxation security [2] is a new method of 
specifying security properties, which permits dynamic security relaxation for secrecy. Security specifications 
are expressed as sets of guarantees that a trusted system provides to its users. This paper extends relaxation 

This research wai supported by the Defense Advanced Research Projects Agency, contract F30602-89-C-0135. 
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security to permit dynamic relaxation of integrity andother supporting policies. The definition of relanation 
security is reviewed, and its application to integrity and other supporting policies is examined. An example 
demonstrates the utility of the approach. Trusted system services for supporting relaxation security are also 
discussed. 

Related Work 

Current definitions of security, e.g. [3, 9, 17, 20, 5, 1, 6, 8, 13], generally characterise security (secrecy or 
integrity) as a predicate that is either satisfied or not satisfied by a given system execution. Boolean valued 
predicates do not provide a way to specify partially secure executions. As a practical matter, trusted systems 
often require the ability to selectively violate abstract definitions of security through the use of trusted 
subjects [3], and trusted system implementations have not solved the containment problem [12]. Trusted 
subjects have been studied in their relation to the above definitions [14]. Special security policies, justified 
by the special functions performed by trusted subjects, are carried out by the (carefully studied) actions of 
those subjects. Covert channel analysis [12, 11, 18] addresses partial satisfaction of security definitions (for 
secrecy) in implementations using the metric of bits-per-second. Neither case, however, addresses dynamic, 
deliberate, system-wide relaxation and reimposition of security properties. 

The relaxation lattices defined in [10] show how to constrain the languages accepted by automata. In [2], 
relaxation lattices are adapted to include a notion of information flow for secrecy but does not address 
relaxation of other security policies. 

Security Relaxation 

We model security by the set of guarantees that a trusted system provides to its users. Guarantees are 
the "promises" that a system provides to its users: guarantees are statements about the conditions under 
which information is (or has been) permitted to flow in a system. Secrecy and integrity policies may be 
specified using guarantees. In addition, guarantees may be used to assert that a system provides particular 
supporting policies, such as audit and authentication. The most secure system state, in this formulation, 
is that in which every login has passed the most rigorous authentication test, audit has been continuously 
enabled, and secrecy and integrity access control rules have been followed without exception. In the most 
secure system state, a system is able to provide a particular set of guarantees. For secrecy and (label 
based) integrity access controls, the guarantees specify that information has been or will be allowed to flow 
when certain label relationships (e.g., dominance) hold. For supporting policies, the guarantees assert that 
information has been or will be allowed to flow only on behalf of users that have been authenticated to 
a given strength (e.g., challenge-response, password, etc.), or that information flows only when the audit 
subsystem is functioning. After a security override, a system is able to provide a smaller set of guarantees. 

Particular guarantees may be more important that others. For example, relaxation of authentication or 
audit may be user and (secrecy or integrity) category sensitive to prevent compromise or destruction of 
critical data. In addition, it may be desirable to permit relaxation of one policy (e.g., integrity) or another 
(e.g., user authentication), but not both. For example, a system integrity policy may be relaxed to allow 
emergency updates to system databases, but not by individuals who have not been strongly authenticated 
to the system. 

We model the use of security overrides using relaxation lattices. Relaxation lattices have been used before [10] 
as a way to define the larger languages of operations accepted by abstract data types when security constraints 
have been relaxed. In [2] relaxation lattices are adapted to providing graceful security degradation for secrecy 
in terms of the guarantees that a system provides. Here we adapt the notion of a relaxation lattice to the 
problems of providing graceful security degradation for integrity, audit, and authentication policies. 

Guarantees 

For our purposes, a trusted system is an unbounded set of subjects 5 and an unbounded set of objects O with 
two fundamental interactions, read and write, defined for subjects and objects which comprise the only means 
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by which information flows in the system. 3 Let L be a set of security levels on which a partial ordering, < 
(and >), is defined. We now define several attributes for subjects and objects. Let level : {S UO} —» L give 
the security level of a subject or an object. Let ijevel : {S U 0} —• L denote the integrity level of a subject 
or an object. Let auth : 5 —» INTEGERS denote the strength of the user authentication associated with 
a subject. Finally, let audit be a predicate that denotes that the audit subsystem is enabled. We assume 
label tranquility, and model the executions of a trusted system using an automaton defined by the 4-tuple: 

{STATE, *„,OP,6) 

where STATE is a set of (uninterpreted) states, <„ is an initial state, OP is a set of operations, and 
* C STATE x OP x STATE is a state transition relation. OP = {(t,r,o),(i,w,o)} where * £ S,o £0, 
and (s,r,o) represents the operation in which « reads o, and (i,w,o) represents the operation in which « 
writes o. A system history a = {*„, TTQ, *i, irj,..., *n) is an alternating sequence of states and operations such 
that s„ is the initial state, the s, are in STATE and each *-, is an operation in OP. In order to express 
cleanly how security can be relaxed, we define the de facto information flows for a system history. The 
treatment of information flow is similar to that of [4], but is developed separately here to facilitate inclusion 
with relaxation lattices. For ej,e,- £ {S U O}, denote the flow of information from entity e< to entity ej in a 
system history a by Cj —•„ ej. 

We define Ci —*a ey as follows: 

ei 

((«<- to, e,) G   a V 

(e> >•,«•)£   a V 

(« = ai -{et,,w .«i) • oj A e, *a l«l) V 

u« = <*1 •(<>.'', «»)• arj A e{ ~*»l •l) / 

where "•" denotes concatenation and ir, c  a means that operation n occurs in history a. 

A single state transition may induce many information flows.   Let a — a' • (ir, $).   We define the set of 
information flows, which may or may not already exist in a', induced by n as follows: 

induce(a, it) ~ 

{o-a »} u 
{V.t._ „.o (e *a •)} if* = (• r,o) 
{'-a o} U 
{V.:_ ...(« *a o)} if* = (' w,o) 

induce defines the set of information flows exercised by each operation. Let a' denote the prefix of a which 
ends with the state following the i,h operation in a. The complete set of information flows which exist in a 
history a = (*„, JTQ, *I, iri, ...,«n) can be expressed in terms of induce: 

induce(a', *{) 

A guarantee is a statement of the form: 

which is an assertion that information does not flow from e< to e;. A guarantee ei /-» Cj will be satisfied 
by a system history a if and only if -i ej —>„ e;-. Because we will specify security constraints which can be 
relaxed, guarantees will be made conditional on the absence of future user directions to relax security. A 
system's security policy may be specified by a set of guarantees. 

Sets of guarantees may be specified using the traditional dominance relation between security levels.   For 
example: 

evel(t) < level(o) => o •/-* i)    A 
!vel(s) > level(o) => t /> o) 

/ ( (,€t 

For limplicity in the model we do not consider failed read or write attempts. For static access control rules, failed attempts 
transfer no information. Later, when access control rules become dynamic, we will consider failed attempts informally. 
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is a statement of the flow policy enforced by the ss-property and the "-property of the Bell and Lapadula 
model [3]. The flow policy can be expressed more succinctly: 

V.,,,. (Uvel(ei) > levels) ==> «, /. «,) 

Guarantees may also specify integrity policies. For example, the flow policy enforced by the strict Biba [5] 
policy may be expresses as: 

V,,,,. (tJevei(e<) < iJevel(cj) => et •/* e,) 

Supporting policies may also be expressed with sets of guarantees. The requirement for a particular strength 
of authentication may be expressed as: 

V,,, (auth(s) < N => »feA«fi) 

This set of guarantees asserts that information will not flow to or from subjects that have not been strongly 
authenticated. This restriction may be modified to permit weakly authenticated subjects to observe but not 
modify: 

V.,, (auth(s) < N => $ /• e) 

The requirement that information only flows when a system's audit subsystem is enabled is expressed as: 

V.j.tj {^audit  => et /• e;) 

A combined statement for secrecy, integrity, authentication, and audit may be given as follows: 

V«,«i 

/ {level(ei) > Uvelitj)) V \ 
(iJevel(ei) < Uevel(ej)) V 
(e,- £ S/\auth(ei) < N) V 
(«, G S A auth(ej) < N) V 

\ (-.audit-) / 

ei /• e> 

For notational simplicity, let DP denote the antecedent above. The set of guarantees that a system provides 
may be reduced by strengthening the antecedent as follows: 

V««.«j 

DP A^(exceptioni)     V 
DP A ^(exception2)     V 

V 
DP A -i(ea!cept:onn) 

\ 

*.• -h e> 

For example, 

V„i|ei ( DP A -i(levcl(ci) = Secret A level(ej) = Confidential) ti A «y) 

states that the desired policy holds except that information is allowed to flow down in the security lattice only 
when it is flowing between the classifications Secret and Confidential. Because the antecedent is stronger, 
fewer guarantees are specified. It is possible to relate relaxations of secrecy, integrity, authentication, and 
audit. In the form used above, exceptions are exclusive. They may be combined, however: 

Vti,tj ( DP A -i(eicep<iorij A exception,) 'i -h *t) 

The largest set of guarantees represents the most constrained system executions.  Smaller and smaller sets 
of guarantees correspond to more and more relaxed security policies. 
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Sets of guarantees may be satisfied using a system model where state transitions only occur when their 
enabling conditions hold as follows: in the absence of user commands to relax security constraints, a system 
which provides a guarantee 

P => a yU ej 

must include P in the enabling condition of every state transition which might cause e, —»a e; for a system 
history a. 

It is important to note that, unless a specification places restrictions, using guarantees, on the flow of 
information within a single security level, the disclosure of one object at a given security level may imply 
the disclosure of another object at the same level because one object may be encoded in another within a 
security level. Similarly for label based integrity policies, the exposure of a high integrity subject to a low 
integrity object may imply exposure to other low integrity objects. The worst may not be realised, however. 
For relaxation security, the goal is to limit the possibility of such flows as much as possible, and to make 
available the evidence of any such flows when a security recovery is attempted. 

Relaxation Lattices 

A relaxation lattice, as defined in [10], is a lattice A of automata which are identical in every way except 
possibly for their state transition relations. The automata are parameterised by elements of 2C where C is 
a set of security constraints which are defined as the complement of the access rights that subjects have to 
objects. For our purposes, C is a set of guarantees. The lattice is oriented such that the automaton which 
satisfies the largest set of constraints, and thus accepts the smallest language, is at the top. Each automaton 
A is a state machine (STATE, »0, OP, 6) defined as above. The "environment", which determines which set of 
constraints must be satisfied, is modeled by an automaton (2c,c„, EVENT, 6B) where elements of EVENT 
are operations which change the current set of constraints and jj C 2C x EVENT x 2C is a state transition 
relation. Let <p : 2C —» A be a lattice homomorphism. For the purposes of intentional security relaxation, 
we will modify this scheme slightly so that the security restrictions enforced by automaton <f>(Cj), Ci € 2C, 
may be a subset of C<. For intentional security relaxation, EVENT is the set of special user commands 
which explicitly change system security constraints. The special-command automaton and lattice together 
are modeled by a composite automaton 

(2C x STATE,(co,io),EVENTu0P,6) 

where 6 contains state transitions both to change the current set of constraints and to model accesses by 
subjects to objects. Let 6 A denote the state transition relation of automaton A in the lattice A of automata. 
As defined in [10], 6 : 2C x STATE x {EVENTU OP} — 2C x 2STATB is defined by two component state 
transition relations 6t : 2C x {EVENT U OP} -» 2C and 63 : 2C x STATE x {EVENTU OP} -* 2STATB 

such that: 
h{c,v) =        if p£ EVENT then 6„{c,p) else c 
«,(c,*,P)=    ifptOP A  A = <f,{61(c,p))then6A{*,p) 

else {*} 

where 6B{CI,P) denotes a c2 such that (ci,p, c2) <E ig and SA{*I, op) denotes an sj such that («i, op, $2) £ 6A- 

Note that, if an operation is in both OP and EVENT, the constraint state is changed first, and the 6 relation 
for the appropriate automaton is then selected for the new environment state. 

Let a = ai • aj such that the first operation of a3 is the last operation of a which is in EVENT. A system 
which provides a guarantee P => et -/-* ey during a3 must include ->P in the enabling condition of every 
state transition in 02 which might cause e< -»„ Cj. It is not necessary for -iJP to have been in the enabling 
conditions of state transitions during executions which are prefixes of c*i: it is only necessary that state 
transitions that would have induced the flow did not in fact occur. 

Relaxation Security 

As in [2], we present relaxation security using a modified relaxation lattice. The lattice is modified to 
incorporate constraints expressed in terms of past system history.   Elements of 2C will not totally define 
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security constraints, but will instead serve more as statements of user intent which are satisfied to the extent 
possible by the system. 

A trusted system which supports security relaxation may provide different sets of guarantees at different 
times. Let G\ C Gj be two sets of guarantees. A trusted system which initially provides the guarantees 
in Gj and then only the guarantees in G\ may or may not be able to return to providing the guarantees 
in Gj depending on whether or not guarantees in Gj — G\ have been violated. Let a = ((*otCo)i*o. 
(*iici)i "'it -••i(*niCn)) be a system history of the composite automaton. Let Cer(a) denote the index of the 
last operation of a which is in EVENT, or 0 if a contains no operations in EVENT. Let C(a) give the set 
of constraints established by the last operation of a which is in EVENT, or c„ if a contains no operations 
in EVENT. As before, denote the prefix of a which ends with the state following the ith operation n, by 
a*. 

We say that a system history a of length n is relaxation secure if: 

/  {ti+tii C{a"))^ V\ 

Vo<l<nV(-.K,)6»*'«(<>','k)        q (l<C°p{<*k) A\ 
^ 3*.e«> ^ e. _al e. e induce^,wt)        )        ) 

The meaning of this definition is that, during a period in which the set of guarantees that the system should 
provide does not change, a relaxation secure system prohibits the violation of guarantees that the system is 
still able to support. Intuitively, a relaxation secure system moves through a number of phases, providing 
a particular set of guarantees in each phase. In each phase, a relaxation secure system will prohibit those 
operations that would violate currently promised guarantees which have not already been violated in previous, 
more relaxed phases. An intuitive and immediate objection to this definition of security is that a violated 
guarantee can apparently be exploited in all subsequent system phases. A consequence of the definition, 
however, is that future exploitation is confined to the still-executing subjects which incurred the original 
violations. In addition, exploitation is limited to causing information flows between subjects and objects 
which have already experienced information flows: new subjects and objects may not be included. This 
"grandfathering" of relaxed subjects and the objects that they manipulate permits a system to move to a 
less relaxed mode of operation without immediately halting the progress of subjects which are violating no 
additional guarantees and whose execution was deemed important enough to initially relax security. (From a 
worst case viewpoint, the continued activity of these subjects is not significant since all the damage occurred 
on the first access.) 

This definition is motivated by the need to provide guarantees about what has not happened in a system 
which permits security relaxation, and also by the need for flexibility in allowing security relaxations which 
are directed by a simple user interface. A user should not need to make detailed examinations of a system 
security policy during a time when security relaxation is necessary. A user's preferred interaction is to notice 
that some important job cannot be performed because of the security policy, relax the security policy using 
simple commands, notice that the job is being performed, and then restore security guarantees to the extent 
possible while allowing the important job to continue. If the important job could be identified beforehand, it 
would be possible to design trusted subjects to perform it; the fact that such jobs may only become apparent 
during a crisis necessitates the ability to globally and dynamically relax security restrictions. 

A consequence of this definition is that high users may choose to influence the access control decisions made 
in later, more constrained, phases of system execution. If a high user writes into a low object, low users 
that have not already read from that object will be prohibited from reading from it after the relaxation 
is rescinded. This information flow occurs when accesses fail (not reflected in the automaton model), and 
constitutes a covert storage channel. This channel can be controlled by delaying failed access attempts. 

The definition of relaxation security is not appropriate for all applications. For instance, if Oy is an object 
which models a device connecting a trusted system to its external environment, and if Oj /+ o; is a guarantee 
that can no longer be provided, the continued flow of information from Oj to o; represents the continued 
export [21] of information from the system. Even though the original guarantee cannot be provided, further 
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flow may not be desirable. To constrain such behavior, we introduce a set of "strong" constraints which must 
be honored regardless of past violations. This set requires a modification to the relaxation lattice, which is 
now a lattice A of automata which are parameterised by elements of 2C x 2°. As before, the automata in 
A are identical in every way except possibly for their state transition relations. We model state transitions 
between strong system constraints using a state machine defined by the 4-tuple (2C ,c„, EVENT',6gi), and 
compose this state machine with the original: 

(2C x 2C x STATE,{(c„,c'0),s0),EVENTUEVENT' UOP,6) 

where EVENT' is the set of commands that set constraints which must be satisfied by the system regardless 
of any past violations. Similar to the definition above, 6 : (2C x 2C) x STATE x {EVENT \J EVENT' U 
OP} -» (2C x 2C) x 2STATa is defined by two component state transition relations Si : (2C x 2C) x {EVENTU 
EVENT U OP} -> (2C x 2C) and S2 : (2C x 2C) x STATE x {EVENT U EVENT' U OP} -» 2STATB 

such that: 
6i((c,c'),p) =       if pe EVENT then {6B(c,p),c') 

else if pe EVENT' then (c,6B'(c',p)) 
else (c, c') 

<j((c,c'),«,p) =    if peOP A  A = ^'(*i((c.c').P)) **«» 
6A{*,P) else {*} 

where <f>' : (2C x 2C) —» A is a lattice homomorphism. 

This lattice provides, in essence, another lever for security relaxation. Legal system histories are easily 

defined for the new composition. Let a = (((e0, c^), *o),*"0) ((6X1*1)1 *l)i 1i •••• ((*••»*»)»*»)) be a system 
history. We require one additional definition: let C'(a) denote the set of strong constraints established by 
the last operation of a which is in EVENT', or c'0 if no event of Q is in EVENT'. A system history a of 
length n is strong relaxation secure if: 

Vo<i<nV(,<_<i>,k(!i)e <»*,«,(„»,«») 

/(«/•«,-*  C'(a*)) A\ 
( {« •/• e, * C(a*)) V\ 

?/<C,(«») A\ 
\    \  3"eak I e. -»«. e, G mduce(a',T|) ) J ) 

This definition is very similar to that for relaxation security. The only difference is that the system state 
includes two dynamic sets of constraints. In addition to satisfying the definition for relaxation security with 
respect to the original constraints, a system must always satisfy the current set of strong constraints. The 
access control rule that would produce strong relaxation secure histories can be informally stated: deny 
access if (access would violate a current strong constraint) or ( (access would violate a guarantee that is 
currently required) and (the guarantee has not been violated during past relaxations)). 

Security Recovery 

The ability to relax and reimpose security constraints defines a partial security recovery scenario: when 
constraints are reimposed, recovery occurs automatically to the extent that no security damage occurred. 
When ei —>a e;- for an execution a and e* /» e, is in C, however, the flow e* —•„ ey represents security 
damage which must be accounted for. In part, the accounting is automatic: if e;- -/-* e» is not in C, but 
ei -/-* eh is in C, operations which induce e;- —» e* will also induce e< —> ej and will be prohibited. After 
the return to a less relaxed security policy, the transitivity of information flow constraints imposes a partial 
isolation policy for subjects and objects which have previously violated security. The isolation policy imposes 
a limit on the effects that violated guarantees may have, whether the guarantees asserted a secrecy, integrity, 
or other policy. This mechanism effects partial recovery at the cost of a reduction in availability. 

A more active recovery is required to enable the use of information that might have been mislabeled or 
corrupted by an unidentified user or manipulated while auditing was disabled . If sensitive information has 
been exported to an inappropriate external environment, or if low integrity information has been exported 
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to a device that expects high integrity information, recovery of the information is not possible, although 
the TCB may provide assistance concerning the ultimate target of the information. If possibly mislabeled 
information has not been exported, recovery to a set of constraints d C C u achievable if every subject 
and object into which information flowed in violation of a constraint in d was checkpointed during system 
relaxation and if system integrity constraints will permit a rollback to the state of these objects before the 
period of constraint relaxation. In this case, recovery is accomplished by deletion of possibly mislabeled 
objects and substitution of the checkpointed versions. In some cases, it is likely that rollback will not be 
feasible, and manual review of mislabeled subjects and objects will be necessary to reestablish security. 

Typically [22, 23, 16, 7], mandatory access control checking is performed when an access descriptor for an 
object is obtained by a subject. In order to make access control sensitive to system history, it is necessary to 
keep track of which information flows are induced by individual accesses. For a subject which obtains current 
access to an additional object and then attempts to write to an object for which access has already been 
obtained, a trusted computing base must ensure that the new write access does not induce any currently 
illegal information flows. In addition, if a subject A has a descriptor (conferring read access) to an object 
O and subject B writes to O, access checking must be performed at A's next read from O to ensure that no 
illegal flows are established between subject A and the objects accessed by B. Following A's read from 0, 
access checking must be performed for A when A attempts to write (for the first time) objects other than 0 
to ensure that no illegal flows are established between the subjects and objects flowing into 0 and the objects 
that A writes. The overhead for this mechanism may be greater than that for the typical mechanism in which 
access checking is performed only at the first access. The extra overhead seems acceptable, however, because 
all access checking is still "triggered" by the operations which acquire access descriptors (e.g., openQ): actual 
reads and writes do not require additional checking. 

A portion of the flow information used for access control may be recorded by a trusted computer system's 
audit subsystem for use during security recovery. Specifically, information flow from objects of particular 
interest may be examined during security recovery, without examining all system objects which may be 
mislabeled, to determine whether or not crucial information has been disclosed, and, if so, where and to 
whom. 

Example Application 

Consider a system in which there are three secrecy levels and two integrity levels. As in figure 1, denote 
entity » (subject or object) with secrecy level X and integrity level Y by Ei ' . Let auth(Mj) = N — 1 and 
let auth(e) = N for the other entities, and assume that audit is continuously enabled. 

Three sets of guarantees are relevant, the desired set of guarantees, represented by DP above, the set of 
guarantees in the current constraint set (CUR), and the guarantees that the system is actually able to supply 
(ACT). For this example, we ignore strong constraints. 

Initially, DP = CUR — ACT and no access may occur that would violate a guarantee in DP. A designated 
user may relax the secrecy portion of the desired policy by setting CUR to: 

V.4,e. ( DP A^(level(ei) = M Mevel(tj) = L)       =» e< /» e,) 

At this point, information may flow from E* to Ey (edge 1). If information then flows from Ey to E% (edge 
2), an indirect flow occurs between E+ and Eg (edge 3). At this juncture, ACT is: 

Vei,ej. ( DP A - (e< = Ei A ey £ {E7, Es})       => a /. e,) 

which is stronger than CUR but weaker than DP. Successive commands may relax authentication controls 
and integrity controls as follows: 

(DP A-i(IeveZ(e<) = Af Alevel(ej) = L) V \ 
DPA^(auth(ej) = N-l) V    =>e</,ey 

DP A -y{Uevel{ei) = M A iJevcl(cj) = H) ) 
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Figure 1: System Entities 

At this juncture, information may flow from E& to the weakly authenticated Ea (edge 4). Although au- 
thentication controls and secrecy controls have been relaxed, E$ cannot downgrade information because the 
relaxations are exclusive. Information may then flow from £4 to Ej in violation of the desired integrity 
policy (edge 5). Information may not flow from 2?9 to Ej, however. At this point, ACT is: 

/ / e{ = EA A ey € {E7, E,} V 
Vtll..       D?An      ei G {E<, ET, E,} A e, = E6    V 

\ \ a = Et A e,, = E2 

H -f* tj 

If CUR is then reset to DP, a partial isolation policy is enforced based on what relaxations occurred 
earlier. ACT will be unchanged: accesses that do not violate the currently promised set of guarantees will 
be permitted. Accesses that would cause new guarantees to be violated are prevented, however. Some 
accesses that would have been legal before the relaxations occurred will now not be permitted. For example, 
information may no longer flow from Ej to E\ because that would extend the information flow (contrary 
to the integrity policy) from .E5. Similarly, information may not flow from E& to Eg because that would 
extend the flow from E\ (contrary to the secrecy policy). These access prohibitions demonstrate the tradeoff 
between increased availability during relaxations and decreased availability afterwards. Availability may be 
restored through rollback, by deleting corrupted entities and restoring checkpointed versions, or (in the worst 
case) by manual review. 

Conclusions 

This paper has described the use of relaxation lattices and guarantees to specify the security properties for 
trusted systems during and after security overrides. Relaxation security has been defined for access controls 
for secrecy, label based integrity, audit, user authentication, and combinations of these policies. Transaction 
oriented integrity policies [1, 8] seem also amenable to graceful degradation, although their specification will 
require changes to the state machine formulation presented here. Future plans include further exploration 
of efficient algorithms to support relaxation security, and the mapping of those algorithms onto the port and 
task abstractions of the Trusted Mach [7] message passing architecture. 

162 



Acknowledgments 

The author would like to thank Glen Benson, Martha Branstad, Jim Gray, Brian Hubbard, Tim Redmond, 
Dan Sterne, and Dawn Wolcott for helpful comments on the technical content and presentation. 

References 

[1] L. Badger, "A Model for Specifying Multi-Granularity Integrity Policies," Proceedings of the 1989 IEEE 
Symposium on Security and Privacy, Oakland, Cal., 1989. 

[2] L. Badger, "Providing A Flexible Security Override For Trusted Systems,"Proceedings of the Computer 
Security Foundations Workshop III, Franconia, New Hampshire, P.115, 1990. 

[3] D.E. Bell and L. Lapadula, "Secure Computer System: Unified Exposition and Multics Interpreta- 
tion." (Technical Report No. ESD-TR-75-306, Electronics Systems Division, AFSC, Hanscom AF Base, 
Bedford MA, 1976). 

[4] M.A. Bishop, "Practical Take-Grant Systems: Do They Exist?", Ph.D. Dissertation, Purdue University, 
May 1984. 

[5] K.J. Biba, "Integrity Considerations for Secure Computer Systems," USAF Electronic Systems Division, 
Bedford, Mass., ESD-TR-76-372, 1977. 

[6] W.E. Boebert and R.Y. Kain, "A Practical Alternative to Hierarchical Integrity Policies," Proceedings 
of the 8th National Computer Security Conference, Gaithersburg, Md., P. 18, 1985. 

[7] M. Branstad, H. Tajalli, F. Mayer, and D. Dalva, "Access Mediation in a Message Passing Kernel," 
Proceedings of the 1989 IEEE Symposium on Security and Privacy, Oakland, Cal. P. 66, 1989. 

[8] D.D Clark and D.R. Wilson, "A Comparison of Commercial and Military Computer Security Policies," 
Proceedings of the 1987 IEEE Symposium on Security and Privacy, Oakland, Cal., 1987. 

[9] J.A. Goguen and J. Meseguer, "Unwinding and Inference Control." Proceedings of the 1984 IEEE 
Symposium on Security and Privacy, 1984. 

[10] M.P. Herlihy and J.M. Wing. "Specifying Security Constraints with Relaxation Lattices", Proceedings 
of The Computer Security Foundations Workshop II, 6-11-89. 

[11] R.A. Kemmerer, "Shared Resource Matrix Methodology: A Practical Approach to Identifying Covert 
Channels," ACM Trans. Comput. Syst., vol. 1, p. 256-277, Aug. 1983. 

[12] B.W. Lampson, "A Note on the Confinement Problem," Comm. ACM, Vol. 16, No. 10 (Oct. 1973), 
613-615. 

[13] S.B. Lipner, "Non-Discretionary Controls for Commercial Applications," Proceedings of the 1982 IEEE 
Symposium on Security and Privacy, Oakland, Cal. P. 2, 1982. 

[14] J. Landauer, T. Redmond, and T. Bensel, "Formal Policies for Trusted Processes," Proceedings of the 
Computer Security Foundations Workshop II, Franconia, New Hampshire, P.31, 1989. 

[15] C.E. Landwehr, C.L. Heitmeyer, and J. McLean, "A Security Model for Military Message Systems," 
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984, pp. 198-222. 

[16] G.L. Luckenbaugh, V.D. Gligor, L.J. Dotterer, C.S.Chandersekaran, N. Vasudevan, "Interpretation of 
the Bell and Lapadula Model for Secure Xenix," Proceedings of the 9th National Computer Security 
Conference, Sept. 1986, pi 13. 

163 



[17]  D. McCullough, "Specifications for Multi-Level Security and a Hook-Up Property," Proceedings of the 
1987 IEEE Symposium on Security and Privacy, 1987. 

[18] J.K. Millen, "Finite-State Noiseless Covert Channels,"Proceedings of the Computer Security Founda- 
tions Workshop II, Franconia, New Hampshire, P.81, 1989. 

[19] National Computer Security Center, "Department of Defense Password Management Guideline," CSC- 
STD-002-85. December 1985. 

[20]  D. Sutherland, "A Model of Information," Proceedings of the 9th National Computer Security Confer- 
ence, Sept. 1986, p. 175. 

[21]  National Computer Security Center, "Department of Defense Trusted Computer System Evaluation 
Criteria," DoD 5200.28-STD, December 1985. 

[22]  Final Evaluation Report of Scomp Secure Communications Processor STOP Release 2.1, Sept. 23, 1985, 
CSC-EPL-85/001. 

[23]  Final Evaluation Report of Honeywell Multics MR11.0, June 1, 1986, CSC-EPL-85/003. 

164 



LATTICES, POLICIES, AND IMPLEMENTATIONS 

D. Elliott Bell 

Trusted Information Systems, Incorporated 
3060 Washington Road 

Glenwood, Maryland 21738 

Abstract: 

The original description of military security policies in terms of lattice theory has led to the identification of lattices 
both with the policy and a particular implementation technique.   The position is advanced herein that diversity in 
lattice characterizations leads flexibility and generality to lattice-based policies and implementations.   Furthermore, that 
set of lattice-based policies is wider than is generally recognized. 

INTRODUCTION 

In the field of computer security, the use of the term "lattice" to describe the nondiscretionary access control policy 
such as that embodied in military and intelligence policies has dated from the early 1970s (see especially [DENN76]). 
Unfortunately, the term itself has become synonymous in some circles with "military-access-control-policy".   Where 
military applications or connotations are deemed inappropriate, that association has made "lattice" a code-word and 
red flag. 

The simplest form of nondiscretionary access control policy within the military and intelligence community is 
expressed as a combination of hierarchical classifications (of documents) and clearances (of people) and non- 
hierarchical categories.   Access to a physical report requires that the highest hierarchial clearance of the candidate 
reader be greater than or equal to the classification of the report and that every n on-hierarchial category governing 
access to it be held by the candidate.   In the simplest mathematical terms, that combination of requirements can be 
expressed in terms of the cross-product of two partially ordered sets, the totally ordered classification/clearance set 
and the set of categories, ordered by set inclusion.   With the minor addition of least common dominating element and 
greatest common dominated element (mathematically, a least upper bound and a greatest lower bound, respectively), a 
lattice results. 

The characterization of this simple version of nondiscretionary access control policy as a lattice policy had several 
benefits.   One was the legitimacy conferred by pre-existing mathematical terminology.   Another was the ability to 
represent this structure in a very efficient way within computer systems.   The totally ordered component can be 
represented as an integer within a range, with partial-order comparisons being integer comparisons.   A set of 
categories can be represented as a bit-map, with an ON bit representing the presence of the category assigned to that 
position.   The bit-map mathematically was a characteristic function for the element in question.   Comparison between 
bit-maps also an efficient analogue in computer systems, namely logical ANDing (or ORing) of two bit-maps. 
Unfortunately, the relation between the lattice theory itself, the policy it was first used to describe, and the actual 
implementation method led to a certain degree of identification of the three.   In the confusion, the useful tool of 
lattice theory for the description of policies and for guidance in implementations was considered more limited than it 
is. 

The paper begins with a set of results from general lattice theory.   The intent is to provide the context within which 
discussion of lattice policies in computer security can proceed.   Next, the implications of those results on 
representable policies will be addressed.   Finally, the theoretical and practical implications of design choices for 
implementing lattice policies will be described. 
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LATTICES ' 

A lattice can be characterized in several ways.   The traditional definition of a lattice is phrased in terms of a partially 
ordered set L 2.   A lattice is a partially ordered set L any two of whose elements x and y have a "meet" x n y and 
a "join" x u y.   [BIRK48, p. 16]   A useful concept in discussing lattices with this definition is that of a "cover" 
with respect to a partial order:   an element a "covers" be provided a £ b and there is no element x such that a > x 
> b.   It is immediate that if the set L is finite, then the partial order is itself characterized by the covering relation. 
It can be shown that the partial order x £ y is equivalent to the condition x n y = y. 

The more specialized lattices of interest here are distributive lattices.   A distributive lattice is one in which meet and 
join distribute over each other.   A complemented lattice is defined as follows: 

A lattice L is complemented provided it has both an O and an I ' and for every x € L there is y € L such 
that x n y = O and x u y = I.   y is called the complement to x. 

A complemented lattice allows the inclusion of the concept of "not".   In fact, a distributive, complemented lattice is 
called a Boolean lattice. 

The characterization of these forms of lattice is that a finite distributive lattice is isomorphic to a ring of sets. ' 
Assuming the Axiom of Choice, all distributive lattices are isomorphic to a ring of sets. [BIML65]   Thus, 
consideration of rings of sets, special subsets of full power sets, suffices for the study of distributive lattices. 
Furthermore, adding the characteristic of "complemented" makes the result even stronger.   Every finite Boolean 
algebra L is isomorphic to 2" for some positive integer n. [BIBA70, p. 278] 

Every Boolean algebra L is generated by its set of next-to-least elements, its atoms. '   This parallels the result that a 
distributive lattice is generated by its meet-irreducible (dually, its join-irreducible) elements.   In practical terms, the 
entire lattice can be generated by the elements that are "at the bottom" in the sense of not being the meet of any two 
other elements.   In the familiar case of the power set of a finite set S, the singleton sets of S constitute a set of 
meet-irreducible elements. 

Thus, the distinct ways that a Boolean lattice (that is, a distributive, complemented lattice) can be defined include (1) 
use of an explicit partial order, (2) use of explicit meet and join, defined either globally or as the transitive closure 
of a cover operation, or (3) AND, OR, and  HOT operators.   Any definitional base will yield the same lattice structure. 

POLICIES 

Any policy capable of being represented abstractly as a lattice can be termed a "lattice policy".   As indicated in the 
section above, this usage is much broader than that usually connoted by the term.   Specifically, efforts to argue the 
wider applicability of the "lattice access control model" (see for example [LIPN82], [LEE88]) have had to combat the 
identification of the particular version of lattice policy constructed for military use as well as make their own points.6 

The different characterizations of Boolean lattices, in fact, admit any policy that can be described with ANDS, ORS, and 
NOTs as a "lattice" policy. 

1 See the Appendix for more complete definitions and some basic results. 

2 A partial order on the set L is a relation between elements that is reflexive, transitive, and antisymmetric. 

1 The element I is the lattice maximum element of the lattice and the element O is the minimum element. 

4 A ring of sets is a collection of sets closed under union and intersection. 

5 Technically, atoms are elements that cover O. 

6 As been noted frequently, the non-classified military requirements involve exactly the same concerns of 
isolation and separation of function as is true outside the military and outside the government. 

166 



Consider a typical example of an enterprise that formally recognizes (at least) the three information types PLANS, 
FINANCIAL, and OPERATIONS.   From these types of information, viewed as nonhierarchical categories in the usual 
"lattice model" formulation, one can construct a full powerset lattice with the category   PuFuO   as the 
maximum element (the I element in lattice theory) and 0 as the minimum element (the O element in lattice theory). 

It is frequently observed that this lattice model cannot represent the concept of information available to staff cleared 
for PLANS or to staff cleared for FINANCIAL.   In fact, the lattice model can represent that situation, just not with 
P, F, and 0 as the meet-irreducibles.   The proper meet-irreducibles arc P n F, F n O, and O n P.   It is the 
parochial view that causes this problem, identifying the basic elements of policy characterization (in this case, P, F, 
and O) with the lattice's meet-irreducibles.  The injection in this case is to the covers of the meet-irreducibles. 

In general, any policy that can be patently and easily represented in terms of partial order and meets and joins; or 
covers and meets and joins; or in terms of naive logic (A, v, ->) is a lattice policy and a representation in any other 
form, modulo the presence of required side conditions, is equivalent to a representation in any other form.   This 
observation leads naturally to the question of what advantages accrue from different implementation approaches. 

IMPLEMENTATIONS 

An implementation of a lattice policy need not look exactly like any one definitional form of lattices in the abstract. 
Indeed, there being several different-seeming characterizations of useful classes of lattices, there are different ways of 
building an implementation to represent lattice policies.   The choice of which implementation method to use can take 
into consideration both the intended customer base and the design and implementation implications themselves.   The 
use of an implementation that is optimized for the use expected from the most desired customer segment, for 
example, would be of considerable advantage. 

In the current field of trusted products, the implementation strategy has been largely that of representing the lattice 
directly as a duple of a totally-ordered hierarchical component and a bit-map representation of a set of categories. 
The major speed advantages in the late 1960's and the 1970's have become less important, but the implementation 
approach has been largely left the same.   In fact, the usual explanation for the guideline figures for numbers of 
hierarchical classifications (8) and non-hierarchical categories (29) (TCSEC83] is presumed to be the packing label 
information into 4 bytes using a 3-bit integer and a 29-bit bit-map. 

Other representations of security label information are beginning to be seen more regularly.   Representative was the 
original use of the group abstraction for the provision of security levels within the AT&T UNIX. 7 [FLIN87]   A 
second example was an implementation of three "categories" in a networking situation.   In that case, the error- 
detection reasons, the category set NO-CATEGORIES was encoded with a fourth bit-pattern to avoid an error 
condition from being interpreted as NO-CATEGORIES.   The representation, therefore, was not a patent and direct 
implementation of the bit-map view of the "lattice model" and led to a minor misunderstanding wherein the 
implementors had to explain that, while the bit-map was not the usual one, the underlying policy remained the 
expected lattice policy. 

An implementor who chooses the traditional military / TCSEC duple as the paradigm for the implementation need not 
totally write off the customer base that prefers to think of the policy in terms of naive logic, for example.   With the 
provision of conversion tools, to allow the logic-customers to specify and interpret the policy parameters in their own 
terms, the underlying base can be traditional, hiding that fact from the users.   Analogously, an implementor that 
choose to use the logic paradigm can (if desired) provide a user interface to allow the traditional customers to 
manipulate and use the system with their own perspective.   An implementor who chooses to implement abstract data 
types for security levels and a defined function meet (or join), calculating dominance as the condition x n y = y 
(respectively, x u y = x) can serve both communities with proper user interface functionality at a highly isolated spot 
within the TCB.   The implementor is not limited to one implementation approach for each market segment, but has 
choices in base approach as well as in the policy-conversion options to provide to make the resulting product more 
attractive than its competitors. 

One implication of implementing systems to support lattice policies beyond the usual military classification situation 

UNIX is a registered trademark of AT&T. 

167 



necessity for larger lattices.   Systems sized for only dozens of categories will quickly become saturated in usages 
such as [LEE88].   The bit-map implementation undergoes a state explosion, but other implementations, especially an 
abstract logic one, need not be similarly affected 

Another point sometimes raised in terms of lattice policy implementations is the difficulty of representing isolation: 
A but not B; either RED or BLACK but not both. Representation of such isolation policies as a boolean lattice is 
straightforward. The objection that the lattice itself includes nonsensical points (such as RED and BLACK) misses 
the point that the policy being embedded in the lattice does not have to include all the points of the lattice. In the 
specification and implementation of a separation policy, the rules of operation should work to prohibit the aggregation 
of data that is to be isolated In fact, the prospect of needing to support isolation policies may make an abstract 
logic approach especially attractive, allowing the implementation to take advantage of sparse-matrix-like economies. 

The provision of useful and practical tools for policy visibility of more than one type could entail significant 
complexity.   Most of the lattice isomorphisms are full of interesting detail and some of them are not (direcUy) 
constructive.   As a result, the policy conversion code (which will have to be inside a Trusted Computing Base) could 
become intricate and possibly of some size.   As usual, the existence of an isomorphism doesn't promise an easy job 
of implementation. 

CONCLUSION 

The diversity of representation and definition for Boolean lattices provides the opportunity for similar diversity in 
both the policies that can be supported and in the implementation schemes that can be employed.   Because of the 
lattice characterizations, a particular implementation base can be made to match the natural mode of expression of 
several different-seeming policies through the provision of hidden isomorphism conversions.   This conceptual 
possibility of being able, for example, to support any policy that can be expressed via naive logic with AND, OR, and 
NOT poses the issue of supplying a far greater number of "categories" than in recommended in [TCSEC85]. 
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Appendix.     Lattice Theory Results 

In this appendix, a set of definitions and results from lattice theory are presented. 

Definition L.l: A lattice is a partially ordered set L any two of whose elements x and y have a "meet" 
x n y and a "join" x u y.   [BIRK48, p. 16] * 

A useful concept in discussing lattices with this definition is that of a "cover" with respect to a partial order.   An 
element a "covers" b provided a > b and there is no element x such that a > x > b.   It is immediate that if the set L 
is finite, then the partial order is itself characterized by the covering relation. 

This first approach of defining a lattice in terms of partial order, meet, and join, however, is not the only way to 
characterize a lattice. 

Theorem L.2: The identities (1) — (4) completely characterize lattices: 

(1) x n, x = x and x ^j x = x, 
(2) x n y = y n x and x u y = y u x, 
(3) x r> (y n z) • (x n y) n z   and 

x u (y u z) = (x u y) u z, 
(4) x n (x u y) = x and x u (x n y) = x. [BIRK48 p. 18] 

The proof of this theorem provides a definition of a partial order x ^ y as the condition x n y = y.   Thus this result 
shows that a lattice can be defined in terms of meet and join alone and the identities (1) — (4). 

Definition L.3: A lattice L is called distributive if and only if, for every x, y , z e L, 

x n (y u z) = (x n y) u (x n z) and 

x u (y n z) = (x u y) u (i n z). 

A lattice L is complemented provided it has both an O and an I ' and for every x e L, there is 
y e L such that xny = 0 and x u y = I.     y is called the complement of x. 

A lattice L is distributive if and only if it satisfies (5a), (5b) and (5c) identically. [BIRK48, p. 
133] 

Definition L.4: 

Definition L.5: 

(5a)    (x n y) u (y n z) u (z n x) = (x u y) n (y u z) n (z u x); 
(5b)    x n (y u z) = (x n y) u (x n z); 
(5c)    x u (y n z) = (x u y) n (x u z). 

' A partial order on the set L is a relation between elements that is reflexive, transitive, and antisymmetric. 

9 The element I is the lattice maximum element of the lattice and the element O is the minimum element. 
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Theorem L.6: Each of the identities (5a), (5b), and (5c) implies (6) below, as well as the other two [BIRK48 p. 
133] 

(6)      If z £ x, then x KJ (y n z) = (x u y) O z. 

Theorem L.7:   Any algebraic system which satisfies 

a n a = a for all a, 

aul = lua = l   for some I and all a, 

• anl = lna = a   for some I and all a, 

a n (b u c) • (a n b) u (a n c) and 

(b u c) n a = (b n a) u (c n a) for all a, b, c 

is a distributive lattice with I. 

A final characterization begins with the following interesting ternary operation that arises in the proof of Theorem 
L.7: 

(a, b, c) = (a n b) u (b n c) u (c n a) = (a u b) n (b VJ c) n (c u a). 

Theorem L.8:   Let A be any algebraic system with a ternary operation (a, b, c), and elements O, I, such that 

(O, a, I) = a, 

(a, b, a) = a, 

(a, b, c) = (b, a, c) = (b, c, a) 

((a, b, c), d, e) • ((a, d, e), b, (c, d, e)), 

identically. 

Then defining a u b = (a, I, b) and a n (a, O, b),   A is a distributive lattice in which 

(a, b, c) = (a n b) u (b n c) u (c n a) = (a u b) n (b u c) n (c u a) holds. [BIRK48, p. 137] 

Theorem L.9: Every finite distributive lattice is isomorphic to a ring of sets. I0      Assuming the Axiom of 
Choice, all distributive lattices are isomorphic to a ring of sets.   [BIML65] 

Definition L.10:      A Boolean lattice is a lattice that has O and I and is both distributive and complemented. 
[BIRK48] 

Theorem L.ll:        Every finite Boolean algebra L is isomorphic to 2"   for some positive integer n.   [BIBA70, p. 
278] 

A ring of sets is a collection of sets closed under union and intersection. 
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In the proof of theorem L.ll, it is shown that the elements corresponding to the set of size n is the set of atoms of 
L.   Atoms are elements that cover O.   This parallels the result that a distributive lattice is generated by its meet- 
irreducible (dually, its join-irreducible) elements. 

Definition L.12:      An element    a    of a modular lattice (that is, a lattice satisfying condition (6) of Theorem L.6) 
is called "join-irreducible" if    a = x u y   implies  x = a   or    y = a.   Meet-irreducible is 
defined dually.   [BIRK48, p. 20] 

Theorem L.13:        In a distributive lattice L which satisfies the descending chain condition, each element has one 
and only one representation as an irredundant join of join-irreducible elements.   And dually, if L 
satisfies the ascending chain condition.   [BIRK48, p. 142.] 
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Abstract 

We propose a three phase life cycle model for the development of trusted embedded computer systems. 
We call the middle phase System Build. First, we propose a definition for embedded systems and 
distinguish them from traditional multi-purpose computer systems. We summarize the traditional life 
cycle model, with its development and operational phases, and point out its problems of flexibility and 
performance for embedded computer systems. Then we introduce the three phase life-cycle model. We 
describe how the System Build phase allows per-mission software and security configuration and checks 
security policy offline, thereby allowing a speedup of runtime rights checking, thereby providing increased 
flexibility and performance. 

1    Introduction 

There is a growing need for trusted embedded systems to meet critical missions in the DOD. Early attempts 
to apply trust requirements such as those defined in the Trusted Computer System Evaluation Criteria 
(TCSEC)[1] or the Trusted Network Interpretation (TNI)[3] indicate that trust requirements for embedded 
systems go beyond those specified for multi-purpose trusted systems. 

Embedded systems must meet stringent performance, minimal complexity and fault-tolerance requirements 
in addition to computer security requirements. The interplay of trust requirements and mission critical 
requirements pose special challenges in the development of trusted embedded systems. Quite often the two 
sets of requirements are in direct conflict. Automated software access control introduces some degree of 
performance penalty into a system which is straining to meet its performance requirements. Space and com- 
plexity factors often make it impractical to strictly meet TCSEC labeling requirements. Embedded systems 
are often tactical in nature and thus TCSEC requirements applying to Discretionary Access Control, Login, 
and Identification/Authentication, are often not met. Finally, operational considerations often require inter- 
pretation of TCSEC requirements for Operators and Security Administrators, Trusted Facility Management 
and accompanying documentation. 
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At first many may conclude that building trusted embedded systems which satisfy their application mandated 
performance requirements is not realizable with today's technology. To attack this problem we at Hughes and 
Trusted Information Systems have adopted a three-phase life cycle for embedded systems based on a novel 
trusted System Build phase and associated tools. This use of the System Build phase allows the deployed 
embedded system to provide a trusted computing base and satisfy security requirements without adversely 
affecting performance. 

This paper begins by providing a definition of embedded systems in Section 2. Then Section 3 discusses the 
traditional two phase life-cycle of multi-purpose systems. Section 4 describes the "System Build" concept 
and the three phase development model. Finally, Section 5 presents conclusions and describe the advantages 
of this approach. 

2     Embedded Systems Definition 

An embedded computer system or embedded system is a component of a larger system that serves a particular 
purpose or fulfills a particular application. Its purpose is to provide other than general purpose computing 
facilities. In fact, while the system is performing its mission no programming is taking place. In practice, 
there are classes of embedded computer systems whose properties are sufficiently different from general 
purpose systems as to make them worth considering in their own right. Examples of such embedded systems 
include process control, battle management, navigation, inventory control, tracking, C3I, countermeasures, 
and order entry. 

Our analysis is focused on the class of embedded systems used in control systems and more specifically, 
avionics systems. The primary purpose of an avionics embedded system is to assist the pilot in controlling the 
aircraft. However, an avionics system may also participate in navigation, weapons control, target tracking, 
communications, life support, as well as other functions. Therefore, an avionics embedded system can be 
quite complex. 

While our work has focused on avionics embedded systems, we believe that many of the properties of such 
systems can be generalized to a wider class of tactical embedded systems. Thus, for remainder of this report 
we will use the general term embedded system. 

2.1     Differences Between an Embedded System and a Multi-Purpose System 

An embedded system is inherently different from a multi-purpose operating system in several essential ways 
including build cycle, user, operator and administrator roles, and its potential for operational variation. 

A multi-purpose system provides a broad support base for a variety of users and applications. Generally, 
users are grouped into separate roles including administrator, operator, and simply "user". In some systems, 
the simple "user" role is refined into more detailed categories describing their sophistication and access 
to different application environments. The applications available within a multi-purpose system span a 
wide range and may be anything from programming-oriented tools such as compilers and debuggers, to 
applications such as image processing, order-entry, billing, or mail and communication systems. 

While multi-purpose trusted systems are clearly necessary, the life cycle model used in their development 
has shown limited success when applied to embedded systems, especially those that are mission-critical in 
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nature. If we consider the underlying uniqueness of a mission-critical embedded system, we will discover an 
alternative design paradigm that can yield better results. 

As noted in the list above, an embedded system is not multi-purpose in nature. An embedded system has 
very specific, limited functions that must be performed in a time critical manner. The I/O interfaces are 
also static, that is, not added or removed from the system during operation. Human interfaces, if present, 
are highly stylized and focused on attaining the mission-specific goal. 

In addition, an embedded system doesn't generally support the concept of multiple simultaneous users. 
Autonomous (zero user) systems, such as planetary probes, or military drones are common. When a user 
is supported in an embedded system, his or her thought processing and reaction time is at a premium. 
The overhead of login, labeled output, and trusted path can be far outweighed by the necessity to react 
appropriately within a life-threatening situation. 

Another significant aspect of a mission-critical embedded system is the notion of mission-oriented. Such 
a system is "used" or deployed on many different occasions, but the details of each use can vary. The 
parameters that distinguish these uses are not known at development time, but can only be determined at 
mission deployment. 

2.2     Defining "User Roles" in Embedded Systems 

An important trust distinction between multi-purpose systems and embedded systems, is in the definition 
of users and personnel in each phase. In a traditional multi-purpose development the personnel in the first 
phase are the developers, and the personnel in the deployment phase are the end-users which correspond 
to the notion of "user" found in the TCSEC. In an embedded system, the personnel in the first phase 
are the developers, the personnel in the middle System Build phase are the System Administrators (in the 
TCSEC sense), and the personnel in the deployment phase, come from a very restricted set of "users" of 
the embedded system. Furthermore, these restricted "users" do not have many of the trust characteristics 
traditionally associated with "users" in the TCSEC sense. In fact, many TCSEC requirements pertaining 
to "users" (Identification, Authentication, Trusted Path, and DAC) are satisfied through a combination of 
physical and procedural mechanisms in the System Build phase. 

3     Traditional Development Model 

The traditional software development model, shown in Figure 1, consists of a development effort followed 
by the operation and maintenance of the software. The software development project usually consists of 
many activities or phases, such as requirements specification, architecture specification, design, coding, 
testing, and maintenance. These steps are all aimed at producing a complete system which can be operated 
independent of the development process. Once the software development is accomplished the software 
passes into an operational phase where no new development is done and only routine maintenance occurs. 
This two phase nature of developing software using one set of requirements and operating it in a separate 
environment is reflected in the TCSEC requirements which distinguish between configuration management 
during development and trusted facility management for the operational system. 
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3.1     Problems With The Traditional Development Model 

The traditional development model applied to embedded systems would suggest that all applications are fixed 
at deployment. However, during a mission, an embedded computer typically needs access to information 
such as data tables which are specific to that mission. When can this information be specified? This mission 
specific information will be unknown to software developers. On the other hand, the embedded system user 
may not know this information; in fact, she or he may be expecting to get the information from the embedded 
computer. 

Another flexibility problem concerns minor variations in ranges of configurations. Different missions may 
require minor variations in types of I/O devices connected to the embedded computer, or the sensitivity of 
application programs. Again, neither the software developers nor the embedded system user is appropriate 
to specify the system configuration. 

A second type of problem with the traditional development model is system performance. The traditional 
model leaves much specific rights checking until the software runs. For example, an access request may 
require identifying the subject, identifying the object, determining the security level for each, checking the 
mandatory access policy, determining discretionary access information for subject and object, and applying 
the discretionary access policy rules. Following such a generalized algorithm means that rights checking is 
probably taking more processing time than is necessary. In a real-world embedded system, where microsec- 
onds are precious, such unnecessary processing may lead to unacceptable system performance. 

Another performance problem involves user authentication. When the embedded system has a single user, 
and the entire mission phase consists of one contact between the user and the embedded system, traditional 
login-based approaches to user authentication will tend to use unnecessary system resources. For example, 
the extra memory needed to keep password verification code and data should be avoided. We may also 
mention in passing that in some applications it may be undesirable to spend the time it takes to log on, 
especially given that the user may be under stress. 

4     System Build and The Three Phase Development Model 

4.1     The System Build Approach 

We at Hughes Radar Systems Group and Trusted Information Systems are attacking the problems of trust, 
flexibility, and performance by proposing a three phase development model incorporating a new, middle 
phase known as System Build. During the System Build phase a Security Administrator uses the executable 
software created during the development phase to produce a load image containing software, mission data 
tables, and the Access Control Table specific to that mission. 

The development phase is similar to the traditional model; however, the trusted System Build tool is also 
produced. The operational phase (also called the "mission phase") is largely the same as in a multi-purpose 
systems (except as discussed in Section 2.1). However, this phase does not begin until the actual time of 
mission definition. 

An overview of the three phase development model is given in Figure 2. 

Specifically, the load image produced in the System Build phase includes these items: 
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• The data tables and the software needed for the specific mission. The System Build Security Admin- 
istrator can exclude unnecessary software and data files. Furthermore, files which are included can 
contain mission-specific data. 

• An Access Control Table which allows efficient rights checking. During the mission phase, rights 
can be checked with a fast table look-up based on subject id. The comparative dominance relation 
computation is not necessary having been pre-computed at system build time during generation of the 
Access Control Table. 

The System Build process is described in more detail in following sections. 

4.2     Properties Of Embedded Systems Needed For System Build 

The System Build approach is designed for embedded systems having a requirement for high performance. In 
addition, systems using the System Build approach as described in this paper need to have these properties: 

• Access control rights are static. That is, subjects and objects are neither created nor removed, and 
access rights for a subject to an object1 are unchanging during a mission. 

Since the software environment in a typical embedded system is static (See Properties 3 and 4 in section 
2.1), these properties should normally be easily achieved. 

Relaxing this restriction is discussed in section 4.6. 

• The system has exactly one "user" per mission (See Property 1 in section 2.1). 

• No programming is done on the embedded system during the mission (See Property 6 in section 2.1). 

• All external devices are single-level. In particular, any device producing output for the system user 
can be assigned the user's security level (See Property 5 in section 2.1). Since the user's interactions 
with the system are restricted and well defined, this should not be a problem. 

While not all embedded systems have all the above properties, we believe that the System Build approach 
is widely applicable. 

4.3    Philosophy Of Protection Supporting System Build 

The System Build philosophy of protection includes these points: 

1. The objects in the embedded system include files, message classes, etc. 

2. The subjects are programs and external devices.    (The human user is not a subject.    Rather the 
specialized input/output devices he or she uses are included as subjects.) 

1 For simplicity, only subject/object entries in the Access Control Table are discussed in the paper because the same consid- 
erations apply to subject/subject entries. 
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3. The rights for subject/object accesses in the embedded system are kept in an Access Control Table. 
(The Access Control Table is logically a two dimensional array, with the rows representing subjects, 
the columns representing objects, and the entry in a particular row and column representing the access 
rights of that subject to that object.) The Access Control Table is created offline by the System Build 
program and used by the TCB during the mission phase. 

4. The Access Control Table is constant during the mission phase. This is possible because the access 
rights are static as discussed in section 4.1. 

Because the Access Control Table is static, it is possible to check whether any Access Control Table is 
"secure"; i.e., is in agreement with the embedded system's security policy. Consequently during the mission 
phase a subject/object access which is allowed by a secure Access Control Table is in agreement with the 
security policy. 

This implies that during the mission phase the TCB only needs to determine subject and object identities 
to check access rights; in particular, the TCB does not need to compare security levels against a dominance 
relation (i.e., the TCB performs a simple table look-up instead of computing a point on a lattice). This 
typically allows the TCB to execute faster. 

4.4    The System Build Process 

The System Build program is run by the Security Administrator (or a designee) on a trusted offline computer, 
typically once per mission. 

There are three inputs to a System Build run: 

1. The software to be loaded into the embedded computer. This would include the Trusted Kernel, 
untrusted parts of the operating system, trusted application software2, and untrusted applications. All 
of this is in executable form. 

2. The Security Configuration. This is more or less the information in the Access Control Table. The 
Security Configuration includes: 

• Identification, security level, and discretionary access information for each security subject. 

• Identification, security level, and discretionary access information for each security object. 

• Designation of trusted subjects. 

• All authorized direct accesses, giving subject, object, and type of access for each. 

• Any information required to support a denial of service policy, such as resource usage limits for 
each program. 

3. Mission-specific data files. 

Output from the System Build program is an image containing the input software, the Access Control 
Table determined by the Security Configuration, and the mission-specific data files. Output is written to an 
appropriate medium for later loading into the embedded computer. 

Example trusted application software includes system management programs and message downgraders. 
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The System Build program checks that the input obeys the security rules; if not, it does not generate an 
image. The security rules include these: 

• Each subject identifier must be unique; likewise for each object identifier. 

• Message classes going to or from an external device take on the security level of the external device. 

• The input subject/object access rights must be in concurrence with the security policy. The security 
policy will typically include rules like the simple security condition and the *-property. 

Each of these is a simple check. In particular, checking that the input access rights obey the security policy 
is simple due to the static nature of the access rights as discussed in section 4.2. (But see section 4.4.) 

It can be seen that using the System Build approach means that the security policy is applied at System 
Build time, while the mission time check is a simple, fast table access. This is analogous to the situation of 
hardware supported secure file reading. When a file is opened, a slow, software check is made to see that 
the requesting program is allowed to read that file; if it is, the hardware is set up to allow reading from the 
file, but only to the addresses owned by that program. Then when data transfers occur, a fast, hardware 
check is made to see that the transfer is to a legal address. In both cases, the slow, software policy decision 
is made only once, while repeated checking is done in a simple, fast manner supported by hardware. 

4.5     Identification and Authentication Through System Build 

Trusted embedded systems are often intended for use in a tactical or combat arena. In these environments 
it is not practical to require that the single "user" of the embedded system go through the process of 
automated login or use a trusted path. Nonetheless, the TCSEC requirements pertaining to Identification, 
Authentication, and Trusted Path are still significant. We believe that the System Build facility provides the 
mechanism to perform Identification, Authentication and Trusted Path prior to mission deployment where 
it is necessary for the "user" to react appropriately within a life-threatening situation. 

In the the System Build approach, the result of the build process is a software program which is user specific 
and usually also processor specific. The single user has exclusive possession of both the medium containing 
the TCB and other software and control of the embedded system itself. In this case, the fact that the TCB 
is loaded in the system provides both identification and authentication of the user. 

The user's actions in physically transporting the software to the system and loading it take on the properties 
of the trusted path. 

As described above, System Build creates an image for loading into the embedded computer. Since this 
image can be created on a mission by mission basis, it is possible to specify a build configuration on a per 
"user" basis. Then "user" Identification can be carried out through physical and procedural means involving 
a person identifying him or herself to the System Build Administrator. At this point then the "user" is 
authenticated to receive the image. At this point, the "user" and the image medium now function as a 
trusted path to the embedded system where it is loaded and brought to an operational state. 
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4.6    System Build With Non-Static Access Rights 

As described above, the System Build philosophy of protection is most effective if access rights are static. 
However, the System Build approach is applicable in some cases where access rights are not static. 

The motivation for System Build is to allow checking of access rights based only on subject and object 
identity (and the current contents of the Access Control Table). Therefore the System Build approach can 
be very effective even with non-static access rights providing these two properties hold: 

1. Access rights, rights to change access rights, can all be represented in an Access Control Table. 

2. For any such Access Control Table, it can be determined whether or not the security policy will always 
be maintained given that Access Control Table as initial state. 

Performing the computation to check the security of the Access Control Table, may require large amounts of 
computer time. However, the offline nature of System Build may mean that the computer time is available; in 
realistic embedded systems, it may be worthwhile to spend hours during System Build to save micro-seconds 
during the mission phase. 

A more exact characterization of the situations where the System Build approach is appropriate with non- 
static access rights is a subject for future study. 

5     Conclusions 

Mission-oriented embedded systems necessitate changing TCB's to satisfy mission specific requirements. 
However, modifying TCB's invalidates a TCSEC rating. We believe that by defining embedded system 
System Build as part of the TCB and evaluating its trust characteristics it will be possible to satisfy cer- 
tain TCSEC requirements, and provide trusted mechanisms for building mission specific trusted embedded 
systems. 

The use of a middle System Build phase provides significant advantages in the design and development of 
trusted embedded systems. We believe that the use of a System Build phase can increases the mission phase 
performance of trusted embedded systems. Further, we believe that there are high performance trusted 
embedded systems which are infeasible without the use of System Build. The approach presented in this 
paper provides three key advantages over traditional methods of developing trusted systems. 

• It is possible for trusted embedded systems to satisfy TCSEC requircments(Identification, Authenti- 
cation, DAC) which otherwise they might not be able to satisfy. 

• The use of a System Build phase allows increased performance of the mission phase. 

• System Build provides flexibility so that costly, complex embedded systems can be configured in a 
trusted manner to meet mission needs. 

180 



Acknowledgments 

Several people have contributed to the ideas developed in this paper. Glenn Ladd of Hughes suggested the 
concept of the mission phase as a static system with minimal users. Jeff Wagner of Hughes recognized the 
need for pre-allocation of access rights, and Gary Miyahara of Hughes developed the operating system concept 
in support of this. Marv Schaefer of Trusted Information Systems and Jerry Popek of Locus recognized that 
establishing the security of the static access matrix could be accomplished in a manner similar to that of the 
Trusted Kernelized VM/370[2]. 

References 

[1]  "Department of Defense Trusted Computer System Evaluation Criteria," DOD 5200.28-STD, December 
1985. 

[2] Schaefer, M. et al., "Program Confinement in KVM/370", Proc. 1977 ACM Annual Conf., p. 404-410. 

[3]  "Trusted Network Interpretation of The Trusted Computer System Evaluation Criteria", NCSC-TG- 
005, Version-1, July 1987. 

181 



COMBINING SECURITY, EMBEDDED SYSTEMS, AND ADA 
PUTS THE EMPHASIS ON THE RTE: 

ARTEWG ESTABLISHES A SECURITY TASK FORCE 

Fred A. Maymir-Ducharme, Ph.D 
I IT Research Institute 
Lanham, MD 20706 

(301) 459-3711 

David Preston, Ph.D 
Catholic University 

Dept. of Computer Science 
Washington D.C. 20011 

(202) 635-5193 

Mary Armstrong 
IIT Research Institute 

Lanham, MD 20706 
(301) 459-3711 

INTRODUCTION 

The security, embedded systems, and Ada 
language domains have never been unified. 
Systems soon to be implemented, such as the Air 
Force Advanced Tactical Fighter (ATF), are now 
forcing the development of integrated solutions to 
concerns in these areas. This paper will describe 
issues common to the three domains, identify the 
groups addressing them, and detail the work of 
the Ada RunTime Environment Working Group 
(ARTEWG) Security Task Force, whose charter 
is to focus exclusively on these issues. 

ISSUES RELATED TO SECURITY, 
EMBEDDED SYSTEMS, AND ADA 

Three previously distinct domains, security, 
embedded systems, and the Ada language, are 
rapidly becoming integrated. Before secure 
embedded systems can be implemented in Ada, 
many issues must be resolved. 

Traditionally, the domain of secure systems within 
the Department of Defense (DoD) was limited to 
information processing systems, commonly 
referred to as automatic data processing (ADP) 
systems.  The concept of security in these systems 

was limited to the prevention of compromise 
(e.g., nondisclosure of sensitive or classified 
information). The concept of security is 
expanding to include the preservation of integrity 
and the assurance of service. Secure systems will 
soon be expected to prevent compromise, preserve 
integrity, and assure service. 

This expanding concept of security is particularly 
challenging for embedded systems. In an 
embedded system, the computer or processor is 
just one of many hardware components. The 
primary objective of the system may be, for 
example, to control a weapons system or provide 
navigation support for an aircraft. Data 
processing is a means to support the objective, 
not an end in itself. Therefore, the data 
processing component of the system must support 
the system objective and be consistent with the 
system's requirements. 

Another attribute of embedded systems is, 
typically, their time-critical nature. Processing 
speeds must be consistent with system 
requirements to respond to external conditions. 
Inputs from radar, for instance, must be processed 
fast enough for the system to respond to a 
minimum number of the radar signals received. 
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Time, therefore, is a valuable and limited 
resource. For similar reasons, throughput is 
frequently near system capacity. The burden of 
security is imposed on these systems, which are 
already operating with limited resources. 

Embedded systems often function in the "system 
high" mode to avoid the overhead of supporting 
multi-level security. This "system high" approach 
is unsatisfactory for the embedded systems 
currently being planned. As a result, these 
systems must now meet greater security demands 
with fewer resources than were available to their 
information processing predecessors. 

The Ada programming language is the third 
component of today's military systems. DoD 
Directives 3405.1 and 3405.2 require the use of 
Ada for embedded and other DoD systems. 
Many of Ada's features directly support the 
implementation of security mechanisms. 

However, Ada is new to the security community, 
a community which favors languages and 
compilers with a well established track record. In 
addition to being new, the Ada RunTime 
Environment (RTE) presents unique concerns. 

Since embedded systems have no operating 
system, they have traditionally relied on an 
application-specific runtime executive to provide 
a limited set of operating system functions. The 
Ada RTE is generated by the compiler to provide 
this runtime support. With the increasing 
maturity of Ada compilers, there is increasing 
sophistication in the generation of RTEs. If, for 
example, a program does not use the concurrency 
mechanism of Ada, the compiler may not 
generate the portion of the RTE which supports 
concurrency. In this way each program compiled 
may generate a slightly different RTE. Please 
refer to the diagram below for a system view. 
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In merging the domains of security, embedded 
systems, and Ada, the RTE has become the 
primary focal point for several reasons. Although 
security mechanisms will be written in Ada, it is 
the RTE which will support the execution of the 
code. Gaining assurance that mechanisms are 
coded properly is necessary; but so is gaining 
assurance that the code will be executed as 
intended. Further, embedded systems typically 
have    real-time    requirements. Therefore, 
developers of compilers for these systems stress 
efficient implementation. The RTEs must be 
optimized. If security mechanisms are to be 
efficiently implemented, they must drive and 
exploit these RTE optimizations. Direct support 
of security mechanisms by the RTE may be the 
only viable way to simultaneously satisfy both 
security and timing requirements. Perhaps the 
largest question of the RTE is related to 
compilers producing different RTEs for different 
compiled programs. If security mechanisms are 
built into the RTE, then assuring that altering the 
RTE will not have a detrimental effect on the 
security mechanisms will be very challenging. 

GROUPS ADDRESSING THESE ISSUES 

Several government agencies have addressed 
various elements of secure, embedded systems in 
Ada. The National Computer Security Center 
(NCSC) has been investigating these issues since 
the mid-1980s. Their funded research has 
included assessing the viability of applying formal 
verification techniques to Ada, developing 
guidelines for the use of Ada on secure systems, 
and exploring an interpretation of the Trusted 
Computer System Evaluation Criteria (TCSEC) 
for embedded systems. The Defense Advanced 
Research Projects Agency (DARPA) has also 
funded research in formal verification of Ada 
software as well as in defining a process model 
for the development of trusted systems. The 
Rome Air Development Center (RADC) has also 
been involved in research in formal verification of 
Ada software and has researched software 
development methods for trusted systems. 

A joint industry-government working group is 
approaching these issues from a more pragmatic 
perspective because their implementation must 
meet these requirements. The Joint Integrated 
Avionics Working Group (JIAWG) consists of 
government personnel responsible for three major 

avionics systems in various stages of development, 
and representatives from the contractors 
supporting those systems. The systems are the 
Air Force Advanced Tactical Fighter (ATF), the 
Army Light Helicopter- Experimental (LHX), and 
the Navy Advanced Tactical Aircraft (A12). Each 
of these systems is an embedded system; each will 
have security requirements, and each is to be 
coded in Ada. To support the JIAWG, AdaJUG 
(Ada Joint Users Group) established the 
Common Ada RunTime (CART) requirements 
for a common RTE for the JIAWG applications. 
These requirements will include security 
requirements. 

The Ada 9X Project is currently managing the 
revision of the Ada programming language, 
ANSI/MIL-STD-1815A The revisions are being 
accomplished by several teams, including 
designers, users, and implementers. In addition 
to the existing teams (Distinguished Reviewers, 
the Requirements Team, the Mapping / Revision 
Team, etc.), the Air Force Armament Laboratory 
(AFATL/FXG) is forming the "Language 
Precision Team" (LPT). The LPT will address 
the security oriented and safety critical systems 
requirements for the Ada 9X project. This team 
will be contracted to provide the formal definition 
of various Ada language features such as the set 
of optimizations allowed by the Ada Reference 
Manual Chapter 11.6, and the formal Ada tasking 
state-transition      model. These      formal 
specifications are necessary in order to support 
highly predictable and reliable software. 

The primary volunteer organization to investigate 
Ada RTE issues is the ACM (Association for 
Computing Machinery) SIGAda (Special Interest 
Group - Ada) Ada RunTime Environment 
Working Group (ARTEWG). This group has 
recently established a task force chartered to 
identify and address security issues relative to the 
Ada RTE - the ARTEWG Security Task Force. 
ARTEWG and the Security Task Force include 
individuals from government, industry, and 
academia. 

RELATED PAST WORK 

The Security Task Force will draw on several 
previous efforts as a basis for its work. 
ARTEWG has published several documents 
describing Ada runtime environments: 
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• Catalogue of Ada Runtime 
Implementation Dependencies 

• A Framework for Describing Ada 
Runtime Environments 

• First Annual Survey of Mission Critical 
Application Requirements 

• Catalogue of Interface Features and 
Options for the Ada Runtime 
Environment (CIFO) 

A Model Runtime System Interface 

These documents describe the requirements for 
RTEs, their components, potential differences 
when implemented with Ada features, and 
interfaces between RTEs and applications. 
ARTEWG has also proposed that an Ada 
Runtime Dependencies Guide be developed. This 
document is intended to identify and clarify 
aspects of the Ada language that are dependent 
on the implementation of the runtime 
environment and to provide guidance on the use 
of such implementation dependent Ada features. 

The National Computer Security Center (NCSC) 
has funded several studies to examine software for 
trusted systems, most recently the "Study of the 
Use of Ada in Trusted Computing Bases (TCBs) 
to be Certified At Or Below the B3 Level." Ada 
offers various specific benefits for the 
development of TCBs, such as strong data typing 
facilities, information hiding with the use of 
packages, and the capability to create TCB 
systems that exhibit modularity. This study maps 
the Department of Defense Trusted Computer 
System Evaluation Criteria (TCSEC) (DoD 
5200.28-STD) to the software development 
process. It also provides programming guidelines 
for developing Ada software for TCBs. 

The three JIAWG applications, ATF, A12, and 
LHX, are each scheduled to be coded in Ada. 
The JIAWG Security Policies are, therefore, 
documents that apply to secure, embedded 
systems to be developed in Ada. The documents 
are, however, language independent. Two other 
documents, each currently in draft form, will 
directly address and affect security. The JIAWG 
common avionics architecture document will 
define bus bandwidths and other architecture 
characteristics   that   will   affect   such   security 

concerns as the system's ability to support 
sensitivity labels. The JIAWG software 
engineering environment (SEE) requirements 
document will define requirements which will 
determine the extent to which the SEE can 
provide automated support of security 
mechanisms during the development and 
maintenance of the JIAWG platforms. 

The "Workshop on Issues of Integrity and 
Security in an Ada Runtime Environment" was 
held on April 3-5, 1990, in Orlando, Florida. 
The workshop was co-sponsored by IIT Research 
Institute (IITRI), the University of Houston - 
Clear Lake, and the Ada Joint Program Office 
(AJPO). The workshop brought together 
specialists from both, the Ada and security 
communities. The attendees defined two goals. 
The first goal was to identify and discuss the 
security and integrity issues related to an Ada 
runtime environment, and the second was to 
create some synergy between the two groups in 
order to address these issues thoroughly and to 
establish the communications necessary for future 
work in this area. 

The participants in the workshop were divided 
into three working groups: the Ada Runtime 
Working Group, the Access Controls in 
Distributed Environments Working Group, and 
the Formal Methods Working Group. 

Ada Runtime 

The Ada Runtime Working Group focused on the 
security and integrity issues (this paper uses the 
phrase "security and integrity" to represent the 
three security mandates: prevention of 
compromise, preservation of integrity, and 
assurance of service) that are a result of Ada 
RTEs. This working group was chaired by Ms. 
Dock Allen of Control Data and Mr. Richard 
Powers of Texas Instruments. The group 
addressed the following issues: the identification 
of general threat types; the definition of a 
working model of the Ada RTE and its interfaces; 
the analysis of security issues for typical Ada 
runtime features; the allocation of security 
requirements to a typical Ada runtime; and Ada 
features required to build integrity into 
applications. The working group developed a list 
of functions typically supplied by an RTE (such 
as scheduling, initializations, and communication 
between  tasks).     This  list  was  then   used   to 
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analyze parts of the Ada RTE (and functions of 
Ada) that may be considered a risk to security 
and integrity. The working group concluded with 
the following recommendations for future work: 

• Evaluate the feasibility of using host tools 
to check programs for secure and 
high-integrity use of Ada. 

Evaluate ARTEWG's CIFO from a 
security and integrity perspective. 

• Propose and evaluate alternate TCB 
software architectures. 

• Propose and evaluate alternative 
approaches to subject boundaries (fire- 
walls). 

Evaluate where current compilers do not 
efficiently support Ada features (such as 
dynamic memory management) that are 
valuable for security and   integrity. 

• Identify hardware support needed for, or 
beneficial to, proposed secure software 
architectures. 

Develop guidelines for the use of Ada in 
secure, high-integrity systems. 

• Examine and recommend approaches for 
tools to control use of Ada external 
runtime library (XRTL) features. 

of the University of Houston, Clear Lake, 
addressed the research and development issues 
necessary to facilitate practical progress in future 
security projects of wide significance. This group 
focused on the capabilities that are unlikely to be 
available in a timely fashion unless these 
research and development issues are properly 
addressed; these issues included access control in 
distributed environments, to include the balance 
between the functional requirements of a project 
and the nonfunctional requirements, such as 
timing and spacial constraints; the semantics of 
access control in distributed target environments, 
supporting dynamic, multilevel security and 
integrity in an incrementally evolving, distributed 
target environment; issues of a trusted computer 
base (TCB) that extend across portions of the 
hardware, the Ada RTE, the extended runtime 
library (legal extensions such as those proposed 
in ARTEWG's CIFO), and parts of the 
application (this included discussion on the fire- 
walled portions of the applications); and the 
multidimensional issues involved in the mapping 
of DMLSI (distributed multi-level security and 
integrity) concerns to considerations of hardware, 
software criticality and sensitivity, and time and 
space. In response to these issues, the working 
group   developed several recommendations: 

• Evolve a standard, Conceptual Reference 
Model (CRM) for runtime environments 
tasked to support mission and 
safety-critical applications in distributed 
environments. 

Continue to identify, evaluate and address 
security-related Ada RTE issues and 
problems. 

Foster     research     addressing 
verification of concurrent Ada. 

formal 

As the highest priority for the use of the 
CRM, specify and develop the distributed 
kernel's interface set. The CRM interface 
set should support a "single site image"; 
that is, the distributed nature should be 
transparent. 

• Develop   guidelines   for   the   use   of 
ARTEWG's CIFO with secure systems. 

In the interest of security, the group also strongly 
supports any effort to provide more predictability 
and formalism for Ada in the Ada 9X Project's 
revision of the language. 

The Federal government should contract 
for     actions ranging     from     the 
development of proof-of-concept 
implementations, validation test suites, 
etc., to formal models and methods for 
the distributed kernel and distributed 
applications. 

Access Controls in Distributed Environments 

The Access Controls in Distributed Environments 
Working Group, chaired by Dr. Charles McKay 

Similar government contracts should 
follow to create new CIFOs for 
distributed information services, 
distributed      communication      services, 
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distributed configuration-control services, 
and distributed operating-system services. 

Formal Methods 

The Formal Methods Working Group, chaired by 
Dr. John McHugh of Computational Logic, Inc., 
addressed a variety of issues associated with the 
Ada code that becomes part of a TCB - 
regardless of whether this code represents a 
trusted application, a runtime system (RTS), or 
an   operating-system kernel. 

The group agreed that the TCSEC is understood 
reasonably well; nonetheless, it is not a basis for 
a true formalization of security. With an 
increasing tendency towards the formulation of 
mission-specific security policies and the notion 
of trusted applications, a more flexible and 
general framework is appropriate. The group 
identified a list of research and technology 
transfer issues: 
• What methodologies are suitable for using 

formal methods to develop and maintain 
trusted Ada runtime systems? What are 
the concepts that need to be 
axiomatized? What is a good formal 
language to express security and integrity 
properties? What are the appropriate 
paradigm and vocabulary? What are 
appropriate formal methods for security 
and integrity in Ada? What is a formal 
language that flows down well into 
system/software implementation 
languages such as Ada? What tools are 
required to support the above methods 
and methodologies? 

What is the relationship between the RTS 
and application security and   integrity? 

Is there an incremental approach to the 
development of formalisms, methods, 
and tools? What useful short-term 
research results can be obtained through 
incomplete and/or approximate 
formalisms? (For instance, how do we 
handle ambiguous and incomplete 
runtime models?) 

The technology transfer issues listed were: 

• How     should     formal     methods     be 

introduced into practice? 

• What we can say today about handling 
with     the     informality     of     existing 
languages, systems, and specifications? 

In conclusion, the working group's position was 
that we should investigate further the use of Ada 
safe subsets. Work has been done in this area by 
TRW (ASOS), Odyssey Research Associates 
(Penelope), Computational Logic, Inc. (AVA), 
and the National Physical Laboratory, U.K. (Low 
Ada). 

FUTURE DIRECTIONS OF THE 
ARTEWG SECURITY TASK FORCE 

ARTEWG recognizes the industry's need to 
address security issues from the runtime 
environment perspective. Sufficient interest and 
issues were raised at the 1989 Fall ARTEWG 
meeting to justify the creation of a new task 
force to address these issues. The newly formed 
Security Task Force, chaired by Dr. Fred Maymir- 
Ducharme, formally met for the first time at the 
Winter 1990 ARTEWG meeting to define the 
task force charter. The charter states that the 
task force will concentrate on runtime 
environment issues germane to security and 
integrity. The purpose of the task force is to 
study security issues associated with the Ada RTE 
and report the findings. This task force will 
review the output from the other ARTEWG 
subgroups and task forces, and it will make the 
necessary recommendations to ensure that 
security issues have been adequately addressed. 
Security restrictions, architectures, guidelines, 
standards and modelling techniques are some of 
the issues presently addressed, as well as their 
relationship to the "Orange Book" (TCSEC - 
DoD 5200.28-STD). The group's first two tasks 
were identified. The first task is to review the 
current CIFO entries and identify the associated 
security issues and concerns. The second is to 
generate and centralize the following information: 
current security technologies; models and 
architectures; and a glossary of security 
terminology and references. The Security Task 
Force will produce two documents. The first 
report will identify and define the relevant RTE 
security issues. The second report will provide a 
summary of the research and evaluations done by 
the task force. The task force will document 
approaches currently  in  use,  propose  security 
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approaches, and provide guidelines for the 
support of these approaches. 

The first two meetings of the Security Task Force 
resulted in several action items. The group will 
review the CIFO entries and the relevant Ada 9X 
Revision Requests (RRs) to identify the security 
concerns associated with each entry. The 
resulting reports will be submitted to the 
ARTEWG group working on the CIFO and to 
the Ada 9X Project Office. It is also planned 
that they be published in Ada Letters. Another 
action item is to establish communication with 
other groups addressing similar security issues. 
The CMU group implementing additional features 
for the MACH operating system and the IEEE 
group defining the POSIX operating system 
standards are two such groups. The task force 
will investigate the status of the POSIX group 
dealing specifically with security and supply 
POSIX with the appropriate support and 
information on Ada RTE security binding issues. 
The task force also plans to review the "Secure 
MACH" (aka: T-MACH or Trusted MACH) 
requirements and supply the necessary feedback to 
the Navy's Next Generation Computer Resources 
(NGCR) organization. Several topics of interest 
to ARTEWG, include: 

• interpreting security and trust 
requirements to implement application 
systems at the C2 level; 

• using formal methods to address integrity 
and security issues for Ada RTEs; 

• resolving requirements for security and 
optimization; 

architectures   for   secure   Ada   runtime 
support; and 

Low Ada and a trusted Ada kernel. 
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INTRODUCTION 

Scope and Purpose 

This paper presents three approaches to the protection of sensitive unclassified information against 
unauthorized disclosure, two based on U.S. policy and one based on Canadian policy. An analysis of the 
approaches is provided based on the differences in how each approach defines hierarchical levels and 
non-hierarchical sets of sensitive1 information, and the basis for determining the "trustworthiness" of 
the users. In addition, the approaches discuss the use of Trusted Computer System Evaluation Criteria 
(TCSEC) trusted technology to meet the confidentiality (non-disclosure) protection requirements. 

This paper came about largely due to the fact that there is no comprehensive guidance in effect 
today that covers the protection of sensitive unclassified information. The authors have all spent consid- 
erable time and energy in trying to develop some guidance for different communities of interest (i.e., 
Federal Government, Department of Defense (DOD), Canadian Government, and private sector) and 
have had little success in developing uniform protection requirements. It is our hope in presenting this 
paper with these three proposed approaches, that a framework suitable or adaptable to all communities 
of interest will emerge. 

This paper addresses computer security requirements relating to confidentiality, and does not 
include requirements relating to integrity or availability. Integrity and availability, however, are at least 
as important as confidentiality in many applications handling sensitive information. This must be care- 
fully considered when determining the overall computer security requirements of a system. In addition, 
only computer (i.e., technical) security issues are addressed which can be dealt with by use of trusted 
systems technology. It is assumed that the appropriate physical, administrative, procedural, emanations, 
communications, and other related protection measures adequate to the sensitivity of the information 
being handled are already in place. 

U.S. Policy 

Numerous policies exist that require U.S. Federal agencies to protect sensitive information. There 
are two general mandates: (1) Public Law 100-235, The Computer Security Act of 1987, which requires 
that systems processing sensitive information be adequately protected [1], and (2) OMB Circular 
No. A-130, which establishes requirements for Federal agencies to protect sensitive information [2]. 

In addition, other statutes, laws and policies exist that require the protection of specific types of 
information. Much of this information is unclassified information that is exempt from release under the 
Freedom of Information Act. Other statutes and policies include The Privacy Act of 1974, The Adminis- 
trative Procedures Act, Title 18, U.S. Code 1905, The Bank Secrecy Act, The Foreign Corrupt Practices 
Act, and DOD Directive 5100.36 (Defense Scientific and Technical Sensitive Information). 

1 In this paper, the term "sensitive" refers to sensitive, unclassified information. 
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What is Sensitive Unclassified? 

Public Law 100-235 defines sensitive information as follows: 

... any information, the loss, misuse, or unauthorized access to or modification of which 
could adversely affect the national interest or the conduct of Federal programs, or the privacy 
to which individuals are entitled under the Privacy Act, but which has not been specifically 
authorized under criteria established by an Executive order or an Act of Congress to be kept 
secret in the interest of national defense or foreign policy. 

Examples of sensitive information include privacy information, proprietary information, financial infor- 
mation, personnel information, procurement sensitive information, research information, program plans, 
and contract information. 

It appears to be generally accepted that there are various levels and kinds of sensitive information, 
some of which may require stronger protection mechanisms than some classified information (e.g., infor- 
mation involving extremely large financial sums, critical mission-sensitive information). It is our belief 
that sensitive information is not part of the same hierarchy (i.e., not on the same lattice) as classified, 
but is on a number of separate lattices depending on the kind of information and the security domain in 
which it exists. Within the Federal Government and certainly within the private sector, numerous lat- 
tices may exist. The protection of business and financial data crucial to commerce and industry is as 
important to the national interests as to corporate survival, and requires high levels of protection. 

Approaches to Defining Protection Requirements 

Establishing and implementing an Information Security (INFOSEC) program involves identifying 
the sensitivity of information and determining an appropriate level of trustworthiness for individuals 
accessing the various types of sensitive information. This practice is well understood for the protection 
of classified information. The DOD has defined user clearance levels and classification guides that 
assist the information owner in determining the appropriate level of classification for various types of 
information. The determination of the appropriate sensitivity should include the evaluation of the value 
of the information both to the organization and to potential unauthorized users. No standards such as 
clearance and classification currently exist for sensitive information. 

In addition to identifying the appropriate information sensitivity, standardized procedures for the 
marking and handling of sensitive information are needed. The DOD has precise policies outlining 
accountability, storage, transmission, and destruction requirements for classified information, and simi- 
lar policies are needed for sensitive information. 

THREE PROPOSED APPROACHES 

This section describes three proposed approaches for disclosure protection of sensitive informa- 
tion. The NIST approach for protecting sensitive information in Federal government computer systems 
described below is broader and more general than the proposed DOD or Canadian approach. 

NIST Approach 

National Institute of Standards and Technology (NIST) guidance applicable to all Federal depart- 
ments and agencies must be general enough to permit those organizations to develop their own specific 
implementation approaches. NIST has developed some basic principles for protection of sensitive infor- 
mation including the use of trusted systems technology, and is in the process of expanding these princi- 
ples into formal guideline documents for Federal agency use. The following information represents an 
overview of those principles and some conclusions that may be drawn from them. 

The Computer Security Act of 1987 assigns NIST the responsibility for developing security standards 
and guidelines for unclassified Federal computer systems (except certain special-purpose DOD "Warner 
Amendment" systems) [1]. NIST is therefore responsible under the Act for advising Federal agencies, 
DOD among them, on the applicability and use of protective measures, including trusted systems tech- 
nology, in Federal computer systems that process unclassified information. This includes recommending 
methods of identifying, marking, and protecting sensitive information resident in computer systems. 
NIST is also responsible under the Act for assisting the private sector upon request in using and apply- 
ing the results of the security standards and guidelines program.   Accordingly, NIST guidance should be 
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broad enough to be helpful to the private sector as well as to Federal agencies. 

Establishing Basis of User Trust 

Job-related need has traditionally been the primary basis for permitting access to information sensi- 
tive to disclosure. User trustworthiness has been a secondary and supporting requirement satisfied 
either implicitly or overtly. Within the classified community, trustworthiness has been based overtly on 
an investigation of some sort leading to a security clearance. Although mechanisms exist to establish 
analogs of that process in Federal agencies via Office of Personnel Management (OPM) position sensi- 
tivity levels, these have not been widely implemented in many agencies. No comparable program exists 
to any magnitude in the private sector. 

Most organizations will continue to depend upon job function as the principal basis for permitting 
access, with the trust requirement satisfied implicitly by job definition. Access to job-related sensitive 
material where required is generally considered to be an integral part of the job duties, and failure to 
adhere to confidentiality requirements for the job can be a basis for adverse action. Therefore, "need- 
to-know" in the strict job-related sense of that term is the single common basis for trust leading to infor- 
mation access in the civil and private sectors. 

Organizations often desire to more formally delineate levels of trust beyond job definition, based 
on a variety of factors, such as grade level of the employee, years of service, or demonstrated prior 
trustworthiness. Consideration of such factors in essence constitutes a risk analysis of the likelihood of 
disclosure by a particular employee. Some organizations, which feel it is warranted by analysis of risk, 
may choose to adopt the OPM position sensitivity level process. 

Partly because there is no generally applicable structure for identifying levels of trustworthiness, the 
NIST security approach stresses the use of the risk management process to determine adequate safe- 
guards for a particular system. A risk analysis considers system-related assets and vulnerabilities, along 
with potential threats and their likelihoods, and forms the basis for cost-effective security decisions via 
the countermeasure selection process. 

Information Sensitivity to Disclosure 

Four basic principles of information sensitivity to disclosure must be discussed. 

1. Some TYPES (also called "categories") of information can be identified that, if disclosed without 
proper authority, inherently could do harm to the organization, its employees, or others. The Freedom 
of Information Act encompasses most of those types in its list of matters exempt from disclosure, and 
other agency-specific types may be identified. 

2. Arbitrary LEVELS of sensitivity to disclosure can be established for most of those types of informa- 
tion. Those levels are typically expressed in degrees of potential consequences to the organization's mis- 
sion or harm to individuals. 

3. It is feasible to map between a level of disclosure sensitivity and a set of protection requirements that 
must be met to protect the information at that level. Operating environments where the information 
might reside each have their own inherent protection mechanisms and risks which need to be addressed 
to assure the requirements are met. 

4. In the absence of labeling standards, it is difficult to assure a clear mapping of disclosure protection 
requirements across security domains for information of the same sensitivity type or level. For instance, 
two security domains called the Federal Bureau of Investigation (FBI) and the Bureau of Indian Affairs 
(BIA) might both use a sensitivity type called "internal working papers," with little inherent comparabil- 
ity in protection requirements for information assigned the same level. If the FBI were to loan files to 
the BIA, special effort would be required to assure that the BIA protected the information according to 
the protection policies of the FBI. 

The following example of some arbitrary hierarchical levels of disclosure sensitivity has been sug- 
gested to show how agencies could construct their own information categorization schemes and set 
minimum standards of protection. Three disclosure sensitivity levels (from "low" to "high") appear to 
be the most useful, plus a "null" level for information releasable to the public. Sample definitions of 
these levels are as follows: 
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Agency Level 0 (null) — No special disclosure protection is required (although integrity and availa- 
bility protection might be needed).  No damage due to unauthorized disclosure is anticipated. 

Agency Level I (low) — Unauthorized intentional or inadvertent release of information could 
minimally compromise effectiveness of Department or Agency. Could also include inconvenience 
to individuals or very minimal privacy violations. Normal protective requirements on multi-user sys- 
tems for this level are user identification and authentication and personal accountability as a 
minimum. 

Agency Level II (moderate) — Unauthorized intentional or inadvertent release of information could 
seriously compromise effectiveness of Department or Agency. Could also include significant possi- 
bility of harm to individuals or serious violation of privacy. Normal protective requirements on 
multi-user systems for this level include those for Level I, plus access controls based on job func- 
tion, and security anomaly detection as a minimum. 

Agency Level III (high) — Unauthorized intentional or inadvertent release of information could 
gravely compromise effectiveness of Department or Agency. Could also include strong likelihood 
of grave harm or death to individuals. Normal protective requirements on multi-user systems for 
this level include those for Level II, plus strict compartmentation of types and levels of information, 
and stringent measures to protect information while in storage and in networks, all supported by a 
high degree of assurance. 

Guidance on Use of Trusted Systems for Confidentiality Protection 

The following concepts represent the core of NIST guidance on confidentiality protection via 
trusted systems. This guidance consists of a set of general principles applicable to all Federal agencies 
and computer systems that fall under the Computer Security Act. NIST is engaged in developing more 
comprehensive guidance on the use of trusted systems technology for confidentiality, integrity, and avai- 
lability protection. 

1. General Guidance — Risk Management Required. NIST recommends the use of trusted systems 
technology to agencies with significant requirements for adequate and cost-effective access control pro- 
tection. Such requirements exist when there is a need for safeguarding principally the confidentiality and 
secondarily the integrity of information. In addition, the assurance process which is a part of trusted 
systems technology can help support system availability requirements. Cost-effectiveness is achieved 
when computer security controls, including trusted systems technology, are selected which are commen- 
surate with the risk and magnitude of loss within a particular operating environment. This risk manage- 
ment process should balance security and performance requirements to provide for effective security and 
privacy of sensitive information in the system. Use of trusted systems technology, like any other security 
mechanisms, should substantially increase the protection when compared to acquisition, operating and 
maintenance costs of the security mechanisms. 

2. Selection of Products from the EPL. Agencies with a need for systems with trusted technology 
features should select those systems from the National Security Agency's Evaluated Products List (EPL). 
If EPL products are not available, then agencies may select or design systems that best meet their secu- 
rity requirements using the TCSEC, the "Orange Book," as a guide [3]. 

3. Use of Class C2 Systems. Systems designed to meet C2 or higher classes of the TCSEC should first 
be considered when acquiring multi-user computer systems with a requirement to control user access to 
information according to need-to know and authorization. The C2 and other TCSEC criteria were 
designed to achieve confidentiality through improved access control. The same access control mechan- 
isms can also be beneficial for helping to maintain information integrity. 

4. Use of Division B Systems. Systems designed to meet the criteria of the B division of the TCSEC 
(especially Bl and B2) can be useful when acquiring multi-user computer systems with a requirement for 
mandatory separation of unclassified sensitive information and for which security labels can be esta- 
blished. Systems in that division are designed to enforce a mandatory access control or multi-level secu- 
rity policy.   However, the cost benefit considerations discussed earlier are particularly important here. 
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A Potential Matrix for Confidentiality 

In applying the guidance above to Federal unclassified systems which require confidentiality protec- 
tion, the matrix in Table 1 is suggested for discussion purposes only. The matrix is based on the four 
levels of information sensitivity proposed above, and takes into account the different types or categories 
of sensitive information on a system. Access to types or categories of information is based principally 
on job-related need, while access to levels of that information is based on an estimation of trust. 

It must be emphasized that determination of the requirement for a particular class of TCSEC trust 
(e.g., C2) must be based ultimately on cost effectiveness, as determined by a risk analysis, rather than 
on a simplistic matrix such as the following, which can serve only as a guide or rule of thumb. 

Table 1 - Proposed NIST Guidance 

Level of 
Disclosure 
Sensitivity 

One Type 
and Level 

2 or more 
Types 
or Levels 

III Bl (Note 1) B2 - B3 (Note 2) 
II C2 (Note 3) Bl - B2 (Note 4) 
I Cl - C2 (Note 5) C2 - Bl (Note 6) 
0 NR (Note 7) NR (Note 7) 

Notes to Table 1: 

1. Organizations processing Agency Level III information (highly sensitive to disclosure) on multi-user 
systems should consider using systems designed to meet Bl as a minimum. The enforced labeling 
and reduced capability for propagation of user rights would significantly help protect this highly sen- 
sitive information. 

2. Organizations processing more than one type of Agency Level III information on the same system 
should consider use of B2 minimum systems where the user populations desiring access to each type 
differ significantly or where there is a significant potential for harm from mis-identifying files or out- 
put products by type. This is also true when Agency Level III and lower levels of information of 
the same or different types are processed on the same systems simultaneously. When risk analysis 
shows there to be a need for better DAC, audit, trusted path, and assurance, the level of trust 
required could reach B3. 

3. Organizations processing Agency Level II information (moderately sensitive to disclosure) on multi- 
user systems should consider using systems designed to meet C2 as a minimum. 

4. Organizations processing more than one type of Agency Level II information on the same system 
should consider use of Bl minimum systems where the user populations desiring access to each type 
differ significantly or where there is a significant potential for harm from mis-identifying files or out- 
put products by type. This is also true when Agency Level II and lower levels of information of the 
same or different types are processed on the same systems simultaneously. When risk analysis 
shows there to be a need for better MAC, labeling, audit, and assurance, the level of trust required 
could reach B2. 

5. Organizations processing a single type of Agency Level I information (minimally sensitive to disclo- 
sure) on multi-user systems should consider using systems designed to meet Cl as a minimum. 
When risk analysis shows there to be a need for better DAC, auditing, or object re-use control, the 
level of trust required could reach C2. Based on our observations, NIST believes most Federal 
department and agencies will require at least C2 for their multi-user systems, especially when infor- 
mation integrity requirements are considered. 

6. Organizations processing more than one type of Agency Level I information on the same system 
should consider use of C2 minimum systems where the user populations desiring access to each type 
differ significantly. When risk analysis shows a significant potential for harm from mis-identifying 
files or output products by type, there may be a need for MAC, labeling, and better auditing. The 
level of trust required could reach Bl. 
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7.     No special disclosure protection would be required for systems which do not contain at least 
Agency Level I information. 

DOD Approach2 

This section presents a DOD approach to provide a method of "classifying" sensitive information 
and determining user trustworthiness. A proposal for minimum protection requirements (stated in terms 
of TCSEC classes) for confidentiality is also presented. DOD Directive 5200.28 [4], which implements 
the Computer Security Act for the DOD, defines sensitive unclassified information and states: 

...sensitive unclassified information shall be safeguarded at all times while in AISs. Safe- 
guards shall be applied so that such information is accessed only by authorized persons, is 
used only for its intended purpose, retains its content integrity, and is marked properly as 
required... 

Position Sensitivity Levels 

The OPM has broad oversight responsibility for the civilian personnel security program. The 
Federal Personnel Manual (FPM) [5] identifies personnel security as the process for complying with the 
national security interest requirements and discusses the need to determine personnel suitability as a 
requirement for Government employment with respect to a person's character, reputation, trustworthi- 
ness, and fitness as related to the efficiency of the organization. 

OPM has established four position sensitivity levels and criteria for designating a given position at a 
particular level, as well as investigative requirements for each level. Satisfactory completion of the inves- 
tigative requirements for a position sensitivity level may be used as a basis for determining the 
"trustworthiness" of an individual.  The definitions of the four OPM position sensitivity levels follow: 

NS - Non-Sensitive: Potential for impact involving duties of limited relation to the organization mis- 
sion with program responsibilities which affect the efficiency of the organization. (National Agency 
Check and Inquiries) 

NCS - Noncritical-Sensitive: Potential for moderate to serious impact involving duties of consider- 
able importance to the organization mission with significant program responsibilities which affect 
the efficiency of the organization.   (Limited Background Investigation) 

CS - Critical-Sensitive: Potential for exceptionally grave impact involving duties of clearly major 
importance to the organization mission with major program responsibilities which affect the effi- 
ciency of the organization.   (Background Investigation) 

SS - Special-Sensitive: Potential for inestimable impact involving duties especially critical to the 
organization mission with broad scope and authority (e.g., overall direction of a major government 
program) or other extremely important responsibilities which affect the overall efficiency of the 
organization.   (Special Background Investigation) 

The FPM is applicable only to civilian positions, and there is no similar DOD guidance for military 
positions that require access to sensitive information. One approach for handling military positions 
requiring access to sensitive information is that, where appropriate, DOD components adopt the OPM 
guidelines for determining position sensitivity levels. Another approach is to establish a correspondence 
between the investigative requirements for the OPM position sensitivity levels and DOD clearances. 

Information Sensitivity 

For the second dimension of protection requirements, this approach provides a structure of non- 
hierarchical sets and three hierarchical levels of sensitive information. There are three steps in deter- 
mining information sensitivity: 

2 This approach was derived from work supported by the NCSC under contract F19628-89-C-0001.   The opinions expressed do 
not necessarily represent the position of any organization. 
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1. Determining non-hierarchical sets of information. 

2. Determining the access control requirements for the information. 

3. Determining the hierarchical information sensitivity level of the information. 

Step 1 analyzes the information on a system to determine what (if any) non-hierarchical "sets of 
information" relating to specific subject areas exist. The term "sets of information" will be used to refer 
specifically to these non-hierarchical collections of specific information. Examples include PROCURE- 
MENT SENSITIVE, PAYROLL, INVESTIGATIONS, MEDICAL, PERSONNEL, PROJECT XYZ, 
and GROUP ABC. A subject would require some specific type of approval for the set of information 
before being allowed access to it. This approval may consist of a formal authorization process (e.g., sign- 
ing a non-disclosure form), or may simply be a matter of one's job function (e.g., all payroll clerks have 
access to payroll information). This approval process is typically outlined within an organization security 
policy. Sets of information are implemented to provide finer control over who has access to information 
within hierarchical sensitivity levels (even if the system only has a single hierarchical level). Non- 
hierarchical sets of information may also span multiple hierarchical levels. Access requirements might 
include demonstrated need-to-know for the performance of job-related functions, membership in a 
group, information ownership, or others. 

Once the appropriate sets of information have been identified, step 2 involves determining what 
type of access controls are required. The TCSEC discusses two access control policies for trusted com- 
puter systems: Discretionary Access Control (DAC) and Mandatory Access Control (MAC). This 
approach specifically identifies two types of sets of information based on the access controls applied: 
information groups and categories. Information groups are defined to be less formal than categories, 
and may be more appropriate when the set of information is considered less sensitive, and therefore 
require less stringent technical controls. DAC may be used to protect information groups. Categories, 
on the other hand, are more formal and generally require a person have some formal access approval 
and/or security indoctrination before being allowed access. Because of their sensitivity, categories 
require stronger controls than DAC; MAC provides these additional controls. The appropriate official 
responsible for the system must make a determination as to the type of access controls required for each 
set of information. This determination is based on factors such as the sensitivity and number of the sets 
of information, the authorizations of users on the system, and the processing environment. By examin- 
ing such factors, a decision is made as to how stringent the access controls must be for each set of infor- 
mation. 

In addition to the non-hierarchical sets of information, step 3 of this approach defines three 
hierarchical levels of sensitive information (Nl, N2, and N3). An unclassified level "U" as defined in 
the NIST approach (Level 0) may also be included here. 

Nl - Low Sensitive Information: The unauthorized disclosure of Nl information would cause 
minimal identifiable damage to an organization mission or reputation or person. 

N2 - Medium Sensitive Information: The unauthorized disclosure of N2 information would cause 
significant damage to a statutory responsibility of an organization. N2 information includes mission 
critical or organization operational information, and high technology related information which is 
restricted by law from exportation to certain countries. N2 is the minimum recommended hierarchi- 
cal information sensitivity level for both privacy information and proprietary information. 

N3 - High Sensitive Information: The unauthorized disclosure of N3 information would cause 
irreparable damage to an essential mission of an organization. Examples of N3 information are 
types of mission critical or organization operational information (defined to be higher in criticality 
than mission critical or organization operational information within the N2 category), and informa- 
tion that is life critical. The unauthorized disclosure of life critical information has the potential to 
result in the loss of human life. 

Dollar impact ranges may be defined by each organization for the hierarchical information sensi- 
tivity levels. A risk analysis may help determine the appropriate dollar impact values for a system. In 
addition, the association of specific civil or criminal penalties with the unauthorized disclosure of the 
information may be a driving force in determining the appropriate sensitivity level. 
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Protection Requirements 

Table 2 presents a matrix with the suggested minimum protection requirements for confidentiality. 
The computer security requirements recommended are minimum values. Environmental characteristics 
must also be examined to determine whether a higher class is warranted. Factors that might argue for a 
higher evaluation class include the following: 

1. High volume of information at the maximum information sensitivity level. 

2. Large number of users with low position sensitivity levels. 

3. Specific civil/criminal penalties associated with the unauthorized disclosure of the information. 

Table 2 - Proposed DOD Guidance 

Maximum Information Sensitivity 

Minimum 
Position 
Sensitivity 
Level 

u Nl 
or Nl 
Groups 

Nl 
Catgs 

N2 
or N2 
Groups 

N2 
Catgs 

N3 
orN3 
Groups 

N3 
Catgs 

U Cl Bl Bl Bl Bl B2 B2 

NS Cl C2 Bl Bl Bl Bl Bl 

NCS Cl C2 Bl C2 Bl Bl Bl 

CS Cl C2 Bl C2 Bl C2 Bl 

SS Cl C2 Bl C2 Bl C2 Bl 

Notes to Table 2: 

Although there is no recommended minimum for dedicated mode systems, the integrity and denial of 
service requirements of many systems warrant at least class Cl protection. 

Class C2 is the minimum recommendation for system high mode. 

Class Bl is the minimum recommendation whenever categories have been identified. 

The minimum recommended level of trust for environments processing sensitive information is 
Class C2. This is based on DOD Directive 5200.28. The C2 level provides DAC, which controls access 
to information based on permissions granted to the user, but does not support internal labeling of infor- 
mation.   In addition, C2 provides individual accountability and the maintenance of audit trails. 

Bl is the minimum recommendation whenever categories have been identified. In addition, even 
within a system high environment, Bl may be appropriate if specific civil/criminal penalties can be 
imposed for the unauthorized disclosure of the information, or if all the information is considered 
critical-sensitive. The primary reason for the Bl minimum recommendation for these environments is 
that Bl is the first TCSEC class to provide MAC and labeling. The combination of both MAC and 
DAC provide for a finer granularity of access control. MAC also prevents the free passing of access 
privileges, which is important in those environments with higher levels of information sensitivity, and a 
greater disparity between the minimum position sensitivity level and the maximum information sensitivity 
level. MAC is also recommended whenever information at two or more hierarchical levels is being pro- 
cessed, even if everyone is fully authorized. 
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Canadian Approach 

This section presents an approach currently proposed in Canada for determining the minimum 
computer security requirements for the protection of designated (sensitive) information. This approach 
is based on three factors: (1) a minimum user screening level, (2) maximum data sensitivity, and (3) the 
operating mode of the system. Based on these three factors, the approach provides a guideline for the 
selection of a Trusted Computing Base (TCB) for a particular application or environment. The TCB 
requirements are stated in terms of classes from the DOD TCSEC [3]. 

Minimum User Screening Levels 

Appendix F (Personnel Screening Standards) of the Security Policy of the Government of Canada 
[6] provides standards for the personnel screening process for individuals to be employed by the Govern- 
ment of Canada. These standards apply to all personnel employed either directly or indirectly (e.g. con- 
tracted services) by the Government. Personnel screening is carried out according to the highest level of 
information and assets which will be accessed in the normal performance of assigned job duties or con- 
tract requirements. For access to sensitive information, personnel screening involves the assessment of a 
person's reliability. There are two types of reliability checks: (1) a Basic Reliability Check and (2) an 
Enhanced Reliability Check. 

Basic Reliability Check (BRC): a condition of employment to the Public Service of Canada for all 
individuals who are appointed or assigned to a position in the Public Service or who are under con- 
tract, for more than six months and who will have regular access to government premises. It 
involves a declaration, that is included in an individual's consent to screening, concerning any con- 
viction for a criminal offence for which a pardon has not been granted; verification of personal 
data, educational, professional or trade qualifications, and employment data and references; and an 
optional criminal records name check. 

Enhanced Reliability Check (ERC): required when the duties of a position, or contract require- 
ments, demand a significant degree of access to designated (the Canadian term for sensitive) infor- 
mation or assets. Factors which are considered when determining the significance of access include 
the sensitivity, value, or volume of information or assets and the frequency of access. An enhanced 
reliability check involves a basic reliability check, a fingerprint check, and a credit check. 

Data Sensitivity 

Appendix C (Security Organisation and Administration Standards) of the Security Policy [6] pro- 
vides operational standards for the organisation and administration of the security of classified or desig- 
nated information and assets. Government institutions control information that lies outside the national 
interest category and, therefore, may not be classified. It may nevertheless be sensitive, merit designa- 
tion as such and require enhanced protection. Such information is generally identified in the Access to 
Information Act and the Privacy Act. However, not all designated information is of the same nature. 
Some is "particularly sensitive," the compromise or unauthorized disclosure of which could cause seri- 
ous or extremely serious injury. Examples could include medical records or details about confidential 
police sources on organized crime. Institutions in the government are required to conduct a thorough 
review of information holdings and assets, and to identify material that requires designation as sensitive 
material. 

Each institution must develop a classification guide. All information and assets which have been 
determined to have sensitivity in other than the national interest are to be marked PROTECTED. This is 
the standard marking which signals the application of minimum standards. Institutions have an option of 
adding the letter A, B, or C to the marking PROTECTED to indicate the need for varying degrees of 
security measures. The letter A can be added to the marking to indicate the requirement for minimum 
protection standards resulting in the marking PROTECTED A. 

Institutions are required to identify particularly sensitive information and apply security measures 
based on a threat and risk assessment. To counter additional threats that may apply, more stringent 
security measures are recommended for the protection of designated information that is particularly sen- 
sitive. Institutions have the option of adding the letter B to the marking PROTECTED to signal the need 
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for additional security measures. Because of the varying nature of particularly sensitive designated infor- 
mation and related threats, it is not to be assumed that the application of safeguards will be the same 
from one institution to the next. 

In a few cases, institutions hold designated information that, if compromised, may cause extremely 
serious injury, such as loss of life or serious financial loss. In such cases, special security measures may 
be warranted and institutions have the option of adding the letter C to the marking PROTECTED to sig- 
nal the need for special stringent safeguards. 

In all cases of extended markings (i.e. A, B, or C), it can not be assumed that the application of 
safeguards from one institution to the next will be the same. The policy therefore recommends a written 
agreement between the security offices of the institutions involved in sharing such information. 

Operating Modes of a System 

There are three operating modes which are considered in determining the protection requirements 
for systems processing sensitive information: 

Dedicated mode where all users associated with the system have a valid clearance, approved access, 
and a valid need-to-know for ALL information on the system. 

System high mode where all users associated with the system have a valid clearance and approved 
access for ALL information on the system, but do not have a valid need-to-know for all of the 
information on the system. 

Multi-level mode where all users associated with the system do not have a valid clearance and 
approved access for all information on the system, and have a valid need-to-know for SOME of the 
information on the system. 

Determining TCB Requirements for Government of Canada Computers 

As stated earlier, the guideline for determining the required TCB is based on the operating mode, 
the data sensitivity, and the user clearance. These three values are used to find an element in the follow- 
ing two tables.  The procedure used is as follows: 

(1) Find the entry in Table 3 corresponding to the minimum user screening of any user associated with 
a processor or system and the maximum data sensitivity on the processor or system. 

(2) If the entry in Table 3 is D/SH (i.e. Dedicated or System High), then Table 4 is referenced to find 
the appropriate TCB level corresponding to the operating mode of the system. 

Table 3 - Proposed Canadian Guidance 

Maximum Data Sensitivity 
Minimum 
Screening 

U NATO 
Restricted 

Protected 
(A/B/C) 

U C2 Bl B2 (Note 2) 
BRC D/SH D/SH B2 (Note 2) 
ERC D/SH D/SH D/SH 

D/SH means that this instance is covered by Table 4 

Notes to Table 3: 

1. All TCB requirements may be reduced by one level on the basis of a threat/risk assessment when 
operating in a closed environment or when user access is restricted to limited function/menu-driven 
terminals. 

2. If no "particularly sensitive" information is involved (PROTECTED A), a Bl TCB is acceptable. 
However, some "particularly sensitive" information (PROTECTED C) may warrant a B3 TCB 
based upon a threat/risk assessment. 
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Table 4 - Proposed Canadian Guidance 

Maximum Data Sensitivity 

Operating 
System Mode 

Unclassified Designated (NATO 
Restricted or Protected^ 

Dedicated D (Note 1) Cl (Notes 2/3) 

System High Cl Bl (Note 4) 

Multi-level C2 (Note 5) see Table 3 

Notes to Table 4: 

1. The security policy of the Government of Canada requires that even unclassified/undesignated 
information be afforded " ...basic protection reflecting good management practices." Therefore 
unclassified/undesignated information may require some protection, such as that provided by a Cl 
TCB when operating in dedicated mode with more than one user. 

2. A C2 TCB is recommended when processing "particularly sensitive" designated information (PRO- 
TECTED B and C) 

3. For dedicated mode, DAC is not required. However, object reuse (OR), identification and authen- 
tication (I&A), and audit (AUD) features are required when processing "particularly sensitive" 
designated information (PROTECTED C). These requirements can be satisfied using subsystem 
components having OR/D2, I&A/D2 and AUD/D2 ratings as defined in [7]. 

4. A Bl TCB is recommended when "particularly sensitive" information is processed with other 
designated data (when two or more of PROTECTED A, B and C are processed concurrently) to 
avoid the necessity of manual downgrading of less sensitive output. Mandatory Access Control is 
not required in System High Mode of operation so this feature of Bl TCBs may be disabled. 

5. All Government employees require a BRC as a condition of employment. Access to 
unclassified/designated Government information by unscreened individuals (those lacking a BRC) 
constitutes a form of multi-level operation. A C2 TCB is recommended for Identification and 
Authentication and for Audit capabilities. 

COMPARISON OF APPROACHES 

The previous section outlined three proposed approaches for the protection of sensitive informa- 
tion against unauthorized disclosure. The Computer Security Act of 1987 is the primary legal basis for 
the protection of sensitive information in the U.S. The NIST approach provides basic guidance for pro- 
tection via the implementation of trusted systems technology, and the DOD approach presents a pro- 
posed approach for the U.S. Defense community. For comparison purposes, Canada's proposed 
approach is also included. There are strong similarities between the three approaches; however there 
are some interesting differences.  These are discussed below. 

The lack of any well-defined (or even partially accepted) standards for user trustworthiness results 
in the greatest variation among the approaches. The NIST guidance in this area must be very broad and 
general due to the vast differences among Federal Agency missions and objectives. User trustworthiness 
may be stated as a quantifiable metric (such as using clearance levels based on well-defined background 
investigations) or a "warm fuzzy" metric (such as job-related need-to-know, years of service, demon- 
strated prior trustworthiness). The DOD approach adopts the OPM 5 position sensitivity levels 
(uncleared, NS, NCS, CS, and SS) for which background investigation requirements are defined. How- 
ever, the determination as to what OPM level is required for accessing various levels of sensitive infor- 
mation is not straightforward. The Canadian personnel screening requirements is more simplified in that 
only 3 levels of investigation (uncleared, BRC, and ERC) are defined. The Canadian approach also pro- 
vides a mapping between the reliability checks to designated levels of sensitive information. 

The data sensitivity dimension is similar in all three approaches; however, the emphasis in each 
differs. Both the NIST and DOD approaches define three hierarchical levels of sensitivity. The Cana- 
dian levels Protected A/B/C are not hierarchical in that access to Protected C does not provide access 
to Protected B, etc.   In this sense, A/B/C are very similar to the "sets of information" described in the 
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DOD approach. The NIST approach also discusses non-hierarchical "types" (i.e., categories) of infor- 
mation and factors the types of information into the determination of the TCB requirements. The DOD 
approach emphasizes that the sets of information (non-hierarchical) are necessary to provide a finer 
grain of access control within hierarchical sensitivity levels. However, even within the structure defined 
by each approach, the problems of sharing information across security domains still exist unless some 
labeling standards are adopted throughout the communities of interest. 

Another area in which the three approaches differ in emphasis is in their consideration of other 
factors for determining the appropriate TCB level. The Canadian approach explicitly uses operating 
mode in its calculation of protection requirements, and within the footnotes to the tables, references 
open/closed environment and user access mode. The DOD approach also discusses operating mode in 
the footnotes to the protection requirements matrix. Consideration of such factors is implicit in the 
NIST approach. NIST recommends that the determination of adequate protection requirements be 
based upon an analysis of the security risks of the environment. 

Finally, in the area of TCB level recommendations, the three approaches again are very similar. In 
all three approaches, C2 is the minimum recommendation for any environment (except for dedicated 
mode). Both the NIST and DOD approaches recommend C2 for system high mode processing. The 
Canadian approach recommends Bl for system high when "particularly sensitive" information is pro- 
cessed with other designated data (e.g., when two or more of Protected A, B, and C are processed con- 
currently). Bl is the minimum recommendation for multilevel mode in the DOD approach. The NIST 
approach also suggests Bl, although it allows more flexibility in choosing C2 or Bl by relying on risk 
analysis results to determine the minimum security requirements. The Canadian approach recommends 
a B2 TCB for multilevel mode, although a Bl is acceptable if only Protected A is involved. However, 
the Canadian approach also states that a B3 TCB may be warranted for Protected C information based 
upon a threat/risk assessment. The DOD and NIST approaches also recommend B2 when high-sensitive 
(Agency Level III) information is being processed. 

In summary, all three approaches stress that computer systems that process sensitive information 
require minimum computer security requirements. Many of the tools and mechanisms developed for 
handling classified information within computer systems also apply to computer systems that process 
sensitive information. The authors hope that work and progress will continue in the area of sensitive 
information protection and that a framework will emerge for all communities of interest. 
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ABSTRACT 

The Verdix Secure Local Area Network (VSLAN) is a Network Trusted Computing Base (NTCB) designed to interconnect host systems, 
workstations, printers, routers, gateways, terminals, and other devices operating at differing security modes and accreditation ranges. As of 
this writing, the product is in formal evaluation as a B2 MDIA network component. It is intended that system integrators will use the 
VSLAN as a NTCB foundation for trusted local area networks. In this paper, based on our integration experiences thus far, we identify 
technical considerations for future integrators, describe one of our integration experiences, and discuss some of the relevant implications for 
Designated Approving Authorities (DAAs). A significant implication for DAAs, as well as integrators, is the fact that fiscal pressures, the 
assurance ranges of available TCSEC TCBs, and the lack of evaluated network protocols and applications may result in integrations that 
are secure but rarely composite B2 networks consistent with the Single Trusted System (STS) view of the TNI. We fully believe that the 
resulting integrations will be accredited to process classified information but provide evidence that many factors will combine to require 
DAAs to adopt Interconnected Accredited AIS (LAA) or hybrid IAA/STS views of the resulting trusted LANs. 

1.   Introduction 
As background, we begin by providing a brief technical description of the VSLAN, by describing the two TNI network views, and by 
describing the current results of the NCSC commercial product evaluation. 

1.1. VSLAN Technical Summary 

The VSLAN consists of multiple trusted network interfaces, referred to as Network Security Devices (NSDs), and a dedicated central 
management facility known as the Network Security Center (NSC). The architecture is shown in Figure 1.1. Provided TNI Part I security 
services are: mandatory access control (MAC), discretionary access control (DAC), auditing, and identification and authentication (I&A). 
Provided TNI Part II security services are: communications field integrity, continuity of operations, protocol based denial of service protec- 
tions, network management, and data confidentiality. In addition to these security services the NSDs provide IEEE 802.3 media access1. As 
further background, it is beneficial to provide the relevant VSLAN definitions of MAC, DAC, audit, and I&A. 

For MAC, subjects are host or workstations and objects are datagrams. For each transmit and receive operation, NSD's perform MAC 
checks that insure the MAC label attached to each datagram is within the accreditation range of the transmitting or receiving NSD2. The 
Network Security Officer (NSO) defines the accreditation range of each host. In support of the MAC service, these accreditation ranges are 
downloaded from the NSC to each NSD upon its initialization. 

For DAC, the NSO, and only the NSO, is provided the ability to authorize or revoke associations (i.e. communications paths) between a 
principal and any NSD. These associations are two-way; both transmit and receive. A principal is the specific individual responsible for 
operation of a NSD. 

For audit, audit events are security relevant activities (e.g. key distributions, policy violations, etc.), security officer operations, and status 
changes. While it is true that objects are datagrams and subjects are hosts, the TNI requirements for introduction of objects into a user's 
address space are balanced with performance desires by allowing selection of this type of audit but not requiring it. Audit data is generated 
by NSDs and the NSC and stored and protected on the NSC.   Audit data is never lost. 

For I&A, principals are provided with an authentication token known as a Datakey. The Datakey is an EEPROM device that authorizes an 
individual to use one and only one NSD. NSD devices contain a keyceptacle device for insertion of the key. Without the correct key, net- 
work access is denied. A related feature of this mechanism is a principal identifier that is bound to the Datakey. This principal identifier is 
exported with each datagram. 

1.2. TNI Network Views 
This paper frequently references the two possible TNI network views. For convenience, we review the definitions of those views. The first 
view is referred to as the Single Trusted System (STS) view. Characteristics of the STS view are: a single coherent security architecture, a 
common level of trust throughout the system, and a single accrediting authority. The second view is referred to as the Interconnected 
Accredited AIS (LAA) view.   Characteristics of the 1AA view are complex, heterogeneous, combinations that lack a uniform level of trust 

1 LLC (layer 2) and layer 3-7 protocol S/W is presumed to reside in the host or workstation. 

2On transmit operations, hosts or workstations are responsible for attaching the correct MAC label.   A host to front 

end (IIFE) protocol is defined for this purpose. 
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mid often include multiple accrediting authorities. STS evaluation re»ult in a network cla 
dance on appropriate interconnection strategies. 

(e.g. Al, B3, B2) while IAA views provide gui- 
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Figure 1,1. VSLAN Architecture. 

While it is preferable that a certification use the STS view (because of the conveyed hierarchical trust structure) it is important to note both 
that: a), in heterogeneous network architectures that include hosts of differing trust levels the resultant rating may not be a representative 
trust rating for all network connections and b). the STS view and the IAA view are not mutually exclusive. 

An example or the misrepresentation that can occur with the STS view is a network that consists of two Al systems and two B2 systems. 
In this example, adopting the STS view would result in a B2 rating. The resultant B2 rating might not be representative of the trust that 
could be placed in the Al systems and the network connections between them.3 M noted, the STS view and the IAA view are not neces- 
sarily mutually exclusive.  This means a network of IAA's can consist of one or more separately accreditated STSs. 

1.3.   NCSC Commercial Product Evaluation 
As of this writing, the VSLAN is in the final stages of a commercial product evaluation at the NCSC. Product evaluation began in 1886 
and is currently scheduled for completion in the middle of 1000. The evaluation is being conducted with respect to Version 1 of the TNI. 
So far, the evaluation results conclude that the VSLAN is a B2 MDIA network component providing the previously mentioned security ser- 
vices. 

A significant characteristic of the evaluation is the STS orientation that acknowledges the product is not a complete network but assumes 
that integrators and end users will ultimately use the VSLAN u the basis for STS view B2 networks. The practical aspects suggest this 
may not be a good assumption.  The assumption, however, is rooted in the TNI*s TCSEC origins. 

An additional characteristic of the evaluation that is often neglected is the evaluation of the VSLAN with respect to the nine security ser- 
vices (TNI Part II) that are claimed to differentiate network and standalone environments. As of this writing, the lack of an objective 
scientific method for applying the TNI Part H evaluation results to a specific environment diminishes their usefulness. 

2. Organization 
The remainder of this paper is organised into four additional sections. Section 3 introduces the fundamental underlying architectural 
assumption for the examples and discussions that follow. That assumption is that the VSLAN forms a NTCB foundation to which integra- 
tors will add supplemental NTCB mechanisms to form trusted local area networks. Section 4 introduces and describes necessary supplemen- 
tal NTCB mechanisms. Section 5 describes one of our integration experiences thus far. Section 8 discusses accreditation issues related to 
the IAA network view.   Finally, section 7 provides conclusions. 

3. Network Architectures 
Any trusted local area network based on the VSLAN will likely include a network security policy enforced by a well defined network trusted 
computing base (NTCB). As defined in the TNI, a NTCB, is the totality of protection mechanisms with a network system - including 
hardware, firmware, and software. While the VSLAN component can be expected to be a significant portion of that NTCB, additional 
NTCB mechanisms will also be required. These additional NTCB mechanisms may include trusted operating systems, trusted device 
drivers, trusted subsystems, trusted communications protocols, and possibly additional security protocols (e.g. SP2, SP3, SP4). Figure 3.1 
shows an example NTCB composed of the VSLAN, trusted device drivers, trusted communications protocols, and individually evaluated 
TCSEC TCBs (i.e. trusted operating systems) of varying assurances. 

'TNI, Version 1, Appendix C, pg. 245. 
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A significant implication of the chosen architecture relates to the composite assurance rating of the NTCB. When the STS view is assumed 
for the entire NTCB, the composite NTCB assurance rating has an upper bound equal to the lowest TCSEC TCB assurance rating of any 
LAN host. For example, assuming, an integration of two C2 hosts and two Al hosts using the VSLAN, and assuming that the VSLAN is 
configured to prevent the Al and C2 hosts from communicating (with a B2 level of assurance) the composite assurance rating is, neverthe- 
less, C2. 

As subsequent sections will suggest, even with the B2 VSLAN component, and sufficient numbers of B2 TCSEC TCBs, building integrated 
NTCBs will still require supplemental NTCB mechanisms that may not be subjected to NCSC commercial product evaluations. Conse- 
quently, particularly in the short term, despite the fact that the result integrations may be secure and may adequately counter threats, 
DAAs may find it difficult to view the resulting integrations using STS views that yield particular composite assurance ratings. 

4.   Supplemental NTCB Mechanisms 
In this section, we describe some of the necessary supplemental NTCB mechanisms when the VSLAN is used as an NTCB foundation for 
trusted local area networks. We address implications for DAAs and integrators concerning the integration of trusted operating systems, 
communications protocols, network applications, and the necessary device drivers. 

4.1.  TCSEC COTS TCBs 
In light of the assurance issues as related to STS views of the resulting integrations, it is informative to roughly quantify the availability of 
TCSEC evaluated COTS TCBs to determine the likelihood that the B2 VSLAN component will be u»ed to construct STS view B2 trusted 
LANs. As Table 4-1 indicates, currently there is a large cluster of COTS TCBs at the C2 assurance class. Potentially, in the relative short 
term, there appears to be an increasing cluster of Unix or Unix like TCBs at the Bl class. 

In the short term, this distribution will greatly influence the resulting VSLAN integrations. Based on the Table 4-1 data, we assume driving 
short term forces to incorporate many C2 and Bl hosts. This is not to state that we believe that the VSLAN will always be used to build 
less than B2 NTCBs but rather to suggest a.) that few B2 TCSEC are available for integrators and b.) that the resulting short term integra- 
tions will likely contain both Bl and C2 hosts and therefore exhibit different levels of trust at NTCB interfaces. The resulting integrations 
may undoubtedly be secure but rarely the type of B2 STS view network envisioned by the commercial product evaluation or the TNI, Part 
L Despite the B2 NTCB foundation provided by the VSLAN, DAAs may be forced to adopt IAA or hybrid IAA/STS views of the resulting 
integrations. 

In the longer term, an evolution towards the type of B2 STS view network envisioned by the TNI Part I is possible as significant B2 TCSEC 
TCBs become available for inclusion in the NTCB. Two significant Unix TCBs appear waiting. Both are in evaluation at the B2 class. 
However, even when additional B2 TCSEC TCBs become available, an additional obstacle may have to be overcome before B2 STS view 
trusted LANs can be developed. That obstacle is the evaluation of communications protocols provided by the B2 TCSEC TCBs. If these 
protocols are part of the TCB, they must be subjected to the same rigorous assurance processes imposed on other parts of the TCB. At 
class B2, this implies significant software engineering methods and testing which may delay commercial product evaluations or result in B2 
TCSEC evaluations that exclude networking applications or protocols from the TCSEC evaluation. 
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Figure 3.1. Network Trusted Computing Base (NTCB). 
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Class Actual Potential 
Al 1 o 

B3 0 0 
B2 1 3 
Bl 2 8 
C2 10 10+ 

Table 4-1.   EPL Entries4. 

4.2. Communications Protocols and Network Applications 
In the previous section, we suggested that we believe, in the short term, VSLAN integrators will be more likely to integrate C2 and Bl hosts 
than B2 hosts. In this section, we suggest that the communications protocols and network applications that are part of the supplementary 
NTCB mechanisms and often part of the TCSEC TCB kernels may consist of largely unevaluated software. This is not to suggest that we 
believe that unevaluated protocols and applications themselves are inherently flawed or that they don't address security threats, or that they 
haven't been adequately tested but simply that DAAs may not be able to claim a specific TCSEC or TNI class of assurance for a given 
implementation. An additional complicating theoretical but less practical concern is that if the protocols themselves are configured to be 
part of the TCSEC TCB kernel5 they may invalidate the original TCSEC TCB rating. This is an obvious issue that has implications for 
DAAs and the STS view of any VSLAN based trusted LAN. 

Despite the fact that we are suggesting that most supplementary communications protocols and network applications are likely to be 
unevaluated we believe that it is these very protocols and applications that integrators and DAAs must examine and evaluate most closely. 
They must be examined and judged according to their ability to counter specific security threats. It seems most likely that a pragmatic 
approach that ensures adequate countering of threat as opposed to approaches that ensure a specific level of TCSEC or TNI assurance will 
develop. At this point, we turn to a discussion of the some of the threats that must be considered when adding communications protocols to 
the VSLAN NTCB. 

4.2.1.   Threats 
Often, one of the most cited and well known security threats to a local area network is wiretapping; both passive and active. For VSLAN 
integrators and DAAs wiretapping is likely to be the least serious threat. The VSLAN counters the wiretapping threat by providing DES 
encryption and requiring Protected Wireline Distribution Systems (PWDS) when greater than unclassified but sensitive information is pro- 
cessed by the network. Additionally, VSLAN NSDs receive only traffic addressed to them and traffic for which they are authorized. That is 
to say, VSLAN NSDs can not be configured to operate in a promiscuous mode and all packet transmissions and receptions are mediated 
according to the NSD's accreditation range and the NSD's discretionary access control list. 

We anticipate that the more important threats that must countered and addressed will originate from authorized users taking advantage of 
security holes introduced by particular implementations of the communications protocols and network applications themselves. These types 
of threats have been well documented in other sources. Concerning the Berkeley Unix implementation of the TCP/IP protocols and the 
associated Berkeley Unix applications, one of the most recent and revealing sources is [Bell89|. 

While it is true that the risk of the following threats can be reduced to some extent by appropriately configuring the VSLAN DAC lists, we 
are concerned less with those instances where unauthorized users have been prevented access by VSLAN MAC and DAC features than with 
the more interesting case where an authorized user is attempting to abuse the VSLAN MAC and DAC privileges given him by the NSO. 

One of the more significant threats for a Berkeley Unix implementation is the ability to establish a TCP connection by predicting initial 
sequence numbers. By predicting initial sequence numbers, an authorized user would be capable of impersonating a trusted host, establish- 
ing a connection, and possibly causing remote command execution. Fortunately, it is possible to counter this threat to some extent by com- 
paring non circumventable tamperproof VSLAN NTCB source addressing information with IP source addresses on packet reception. Other 
methods for countering the threat include elimination of network applications that don't provide sufficiently strong authentication measures. 

Even when network applications include identification and authentication mechanisms, integrators and DAAs must take care to insure that 
individual connections are authenticated. For example, some network applications (e.g. FTP) require multiple control and data connections. 
Authentication and control information is exchanged over the control connection and user data is exchanged over the data connections. 
Following successful authentication, data connections are established. Unless the client verifies the port number before establishing the data 
connection, data can be received from a malicious source. Details of this type of threat are well described in [Tsai89j. Countering this 
threat will generally involve requiring the network application to receive and verify port numbers for subsequent data connections. 

Other threats include the ability to subvert the boot process by abusing remote booting mechanisms that make use of reverse ARP and 
TFTP protocols. Nearly all protocols and applications will introduce additional threats. Thorough examination of each threat is beyond 
the scope of this paper. Some implementations will counter or eliminate the threats, but may do so at the cost of interoperability (e.g. 
requiring port numbers before accepting data connections). 

4.3. Device Drivers 
Operating system device drivers for the VSLAN NSD are a required supplemental NTCB mechanism. The operating system device driver 
controls the VSLAN NSD by managing a 64K bank of dual port RAM and by participating in a Host-to-Front-End (HFE) protocol with the 
NSD. Specific security issues that integrators and DAAs should consider include: non-circumventability, security labeling, source address 
authentication, and network to IEEE 802.3 address resolution. 

''Information is from NCSC.   Taken from actual EPL entries, published potential EPL entries, and published pro- 

duct bulletins. 

5As it must be for most Unix implementations. 
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4.3.1. Non-Circumventability 
Because VSLAN mediation depends on correct host inputs (e.g. security labels) integrators and DAAs must insure the non circumventability 
of VSLAN device drivers. That is, untrusted user programs must be unable to control the VSLAN device. All access must be accomplished 
exclusively through the VSLAN device driver that resides in the operating system kernel. 

Insuring the non-eircumventability and tamperproof nature of the device driver may require restricting access to character special flies that 
control physical and kernel virtual memory (e.g. /dev/mem, /dev/kmem). 

4.3.2. Security Labeling 
As earlier noted, VSLAN NSDs accept MAC security labels from their associated operating system device drivers through a HFE protocol. 
As the device driver participates in the HFE protocol, it unambiguously binds a MAC security label to each datagram as it requests 
transmission. Subsequently, the NSD compares the MAC security label with the current accreditation range to determine whether the 
requested datagram transmission should be accepted or rejected. 

For single-level NSDs and their associated hosts, the security labeling performed by the device driver is straightforward. All datagrams 
presented to the NSD receive the same security label. The security label provided by the device driver is static. If desirable, device drivers 
can read the appropriate security label (i.e. accreditation range) from the NSD. 

For multi-level NSDs and their associated hosts, the security labeling performed by the device driver may be more complex. Specifically, 
the device driver must dynamically determine the appropriate security label based on external inputs. These external inputs may include 
message type for control datagrams (e.g. ICMP, GGP, RIP, ARP) not originating in user processes, and user process labels for datagrams 
originating in user invoked network applications. For example, the correct security label of ARP and ICMP replies will be the security label 
of the incoming ARP or ICMP message. The security label for these messages is unrelated to the security labels of any open connection or 
user process. 

In the most straightforward scenario, much of the burden associated with determining the correct security label will be handled by the com- 
munications protocols residing above the VSLAN NSD. Specifically, some implementations of upper layer protocols may support the com- 
munication of security labels through the use of a new type of IP security option known as the Commercial IP Security Option (CIPSO). In 
these instances, device drivers for multi-level NSDs could retrieve the correct security label for all datagrams (except ARP) from the secu- 
rity option. 

For upper layer protocol implementations that do not support the CIPSO (or an equivalent), it seems likely that integrators will need to 
modify the input and output routines of the associated protocols to allow the appropriate security labels to be communicated. Description 
of the appropriate modifications is beyond the scope of this paper. However, at a certain level of abstraction, such modifications ultimately 
provide the same functionality as CIPSO implementations (although they may not interoperate). 

Fundamentally, as the reader will have noted, whether CIPSO or otherwise, multilevel NSDs will require that the upper layer communica- 
tions process security labels. As of this writing, we know of only one COTS TCP/IP package that is being modified to support the CIPSO. 
The package, as well as the modifications, are unevaluated software. The DAA implications for an STS view of the resulting integration are 
obvious. 

4.3.3.   Source Address Authentication 
Some of the threats discussed in Section 4.2.1 involved the impersonation of network hosts. That section suggested that the resulting 
threats could be countered, to some extent, by requiring the NSD device driver to compare IP source addressing information with VSLAN 
NTCB source addressing information. 
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4.3.4.   Network to EEEE 802.3 Address Resolution 
As additional consideration For integrator! and developera of NSD device driven ii the addrera conversion mpport to be provided (e.g. ARP) 
when converting IP addreises to IEEE 802.3 LAN station addresiei. The underlying VSLAN issues that require consideration are: a.) the 
VSLAN's inability to support direct multicast or broadcast addressing, and b.) the need to correctly label layer 2 protocol messages such as 
ARP without CIPSO or equivalent labeling support0. 

Integrators must consider the fact that standard ARP implementations generate ARP request! to the IEEE 802.3 broadcast addren. As the 
VSLAN component does not support broadcast or multicast addressing, these broadcast requests must be converted into multiple point to 
point transmissions or alternate schemes for address resolution must be adopted. 

Recent integrations have used both solutions. To convert broadcasts to multiple point to point transmissions, the VSLAN's device driver 
watches for the IEEE 802.3 broadcast address (all ones) duplicating the transmission for each element of the NSD's discretionary access con- 
trol list. 

In other integrations, ARP has been eliminated and replaced by an addressing scheme that assumes that the last octet of the internet 
address for a node is the same as its VSLAN NTCB identification number (i.e. its NSD ID). 

Yet other integrations have adopted a hybrid approach, where some nodes generate ARP requests, other nodes use the last octet of the 
internet address, and a single ARP server exists to respond to ARP replies. 

In general, integrators should note that ARP will almost certainly require elimination from multilevel VSLAN nodes because of the 
inherently difficult problem presented by the requirement to correctly label ARP requests7. This is based on the assumption that an MLS 
node will convert an ARP request into multiple point to point transmissions and that all single level nodes with which it communicates ace 
not at the same level and category set as the converted ARP request. Because of the MLS node's choice of label, some of the receiving 
nodes may not be at the same level and category set resulting in VSLAN MAC audits.8 See Figure 4.3.4 

Integrators should also note that the absence of broadcast support and the fact that an MLS nodes' conversion of broadcasts to multiple 
point to point transmission will cause MAC violations have broader implications. For example, identical issues exist when considering appli- 
cations that utilize broadcast techniques (e.g. rwho, yellow pages). Unmodified rwho and yellow pages applications can be run on VSLAN 
nodes but their broadcast usage probably makes them better suited to single level, single category VSLAN nodes. When run on these nodes, 
the broadcast requests are easily converted to correctly labeled, multiple, point to point transmissions. 

5.   Integration Experiences 
In this section we describe one of our recent integration experiences. Strictly speaking, because we were required to include unevaluated 
software in our integrated NTCB, we are unable to claim that our integration meets all of the Bl assurance requirements (i.e. we have not 
subjected the integrated NTCB to an NCSC commercial product evaluation, we have not prepared a Tr'M for the integrated NTCB, etc.) 
but we certainly believe that the integrations provides all of the Bl security features and most importantly we believe the integration ade- 
quately counters known threats. 

5.1.  An Integrated Trusted LAN 
As of this writing, in our lab, we demonstrate a sample trusted LAN that uses the VSLAN NTCB as a foundation. Hardware includes an 
AT&T 3B2 minicomputer with a VSLAN NSD, numerous IBM PC ATs, each containing VSLAN NSDs, and a VSLAN NSC. As of this writ- 
ing,  we provide virtual terminal services  for the  PCs.    We use  five  basic security assertions  to describe  the security  aspects of our 
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Figure 4.3.4.   Multi-level VSLAN Node Attempt! ARP Request. 

9 CIPSO or equivalent labels were useful for labeling protocol messages originating at or above layer 3 but such la- 
bels are unavailable for protocol messages originating below layer 3. In this instance, because ARP resides at the boun- 
dary between layer 3 and layer 2, CIPSO labels are unavailable. 

7ARP is generally a protocol that doesn't easily port to the VSLAN because security labeling and the protocol's 
broadcast nature are in conflict. Another motivation for eliminating ARP is the desire to eliminate the potential denial of 
service attack that can be mounted by continually requesting a connection to a non-existent address. 

8One of these nodes may be the legitimate node responsible for generating the ARP reply. 

206 



integration.   Those security assertions are as follows: 

SA1: Authorisation 
A user can conduct a remote terminal session with the AT&T System V MLS minicomputer only if the user's userlD and password 
appears in the AT&T 3B2 /etc/passwd and /mls/passwd files and the user's user© appears in the VSLAN's NSC principal data- 
base.   Additionally, the maximum classification of the user's userlD must dominate the requested session classification. 

SA2: Classification 
All remote terminal sessions are conducted at the classification of the calling principal. This single level classification is pro- 
grammed at the VSLAN NSC.   This insure peer subjects always operate at equal security classifications. 

SA3: Color Changes 
Calling PC users are unable to change their current classification. If a PC user wishes to change his current classification he must 
terminate the current session and reinitialize the VSLAN NSD with a different Datakey. 

SA5: SU Prohibitions 
SU is prohibited except from the system console. 

SA6: Accountability 
Individual users are held accountable for their actions through detailed audit trails. 

5.1.1. Supplemental NTCB Mechanisms 
The supplemental NTCB mechanisms that we have added to the VSLAN NTCB are shown in Figure 5.1. These mechanisms include: TCP, 
IP, a VSLAN NSD device driver, a security relevant Trusted Sessions Module (TSES), a trusted login program, and the telnet server (tel- 
netd). Functionally, we have also added TCP, IP, a VSLAN NSD device driver, and the telnet client program to the PCs but we do not 
consider our PC additions part of the supplemental NTCB mechanisms for reasons explained in Section 5.1.2. 

5.1.1.1.   AT&T 3B2 Software 
As shown in Figure 5.1, some of our NTCB mechanisms are also System V MLS kernel additions (i.e. they are also additions to the origi- 
nally evaluated Bl TCSEC TCB). These additions include streams based implementations of a VSLAN NSD device driver, TCP, IP, and 
TSES. TSES and the VSLAN device driver cooperate to provide each other with the necessary security labels. For client programs, TSES 

informs the VSLAN device driver of the appropriate label for the requested session . Additionally, the VSLAN device driver functionally 
controls the NSD, labels outgoing datagrams, and counters the host impersonation threat by providing the type of source address authenti- 
cation discussed in Section 4.3.3. 

As of this writing, parts of these additions are being modified so as to accept only VSLAN NTCB I&A information when processing remote 
logins. When complete, the consequence of these additions will be that a remote login will require a correct Unix password and the correct 
VSLAN Datakey. 

The remaining supplemental NTCB mechanisms, login and telnetd, are not part of the System V MLS kernel. Nevertheless, the modified 
login program is clearly a crucial part of the NTCB. Login is responsible for establishing a single level user session (i.e. login) at the TSES 
provided classification. This insures that the PCs provide a virtual terminal service at a classification equal to the clearance of the operating 
principal.   The telnetd server is trusted to invoke the modified login program that provides this security mechanism. 

5.1.2. PC Software 
As noted in Section 5.1.1 functionally we have also added TCP, IP, a VSLAN device driver, and a telnet client to each of the PCs. We 
don't consider these additions security relevant or part of the NTCB because the additions neither enforce, nor strengthen the enforcement, 
of our stated security assertions. Additionally, we are unable to identify a method by which intruders can take advantage of a flawed imple- 
mentation of these PC additions so as to defeat our security assertions.   Our reasoning follows. 

To defeat SA1, specifically that part of SAl requiring a valid password in /etc/passwd and /mls/passwd we assume the following concerning 
an attack. The attacker is cleared to the requisite classification, is a legitimate user with an active userlD, and is operating with a VSLAN 
principal account authorized to communicate with the 3B2. In other terminology, the attacker is attempting to violate a discretionary 
aspect of the security policy. Using a TCP sequence number attack, we assume that the attacker will attempt to establish a connection 
with the telnetd server following a valid I&A performed for a different user. 

Fortunately, our implementation of telnet uses a single connection for identification, authentication, and data transfer. Consequently, it is 
fruitless for an attacker to establish an additional connection if he must provide the requisite authentication information. However, the fact 
that our application uses a single connection does not negate all risk. Suppose that we wish to inject datagrams on the valid connection as 
a means of mounting a denial of service or other type of attack? To reduce the risk associated with this threat, at the 3B2, we perform the 
type of source address authentication suggested in Section 4.3.3. When datagrams arrive with inconsistent host and NTCB addresses the 
datagrams are destroyed and WARNING notices are displayed at the 3B2 system console. 

°The inverse is true for server programs. 
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Figure 6.1.   NTCB for Trusted LAN. 

To defeat SA2, we assume that a legitimate user would like to establish a network connection (with the 3B2) at a security label higher than 
that for which he is cleared. To attempt this we assume that he would replace the existing NSD device driver with a bogus copy that 
labeled outgoing datagrams at the higher secarity label. Subsequently, because PCs are configured to operate at the single level and 
category set defined by the clearance of the operating principal, the datagrams output by the bogus device driver would be destroyed and 
audited by the VSLAN NSD.   If it is unclear as to why the NSD would destroy these datagrams, the reader should review Section 1.1. 

To defeat SA3, we assume that a legitimate user currently conducting a remote terminal session would attempt to use the System V MLS 
newpriv10 command to upgrade his current operating classification. Such an attempt would fail because the login program initially esta- 
blished a single level user session at the classification specified by the VSLAN NTCB. 

To defeat SA4, a legitimate user would have to establish a remote terminal session at the System V MLS label of SYSTEM11. Remote ter- 
minal sessions at the SYSTEM classification are prevented by procedurally requiring the NSO to correctly define principal accounts at the 
VSLAN NSC according to the clearance of an individual user. That is, NSOs at the VSLAN NSC are procedurally prohibited from estab- 
lishing accounts at a classification of SYSTEM. 

To defeat SA6, we assume that an attacker would like to destroy or otherwise modify audit trail records so as to disguise his penetration 
attempts. Fortunately, audit trail records are protected by the System V MLS TCB and the VSLAN NTCB. It is physically impossible to 
access either database over the network. For the System V audit trail, System V access control mechanisms protect the audit records. For 
the VSLAN NTCB audit trail, it is impossible to initiate a network connection with the NSC for the purpose of remotely modify audit 
records. 

10Newpriv is a System V MLS command that allows a user to upgrade his current classification within the limits 
specified by the clearance range associated with the user's userlD. 

"The System V MLS TCB prevents the invocation of su except at the lowest hierarchical classification - SYSTEM. 
Attempts to invoke su at other classifications fail and are audited by the System V MLS TCB. 
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5.1.3.   Operating Modes and Procedural Controls 
Operating modes are implied in Figure 5.1. The 3B2 is MULTILEVEL; processing and segregating both SECRET and CONFIDENTIAL 
information at any given instant in time. At an given instant in time, a PC operates in a DEDICATED mode at a classification determined 
by the clearance of the operating principal. Depending on the operating principal and whence the associated principal's security profile 
defined at the VSLAN NSC, a given PC will be either SECRET OR CONFIDENTIAL. At one time, a given principal may use a specific 
PC to conduct a SECRET terminal session while, at a later time, a different principal may use that same PC to conduct a CONFIDEN- 
TIAL terminal session. 

The trusted sessions module, TSES, and the login program are responsible for establishing user sessions at the MAC security label provided 
by the VSLAN NTCB component. Because network communications are always two-way, network peers always establish network connec- 
tions at equal security labels to prevent security policy violations. For example, if a caller were at UNCLASSIFIED and the called were at 
SECRET, reads initiated by the caller would violate no read up and writes initiated by the called would violate no write down. The end 
result is that, despite the fact that an individual System V MLS username may be authorized for both SECRET and CONFIDENTIAL 
data, remote user sessions at PCs are always single level at the classification associated with the operating principal. 

Finally, as indirect support for SA1 and SA2 we must impose procedural controls that limit the potential damage imposed by malicious PC 
programs. For example, we wish to guard against Trojan horses that might capture and store authentication information, or capture and 
store the results of SECRET terminal sessions. Our most potent defense against this threat is a procedural control. To restrict, and hope- 
fully prevent, the damage imposed by such Trojan horses, we require all PC data storage to be removable or volatile and require PC users 
to physically secure the removable media in accordance with its classification when not in use. 

6.   Accreditation and the IAA Network View 
We have identified many technical considerations associated with using the VSLAN NTCB as the primary foundation for a trusted local 
area network. In this section, we attempt to solidify some observations about issues DAAs can be expected to face. 

The techniques and examples described in this paper evidence the facts that VSLAN based trusted LANs will include at least some 
unevaluated software and that the resulting integrations are likely to involve heterogeneous combinations that lack a uniform level of trust 
at all NTCB interfaces. Given that such integrations imply IAA network views, DAA attention can be expected to focus on the IAA specific 
issues outlined in the TNI. These issues include the interconnection rule, the cascading problem, and environmental considerations. 

6.1. The Interconnection Rule 
Networks accredited according to the IAA view require enforcement of an interconnection rule that limits the sensitivity levels of informa- 
tion that may be sent or received. This requires that multi-level devices decide locally whether information can be sent or received and 
requires that sensitivity labels be exchanged when information is exported from one multilevel device and imported by another. It is trivial 
to see that the VSLAN MAC mechanism enforces the interconnection rule. Correct enforcement depends on correct NSO inputs at the 
VSLAN NSC. 

6.2. The Cascading Problem 
The cascading problem is a situation that exists when a penetrator can take advantage of network connections to compromise information 
across a range of security levels that is greater than the accreditation range of any of the component systems he must defeat to do so . An 
example of the cascading problem can be achieved by adding a B2 host and a file transfer service to our Figure 5.1 example. Assume that 
the added B2 host can process TS-S information and that a penetrator: (l) overcomes the protection mechanism on the B2 host to down- 
grade some TOP SECRET information to SECRET; (2) causes this information to be sent over the network to the 3B2 machine; and (3) 
overcomes the protection mechanism in the 3B2 to downgrade that same information to CONFIDENTIAL. This is the cascading prob- 
lem . Fortunately, after presenting the description of the cascading problem, the TNI proceeds to identify two solutions for countering the 
identified threat. These solutions include: the use of a more trusted system at appropriate nodes in the network14 or the elimination of cer- 
tain network connections. Assuming that mostly fiscal forces discourage the likelihood of the former solution; we concentrate our observa- 
tions on the latter. 

Owing to the fact that Ethernet LANs revolve around a broadcast technology, selective elimination of network connections seems hard at 
best when standard Ethernet based LANs are involved. Generally, a host on the Ethernet provides its network services to all other Ether- 
net nodes or it is disconnected from the Ethernet. 

Fortunately, DAAs will note that the VSLAN DAC capability modifies the standard Ethernet broadcast technology to allow the required 
selective elimination of network connections. In the modified Figure 5.1 example, proper NSO configuration at the VSLAN NSC can prohi- 
bit the B2 to Bl connection that gave rise to the cascading condition while still allowing other discrete network connections to both hosts. 
So, in general, DAAs must carefully review proposed VSLAN DAC configurations to reduce or eliminate the threat imposed by the cascad- 
ing problem. 

6.3. Environmental Considerations 
Concerning IAA views, the TNI states that DAAs, as a minimum, can be expected to define and document requirements for communications 
integrity, denial of service, and data content protection. As part of the VSLAN's evaluation as a TNI network component, the VSLAN 
Final Evaluation Report contains a detailed evaluation of the VSLAN NTCB with respect to these types of services. The documentation 
and evaluation provided there can serve as a valuable input to the accreditation process. 

12TNI, Version 1, pg.249. 

13Examp!e nearly identical to TNI example, pg. 250. 

M For example, replacing the 3B2 or the added B2 host with a B3 host. 
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7.  Conclusions 
This paper has identified technical considerations for VSLAN NTCB integrators and DAAs. The VSLAN is a B2 MDIA NTCB that integra- 
tors can be expected to supplement with additional NTCB mechanisms to form trusted local area networks. Necessary supplemental 
NTCB mechanisms include communications protocols, trusted operating systems, and VSLAN NSD device drivers. The current EPL popu- 
lation and the trend towards open computing environments suggests that the resulting integrations may require DAAs to adopt IAA views 
for accreditation. 
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INTRODUCTION TO THE GEMINI TRUSTED NETWORK PROCESSOR 
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Carmel, California 

Abstract: This paper presents a high level introduction to the Gemini Trusted 
Network Processor (GTNP), briefly describing its hardware, software, network- 
support and multilevel security features. The general properties and intended use 
of the GTNP are presented. 

General 

The GTNP is intended to combine verified multilevel security and high performance processing to meet 
the Class Al requirements of the Trusted Network Interpretation [TNI] of the Trusted Computer System 
Evaluation Criteria (TCSEC) for network components that implement a mandatory access control 
(MAC) policy as defined in Appendix A.3.1 "Mandatory Only Components (M-Components)". In 
addition to the GTNP TCB, the GTNP product includes functions that place the GTNP in a secure initial 
state: off-line administrative functions used to define those system attributes that are parameterizable 
and functions that validate the correct operation of the on-site hardware elements of the GTNP TCB. 

Overview of Features 

The GTNP TCB consists of the GEMSOS kernel and hardware base [SCHEL85], along with a non- 
kernel interface to support channel servers and other single-level processes. It is intended to be used as a 
gateway between networks of various levels, serving as an M-Component in the overall Network TCB 
(NTCB) architecture. 

The GTNP includes a wide variety of hardware configurations ranging from the proprietary Gemini 
multiprocessor with eight Intel 80286 or 80386 microcomputers to the single-processor IBM PC/AT. 
Since it is structured to be independent of supported processors and devices, each GEMSOS hardware 
configuration provides logically equivalent mandatory security capabilities. 

The GTNP is expressly designed with an adaptable open system architecture to support a range of 
network applications and to function in an embedded system. It provides a variety of disk storage and 
I/O device options and features dynamic configuration adaptation to the number of processors and 
available memory. 
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Applicability 

The GTNP kernel has already been used in several high-assurance production systems [SHOCK88]. We 
have also had numerous requests from NTCB vendors for use of the product in major B3-A1 network- 
related projects. Our goal is to have this product certified and placed on the NCSC list of evaluated 
products (EPL) so that the effort required to certify it will not need to be repeated for each future 
project. 

Architecture Overview 

The GTNP is the standard commercial GEMSOS Security Kernel with single-level (untrusted) processes 
and a multilevel initial process (for each CPU). The initial process will be trusted over a range from 
system-high to system-low. It is the first process created upon booting the system, and its only function 
is to start single-level processes, at the levels specified by the administrator during system configuration 
(see Figure 1). The single-level processes are outside of the NTCB MAC partition, and as such will not 
need to be evaluated under the GTNP certification defined by the TNT. 

GTNP 

Multi- 
Level 

Process 

Single Level 
Processes: 

GEMSOS Kernel 

Boundary of NTCB 

Figure 1.  Network Processor Internal Architecture 

It is intended that vendors building on the GTNP would replace the skeletal single-level processes that 
Gemini provides (for testing and evaluation purposes) with channel servers and other processes of their 
own (see "Coherent Network Architecture and Potential Applications," below). Depending on the 
functionality that vendors choose to include in them, these single-level processes may be subject to 
separate evaluation under the overall NTCB architecture. Changes to the single-level processes will not 
necessitate the re-evaluation of the MAC partition of the GTNP. 

The product will provide the capability for the network manager to create other trusted processes during 
system configuration (e.g., to support multilevel communication channels). Use of this function will be 
discouraged in the Trusted Facilities Manual, because the addition of such a trusted process would likely 
necessitate re-evaluation of the M-component. 
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Coherent Network Architecture and Potential Applications 

This section describes the GTNP network security architecture through the use of examples. 

The GTNP could be used as a multilevel packet switch providing reliable link level communications 
between single-level hosts at various security levels. In addition to providing same-level communication 
links, the GTNP will allow reliable communication from a low-level host to a high- level host. This will 
entail an untrusted protocol for reliable data transfers from the low-level single-level host to the GTNP 
and from the GTNP to the high-level single-level host. The processes implementing this transfer 
protocol will be external to the NTCB MAC partition and will not be part of the evaluation of the 
GTNP. 
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Host A 
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Host B 

i I 

(Ack/Nai :k) 
GTNP 

\ 

(Ack/Nack) 

I f ' 

Secret 
Process 

Top Secret 
Process 

Secret 
Segment 

Evaluated Portion of the C xTNP 

Figure 2.  Example NTCB Architecture 

An example showing the use of the GTNP is illustrated in Figure 2. Host A sends a message to the 
untrusted secret process on the GTNP. Some form of reliable protocol (acks and nacks in the example) 
is used between Host A and the secret process on the GTNP. This protocol is implemented in the 
untrusted secret process. Upon successful completion of the transfer of information from Host A to the 
GTNP, the message is stored in the secret segment. A signal is sent by the secret process to the top 
secret process on the GTNP indicating that the message is ready for transfer. At this point, the top 
secret process reads the message out of the secret segment and begins a transfer to Host B. A reliable 
protocol is used in this transfer (note that this may be the same or a different protocol than that which 
was used between Host A and the GTNP). The protocol is implemented in the untrusted top secret 
process. An acknowledgement is never sent from Host B back to Host A (because the secret process 
communicating with Host A cannot observe any information originating from Host B); however, the 
transfer is deemed reliable since the transfer of the information within the GTNP (i.e., over the bus) is 
deemed reliable and the transfer between the GTNP and the hosts utilizes a reliable protocol. Note that 
by placing the communication protocol in the untrusted processes, changes to the protocol do not require 
re-evaluation of the M-component. 
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Policy Support 

The security policy of the GTNP is designed to support the the mandatory portions of the official DoD 
security policy (DoD Directives 5200.28 and 5200.1-R), and be applicable to many types of network 
configurations. This policy is incorporated into the mandatory portion of the GEMSOS formal security 
policy model which is based on the Bell and LaPadula model. 

Both secrecy and integrity [BIBA] policies are supported, each with 16 hierarchical levels. The 
GEMSOS Kernel also supports 64 non-hierarchical secrecy categories and 32 non-hierarchical integrity 
categories. A single module, the non-discretionary security manager (NDSM) interprets the security 
labels. As is described below under "Replaceable Internal Modules," this NDSM can be customized to 
support any lattice security policy, including Clark-Wilson [SHOCK88-1] and policies needing multiple 
secrecy and/or integrity hierarchies or extended numbers of non-hierarchical categories. 

Extensibility and Subsets 

As noted in papers by Schaefer [SCHAE], and Shockley and Schell [SHOCK], if a TCB has a strict 
hierarchical layering it is possible to extend a mandatory-policy security kernel to support a richer set of 
security properties, such as those desired for the security policy of a particular NTCB. The GEMSOS 
kernel supports the kind of strict layering [SCHEL84] that was postulated in these papers. The Intel 
80286/80386 processor used in the Gemini computer provides four hierarchical hardware-enforced 
privilege levels that enforce the layering. In particular, privilege level 0 (the most privileged) is devoted 
to the security kernel. 

Additionally, the GEMSOS kernel uses the remaining three hardware privilege levels to implement a 
protection ring mechanism [SCHRO] that may be used to implement a program integrity policy [SHIRL] 
in which each process contains up to eight rings. Though the limited number of hardware privilege levels 
requires that a given process only have 3 active rings at a time, different processes may have different 
active rings and a given process may alter which of the 8 rings are currently active. 

Eyaluatability 

The key to the Class Al evaluation of a mandatory network component (such as the GTNP) are the 
formal security policy model and the Formal Top Level Specification (FTLS). The kernel of the GTNP 
has undergone intense scrutiny at the Al-level mandatory security. Its FTLS has been proven to support 
the mandatory portion of the GEMSOS formal security policy model, and was verified as providing Al- 
level mandatory security. 

Additional Interfaces 

The GTNP does not support direct user connections. Therefore, there are no interfaces for 
Identification and Authentication (I&A) of users or trusted path mandatory functions (e.g., changing 
session level). Since the GTNP does not act on the behalf of any given user (i.e., it has only internal 
subjects) and the GTNP will be configurable such that it has no covert storage channels (based on the 
analysis of the GEMSOS kernel [LEVIN]), there will not be any auditable events or audit records 
produced by the M-component while it is in operation. Furthermore, since there are no audit records 
produced during runtime, there is no runtime interface for returning audit records. Security 
administration (i.e., device labeling) is also handled off-line as part of system generation and does not 
require a runtime interface. 
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Hardware Configurations 

With the Gemini hardware base, up to eight 80286 or 80386 microprocessors can be connected to the 
Multibus I to provide high throughput performance. A variety of storage and I/O devices are supported 
by means of interface boards connected directly to the Multibus. The system supports selected 
combinations of up to four Winchester and floppy disks drives. Under GEMSOS control, all processors 
share the connected devices. 

The IBM PC/AT version of the hardware base is the standard IBM commercial product (or selected 
clone) modified to run the GEMSOS kernel software. This configuration includes both fixed-disk 
Winchester and 1.2 megabyte floppy disk drives, and the Enhanced Graphics Adaptor. 

Replaceable Internal Modules 

The strict loop-free layering and modular internal structuring of the GEMSOS kernel provides isolation 
of I/O drivers, the non-discretionary security manager (NDSM), and other internal components. This 
isolation, along with the concise definition of security requirements for new I/O components, permits 
compatible devices to be added to a GTNP configuration without affecting the integrity of the overall 
system. 

This modularity and isolation also allows the NDSM, which is responsible for the interpretation of a 
given security policy, to be replaced with a similar component to support different security policies, while 
similarly maintaining the integrity of the overall system. 

Multilevel Security 

The 80286/80386 hardware supports segmented memory as well as hierarchical privilege levels for 
protection and mediation of all memory and I/O references. The GEMSOS kernel takes full advantage 
of this support. 

All information stored in the GEMSOS kernel is contained in discrete logical objects (segments). Each 
segment possesses static attributes such as security access class and process-local attributes such as access 
mode (e.g., read, write, execute). Access classes are composed of a secrecy component as well as an 
integrity component both of which may be used to enforce non-discretionary (mandatory) security 
policies. 

Processes are also assigned access classes. In a manner dependent on the security policy of the particular 
installation ( see "Replaceable Internal Modules," above), process access classes are compared to 
segment access classes whenever access to data is requested. 

Hardware privilege levels are used to further control access to information by partitioning each process 
into four distinct protection domains. The kernel, which mediates access to information, resides in the 
highest privilege level (level 0).  The non-kernel TCB functions reside in the outer levels. 

215 



Encryption 

Additional security support is provided by the hardware encryption device for the NBS standard DES 
algorithm. Each system has a unique master key and system identifier used in ensuring the trusted 
distribution of GEMSOS releases, in controlling unauthorized copying of system software, and 
encrypting the information stored on removable storage media such as floppy diskettes. Encryption can 
also be used by customer applications to prevent unauthorized access to transmitted data and to 
authenticate the integrity of received data. 

Development Environment 

The GEMSOS hardware base provides a self-hosting environment for software development through the 
use of the UNIX(tm) System V operating system. The developer uses Metaware compilers and UNIX 
tools for cross development following this general pathway: edit the source with a UNIX editor; compile 
the modules using the C or Pascal compilers; assemble any modules using the UNIX assembler; and link 
the modules with the UNIX linker. The result of fully resolving all references is an output file which can 
be exported to the GTNP environment for execution. 

Concurrent Computing 

Depending on the hardware configuration, the GTNP is capable of multiprocessing as well as 
multiprogramming. The GEMSOS security kernel can multiplex processes onto a single processor. The 
kernel is distributed to support combinations of parallel and pipeline processing. 

Gemini's approach to concurrent computing does not require a specialized concurrent programming 
language, but rather uses well-developed sequential programming languages in conjunction with calls to 
the GEMSOS security kernel. The GEMSOS synchronization calls manipulate objects called 
"eventcounts" and "sequencers" to support communication and synchronization among processes 
[REED].  Sequential language programs use these calls to coordinate concurrently executing activity. 
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ABSTRACT 

The U.S. Air Forces in Europe (USAFE) Guard system [1,2] 
provides a multilevel secure electronic interface between a 
Top Secret/Sensitive Compartmented Information (TS/SCI) 
Department of Defense Intelligence Information System 
(DoDIIS) Intelligence Data Handling System (IDHS) site and 
Secret level unit support systems connected to the 
Intra-theater Intelligence Communications Network 
(IINCOMNET). The system interfaces with the IDHS host via 
the USAFE Tactical Air Intelligence Network Local Area 
Network (UTAIN LAN), and interfaces with the IINCOMNET wing 
support systems via Defense Secure Network #1 (DSNET1), the 
Secret subnet of the Defense Data Network (DDN). The system 
supports the automated release of sanitized threat 
information, formatted in the Integrated Data Base (IDB) 
Transaction Format (IDBTF), and textual messages at the 
collateral level in accordance with Defense Intelligence 
Agency (DIA) policy as defined in Enclosure 8 of DIA Manual 
(DIAM) 50-4 [3]. 

INTRODUCTION 

The purpose of this paper is to describe the current implementation of 
the United States Air Forces in Europe (USAFE) Guard system. A "guard" 
controls the flow of information between systems operating at different 
security levels. This paper summarizes the functional capabilities of 
the USAFE Guard, citing its unique features and describing its current 
status. 

Why a Guard is Necessary 

The "guard" concept provides a solution to a common multilevel security 
(MLS) problem which has existed for many years in traditional, "system 
high" operating environments. In order to access a system in this 
environment, all users must be cleared to the highest classification 
level of the information being processed by the system. In most cases, 

This work was sponsored by the U.S. Air Force, Rome Air 
Development Center (RADC) in cooperation with the Space and 
Naval Warfare Systems Command (SPAWAR) under contract number 
N00039-83-C-0144. 
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however, only a small subset of this information is classified at the 
"system high" level, resulting in increased operational costs and 
processing overhead associated with releasing information classified 
lower than "system high". At this time, there are a limited number of 
MLS operating systems and Data Base Management Systems (DBMS) available 
to address the problem of multilevel information. 

A guard can be used to pass information between systems operating at 
different security levels. Users at lower classification levels can 
obtain the less sensitive information available on the "system high" 
system through the guard. Since the guard protects against inadvertent 
disclosure, the "system high" system can be utilized more efficiently 
and cost-effectively. Thus, the guard provides a solution which is 
available today. 

Evolution of USAFE Guard 

The USAFE Guard (or Guard) project was established by the Air Force as 
a result of the need to send sanitized, releasable data, derived from 
a variety of sources, to the unit level support systems. This 
information consists of two distinct categories: threat data and mail. 
In addition, there is a reguirement for mail to be sent from the 
operational units to the intelligence production centers. 

The origin of the USAFE Guard project is based on the software 
architecture developed by Logicon, Inc. for the Navy under the Advanced 
Command and Control Architectural Testbed (ACCAT) Guard program [4]. 
The ACCAT Guard design was the result of over a decade of research and 
development in the area of multilevel secure systems. It demonstrated 
that the ability to connect systems at different security levels was 
indeed feasible. The ACCAT Guard supports the ability to send mail and 
perform database queries, and provides a facility for the sanitization 
of this information. A trusted process responsible for downgrading the 
information was formally modeled and verified. ACCAT Guard, which 
operates on the Kernelized Secure Operating System (KSOS), was 
installed in a testbed environment at the Naval Ocean Systems Center 
(NOSC) in San Diego, CA. and has been demonstrated on numerous 
occasions. 

Initially, the USAFE Guard was intended to be developed on KSOS. 
However, due to an emphasis on using Commercial Off The Shelf (COTS) 
software, the operating system base was changed to Security Enhanced 
VMS (SE/VMS)2. As a result, the Guard can be installed on the full range 
of VAX processors. 

CURRENT IMPLEMENTATION OF THE USAFE GUARD 

The USAFE Guard system provides a multilevel secure electronic 
interface between a TS/SCI DoDIIS Intelligence Data Handling System 

DEC,  VAX,  MicroVAX,  VAXstation,  VMS  and  SE/VMS  are 
trademarks of Digital Equipment Corporation. 
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(IDHS) site and Secret level unit support systems. The unit level 
systems are connected to the Guard via the Intra-theater Intelligence 
Communications Network (IINCOMNET). The Guard system interfaces with 
the IDHS host (or High host) via the USAFE Tactical Air Intelligence 
Network Local Area Network (UTAIN LAN). The Guard interfaces with the 
IINCOMNET wing support systems (also known as the Low hosts) via DSNET1 
(the Secret subnet of the DDN). 

The types of information that flow through the Guard, the use of secure 
operating system features, screening capabilities, network interfaces, 
auditing, and user interaction are discussed in the following 
paragraphs. 

Transaction Types 

The purpose of the Guard is to support the automated release of 
sanitized threat information and textual messages at the collateral 
level in accordance with DIA policy as defined in Enclosure 8 of DIAM 
50-4 [3]. The release of labeled Secret level information residing on 
the TS/SCI High host is accomplished by a downgrade transaction that 
permits the labeled Secret information flow to the Secret network. 

Three specific types of transactions are processed by the Guard: 

o   High to Low Threat Update Message (TUM) Transactions 

o   High to Low Mail Transactions 

o    Low to High Mail Transactions 

Each of these transaction types is discussed in detail below. 

High to Low TUMs 

Threat data is collected from many sources and stored in a Model 204 
database on the IDHS host. As new threat data is received, it is 
formatted in the IDB Transaction Format (IDBTF), reviewed by a Security 
Officer and encapsulated with header information and a Cyclic 
Redundancy Checksum (CRC) integrity seal trailer. The header 
information includes the classification of the TUM, the network host 
name of the originator, the list of destinations for sending the TUM, 
a message seguence number and the transaction type (i.e., TUM). The 
format of the header and the CRC trailer are identical to the IDBTF 
format, which identifies the name of the field, a "\" character, the 
field value, and a "\" character (e.g., "From\Smith@HighHost\"). 

After the TUM has been reviewed and authorized for release by the 
Security Officer, it is sent to the Guard system via the UTAIN LAN 
using the File Transfer Protocol (FTP). After arrival and registration 
at the Guard, the transaction is screened to ensure that the 
information satisfies the releasability criteria that has been defined. 

It is then released to the Low side of Guard and sent to one or more 
Secret level destinations on the IINCOMNET via FTP.  Transactions can 

220 



be addressed to a group of hosts using a "group list". The Guard will 
expand this "group list" and send the transaction to those hosts which 
are defined in the group. The Low side of the Guard can retransmit a 
transaction if a host is not responding. 

High to Low Mail 

High to Low mail transactions are handled similarly to the TUMs. They 
originate at the High host, where they are reviewed by the Security 
Officer. The header on a mail transaction contains the originator and 
destination addresses as part of the mail header. Following a blank 
line, the Guard Mail Header contains the classification, precedence of 
the mail (priority or routine), and the transaction type (i.e., mail). 
Other data may also be included, such as the name of the releaser, the 
date and a subject. A CRC integrity seal is placed at the end of the 
message. These additional header and trailer lines are formatted 
according to the DDN standard, with the field name, a ":" character, 
and the field value; white space within a line is allowed (e.g., 
"Classification:    SECRET"). 

The mail is then sent to the Guard via the UTAIN LAN using the Simple 
Mail Transfer Protocol (SMTP). The Guard receives the mail transaction, 
screens it, releases the transaction and sends it to the appropriate 
destinations via SMTP. 

Low to High Mail 

Low to High mail is created at the Low hosts and sent to the Guard over 
the IINCOMNET using SMTP. It is not necessary to include a Guard 
header, although it is recommended that the "advisory classification" 
of the mail and its precedence be specified. 

Guard accepts the transaction and sends it to the appropriate High 
destinations specified in the "To" field using SMTP over the UTAIN LAN. 
No screening is performed, except for the validation of the originating 
host address. 

Transaction Processing 

Multiple transactions are processed by the Guard concurrently. The TUM 
transactions are designated as the most important transactions, (i.e., 
they should be processed through the system at the highest priority). 
In order to support this reguirement, the Guard provides for a set of 
prioritized gueues (generally one per process). When a process is 
ready to handle a new transaction, it obtains the transaction from the 
gueue in the following order: TUM transactions, mail transactions 
designated as "priority", and mail transactions designated as 
"routine". 

Security Features of SE/VMS for USAFE Guard 

In order to provide a system which meets the security reguirements for 
accreditation, the SE/VMS operating system is used by USAFE Guard. The 
primary features utilized by the Guard are described below. 
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Separate Security Domains 

The Guard file system is divided into two (2) security domains, one 
High and one Low. Transactions arriving at the Guard from the UTAIN 
LAN (High side) are placed into the High security domain until they 
have been screened and it has been determined that they can be released 
to the Low side of the Guard (and hence the Low users) . Similarly, 
transactions arriving from the IINCOMNET to the Low side of Guard are 
initially placed in the Low security domain until they are upgraded to 
the High domain by the Guard. This separation is important in order 
to ensure that the data is properly handled by Guard. 

Downgrade Privilege 

In order for a file to be written from a High classification level to 
a lower one, the program responsible for the downgrade must first 
acquire the downgrade privilege. The privilege is removed after the 
downgrade occurs. This forces the downgrade of data to be centralized 
in a single location. 

Password Management 

All logins are managed by SE/VMS. This operating system supports the 
Password Management Guidelines [5] published by the National Computer 
Security Center (NCSC). It controls user logins to Guard, verifies the 
password and audits all login attempts. 

Screening Capabilities 

The Guard provides an automated screening capability for all 
information flowing from the High to the Low hosts. Each transaction 
is registered by the Guard and compared to a set of screening criteria 
(independent criteria exists for mail and TUMs). If a transaction 
satisfies the criteria, the downgrade is audited and the transaction 
is downgraded to the Low side of the Guard for transmission to the 
specified destinations. 

If the information does not satisfy the established screening criteria, 
the transaction is rejected. The rejection and the contents of the 
transaction are audited by the Guard and the transaction is returned 
to the High host indicating that it was "rejected for downgrade". As 
part of the rejection handling in the Guard, there is an upper limit 
to the number of rejections which can occur (i.e., the "rejection 
limit") . If this limit is reached, the Guard does not allow any 
further transactions of that type into the system and does not attempt 
to release that type of transaction. (It should be noted that the mail 
and TUM transactions are handled independently so that, even if 
transaction processing of one type is halted, the other may still flow 
through the system.) A mechanism is provided to allow the rejection 
limit to be reset and transaction processing to be resumed. 

The Guard provides several methods for validating the contents of a 
transaction, including: 
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o   White space may or may not be allowed in the transaction. 

o A line may be composed of a field name, delimiter and field 
value. 

o The field value is the correct length and has the correct type 
of characters (i.e., alphabetic, alphanumeric, integer, decimal). 

o The field value is one of a list of values (e.g., "Joe", "Jack", 
"John"). In this comparison, alphabetic and alphanumeric fields 
may be designated as case sensitive and/or with spaces 
significant; numeric,data may have zeroes significant. 

o A function defined at software generation time may be specified 
for validating the value of the field (e.g., verify the CRC for 
the transaction). 

o A particular field name may be reguired to be part of the 
transaction. 

If one or more of these criteria are established, but the transaction 
does not satisfy the criteria, the transaction is rejected. 

This screening philosophy is currently being used to provide a minimal 
set of "sanity" checks on the data being sent from the High Host. It 
could easily be extended to be more comprehensive, providing a rigid 
set of conditions that transactions must satisfy prior to their release 
to the Low users. 

Network Interaction 

The Guard uses the DDN standard protocols Transmission Control 
Protocol/Internet Protocol (TCP/IP), SMTP and FTP for transferring 
transactions between the High system, Guard and the Low systems. FTP 
is used solely for transferring TUM transactions, which are viewed 
strictly as file transfers, while mail transactions are sent and 
received via SMTP. 

Two independent sets of network support software, each operating at 
different classification levels under SE/VMS, provide an additional 
degree of protection in the system. For the High interface, 
Communication Machinery Corporation (CMC) software is used to 
communicate between the UTAIN LAN and the Guard. Wollongong software 
is used for Low communication between the Guard and IINCOMNET. 

The current system configuration allows simultaneous connections to 
multiple hosts on both the High and Low networks. A set of Guard 
application processes is provided to manage these connections and 
handle hosts which, for outgoing connections, are not responding. The 
processes route transactions to an "alternate" host if the destination 
host is unavailable for a designated period. 
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This alternate addressing capability provides a great deal of 
flexibility to the Guard. The Guard system administrator may define 
a maximum number of retries to each host and the period of time to 
delay between these retries. If a host is temporarily not accepting 
new connections, the Guard attempts to send the transaction only "n" 
times; it then attempts to send the transaction to an alternate host 
(up to three (3) alternates may be designated). If a host appears to 
be down, the transaction remains enqueued to that host without being 
redirected to the alternate. A maximum time period that a transaction 
can remain enqueued in the system before it is returned to the Security 
Officer (for TUMs) or the originator (for Mail) is specified so that 
transactions enqueued to unavailable hosts are eventually released by 
the system. 

Auditing Capabilities 

The auditing capabilities of the USAFE Guard are pervasive throughout 
the system, since data is being downgraded (released) from a High to 
Low security level. The Guard must create and maintain an audit trail 
which contains a complete record of the security relevant events. The 
design objectives for the system's auditing capabilities include: 

o   Mandatory audit events. 

o   Optional  audit events,  which  can be toggled  on  and off 
interactively. 

o   An Exception Log containing a synopsis of the most significant 
audit events, to be used for a quick review of the system status. 

o   Ability to review the audit data. 

o   Ability to archive and retrieve audit data from disk and tape. 

Of the 45 events which were determined to be auditable, 13 events are 
mandatory. Examples of mandatory events include transaction downgrade, 
transaction rejected for downgrade, and modifications to the screening 
criteria. The set of mandatory events is defined when the software is 
generated. 

Each audit event always includes a date and time stamp. It may also 
include the following information, depending on the specific event 
being audited: the transaction identifier, type, and sequence number, 
the Guard user generating the event, a qualifying condition on the 
event, if additional data should be audited with the event, and if the 
data should be placed in the Exception Log. 

The audit data and Exception Log may be inspected at any time. Three 
(3) different levels of detail can be specified for the output of each 
audit event. In addition, the data which is viewed may be selectively 
chosen by specifying a time period, a user name, a specific set of 
audit events, the types of transactions and/or a specific transaction 
identifier. In this way, both full and condensed audit listings can 
be made available. 
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The audit data file is "rolled over" to a backup data file 
periodically: at a user-specified time each day, when the size of the 
file exceeds the user-specified maximum, and when the user requests 
that the file be rolled-over. Since the audit data remains on the 
disk, the ability to archive, and also restore, this data is necessary. 
The Guard provides the ability to archive data to another disk or to 
a tape. The data may also be restored to the disk from an archived 
audit tape if, for example, the audit events for a specific period must 
be reviewed. 

User Interface 

Another design objective of the USAFE Guard was to minimize the amount 
of user intervention required. Also, the user interface should be 
simple and straightforward. In response to these objectives, the Guard 
User Command Interface (GUCI) was developed. It provides a 
user-friendly menu-driven interface with an easy to use help facility. 
When there is no user logged onto the Guard, a "monitor" is active, 
which indicates the current activity level of the system and signals 
any unusual activity or problems via audible alarms from the terminal. 

There are two (2) types of Guard users. The Guard Administrator (GA) 
handles the administrative duties, setting up the system tables and 
performing other system administrative duties; these activities are not 
envisioned to require a great deal of system interaction after the 
system has been accredited. The Guard Operator (GO) is responsible for 
controlling and monitoring the daily operations of the system, 
including the system startup and shutdown, status monitoring and audit 
data handling. Examples of the types of commands supported by the 
Guard include: 

o Information on each transaction active in the system and 
statistics on the total and current number of transactions 
processed,  processing time and other statistical information. 

o A continuous monitoring of Guard status, including active 
transactions and network activity. This monitor is active if no 
user is logged onto the Guard terminal, or may be selected by the 
GA or GO. 

o Commands to allow the audit criteria to be modified, the audit 
data to be inspected and audit data archival and restoration. 

o Commands to allow the screening criteria to be defined and 
installed on the system. 

o An interface to modify information about the hosts and the 
tunable system parameters. 

o   A mechanism to start and stop the network activity. 

o Commands to reset the system if the screening rejection limit 
(the maximum number of transactions which can be rejected) is 
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reached and to remove transactions which are queued for screening 
when the rejection limit is reached. 

o   An interface to allow the data collected for the UTAIN LAN to be 
uploaded to the LAN's Network Manager Station. 

o   A procedure to shut down the Guard. 

Extensibility of the USAFE GUARD System 

The USAFE Guard system is designed to be modular and portable, so that 
a variety of users' needs can be met. The Guard was developed to 
provide a specific solution for the needs of the U.S. Air Force. 
However, due to the attention to extensibility in the design and 
implementation, the system could be tailored for use in a variety of 
other applications where a Guard is needed. It is easy to extend the 
architecture in order to accommodate different network protocols, new 
types of information flowing between the High and Low systems, and 
additional data screening requirements. Furthermore, the system is 
built upon the DEC MicroVAX-II and its SE/VMS operating system, 
providing an excellent migration path to smaller, more powerful and 
cost-effective systems, if additional processing capabilities are 
needed in the future. 

CURRENT STATUS 

The USAFE Guard is currently installed on a MicroVAX-II in a testbed 
environment located at Rome Air Development Center's (RADC) Multilevel 
Security Technology Laboratory in Rome, New York. This testbed 
simulates the configuration that exists in the European theater. The 
High host is a VAX system connected to the Guard via an Ethernet 
(rather than a UTAIN LAN). The Low hosts use the X.25 ROMENET to 
simulate the IINCOMNET network interface. The Low hosts, which are 
VAXstation Ills and PCs in-theater, have been configured as VAXstation 
Ills at RADC; one of these has an identical configuration to an 
IINCOMNET Wing host. 

As a result of the preliminary testing at RADC, it was demonstrated 
that all transaction types (i.e., High to Low TUM, High to Low mail and 
Low to High mail) could be sent through the Guard. A portion of the 
test procedures for the Guard have been successfully executed. As part 
of Logicon's continuing support to RADC, the test procedure validation 
will be completed and the Guard will be installed in the Intelligence 
Information Processing Laboratory (IIPL) at RADC. Certification of the 
Guard is expected during 1991. Following certification at RADC, the 
Guard will be installed at two (2) sites in the European theater. 

Future plans for the USAFE Guard include migration to a Compartmented 
Mode Workstation (CMW) [6] platform and enhancements to the TS/SCI 
IDHS-side interface by incorporating the DoDIIS Network Security 
Information Exchange (DNSIX) functionality necessary to operate as a 
compartmented host on Defense Secure Network #3 (DSNET3), the TS/SCI 
subnet of DDN. 
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CONCLUSION 

The USAFE Guard system provides an opportune solution to this common 
multilevel security problem. It will dramatically decrease the amount 
of time needed to transmit information between locations which are at 
different security levels, especially when one considers the current 
air gap bypass techniques presently in use. It is also a flexible 
system which can support a variety of information flows, making it 
useful in a broad range of applications. In addition, the user 
interaction has been minimized, which further reduces the overhead 
costs associated with the handling of classified information. The USAFE 
Guard is an ongoing software project to solve the MLS problems of 
today. 
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Abstract 

A practical approach to network security must be based on the assumption that the network cannot be 
totally controlled or totally secure. We have developed a conceptual model called Mutual Suspicion to 
address this assumption. The elements of this conceptual model are firewalls to limit damage caused 
by failure of a security mechanism, local enforcement of access control policies, identification and 
authentication as the basis of correct access control decisions, and network-based auditing to provide 
better information about an intruder's activities. The mutual suspicion concept supports heterogeneous 
security policies and mechanisms, examples of which are given in this paper. The model also allows a 
local evaluation of the risk of attaching a computer system to a network and of allowing that computer 
to communicate through the network with another computer system. 

Introduction 

In order to be realistic and useful, a network security framework cannot assume perfect operation of 
each component of a network, of each security mechanism and of each system operator. The security 
approach must limit the damage caused by compromises or failures, and must provide adequate audit 
information for detection and analysis of security failures. We have developed a conceptual model for 
network security which is designed for the reality of the large, uncontrollable, world-wide 
internetwork. Our model is based on the assumption that the amount of trust placed in the 
communications network and in each of the remote computers on the network should be minimized. 
The goal is to model a system in which any security compromise can cause only limited damage, 
because the elements which control system resources are mutually suspicious. The mutual suspicion 
concept includes identification and authentication as prerequisites and limiting factors for access 
control. The concept also allows the network to support multiple definitions of security services and 
policies for processing systems and for network communications. 

Basis of the Model 

Network security requires more than access control rules which must be correctly enforced by a trusted 
computing base. A sound conceptual model of network security must also deal with the reality of 
large, heterogeneous networks, in which multiple policies may exist. The model must also address the 
finite probability of compromise by outsiders, by users, and by operations personnel who have 
physical access to the network processing and communications components. Real network 
components and algorithms fail, and network configurations and traffic change unpredictably. Real 
people do not always behave according to their security clearances. In real networks, passwords get 
guessed or stolen, cryptographic keys get lost or stolen, and trusted system operators may sell secrets. 
The network security framework must, of course, include enforcement of access control rules. It must 
also include limitation of damage caused by failure or compromise of security mechanisms and strong 
auditing mechanisms to detect and locate penetrators where logically possible. Our mutual suspicion 
model addresses these concerns. It is based on the following premises: 
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Components and operators are not perfect. 

• "Trust" is not an absolute — it is a measure of risk. 

Failures will occur and damage must be limited. 

• Networks and computers are heterogeneous in function and policy. 

• Communications connectivity is constantly changing in an uncontrolled 
manner. 

• Local users are more easily monitored and controlled (hence more 
trustworthy) than remote users. 

Administrative control of a network is important for maintaining security. 

The model requires that each resource owner control access locally. Access control decisions are made 
according to the resource owner's local policy, and access privileges are based on the authenticated 
identification of the requester of the resource. Network resources include processing and 
communications functions as well as data. The extent to which identification and authentication are 
required is a function of the resource owner's policy. The means of providing the authenticated 
identification depends on the configuration of the network path between the requester and the owner as 
well as on the authentication mechanisms. 

A network security concept which simply allocates security functionality to trusted components or 
trusted computing systems is vulnerable to compromise of a component or system. While a degree of 
trust is necessary to allow data communications and resource sharing in a network, the trust must be 
limited to the minimum required. It is risky to design a network which assumes absolute trust in any 
single mechanism, component or person; such assumptions can lead to global compromise. The 
principle of least privilege must apply to systems as well as individual users of those systems. 

In the concept of computer security embodied in the Trusted Computer System Evaluation Criteria 
(TCSEC)1, users of the system, or rather the software processes which operate on their behalf, are not 
trusted. The users and their software are assumed to require constraints on their activity (through the 
reference monitor) so that they will not violate security policy. The Trusted Computing Base (TCB) 
controls users' access to the computer resources, and includes all the trusted software in the system 
plus the hardware base on which it runs. However, the TCB is actually only part of the trusted 
computing environment. Trust in the TCB depends on physical control of the computer room 
environment and personnel security control of the system operators. Trusted computer systems do 
have audit requirements, but these may be undermined by an operator with or without later detection. 
Since access to the computer room is physically controlled, and since the operators are employees of 
the system owners, accountability is feasible and the trust is reasonable. 

There is a problem in extending this trust to a network situation, as is done by the Trusted Network 
Interpretation (TNI)2 of the TCSEC. While the distributed TCB (the network TCB or NTCB) may be 
correct and enforce the system security policy, the NTCB itself is not sufficient. System security 
depends on the physical and operational control at all of the computer facilities in the network. If any 
of these sites is compromised, then the network may be compromised. The distributed trust model 
described in the TNI is vulnerable if any of the pieces is vulnerable, and physical compromise cannot 
be completely addressed by software security mechanisms. Allocation of security functionality to 
trusted network components does not change the assumption of physical and operational security at all 
the participating sites. The partitioning may in fact make security more difficult, since it allows more 
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heterogeneity and since the allocation may be done improperly or weakly. For example, if auditing 
and access control are done at separate network components, then a failure of either component or of 
the communications medium may prevent the auditing of security-relevant events. 

From a practical standpoint, the TNI approach is limited to small, essentially stable networks, with a 
single administration, so that each computer system containing part of the NTCB is provided with the 
required physical and operational security. The mutual suspicion concept addresses the network 
security problem in a way that allows network sites to have heterogeneous security environments. 

Mutual Suspicion and Access Control 

In a system based on mutual suspicion, each resource owner (where the resource is computing or 
communications capability, or data) acts on the principle of least privilege to protect its own resources. 
Redundant security checks, carried out by separate resource owners, form "firewalls" which prevent 
single failures from compromising large portions of the network. Access decisions are made on the 
basis of authenticated identity of the resource requester, and access is restricted if there is 
authentication uncertainty. User access control and auditing are done in the context of the network, 
utilizing path information as well as source information. Figure 1 illustrates a network with numerous 
firewalls protecting its communications and computing resources. It shows a user/server model for 
simplicity; in most cases the identification and authentication function is bidirectional. 

Identification and Authentication 

I 

7&AX 

Access Control 

Figure 1. In a mutually suspicious internet, each resource owner makes independent access control decisions based on the 
authenticated identity of the requester. 

As an example, suppose the user on Network A wished to access the server on Network B. First, he 
(his workstation or terminal) would have to access network A. This requires that the network know 
who is requesting access (for example, because the interface is hard-wired) and that the requester be 
allowed to send packets across the network. Next, the user's communication needs to traverse the 
gateway, which may be physically attached to network A (so that the gateway knows what network the 
communication is coming from), but which may also make access control decisions based on security 
label, source and destination end-system addresses, or even user ID. Network B then makes its access 
control decision to allow the packet to enter. The server makes its decision on whether to allow the 
communications and the path is established. However, the user must still satisfy the server's access 
control policy in order to access the server's processing or data resources. The server may require a 
user login, password, etc., so that it can base its decisions for access to these resources on more 
specific information than that used for the communications. At each step, the resource owners 
implement their own access control decisions, based on their policies. 

This example shows the operation of firewalls. At each step, the resource owner can block further 
access by the user. The access takes place only if all resource owners on the communications path and 
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the destination server concur. This provides additional safety from the viewpoint of access control. 
The access control policies must, however, be consistent and practical to provide access to legitimate 
network users. In addition, if service assurance is needed, multiple paths through the network must be 
provided so that failure of a single component does not cause denial of service. 

Each resource owner can independently determine the information it needs to make such a decision. 
The information may be carried implicitly (e.g., in the physical connectivity) or explicitly (e.g., in a 
security label on a packet). The amount of delay and computation required for the access control 
decisions will depend on the individual component policy and on the physical and logical design of the 
network. 

Access  Control  Policies 

Each resource owner is responsible for enforcing its own policies. These policies are administratively 
determined. Effective control of network usage requires functional limitation of access. This is in 
addition to the mandatory and discretionary access control described in the TCSEC. The functional 
limitations are needed to enforce the security principle of least privilege and to prevent misuse of 
resources and compromise of data. 

The security policy of a computing system in the internet can vary depending on its purpose. For 
example, a system whose function is to distribute advertising information accepts queries from any 
user of the internet. However, it accepts new advertisements only from validated advertisers who have 
active accounts and who can be trusted to pay. This system accepts all incoming communications 
requests and all advertising queries, but it requires extensive identification and authentication before 
allowing changes to its advertising database. 

A very different example is provided by a multilevel secure system. This system restricts 
communications to security levels within its accredited range, based on packet security labels which are 
trusted not to change during communications. Additionally, the system requires identification and 
authentication of individual users so that it can enforce its mandatory and discretionary access control 
policies. 

Network service providers can also implement a variety of policies. For example, a network provider 
may provide access control by limiting physical attachment. Any user with a physical connection may 
use the network. This is often true for host attachments to packet-switched networks through 
dedicated lines. 

In other networks, a validated security label may be required for access, and this label may be 
constrained to a set of permissible values. This is the type of policy enforced in a multilevel secure 
ne'work. 

In still other networks, particularly those with access through the public telephone network, 
authentication as a network subscriber may be required for access. This type of access control, with a 
user-provided password, is used for terminal access to the Defense Data Network through a Terminal 
Access Controller. 

Authentication and Trust 

While the mutual suspicion concept places emphasis on minimizing trust requirements, trust cannot be 
completely eliminated from a system which permits communications and sharing. If a computer 
system allows sensitive data to be sent over a communications network to another computer system, 
then it is trusting both the network and the remote system to some extent. The design of the systems 
and their operation must be adequately secure to warrant this trust. The allocation of security 
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functionality to particular mechanisms in the computer and communications systems can affect the 
degree and kind of trust required of each. 

Suppose that two computer systems dedicated to the same processing mission are connected to each 
other by a point-to-point encrypted link. The users of the two systems are all authorized access to all 
information in both systems. In this example, the encrypted link prevents any leakage of data outside 
of the two connected systems. It also provides authentication of each system to the other (with suitable 
key management). The systems are run in dedicated mode and so no further access control 
mechanisms are necessary. 

Now suppose that the systems are connected through a packet-switched network rather than by a direct 
link. More trust is required of both the computer systems and the network. If the network encrypts 
traffic on all of its links, then the data is protected from disclosure outside of the network, but the 
switches must be trusted to prevent disclosure to unauthorized network users. If suitable end-to-end 
encryption is used, then the trust requirements on the network are reduced significantly, but the 
requirements on the computer systems increase because they must be trusted not to leak data through 
the unencrypted headers into the network. The end-to-end encryption provides authentication of each 
computer system to the other, without relying on correct delivery by the switches. 

If the communicating computer systems are not dedicated to a single purpose, but instead are 
supporting users with different access privileges, then the systems must trust each other to enforce 
these access limits. This means that the communicating computers must know not only each other's 
identity but also each other's access control capabilities. It is not sufficient for one computer to 
authenticate a user on a remote computer. If the remote computer does not provide sufficient access 
control protection, then it may give one user's data to another, unauthorized user. 

End-to-end encryption can provide very strong authentication of two computers to each other. The 
encryption key is a form of firewall, in that it limits the damage that can be caused by failures in the 
network or in computer systems which do not hold the encryption key. However, it is also important 
to control the flow of data through the computers themselves. If data is sent to an untrustworthy 
computer, then the data may be propagated to any other computer which can communicate with the 
untrustworthy computer. For this reason, it is important to observe the principle of least privilege and 
to limit communication between computer systems to that which is necessary and authorized. Strong 
identity-based access controls can define communities of computer systems which have reason and 
authorization to communicate. Additional mandatory, discretionary and functional access restrictions 
can reduce the risk of this communication. 

Authentication Uncertainty and Access Control 

Access control to each resource is required for security, but correct access control decisions must be 
based on authenticated identification. Our model requires strong authentication of the requester before 
full privileges are granted, and allows only limited privileges if the authentication is too weak. For 
example, a computer system might limit a requester's access privileges to the intersection of the 
privileges of the requester and those of all other users of the network through which he accessed the 
computer system. This would be an appropriate choice in the case where the network does not ensure 
user authentication, since the resource owner cannot be sure which network user really made the 
request. If the network authenticates the requester's source system (host or terminal access device), 
the privileges could be somewhat more generous - for example, those which are common to all users 
of the source system. If the network authenticated the source system and the source system was 
trusted to authenticate its users and maintain the security of their data, then the requester's rights alone 
could determine his access privilege. In summary, authentication uncertainty limits access 
permissions: 
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If the user is authenticated, then he gets his access privileges. 

•    If only the user's host is authenticated, then the user gets only the 
privileges available to all users on that host. 

If only the network connection is authenticated, then the user gets only the 
privileges available to all network users. 

In a secure network or system, "superuser" access and diagnostic access must be strictly limited, either 
to local users or to very strongly authenticated users from authorized and specified sites. These types 
of accesses can and have subverted software security mechanisms. A recent computer break-in 
exploited a weakness which allowed an "anonymous" user to change his identity to superuser, while 
using an unchecked password for the anonymous account. 

In the mutual suspicion concept, the identification and authentication function acts as an outer ring of 
protection around the computing or communications resource, as shown in Figure 2. Access control 
decisions cannot be completed until the identity of the requester is sufficiently authenticated, with the 
required granularity of identity and the degree of authentication dependent on individual system policy. 
Once the authentication is complete, the system has the information needed to enforce its individual 
access control policy. Uncertainty of authentication logically requires limitation of the user's access, if 
the policy is to be effectively enforced. Authentication and identification protection can be added to a 
secure system to refine, not violate, its original access control policy model, whether that model is Bell 
and La Padula3, Clark and Wilson4, or any other. The COMPUSEC-based access control models 
define access rights of known users; the identification and authentication function provides assurance 
that the user is indeed known. 

Figure 2. The identification and authentication function is the outer ring of protection around the computing or 
communication resource. 

A network which enforces the mutual suspicion model provides a double ring of protection against 
penetration attempts. The penetrator has to break through the protection mechanisms which separate 
authorized users of the systems and associated security levels, but he must first defeat the identification 
and authentication protection to get access to the system at all. If the connecting systems distrust each 
other (as they should if their evaluation classes are low or their authentication mechanisms are weak) 
then the penetrator's access rights to the connected system will be downgraded to a safe minimum. If 
this minimum is outside the intersection of the ranges of both systems, no connection will occur. 
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Controlling the Risk of Network Attachment 

In a large network, the number of potential interconnections and users increases the risk that data will 
be compromised. In particular, users with no authorized access to a system may attempt to break into 
a target system, and they may use their own computing resources to do so. The sensitivity of data and 
the amount of data in a system increases its value as a target and increases the risk to the system and 
the harm an attacker could cause. If the network is constructed without firewalls, then the network as 
a whole becomes a large and attractive target. There have already been break-ins in which the attacker 
penetrated a weak system (e.g., by guessing passwords) and then used the resources of that system to 
penetrate other computers on the network. 

It is difficult to control the connectivity and configuration of a large network, since any of the attached 
computers can change its configuration or add "back-end" attachments in a way which is invisible to 
the network administration.   While there may be administrative rules against such unauthorized 
modifications, they are enforced locally by system operators who may or may not all be trustworthy 
and competent. Therefore, if the security of the network depends critically on the correct operation of 
each of a known set of network components, then there is no way of evaluating or controlling risk. 

The use of the mutual suspicion model for a secure network allows risk to be evaluated more locally, 
since each resource owner bears much of the responsibility for its own protection. For example, 
consider a host computer system attached to an internet through an end-to-end encryption device which 
provides mandatory access control. The risks in this system would be primarily related to the 
probability of failure of the host to enforce discretionary access control, the probability of failure of the 
host to enforce mandatory access control within its accredited range, and the probability of 
misidentification of one of its users over the network. The TCSEC evaluation class of the host as a 
computing system gives a measure of its strength in these areas. The requirement for authentication 
and the limitation of access privileges by authentication uncertainty also limit system risk and allow its 
evaluation. 

If a user is sufficiently authenticated by the network and has the access privileges to be acceptable to 
the connected system, then the risk is reduced to that described in the TCSEC and environmental 
guidelines: he is a known user with known access rights, and those are within the accreditation range 
of the system. Without mutual suspicion and user authentication protection, any access may present a 
risk outside the accreditation bounds of the system, since it may be made by a user with lower 
clearance than the minimum required for authorized system use. 

Control and Auditing of Network Paths 

Our network model assumes that failures will occur despite all of the security mechanisms designed 
into the network. Firewalls are useful to limit damage from these failures; auditing is necessary to 
detect failures and identify the sources of attacks. A system which collects information about how 
users access computers through a network can help in the tracking effort. In addition, if this 
information is available to the access control function at the time a user tries to access a system, then it 
can be used to help determine the authentication uncertainty and limit suspicious accesses. 

If the user accesses the computer system through a network, the system can derive the identities of the 
link, the network and the remote host or terminal access system used by the user, and the user's ID, 
from network protocols. This information is available at the time of login and can be used to help 
make access control decisions based on access path plus identity. Use of this information can be 
implemented locally, without a change to the network protocols, but it does mean that the access 
control and user identification functions of the computer system must be closely linked to its network 
protocol functions. 
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There have been a number of break-ins in which the unauthorized user logs into a weakly protected 
computer, steals a user identity and password, and then leapfrogs via remote login to a remote 
computer. In order to control and trace this type of activity, an access control function should be 
added to the virtual terminal protocol so that path information about the host systems is forwarded 
along with user ID for remote logins. Figure 3 shows the forwarding of this information. This path 
information would allow a destination system to make access control decisions based on more host-to- 
host segments of a user's path, ideally back to his local terminal. If the path is too long, passes 
through suspect systems, or is not sufficiently authenticated, access could be limited or denied. This 
access control protocol requires the computer system at the origin of the remote login request to have 
stored the path segment(s) from the user's terminal to that point. Forwarding of the ID and path 
information can be done via a virtual terminal protocol at connection establishment. 

Host 
1 

Host 
2 

Host 
3 

T 

remote login 
Host 1 sends 
"User is local" 

local 
login 

remote login 
Host 2 sends 
"User came from local 
terminal at Host 1" 

Figure 3. Forwarding of access path information can help in access control and auditing. 

Network-based auditing is a crucial part of a secure network. For example, if a computer permits 
remote logins, then it should audit information about the user's access path, derived from the network 
protocols and/or from a secure virtual terminal protocol. The path information provided by the 
protocol can be used to make access control decisions (as described above) and can also provide an 
audit trail to detect and localize network security violations. In recent break-ins, path auditing would 
have allowed the intruders to be traced easily and quickly, rather than with the great effort that was 
actually expended. Even partial information, such as the identity of the distant host, gateway or 
terminal access controller, would have sped the process. 

Conclusions 

The network environment presents unique security problems which cannot be solved on a global basis. 
Robust security.in a real, large, heterogeneous, dynamically changing network requires that each 
computing system must be responsible for protecting itself and its resources. Each computing system 
must limit reliance on external information to that received from reliable sources with authenticated 
identities and established rights. Since the network configuration changes dynamically, security must 
not depend on. the global properties of the network but rather on the characteristics of the 
communicating computing systems and the specific path between them. The effects of damage and 
compromise should be limited. The mutual suspicion model of network security embodies these 
requirements. 

The mutual suspicion model requires risk to be controlled at each system and so it allows risk to be 
evaluated locally. It provides a basis for evaluating network security which is consistent with the 
distributed way in which networks are developed and administered. 

We are now working to develop the model further by identifying security functionality required of the 
computing systems and network service providers and determining methods of achieving and 
evaluating high assurance of this functionality. 
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ABSTRACT 

Many of today's network products are based on 
the client-server distributed network model. 
Our goal of implementing a class B1 trusted 
network led us to discover that while many of 
the concepts we required were in existence, 
they were very scattered. This situation 
required us to develop a security policy defined 
at the subject and object level, a more security- 
conscious definition of client-server, and a 
discussion of the NTCB partitions and their 
sufficiency to provide a network reference 
monitor. This paper describes the results of 
those efforts. 

1.0 Introduction 

Large computer networks are needed to meet 
today's information processing needs; however, 
these networks are rarely designed with 
sufficient security features. The client-server 
distributed network model!11 is being used in 
more and more of these large networks (most 
often, they are actually internets). The work in 
this paper represents a step towards 
implementing a class B1123' client-server 
network. 

We started by defining a security policy which 
draws from previous work by many other 
people. For example, the mandatory access 
controls are derived from the work done by Bell 
and LaPadulaKl and the mandatory integrity 
controls are derived from the work done by 
BibaN. The resulting security policy includes 
mandatory, discretionary, and transmission 
policies for secrecy and integrity. It also 
includes supporting policies for audit, 
identification and authentication, and object 
reuse. 

The second step was to formalize the 
characteristics of client-server distributed 
networks. We published the security policy and 
the client-server characterization in the 
proceedings of the Fifth Annual Computer 
Security Applications Conference!6!. We 
received much feedback from this paper and 
the comments were used to update and 
improve the work. [Thank you to all who took 
the time to review and comment on our 
previous paper] 

Finally, we present a small argument showing 
that our NTCB partitions are capable of 
representing a unified network reference 
monitor. We wish to stress that while the 
model of an NTCB partition is somewhat specific 
to our project, the client-server definition and 
security policy were designed to be useful to 
others working in this area. 

This work has only recently been completed. 
We present it here hoping for additional 
feedback from the audience. 

2.0        Security Policy 

To facilitate the design of a trusted distributed 
client-server network, a network-oriented 
security policy was developed. This security 
policy includes mandatory secrecy, mandatory 
integrity, discretionary secrecy, and 
discretionary integrity policies for protecting 
data in components as well as transmission 
secrecy and transmission integrity policies for 
protecting data in transit. Supporting policies 
for identification and authentication, audit, 
and object reuse are also included. 

The following definitionsapply: 
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1. Secrecy label A is dominated by secrecy 
label B if the hierarchical secrecy level in 
A is less than or equal to the hierarchical 
secrecy level in B and the set of non- 
hierarchical categories in A is contained 
in the set of non-hierarchical categories 
inB. 

2. Integrity label A is dominated by 
integrity label B if the hierarchical 
integrity level in A is greater than the 
hierarchical integrity level in B and the 
set of non-hierarchical categories in B is 
contained in the set of non-hierarchical 
integrity categories in A. 

We realize that Appendix B of the Trusted 
Network Interpretation (TNI) refers to the goal 
of an organization's security policy as 
controlling the access of people to data and 
that the policy can be stated without the use of 
jargon. However, such a high-level statement 
was of limited use to our project and, 
consequently, the level of abstraction used 
below was chosen. 

2.1 Discretionary Access Control Policy 

2.1.1 Discretionary Secrecy 

No subject shall be able to read or execute any 
object protected by the NTCB unless granted 
explicit permission by a subject with such 
authority over that object. A subject shall be 
able to read or execute objects only through the 
proper use of the appropriate NTCB interface 
protocols. 

2.1.2 Discretionary Integrity 

No subject shall be able to modify any object 
protected by the NTCB unless granted explicit 
permission by a subject with such authority over 
that object. A subject shall be able to modify 
objects only through the proper use of the 
appropriate NTCB interface protocols. 

2.2 Object Reuse 

No storage object shall contain any data for 
which a subject is not authorized when that 
storage object is allocated or reallocated to that 
subject. 

2.3 Marking Policy 

The marking policy assertions are as follows: 

a. All subjects and all objects readable by 
subjects external to the NTCB shall be 
labeled. Clients (subjects) shall be 
labeled at creation time with the label 
requested by the user if the label is 
allowable for the subject, for the 
workstation, and for the 
communications channel. The label for 
a newly-created object shall dominate 
the label of the creating subject. 

b. Labels shall not change during the life 
of the subject or the object. 

c. Label integrity shall be maintained 
while labeled objects are in transit. 

2.4 Mandatory Access Control Policy 

2.4.1 Mandatory Secrecy 

No subject shall be able to read or execute any 
object protected by the NTCB unless the current 
secrecy label of the subject dominates the 
secrecy label of the object. A subject shall be 
able to read an object protected by the NTCB 
only through the proper use of the appropriate 
NTCB interface protocols. 

No subject shall be able to modify any object 
protected by the NTCB unless the secrecy label 
of the object exactly matches the current 
secrecy label of the subject. A subject shall be 
able to modify an object protected by the NTCB 
only through the proper use of the appropriate 
NTCB interface protocols. 

No subject shall be able to create any object 
within the NTCB unless the secrecy label of the 
created object dominates the current secrecy 
label of the subject. A subject shall be able to 
create an object in a container protected by the 
NTCB only through the proper use of the 
appropriate NTCB interface protocols. 

2.4.2 Mandatory Integrity 

No subject shall be able to read or execute any 
object protected by the NTCB unless the current 
integrity label of the subject dominates the 
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integrity label of the object. A subject shall be 
able to read or execute an object only through 
the proper use of the appropriate NTCB 
interface protocols. 

No subject shall be able to modify any object 
protected by the NTCB unless the current 
integrity label of the object dominates the 
integrity label of the subject. A subject shall be 
able to modify objects only through the proper 
use of the appropriate NTCB interface 
protocols. 

No subject shall be able to create any object 
within the NTCB unless the current integrity 
label of the subject dominates the integrity 
label of the created object. A subject shall be 
able to create an object in a container protected 
by the NTCB only through the proper use of the 
appropriate NTCB interface protocols. 

2.5 Identification and Authentication 
Policy 

No subject shall be able to access any resource 
controlled by the NTCB without successfully 
authenticating its identity to the NTCB partition 
providing that resource. 

2.6 Audit Policy 

The NTCB shall be capable of auditing all 
security-related events. 

2.7 Transmission Policy 

2.7.1 Transmission Secrecy 

User data in a protocol data unit shall be 
protected from disclosure to any subject 
(authorized or unauthorized), except for the 
originator and the intended recipient(s), while 
the protocol data unit is in transit from the 
originator to the intended recipient(s). 

2.7.2 Transmission Integrity 

User data in a protocol data unit shall be 
protected from undetectable alteration by any 
subject (authorized or unauthorized), except 
for the originator and the intended recipient(s), 
while the protocol data unit is in transit from 
the originator to the intended recipient(s). 

2.8        Trusted Subjects Policy 

Trusted subjects shall be able to violate only the 
mandatory and discretionary access control 
policies and only through methods which are 
both controlled and auditable by the NTCB 

3.0        The Client-Server Model 

The formalized client-server distributed 
network model is described by the following 
properties: 

a.    (1) Clients shall be the entities which 
request resources from services through 
application layer communications 
protocols. Clients may or may not be 
NTCB partitions. 

(2) Services shall be Network Trusted 
Computing Base (NTCB) partitions 
which perform high-level functional 
activities on behalf of a client (See 
Figure 1).  A server shall be the physical 
means (hardware) by which a service 
performs its functional activity. A 
service shall act as a client when it 
makes a request for resources from 
another service. This shall only occur 
when it requires resources other than, 
or in addition to, the ones it provides to 
fulfill a request made by the original 
client. 

(3) A service may be allowed to violate 
the mandatory and discretionary 
policies, but only within its own 
partition and it shall still be considered 
suspicious by all other partitions. 

(4) A conversation shall be a mutually- 
authenticated association between a 
client and a service. Conversations shall 
maintain the security of the information 
transmitted between clients and 
services. 

(5) Services shall be stand-alone or 
distributed. Stand-alone services shall 
be those in which multiple 
instantiations of a single service do not 
cooperate. Distributed services shall be 
those in which multiple instantiations of 
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Figure 1. Example NTCB Partitions. 

a single service cooperate actively to 
provide a unified service. 

b. Clients and services shall be the only 
subjects and all subjects shall be 
uniquely named. The address space of a 
subject is confined to a single NTCB 
partition throughout the subject's 
lifetime. 

c. All NTCB interfaces shall be described by 
well-defined application layer 
communications protocols. 

d. NTCB partitions may allow other 
subjects to read portions of their 
address space. 

e. Services shall protect the resources (e.g., 
a file system, printers, dial-up channels, 
etc.) they provide to the network by 
only allowing requests to enter through 
the NTCB interface (the application 
layer protocols). 

f. All instantiations of a distributed service 
must process the same label range. 
Stand-alone services may process any 
range of labels from one (i.e., single- 
label) to all (i.e., network low to 
network high). 

g. The NTCB partition shall contain a 
reference monitor which shall ensure 
that clients pass all requisite mandatory 
and discretionary access control checks 
before access to resou rces i s a 11 owed. 

4.0 NTCB Partitions 

The individual services of the distributed 
network correspond very well with the concept 
of partitions in an NTCB. Each partition (service) 
is responsible for protecting only those 
resources which it provides to the network. 
Figure 1 shows examples of NTCB partitions. 

For example, a file service provides file storage 
and retrieval resources to the network clients. It 
will also provide the protection for the file 
system in the form of identification and 
authentication, discretionary access control, 
mandatory access control, object reuse, and 
audit. 

The identification and authentication is 
performed when the client initiates a 
conversation with the service. The client and 
the file service are mutually authenticated. 

The identification information from 
conversation establishment is used by the file 
service to make discretionary access control 
decisions. 

The label associated with the conversation is the 
basis for mandatory access control decisions. 
Files (or directories of files) transferred to the 
file service for storage will receive labels which 
dominate the conversation label. 

As required, a file service will generate audit 
records for the actions it performs. The audit 
records will be available for later perusal by a 
system security officer. 
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5.0       Reference Monitor Argument 

In this section, a short argument is developed 
demonstrating that the NTCB partitions in the 
Trusted Xerox Network Systems (XNS) project 
form a unified network reference monitor. All 
partitions are "MIAD" components as defined 
by the TNI. That is, components which provide 
mandatory access control, identification and 
authentication, audit, and discretionary access 
controls. 

Note that, in Trusted XNS, the concepts of 
"partition" and "component" are identical. 

5.1 Axioms 

The standard axioms discussed in Appendix B of 
the TNI are as follows (some wording was 
changed): 

1. A subject is confined to a single NTCB 
partition throughout its lifetime. 

2. A subject may access directly only those 
objects within its NTCB partition. 

3. Every NTCB partition contains a 
reference monitor that mediates all 
attempted accesses made by clients. 

4. All communications channels linking 
NTCB partitions do not compromise the 
security of the information transmitted 
over them. 

For Trusted XNS, we also include the following: 

5. Subjects may only access NTCB 
partitions through the establishment of 
a mutually-authenticated conversation. 

6. The NTCB partition interface shall be 
composed of a finite number of well- 
defined application layer protocols. 

7.    NTCB partitions only respond to well- 
formed calls to valid protocol 
entry points. 

5.2        Argument 

The following simple argument uses a state 
transition approach to show that all network 

accesses are mediated and that the network 
reference monitor cannot be tampered. 

In Trusted XNS, clients shall access services 
through the establishment of conversations. 
Conversation establishment shall occur in two 
parts: first the client must contact the 
Authentication Service (an NTCB partition) and 
prove its identity, then the client contacts the 
desired service passing along credentials given 
to it by the Authentication Service. A proper 
response from the service to the client 
completes the mutual authentication. An 
attempted access made through means other 
than a properly established conversation is 
ignored. 

The state where an NTCB partition has no 
conversations is inherently secure. The*partition 
is trusted to manage its space correctly and 
there is no path for commands from any 
untrusted source to be entered. 

The Authentication Service will only forward a 
credentials package to the client if the client 
correctly proves its identity and if the 
mandatory access control label requested for 
the conversation is appropriate for the 
communications channel, the client, and the 
service. The service shall only establish the 
conversation if the credentials package is valid. 
Therefore, the state transition from no 
conversations to one conversation is secure. 

All conversations being held by an NTCB 
partition are cryptographically separated. 
Therefore, the state transition from one 
conversation to more than one conversation is 
secure. 

The client subject does not "move" to the NTCB 
partition and no remote process is created. The 
client can only forward commands to the NTCB 
partition over the conversation. Therefore, 
there is no state transition for creating a local 
process. 

An NTCB partition shall not attempt to access an 
object in another partition using the credentials 
of the client. Therefore, there is no state 
transition for non-local access of an object. 

All NTCB partitions shall contain a reference 
monitor and the NTCB interface (the protocols) 
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shall only forward well-formed calls to valid 
entrypoints to the reference monitor. All other 
calls shall be discarded (and auditable). 
Therefore the state transition from waiting for 
input to forwarding input to the reference 
monitor is secure. Also, the state transition 
from processing input in the reference monitor 
to delivering output to the client is secure. 

All conversations shall becryptographically 
protected therefore communications channels 
shall not be able to compromise the security of 
the information transmitted over them. 

Clients shall notify NTCB partitions when a 
conversation is to be ended and the NTCB 
partition destroys its part of the conversation. If 
the client does not inform the partition, the 
partition shall destroy the conversation when 
the lifetime of the cryptographic key has 
expired. No other client can transmit over an 
exrsting conversation since the key would not 
be known. Therefore, the state transition of 
deleting a conversation is secure. 

6.0        Conclusions 

Overlaying NTCB partitions over the services of 
a distributed network is very effective. It 
defines a flexible architecture which is easily 
expanded to include new services. The notion 
of having each service protect its own resources 
reduces network overhead to a minimum and 
allows each service to manipulate its resources 
in the most efficient manner. Also, since the 
services form the NTCB interface, this boundary 
can be easily shown and the network protocols 
used to request resources from the NTCB 
become a precise NTCB interface specification. 

Xerox is building upon this work and expects to 
develop class B1 network services which other 
vendors may use in their network product. The 
Vendor Assistance Phase (i.e., developmental 
evaluation) is currently underway. The first 
release of Trusted XNS shall not address 
mandatory integrity. 
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ABSTRACT 
This paper describes the underlying conceptual design and investigative approach used dur- 

ing the development of the Prototype Graphical Representation Model. The initial problem was to 
characterize and develop the fundamental theoretical foundation for modeling the features of com- 
puter networks. This research was influenced by the desire to investigate graph theoretical prob- 
lems, in general, that are common to many different systems and disciplines. A computer network 
is a specific graph theoretical problem. This paper provides details on the early research into the 
relation between computer networks and graph theory and the optimal representation of computer 
networks for security analysis. 

I.    INTRODUCTION 

The Prototype Graphical Representation (PROGREP) model effort is funded by the Office of 
Safeguards and Security at the Department of Energy (DOE) primarily to investigate security in 
computer networks. The PROGREP Model also includes the capability to investigate information 
flow in communication systems and to provide a graphical display of these communication systems 
and networks. At this time stand-alone computer systems are exceptional; the trend in new and 
modified computer systems is toward networking because it provides benefits such as economies 
of scale, enhanced productivity, efficient communication, resource sharing, and increased reliabil- 
ity [1]. Inherent in the desire to network is the implicit acceptance of increased interconnection 
with other computers that may also be interconnected to other unknown computers or networks. 
This increased connectivity can result in a combinatorially explosive number of communicating 
computers. Networking, however, also presents a challenge and potential disadvantages with 
respect to maintaining and ensuring the integrity and security of the networked computer systems. 
Further, networking creates a large number of other related problems, such as path routing, 
scheduling, network control, cycle generation, traversability, and connectivity [2-6]. Security and 
other problems are of particular concern depending on the classification and character of the data 
that are processed, stored, or transmitted on computer networks and communication systems. 
These issues are of particular concern to the DOE because of the sensitivity and national security 
nature of the data that are processed and stored on DOE and DOE contractor computer systems. 

The DOE has a large number of local area networks (LANs) and subnets (small LANs con- 
nected to larger networks) and is connected to a variety of national and international networks 
(e.g., BITNET, HEPNET, ARPANET). DOE also operates several wide-area networks for its 
own use (e.g., NWCNET). For DOE contractors to perform their work efficiently, computer net- 
works are necessary. However, the more they are needed, the more important it is to determine 
methodologies and procedures to ensure the network security. The following recent events 
demonstrate the need for applied research and development in network security: the German 
Chaos Club's infiltration of computer systems at various U.S. government organizations and vari- 
ous penetration attempts and attacks on other government organizations that are on the 

"This work was supported by the U.S. Department of Energy, Office of Safeguards and Security. 
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INTERNET. The rapid emergence of networks has been beneficial, but network security research 
has just been initiated. The knowledge, tools, and capability to sufficiently understand and address 
the problem are in short supply. The applied research for the PROGREP model is the first step in 
developing a research program, tools, and methodologies to investigate network security. 

Although the PROGREP effort was funded to conduct applied research into computer net- 
work security, the model appears to be applicable to many other disciplines. There are parallels 
between the basic graph theory principles of computer networks and systems that can be portrayed 
by graph structures. For example, the PROGREP model also applies to the safeguards discipline. 
In computer security the intent is to protect the data and information on computer systems; in safe- 
guards the intent is to protect the special nuclear material and the inventory data related to the mate- 
rial. With modifications, the PROGREP model could represent special nuclear material process 
lines, which are fundamentally graph structures. The PROGREP model can currently represent 
process lines (directed graphs) but will need to be modified to characterize the real world and 
model specific safeguards systems. 

IT.    PURPOSE 

The PROGREP system is being developed to (1) better understand computer networks for 
future research and development; (2) provide a tool capable of graphically representing any com- 
puter network, which is required by computer security personnel; (3) create methodologies that 
detect and indicate security relevant information and events and check the security of proposed 
network topologies; and (4) expand the means to conduct further network security and graph 
theory research. 

III.  GOALS 
The primary goals of the PROGREP research are to help system security personnel check the 

security of existing networks, to determine the security of proposed networks, and to conduct 
applied research into graph theoretical problems. Therefore, it is our goal to produce a realistic and 
valid network representation system, not the ultimate system. While developing PROGREP, we 
tried to provide a useful tool for computer security personnel. Our ultimate goal is to provide a 
means by which security personnel may enhance their understanding and the security of an actual 
computer network. 

IV.   PROGREP MODEL SYSTEM SPECIFICS 

The PROGREP software system has been implemented on a Texas Instrument Explorer 
using the expert system shell called Knowledge Engineering Environment (KEE), Common Lisp 
methods, icons, object-oriented programming methodologies, and KEE Pictures for graphical dis- 
play [7]. The PROGREP model provides a user interface that is designed to allow a user the abil- 
ity to rapidly and efficiently represent graph components, their interconnections, and interrelation- 
ships. 

Objected-oriented programming methodologies naturally complement the software develop- 
ment, result in a generalized tool, and enhance the functionality of a graph structure system. This 
is a result of the dependence on set theory for defining graphs and on the abstract notion of passing 
information (e.g., material) among vertices along edges. Objects are entities that can be described 
as having behavioral or cognitive capabilities (procedures) as well as physical assets and attributes 
(data) [8]. There are two main concepts that distinguish object-oriented programming: message 
passing and specialization [9,10]. Message passing is the functional essence of object-oriented 
programming; all activity is dependent on the "action-response" from sending messages between 
objects. Message passing is equivalent to a sophisticated procedure call. Specialization is the 
combination of data structure, class inheritance, and data hiding (due to inheritance constraints). 
Specialization enhances object hierarchies, data abstraction (through inheritance), and instantiation. 
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Object hierarchies or classes allow objects to be either exactly alike or almost alike with respect to 
the physical (data) and behavioral (functional) characterization of the system being modelled. Data 
abstraction eases the burden of data modification and input and also reduces the specification of 
redundant information due to the inheritance features. Instantiation uses the inheritance hierarchy 
to specify an individual object. The PROGREP model employs these methodologies by defining 
two main classes: components (vertices) and links (edges). The physical and behavioral informa- 
tion that is related to a particular component or link is controlled by the own/member class inheri- 
tance constraints available in KEE [7]. The PROGREP model extends the concept of object- 
oriented programming by the use of objects as icons. An icon is a behaviorally functional and 
physically characterized graphically operational object. 

V.    CONCEPTUAL DESIGN 

The first phase of the development of the PROGREP model was to establish an analytical 
basis by which to generically define computer networks. An additional constraint was that the 
model must be flexible in representing and characterizing real-world systems (e.g., computer net- 
works and nuclear material process lines). We imposed this requirement so that other research 
efforts in the Safeguards Systems Group and at the DOE Center for Computer Security at Los 
Alamos National Laboratory would benefit from this latitude. During this phase of the effort, it 
became apparent that there was no clear technical description of a computer network. 

What is a computer network? Can a stand-alone computer constitute a computer network? 
Regardless of the answer (one could contend that a massively parallel computer is a network), is it 
necessary to include stand-alone representation in the PROGREP model? Are computer networks 
different than distributed systems? These were some of the questions we addressed during the 
early phases of this research. We addressed these questions in terms of the capabilities desired for 
the PROGREP model. Even though a stand-alone computer is not typically considered a computer 
network, we included the capability of representing stand-alone computers in the PROGREP 
model. 

In PROGREP our definition of a computer network is very general. It is any collection of 
interconnected, autonomous computers or components of slave hardware (e.g., printers, disk stor- 
age components, or plotters). If two or more computers or components are able to exchange 
information, then they are interconnected. This definition of a computer network complements the 
definition of a graph. A graph G = (V, E) is a structure that consists of a finite set of vertices V 
and a finite set of edges E (an edge is specified by an unordered pair of distinct vertices). In the 
PROGREP model, computer networks are fundamentally represented and characterized in terms of 
graph theory and graph structures. A network N = (C, L) is a structure that consists of a finite set 
of components C and a finite set of links L (a link is specified by an unordered pair of distinct 
components). The components (computer or slave hardware) of a computer network (e.g., com- 
puter, gateway, printer, or disk storage) are defined in terms of vertices and the interconnections or 
network links are defined in terms of edges. These links may be either uni- or bi-directional and 
physical (an actual connection) or abstract (hardware data transfer compatibility but no actual con- 
nection). 

In the PROGREP model, stand-alone computer security and network security requirements 
and limitations are modelled as constraints at the components and across the links of the repre- 
sented network (graph structure) [11,12]. Typically, computer security programs depend on 
organization-specific policy statements. These policy statements are generally implemented by 
imposing constraints, procedures, and restrictions in the following areas: hardware/software 
security, telecommunications security, administrative security, personnel security, and physical 
security [13-16]. The PROGREP model addresses some of the issues associated with the above 
mentioned areas but is primarily a security assurance, design, and analysis system. The types of 
security checks addressed are related to compatibility, consistency, and suitability of hardware 
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designations and interconnections. Additionally, the transfer of data from a source to a destination 
is scrutinized for the creation of a cascade problem [17], the existence of unacceptable operation 
modes, and other transmission path problems. Because we decided to include stand-alone com- 
puters in addition to computers connected into a network, it was natural to divide the computer 
network security problem into two sub-problems. One represents and characterizes the stand-alone 
computer security risks, and the other represents and characterizes the network security risks. 

AJ Stand-Alone Computer Security 
Our model of the security of a stand-alone computer depends on data classification level, user 

clearance level, the machine's evaluated product lists (EPL) level, the operating mode of the com- 
puter, and a protection index [13-16]. The security risks on a stand-alone computer are related to 
computer access, data integrity, and data sensitivity. The data stored and processed on a computer 
are assigned a classification level which reflects the importance of protecting their integrity, that is, 
preventing inadvertent or intentional modification, destruction, or disclosure of the data. Users of 
the computer are assigned clearance levels and need-to-know permission which allows read/write 
access to data in the computer that have been assigned an equivalent or lower classification level. 
The EPL level of a computer indicates its ability to prevent and indicate unauthorized user access to 
data. The operating mode of the computer is either dedicated, system high, compartmented, or 
multilevel. The protection index depends on the user clearance level and the data classification 
level relative to the EPL level of the computer on which the data are stored and processed. The 
protection index reflects the inherent vulnerability of the data to access (i.e., highly classified data 
accessed by an uncleared user) on a particular computer. Using the protection index, PROGREP 
specifies the minimum EPL level acceptable that is needed to keep the data from being vulnerable. 
Because the protection index is a function of the user clearance and data classification levels, the 
security requirements for a stand-alone computer translate into the protection index indicating the 
required minimum EPL level that the computer must meet. 

To determine whether or not a stand-alone computer meets its security requirements, the 
PROGREP model determines the appropriate operating mode and EPL level from the user re- 
sponses. The algorithm that carries out the operating mode check is as follows: 

(1) Determine whether all users on the machine are cleared for the highest data classification 
resident on the machine. If some users are not cleared for the highest data, then the 
machine operating mode should be Multi-level. 

(2) If all users are cleared for the highest data on the machine, then determine if compart- 
mented information exists on the machine. If no compartmented information exists on 
the machine, then determine if all users have a common need-to-know for all data on the 
machine. If all users have a common need-to-know for all data, then the machine 
operating mode should be Dedicated. If some users do not have a common need-to- 
know for all the data, then the machine operating mode should be System High. 

(3) If all users are cleared for the highest data on the machine and if compartmented infor- 
mation exists on the machine, then determine if all users have access to all compartments 
on the machine. If some users do not have access to all compartments, then the machine 
operating mode should be Compartmented. If all users have access to all compartments 
and have a common need-to-know for all data, then the machine operating mode should 
be Dedicated. If all users have access to all compartments and some users do not have a 
common need-to-know for all data, then the machine operating mode should be System 
High. 

The algorithm that implements the EPL level check is as follows [13-15]: 

(1) Calculate the protection index based on the user specified data classification level, need- 
to-know access, and user clearance level. Note: [In Refs. 14 and 15, this protection 
index is referred to as the risk index, and there is also a slight indexing difference.] 
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(2) Determine the minimum EPL level required to satisfy the protection index. 
(3) Calculate the designated machine's actual EPL level based on the types of security fea- 

tures (i.e., authorization, audit, and access controls) that are present. 
(4) Compare the machine's actual EPL level with the minimum EPL level required (based on 

the protection index), and ensure that the actual EPL level is greater than or equal to the 
minimum EPL level. 

These algorithms are also used when determining the security of a network. 

1L Network  Security 
We have based the model of network security on an extension of the notions presented above 

for a stand-alone computer, i.e., data classification level, user clearance level, computer EPL level, 
operating mode of the computers, and a protection index. A network is composed of individual 
computers interconnected by links. Hence, each computer has the individual security risks con- 
cerning computer access, etc., previously discussed and the propagation of local risk [17], which 
is related to the possibility of a vulnerability on an individual computer propagating to one or more 
computers linked in the network. The propagation of local risk can cause a network vulnerability 
to appear as if it were a stand-alone machine vulnerability. 

Therefore, one would think that a simple solution would be to collapse and treat all the com- 
ponents in a network as a single computer system. This would require determining the highest 
data classification level, the lowest user clearance level, and the resulting protection index for each 
component. Employing these protection indices, one would then have to determine the minimum 
EPL level required for every component on the network to ensure that it is secure given the worst 
case security requirement (low user clearance and high data classification). Having determined the 
applicable worst-case minimum EPL level, it would be required for all components on the net- 
work, regardless of circumstances. This is neither a realistic nor a feasible solution. It would 
severely diminish the benefits of operating on a network. Instead we have approached the problem 
from a systems perspective. 

With respect to security, a network can be thought of as the combination of various subsys- 
tems. Each component and each link of a network are subsystems that have specific requirements 
and risks associated with them. This systems perspective permits the security features of the 
heterogeneous subsystems to be evaluated in terms of a homogeneous network. 

The algorithms that we employed for stand-alone computers are transferable with modifica- 
tions and extensions to deal with the interconnectivity inherent in networks. The major security is- 
sues that are unique to a network are the propagation of local risk and the cascade problem [13, 
17]. The cascade problem is concerned with lowering the classification level of the data (down- 
grading) on one computer and then transferring the data to another computer at the lower classifica- 
tion level. These two problems make securing networks more complex because of the need to treat 
individual protection indices, risks, and security features from an aggregated perspective. We 
approached this system's problems by initially ensuring the security of the individual computers 
(as described in the previous section). Then when a connection (link) is created, it is assigned a 
maximum data classification level. This classification level is used to determine the data transfer 
capability of the link with respect to the specifics of the components being interconnected. Further 
security checks are executed to ensure that the heterogeneous components act in a homogeneous 
manner with respect to the network. Some of these checks address the operating mode and proto- 
col compatibility between interconnected computers, the possible creation of a multilevel system, 
and the indication of a cascade problem. Briefly, the algorithm that implements the link security 
checks is as follows: 
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(1) Determine the maximum data classification level of the link. 
(2) Execute a connection check to determine what is being interconnected. There are three 

possible cases: two links are being connected, a link and a component are being con- 
nected, or two components are being connected. 

(3) Depending on the interconnection case, further checks are executed. For the link-link 
connection, a data classification compatibility check is executed. For the link-component 
connection, a comparison between the link data classification and the data classification 
of the component is executed. For the component-component connection, compatibility 
checks for operating mode, user clearance and data classification are executed, and then 
a cascade problem check is invoked. The cascade check implements the nesting condi- 
tion test [17]. If the nesting condition test fails, a modified version of the stand-alone 
EPL level algorithm is executed. 

The combination of all these checks ensures the security of the network or at least provides 
indications and warnings to a user of any security problems with the configured network. Further 
research has been conducted on ensuring the security of transmissions across links. 
Methodologies and algorithms have also been developed that allow the determination of security 
and constraint problems on network paths. A brief discussion of the current PROGREP model 
will indicate the nature of the capabilities and security features that have been employed. 

VI.   FUNCTIONAL DESCRIPTION OF THE PROGREP MODEL 

We sought to develop a generic model that allowed security personnel to consider "what-if' 
questions in the computer network and security domain. New configurations, policies, protocols, 
hardware, software, and operating concepts are continuously developed and deployed. The ability 
to use these developments or encourage their use in a cost-effective manner, in part, depends on 
our capability to determine their operational impact on security. To determine this impact, it is nec- 
essary to configure and characterize the computer systems forming a deployed network. This 
allows security personnel to specify the particular security-related characteristics of their network 
and to then determine their network security problems or concerns. The PROGREP model pro- 
vides a mechanism that intelligently directs the user to provide the necessary input and allows the 
user to create a display of the network configuration. This intelligent interface aids in the dynamic 
network creation by providing logical control of the specification of the computer characteristics 
and security factors through the use of text and graphics. There are two major steps in the network 
representation process: building and displaying the network and related information. Both 
functions are carried out by menus activated by mouse buttons. 

AJ Network Display Functions 
Five display menus correspond to and are named for the five objects that appear in a net- 

work: a network, a sub-net, a machine, a backbone, and a link. (The same as in the construction 
section.) These menus are employed as described in the construction menu section. The hierarchy 
of menus and menu functions is as follows: 

Display Menus 

Network Menu Sub-Net Menu Machine Menu Backbone Menu Link Menu 

Attributes Attributes Attributes Attributes Attributes 
Magnification Transmit Msg Transmit Msg 
Scroll 
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IL Network Construction Functions 
Five construction menus correspond to the five types of objects that can appear in a net- 

work: a network, a sub-net, a machine, a backbone, and a link. Each menu references more 
menus, which are called up in the following ways. The Network Menus are called up by clicking 
the mouse (left or right) while pointing the mouse at the background. The Sub-Net Menus are 
called up by mousing on a Sub-Net Circle. The Machine, Backbone, and Link Menus are called 
up by mousing on a corresponding object on the screen. The hierarchy of menus and menu func- 
tions follows: 

Construction Menus 

Network Menu Sub-Net Menu Machine Menu Backbone Menu Link Menu 

Add Node Delete Add Link Add Link Label Link 
Load Network Move Add Node Add Node 
Save Network Pop Sub-Net Clone Machine Delete 
View Up Push Sub-Net Delete Move 

Rename Move Push Sub-Net 
View Down Push Sub-Net Remove Link 
Remove Link Rename Rename 

Resize 

A simple example of the type of graphical representation for a computer network that the 
PROGREP model is capable of analyzing and displaying is presented in the next section. The 
displayed network is tailored after the Integrated Computer Network (ICN) at Los Alamos National 
Laboratory but is by no means an exact duplication. 

C. Example Network 
An example network will be presented that demonstrates the graphical nature and some of the 

security checks and other features that are executed in PROGREP. The example will be given in 
three related steps; the first step is associated with interconnecting two stand-alone computers, the 
second step is an extension of the first by connecting a computer to one of the two existing com- 
puters through a backbone connection, and the third is a further extension of the network topology 
achieved by adding a new link between two of the three computers. 

In the first step, both stand-alone computers A and B have been designated as possessing the 
following security features and capabilities: identification and authentication, audit trails, access 
controls, and both A and B have been designated as having a Multilevel operating mode and 
running the TCP/IP network communication protocols. The minimum and maximum data classifi- 
cation pairs on A and B are (C-NSI, S-NSI) and (S-NSI, S-RD), respectively. Finally, the mini- 
mum and maximum user clearance level pairs on both A and B are (L, QN). The creation of a 
network link between A and B generates the security warning indication of a possible cascade 
problem as seen in Fig. 1 because of the discrepancy in data classification levels on the computers. 

In the second step, a network backbone running TCP/IP communication protocols and 
capable of handling a maximum data classification of TS-NSI has been created. When computer C 
is connected to the backbone, several warnings are generated (Fig. 2). These result from the user 
designations that have been associated with C. Computer C has been designated as possessing the 
following security features and capabilities: identification, authentication and audit trails, but not 
possessing access controls, internal labeling, and assurance testing features. Further, C has been 
designated as having a Dedicated operating mode with all users having a common need-to-know 
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and running the CHAOS communications protocols. The minimum and maximum data classifica- 
tion pair on C is (S-RD, TS-RD). Finally, the minimum and maximum user clearance level pair on 
C is (QS, QS). 

Finally, in the third step, the creation of a network link between computers B and C generates 
the security infractions that are a result of the particular user designations. Figure 3 lists these 
infractions and displays the user explanation input capability. 
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This example presents a brief and partial list of the types of response that an analyst would 
receive from PROGREP when configuring an actual or proposed network. 

VI.    SUMMARY 

The PROGREP model research has provided great insight into approaching the modeling of 
graph structures in general and computer networks in particular. It enables the display of the com- 
ponents and the links of a graph structure. The PROGREP model was designed to quickly and 
efficiently represent network components, interconnections, and interrelationships. The main fea- 
tures of the PROGREP model are the flexibility of intelligent and graphical interfaces. The intelli- 
gent interface aids the user in the dynamic network creation by providing logical control of the 
specification of the computer characteristics, parameters, properties, and security factors through 
the use of text and graphics. The graphical interface allows the user to display the topology of the 
configured network and analyze its security. 

Several approaches are taken to answer network security issues. The first approach is the 
stand-alone security checks and data capture. These security checks ensure compliance with policy 
concerning the use of various operating modes and the necessary hardware and software functions 
associated with particular EPL levels. The second approach is the systems perspective relative to 
network interconnection security checks and data capture. These security checks ensure the data 
transfer compatibility over a link, the operating mode compatibility between components, the indi- 
cation of the creation of a multilevel system, and the indication of a possible cascade problem 
between components. It also supports the investigation of information flow problems and con- 
straints through the message transmission capabilities of PROGREP. The combination of all these 
security checks is essentially equivalent to those required in DOE Order 5637.1 [13] and those 
described in Part I and Appendices A, B, and section of C of the Trusted Network Interpretation 
[17]. 

A third approach is currently being developed. It incorporates the integration of network 
security services into the existing PROGREP model. These additional features will model the 
functionality of the ICN at Los Alamos and will be essentially equivalent to Part II of all of 
Appendix C [17]. Other future work will be to develop and incorporate simulation capabilities, to 
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enhance and expand the existing explanation features of the system, and to commute the network 
intrusion detection research that has been initiated. Currently, collaborative efforts between Los 
Alamos and the University of New Mexico has resulted in the prototype network level monitor 
[18]. We believe that these enhancements will provide the ability to address most network security 
and information flow problems. 

REFERENCES 

[I] A. S. Tanenbaum, Computer Networks. New Jersey: Prentice Hall, 1988. 

[2] M. F. Capobianco, M. Guan, D. F. Hsu, and F. Tien, Eds., "Graph Theory and Its Applications: East and 
West," in Proceedings of the First China-USA International Graph Theory Conference. New York Academy 
of Sciences, 1989. 

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. 
San Francisco: Freeman, 1979. 

[4] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, The Traveling Salesman Problem: A 
Guided Tour of Combinatorial Optimization. Great Britain: Wiley and Sons, 1985. 

[5]     T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms. Amsterdam: North-Holland, 1988. 

[6]      R. J. Wilson and L. W. Beineke, Applications of Graph Theory. London: Academic Press, 1979. 

[7] J. S. Dreicer and D. Topkis, private communication July 1989-October 1989, discussions related to network 
security and the cascade problem, in collaboration with Los Alamos National Laboratory. 

[8] D. Topkis, private communication October 1989, draft paper "The Cascade Problem for Multi-Level Security 
in Computer Networks." 

[9]      "KEE Reference Manual," Intellicorp, May 1987. 

[10] R. Fikes and T. Kehler, "The Role of Framed-Based Representation in Reasoning," Communications of the 
ACM. Vol. 28, No. 9, pp. 904-922, 1985 

[II] J. F. Sowa. Conceptual Structures - Information Processing in Mind and Machine. Massachusetts: Addison- 
Wesley, 1984. 

[12] M. Stefik and D. G. Bobrow, "Object-Oriented Programming: Themes and Variations," AI Magazine. Vol. 6, 
No. 4, pp. 40-62, 1986. 

[13]    "Classified Computer Security Program," DOE 5637.1, Department of Energy, January 1,1988. 

[14] "Computer Security Requirements-Guidance for Applying the Department of Defense Trusted Computer 
System Evaluation Criteria in Specific Environments," CSC-STD-003-85, Department of Defense, Computer 
Security Center, June 25, 1985. 

[15] "Technical Rationale Behind CSC-STD-003-85: Computer Security Requirements-Guidance for Applying the 
Department of Defense Trusted Computer System Evaluation Criteria in Specific Environments," CSC-STD- 
004-85, Department of Defense, Computer Security Center, June 25,1985. 

[16] "Department of Defense Trusted Computer System Evaluation Criteria," CSC-STD-001-83, Department of 
Defense, Computer Security Center, August 15,1983. 

[17] "Trusted Network Interpretation," NCSC-TG-005, Department of Defense, Computer Security Center, 
July 31, 1987. 

[18] J. S. Dreicer, A. B. Maccabe, G. Luger and D. Topkis, private communication since April 1989, discussions 
related to network level monitoring and application of intrusion detection techniques [genetic algorithm and 
neural networks]. 

252 



TESTING A SECURE OPERATING SYSTEM 

Michael Johnston and Vasiliki Sotiriou 

TRW Systems Integration Group 
One Space Park 

Redondo Beach, CA 90278 

Abstract 
Assuring that an operating system meets its security requirements as well as functional requirements is 
crucial. In this paper, we offer suggestions on how to test a secure operating system based on our testing 
experience on the Army Secure Operating System (ASOS). ASOS is a family of secure operating systems: 
the Dedicated Secure Army Secure Operating System (DS ASOS) designed for C2 level TCSEC [l] and the 
Multilevel Secure Army Secure Operating System (MLS ASOS) designed for the TCSEC Al level. Both 
operating systems are designed for real time tactical applications coded in Ada and were developed using 
MILSTD 2167 [6]. This paper will concentrate on testing of Multilevel Secure ASOS. 

1    Introduction 
The goal of testing a secure operating system is to provide assurance through testing methodology that a 
system meets both the requirements detailed in the DoD Trusted Computer System Evaluation Criteria 
(TCSEC), otherwise known as the Orange Book, and its own specific functional requirements. 

At a minimum, Al security testing needs to concentrate on the security requirements found in the Orange 
Book. These security testing objectives are defined in section 4.1.3.2.1: 

1. The security mechanisms of the ADP system shall be tested and found to work as claimed in the 
system documentation. 

2. A team of individuals who thoroughly understand the specific implementation of the TCB (Trusted 
Computing Base) shall subject its design documentation, source code, and object code to thorough 
analysis and testing. 

3. Their objectives shall be: to uncover all design and implementation flaws that would permit a sub- 
ject external to the TCB to read, change, or delete data normally denied under the mandatory or 
discretionary security policy enforced by the TCB; as well as to assure that no subject (without au- 
thorization to do so) is able to cause the TCB to enter a state such that it is unable to respond to 
communications initiated by other users. 

4. The TCB shall be found resistant to penetration. 

5. All discovered flaws shall be corrected and the TCB retested to demonstrate that they have been 
eliminated and that new flaws have not been introduced. 

6. Testing shall demonstrate that the TCB implementation is consistent with the formal top-level speci- 
fication. 

7. No design flaws and no more than a few correctable implementation flaws may be found during testing 
and there shall be reasonable confidence that few remain. Manual or other mapping of the Formal 
Top-Level Specifications (FTLS) to the source code may form a basis for penetration testing. 
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These security objectives were used as initial guidelines for testing ASOS. Although necessary, they are 
not sufficient to provide full assurance. They deal solely with the Trusted Computing Base (kernel plus 
trusted software) and the security mechanisms. A secure system is more than just its TCB. It consists of a 
set of components that must function in an integrated manner. A system could be secure but not function 
properly or not be usable. Overly restrictive security mechanisms will certainly satisfy the requirements 
defined in the Orange Book but could make a system unusable. The Integration and Test team is in a 
unique position to assure that the system is usable because it is first user of the system. 

In the paragraphs that follow, we present the testing methodology used on the ASOS project for its 
Multilevel Secure ASOS. 

2 A New I&T Role 

On ASOS, we found that the Integration and Test team needed to play a stronger role in the development 
of a secure system than the role usually defined for it in the development of a system. Usually, an I&T 
(Integration and Test) team is not in place at project inception. Its purpose is to test overall system 
requirements and/or test integration of units. In general, it has no voice in requirements or design and 
usually understands only portions of the system. The tests are usually built by a different part of the 
project (for example, tests are taken from development without much understanding of the test code) and 
test requirements only. Consequently, the testing of a system is limited to the scope and completeness of 
requirements definition. Therefore, it is possible to pass all of its requirements but not be usable or properly 
function. There would be no assurance that a particular security class has been met, least of all an Al class. 
Whereas it is always important to have testing experience, knowledge of the totality of the product being 
tested is not at all necessary. 

But for a secure system, as required on ASOS, security must be part of the design and test approach 
from the inception of the project, and it requires experienced developers and test engineers. 

3 ASOS Testing Approach 

The basic ASOS testing approach covers the following aspects: 

1. Sound technical team. 

2. Well planned methodology of testing 

3. Need to integrate from beginning with all areas of project. 

4. Explicit assurance from Orange Book. 

3.1    Sound Technical Team 

The development and test of a secure OS is a highly technical undertaking and requires a high level of 
technical expertise. Knowledge of operating system functionality and security are requisites for all members 
of the team. This includes the test engineers who can fulfill the security test objectives 2 and 3 in Section 1 
only if they have a thorough understanding of the design and implementation of the system. 

Additional support for a sound technical team can be found in the Orange Book. The guidelines on 
security testing state at least two of the test team members shall have previously completed a security test 
on another system. On ASOS, all the members of the I&T team had testing experience with the testing of 
the Dedicated Secure Operating System (C2 ASOS). In addition to the test experience from the Dedicated 
Secure Operating System, two members of the team had prior testing experience from the Interim ASOS 
Secure Operating System, a prototype of C2 ASOS. This testing experience gave the test team the necessary 
background in security and operating systems on which to base testing and, specifically, to design the high 
level security tests described in 3.4. 
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3.2    Well Planned Methodology of Testing 

A well thought out plan of how testing will be done must be established early in the project. A coherent 
philosophy of testing must be established and documented in the test plan. This plan begins with how 
Unit testing, testing of the smallest, manageable entity of code, would be performed and documented and 
proceeds with a plan on how to integrate these units into subsystems and finally, the system. On ASOS, we 
established our plan for testing in the early development of DS ASOS and augmented it for Al level security 
for MLS ASOS. We established, designed, coded, and tested our units as required by MILSTD 2167 and 
integrated them into subsystems as per the plan we defined in our Software Test Plan [4]. 

Most of our requirements were tested during Unit testing for early detection and correction of errors 
and retested during integration and system testing. Since operating systems are fairly complicated, we 
found it desirable to piece the operating system together incrementally. This provided an early view to the 
capabilities and allowed insight into the workings of the security mechanisms. It was essential that the access 
checking routines be tested early and any errors be corrected early. For example, the Integration and Test 
team found an error in the mandatory access checking routine which is used by many different routines in 
MLS ASOS. The Integration and Test team not only detected errors but also often recommended solutions. 
We were in a unique position to recommend solutions because we were familiar with the design as well as 
the requirements. Our incremental testing of both the DS ASOS and MLS ASOS allowed us to isolate and 
correct errors much earlier than if we had tested the system as whole. 

An important philosophy for any system is to have repeatable tests, especially for a secure system. This 
includes unit tests; in fact, unit tests should be incorporated with integration tests to form a large test suite 
to check out the system when changes have been made. Repeatability becomes crucial with a secure system; 
it assures a high level of confidence by validating that the workings of security mechanisms have not been 
altered when a change has been made. On ASOS, we began generating a test suite for the DS ASOS and 
continued adding tests through its development. In some instances, the Integration and Test team worked 
with the Development team to develop test code (for example, file management). During the MLS ASOS 
development, we augmented these test cases for mandatory access checks, audit alarms and other specific 
Al requirements generating a huge test suite. 

Tests for an operating system should be self-checking, i.e., the test software checks if the criteria has 
been met and determines whether the test case passes or fails. For example, when testing the kernel task 
management read/write channel mechanism, the test software verifies that the appropriate message was 
received and no additional messages were received for the test to pass, else it fails. Self-checking tests not 
only allows repeatability but also allows for easy modification and generation of more test cases. On ASOS, 
we used procedures which allowed us to test approximately 88% of our requirements using one driver. Each 
time we needed to test new changes to the operating system, this driver would test the system, and we were 
assured that if it was successful, no errors that affected previous test cases were introduced into the system. 

Each increment of software should include regression testing of the previous increment to ensure com- 
patibility. This allows tracking of where and when errors are introduced into the system. On ASOS, each 
new increment went through regression testing before the new capabilities were tested, giving us confidence 
that basic capabilities were working before proceeding. For example, when the demand paging logic was 
added to memory management, all our previous tests were first run without demand paging being turned 
on to assure no breakage had been introduced. Testing of demand paging code followed upon successful 
completion of non-demand paging tests allowing us to isolate problems associated with demand paging. 

Another important part of the ASOS methodology was the use of tools which aided in the performance 
and analysis of testing. On ASOS, a tool was developed to read and analyze audit data. It enabled us to 
demonstrate that all security auditing events had been generated. Another area where tools were very useful 
is in the area of human-machine interface testing. Traditionally, the human-machine interface testing has 
been difficult to repeat exactly and even if doable, the time frame was prohibitive. On ASOS, we created 
several tools which allowed us to automate feeding of input to terminals and capturing output from the 
terminals. This allowed for "exact" repeatability of some crucial areas of the operating system. 

Thoroughness of testing is assured by mapping test cases to requirements. Each requirement must map 
to one or more test cases at one or more levels of testing (unit, integration, and system testing). On ASOS, 
requirements were mapped to levels and test cases in several iterations by the I&T team guaranteeing that 
each requirement was tested. We demonstrated 93% of the requirements during acceptance testing. 
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3.3    Project Integration 

In addition to its role of designing tests, documenting tests in the Software Test Description document and 
procedures for performing these tests in the Software Test Procedure Document, and performing integration 
and system tests, the Integration Test team must be part of each phase of the project. I&T's role in a secure 
system begins at project inception with the requirements definition phase and ends with acceptance testing 
and delivery. It is the responsibility of the I&T team to demonstrate that the operating system meets both 
its security and functional requirements and is usable. On ASOS, this goal was achieved by integrating 
I&T's influence in all aspects of the project. 

ASOS began with an I&T team in place at the start of the project and I&T was an integral part of each 
phase of the project. This included phases that a traditional I&T would never have been a part of such as: 

1. Requirements definition 

2. Verification 

3. Design 

4. Development 

5. Configuration Management 

In the paragraphs that follow, we elaborate on the role the Integration and Test team played on the ASOS 
project to help reach the goal of a secure, usable, and well tested Multilevel Secure ASOS system through 
its participation in the above phases of the project. 

3.3.1    Requirements Definition 

During the Requirements Definition phase, the requirements for the operating system are written and doc- 
umented in the Software Requirements Specification (SRS). On ASOS, the requirements were derived from 
the Orange Book and the Statement of Work (SOW) as illustrated in Figure 1. The SRS was written accord- 
ing to the standards defined by MILSTD 2167. These requirements define the system and are used as the 
basis for both developing and testing the system.  Each requirement must be testable. The system is finally 
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accepted on the basis of whether these requirements are satisfied. As part of the requirements definition, 
a mapping of test requirements to test levels (unit, integration, and/or system) is generated to ensure that 
each requirement is tested at least once. 

On ASOS, I&T played a vital role in the requirements definition phase. Not only did I&T determine 
whether or not a requirement was testable and at what level it should be tested, but I&T was also responsible 
for guaranteeing that the requirements in the Orange Book were represented in the SRS. In a secure system, 
each Orange Book requirement must map to one or more SRS requirements. I&T had the job of highlighting 
security specific requirements in its test suite. A demo of the human-machine interface highlighting security 
requirements was developed and incorporated as part of the System Test. In the MLS ASOS, this meant 
highlighting mandatory access checks and audit alarms as well as discretionary access checks and auditing. 
I&T determined which requirements needed to be added, deleted, or reworded based on the Orange Book, 
SOW, and testability. The team also determined which requirements could be shown at the system level 
and which requirements had to be demonstrated at the unit level testing. For example, if testing of a 
requirement necessitated looking at an internal data structure which is outside the scope of integration, then 
it was allocated to the unit level. 

3.3.2     Verification 

One of the key requirements of security testing (objective 6 in section 1) is to demonstrate that the TCB 
implementation is consistent with the Formal Top-level Specification (FTLS). This consistency is an aspect 
of testing not found in traditional development environments. It has application for those systems whose 
design has been specified in a formal language and rigorously proved to maintain a security policy. 

The reason this consistency is important is that it is required to bring the entire effort of formal verifi- 
cation to fruition. Without this step it is very possible to expend a great effort to specify a design, prove 
it is secure and then implement a product that only remotely resembles its proven design. For this reason, 
the ASOS I&T test team has been involved directly in developing the ASOS security model, engineering the 
verification plan, and developing the FTLS. 

In TRW's approach to the development of a secure operating system, there is a strong correlation between 
the test software and the formal specifications. This is because both are derived from the same requirements 
document (as is, of course, the developed code) as shown in Figure 2. 

An automatic generation of test cases from the FTLS would be an ideal approach and research should 
continue along this avenue. A TRW study to this end has been conducted, the RADC (Rome Air Develop- 
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ment Center) Computer/Communication Security Study (RCCSS) (see [7]). For now, only a "consistency" 
is required. 

At a minimum this consistency would mean that security testing must demonstrate that the TCB (both 
Security Kernel and Trusted Software) correctly corresponds to its specification. This level of "consistency" 
is generally tested during the kernel interface testing and nominal trusted software functional tests. 

The ASOS I&T team felt that a stronger degree of assurance would result from directly testing the actual 
verification conditions derived from the FTLS as shown in Figure 2. This form of testing was delegated to 
unit testing (see 3.2) demonstrating that the necessary state variables are invariant for each thread when an 
exception condition is tested, and that they reflect the correct state transition otherwise. 

3.3.3 Design Phase 

The basic foundation of any development is its requirements. From these, design and implementation follow 
along well known paths with the intent of complying with the requirements. Testing, in its basic sense, 
needs to look very closely at requirements. A statement regarding the failure of a product to uphold a design 
or implementation approach is not as strong as one that regards a requirement not being met. This was 
discussed in section 3.3.1. 

Though requirements are the basic driving force behind both implementation and testing, it behooves 
a project to ensure that a particular design approach, well known and documented, finds its way into the 
product. This is especially the case when requirements are written at a somewhat high level. An analysis 
and test of the design and implementation is explicitly called for (test objective 2 in section 1). 

Indeed, there may be little material in a requirements document for a test case developer to use in 
devising how to test a particular requirement. Knowledge of a design approach may give the test engineer 
alternate approaches or test cases where the design is really exercised. 

For example, often times a demand paging requirement is simply stated, leaving freedom in the design. 
This is proper, and a basic test approach would be to execute programs that exceed the physical memory. 
Knowing whether object code is shared or the criteria for choosing a page for overlay would influence whether 
multiple instances of one program or multiple programs are chosen for a test approach. 

Insight into the design was utilized by one of our basic security mechanism tests (see section 3.4, 
MAC_CHECK) during which the ASOS kernel routine regarding the basic dominance mediation between 
security levels was tested with many permutations. Knowledge of the design and implementation of the 
functions allowed our test engineers to devise alternate functions that perform each check in parallel to check 
the correctness of the result. 

3.3.4 Development Phase 

Any type of testing effort is beneficial early and throughout the development phase. This just makes good 
sense as the earlier a problem can be found and rectified the better. In this way, the mistake of building 
upon bad early code and becoming dependent on its erroneous behavior can be avoided as well as the cost 
of correction. 

In the case of security, catching an errant routine early can avoid disaster. The heart of the TCB is the 
security kernel and the heart of the security kernel is set of routines that perform security mediation. If 
these routines are not rigorously tested early (see test objective 3 in section 1) and the operating system's 
security is based on them, then any subsequent error could have a rippling effect through the system with 
severe cost and schedule impact. 

Involvement of the test team with the early ASOS kernel increments uncovered an error in the mandatory 
security checking routines that enabled us to right ourselves and avoid such a cost. A routine was developed 
to return a boolean for 

dominates(a, b) 

where a and b are security levels and the function returns true if a dominates b. This routine was implemented 
correctly; however, a routine to perform a "strictly" dominates function (where a dominates 6 and they are 
unequal) was coded in terms of dominates and an idea of total ordering (as found in numbers) such that 

S-dominates(a, b) = -i dominates(b, a) 
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since, with numbers, 
a > b = -i (6 > a). 

The test cases chosen by the developer did not involve disjoint category sets and all his tests passed. The 
I&T test team found early that if a and b had no dominance relationship, s-dominates would erroneously 
return true. 

The advantages of finding this kind of error at the threshold of building an entire TCB around such 
routines cannot be overstated in terms of cost savings of fixing the error early. Not to be overlooked is the 
advantage of an independent test approach as illustrated here. This gaping hole in security may not have 
been found without the additional set of test cases. 

Also, though not strictly a security issue, the correctness of the tested product is going to depend 
ultimately on the correctness of the test software which has the undesirable possibility of not finding bugs 
as well as reporting false bugs. Being able to "exercise" test software early on the developing product makes 
for stronger assurance statements. 

3.3.5     Configuration Management 

Most testing efforts involve integration of components into a whole system. In the case of the original 
development of a system, the only sensible way to accomplish this integration is to start with the nucleus 
of the system, integrate it, test it, and expand upon this tested baseline repeating the cycle until the whole 
product is integrated and tested. The ASOS I&T team devised a series of logical steps in the development of 
the system starting early with the nucleus of the security kernel and adding capabilities in software builds. 

This incremental build activity must be supported by a configuration management mechanism and 
tool set. The testing organization should have the most influence in this area as they are most affected. 
Configuration management must be utilized for not only the design and development but for the life-cycle 
of the product. 

This concept is especially appropriate for a secure system as the configuration management system is 
also responsible for assuring that only authorized updates of both software and hardware are made to the 
system. Not only must configuration management have capabilities to control changes, but it must allow for 
automatic regression testing upon any changes. 

Under ASOS, the I&T organization monitored all build activities in which the ASOS TCB and test 
software were rigidly controlled. Any change resulted in the new baseline being subjected to a full suite of 
regression tests. Though somewhat tedious, this procedure was faithfully adhered to, for good reason: In a 
complex system, a change is never really isolated. It was always amazing to see how a seemingly innocuous 
change in one part of the system could manifest some grave problems in another, and how, if only the portion 
of the test suite involved in the area that was changed was run, the error would not have been discovered as 
soon. 

One example comes to mind: The object reuse requirement led us to adopt an initialization design 
calling for the clearing of each data segment not allocated to an existing file. This design was implemented 
by an uninterrupted I/O loop in the kernel (after all, no application is running during initialization). The 
initialization test suite was rerun, of course, and showed all tests continuing to pass. The ASOS I&T testing 
philosophy, however, called for running all tests, and we found right away, that in the file management 
system call code, when a disk was mounted, the same code was used to clear the unused disk segments. Of 
course, the applications on the system stalled during the loop, and we realized an interruptible design was 
called for. 

3.4    Explicit Assurance from Orange Book 

As shown in Figure 1, the requirements document for a secure system should be derived, in part, from the 
requirements for the proper class from the Orange Book. 

In the development of ASOS, Orange Book Al requirements map into the system requirements. Thus, 
the testing of these requirements will, in effect, test the systems adherence to the requirements for an Al 
system. 

The ASOS test organization felt that a stronger statement can be made that the system is Al if Orange 
Book requirements are explicitly tested by a unique security test case designed for that purpose. 
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A major ASOS security testing document [5] describes a full set of security related test cases explicitly 
mapping several test cases to each section of the Al criteria in the Orange Book. 

The requirements areas found in the Orange Book are listed below along with the test cases found in 
the ASOS Security Test Case Description document that pertain to that area. The name in bold-face is the 
actual test case name used ([5]). 

1. Penetration - test objective 4 in section 1. 

Parameter Tests check the ability of the kernel software to detect and properly report as a param- 
eter _error any input parameter whose value is outside the constraints imposed by the kernel for that 
particular parameter's type. This method tests the integrity of the kernel. Since the kernel is sepa- 
rately linked, it is possible to circumvent Ada type checking during the domain switch to the kernel. 
Parameter values outside the type constraints may also be specified by calling the kernel directly by 
TRAP instructions from assembler programs. Several serious security problems could result if the 
kernel used an unchecked input parameter including: 

• Invalid areas of TCB data could be accessed. 

• A fatal memory fault could occur. 

• A fatal divide-by .zero fault could occur. 

The parameters under consideration in this test are scalar input parameters assumed to be passed by 
value. 

Parameter tests also check the ability of the kernel software to detect and properly report as a param- 
eter-error any parameter whose address value is outside the program instance's virtual address space. 
If such parameters are unchecked, the kernel may deliver output data into its own address space or 
that of another program instance. It may also encounter a fatal memory fault. Parameters under 
consideration for this test are those passed by reference where it is assumed that an address is passed. 

Kernel_Entry verifies that random kernel calls passing random parameters have no adverse effect 
on the kernel's processing. 

Kernel .Consistency checks the susceptibility of the security kernel to regulated kernel state se- 
quences. This test focuses on kernel calls originating nominally from nonkernel ASOS and expected 
in a nominal sequence. It determines whether the kernel conditions itself to expect a certain ca- 
dence of kernel calls. An example might be two successive calls to resume the same task using the 
Task-Resume kernel call. This kind of call is normally used by the Ada RSL and would not be called 
twice successively for the same task. Regardless, the kernel should be able to withstand this kind of 
anomaly. 

Secure-Recovery determines whether, upon recovery, the TCB successfully places itself in a secure 
state. One example from this test case follows the scenario: 

(a) Create files writing a pattern of data to the disk until the disk capacity is exceeded and then 
delete these files. 

(b) During the file deletion phase, prompt the user at a random time to hit Carriage Return. 

(c) Once the Carriage Return is entered, call terminate system with the restart option. 

(d) Examine all available free disk pages and look for any uncleared data which exists. 

(e) If any uncleared data is detected, report the anomaly. 

This method tests a crucial security requirement regarding object reuse. When a file is deleted, there 
are timing windows that must be considered in a secure design, if there is a possibility the system could 
go down. When a file is deleted, all segments used by the file are made available for reuse. They also 
must be cleared. If these two objectives are simply followed as stated then, if the system goes down 
during the clearing phase, several disk segments may be both available and uncleared. The ASOS 
design calls for clearing first then making available each segment in turn. If a crash occurs, there may 
be uncleared segments, but they could not be used again. During initialization, these segments are 
found (since no file system directory owns them) and they are cleared and made available. 
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So, this test verifies that the system is restarted in a secure state: 

• All kernel initialization checks pass. 

• File Management checks for data structure consistency pass. 

• All available disk pages are clear. 

2. MAC policy - test objective 1 in section 1. 

This test case is designed to test the kernel's Mandatory Access Control (MAC) routine. The ASOS 
access level consists of a security classification (1-16), an integrity classification (1-16) and up to 
64 security categories and 64 integrity categories. The number of different access level comparisons 
that the kernel's MAC routine can perform is therefore too large to test with all permutations. A 
representative sample of the subject and object access level combinations are tested. These access 
levels are chosen randomly. The scenario for testing is: 

• Verification of the implementation of the mandatory access policy is performed by interfacing 
directly to the kernel's MAC function. 

• Access levels are composed of Security and Integrity components. 

• The Kernel's MAC function determines whether mandatory access is allowed based on: 

- Desired access (Read, Read/Append, etc.) 

- Subject's access level 

- Subject's Privileges 

- Object's access level. 

• The test program selects random input values from a full range of classifications (16) and cate- 
gories (64). 

• The results are verified by an independent checker routine as described in section 3.3.3. 

3. DAC policy - test objective 1 in section 1. 

This test case is designed to test the kernel's Discretionary Access Control (DAC) routine. The test 
scenario verifies discretionary access policy is implemented correctly by interfacing directly to the 
kernel's DAC function. 

In particular, the kernel's DAC function determines whether discretionary access is allowed based on: 

• Desired access (read, read/append, etc.) 

• Subject's privileges 

• User's access rights to the object 

• Group's access rights to the object 

The results are verified by an independent checker routine which, like the routine to check the MAC 
function, independently concludes whether a requested access is allowed and checks to see if the 
function being tested arrived at the same conclusion. 

4. Object Reuse 

File_Object_Reuse checks the ability of the TCB to clear the contents of disk space before granting 
access to subjects. 

ChanneLObjectJReuse checks the ability of the TCB to restrict the reading of extraneous data 
through the channel mechanism. 

Register JReuse verifies that the data registers are cleared prior to kernel task management allowing 
a new task to run. Since the new task to run may or may not be in the same program instance as 
the current task, the data registers must be cleared by the kernel between task switches in order to 
prevent residual information from passing from one task to another. 

Device_Object_Reuse checks the ability of the TCB to initialize the device registers before granting 
access to subjects. It verifies that device space is cleared when a device is unmapped. 

Memory Object Jteuse checks the ability of the TCB to clear the contents of memory segments 
before granting access to subjects. 
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5. Denial of Service - test objective 3 in section 1. 

Time_Slicing tests the kernel's ability to perform time slicing between two tasks of equal priority 
under the condition that the actions of taskl will cause a momentary preemption of time-slicing 
between the two tasks by a higher priority task. 

• A test program activates two tasks of equal priority: 

— Task 1 repeatedly performs auditable actions. 

— Task 2 performs actions which are not auditable. 

— The Secure Audit Capture preempts the two tasks when handling Task l's audit events. 

• This test verifies that task 1 and task 2 are served equitably by the processor. 

This test case attempts to provide a scenario where two tasks of equal priority are both considered 
for scheduling simultaneously and checks that, over time, they receive the same amount of CPU time. 
For this test, they both must be uninterruptible by nature and still be rescheduled. The Secure Audit 
Capture program, which runs at the highest priority, provided the preempting agent. 

When this test case was first run, a bug in the Kernel resulted in Task 1 locking out Task 2. This test 
case was instrumental in fixing this error. 

File_System_Denial checks to see whether a low priority program can deadlock or effectively disrupt 
the File System to other users. The test program attempts to overload the File System by progressively 
activating a low priority task which repeatedly requests File Management Services. The test program 
performs five iterations. Each iteration places a heavier load on the File System than the previous 
iteration. For each iteration, a high priority task (which also requests File Mangement Services) is 
activated as a "sample" task and its completion time is measured. Any variances in the completion 
time of the sample tasks in relation to each other is reported. 

6. Architecture 

Executable_FileJProtection checks the TCB's ability to restrict all attempts at modifying the 
program executables, even if the user has the proper access controls and privileges. This construct 
has been placed in the system architecture in order to effectively block the propagation of computer 
viruses in ASOS. 

• Verifies that program executable files cannot be deleted or appended to 

• Checks ASOS virus protection mechanism 

Access Jllegal^Memory tests the kernel's ability to restrict a program's attempt to access portions 
of the programs virtual memory space illegally. 

The test program attempts to access data illegally: 

• by attempting to read and write data to locations outside of the legal virtual memory space of 
the program. 

• by attempting to write data to read only portions of the programs virtual memory space. 

InteractiveJSecurity JDemo demonstrates the various security features of the Multilevel Secure 
Operating System via the Secure Server, System Administrator, and System Operator functions. This 
is an interactive test. 

7. Devices 

AllocateJnvalidJDevice checks the ability of the mapjo kernel call to restrict device mapping to 
legitimate user devices. A user should not be able to map a device that is reserved as a system device 
or one which was not declared at system generation. 

User_Printer checks the restriction placed on the use of the system line printer by the TCB. The 
TCB allows a program to map the printer device only if the program possesses the proper mandatory 
and discretionary access to the device. Discretionary access to the printer device is initially set to no 
access for all users. 
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Modify _Print_Buffer attempts to modify the print buffer prior to the actual printing of the file. 

A low access program attempts to access files copied into the spool directory by the Line Printer 
Spooler as the file is printed. 

SpoolerJSpoofer determines whether the line printer spooler/despooler (the trusted program that 
receives print requests, queues them, and drives the printer) is able to validate and control requests 
reserved for the operator. 

Masquerade_Print_Label attempts to deceive the system operator into thinking that a particular 
print request is of a lower security classification than it actually is by attempting to violate the 
Operator's trusted path to the printer. 

8. Access Controls 

These tests determine whether an unprivileged user without the proper discretionary and mandatory 
access rights to the authentication database or audit trail is able to access them. 

• Authentication_DatabaseJRead 

• Authentication_Database_Write 

• Audit_Trail_Read 

• Audit_Trail_Write 

9. Auditing 

Jumble_Audit_Data checks the system's behavior when attempts are made to deceive the System 
Administrator via the Audit Display mechanism. 

Audit_Data_Loss checks the TCB's ability to capture all auditable events under a simulated duress 
condition. This test involves repeated requests to create new audit files to determine whether the 
TCB can continue to capture all audit events. 

Audit_Space_Limit checks the system's behavior when there is no more disk space available and 
auditing is active. This test verifies: 

• System is terminated by Secure Audit Capture. 

• System can be re-booted and audit files accessed. 

• Minimal amount of audit data loss occurred. 

Generate_All_AuditJEvents verifies that all defined auditable events are audited by the system 
and that the audit events are then written to the audit file by the Secure Audit Capture trusted 
program. 

10. Covert Channels 

• Verifies a covert_channel_usage audit event is generated every time a covert channel is reported. 

• Verifies an audit-alarm audit event is generated whenever a program's bandwidth has exceeded 
the defined threshold and rate for the covert channel being tested. 

• Verifies that a program is delayed when the bandwidth exceeds the allowable limit. 

3.5    Flaw Hypothesis Methodology 

Many of the security tests defined in Section 3.4 especially those dealing with penetration, were devised 
using the Flaw Hypothesis methodology, which is used to infer possible weaknesses in an operating system 
and requires detailed knowledge of the system architecture and design. 

First potential flaws were "proposed". Some flaws were precluded by the MLS ASOS System design (e.g., 
symbolic links, executable search paths). Other flaws were not precluded by design, but were ineffective (e.g., 
bogus LOGIN routines are rendered ineffective since the system times out after a certain number). Remaining 
flaws were tested, where feasible, and confirmed or rejected. 
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If a flaw is confirmed, a software problem report is written. When fixed, tests are rerun to verify that the 
fix corrects the problem. In some cases, once a flaw is corrected, the new design renders testing unnecessary. 
If regression testing of the fixed flaw is desired, the test is incorporated into the Security Test suite. 

One example of a security test case that existed to uncover a flaw and then was precluded by a changed 
design was regarding the generation of program ids: 

The security kernel must ensure that the generation of ids associated with new program instances (pro- 
cesses) are not predictable. If they were, then program instances (security subjects in ASOS) could commu- 
nicate over a covet channel by the receiving subject noting whether a program instance it just activated got 
the next id or the one after it. The difference would signal whether the sending subject activated a program 
and thus a binary message could be encoded. 

The ASOS I&T team proposed this flaw, checked the kernel code, and saw that each new id was obtained 
via a function based on current numbers of tasks and programs in the system. It was possible to predict 
each new id and a test case was written and run to prove this prediction was possible and to substantiate a 
Software Problem Report. The flaw was subsequently fixed with a completely new design rendering the test 
case, though crucial in its day, unnecessary to run thereafter. 

It is through this cycle of test, report, fix, and retest that assurance is gained for test objectives 5 and 7 
in section 1. 

4     Summary 

Our experience with testing Multilevel Secure ASOS has shown us that the Integration and Test team needs 
to have a strong role in the engineering of an operating system designed for Al to ensure that the security 
and functional requirements are met and that the system functions properly. Based on our experience on 
ASOS, we recommend the following: 
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• Due to the additional requirements that security imposes, the I&T team must be of a high caliber of 
technical expertise, versed in security fundamentals, and have previous test experience. 

• The method of testing must be well thought out and allow for early visibility into the security mech- 
anisms. 

• Test cases must be repeatable and self-checking whenever possible. 

• I&T must be an integral part of all phases of the project from project inception as illustrated in Figure 
3 and explained throughout this paper. 

• Security testing must go beyond normal requirements testing and into areas such as penetration, denial 
of service, and specialized architecture tests. 
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ABSTRACT 

A test design method was developed for security features of a B2-level secure 
operating system. The method consists of dividing requirements and design 
documents written in plain English into logical "assertions." The assertions 
are then mapped between successive levels of design abstraction. The 
mapping process checks the consistency between requirements and design, 
identifying errors at early stages of development. Classical test techniques 
supplement the assertion-mapping approach to enhance test coverage. The 
test design process provides a documentation trail for all requirements and 
design elements, from the TCSEC through the final design of the system 
features and resulting test cases. 

1. Introduction 

In an ideal world, engineering of a complete project would always proceed in an orderly fashion. It 
would move through increasingly detailed levels of abstraction, using formal specification languages 
at each level. The task of validating such systems, while very detailed, is straightforward; the 
mechanical nature of the specification languages clearly identifies the items to be tested. 

In the "real world" however, software systems frequently evolve from earlier versions of themselves. 
As such, the existing system will probably have little or no basis in formal software engineering 
methods. Even the most rudimentary of design documents are often absent. Where design 
documents exist, they frequently consist of English text descriptions of the various sub-functions. 

Even in the case of new software development, the use of formal specification languages is the 
exception, rather than the rule. The use of informal methods remains as the dominant means of 
expressing the parameters of software behavior. 

All of this may present a problem for the test team which is attempting to develop validation suites 
for a secure computing system. They frequently have little or no control over the format of the 
design documents. It is up to them to devise a strategy to utilize the design documents as they are 
given. 

Enhanced security features are being implemented in a new version of UNIX System V<SJ to be 
submitted for evaluation by the NCSC. The target TCSEC1'1 security level is B2. This paper 
discusses an informal method (as distinguished from formal methods) used for functional (i.e., 
'black-box') testing of security features in support of the B2 evaluation. 
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The test team has several goals, both in the area of testing and in the more general realm of 
"assurance:" 

• To ensure that the design of the software is sufficient to meet the goals of the product (e.g. to 
achieve an NCSC B2 rating). 

• To validate that the software behaves as designed. 

• To be able to state, with reasonable certainty, that the functions under test have been adequately 
covered by the testing process. 

To meet these goals, the test-team developed an integrated test method which will be discussed 
below. 

2. Assertion Mapping 

Although natural language was used to specify the system design, it was believed that a structured 
method of performing informal verification was both necessary and achievable. The approach 
consists of dividing the requirements and design texts into logical "assertions," and then mapping the 
assertions between successive levels of design abstraction. 

2.1 The Nature of A ssertions 

For our purposes, an assertion is defined as a single, simple, complete and verifiable logical 
proposition. For example, the following is a hypothetical assertion derived from the discretionary 
access control feature requirements: 

The setacl command will support the changing of discretionary permission information 
associated with an object. 

is an assertion. However, 

The setacl command will support the removal and display of discretionary permission 
information associated with an object. 

needs to be simplified into two assertions, thusly: 

The   setacl   command   will   support   the   removal...    of  discretionary   permission 
information associated with an object. 

The   setacl   command   will   support   the   ...    display   of  discretionary   permission 
information associated with an object. 

On the other hand, a statement such as 

The setacl command provides a consistent interface to the dac mechanism. 

is not an assertion. It is instead a general statement about a design feature. The statement is not 
specific enough to be testable. In a plain-English design document such statements serve explanatory 
and linkage functions. The elimination of such statements from assertion lists requires a certain 
degree of judgement on the part of the test designer. 

2.2 Source Documents 

There were three types of source documents which were used to generate assertions on this 
particular project. They were: 
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1. TCSEC - The Trusted Computing System Evaluation Criteria or "Orange Book," published by 
the Defense Department. Since the motivation for development of the particular systea was 
to obtain a B2 rating, this document represented the primary standard for the assurance 
process. 

2. Requirements - A requirements document was prepared which contained external 
specifications for the UNIX System V® features which would be developed to meet B2 
requirements. This included syntax and semantics of new commands and system calls, as well 
as more general requirements. 

3. Design - Each feature (a functional subdivision) of the system is documented at this level. 
Design documents describe internal and external functions in detail. They usually include 
implementation details which are beyond the scope of the requirements document. Each 
individual design document corresponds to a sub-section of the requirements document. 

2.3 Assertion List Development 

Each source document serves as the basis for a distinct "assertion list." The assertion lisu are 
developed for each security feature area (e.g., trusted path) from the source documents. 

The process of developing assertions consists of surveying the source documents sequentially and 
extracting textual fragments which comprise assertions. As far as possible, direct quotes are used. 
Standard quoting rules are followed. Text added for clarification is included in square brackets ( [...] 
), and areas where text is deleted are denoted by the ... symbol. (See the example of a divided 
complex assertion in a previous section.) 

Assertions are named according to their feature, component, source document, and seqrence 
number. For example, "dac-setacl-R 1" represents the first assertion from the section of the 
requirements document concerned with the "setacl" component of the "dac" (discretionary access 
control) feature. The sequence numbers of design-document assertions are designated by "D" (e.g. 
"dac-setacl-Dl). 

Once identified in a source document for a feature, assertions are placed into lists by component. 
They are represented in the following format: 

dac-setacl-Rl   (5.4.1)  The setacl command will support the changing of discretionary 
permission information associated with an object. 

dac-setacl-R2   (5.4.1) setacl can be used to set an ACL by the owner of a file 

Optionally, a section number from the source document may be included following the assertion 
name, for ease of reference at a later time. The organization of the assertion lists by feature and 
subcomponent categories will simplify the mapping process which is to follow. 

2.4 The Mapping Process 

The mapping process performs an assurance role for the integrity of the development cycle. It 
provides a more structured review of the elements of successive design refinements than the more 
common peer review and walk-through. The process of mapping will often detect those elements of 
requirements which are erroneously omitted or contradicted in later design phases. 

Assertion lists for each source document are mapped one to another between successive lewis of 
design abstraction for each security feature (e.g., trusted path). In general, TCSEC assertions 
applicable to Class B2 are mapped to requirements assertions, which in turn should map to design 
assertions.  Each mapped set of requirements and design assertions forms a "test element." 
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25 Mapping Rules 

25.1 TCSEC to R equirements Mapping R ules 

• Every assertion from the TCSEC must be mapped to one or more assertions in the requirements 
document which, taken together, are sufficient to meet the TCSEC requirement. 

• Requirements may exist that do not map back to the TCSEC. 

• No requirements document statement may contradict a TCSEC statement. 

25.2 Requirements to Design Mapping Rules 

• Every assertion from the requirements document must be mapped to one or more assertions in 
the design document. 

• No design document statement may contradict a requirements assertion. 

• No design document assertion may contradict a TCSEC requirement. 

25.3 Design to Test Element Mapping Rules 

• Each requirements assertion that is mapped to a design document assertion shall be identified as 
a discrete test element (e.g., TE0201). 

• Any design document statement that cannot be mapped to a requirements document assertion 
shall be identified as a discrete test element. 

25.4 Example of Mapping R ules Application 

The following example illustrates the mapping process. A Discretionary Access Control (DAC) 
TCSEC requirement is mapped to the product requirements and design documents to verify that 
each TCSEC requirement is met. Section 2.6 will show how the output of the mapping process is 
further defined as test elements, which then become the building blocks for test cases. This process 
verifies that the design of the software meets the TCSEC requirements and leads to the creation of 
the test cases necessary to validate that the product functions as designed. 

The TCSEC B2 level DAC requirements state: 

Access permission to an object by users not already possessing access permission shall 
only be assigned by authorized users. 

By analyzing this statement we can derive: 

dac-setacl-Tl   a mechanism is needed to grant access permission to an object to users not 
possessing access permission 

and 

dac-setacl-T2   access permission may only be assigned by authorized users. 

We can refer to these requirements as Tl and T2.   The product requirements document must be 
shown to meet each of these TCSEC requirements. 

The requirements document states: 

dac-setacl-Rl   The setacl command will support the changing of discretionary permission 
information associated with an object. 
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This assertion identifies the mechanism by which access permission to objects will be granted and so 
satisfies the first TCSEC requirement (Tl). 

The requirements state: 

setacl will allow the file owner or a process with appropriate privilege to set an ACL. 

This statement can be be broken down into two assertions: 

dac-setacl-R2   setacl can be used to set an ACL by the owner of a file 

dac-setacl-R3   setacl can be used to set an ACL by a process with appropriate privilege 

Together, R2 and R3 address T2 in that they state the basis for granting access permissions to an 
object. 

The requirements document further states: 

dac-setacl-R4 if the DAC check fails when a request is made to modify the ACL, then 
permission to modify the ACL will be denied 

This assertion also addresses the T2 requirement. Thus Rl through R4 meet the TCSEC 
requirement. 

The product design document shows how the requirements will be implemented. The design 
document states: 

dac-setacl-Dl the setacl -s option will set an object's ACL 

dac-setacl-D2 the -a option will add an ACL 

dac-setacl-D3 the -m option will modify an ACL 

dac-setacl-D4 the -d option will delete an ACL 

Dl through D4 can be mapped to Rl as they enumerate the ways in which discretionary access 
permission may be changed. 

The design document states: 

dac-setacl-D5 setacl can be executed by a process with an effective uid equal to the owner 
of the object 

dac-setacl-D6 setacl can be executed by a process with the appropriate privilege 
(POWNER) 

dac-setacl-D7 If neither the process' effective uid is equal to the owner of the object nor the 
process holds the appropriate privilege (POWNER), setacl will fail. 

dac-setacl-D8 If setacl fails either because the effective uid of the process is different than 
the owner of the object and the process does not hold P_OWNER, the error 
NOPERMIT will be returned. 

D5 maps to R2. D6 maps to R3. D7 and D8 map to R4. That the command will fail and that the 
correct error message is returned are separate assertions and both must be tested. 

From this it is apparent to what extent the design fulfills the requirements and the requirements 
fulfills the TCSEC objectives. Two TCSEC assertions have resulted in eight design assertions (see 
Figures 1 and 2). Note, also, that one requirements assertion, dac-setacl-R5, has no corresponding 
design assertion. Such cases will be flagged as errors, and require updates at least to the design 
documents to correct them. The stand-alone design assertion, dac-secacl-D9, is allowable as long as 
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it does not conflict with the requirements. 

The assertion mapping results in an appendix to each TDS (see Figure 2). The assertions are next 
broken down into test elements from which the test cases are built. 

2.6 Test Elements 

2.6.1 Test Element Composition 

Each relation where some number of design assertions are mapped to a requirements assertion 
represents a unified logical implication. Such an implication might be stated for the general case, as 
"if the design assertions are true, then the requirements assertion is true." 

Such a set of assertions is described as a 'Test Element," and provides the basis for "white box" 
testing. It also provides a convenient way of denoting the relation of design assertions to 
requirements assertions. 

In identification of test cases, test elements are used to determine what tests are necessary to achieve 
coverage. Thus, in the scheme under study, test elements, rather than assertions, are assigned to 
specific test cases. 

It is required that each test element be covered within a test case. Related test elements may be 
grouped together for testing in a single case. 

2.6.2 Division of Test Elements 

It was found to be necessary to permit the division of test elements into subelements for a number of 
reasons: 

• Permitting test elements to be tested across several test cases sometimes allowed more economy 
in the size and number of cases. 

• Some test elements applied to a number of mutually-exclusive execution environments. Therefore 
it would have been difficult to test them in a single test-case, or indeed even in the same test 
suite. 

• Dividing test elements into sub-elements permitted tracking of specific test inputs towards 
complete coverage of a test element. For example, valid and invalid input classes may be 
independently tracked, along with upper and lower boundary conditions. 

The benefits (and indeed necessity) of permitting sub-division of test elements were deemed to be 
more important than the simplicity that would be retained by keeping them atomic. 

Test elements which are subdivided are recorded in a tabular fashion, along with the circumstances 
which distinguish their sub-elements from one another. Sub-elements are numbered with the test- 
element number and subelement number (e.g TE215-3). 

3.  Test Cases 

The test elements and test sub-elements are logically grouped together into 'Test Cases." The 
criteria for grouping a set of test elements and subelements together are informal and primarily 
utilitarian. For example, error conditions for a particular command will frequently be tested in a 
single test case. 

The 'Test Cases" are named according to feature and component, and numbered in ascending 
sequence, (e.g., dac-setacl-010). The example is the first test case for the setacl component of the 
dac (discretionary access control) feature. The sequence numbering system uses an increment of 
'010' to allow for subsequent insertion of test cases as needed. 

The test cases for each feature are contained in a Test Case Specification (TCS) document which is 
a superset of the IEEE Standard for Software Test Documentation AN SI/IEEE 829-1983.  [2) 
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A TCS document specifies the following items for each case which is identified: 

1. Description 
2. Inputs 
3. Outputs 
4. Procedural Requirements 
5. Test Elements 

Parallel sets of input and output specifications cover the test elements included in the test case. The 
TCS provides complete specifications for coding a test case. 

The test case specifications are stored in a database for each feature. A subset of the information, 
test case identifiers and descriptions are automatically extracted from the database for creating the 
Test Design Specification (TDS) document. An automatic tool scans the database to verify that the 
test cases cover all test elements and subelements for all components of a feature. 

4. Integration of 'Classical test methods 

Test elements provide a documentation-based foundation for the application of classical software test 
methods, such as those described by Myers'31. It is more usual for such methods to be applied 
directly to the design documents. By using the test elements as a basis, the tester can select test 
elements with the assurance that he or she is covering the full documentation base. The test 
elements unite the related assertions across the various documents, leading to a far more orderly 
development of test input specifications. 

Such techniques as input class mapping and boundary analysis are employed in the selection of 
specific inputs during the specification of test cases. 

For example, in the specification of TCS for a test case which covers TE0202, it will be recognized 
that it is a valid input condition which is being tested. That is, the input conditions are such that the 
setacl call will succeed. (See Figure 2 and relevant assertions in the text.) Thus, when testing the -s 
option of setacl the input generated by the valid class of input is as follows: 

II: setacl -s where the process owner is the object owner. 

Note that similar input will be generated for other applicable options to setacl. 

Another valid condition for setacl is the one in which the calling process is privileged (TE0203). 

12: setacl -s where the process is not the owner of the object 
and the process has the POWNER privilege. 

The corresponding output for the above input would be the indicators of successful completion. 

The invalid class includes the condition where the process owner is not the owner of the object and 
the process does not hold the POWNER privilege (TE0204). This condition also mandates a 
specific class of output (TE0204). 

To continue with the setacl -s case: 

13: setacl -s where the process is not the owner of the object 
and the process does not hold the POWNER privilege. 

03: return code -1, errno = NOPERMIT 
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Intuitively, one would expect that for every valid class of inputs and outputs, there would be at least 
one corresponding member of an invalid input and output class. Such will be the case except for 
functions which have no possible invalid inputs. Thus, the tests for completeness continue during the 
test case specification process. 

Similarly, boundary analysis is performed for inputs which consist of scalar values. 

5. Problems and solutions 

5.1 Document stability and revisions 

The degree to which the mapping method is tied to the design documentation is a two-edged sword. 
The advantages are clear. However, it also means that every change in documentation necessitates 
corresponding changes in the mapping structure. Where the mapping is produced manually, and the 
connections are on paper, this can be very time-consuming. It is also necessary to track 
documentation changes carefully. The inclusion of "change bars" in revisions of documents is a bare 
minimum expedient. 

5.2 Rigorous process is also tedious 

The process of exhaustively dividing documents into assertions is time-consuming. Furthermore, the 
mapping of assertions requires that the tester scan assertion lists for matching assertions, which can 
require time and patience. 

The positive side is that the documents are, by the very nature of how they are used, subjected to 
the most exhaustive review process possible. A large number of design errors were caught by this 
process, and prevented from propagating into the code. 

6. Results 

The foregoing method provides the following benefits: 

The approach: 

1. validates requirements and design document consistency and integrity, providing an argument 
for the correctness of the implementation 

2. establishes traceable relationships from the TCSEC through to the test elements 

3. identifies requirements and design errors early in the product development cycle as missing or 
mismatched links between assertions appear 

4. leads to test suites which are complete in their coverage when the mapping approach is 
supplemented with "classical" test techniques 

5. provides for integrity of change control via the traceable relationships between the base 
documents and the test suites themselves 

The assertion-mapping method has been demonstrably effective. On one feature, the analysis of 167 
requirements assertions led to the discovery of 7 contradictions and 27 omissions in the design phase. 
These discrepancies were those that remained even after completion of a formal document review 
cycle. It is clear then, the method is far more effective at detecting errors than reviews and 
walkthroughs alone. 

Eirors which survive into the final object code are generally thought to be orders of magnitude more 
costly than those which are resolved during the design and requirements phase. Therefore we are 
convinced that such a structured approach to test design is worthwhile. 
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Figure 2. 

TEST ELEMENT MAPPING 
TCSEC Requirements Design Test Element 

dac-setacl-Tl dac-setacl-R 1 dac-setacl-Dl TE0201 

dac-setacl-D2 

dac-setacl-D3 

dac-setacl-D4 
dac-setacl-T2 dac-setacl-R2 dac-setacl-D5 TE0202 

dac-setacl-R 3 dac-setacl-D6 TE0203 
dac-setacl-R4 dac-setacl-D7 TE0204 

dac-setacl-D8 
dac-setacl-T3 dac-setacl-R 5 None 

(mapping omission) 
dac-setacl-D9 TE0206 
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ABSTRACT 

Security Testing is one of the most important phases of secure 
system integration because it verifies security functionality and 
exposes unforseen vulnerabilities. Once security functionality is 
confirmed, any identified vulnerabilities can be minimized through 
countermeasures that in turn provide a more secure system. 
Security testing is discussed in four phases: Planning, Preparing, 
Executing, and Reporting.  Each phase is discussed in detail. 

INTRODUCTION 

The Department of Defense Trusted Computer System Evaluation 
Criteria (TCSEC) [1] requires that "the security mechanisms of the 
ADP system shall be tested and found to work as claimed in the 
system documentation." Taken in the strictest sense, the TCSEC 
only applies to systems that are undergoing evaluation by the 
National Computer Security Center (NCSC). Still, some system 
integrators are embracing this technology to provide the 
acquisition agency with some assurance that the security mechanisms 
of the system perform as designed. This paper focuses on the 
systems integration problem rather than the NCSC evaluation 
process. 

Security Testing is one of the most important phases of secure 
system integration since it verifies security functionality and 
exposes unforseen vulnerabilities. Once security functionality is 
confirmed, any identified vulnerabilities can be minimized through 
countermeasures that in turn provide a more secure system. 
Therefore, security testing must be thorough to be successful. By 
thorough, I mean that it encompasses all the Trusted Computing Base 
(TCB), it verifies that all security requirements are met, and it 
exposes system vulnerabilities. The term Trusted Computing Base 
is used here to mean that portion of the system responsible for 
enforcing the security policy. 

Unfortunately, security testing is time consuming and occurs 
at the end of the integration process when schedules are tight and 
tempers are on edge. Just as the ancient mariner [2] saw shooting 
the albatross as the solution to his problems, the system 
integrator often sees cutting down or eliminating part of the 
security testing process as the solution to schedule problems. But 
as the ancient mariner found out, this will only make things get 
worse because without adequate security testing, there is no 
assurance that the system will protect data appropriately. Often, 
the fallacy of cutting short security testing only becomes apparent 
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after a serious breach of security that threatens the system's 
existence, the owner's integrity, and the developer's future 
business prospects. 

There are four phases of security testing: Planning, 
Preparing, Test Executing, and Reporting. Our experience has shown 
that actual test execution takes up only 10 percent of the time. 
The planning, preparing and reporting phases make up the other 90 
percent of the time. 

Throughout the paper, the terms contractor and customer are 
used. Contractor refers to the system integration entity 
conducting the tests and customer refers to the entity requesting 
the tests. 

PLANNING 

The Test Plan is the single most important document associated 
with testing. It provides all the information necessary about how 
the tests will be executed and serves as the testing agreement 
between the contractor, the customer, and the system and/or 
accreditor. The Test Plan contains the data derived from the five 
major tasks of the planning phase: Defining the Process, Defining 
the System, Defining the Test System, Defining the Test Team and 
Schedule and finally, Receiving Approval to Proceed. 

The first task during security test planning is to Define the 
Process. Defining the process means answering the question "What 
is the purpose of this security testing?". Specifically, this task 
determines whether the system is being tested as a part of a 
certification, an accreditation, or both. 

Certification is a technical evaluation of a system's security 
features and other safeguards, made in support of accreditation, 
to establish the extent to which a particular computer's design and 
implementation meet a set of specified security requirements [1]. 
Typical certifications done in support of accreditation are 
administrative, procedural, physical, emanations, personnel, 
communications, and computer-based. 

Certification should not be confused with the evaluation 
process that NCSC performs on Commercial-Off-The-Shelf (COTS) 
products. The result of the NCSC evaluation process is a product 
that is rated by the NCSC to provide security features at a certain 
level (C2, Bl, B2, etc.), each of which is defined by the Orange 
Book. The use of an evaluated COTS product is a bonus in the 
computer-based certification, but will not guarantee that the 
implementation of that product should be certified in support of 
accreditation. The computer-based certification involves all the 
hardware, firmware and software, not just the evaluated product. 

Accreditation is a managerial decision that the system is 
"safe" enough to process sensitive information in a specific 
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operational environment, based on a comprehensive evaluation of the 
system's security design including hardware, firmware, software, 
configuration, and implementation. Accreditation also considers 
procedural, administrative, physical, TEMPEST, personnel, and 
communications security controls [1]. Accreditation is granted by 
a Designated Approving Authority (DAA). The official serving as 
the DAA depends on the sensitivity of the data present on the 
system. 

This paper is focused on the computer-based certification 
concentrating on the security features of the hardware, firmware 
and software. The specified security requirements for this 
certification could be the TCSEC [1], the customer's or DAA's 
Security Policy, or any other design requirements document for the 
acquisition. 

Defining the Process also includes defining the test 
director's and tester's jobs, determining the administrative 
details of testing (such as how test discrepancies will be 
handled), and defining testing terms (such as stress and 
throughput) that may be included in the Data Item Description (DID) 
used for the Test Plan. Two types of test discrepancies must be 
distinguished in the Test Plan. Type 1 discrepancies occur when 
the test procedure is wrong and the system is functioning 
correctly. Type 2 discrepancies occur when the test procedure is 
correct and the system is functioning incorrectly. These two types 
are handled differently during testing. For Type 1, the test 
procedures simply need to be updated. For Type 2, there is a 
system problem that could result in a test failure. Because of the 
significant difference between these two events, it is best to 
separate them in some way. We did this by calling Type 1 events 
deviations and Type 2 events discrepancies. Test deviations need 
only be noted so that the test procedures can be updated. Test 
discrepancies, on the other hand, must be investigated further. 
It must be determined in the test plan how each of these events 
will be handled during testing. 

The second task during the planning phase is to Define the 
System in security terms. This will decide the focus of the tests 
in terms of test objectives. At first glance, it may seem that the 
system has already been defined. Isn't that what is done during 
system design? The answer to that question is a qualified "yes" 
[3]. Without a security model or security architecture document, 
the system has not been defined IN SECURITY TERMS. Large mainframe 
integration projects typically involve large numbers of COTS 
products in addition to the operating system(s) and security 
package(s). Except for specially designed security packages, 
chances are these packages were selected based on their functional 
or performance capabilities with little or no regard for any 
security or vulnerability embedded within them. Each of these 
software packages must be analyzed to determine how they interface 
with the operating system and/or the security package, and whether 
they include any security or introduce any vulnerability on their 
own.  This process must be followed even if the security package 
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is an NCSC-evaluated product. All COTS packages that include 
security must be considered part of the Trusted Computing Base 
(TCB) and must be tested during the security testing process. 
During the testing process, it must be shown that vulnerabilities 
are constrained by the TCB. Only when this information has been 
accumulated, can the TCB be identified. THE DEFINITION OF THE TCB 
IS CRUCIAL TO THE SUCCESS OF TESTING. Without proper definition 
of the TCB, there is no assurance that security testing will cover 
all the necessary areas. 

Defining the System also includes determining the system 
boundary. The system boundary is the line between what is a part 
of the system and what belongs to the rest of the world. System 
boundary determination hinges on specifying the interface between 
the system and the outside world. Everything on one side of the 
interface is within the system boundary; everything on the other 
side of the interface is not. This interface is enforced by 
external security controls, and as long as those controls are in 
place, testing will determine if the internal controls protect the 
system information against the specified threats. If something 
bypasses the external controls and enters the system without 
authorization, or if outside forces threaten the system in an 
unanticipated way, then all bets are off [4]. System boundary 
definition is important to ensure that during security testing the 
system will not be expected to protect more than it is really 
responsible for. 

The third task of the planning phase is to Define the Test 
System. This step includes defining the exact suite of hardware 
and software, how the security parameters of the COTS software will 
be set, all test tools, all test-unique modifications to the 
system, and any specialized personnel who will be used during 
testing. A justification for any differences between the test 
system and the operational system as previously defined should be 
included. • If the test system does not resemble the operational 
system closely enough, the security tests may be worthless in terms 
of actual functionality and vulnerability definition. 

In addition, it should be stated clearly that the test team 
needs a dedicated system for the entire time allotted for testing. 
Users on the system while tests are being run may invalidate the 
results. In addition, the system cannot be used for any other 
purpose during the testing cycle because this could invalidate the 
tests as well. The configuration of the system (hardware and 
software) must remain constant and under complete control of the 
test team. 

The fourth task during the planning phase is to Define the 
Test Team including the Test Director, the testers, and any 
observers, such as customer, certification or accreditation 
representatives and to define the Schedule. Continuity will be 
provided between all phases of testing by having these people 
designated in advance so they can participate in the writing and 
reviewing of the Test Plan.  In addition, this ensures that all 
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personnel have or can get the proper security clearance and 
training that will be needed for on-site testing and are available 
for travel should this be necessary. 

Included in the fourth task is defining the schedule. Within 
this schedule time must be allocated for setting up the system, 
running the tests, analyzing and verifying the results, and 
retesting. These steps must be done while the test team has the 
system. Ample time should be allowed for false starts as well. 
Nothing ever runs smoothly during testing, but planning and 
coordination go a long way to alleviating this problem. 

The final task of the planning phase is to receive approval 
to proceed. As previously stated, the Test Plan serves as the 
agreement between the contractor, the customer, and the system 
certifier and/or accreditor about how testing will be done and what 
will be involved. After approval, the testing process can proceed 
with an agreed upon plan to follow. 

PREPARING 

The second phase of security testing is Preparing for testing. 
This involves training the testers and writing and dry running the 
procedures. 

Security test personnel are not likely, nor desired to be, the 
system's programmers or implementers. The team will require 
training and hands-on experience with the system to provide them 
with the knowledge necessary to produce detailed test procedures. 
The optimum situation would be to have the security testers 
involved during the actual implementation of the system. 
Participation in this process would expose them to the expert 
knowledge of the system programmers on the integration of the 
system, and could avoid costly mistakes during testing caused by 
not understanding the entire scope of the system. 

Writing the test procedures requires several up front 
decisions. First, should the tests be independent or dependent? 
Each of these methods has advantages and disadvantages. 
Independent test procedures make for easier testing. If something 
fails within one test, that test can be rerun with minimal effort, 
and test replication is critical. However, dependent test 
procedures do not require as much set up because the tests can 
build upon one another to get the system into the state needed for 
a specific test. Second, does the order of execution of tests 
matter? This will depend on whether the tests are independent or 
dependent. If the tests are dependent, then the order of execution 
is extremely important. If they are independent, the order may not 
matter from a strictly functional viewpoint, but there may be some 
aesthetic value to starting with the simple things and working up 
to the more difficult ones. From an observer's point of view, it 
would be easier to follow the tests if they started with 
identification/authentication rather than something buried within 
the TCB such as auditing. 
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The test procedures themselves will be easier to understand 
and execute if they are presented as an organized package. It is 
helpful to have the test objective for each particular test stated 
at the beginning of the procedure. Following this, a setup section 
containing any special system requirements for this test is 
necessary. The detailed procedures follow. Detailed procedures 
are needed because the tests must be repeatable and there must be 
a defined path for each test to allow this [3]. The detailed 
procedures should include expected results for each test to serve 
as pass/fail criteria so that it can be determined immediately if 
a deviation or discrepancy has occured. The last item included in 
the procedure should be the test termination items. These include 
collecting the audit trails from the system, a list of expected 
audit events for verifying the audit trail, verification steps, 
ensuring all logs associated with the test are complete, and 
restoring the system to its pretest state, if necessary. 

Once the test procedures have been written, they should be 
dry run on the test suite. The dry run gives the testers further 
system exposure, ensures that the procedures are written correctly, 
and irons out the test execution. The importance of dry running 
the test procedures is often overlooked when schedules get tight 
and program managers are searching for ways to cut the testing 
time. If the procedures are not dry run, there is no assurance 
that the tests will work correctly during actual testing. Valuable 
test time could be lost determining whether the test procedure was 
wrong, or the system was functioning incorrectly. Incorrect test 
procedures used during actual test execution generate unnecessary 
paperwork because all test deviations and discrepancies must be 
documented and explained in the test report. This wastes time and 
does not present a good view to the customer, the certifier or the 
accreditor. 

EXECUTING 

The test execution phase is the culmination of the previous 
efforts, and will typically take much less time than the previous 
phases (but usually more time than is allotted!). The test 
execution phase begins with a pretest meeting between the 
contractor, the on-site personnel, the customer, the certifier, and 
the accreditor (if present). All personnel involved with the 
testing process should attend this meeting since all areas of 
testing will be discussed. This forum will give the customer and 
on-site personnel an idea of what will occur. Items to be 
discussed include points of contact, administrative details such 
as badges, system configuration, and necessary special equipment 
for testing. 

Before testing can begin, the exact system configuration 
including hardware and software should be documented including not 
only the type of hardware and software but also the setting of any 
variable software parameters. If any changes are made to the 
configuration by the testers during testing, these will also be 
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documented.  Configuration changes must be considered carefully to 
ensure that they do not invalidate any completed tests. 

Once testing begins, test logs should be kept for each test 
in a format containing the test number and title, the names of the 
testers and observers, the date, and a check list for the test 
steps. Anything unusual that happens during test execution can be 
written on the log sheet so it is not forgotten or overlooked if 
things get hectic. These logs are invaluable in writing the Test 
Report and provide detailed information about the actual test 
execution that could be otherwise lost. 

During testing, all test deviations and discrepancies should 
be documented on discrepancy forms in the agreed upon format 
contained in the Test Plan. These events need to be documented 
when they occur so that details are not omitted. Every piece of 
information associated with the event is necessary. This is 
imperative for repeating the test step or entire test, if 
necessary. It is very difficult to decide if a detected problem 
has been fixed when there is not enough data to attempt a 
recreation. Test deviations also should be noted to ensure the 
test procedures can be corrected since often, the test procedures 
will be used more than once. 

At the completion of every test, the test data (audit trails, 
test logs, etc.) should be analyzed. This analysis will take a 
significant amount of the allotted test time and must be included 
in the test schedule. The audit trails must be verified against 
the expected results to find if the system audited all appropriate 
events including authorized accesses, unauthorized accesses, 
invalid logons, etc. Analysis of the audit trail also will show 
if anything unexpected happened that was not apparent to the 
testers. Only after this analysis, can it be determined if the 
system passed or failed a test. 

Occasionally some testing event or the analysis of the audit 
trail will be ambiguous. If this happens, a retest may be 
necessary. It is important to decide if this is necessary before 
another test begins since data may be needed from the system that 
would be invalidated by the starting of another test. 
Additionally, if a retest is necessary, the system will already be 
in the correct setup state for that test if another test has not 
begun. 

During testing, daily status reports are important outputs 
and, with team coordination meetings, serve two functions. First, 
these reports provide the customer with a feel for how things are 
going, and second, provide good documentation to support the 
writing of the test report. These daily reports summarize 
everything that occurs relative to testing during the day. In 
addition, they include all tests initiated or completed, all 
discrepancies and deviations noted, and a status of pending 
discrepancies. A copy of all discrepancy forms should be included 
with the status report at the end of the day. 
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REPORTING 

The Test Report provides the customer with the results from 
the testing and all supporting documentation. There are five 
sections to a complete Test Report. The first section gives the 
system configuration at the beginning of testing and any changes 
that were made during testing. Test Logs can be attached to 
support these assessments. 

The second section of the Test Report contains a summary of 
each test and its outcome. This includes when the test was run, 
who ran the test, who witnessed the test, all discrepancies and how 
they were resolved, all test deviations, and a general assessment 
of whether the system passed or failed the test. 

The third section of the Test Report contains all the 
supporting documentation from each test including the test logs, 
all discrepancy forms, and the audit trails produced from the 
execution of the tests. 

The fourth section of the Test Report contains a copy of the 
daily status reports generated during testing. 

Finally, the last section of the Test Report contains the 
conclusions and recommendations based on the test execution 
outcome. This section should be considered the managerial overview 
of the results and is the most important part of the Test Report. 
It will provide management with the data they need to decide 
whether the system should be certified and/or accredited. In 
addition, recommendations can be made for countermeasures to 
mitigate the vulnerabilities discovered through the testing 
process. For customer convenience, this section can be published 
separately from the rest of the document, since the logs and audit 
trails can be extensive. 

CONCLUSION 

Security testing verifies security functionality and exposes 
vulnerabilities to provide a more secure system. It involves four 
phases: planning, preparing, executing, and reporting. All of 
these phases are equally important to the success of the testing, 
and therefore, none of them can be sacrificed to make up schedule 
losses. 
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Abstract 

This paper describes a method for developing relatively inexpensive cryptographic 
hardware that could be used, along with software, to efficiently provide LAN and 
WAN confidentiality and integrity services. The paper describes the design of the 
hardware and how it could be used by software to support different communication 
security architectures. 

Introduction 

The need for secure communication between computer systems is increasing as the number of 
network and distributed applications increases. The Digital Distributed System Security 
Architecturefl] assumes that secret key cryptography is 'inexpensive and pervasive'. However, 
there are several tough constraints on the development of communication security systems, even 
for commercial environments. Some common constraints are the existence of multiple 
communication security standards, the need to provide communication security for previously 
manufactured computer systems, and a desire for low cost solutions. 

When cryptographic support is being designed for one system, the least costly solution us to 
integrate the cryptographic support hardware into the system. However, there are a variety of 
reasons why this isn't always the best solution: 

• The cost of integrating the cryptographic hardware increases the cost of designing each new 
system. If a large number of different systems need to be protected then the development 
costs increase. 

• An integrated solution can't be used to protect previously manufactured equipment or 
equipment manufactured by other companies. 

• Export and import regulations restrict the potential markets for a system with integrated 
cryptographic support. 

This paper proposes a scheme that could be used to build an inexpensive cryptographic device 
that can be attached to a variety of systems to provide LAN and WAN communication security. 
Only software changes would be required to support this device. The device would be attached 
between a system and its LAN connection. 

Copyright ©1990 by Digital Equipment Corporation. All Rights Reserved. 
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Communication Security Architectures 

Communication Security standards are being developed for the Data Link, Network, and 
Transport layers. The IEEE 802.10 Working Group is developing a Standard for Interoperable 

LAN Security (SILS)[2, 3, 4] that provides security at the Data Link Layer. The Secure Data 
Network Systems (SDNS)[5] Protocol and Signaling Working Group has developed Security 

Protocol 3 (SP3)[6] and Security Protocol 4 SP4[7] to provide security at the Network and 
Transport layers respectively, and SP4 has been proposed as an ISO standard[8]. 

In addition to these standards, a system may also want to support proprietary or 
application-specific security protocols. 

All references to SILS in this document are based on the 2 June 1990 draft of the SILS Secure 
Data Exchange protocol. Changes to the SILS draft before it becomes a standard could prevent 
the device described in this document from being developed. In any case, it is not possible to 
complete the design of any device that supports SILS until SILS becomes a standard. 

Design Goals 

No one communication security product will work in all environments or satisfy all requirements. 
The following list contains the requirements that led to the design described in this paper:4 

• The design must support both SILS and SP4 (both SP4-E and SP4-C). Providing LAN 
security implies that the device does not need to support systems without a LAN 
connection. 

Since SP3-N is the same as SP4-E, support for SP4 implies support for SP3-N. 

• The communication security hardware must be as inexpensive as possible. 

• Secured communication must not be significantly slower than unsecured communication. 
The effort of providing security must not cause the system to be overloaded or cause 
messages to be delayed for significant period of time. 

• In order to avoid developing a large number of hardware devices, one device must be able to 
support a wide variety of computer systems, including systems designed before the 
communication security device was conceived. 

Note that these goals do not require that communication security be provided in a manner 
that is transparent to the system. Unlike Digital's Ethernet Enhanced-Security System[9], the 
design in this paper requires software on the system to assist in the process of providing 
communication security. This implies that the system is trusted and the device provides no 
protection against covert channels. 

The following are desirable requirements for inexpensive hardware: 

• Perform only simple operations and minimize the number of states. 

• Use as little memory as possible for storing messages and other information. 

• Make the user interface as simple as possible with few controls or indicators. If possible, 
allow no user interface. 
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Our Scheme 

Our solution is to build a simple outboard cryptographic device that handles only encryption and 
decryption. Anything that cannot be handled easily is left to software on the system. The 

software on the system handles key management, consistency checking, management, and all the 
special cases and other details of the communication security protocols. The device has no user 
interface—it is totally controlled through frames sent by the software on the attached system. 

The device encrypts, decrypts, and calculates integrity check functions on frames as they are 
transmitted by the system, and on frames from the network as they are received by the system. 
All operations occur at the rate of data transmission on the LAN—a delay may occur but there is 
no loss of throughput. In addition to providing high performance, this also reduces the frame 
buffer requirements. 

The device recognizes several frame formats (both SILS and SP4) in frames passing through 
the device and encrypts or decrypts parts of the frame. If a frame doesn't contain a recognized 
format, then the frame is passed through unmodified. If the software discovers that a decrypted 
frame shouldn't have been decrypted, the software reverses the operation by using 'loopback' 
mode. 

Encrypted Keys 

One important feature of our design is the method for selecting the key that needs to be used to 
encrypt or decrypt a frame. 

SILS and SP4 both provide mechanisms for identifying the key for an association. The SP4 
message format currently contains a variable length key identifier field, and the current SILS 
Secure Data Exchange (SDE) message format contains a four byte Security Association Identifier 
(SAID) field. In addition, SILS SDE also specifies an optionally supported, variable length 
Management-Defined field to allow "the transfer of information that may facilitate the processing 
of thePDU"[4]. 

When key management sets up an association between a pair of systems, both systems are 
given the keying information for the association. Also during association establishment, the 
systems select and exchange values for the fields described above (key identifier or SAID and 
Management-Defined, depending on the protocol in use). Each implementation decides how it 
wants to interpret these fields, and the ability of systems to interoperate is not affected at all by 
the manner in which these fields are used. 

One common implementation approach is to include in the fields an index into a table 
containing encryption keys. A drawback of this approach is that it forces the cryptographic 
device to store a potentially large table of keys. To avoid this storage, our scheme essentially 
stores the association key in this field. 

Each system using our scheme has a key-encryption key (KEK) that the system generates 
randomly when it boots. The system loads this KEK into the cryptographic device, but doesn't 
distribute the KEK to any other system. 

When the key management software in the system sets up a pairwise association with a 
remote system, it encrypts the association key under the KEK and sends it to the remote system 
as part of the key identifier—the remote system places the key identifier in the SP4 key identifier 
field or the SILS Management-Defined field of frames sent back to the system that generated the 
key identifier. The distribution of the encrypted association key (the key identifier) is totally 
separate from the determination and exchange of the association key between the system—the 
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key exchange operation happens in the manner described in the appropriate key management 
document. 

When the device receives an incoming frame containing an encrypted key in the SP4 key 
identifier field or the SILS Management-Defined field, it decrypts the key with the KEK and uses 
the result to decrypt the frame. 

Along with the encrypted key, the key identifier also includes a control field that identifies 
how the key is used. For example, the control field can be used to select between a mode that 

provides both confidentiality and integrity and a mode that provides cryptographic integrity but 
not confidentiality. 

The security of a systems communication depends on the secrecy of the system's KEK, and 
security will be compromised if the KEK is disclosed or cracked. The system never releases the 
KEK, but the key encryption algorithm has to be strong enough to resist a known plaintext attack 
by the systems with which it communicates. (This same caveat also applies to the method used 
to distribute keys in any cryptographic system that automatically distributes association keys.) 

This mechanism of placing encrypted keys in the frames works for all SP4 frames and all SILS 
where the remote system supports the Management-Defined field. The device can be used, but 
not as efficiently, in situations where the remote system does not support the SILS 
Management-Defined field. 

Transmit Processing 

The transmit processing performed by the device is a simple generic scheme. 
When the system wants an outgoing frame to be encrypted, the system prepends some special 

information to the frame and then transmits the frame. The special information consists of a 
trigger value that indicates to the device that the frame requires encryption, control information 
that describes how to encrypt, the key to be used for encryption (encrypted with the KEK 
previously loaded into the device) and a count of bytes to skip before the encryption starts. 

The trigger value is a value that never occurs at the start of any other type of frame 
transmitted by the system. The choice of a trigger is a local issue that doesn't affect 
interoperability, but one way to guarantee uniqueness is to reserve an IEEE 802.2 protocol 
identifier value. 

The device processes frames by looking for the trigger, saving the control and key information, 
and then transmitting count bytes of the frame unmodified followed by the rest of the frame 
encrypted with key. If the Data Link protocol requires a frame check sequence (FCS), the device 
must remove the FCS from the frame received from the system and add a correct FCS to the 
transmitted frame. The transmit processing is shown in Figure 1. The system needs to build the 
frame so that the transmitted portion contains a complete Data Link frame. 

In order to reduce the need for buffering, the cryptographic hardware encrypts the frame at 
the transmission speed of the frame. In addition to simplifying the device and reducing the 
memory required for buffer frames, this can also reduce the latency of the device by allowing the 
device to start transmitting the encrypted frame before the frame has been totally received by 
the device. 

As an example of how this processing works, if the system want to transmit an encrypted 
SP4 TPDU in an Ethernet frame, the system first builds a SP4 SE TPDU, omitting the 
encryption step. The Network and Data Link headers are added to build a complete Data Link 
frame. The special information described above is added to the frame, with the count value equal 
to the total length of the data link headers, the Network IP headers, and the SP4 clear headers. 
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Figure 1: Generic Transmit Processing 

When the result is transmitted, the device removes the special information and encrypts the 
appropriate portion of the frame. This operation is shown in Figure 2. 
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Figure 2: SP4 Transmit Processing 

In addition to just encrypting the frame, the device can also calculate an integrity check value 
(ICV) for the frame and include the ICV in the frame before encryption. If confidentiality is not 
provided, the encrypted key would be used calculate a cryptographic integrity check function. It 
would be possible to include two encrypted keys in the frame, one for confidentiality and another 

for a cryptographic integrity function. 
Note that this is a generic processing scheme that isn't limited by any particular 

communication security protocol. The encrypt and forward process works efficiently even for 
communication security protocols that cannot be handled by the device for received frames. 

Any frame that does not start with the reserved trigger value is passed through the device to 
the network without any modification. 

Receive Processing 

The processing of received frames is not as generic as the transmit processing. Decryption is only 
performed if the frame contains a format that is recognized by the hardware. 

Frames received from the network are decrypted by the cryptographic device if all of the 
following conditions are met: 
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• The frame contains data encrypted using a recognized and supported communication 
security protocol (i.e., SILS or SP4). 

For SP4, this involves checking the Data Link, Network, and Transport layer headers in the 
frame. For SILS, only the Data Link header needs to be checked. 

• The frame has not been segmented by the network layer during transmission. This only 
applies to frame containing SP4 TPDUs. 

• Once located, the key identifier contains a valid control field. 

If one or more of these conditions is not met, the frame is passed on to the system without 
decryption and the frame is handled by software on the system. If all of the conditions are met, 
the device locates the encrypted association key, decrypts the key with the KEK, and decrypts 
the rest of the frame with the association key. As with transmit processing, the device must 
regenerate the FCS field for any frame it modifies. 

In order to process the frame at the rate of Data Link transmission, the device needs to 
decrypt the encrypted association key and prepare to use the association key before the first 
block of the encrypted data needs to be decrypted. The device can start decrypting the frame 
and transmitting it to the system before the entire frame is received from the network, reducing 
both the buffer requirements of the device and the delay introduced by the device. 

This processing is designed to successfully process most of the incoming frames. It handles 
the most expensive part of the processing (decryption) for frames that can easily be detected and 
processed by the hardware. 

Unlike the encryption operation, no fields are stripped from an incoming frame when the 
frame is decrypted. The fields must be left intact because they contain information essential for 
the processing of the frame by the system. In order to determine how to process a frame, the 
system needs to know exactly how the device processed the frame. 

For example, the device would recognize a SILS frame (as defined by the current SILS draft) 
based on the contents of the SDE Designator field. The CONTROL field is then checked to 
determine if it contains a valid value. If it is valid, then the encryption key in the frame is 
decrypted and used to decrypt the rest of the frame. This process is shown in Figure 3. The 
CONTROL and KEY fields together comprise the SILS Management-Defined field. 
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Figure 3: SILS Receive Processing 
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Address Recognition 

Note that in the preceding description of receive processing, no mention was made of checking the 
addresses of received frames. If the frame contains a SILS or SP4 message that contains an 
appropriate control field, the device will decrypt the message no matter what address information 
occurs in the frame. If the frame is addressed to a different system, the decryption will be done 
with the wrong encryption key. 

However, this incorrect decryption is not a problem in most situations. Since the frame is not 

addressed to the system, the system will ignore the frame and so it doesn't matter that the frame 
was processed by the device. There is no performance penalty because the device operates at the 
same speed as the LAN, and the system sees no more frames than it would if the device was not 
present. The device does not need to do any address filtering and may therefore be simpler. 
(There are advantages to filtering. Filtering does reduce the number of frames received by the 
system, which can improve the performance of some systems.) 

Routers are one situation where improper decryption can cause problems. Routers receive and 
transmit frames with a Data Link address of the router and with a Network layer address of the 
intended recipient. Since SP4 provides end-to-end security, a router does not have the correct key 
to decrypt the SP4 TPDUs passing through the router. Any attempt to decrypt the frame would 
be incorrect and the decrypted frame would have to be re-encrypted before being sent to the next 
system. Since the cryptographic device is designed to detect and decrypt SP4 TPDUs, a potential 
problem exists. 

A solution to this problem is to allow the processing of incoming SP4 frames to be disabled. 
Routers will disable SP4 processing to prevent incorrect decryption of frames passing through the 
router. This solution causes the device to work correctly for routed frames, but requires the 
system to perform extra work when SP4 is used to communicate directly with the router. If the 
router is not used as a general purpose system, but rather only acts as a router, there should be 
little communication directly with the router. (If the router doesn't use SILS, the simplest 
solution is to not connect a cryptographic device to the router.) 

Loopback Mode 

In addition to transmit and receive processing, the device also supports loopback processing. In 
loopback processing, a frame is transmitted by the system, received and encrypted or decrypted 
by the device, and returned to the system. 

Loopback mode has a variety of uses: 

• Loopback mode can assist the system in performing encryption and decryption operations 
that the device can't handle in the course of normal processing. These operations include: 

Network layer Segmentation: If a SP4 TPDU is segmented into multiple parts by the 
network layer during transmission, the TPDU will arrive at the system in multiple 
Data Link frames. In this case the device will not be able to correctly process the 
segments (since the key will only be included with the first segment). The device 
recognizes the segmentation and does not attempt to modify any frame that contains 
only a segment of a TPDU. 

When this occurs, the system software reassembles the segments and uses loopback 
mode to decrypt the complete TPDU. 
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Double Encryption: The device is designed to perform only one encryption or decryption 
operation for each frame. If a system is configured so that both SILS and SP4 
protection are applied to the same data, the device will not be able to perform both 
operations at once. 

If this occurs, the system must use loopback mode to perform the SP4 encryption or 
decryption, and the device will perform the SILS encryption or decryption when the 
frame is transmitted. 

SILS without Management-Defined Field: When communicating with a system that 
doesn't support the use of the Management-Defined Field, there isn't enough room in 
the SILS clear header to include the encrypted key. 

In this situation, frames received from the remote system must be decrypted using 
loopback mode. 

Other Communication Security Protocols: When communication security protocol 
other than SILS or SP4 are used, received encrypted frames are not processed by the 
device but must be decrypted using loopback mode. 

In each of these cases, performance is lower than in cases where the device can perform all 
processing as frames are transmitted or received. However, the use of loopback makes the 
processing possible without requiring the system to perform the encryption in software. 

• Loopback mode can be used to decrypt SP4 frames addressed to routers. The need for this 
is discussed in the previous section. 

• Loopback mode can be used to provide encryption and decryption services for 
application-specific security measures. An example of an application that provides it's own 
security is encrypted mail as defined by Internet RFC 1113[10, 11]. 

• Loopback mode can be used to provide special cryptographic support for the key 
management software on the system. In particular, a loopback operation should be 
provided that encrypts association keys under the KEK of the device. 

• Loopback mode can be used for any other cryptographic operations that system wants to 
perform (e.g., file encryption). 

To simplify the device hardware, the transmit and loopback formats are almost identical and 
the receive, transmit, and loopback formats share the same control field format. 

Additional Comments 

Other Communication Security Protocols 

The device described in this paper could be modified to support protocols other than SILS and 
SP4. In particular, it would be useful for to define a mechanism similar to SP4 that could be used 

to provide security for TCP and UDP frames. 
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Software Trust 

The implementation described in this paper gives the system software total control over all access 

control decisions and the cryptographic operations performed on transmitted information. The 
device can't store enough information to enforce any non-trivial access control policy. The 
software on the system must be trusted to perform the correct operation. 

For environments where the software on the system is not trusted, this device will be 
unsuitable. In these situations a more intelligent cryptographic device, which handles key 

management and access control decisions, is required. However, even when the cryptographic 
device is able to make decisions about what associations are allowed, and can force all 
communication to be cryptographically protected, the system software must still be trusted to 
send the correct information to each system with which it is allowed to communicate. 

Inappropriate Decryption 

Depending on the frame formats used by supported communication security protocols, it may not 
be possible for a simple device to determine precisely which received frames require decryption. 

When this occurs, the device implementation can choose to be either conservative or Uberal 
about deciding when to decrypt a frame. If the device is conservative, some frames requiring 
decryption will not be decrypted as they are received and must be decrypted using loopback. 

On the other hand, if the device is Uberal, frames that should not be decrypted will be 
decrypted (but only if the part of the frame that the device interprets as a control field matches a 
valid control field). When the device incorrectly decrypts a frame, the frame needs to be 
re-encrypted using the same key. This can only be accomplished if every cryptographic operation 
applied when a frame is received can be inverted using a loopback operation. It is also important 
that the processing of each frame be totally determined by the contents of the frame and not any 
external state. 

In either case, the device must operate in a deterministic manner so that the system can 
determine how the device treated each frame. 

In some cases the system may determine that some of the receive processing performed by the 
device is counterproductive. To handle this situation, the device allows the system to selectively 
disable the decryption of each frame format recognized by the device. 

Hardware Complexity versus Software Complexity 

The scheme described in this paper is designed to make the operation of the cryptographic 
hardware as simple as possible, allowing the hardware to be faster and/or cheaper than more 
complicated designs. This increases the complexity of the software required to control the device. 
Furthermore, if the same cryptographic hardware is used to support more than one operating 
system, the controlling software must be implemented (or at least ported) for each operating 
system. 

The software complexity could be reduced by placing more functions into the cryptographic 
device. However, when we investigated more complex devices we found them to be significantly 
more expensive to produce, making it more difficult for communication security to be inexpensive 

and pervasive. In particular, the device described in this paper can be implemented using small 
amounts of memory and without using a processor chip. The addition of a processor and 
firmware would significantly increase the cost of the device, as would adding enough memory to 
store the state of all associations a system may want active at any one time. 
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ABSTRACT 

The ISO Security Architecture, ISO 7498-2, was developed using Packet Switched Networks (PSNs) 
and Wide Area Networks (WANs) as architectural models. Since that time, there have been significant changes 
in networking practices. Local Area Networks (LANs) have introduced a new range of vulnerabilities that are 
not present in the Data Link Layer of PSNs and WANs . The point-to-point nature of the Data Link Layer 
(Layer 2) of PSNs and WANs led to the dismissal of the need for extensive security services at Layer 2. 
Subnetworks and routing were the focus of the need for inclusion of particular security services at the Network 
and Transport Layers. However, LANs have introduced subnetworks and routing into the Data Link Layer of 
many networks. Efforts aimed at providing security services for LANs have found the current Link Layer 
security service profde in ISO 7498-2 to be deficient. It is necessary to expand this service profile to protect 
LANs, even in the presence of security services at higher layers in the protocol stack. 

INTRODUCTION 

In the spring of 1988, preliminary meetings were held to determine interest in security standards for 
Local Area Networks (LANs). These meetings were initiated by Stanley R. Ames, Jr. and Kimberly E. 
Kirkpatrick of the MITRE Corporation. More than 40 vendors and users of LANs responded positively. This 
led to the formation of the IEEE 802.10 LAN Security Working Group, which Kimberly E. Kirkpatrick chairs. 
This effort is sponsored jointly by the IEEE 802 Technical Committee and the IEEE Technical Committee on 
Security and Privacy. The working group's charter is the development of Standards for Interoperable LAN 
Security (SILS). 

Since its formation, the LAN Security Working Group has concentrated on development of a Secure 
Data Exchange (SDE) protocol to be inserted between the Media Access Control (MAC) and the Logical Link 
Control (LLC) sublayers of the link layer in the ISO OSI Basic Reference Model. The working group has 
recently begun development of a key management protocol and a security management protocol, as well. 

In the course of the development of the SDE protocol, the LAN Security Working Group drew up a 
list of necessary security services. In large part, this list was based on the attributes of emerging LAN security 
devices. In this paper, I present an analysis of the attributes of LANs which make these security services 
necessary. I identify the pertinent attributes and detail the associated security threats. Then, I indicate the 
security services necessary to counter those threats, giving examples of the benefits of application of those 
security services, and discussing mechanisms for providing the services. 

SECURITY   SERVICES   UNDER   THE  ISO 
SECURITY   ARCHITECTURE 

ISO 7498-2 identifies five basic security services: access control, authentication, data confidentiality, 
data integrity, and non-repudiation. These services provide assurance against the security threats of unauthorized 
resource use, masquerade, unauthorized data disclosure, unauthorized data modification, and repudiation, 
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respectively. This standard also defines the layers within the ISO OSI Basic Reference Model where it is 
appropriate to apply these services. Appendix B of ISO 7498-2 gives a brief justification for the indicated 
service placement. 

In ISO 7498-2, data confidentiality is the only security service indicated for the Data Link Layer of the 
ISO OSI Basic Reference Model. Other security services were "not considered useful" at this layer. This paper 
details arguments for the inclusion of the services of authentication, access control, and data integrity at the 
Data Link Layer, as well. It is important to note that the arguments presented in this paper are based on 
changes in networking practices since ISO 7498-2 was completed, not on deficiencies intrinsic to ISO 7498-2 
as it was originally conceived. LAN standards haVe only recently begun to appear in the ISO standards arena 
(e.g., ISO 8802-2, ISO 88027498-2). Because of changes in of LAN technology, the risks to LANs have 
become more critical than first considered. High-speed, long distance LANs (e.g., the Fiber Distributed Data 
Interface, or, FDDI), filtering LAN bridges, and LAN server facilities have increased the range of resources 
which are vulnerable to abuse. Ring topology networks not only make every Protocol Data Unit (PDU) (e.g., 
packet, frame) available to every station on the LAN, but require every station on the LAN to receive and then 
forward every PDU, in order for the LAN to operate properly. These issues have prompted the concerns that 
lead to this set of arguments. Figure 1 illustrates the differences between the security service profile defined in 
ISO 7498-2 and the profile proposed for LANs. 
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Physical 
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LAN Services 

Figure  1 

In a specific implementation, a security service can be implemented in any layer at which it is 
indicated. A service may appear in one layer, more than one layer, or not at all. ISO 7498-2 only indicates 
where the service can appear, not where the service is required to appear. The security requirements for a 
particular implementation will determine where the services will be provided. In practice, it is desirable to 
protect information both at the highest possible point in the protocol stack (i.e., the application layer) and any 
layers at which subnetworks and routing are implemented. 

The ISO Security Architecture was developed using PSNs and WANs as an architectural model. It was 
assumed that these networks would have a tightly controlled Data Link Layer configuration. In this model, the 
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HDLC Frame was used to represent the Data Link Layer PDU.1 It was also assumed that the Data Link Layer 
of LANs had the same attributes as the Data Link Layer of the model. In fact, while LANs are similar to PSNs 
and WANs at the Data Link Layer, they also exhibit some of the attributes of the Network Layer of PSNs and 
WANs. For example, the Data Link Layer of LANs exhibits subnetwork and routing functions very similar to 
those of the Network Layer. These functions are cited as justification for the Network Layer security service 
profile, which is the same as the security service profile proposed in this paper for the Link Layer. These 
similarities and differences are indicated in the following sections as I explore the security-pertinent attributes of 
LANs. 

LAN   CHARACTERISTICS   THAT   NECESSITATE 
SECURITY  SERVICES  AT THE  DATA  LINK  LAYER 

There are certain characteristics of LANs that necessitate security services at the Data Link Layer. In 
particular, I will analyze four characteristics of LANs: the manner in which data is transmitted, the manner in 
which data is received, the nature of LANs' address space, and geographic dispersion of LANs. I will identify 
the security threats associated with these characteristics. I will then indicate the security services required to 
address these threats and show how they are applied to LAN data. Finally, I will discuss mechanisms for 
providing these services. 

DATA  TRANSMISSION  ON   A   LAN 

The manner in which data is transmitted on LANs is one of the attributes that necessitates additional 
security services at Layer 2. In a LAN's Data Link Layer, data is transmitted on media that is shared by every 
attached system. Effectively, every PDU is transmitted to every other station on the LAN and the source of a 
given transmission is difficult to authenticate. 

The nature of data transmission at the Data Link Layer on a LAN presents two security threats. First, 
any station attached to a LAN can transmit to any other station attached to the LAN. There are no implicit 
controls at Layer 2 on access to a resource attached to a LAN. Second, since it is difficult to identify the source 
of a given data transmission, one station can claim to be another station. Any station, or set of stations, can be 
imitated from a single tap into the LAN. The source of a given PDU is difficult to authenticate. These threats 
to the security of a LAN are known formally as unauthorized resource use and masquerade. 

DATA  RECEPTION ON  A  LAN 

The manner in which data is received on LANs, is another attribute that necessitates additional security 
services at Layer 2. Since data transmission at a LAN's Data Link Layer is over commonly accessible media, 
every PDU is available to all attached stations. A PDU could traverse any station on its way to its destination. 
This means that while it may be addressed to a specific entity, every PDU is effectively received by every other 
station attached to the LAN. 

The nature of data reception on a LAN presents two security threats, since any PDU could be 
intercepted by any attached station. First, a station could receive data for which it is not authorized. Second, 
and worse yet, a station could change the data in a PDU before it is received at its intended destination. On 
LANs, data for any station, or set of stations, can be received from a single station on the LAN. This is 
especially significant in LANs employing a ring topology, where every attached system must receive and 
retransmit every PDU in order for the LAN to function properly. These threats to the security of a LAN are 
known formally as unauthorized disclosure and data modification. 

1 While this simplified model may not represent all possible implementations of PSNs 
and WANs, it does represent the mapping of many PSNs and WANs onto the ISO OSI 
Basic Reference model. X.25 Packet Level Interface functions are attributed to the 
Network Layer. The assumption of tightly controlled configurations, in particular, 
may seem restrictive, but reflects standard practices in the implementation of secure 
networks. 
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IAN   ADDRESS   SPACE 

Assignments within the address space of a LAN are also pertinent to security. Each station interface is 
permanently assigned a specific address. Since any station interface can be attached to any other station interface 
through a common medium at Layer 2, LAN addresses must be unique at Layer 2. This means that a station 
cannot determine, by observation, whether the source address of a PDU is valid or not. There is no hierarchical 
address assignment in LANs, so any possible link address could be valid on any LAN. 

As with data transmission, the nature of address assignment at the Data Link Layer on a LAN presents 
two security threats. First, any station attached to a LAN can transmit to any other station attached to the 
LAN. There are no implicit controls at Layer 2 on access to a station attached to a LAN. Second, since it is 
difficult to identify the source of a given data transmission, one station can claim to be another station. Any 
station, or set of stations, can be imitated from a single tap into the LAN. The source of a given PDU is 
difficult to authenticate. These threats to the security of a LAN are known formally as unauthorized resource 
use and masquerade. 

GEOGRAPHIC   DISPERSION  OF  LANS 

LANs span vast geographic areas, rendering them vulnerable to eavesdropping or wiretap. This renders 
them vulnerable to the threats of unauthorized disclosure and data modification. As indicated previously, there 
is a significant scope of information and access available on a LAN at Layer 2; any station, or set of stations, 
can be imitated from a single tap into the LAN. 

Wiretapping on a LAN presents two security threats. First, a station can receive data for which it is 
not authorized. Second, and worse yet, a station can change the data in a PDU before it is received at its 
intended destination. Again, on LANs, data for any station, or set of stations, can be received from a single tap 
into the LAN. This is especially significant in LANs employing a ring topology, where every attached system 
must receive every PDU for the LAN to function properly. These threats to the security of a LAN, are known 
formally as unauthorized disclosure and data modification. 

SECURITY   SERVICES 

In this section, I will describe the type of architecture which requires the indicated security services, 
describe the security services themselves in detail, and review the formal definition of each service from the ISO 
Security Architecture. I also examine the application of each service to PDUs at the Data Link Layer on a 
LAN, making note of the portions of a PDU that are protected by the service. 

In figure 2, a LAN has been subdivided into several local segments, or subnetworks, that are 
interconnected through a backbone network. The subnetworks are effected through the use of bridges, which 
pass a PDU between a subnetwork and the backbone network only when that PDU is directed from a station on 
one side of the bridge to a station on the other side of the bridge. Some of the subnetworks have been 
designated as protected subnetworks, i.e., subnetworks that are safe from attachment of unauthorized stations, as 
opposed to unprotected networks. 
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Figure  2 

Rogue stations are those that participate in unauthorized activities, whether or not the station is 
authorized to be attached to the LAN. These rogue stations exploit the risks that have been identified, 
necessitating the indicated security services. Precautions are necessary to provide protection from these stations 
wiretapping into the backbone LAN. LAN security services are also necessary to prevent abuse by systems 
which are authorized to be connected to the LAN, but are being used in an unauthorized fashion. Without the 
proper security services, even protected subnetworks are susceptible to abuse. 

Ultimately, protection of application data can be provided at the application layer. However, in 
practice, it is desirable to protect information both at the highest possible point in the protocol stack (i.e., the 
application layer) and any layers at which subnetworks and routing are implemented. This is true for several 
reasons. 

First, security services provided at any layer of a protocol stack, protect only the Service Data Unit 
(SDU), i.e., the data portion, of that layer's PDU. If data integrity is provided at an upper layer, the header 
information from that layer and all lower layers is left unprotected. One example of data in a Layer 2 
information PDU that is unprotected, even in the presence of higher layer security services, is the security 
option specified for ISO CLNP, which is included in the U.S. Government Open Systems Interconnection 
Profile (U.S. GOSIP). Since this data is contained within the Network Layer header, it cannot be protected by 
security services provided above the Data Link Layer. 

Second, PDUs that originate and terminate within Layer 2 are also unprotected in the presence of 
security services at upper layers. Examples of this type of PDU are the TEST and XID PDUs in ISO 8802-2 
LLC, which is also part of the U.S. GOSIP. Network management uses these PDUs, creating a need for 
protection for this type of PDU as well as information PDUs. ISO 7498-2 considers only information PDUs. 
It does not address administrative functions and artifacts of protocols. Connectionless data integrity at the Link 
Layer will provide protection for this type of PDU, as well as information outside the boundary of protection of 
higher layer security services. 

Third, security services provided at the Link Layer provide uniform, common protection for all 
applications from risks that are intrinsic to LANs and the increased connectivity they provide. Security services 
provided at another layer can neither take advantage of the attributes of a LAN nor be affected by the deficiencies 
of a LAN. 

Finally, implementations of security at upper layers are developing too slowly to address some users' 
needs. Emerging LAN security devices can address these needs until upper layer security is available. 

CONNECTIONLESS   DATA   INTEGRITY 

ISO 7498-2 defines connectionless data integrity as "the property that the data in a single 
connectionless PDU has not been altered or destroyed in an unauthorized manner." As the definition indicates, 
this service inhibits undetected modification of the protected data. This assures the receiving station that the 
SDU portion of a PDU has not been tampered with since it was transmitted. Given the nature of data 
transmission and reception at the Link Layer of LANs and the susceptibility of LANs to wiretap, this service is 
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badly needed to protect data on LANs. This service is important not only in its own right, but as a necessary 
supportive service for authentication services. 

Figure 3 illustrates the application of this service to information PDUs. As previously indicated, 
security services provided at any layer of a protocol stack protect only the SDU portion of that layer's PDU. In 
implementations where integrity is provided at a higher layer, connectionless data integrity at Layer 2 protects 
the headers of the layers above the MAC Sublayer up to and including the higher layer at which integrity is 
provided. The security option specified in the U.S. GOSIP for ISO CLNP is one example of critical data 
protected in this case. Since this data is contained within the Network Layer Header, it cannot be protected by 
security services provided above the Link Layer. Modification of the data contained in the security option, 
combined with the modification of the CLNP header checksum could result in delivery of a PDU to a station 
not authorized to process that data. In implementations where connectionless data integrity is provided at the 
Link Layer rather than at a higher layer, application data and all of the headers of the protocol layers above the 
MAC Sublayer are protected from undetected modification. When implemented at the Data Link Layer, this 
service also provides protection for logical subnetwork addressing for communities of interest on a common 
secure backbone LAN. 

MAC Preamble: 7 octets 

MAC SFD:1 octet 

MAC MAC Destination Address: 6 octets 

HEADffl MAC Source Address: 6 octets 

MAC Length: 2 octets 

UC0SAPAcWre$$:1 octet 
LLC 
rEADffl 

LLC SSAP Address: 1 octet Data protected 

LLC Control: 1(U) or 2(1) octets only by Layer 2 

LAYB33 Layer3Headef 
security services 

PDU Layer3SDU Data protected by 
1 «/m O 

MAC Frame Check Sequence: 4 octets or Layer 3 security 
services 

Figure  3 

Connectionless data integrity is also necessary at the Data Link Layer to inhibit data modification of 
the data field of the TEST PDU. Figure 4 illustrates the application of connectionless data integrity to this 
type of PDU. If the data in a TEST PDU is altered by a third party, either during the request or reply phases, it 
might result in a bad quality path being marked as good. Distortion of TEST data could also cause a good 
quality path to be marked as bad, but this is indistinguishable from a failure in the media itself and is, in fact, 
an indication that there is something wrong with the communications path, anyway. This service also protects 
the integrity of the LLC header fields, preventing misdelivery of the TEST PDU or modification of the Control 
field, which identifies the PDU as a TEST PDU. Finally, integrity is also necessary as a supportive service for 
authentication of this type of PDU, since assurance of authenticity of the source address without assurance of 
the integrity of the source address is of little value. 
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Figure  4 

DATA  ORIGIN   AUTHENTICATION 

Data origin authentication inhibits one station from masquerading as another to abuse resources 
attached to a LAN (i.e., unauthorized resource use). This service assures a receiving station that the SDU 
portion of a PDU came from the station indicated by the Data Link Layer source address in the PDU header. 
Data integrity is necessary as a supportive service for data origin authentication, since assurance of authenticity 
of the source address without assurance of the integrity of the source address is of little value. This service 
protects resources (e.g., file servers) attached to LANs from one station masquerading as another, whether or not 
the station is authorized to be connected to the LAN. At Layer 2, this service provides protection for logical 
subnet addressing for communities of interest on a common secure backbone. Given the nature of data 
transmission and reception at the Link Layer of LANs and the susceptibility of LANs to wiretap, this service is 
necessary to protect resources on LANs. 

Figure 3 illustrates the application of this service to information PDUs at the Data Link Layer. When 
authentication is provided at an upper layer, the header data from that upper layer and all lower layers, is left 
unprotected. Again, an example of data in a Layer 2 information PDU that is unprotected even in the presence 
of higher layer security services, is the security option specified in the U.S. GOSIP for ISO CLNP. Since this 
data is contained within the Network Layer Header, it cannot be protected by security services provided above 
the Link Layer. If an unauthorized station masqueraded as an authorized station and replayed the data contained 
in the security option from a valid PDU, it could result in delivery of data to a station not authorized to process 
that data. In implementations where data origin authentication is provided at the Link Layer rather than at a 
higher layer, application data and all of the headers of the protocol layers above the MAC Sublayer are 
protected. When implemented at the Link Layer, this service also provides protection for logical subnet 
addressing for communities of interest on a common secure backbone LAN. 

Data origin authentication is also necessary at Layer 2 to inhibit modification of the source address 
field of the source address field of a TEST PDU. Figure 4 illustrates the application of data origin 
authentication to this type of PDU. If the source address in a TEST PDU is altered, either during the request or 
reply phases, it might result in a bad quality path being marked as good. Misrepresentation of the source 
address in a TEST PDU could also cause a good quality path to be marked as bad, but this is indistinguishable 
from a failure in the media itself and, in fact, is an indication that there is something wrong with the 
communications path, anyway. Together with the supportive service of integrity, data origin authentication 
provides necessary protection for this type of PDU, since assurance of authenticity of the source address without 
assurance of the integrity of the source address is of little value. 

ACCESS   CONTROL 

Access control inhibits unauthorized use of resources. This service is sometimes thought of as a way 
to inhibit unauthorized disclosure. But, in fact, data confidentiality is used to protect data from unauthorized 
disclosure. Access control provides assurance that access to a resource is granted only to authorized stations for 
authorized purposes. Access control can be applied at either the source of a data transmission or at the 
destination. However, when access control is applied at a PDU's destination, die data has effectively been 
transmitted to all stations on a LAN before this service is applied. If nothing else, this leaves stations open to 
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unauthorized depletion of network bandwidth and receiver processing resources. Also, due to the manner in 
which every PDU is effectively transmitted to every station on a LAN and the susceptibility of LANs to 
wiretap, access control applied at the destination cannot prevent transmissions to stations not authorized to be 
connected to a LAN. At the Data Link Layer of a LAN, access control, when applied at the source of a data 
transmission, can inhibit communications between stations not authorized to communicate with one another, 
including a station authorized to be connected to the LAN and a station not authorized to be connected to the 
LAN. 

Figure 3 illustrates the application of this service to information PDUs. In implementations where 
authentication is provided at a higher layer, access control at Layer 2 provides protection from abuse of 
resources that operate upon data contained in the headers of the higher layer at which the service is provided and 
all other layers above Layer 2. For example, in a network where access control is provided as a Layer 3 end-to- 
end service over ISO CLNP, PDUs generated on one LAN could be sent to a remote LAN with particular 
Quality of Service (QOS) option parameters requested and the Record Route option invoked. This would 
provide information about the intermediate Network Layer systems to a rogue station on the Remote LAN. By 
also invoking the Partial Source Routing option and limiting the PDU Lifetime, a single station with partial 
information on the topology of a set of interconnected subnetworks could develop more complete information 
from Error Report PDUs, without the participation of a second rogue unit This information could be used to 
exploit weaknesses in the network, such as identifying operational characteristics of particular routes (e.g., 
relative levels of congestion, transit delay, or residual error probability). While access control at Layer 2 cannot 
limit this type of abuse between stations authorized to communicate with one another, it can inhibit this type 
of communication between stations not authorized to communicate with one another. In implementations 
where access control is provided at the Link Layer rather than at a higher layer, this service provides protection 
from abuse of application data and data in the headers of the protocol layers above Layer 2. For example, this 
service can limit access to a particular file server to only those stations which required that access. It can also 
prohibit access to a gateway from unauthorized stations. 

At the Link Layer of a LAN, this service can prevent use of the TEST PDU from the LLC Sublayer to 
create an unauthorized communications association. Figure 4 illustrates the application of access control to 
this type of PDU. Since the data to be used for a TEST PDU is not defined, the entire data field of this PDU 
could be filled with any data. By transmitting unnecessary TEST PDUs, cooperating stations could transfer any 
data. While access control will not limit this type of abuse between stations authorized to communicate, it can 
inhibit this type of communication between stations not authorized to communicate with one another (e.g., a 
station authorized to be connected to the LAN and a station not authorized to be connected to the LAN). 

PATA CONFIDENTIALITY 

Data confidentiality inhibits unauthorized disclosure of the protected data. This assures the sending 
station that the protected portion of a PDU will be available only to the intended recipient. Given the nature of 
the Link Layer of LANs and the susceptibility of LANs to wiretap, this service is necessary to protect data on 
LANs. This service is already indicated as appropriate for Layer 2 in ISO 7498-2. 

MECHANISMS   FOR   PROVISION   OF   SECURITY   SERVICES 

Concerns that are raised when one suggests expanding the Layer 2 security service profile are: how can 
the additional security services be provided and what impact will this have on the complexity and performance 
of the LAN interface to a station. Data confidentiality is most commonly provided via encryption, also referred 
to as encipherment. In fact, data confidentiality through encryption is what most people associate with network 
security. While there are other mechanisms for providing data confidentiality, encryption is one of the simplest 
and most reliable. Fortunately, the mechanism most commonly used to provide data confidentiality, i.e., 
encryption, can be used to provide all of the indicated security services. In fact, the additional services can be 
provided with almost no impact to the performance or the complexity of the LAN interface. 

Connectionless data integrity is almost an automatic side effect of data confidentiality via encryption. 
Most cryptographic algorithms produce a checksum or some other mathematical residue which can only be 
reproduced with the correct combination of cryptographic algorithm, key material, and data. For systems 
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handling classified data, a cryptographic checksum calculated over the data, using an algorithm and key different 
from those used for the data confidentiality service, might be required. However, this is unnecessary for 
unclassified data. 

Data origin authentication can easily be provided by including a copy of the source address within the 
encrypted data field, either as a prefix or a suffix to the Layer 2 SDlA As with connectionless data integrity, 
in systems handling classified data, a cryptographic checksum calculated over the data, using an algorithm and 
key different from those used for the data confidentiality service, might be required. Again, however, this is 
unnecessary for unclassified data. 

Access control can be effected implicitly through the management and application of cryptographic 
association, i.e., keying relationships. If all PDUs are encrypted, only those stations with cryptographic 
mechanisms and knowledge of the correct keying relationships can exchange information. A station without 
these facilities will be unable to access any of the protected resources. 

With the exception of data origin authentication, all of the additional services can be provided as by- 
products of encryption when used to provide data confidentiality. And data origin authentication can be included 
so easily, it is hardly worth noting as an exception. Using the single mechanism of encryption, all of the 
indicated services can be provided with a minimum of impact to the complexity and performance to the LAN 
interface of an attached station. 

SUMMARY 

Table 1 summarizes the pertinent attributes of LANs that have been identified, the vulnerabilities that 
those attributes present, the security threat associated with those vulnerabilities, and the security services 
required to inhibit exploitation of those risks. In each case, the Link Layer of LANs has been shown to have 
qualities more like the Network Layer of WANs than those of the Link Layer of WANs. Given these 
arguments, it makes sense to provide the same range of security services for LANs' Link Layer as WANs' 
Network Layer. 

Table 1 
LAN   Attribute Vulnerability Security  Threat Services  Indicated 

Data Transmission Any station can transmit 
to any other station, 
using any address 

Masquerade, 
unauthorized resource 
use 

Data origin authentication, 
access control 

Data Reception Any station can access 
any transmission 

Data modification, 
unauthorized disclosure 

Connectionless data 
integrity, data 
confidentiality 

Address Space No implicit controls 
through address 
management 

Masquerade, 
unauthorized resource 
use 

Data origin authentication, 
access control 

Geographic Dispersion Eavesdropping, 
wiretapping 

Data modification, 
unauthorized disclosure 

Connectionless data 
integrity, data 
confidentiality 

CONCLUSIONS 

I have shown which attributes of LANs necessitate security services at Layer 2, the threats associated 
with those attributes, the services needed to counter those threats, and the results from applying those services. 
Most of the similarities can be attributed to the facts that subnetworks and routing are functions of the Data 

2 Data origin authentication is assured only to the granularity of the cryptographic key. 
A key that is unique to the source and destination address pair provides assurance of the 
individual source host identity; a key shared by a group only provides assurance that the 
source of the PDU is a member of the group 
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handling classified data, a cryptographic checksum calculated over the data, using an algorithm and key different 
from those used for the data confidentiality service, might be required. However, this is unnecessary for 
unclassified data. 

Data origin authentication can easily be provided by including a copy of the source address within the 
encrypted data field, either as a prefix or a suffix to the Layer 2 SDIF. As with connectionless data integrity, 
in systems handling classified data, a cryptographic checksum calculated over the data, using an algorithm and 
key different from those used for the data confidentiality service, might be required. Again, however, this is 
unnecessary for unclassified data. 

Access control can be effected implicitly through the management and application of cryptographic 
association, i.e., keying relationships. If all PDUs are encrypted, only those stations with cryptographic 
mechanisms and knowledge of the correct keying relationships can exchange information. A station without 
these facilities will be unable to access any of the protected resources. 

With the exception of data origin authentication, all of the additional services can be provided as by- 
products of encryption when used to provide data confidentiality. And data origin authentication can be included 
so easily, it is hardly worth noting as an exception. Using the single mechanism of encryption, all of the 
indicated services can be provided with a minimum of impact to the complexity and performance to the LAN 
interface of an attached station. 

SUMMARY 

Table 1 summarizes the pertinent attributes of LANs that have been identified, the vulnerabilities that 
those attributes present, the security threat associated with those vulnerabilities, and the security services 
required to inhibit exploitation of those risks. In each case, the Link Layer of LANs has been shown to have 
qualities more like the Network Layer of WANs than those of the Link Layer of WANs. Given these 
arguments, it makes sense to provide the same range of security services for LANs' Link Layer as WANs' 
Network Layer. 

Table  1 
LAN   Attribute Vulnerability Security  Threat Services  Indicated 

Data Transmission Any station can transmit 
to any other station, 
using any address 

Masquerade, 
unauthorized resource 
use 

Data origin authentication, 
access control 

Data Reception Any station can access 
any transmission 

Data modification, 
unauthorized disclosure 

Connectionless data 
integrity, data 
confidentiality 

Address Space No implicit controls 
through address 
management 

Masquerade, 
unauthorized resource 
use 

Data origin authentication, 
access control 

Geographic Dispersion Eavesdropping, 
wiretapping 

Data modification, 
unauthorized disclosure 

Connectionless data 
integrity, data 
confidentiality 

CONCLUSIONS 

I have shown which attributes of LANs necessitate security services at Layer 2, the threats associated 
with those attributes, the services needed to counter those threats, and the results from applying those services. 
Most of the similarities can be attributed to the facts that subnetworks and routing are functions of the Data 

2 Data origin authentication is assured only to the granularity of the cryptographic 
key. A key that is unique to the source and destination address pair provides 
assurance of the individual source host identity; a key shared by a group only 
provides assurance that the source of the PDU is a member of the group 
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Link Layer in LANs and the nature of data transmission and reception at Layer 2 of LANs. The result is a set 
of arguments for a Layer 2 security service profile that is more extensive than the profile currently defined in 
ISO 7498-2. This will allow LAN implementations to address pertinent security threats in the layer at which 
the threats exist, while maintaining compliance to ISO standards. 

It is important to emphasize that it is not mandatory to provide these services at Layer 2 in every 
device which supports ISO standards based systems. In some instances, security services at Layer 2 will be 
necessary and sufficient to support a particular system. In other cases, Layer 2 security services will be used in 
conjunction with security services at other layers. In some cases, Layer 2 security services will be unnecessary 
and inappropriate. 

Security services at Layer 2 will address different needs than security services provided at other layers. 
The ISO Security Architecture should be modified to accommodate these needs. 
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ABSTRACT 

The Trusted MINIX system is being developed to provide a worked example of C2 security mechanisms 
and assurances based on MINIX Version 1.5. MINIX is a small UNIX-like operating system for the PC/AT 
workstation, originally developed by Andrew Tanenbaum as a teaching tool for operating systems classes. 
Although the computer system will generally be used by only a single user at a time, MINIX was designed 
for multi-user, multi-tasking operation. From this perspective, the security modifications required for 
Trusted MINIX are essentially the same as for any multi-user system. However, MINIX was designed with 
a more modular internal structure than the monolithic UNIX kernel, and this structure affects how security 
features are added to MINIX. This paper gives an overview of the worked example, both from historical 
and technical perspectives. 

1. Background 

Trusted MINIX has its roots in the National Computer Security Center's (NCSC) Rating Maintenance Phase 
(RAMP)1 class. A portion of the RAMP class involves security analysis of system changes in order to be sure that 
the changed system remained consistent with the TCSEC requirements. Early RAMP students attempted to analyze 
generic changes in a context free environment. Unfortunately, it was was difficult to analyze these changes to the 
level of detail necessary to provide a useful exercise. 

The NCSC concluded that the context of a specific system, with specific changes to that system, were needed to 
provide a useful class exercise. The difficulty lay in choosing the correct system on which the exercise should be 
built A proprietary operating system would not suffice for a multi-vendor class, nor could the NCSC choose a 
system that would serve as an implicit endorsement of an evaluated system (or system currently in evaluation). The 
system needed to be conceptually simple enough that students with different operating system backgrounds would be 
able to grasp the core concepts with little difficulty. 

MINIX was chosen as the example system. Unfortunately, standard MINIX does not meet all the requirements of any 
class of the TCSEC. Therefore, the NCSC embarked on a vigorous campaign to "pretend" that MINIX met the C2 
requirements. Auditing and testing magically appeared in discussions about the system and high level design 
documentation was written. Even though this provided a context upon which to scrutinize system change, the context 
was internally inconsistent The students were quick to realize this, and this fact detracted from the benefits gained by 
the specific context. 

A determination was then made by the NCSC to have MINIX built to meet the C2 requirements. However, during 
the course of creating the class exercise, some interesting discoveries were made: the RAMP class need not be the 
only beneficiary of a worked example. Since the example system would meet all C2 requirements, it could be used to 
provide trusted system vendors with examples of TCSEC documentation, such as design documentation and Trusted 
Facility Manual (TFM). If building MINIX also entailed RAMPing MINIX, a Rating Maintenance Plan would also 
be available.  These documents, when used in conjunction with the corresponding "Rainbow Series" guide, could 

1 Briefly, RAMP is ihe process by which vendors maintain their NCSC ratings on subsequent product versions. For more information, refer 
to the NCSC's Rating Maintenance Program Document [1J. 
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provide the vendors of trusted systems with the necessary tools and examples to create documentation meeting the 
TCSEC requirements. It is anticipated that this may, in fact, speed the evaluation process by increasing the 
productivity of both vendors and evaluators. 

Another application of a worked example is that it can be used for internal training of evaluators without the risks 
associated with the "trial-by-fire" scheme currendy in use. Lastly, the worked example would fill the void in the 
RAMP class by providing a consistent, evaluated system upon which to perform change security analysis. With these 
as possible beneficiaries of the worked example, the flavor of the requirements changed slightly. No longer was 
having the best C2 system features top priority; rather, C2 assurances, in particular, documentation, took a leading 
role. 

In September 1989, the NCSC contracted with ESCOM Corporation to develop the Trusted MTNIX operating system 
and its documentation. The contract called for ESCOM to develop the system for use as a non-proprietary "worked 
example" of a trusted computer security product ESCOM's role throughout this contract has been that of a 
commercial vendor developing a candidate C2 product rather than a contractor developing data items. 

2, Technical Overview 

Trusted MINIX was developed as a Controlled Access implementation (C2) of MTNIX 1.5 for the IBM PC/AT 
workstation. MTNIX [2] is a multi-user, multi-tasking operating system designed to be compatible with UNIX2 

(Version 7) from the user's perspective, but with a more modular internal structure, and with widely available, 
published source code. The most recent release, Version 1.5, is designed to provide POSIX system call compatibility. 

Security Policy (Access Control Lists) 
Auditing 

Identification and Authentication 
Operational Assurance 

Documentation 
Rating Maintenance 

Figure 1. Trusted MINIX Product Concept 

The Trusted Computer System Evaluation Criteria (TCSEC) [3] requires C2 systems to include mechanisms to make 
users individually accountable for their actions through login procedures, auditing, and resource isolation. As shown 
in Figure 1, Trusted MTNIX also provides access control lists (ACLs), a B3 security mechanism. Extensive user, 
administrator, test, and design documentation have been developed, and a subsequent revision to the system was 
performed in accordance with the RAMP requirements of the Trusted Product Evaluation Program. 

Although Trusted MTNIX has been designed specifically for the IBM PC/AT workstation, both MINIX and Trusted 
MTNIX run without software changes on other hardware-compatible systems using the Intel 80286, 80386, and 80486 
processors. Trusted MINTX preserves the general architecture of standard MTNIX and is source and binary code 
compatible with most existing MTNIX programs. 

1 UNIX ij a trademark of AT&T Bell Laboratories. 
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During this project ESCOM performed several tradeoffs regarding the design of the Trusted MINIX system. In 
addition to obvious factors such as completing the system within the allocated budget and schedule, primary 
considerations included: 

(1) Succinctly meeting the C2 requirements. 

(2) Providing high quality system and user documentation. 

(3) Providing a conceptually simple approach in which mechanisms are straightforward, easy to use, and easy to 
understand. A security mechanism that is not used because it is too cumbersome or is not well understood can 
actually reduce the security of a system. 

(4) Following the original MINIX project goals of modularity, readability, and smallness. 

3. Trusted Computing Base 

Trusted systems are trusted to protect information - that is, to allow access to data only in accordance with the 
system's access control policy. Trusted MINIX enforces a discretionary access control (DAC) policy which allows 
individual users to control access to their data on a "need to know" basis. Trusted MINIX also provides individual 
accountability by requiring proper identification and authentication of the user before giving access to the system, and 
by providing the capability for a privileged user to audit security-relevant events within the system. The trust 
provided by the Trusted MINIX system depends equally upon the proper operation of the DAC mechanisms, 
individual accountability for system users, and assurances that the system is developed properly. 

The parts of the system that collectively provide this trust are referred to the Trusted Computing Base (TCB). As 
defined by the TCSEC, the TCB is "the totality of protection mechanisms within a computer system - including 
hardware, firmware and software ~ the combination of which is responsible for enforcing a security policy." The 
Trusted MINIX TCB includes the system hardware, and firmware, and critical software such as the kernel, device 
handlers, Memory Manager (MM), File System (FS), and other utilities, commands, and system software. Although 
modularity is not a requirement for class C2 TCBs, the Trusted MINIX system is internally structured into well- 
defined and largely independent entities. 

Figure 2 shows the overall structure of the Trusted MINIX system. All software in Layers 1 through 3 is included in 
the TCB, along with certain privileged user programs in Layer 4. Version 1.5 of MINIX includes over 150 user 
commands, a relatively small number of these that run with superuser privilege or are necessary for system 
administration are included as part of the TCB. 

Layer 4, User Processes 
 init, login, passwd, sh, chad, Isacl, Is, cp, cat, cc, 

Layer 3, Server Processes 
File System (FS), Memory Manager (MM) 

Layer 2, Kernel I/O Tasks 
floppy, wini, tty, clock, system,.. 

Layer 1, Kernel Process Management 

Figure 2. Trusted MINIX Internal Structure. 

Each of these four layers is characterized by a distinct hardware privilege and execution priority. User processes at 
Layer 4 have a low privilege (preventing access to memory segments used by lower layers) and a low priority (they 
will be run only when the lower layers cannot run). Server processes have increased privilege (allowing servers to 
access user process memory) and increased priority to ensure that they will run before user processes. The Kernel I/O 
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Tasks have even higher privilege and priority necessary to manage the physical hardware within the system, and the 
Kernel Process Management Layer manages the privilege and priority mechanisms for the rest of the system. 

Trusted MINIX runs in 286 protected mode and uses the 286 protection ring mechanism to enforce the privileges 
associated with each layer. In addition, the kernel sets up 286 segment descriptors for each process, thus providing 
separation of processes (even at the same privilege level). 

Although the primary purpose of the TCB is to enforce the system's policy, only a relatively small portion of the 
TCB (kernel, FS, MM) is directly involved with making access control decisions. This portion of the TCB 
implements the reference monitor concept (TCSEC, Section 6.1), that is, it enforces the authorized access 
relationships between subjects and objects of a system. 

3.1. Subjects 

The TCSEC defines the term "subject" as including all active entities such as persons, processes, or devices that 
cause information to flow within a system or affect the state of the system. As shown in Table 1, the only subjects 
denned for the Trusted MINIX system are user processes. All users are eventually represented by one or more 
processes, usually including the shell interpreter sh. As with UNIX, each process is identified by a unique process 
identifier (PID). User traceability is provided by maintaining effective and real user and group IDs (UID, GID, 
respectively) for each process. 

Table 1. Trusted MINIX Subjects and Objects. 

MINIX Entities Subject Object 
Named 
Object 

Storage 
Object 

System 
Object 

Public 
Object 

User Processes X X - - - - 
MINIX Files: 
- Regular Files 
- Directories 
- Device Special Files 
- Named Pipes (FIFOs) 

- 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

- 
- 

Unnamed Pipes 
MINIX Messages 
Disk Blocks 
Memory Buffers 
Registers 
System Clock 

- 

X 

X 

X 

X 

X 

X 

- 
X 

X 

X 

X 

X 

3.2. Objects 

The term "object" is defined by the TCSEC as a passive entity that contains or receives information. As shown in 
Table 1, there are various types of objects, including named objects, storage objects, system objects, and public 
objects, with different requirements for protection. 

Named objects can be individually addressed, read, and written by arbitrary user subjects. The TCSEC requires the 
TCB's access control mechanisms to protect all named objects within the system. Named objects within Trusted 
MINIX include all files within the MINIX file system, including regular files, directories, and devices. These files can 
be directly manipulated at the TCB interface, may be destructively written by multiple users, and can serve as a 
channel for information between users. 
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Storage objects can be read and written by user subjects. The TCSEC requires the TCB to remove residual 
information from storage objects before allocating them to another subject For Trusted MINIX, storage objects also 
consist of MINIX files, directories, and devices. 

System objects are protected entities internal to the TCB (for example, firmware, process table, and inode table) that 
cannot be used for direct communications between subjects. Since they cannot be used to transfer information from 
one user to another, they do not need to be explicitly addressed by the access control policy. The Trusted MINIX 
message mechanism allows user processes to communicate with the kernel, MM, and FS processes. This message 
passing mechanism is a form of inter-process communications (IPC), but it needs no further access control mechanism 
because user processes are not permitted to send messages directly to other user processes. 

Public objects are objects such as the system clock that can be read but not modified by the normal user. Since they 
cannot be used to transfer information from one subject to another, they do not need to be addressed by the access 
control policy. 

4. Discretionary Access Controls 

Because there is only one type of named object (MINIX files) to be considered, the Trusted MINIX DAC design is 
much less complicated than for other systems. Other systems (such as System V UNIX) allow direct interactions 
among user processes via IPC or shared memory, but these mechanisms are not available in Trusted MINIX. 

The DAC policy for Trusted MINIX is enforced entirely within the FS program based upon an ACL stored in the 
inode of each file system object. This provides stronger protection against corruption than if the information were 
stored in a data file or other visible object. 

The Trusted MINIX ACL consists of up to eight elements, with each element specifying access permissions for a user 
ID, group ID, or all other unspecified users on the system. Each element identifies the same permission set (read, 
write, execute/search) provided by standard MINIX. As shown in the following example, the Trusted MINIX ACL 
allows access to be specified for multiple users (charlie, lucy, hagar) and groups (peanuts, kudzu): 

Typo UID or GID   Permission 

USER Charlie rwx 

GROUP kudzu r-x 

GROUP peanuts r-x 

OTHERS —X 

USER lucy r-x 

USER hagar   

Figure 3. Example of Trusted MINIX ACL Structure. 

4.1. Compatibility 

The predominant consideration for other DAC (TRUSIX, P1003.6) [4,5] working groups has been to provide 
backwards compatibility with existing software and user interfaces. While such compatibility is important for vendors 
supporting customers running binary-only applications, it is a relatively low priority for Trusted MINIX. 
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ACLs and modes represent two distinct discretionary models, and the combination of the two models results in 
complex interactions that must be understood not only by the developers but also by the users of the system. This 
makes such a system less effective in enforcing the organization's security policy. 

Consequently, ESCOM has implemented a pure ACL approach without mode permissions. This approach has been 
described as "the cleanest model theoretically because its discretionary control is based on a single, powerful model" 
[6]. In addition, it is relatively easy to map the existing MINIX system calls that use mode permissions into an ACL 
approach, and this provides compatibility for existing binary programs. 

4.2. ACL Evaluation 

Access control is enforced when a process attempts to introduce a file into its address space by opening the file. 
When this happens, FS will determine whether the requested form of access (for example, read-only, read-write) is to 
be granted by checking the process' identity (UDD and GID) against elements in the file's ACL. 

Although ACL elements are not stored in any particular order, they are evaluated in order of most-to-least-specific 
elements. That is, the ACL will be searched first for matching USER entries, then for matching GROUP entries, then 
finally for an OTHERS entry. The permissions associated with the first matching entry are used to determine access. 
If there is no matching element (USER, GROUP, or OTHERS), the requested access is denied. This approach allows 
access to be explicitly denied for an individual user, even if that user is a member of a group that is allowed access. 

43. Object Creation 

Perhaps the most important issue during object creation is how to set the access control permissions for the new 
object. Trusted MINIX has replaced the standard umask mechanism with an ACL inheritance mechanism where each 
new object receives its initial ACL from the ACL of the parent directory. As described in other references, this 
approach is probably the most natural for user and shared project directories, since files inherit permissions from the 
containing directories. 

Using this approach, newly created files inherit an ACL that is derived from the parent directory ACL and the 
requested permissions from the calling program3: The ACL for the new object is copied from the parent directory 
ACL. An element is created for the owner of the object (if the owner is not already listed on the ACL) with the 
owner permissions requested by the calling program. All other elements inherited from the parent directory ACL are 
ANDed with either the group or others bits from the calling program. 

This approach is used to initialize the ACL for all newly-created objects. However, certain programs needed to be 
modified to change this initial ACL to comply with the historical usage of the program. For example, cpdir -s 
duplicates permissions from the origin directory to the destination directory and tar provides an option to save and 
restore ACL information. 

5. Object Reuse 

The protection philosophy for object reuse is to ensure that the authorizations and contents of reusable objects are 
properly initialized before the objects are made available to a new user. The TCSEC requires the following 
mechanisms to be provided for storage objects: 

' For compatibility with applications using MINIX mode permissions, these are the low-order nine bits of the file mode passed to creat(), 
mkdir(), or mknodQ. 
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(1) Revoke previous authorizations to the object 

(2) Overwrite or clear any residual information remaining in a physical storage location before allowing another 
user to have access to the object 

The storage objects listed in Table 1 include not only the named objects addressed by the DAC policy (files, 
directories, etc.). but also lower-level items such as disk blocks, memory buffers, and device registers that may 
contain residual information. Standard MTNIX satisfies the TCSEC C2 requirements for object reuse without any 
changes other than documenting the mechanisms. 

6. Identification and Authentication 

The DAC mechanisms described above depend upon the principle of individual accountability. The Trusted MINIX 
system provides individual accountability by requiring proper identification and authentication of the user before 
giving access to the system. 

6.1. Protecting Encrypted Passwords 

Trusted MINIX provides a protected (or "shadow") password file (/etc/tcb/passwd) to prevent general users from 
being able to read encrypted passwords. The public file (letc/passwd) is still available, but the password field is not 
used. 

6.2. Password Selection 

The Trusted MINIX passwd program has been modified to filter out certain "weak" passwords, as described below: 

(1) Passwords must have a length of at least six characters. 

(2) Passwords must contain a non-alphanumeric character (for example, a punctuation mark or a mathematical 
symbol). 

(3) The new password must differ from the previous one. 

(4) Trusted MINIX disallows access to the system if the user has a null password. This ensures that the system 
administrator will set up a password for a new user. 

Instead of implementing automatic password aging. Trusted MINIX provides a date field in the protected password 
file that is changed each time the password is changed. This information can be used by the system administrator to 
review the current age of users' passwords on the system. 

6J. Login 

The Trusted MINIX login program authenticates each user's identity before allowing access to the system. It 
performs the following new functions: 

(1) Require a password to be entered, even if the login name is bad. Standard MINIX does not ask for a password 
if the login name is bad; this allows the user to find valid login names more quickly. 

(2) After successful authentication, notify users who login successfully of the date and time of last login and the 
number of unsuccessful attempts since then. This information is copied from the letcltcbllastlog file, which 
maintains information about each user's last login and unsuccessful attempts. 

(3) Update the letcltcbllastlog file with the new port, time, and failure information. 
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7. Audit 

In addition to strengthened identification and authentication mechanisms, Trusted MINIX supports the principle of 
individual accountability by providing the capability for a privileged user to audit security-relevant events within the 
system. 

7.1. Audit Events 

The requirement for auditing at C2 includes: "use of identification and authentication mechanisms, introduction of 
objects into a user's address space (e.g., file open, program initiation), deletion of objects, actions taken by computer 
operators and system administrators and/or system security officers, and other security relevant events." Trusted 
MINIX provides for auditing the following types of events: 

Table 2. Auditable Events 

Type of Event Location I&A       Object     Admin Other 

User Commands 
login login X 

su su X 

lpr lpr X 

passwd passwd X 

System Calls 
fork, exec MM X 

open, close FS X 

creat, mknod FS X 

link, unlink FS X 

enroot FS X 

stime FS X 

chown FS X 

mount, umount FS X 

audit FS X 

kill MM X 

aclctl FS X 

setuid, setgid MM X 

privilege override FS, MM X 

failed VO FS X 

The second column shows the location where the audit event will be generated, either a trusted user program, server, 
or the kernel, depending on the type of audit For example, the unlinkf) system call is implemented within the FS 
server by the do unlink, procedure. 

Privilege override allows auditing of events where an operation succeeds only because it is requested by the superuser 
(UID 0). These situations occur in various system calls, for example, open(), cnown(), acl(), kill(), and setuid(). 

12. Audit Architecture 

As described above, the audit function in Trusted MINIX is necessarily distributed throughout the TCB, with the 
majority of audits being generated within FS and (to a lesser extent) MM. 
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Because of this modularity already inherent in the operating system, there were a number of design alternatives for 
implementation of the audit collection function. The preferred approach was to implement a new audit server at the 
same level as MM and FS, however, ESCOM implemented the audit collection function within the FS server in order 
to avoid problems with potential deadlock between FS and an external server. Because the FS and MM servers are 
"single-threaded" (that is, they only process one transaction at a time), there is the possibility of a synchronization 
deadlock. Andy Tanenbaum [7] observed that the current MTNIX implementation relies on there only being two 
servers, with limited, one-way (MM-to-FS) interaction between the two servers. Recording audits within FS also 
makes for optimal performance, since well over half of the system calls are performed within FS. The collection and 
writing of local audit information within FS consists of a simple procedure call. 

13. Selective Audit 

The TCSEC requires a means to selectively audit the actions of users based on individual identity. This can either be 
done by pre-selection (audit only the selected users) or post-selection (scan the audit trail for events matching the 
user). Trusted MTNIX allows pre-selection of the types of events to be recorded. The audit reduction tool (auditfmt) 
allows post-selection of audit entries matching a particular user ID, group ID, or inode. auditfmt is designed to 
operate as a filter on an audit file (not necessarily the current audit file), and send to standard output audit records 
matching the specified criteria. 

One of the areas where Trusted MTNIX differs from other audit implementations is that the individual instrumentation 
points send all audit events to FS, even if the event will eventually be discarded. This centralized approach to audit 
selection has some minor performance implications, but is more modular, easier to modify, and conceptually cleaner 
than distributing the decisions to each of the instrumentation points. 

8. Documentation 

Perhaps the most useful aspect of Trusted MTNIX is the example documentation. All documentation was written with 
the assumption that the reader has a user level understanding of standard MINIX. The documentation can be broken 
into four subgroups: design, test, user, and RAMP. 

8.1. Design Documentation 

As shown in Figure 4, six documents were written to satisfy the TCSEC design documentation requirements. This is 
in addition to previously existing documents that were also used to satisfy the requirements. 

System 
Specification 

1 _E 
System 

Architecture 
DAC 

Design 
Object 
Reuse 

l&A 
Design 

Audit 
Design 

Figure 4. Trusted MTNIX Design Documentation 

The first document is the System Requirements Specification, which identifies the requirements for security features 
and assurances built into Trusted MTNIX system, and describes the relationships among the features. There are four 
subsystem design documents, which discuss in more detail the functional requirements, the design of the system, and 
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implementation specifics. Unfortunately, these documents did not adequately cover the assurance requirements of the 
TCSEC, nor did they discuss how the security features fit within the Trusted MINIX system components (such as the 
kernel, file system, and memory manager). Therefore, the System Architecture design document was written to cover 
these specific issues using a structured breakdown of the Trusted MINIX system. Additional commercially available 
documentation has been identified for use in documenting the hardware design and implementation. 

8.2. Test Documentation 

The test documentation consists of a single document covering the design of the Trusted MINIX security relevant 
tests, the expected results from those tests, and the actual results of the tests. 

83. User Documentation 

The Trusted MINIX user documentation consists of a Trusted Facility Manual and a Security Features Users Guide. 
The TFM discusses the issues associated with installing and administering a Trusted MINIX system. It discusses the 
use of the trusted administrator shell, the use of the auditing mechanism, and various other administration functions 
and details. The SFUG leads a user through the logon process and explains in detail the security features provided by 
the system, as well as the users role in system security. Both documents contain manual pages for the security features 
referenced in the body of each. The SFUG also includes the remaining manual pages not related to security. 

8.4. RAMP Documentation 

The RAMP documentation consists of all that is needed for a single cycle of Rating Maintenance. This includes a 
Configuration Management Plan and Rating Maintenance Plan. The Configuration Management Plan takes the view 
of managing change, as opposed to the Rating Maintenance Plan, which takes the view of managing releases. Other 
RAMP documentation includes the configuration management evidence necessary to support RAMP, as well as a 
Rating Maintenance Report and supporting documentation. 

9. Conclusions 

The work done by ESCOM to develop the Trusted MINIX system and its associated documentation represents only 
one side of the effort required to developed a complete worked example, since it only covers the evaluation process 
from the product developer's side. The other side of the worked example involves the evaluation of the Trusted 
MINIX system and the development of the documentation associated with that evaluation. This documentation 
includes the Preliminary Technical Report (PTR), the Initial Product Assessment Report (IPAR), the Evaluation Test 
Plan, and the Final Evaluation Report (FER). The PTR is a cursory analysis of the proposed system (either a design 
or an existing untrusted base) to determine how feasible it is to complete a trusted product evaluation. The IPAR is 
based on a detailed technical analysis of the developer's design and user documentation and describes how the system 
satisfies the requirements of the TCSEC. The IPAR is both the blueprint for the actual product evaluation and the 
basis of the FER. During the evaluation, the team prepares and runs security tests beyond those done by the 
developer, these test are documented in the Evaluation Test Plan. Finally, the team produces a report for public 
release that describes how the product satisfies the TCSEC requirements. 

During the development of Trusted MINIX, a team of NCSC evaluators worked with ESCOM to define the security 
issues and identify possible solutions, in the same way the NCSC usually works with trusted product developers. At 
the completion of the contract, this team will produce the IPAR, ETR, and FER. At this point, the worked example 
will be complete with respect to the product evaluation process. The final aspect of the project will be validating the 
evidence developed under the contract to show the the system maintained its trustedness as it evolved from release 1.0 
to 1.1.  This will provide the RAMP element of the worked example.  When the worked example is complete, the 
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NCSC will publish it as a series of 11 documents as part of the technical guidelines program (aka the Rainbow 
Series). 

It is expected that the Trusted MINIX will bring the following tangible benefits to the Information Security 
community: 

(1) By providing an example of what the NCSC is looking for in terms of design and user documentation, it will 
allow product developers to better determine the level-of-effort required to complete the evaluation. 

(2) It will provide the basis for quicker and more effective evaluator training. 

(3) It will provide a preliminary validation mechanism for fine-tuning the RAMP requirements. 

(4) It will provide the consistent example needed to effectively train Vendor Security Analysts, and 

(5) It will provide a low-cost and possibly "fun" means for anyone interested in information security to experiment 
with basic trust technology, both at home and at school. 

The use of Trusted MINIX as a worked example doesn't stop here. Work is already underway to use Trusted MINIX 
as the basis for three follow-on efforts: a B-level worked example; integration into a networked/distributed computing 
environment; and as a baseline for a trusted system portability study. As we and others gain more experience with 
Trusted MINIX, we expect to find even more ways to use it to advance the state-of-the-art in Information Security. 
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Abstract 

This paper discusses the issues that arise when multilevel security is ap- 
plied to real-time systems. The Alpha real-time distributed system is 
used as a means of illustrating these issues. Among the issues discussed 
are mandatory security, integrity, and denial of service. In addition, it is ob- 
served that in real-time systems it may be necessary to make critical 
trade-offs between timeliness and security. Some approaches to address 
these issues are proposed. 

Introduction 
The last several years have seen a flurry of activity in the study, design and application of real- 
time systems. In the context of this paper, a real-time system is one in which the physical re- 
sources of the system (most notably processor time) can be precisely controlled. 

Real-time systems are used over a considerable range, from low-level sampled-data monitoring 
and control of physical processes, up to large scale adaptive distributed systems that control mul- 
tiple low-level real-time systems. It is with this latter class of systems that this paper is con- 
cerned.   Much of the impetus (and funding) for the development of such systems has come from 
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Cambridge Center, Cambridge, MA. 
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the Defense community, and there are many proposed applications of these real-time systems to 
critical Defense problems such as battle management for surface ships, mission management for 
fighters and strategic planning for SDL As the real-time market matures, these systems will 
also find themselves placed into commercial settings, such as the overall control of entire factory 
processes and the control of financial markets. 

Some of these applications raise questions of multilevel security (i.e., separation of information 
and users based on classification and clearance). For example: 

• process control: The properties of some materials (hazardous materials, in particu- 
lar) are categorized by a need-to-know classification by the individual suppliers of 
the materials. A process control system may handle multiple materials from multi- 
ple suppliers where the individual suppliers provide the material properties. 

• battle management: Mission data is of a very high sensitivity. This data is present 
in the same (possibly distributed) system as is relatively low sensitivity mainte- 
nance data. 

• financial markets: Company revenue projections are of high sensitivity. Employee 
salaries and stock purchases are confidential. Employees and executives have 
clearly differing access. 

Thus far, little or no consideration has been given to the computer security implications of real- 
time systems. The aim here is to call attention to the range of multilevel security issues raised 
by real-time systems, to suggest a framework in which these issues may be considered, and to 
propose a research agenda appropriate to the problem. To provide a focus, the study will exam- 
ine how multilevel security could be integrated into the Alpha real-time operating system under 
development at Concurrent Computer Corporation. In addition, the concentration will be on man- 
datory security because it is felt that it is the most pressing security concern. 

The requirement to provide secure operation as well as real-time (predictable and controllable) 
operation interact in a variety of ways. 

• All of the circumstances under which the security mechanisms will become active 
must be controllable and predictable by the applications. The resources consumed 
by the various security mechanisms (both in time and space) must be controllable 
and predictable. Although this property of real-time systems largely serves to con- 
strain the manner in which security mechanisms are implemented, it may well affect 
the semantics of the security services provided. 

• Traditional secure systems virtualize resources so as to reduce or remove the po- 
tential for covert channels. However, proper sharing and control of physical resourc- 
es is vital to accomplishing the mission of a real-time system. As such, an adaptive 
view must be taken to assure the realization of the system's real-time goals 
(physical resource control) as well as its security goals (hiding the effects of multi- 
level resource sharing). 

• Meeting real-time goals involves completing the collection of activities that results 
in the highest aggregate value to the system, where the value of completing an activ- 
ity varies with time. There is no a priori relationship between the importance or ur- 
gency of an activity and its associated access class. "Background" activities such 
as audit trail generation and analysis may need to take a back seat to more urgent 
activities at any given time. 
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• A single, simple security model may not be sufficient for these large, distributed en- 
vironments. The ability to support application-specific policies that can make trade- 
offs between critical security and timeliness requirements may be needed. 

• Because the real-time systems being discussed are distributed systems in which an 
application spans multiple nodes, with each subject in the system accessing resourc- 
es on multiple nodes, the security model must be capable of modeling or accounting 
for this distribution. 

• The real-time systems of concern must be survivable in the face of certain threats. 
This implies corresponding requirements for system integrity and data integrity. 

This paper is organized as follows. The next section provides some background information on 
real-time computing. This is followed with a description of the Alpha real-time distributed sys- 
tem given in sufficient detail so that the reader can evaluate the proposed approaches that fol- 
low. In the section entitled "Security for Alpha" the security issues that arise in Alpha are 
discussed. Many of these issues are generic to the entire class of real-time systems. In that 
section some approaches to address these issues are presented. Finally, the paper ends with 
our conclusions. 

Real-Time Computing 
A real-time system [6] is distinguished from a non-real-time system in that the correctness of 
its computations depends not only on the values of its outputs but also on the time at which 
those outputs are produced. Producing the otherwise correct results either too early or too late 
results in decreased value to the system, possibly jeopardizing the mission of the system, or hu- 
man life or property. Although any system can be viewed as "real-time" if the hardware is fast 
enough to always produce results in time, in this paper a system is considered as real-time only 
if applications can assert their real-time needs and the system manages the resources of the 
system (often, very precisely) in such a way as to meet those real-time needs. 

When applied in the traditional way, the constraint of real-time has the result of producing a sys- 
tem whose most distinguishing characteristic is rigidly deterministic behavior. The spectrum of 
traditional real-time systems ranges from rudimentary rate-monotonic dispatchers that have 
been employed in avionics to full-functionality operating systems. Along this spectrum there are 
differences in the division of resource management responsibility between the system and the ap- 
plication software and in the number and complexity of resources managed at runtime. However, 
these systems share the objective of maximally deterministic behavior and the approach of em- 
ploying maximally deterministic techniques. For example, they plan for an anticipated system us- 
age pattern and pre-allocate resources in an attempt to eliminate a priori all variabilities and 
exceptions. 

Our research is concerned with large, integrated, distributed real-time systems. The integrated 
system is typically comprised of low-level sampled-data subsystems, human-machine interface 
subsystems, and interconnections to other systems. The integrated system's overall behavior is 
dynamic and non-deterministic in as much as that its tasks are predominantly aperiodic and 
asynchronous. Stochastic run-time resource demands and conflicts (fluctuations in load and re- 
source contention, mechanical tolerances in sensors and actuators, and faults, errors, and fail- 
ures) are inevitable. Most aperiodic as well as periodic tasks have critical time constraints: 
urgency in time and relative importance in functionality. 
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The metric of performance is not the speed with which activities can be started. The critical crite- 
rion is that the set of activities that results in the highest aggregate value to the system is com- 
pleted (where value is time-varying), despite dynamic resource demands and conflicts, 
processing overloads, and hardware or software faults. 

The characteristics of the systems intended to perform the mission-critical integration and opera- 

tion of large, complex, distributed real-time systems such as SDI BM/C differ substantively not 
only from those of common non-real-time systems such as network connected personal worksta- 
tions and throughput-oriented super-computers, but also from the traditional small, simple real- 
time subsystems for low-level sampled data monitoring and control. The differences are mani- 
fest primarily in five areas of operating system requirements. 

• Real-time: meeting as many as possible of the most important aperiodic as well as 
periodic time constraints, despite dynamic and stochastic runtime resource conten- 
tion, overloads, and faults 

• Distribution: managing, in a decentralized fashion, the resources of multiple physi- 
cally dispersed computing nodes towards the execution of large, complex, integrated, 
distributed computations to perform a mission 

• Survivability I Integrity: preserving the mission, human life, and property in a hostile 
environment with limited or no repairs or downtime during missions of up to decades 
long 

• Adaptability: serving a wide variety of applications, each of whose requirements 
evolve continuously over a lifetime of decades, on a dynamic technology base 

• Security: preventing unauthorized access or disclosure of mission sensitive data 
whose characteristics vary over time to sets of individuals or their agents which also 
vary over time. 

A system that satisfies these requirements by necessity has a philosophy that differs from that 
of traditional systems in several ways. 

• Determinism: The operating system should behave as deterministically as the appli- 
cation requires, should present deterministic abstractions such as periodic rate- 
monotonic scheduling to the application user if desired, but should utilize non-deter- 
ministic means to achieve those ends most effectively. 

• Exceptions: The performance of the system must be optimized for the most impor- 
tant cases, which are often high-stress exceptions, such as emergencies due to hos- 
tile attack or faults, rather than for the normal, frequent but uneventful cases. The 
operating system and the application must be designed to anticipate runtime excep- 
tions and to handle them so as to provide the strongest possible realistic assuranc- 
es about meeting time constraints. 

• Best-Effort Resource Management: Guarantees of response are not only impossible 
in general, but, more importantly, honoring guarantees may prevent the system from 
responding to more critical dynamic demands. Instead, resource management must 
be performed on a "best effort" basis. The system must get the best results it can 
within the time constraints, with the available resources. The system should pro- 
vide runtime predictions of its ability to meet these demands. When not all time con- 
straints can be met, application-specified recourse must be taken, such as gracefully 
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degrading to minimize the number of missed time constraints, or meeting as many as 
possible of the most important time constraints. 

Alpha 
The kernel of the Alpha operating system [13] provides a new programming model that is well 
suited to writing real-time distributed software. Its principle abstractions are: 

• objects (passive abstract data types—code plus data), in which there may be any 
number of concurrent control points 

• method invocation (similar to procedure calling) 

• threads (loci of control point execution) which move among objects via method invo- 
cation. 

These abstractions form the heart of a highly effective real-time distributed programming model. 
In addition, Alpha provides transaction mechanisms to achieve the necessary consistency of rep- 
licated and partitioned data and correctness of distributed execution. 

Objects and Classes 
An object in Alpha is an instance of an abstract data type, created via invocations upon a class 
object. Each instance of an Alpha client-level (non-kernel) object has a private address space 
that contains the code and data that make up that object. The kernel considers the universe of 
objects to be flat. An instance of an Alpha object exists entirely on a single node. Instances can 
be dynamically migrated among nodes; initial instance placement is specified by the user. Also, 
objects may be replicated transparently. Alpha objects are intended to normally be of moderate 
number and size—e.g., 100 to 10,000 lines of code. Everything appears as an object to the pro- 
grammer: devices, files, etc. 

Object naming in Alpha is based on capabilities [7]. Alpha's capabilities have the characteristic 
that they are globally unique over time and are network location independent. An object pos- 
sesses a set of references to other objects in the form of capabilities (its "C-list"). The capabili- 
ties are actually stored within the kernel; a thread executing within an object references them via 
object local identifiers. Since the actual names of objects are maintained only within the kernel, 
threads cannot guess the identity of objects. An object has a client visible name only if the cre- 
ator of an object can "install" a capability to the new object in some existing object. The sensi- 
tivity of this existing object determines the sensitivity of the "name" so installed for the new 
object. 

Threads and Thread Segments 
An Alpha thread is a continuous distributed execution point which transparently and reliably 
spans physical nodes, carrying its identity, its local state and attributes for timeliness, robust- 
ness, etc. These attributes are used by Alpha at each node to perform resource management on 
a system-wide basis in the best interests (i.e., to meet the time constraints) of the entire distrib- 
uted application. 

There is a single system-wide name-space for threads. Threads are named by capabilities gen- 
erated when the threads are created. 
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A thread becomes threaded in an object by invoking a method of that object. It becomes un- 
threaded by returning from that invocation. At any given time, a thread is executing within one 
and only one object, with a stack history being maintained by the kernel of the objects in which 
the thread is currently threaded. 

That portion of a thread present within an object in which a thread is threaded is called a thread 
segment. A thread segment possesses some private data not visible to other threads executing 
within the object. This data consists of pure data (such as a machine stack), as well as a set of 
capabilities local to that thread segment (its "C-list"). These capabilities are stored in the ker- 
nel and are referenced via thread segment local identifiers. 

From the point of view of modeling security, the thread segments are the subjects in the system. 

Capabilities 
A capability is a reference to an Alpha object, maintained by the kernel, and referenced by 
threads via object or thread segment local identifiers. A capability contains all of the information 
necessary to reference the object it names. 

There are three uses to which a capability may be put. The primary use of a capability is to in- 
voke a method upon the object to which it refers ("invoke the capability"). A capability may also 
be used as the target of a thread creation. This operation is effectively the same as an invoca- 
tion, in as much as that the target of the thread creation is a method invocation of the object to 
which the target capability refers, but a new thread is created (which will run asynchronously 
with the creating thread). The third use of a capability is to pass it as an argument to an invoca- 
tion or thread creation, or to return it as a result of an invocation. It is also possible for a subject 
to "install" one of its private capabilities into its executing object's "C-list", as well as to make 
a subject private copy of one of the subject's executing object's capabilities. 

Capabilities contain access attributes that restrict (through their absence) the uses to which a 
capability may be put. Once removed from a capability, an access attribute can not be restored. 
The initial set of access attributes present in a capability are those present in the capability used 
to generate the new capability. 

Invocation and Thread Creation 
The invocation of a method of an object is the vehicle for all interactions in the system, including 
operating system calls. Invocation has synchronous request/reply semantics (similar to RPC); 
method invocations are block structured. The effect of an asynchronous invocation can be ob- 
tained via thread creation. 

Invocation masks the effects of physical distribution. Remote objects and object migration pro- 
vide location transparency. Communication errors are handled by underlying reliable message 
protocols. The detection and elimination of orphaned computations mask node failures. 

Invocations may fail for various reasons, such as protection violation, bad parameters, node fail- 
ure, machine exception, time constraint expiration and transaction abort. The kernel provides 
mechanisms for block-structured exception handling to allow the object programmer to designate 
application-specific handlers for each type of method failure, on a per-invocation basis if desired. 

When a capability is invoked, the invoking subject (thread segment) is suspended and a new 
subject is (effectively) created that is executing within the object to which the invoked capability 
refers.   The invoking subject provides the initial private data and capabilities for the new subject. 
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A thread creation is identical to a method invocation except that the method is invoked asynchro- 
nously, and therefore does not return (any return values are discarded). 

The new subject executes the procedure specified by the method invoked upon the object. When 
the procedure is completed, the subject is (effectively) deleted. In the case of method invocation, 
the invoked subject may return pure data and capabilities to the invoking subject. 

Policy/Mechanism Separation 
Alpha strictly adheres to the philosophy of the separation of policy and mechanism. It has a ker- 
nel of primitive mechanisms from which all else is constructed according to a wide possible range 
of application-specific policies to meet particular functionality, performance, and cost objectives. 

Alpha's kernel mechanisms are intended to provide the lowest meaningful level of functionality 
for an application. Any lesser functionality would result in recurring, inconsistent, inefficient im- 
plementation of the desired functionality in the applications. Any greater functionality would limit 
policy flexibility. Policy modules written at Alpha's system and user layers employ the Alpha 
kernel mechanisms. 

Security for Alpha 
As a truly distributed system, Alpha would be described using the "Single Trusted System 
View" of the Trusted Network Interpretation [12]. The interconnection between Alpha nodes in 
a single Alpha system is considered a part of the kernel and is completely controlled by the ker- 
nel. Non-Alpha communications traffic cannot use the Alpha interconnect. There is no object- 
visible notion of "sessions" or "connections," or "datagrams" within an Alpha system. The in- 
terconnect should be viewed as being analogous to a backplane in a multiprocessor system. 

The kernel executes in its own hardware protected space. Also, the client objects that form the 
remainder of the Network Trusted Computing Base (NTCB) are protected from one another and 
from non-NTCB objects via their separate, kernel-provided address spaces. The NTCB is struc- 
tured into separate object managers in the kernel and into separate client objects outside of the 
kernel. A simple protection mechanism, object address space separation and object invocation, 
provides this structuring. The use of client objects for the structuring of the NTCB allows for ex- 
cluding non-protection-critical modules from the NTCB. 

Access Classes 
A security classification, or access class, consists of a hierarchical sensitivity level (e.g., TOP-SE- 
CRET, SECRET, CONFIDENTIAL, UNCLASSIFIED, etc.) and a set of non-hierarchical categories. 
The sensitivity levels are linearly ordered. The categories do not have such a linear ordering. 
However, the set of access classes ((sensitivity level, category set) pairs) is partially ordered 
and forms a lattice [4]. The partial ordering relation is called the dominance relation. Access 
class A dominates access class B 'if the sensitivity level of A is greater or equal to the sensitivity 
level of B and the security categories of A include all those of B. For convenience, A > B is writ- 
ten to mean that A dominates B. 

The access class may further consist of a secrecy component, an integrity component, or both. 
The secrecy component could be a secrecy level, secrecy category, or pair (secrecy level, secrecy 
category), where secrecy level is TOP-SECRET, SECRET, CONFIDENTIAL, UNCLASSIFIED, etc. and 
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secrecy category is a set consisting of formal compartments (e.g., CRYPTO). Similarly, the integri- 
ty component could be an integrity level, integrity category, or pair (integrity level, integrity cate- 
gory) such as introduced by Biba [2]. The lattice on the access classes is defined as the 
Cartesian product of lattices on the individual components. Note that when integrity is integrat- 
ed with secrecy, integrity levels are ordered in reverse so that Lj > L^ means that access class 

Lj has a higher secrecy component but lower integrity component than access class Z^.   This is 

because a user is permitted to read down in secrecy but up in integrity, and write up in secrecy 
but down in integrity. 

Subjects and Objects 
An Alpha object forms a protection domain. Objects have a single access class. That is, Alpha 
objects have a single secrecy class (i.e., classification) and a single integrity class. Alpha ob- 
jects never change their classification. 

An Alpha subject is a thread segment. The subject's access class never changes. In order for a 
subject to invoke a method of an object (that is, for values to be returned from the invocation), 
the subject's access class must dominate the access class of the object. A subject may create a 
new thread (and thereby a subject) in an object whose access class it does not dominate in the 
case where it does not require return values. 

Since the thread is the sole point of control for actions requested by the thread, the thread is the 
proper entity for which auditing is to be performed. 

In Alpha all actions requested by a thread are performed by that thread. As opposed to cli- 
ent/server systems, there is no issue as to the identity of the subject performing actions on re- 
mote nodes. The thread is the single entity whose identity need be authenticated and tracked. 

Capabilities for Mandatory Security 
Objects in Alpha are placed in separate, hardware-restricted address spaces. Access to these 
objects is completely controlled via kernel-protected capabilities. In order to invoke a method of 
an object, the subject must own a capability to the desired target object, and the capability must 
permit the invocation of the desired method. Implemented by the kernel, this single mechanism 
provides the basis to control sharing of objects. 

A capability names an object. The method desired is passed as a parameter. Thus the granulari- 
ty of access control is at the level of objects. 

Both objects and subjects have capability lists ("C-lists"). A subject executing within some ob- 
ject can use or pass as parameters the capabilities in the object's "C-list", as well as those in 
its own "C-list", if the capability access attributes allow it. 

From the point of view of discretionary access, the fact that a subject has a capability means that 
it can use it—no access decision needs to be made when the subject actually accesses the ob- 
ject—the policy decision was made when the capability was given. The issue is to ensure that 
the correct mandatory decisions are made when a capability is granted and that any restrictions 
imposed by the mandatory policy are reflected by and enforced by the capability. 

To ensure that mandatory security is satisfied, the following properties are needed: 
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Simple Security Property: An object or subject X^ with access class Lj can hold a 

capability that permits reading object X2 which has access class L2 only if Lj > Z^. 

•^-property: An object or subject X} with access class Lj can hold a capability that 

permits writing object X2 which has access class L^ only if L2 ^ Lj. 

Object Creation Property: A subject Xj with access class Lj can create an object 

X2 with access class L2 only if Z^ — Ly 

Object Deletion Property: A subject Xj with access class Lj can delete an object 

X2 with access class L2 only if Z^ > Lj. 

Subject Creation Property: A subject X3 spawned (either through method invoca- 

tion or thread creation) by subject Xj with access class Lj in object X2 which has 

access class L2 will have an access class L3 = MAX(Lj,L2) (Lj and L2 must be 

comparable). If L2 > Lj, no return value can be given to X*. 

The subject creation property and the *-property combined require that a subject can modify its 
executing object only if the access class of the subject matches that of the executing object. 

Alpha's capability mechanism could be used for multilevel security simply by having the kernel 
perform a mandatory access check whenever an invocation is performed. This could be quite ex- 
pensive, and very well excessive for a real-time system. 

Note that the relevant access decisions to be made depend not so much on the absolute value of 
the access classes of subjects and objects, but on the result of comparing these values. The re- 
sults of these access class comparisons can be recorded in capabilities. For this purpose, it is 
necessary that capabilities have attributes denoting whether they can be used for read or write 
access—the result of access class comparisons associated with the simple and *-properties. 
The lack of the write attribute means that use of the capability will not allow the internal state of 
the object to be changed, but results may be returned. The lack of the read attribute means that 
use of the capability may allow the internal state of the object to be changed, but results cannot 
be returned and there can be no indication of success or failure. With these attributes, the above 
security properties can be amended as follows: 

^-property': A subject Xj executing within object X2 in which X2 is not writable 

(that is, X2 is potentially of lower access class than Xj) can use X2's read-write 

capabilities only as read-only capabilities and cannot use X2's write-only capabili- 

ties. 

Object Creation Property': If a subject Xj with access class L1 creates an object X2 

with access class L2 > Li, Xj can receive only write-only capabilities for X2. 

Object Deletion Property': A subject Xj can delete an object X2 only if X2 is writ- 

able (that is, X2 is known not to be of lower access class than Xj). 
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Subject Creation Property': When a subject X3 is spawned (either through method 

invocation or thread creation) by subject Xj in object X2 in the case where X2 is 

not readable (that is, X2 is potentially of higher access class than Xj), any capabil- 

ities passed by Xj to X3 become read-only capabilities in X3 and no return value 

can be given toXj. 

These additional constraints expressed in terms of restricting read and write attributes provide 
the result that objects and subjects cannot hold capabilities that violate mandatory security and 
that the results of mandatory access decisions are reflected purely in the read and write at- 
tributes. 

Capabilities, via these attributes, are flexible enough to be used to enforce both simple 
(traditional) policies, as well as additional policies, such as "close hold". In keeping with Al- 
pha's policy/mechanism separation, such policies could be defined in a module outside the Alpha 
kernel but within the NTCB. These modules would make use of the basic capability mechanism 
provided by the Alpha kernel. Multiple policy modules can be defined, so that it is conceivable 
that multiple such security policies could be in effect in a single Alpha system, supporting differ- 
ent applications. All such policies would be enforced using the Alpha kernel mechanisms. 

These mechanisms are used to create and access objects of differing access classes roughly as 
follows. A subject normally creates objects of its own access class. The subject can install 
these capabilities into its executing object only if the object is of its own access class, so the re- 
sult is a set of objects of some access class with capabilities to other objects of that same access 
class. A subject can also create objects of a higher access class than itself. The subject is then 
given a capability to this object that lacks read access. This new object cannot obtain writable 
capabilities to pre-existing objects of its access class since any capabilities passed in via the 
(only) non-readable capability lose write access in the process. A thread can be created to exe- 
cute at this higher access class, and that thread can create new objects at that higher access 
class. The object can receive non-writable capabilities to lower access class objects via argu- 
ments passed from a lower access class subject that creates a thread in this higher access class 
object. 

Note that with these attributes deletion of higher class objects is not a covert channel in Alpha 
as it would be in many systems [8]. If an object is of higher access class than some subject, that 
subject will only have access to non-readable capabilities through which it can create new 
threads, but not do normal invocations. If the target object is deleted, that subject still has these 
capabilities (to a non-existent object), with the fact that the (old) object was of a higher access 
class than the capability holder still recorded in the lack of the read attribute. The subject can 
still "create" new threads in this target object which will silently do nothing. 

It is interesting to consider what it means for an object to be considered as "labeled" with a par- 
ticular access class. If a subject creates a new object in such a way as to be given a non-read- 
able capability to that object, then that object can be considered to be at a (potentially un- 
named) access class higher than that of the creating subject. Because the capability to the object 
is non-readable, this new object can only obtain non-writable capabilities to any object at the 
subject's access class, so it satisfies the mandatory policy rules for an object of higher class. 
Only the subject need here know what is the "true" access class of this new object. This new 
object cannot obtain capabilities that are both readable and writable to any existing object, so it 
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does not matter what access class it "really" has; it is sufficient to know that it is higher than 
that of the creating subject. In this way, subjects can effectively create their own access classes, 
simply by creating a non-readable object, and allowing that object to create other objects at its 
(new) access class. 

With this understanding, it can now be seen why these mechanisms are appropriate for the do- 
main of real-time systems being described. Not only is the cost of the mechanisms that enforce 
mandatory access made small, but their use is predictable in terms of the exact points at which 
access decisions are made. Also, by removing the interpretation of mandatory security policy 
from the kernel, the goal of permitting change in the mandatory policy over the long life of these 
systems (without reconfiguring the system) is achieved. 

Integrity and Denial of Service 
Integrity can mean many things in a computer system. In this section, the issues which the secu- 
rity community normally refers to by the term "integrity" are discussed. The Alpha kernel pro- 
vides many mechanisms that pertain to maintaining integrity of data; these mechanisms are 
beyond the scope of this paper. 

Integrity has been used to mean a mandatory policy [2]. Mandatory integrity is similar to man- 
datory security, in that it enforces the two rules: 

• A subject S can read an object O only if the integrity class of the object dominates 
that of the subject. 

• A subject S can write an object O only if the integrity class of the subject dominates 
that of the object. 

Once Alpha can support a mandatory security policy, it is trivial to extend this to include a man- 
datory integrity policy (no new mechanism is needed; the security lattice need only be suitably 
extended). 

Integrity is also used to mean that the system and user programs and data are protected from 
corruption, whether accidental or malicious. A variation of the mandatory integrity policy, called 
program integrity, has been proposed for such protection [15]. With program integrity, a subject 
S can execute an object O only if the integrity class of S dominates that of O. This is because if S 
executes O, the program O will run with the authorizations and privileges of subject S. But if O is 
less trustworthy than S, this can lead to either abuse of S's authorizations or corruption of higher 
integrity data. Program integrity is also easily supported by a mandatory security kernel. 

Denial of service [5] refers to the potential ability of a malicious program to consume the re- 
sources of the system, thereby preventing urgent or time-critical work from being performed. Al- 
pha's best-effort resource management, while allowing applications to assert their time-varying 
urgency and importance so that Alpha can maximize the value from its resource allocation, also 
introduces the potential for a malicious application to cause a denial of service. This can happen 
because a malicious thread can assert that it has a high importance and urgency and consume the 
resources of the system, thereby preventing a critical mission from being accomplished. It is de- 
sirable that it be possible to trust a thread to accurately assert its time-value function. There are 
several possible approaches to this problem: 

• Use a mandatory integrity policy. With this approach, an integrity class would be 
assigned to each thread, and Alpha would believe a thread's assertion of urgency 
and importance according to its integrity class.   The integrity class is a measure of a 
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thread's trustworthiness. Thus, how a time constraint is interpreted depends on the 
integrity of the object that asserts the constraint. Assigning integrity classes to 
threads means that integrity classes must also be assigned to objects, since the ob- 
ject contains the code that the thread is currently executing. So that a thread cannot 
be corrupted by reading a low integrity object, the mandatory integrity properties 
listed above are enforced. In addition, program integrity must be enforced, so that a 
low integrity object cannot execute with the privileges of a high integrity thread. In 
Alpha, program integrity can be stated as follows: 

A thread can move from object <9j to object (92 only if the integrity 

class of 02 dominates that of Ov A thread can invoke an object only if 

the integrity class of the thread dominates the integrity class of the 
object. 

This says that a thread cannot move from a high integrity object to a low integrity 
object and cannot invoke low integrity objects. 

• Pre-authorize threads to different maximum levels of importance and urgency. The 
maximum importance/urgency can be inherited, and a thread cannot spawn sub- 
threads with greater importance or urgency. 

In keeping with the Clark-Wilson separation of duties [3], the person who assigns 
the maximum importance and urgency to a thread must be different from the person 
who wrote the application. 

• Use the underlying capability mechanisms to provide a method by which units of re- 
sources can be distributed. In this way, the trust needed to assert resource usage is 
handled in the same way as the trust to access objects. This is a generalization of 
the "meter" and "spacebank" concepts of KeyKOS [14]. 

Trade-offs between Timeliness and Security 
In the previous section, the issue of trusting a thread to honestly (not maliciously) assert its ur- 
gency and importance was discussed, and some approaches were proposed. Once a thread's 
honesty (trustworthiness) has been established, however, there is an additional problem that it 
may not be possible to honor its timeliness requests because doing so might violate the manda- 
tory security policy. For example, a high thread may assert a very high urgency and importance, 
but strict mandatory security would not allow this high thread to be scheduled if it could cause a 
visible delay to concurrent low threads. 

Such a resolution is not always acceptable in real-time systems, however. A trustworthy thread 
will assert that it is of very high urgency and importance only if it is critical to the mission of the 
system that its urgent timeliness requirements be met. Thus, strictly limiting the potential covert 
channels in this case may cause an urgent deadline to be missed. One can imagine the severity 
of such missed deadlines if the urgent process was delivering, say, an intelligence report warning 
of an enemy unit in the path of an advancing battalion, or was aiming an anti-ballistic missile at 
an incoming warhead. These hypothetical examples illustrate the important point that the securi- 
ty of the system is a function not only of information flow security but also of how well its timeli- 
ness requirements can be met. Thus, it may be that for real-time systems a somewhat different 
set of criteria by which such systems may be evaluated is needed, as opposed to evaluating such 
systems strictly according to the Trusted Computer System Evaluation Criteria [11]. 
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To resolve these tensions between timeliness and security, the concept of being important 
enough to interfere is postulated (that is, to interfere in a mandatory security sense). Here, if a 
thread is deemed to be important enough to interfere, then it can be scheduled even if doing so 
may have effects visible to or detectable by lower-level threads. Whether a thread is important 
enough to interfere would be assessed by someone knowledgeable about the application, and the 
resulting designation could be associated with the thread and used by the kernel in its decision 
making process in much the same manner as are the normal secrecy and integrity attributes. 
This approach would make Alpha adaptable to these applications-driven trade-offs between 
timeliness and security. 

It is conceivable that the notion of being important enough to interfere could be a dynamic deci- 
sion made by an intelligent component that would recognize certain changes in the "state" or the 
environment of the system. An example of such a change might be whether the airborne system 
is on the ground or in the air. Another example might be the transition from peacetime to war. 
Different trade-offs between security and timeliness could then be made in the different states. 

Even though this intelligent component has to be in the NTCB, and itself introduces the possibili- 
ty of a new covert channel, the states should change only infrequently, so that the covert channel 
introduced is much smaller than, say, the potential covert channel introduced by the best-effort 
scheduling mechanism. 

This latter approach is at best speculative, however, in that there are many unresolved issues 
having to do with putting an expert system in the NTCB [1,9]. 

Covert Channels, Denial of Service and Resource Control 

It should be obvious from the previous two sections that covert channels, denial of service and re- 
source control are all related. Time decaying (and often, static) covert channels [8] occur as the 
result of the sharing of resources between threads. Denial of service occurs because of resource 
starvation caused by threads. It is the precision with which resources can be controlled that de- 
termines the ability of a thread to cause a potential information flow and also that determines its 
ability to cause a denial of service. 

For example, consider the issue of concurrency control when accessing elements in a data-base. 
A standard approach for dealing with the covert channel that would occur when locking data ele- 
ments is to use multi-versioning, whereby multiple versions of the data elements are generated 
as they are referenced so that no one version need be locked across multiple access classes. In 
a real-time system in which applications have precise control over the versions (when they are 
accessed and their physical memory residency), even this virtualization of data elements results 
in a covert channel, the size of which may well match that of the channel associated with directiy 
locking the data elements. 

Dealing with time decaying covert channels and denial of service has always been a difficult is- 
sue. One might think that dealing with these issues for a real-time system must be even more 
difficult, given that real-time considerations impact virtually all other aspects of system opera- 
tion. This, however, need not be the case. Non-real-time systems have difficulty dealing with 
issues of denial of service precisely because they abstract away notions of resources and provide 
little or no control, externally or internally, to control the usages of those resource so as to pre- 
vent denial of service. Since the goal of a real-time system is to precisely manage resources, a 
real-time system has the potential to handle this class of otherwise largely unsolved problems. 
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Also, by making explicit a thread's ability to use resources (as a function of true time) the sys- 
tem has the handle on that thread's ability to cause a covert information flow. 

It is our hope that a model can be generated that relates the potential information flow resulting 
from a particular set of resource allocations [10, 16]. In this way, when a particular level of re- 
source control is provided to a thread, the extent of possible information flow can be assessed, 
and the trust that is needed for that thread can be directly evaluated. 

Conclusions 
This paper has discussed many issues that arise when multilevel security is applied to real-time 
systems. The Alpha real-time distributed system was used as a means of illustrating these is- 
sues. How Alpha could be made to implement mandatory security policies using its basic capa- 
bility mechanisms was described. The issues of integrity and denial of service were discussed. 
An examination of how in real-time systems it may be necessary to make critical trade-offs be- 
tween timeliness and security was presented. An important point presented in this paper is that 
the security of a real-time system is a function not only of information flow security but also of 
how well its timeliness requirements can be met. Thus, it may be that for real-time systems a 
somewhat different set of criteria by which such systems may be evaluated is needed. 
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Abstract 

A set of general results about the mechanisms that provide for need-to-know functionality and policy 
enforcement in Trusted Xenix• are presented.   These results, centering around a generalization of the 
discretionary-security-property (called the "weak-discretionary-security-property"), apply to general UNIX®-like 
systems. '   An initial mapping of Trusted Xenix TCB calls to model rules is provided. 

INTRODUCTION 

A full and complete model interpretation for a trusted system (see [TCSEC85]) requires (1) a model 
representing the security policy to be enforced by the system; (2) a complete list of the calls (or functions or 
gates) between the Trusted Computing Base (TCB) and the rest of the system; and (3) an interpretation of the 
TCB-provided calls in terms of the model.   An example of an interpretation of this form is |HIS84]   In the 
case of Trusted Xenix (see [GBCC86]), a starting point is [LUCK86].   This paper provides a refinement to 
that work in (a) basic modeling results and (b) a preliminary interpretation of Trusted Xenix TCB-calls in 
terms of the rules available in [BLP7S] and one additional rule introduced here. 

The section MODELING EXTENSIONS introduces the "weak discretionary security property" to allow a 
faithful representation of Trusted Xenix in modeling terms.2   The relation between the discretionary-security- 
property and the weak-discretionary-security-property is then established, and general rule-analysis principles 
are addressed.   One additional rule, an alternate form of rescind-access, is stated and its security-preserving 
properties are proved.   The section INITIAL TRUSTED XENIX INTERPRETATIONS provides an initial 
model interpretation.   A full technical report covering this topic would address system-to-model elements 
(which system elements are interpreted as subjects, which as objects, and which system elements represent the 
model's state information).   Such a report would also have to support or justify the assertion that the list of 
TCB-calls was complete and accurate.   This paper provides more an overview of such an interpretation: 
many of the details have been suppressed and a firm conviction about the list's completeness is not asserted. 
DIRECTIONS FOR FURTHER WORK summarizes the work done and identifies areas needing continuing 
attention. 

MODELING EXTENSIONS 

The need for modeling extensions arises from the reflection of mechanisms to support need-to-know policies 
that is found in [BLP75].   Specifically, the perspective taken on need-to-know mechanisms is parallel to that 
in the Multics design [ORGA72], although it was not derived from the Multics design.   That perspective is 
that changes to need-to-know permissions will be enforced immediately, even with respect to current accesses 
previously requested and authorized.   In terms of an implementation, this leads to immediate revocation of 

XENIX is a trademark of the Microsoft Corporation. 
UNIX is a registered trademark of AT&T. 

The modeling context is that of [BLP72], [LPB72], [BELL73], [BLP75], and [BELL86]. 
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"current access" within the system on the occasion of a change to the access permission matrix M:   any 
access triple (subject, object, mode) in the current access set b would be removed from b if a change of state 
caused mode to no longer be an element of the (subject, object) entry in M.   This particular feature is present 
in Multics, but in relatively few other systems.   Thus, while the embodiment of a need-to-know mechanism 
within the model as the state-property called the discretionary-security property (or ds-property) together with 
the rule p7 (rescind-read/execute/write/append) matches Multics faithfully, that combination does not match 
other systems, such as Trusted Xenix.   This section will provide an alternate definition for a need-to-know 
mechanism that does match the Trusted Xenix functionality (and, in fact, that of any UNIX® system) and 
derive its properties and implications within the modeling context. 

In [MAYE88], the weak-discretionary-security-property was defined in terms of a rule R as follows: 

A rule R, which transitions the system from a current state v = (b, M, f) to a new state v* 
= (b*, M*, f*), satisfies the weak-ds-property iff x € M^, 

whenever b* = b u (S,, O,, x) and (S,, O,, x) « b. [p.373] 

In this paper, that concept will be recast in terms of actions and extended to appearances and systems in a 
manner similar to [BLP75]. 

Definitions:        An element ofRxDxVxVis called an action.3   A triple of sequences (x, y, z) that is 
an element of the system Z (R, D, W, z„) is called an appearance. 

An action embodies a single change of state, being a relation involving a request to change state, a returned 
decision token about the request, the new state, and the previous state.   The system   Z (R, D, W, z„) 
consists of all possible sequences of state-request-decision that satisfy the relation W with respect to actions. 
An appearance is a single version of events that the system encompasses. 

Definition: An action (request, decision, state*, state) satisfies the weak-discretionary-security property 
(wds-property) provided (subject, object, mode) e b* - b => mode e M^^,, o^. 

When an action satisfies the wds-property, every triple added to the current access set b was listed as being 
permitted in the access matrix M at the time of decision.   Note that wds-property is not a state property, but 
is consistent with the spirit of "secure transform", in the sense of McLean [McLE87]. 

Definitions:        An appearance (x, y, z) of the system Z (R, D, W, zj satisfies the wds-property provided 
every action (x,, y„ z,, z,.,) satisfies the wds-property.   The system Z (R, D, W, z„) satisfies 
the wds-property provided its every appearance satisfies the wds-property.   A rule p is wds- 
property-preserving provided every action defined by p4 satisfies the wds-property.   Call a 
system Z (R, D, W, Zo) secure(w) provided it satisfies the ss-property, the *-property, and 
the wds-property. 

The following results are immediate: 

An appearance that is ds-secure5 satisfies the wds-property. 

3 The symbols used here are taken from [BLP75].   R (requests) is the set of inputs to the system; D 
(decisions) is the set of outputs from the system; V (no mnemonic) is the set of states, each one of which is 
a triple (b, M, f); Z(R, D, W, z„) is the system, being the set of all possible changes of state from an initial 
state Zo under the constraints of the change-of-state relation W. 

4 The action (request, decision, state*, state) is defined by p provided that 
p(request, state) = (decision, state*). 

5 An appearance is "secure" in the sense of [BLP75] provided every state in   the state sequence z is 
secure.   The definition of secure in that report was satisfying the requirements for the ss-property, the ds- 
property, and the *-property.   The term "ds-secure" is used to mean that every state satisfies the ds-property: 
a state v = (b, M, f) satisfies the ds-property iff (subject, object, mode) € b => mode e M^^, „,^. 
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A system that satisfies the ds-property satisfies the wds-property. 

A rule that is ds-property-preserving is wds-property-preserving. 

A rule that is security-preserving is security(w)-preserving. 

A secure system is secure(w). 

The general results of [BLP75] that deal with the ss-property and the *-property are not affected by the use 
of the wds-property instead of the ds-property.   However, several of the theorems specifically dealing with 
discretionary-security establishment and preservation have weak-discretionary-security analogues, as below. 
The results are straightforward and proofs are omitted. 

Theorem A3(w): Z(R, D, W, z„) satisfies the wds-property iff W satisfies the following condition for 
each action (R, D, (b*, M*, f), (b, M, f)) in W: 

(i')        (S, O, x) € b* — b => x € Mso. 

Argument:   This result is an immediate consequence of the definition of a system satisfying the wds-property. 

Note that theorem A3(w) is simpler than theorem A3, which includes a condition to make sure that newly- 
non-compliant current accesses are excluded from b*.   Note also that the original condition (i) was phrased in 
terms of the new matrix M* rather than M; weak-discretionary-security focuses on the conditions at the start 
of the state transition, rather than on the self-consistency of the resulting state. 

Corollary Al(w): 

Theorem A6(w): 

Corollary A2(w): 

Theorem A9(w): 

Theorem A10(w): 

Z(R, D, W, Zo) is a secure(w) system iff z„ satisfies the ss- and *-properties and W 
satisfies the conditions of theorems Al, A2, and A3(w) for each action. 

Suppose co is a set of wds-property preserving rules.   Then E(R, D, W, z„) satisfies 
the wds-property. 

Suppose to is a set of secure(w)-state-preserving rules and ZQ is an initial state which 
satisfies the ss- and *-properties.   Then 2^R, D, W, z„) is a secure(w) system. 

Suppose (R, D, v*, v) e W, where v = (b, M, f), (S, O, x) « b, 
b» = bu((S, O, x)}, and v* = (b*, M, f)-   Then   (R, D, v*, v) satisfies the wds- 
property iff X €  Mso- 

Let p be a rule and p(R, v) = (D, v*), where v = (b, M, 0 and v* = b*. M*, f*). 

(i) If b* c b and f* = f, then p is ss-property-preserving. 

(ii)        If b* c b and f* = f, then p is *-property-preserving. 

(iii)        If b* c b, then p is wds-property-preserving. 

(iv)        If b* c b and f* = f, then p is secure(w)-preserving. 

Argument: 

Given theorem A10, all that needs to be established is that condition (iii) proves that p is wds-property- 
preserving.   But the condition b* c b assures that no new grants of access are made so that the action 
trivially satisfies the wds-property. 
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p7w(R, v) = 

A review of the eleven rules of [BLP75]' shows that all but p7 (rescind access) are trivially wds-preserving 
so that any set of rules co from that subset will define a system that satisfies the wds-property.   To complete 
the picture, a rule representing rescinding access in a non-Multics context is needed. 

Rule 7(w) (p7w):   weak-rescind-r/e/w/a 

Request: R = (rescind, subject-1, subject-2, object, x) 

Semantics: Subject-1 requests that subject-2 s access permission to object in mode x be taken away 
(where x is r, e, w, or a). 

The rule: 

(yes, (b, M \ [H*^,^ <- M^*^ - {x}], f)7 

if  weak-rescind(subject-l, v) = true ' 

(no, v) otherwise 

Theorem: Rule p7w is secure(w)-state-preserving. 

Proof: Follows from A10(w) (iv). 

Rule p7w and the result above provides adequate modeling support for a complete and faithful interpretation 
of Trusted Xenix TCB calls. 

INITIAL TRUSTED XENIX INTERPRETATIONS 

The first step in a model interpretation for a system is the identification of subjects, objects, and those 
portions of the system that correspond to the essential (descriptive) parts of the model being used.   In the 
case of Trusted Xenix, the analogue of the current access set b, the access permission matrix M, and the 
security function f must be identified. 

The active entities of Trusted Xenix are the processes.   The processes correspond to "subjects" in the model. 
The passive, data-repository entities in Trusted Xenix to which access is mediated are files, special files, 
directories, (labeled) pipes, message queues, semaphores, shared memory segments, Xenix semaphores, Xenix 
shared data segments, access control lists (ACLs), and processes.   These entities correspond to "objects" in 
the model. 

The set of current accesses (b) are represented in Trusted Xenix by several different data structures.   For 
files, special files, ACL's, named pipes, Xenix semaphores, Xenix shared data segments, and directories, b is 
represented by a set of descriptors in the u_ofile of the per-process u_block.   Current access for per-type 
components are as follows: semaphores is represented by descriptors called semid_ds; message queues, by 

' (pi) get-r; (p2) get-a; (p3) get-e; (p4) get-w; (p5) release-r/e/w/a; (p6) give-j/e/w/a; 
(p7) rescind-r/e/w/a; (p8) create-object; (p9) delete-object-group; (plO) change-subject-current-security-level; 
and (pi 1) change-object-security-level. 

7 The notation "A \ B" is from [BLP75] and means "A except as modified by statement B."   The 
notation above indicates that x is removed from the matrix entry M^^,^ ^M, if it was there in state v. 

* The undefined boolean weak-rescind follows the form found in [BELL86] and represents whatever 
conditions are asserted in the system under consideration to limit the exercise of the rule.   An example of the 
use of weak-rescind might be to limit the "invocation" of the weak-rescind rule to the owner of an object. 
In that case, weak-rescind(subject-l, v) = true   iff subject-1 is the owner of object in state v. 
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msgid_ds; and memory segments, by shemid_ds.   The ipc_peim field of the listed descriptors records the 
access privileges for different processes. 

The access matrix M is stored in Trusted Xenix "by column", using ACL's or more traditional protection 
specifications.   For file-system-like objects, the ACL is identified by the i-node number, the protection 
specification is contained within the i-node itself.   A non-file-system object has its ACL or protection 
specification associated with its descriptor (semid_ds, msgid_ds, or shemid_ds). 

The security function f for subjects (processes) is represented by several values maintained for each subjects, 
namely the User Maximum Level (UML), the Group Maximum Level (GML), and the Current Process Level 
(CPL).   The subject maximum clearance is the greatest lower bound of the UML and the GML [GBCC86]. 
The CPL is the current security level.   The security levels of objects are recorded in i-nodes (for objects with 
a file-system representation) or in object descriptors (for those without a file-system representation) 
[GBCC86]. 

The identification of those TCB calls appropriate for model interpretation TCB involves the partitioning of all 
the TCB calls into various categories, some of which are never suitable for interpretation and some of which 
are.   Examples of the first class are (1) TCB calls that return values of internal variables such as Is, ipcs, and 
df in Trusted Xenix; '   (2) TCB calls that control the running system, such as cjialt, kill, and fork in 
Trusted Xenix; (3) TCB calls that deal with practical operations, such as format, the lp subsystem, and star 
on Trusted Xenix; and (4) TCB calls made by the system itself on behalf of all users, such as syncclock, tsh, 
and dmesg in Trusted Xenix.   A class of TCB calls about which there is debate about their suitability for 
modeling interpretation are those related to "supporting policies" like audit and identification and 
authentication (such as auditsh, auditnam, getty, and login in Trusted Xenix).   From the latter class of 
functions that should be dealt with in a modeling interpretation context, there are some that are of a 
secondary urgency in an evolving modeling interpretation effort, specifically those explicitly reserved to 
privileged use.   Examples in Trusted Xenix are those TCB calls limited to the privileged roles of Security 
System Administrator, System Operator, AA, and Auditor. 

At this point, in the production of a full modeling interpretation cross-reference, the only functions being 
addressed are those available to unprivileged users and processes.   The table below lists the Trusted Processes 
(TP's) and system calls identified so far in this category, along with the corresponding rule from [BLP75]. 

TP's 

acl alteration of ACL's 

c_chmod alteration of ACL's 

emkdir 
mkdir 
mount 

creation of a directory 
creation of a directory 
mounting a filesystem 

rmdir 
umount 
usrmnt 

deletion of a directory 
unmounting a filesystem 
mounting a filesystem 

Kernel Calls 

p6 (give-r/e/w/a) OR 
p7w      (weak-rescind-r/e/w/a) 
p6 (give-r/e/w/a) OR 
p7w       (weak-rescind-r/e/w/a) 
p8 (create-object) 
p8 (create-object) 
equivalent to a set of 
p8 (create-object) 
p9        (delete-object-group) 
p9 (delete-object-group) 
equivalent to a set of 
p8 (create-object) 

chmod alteration of permission    p6 
structures p7w 

(give-r/e/w/a) OR 
(weak-rescind-r/e/w/a) 

' This sub-class of functions are the so-called "v-funs", or visible-functions, of the field of formal 
specification.   They provide values useful or essential in the use or running of a system, but do not in 
themselves change the security state of the running system.   Such v-funs are, of course, vital in the 
determination of information flows below the level of abstraction of the model. 
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close close a file P5 (release-r/e/w/a) 
creat create a file p8 (create-object) 
creatsem create a semaphore p8 (create-object) 
open open a file pl (get-r) OR 

P3 (get-w) 
umount unmount a filesystem p9 (delete-object-group) 

This initial interpretation of Trusted Xenix TCB calls as model rules clearly provides a solid basis for the 
completion of a full, justifiably complete model interpretation. 

DIRECTIONS FOR FURTHER WORK 

The work reported in this paper is complete in its theoretical dimension.    The definition of the wds-property 
together with the general results and statement of the new rule p7w to account for weak-recision completes 
the need for theoretical treatment of faithfully representing the security policy enforced by Trusted Xenix.   In 
addition, the interpretation of the model state elements (b, M, and f) is also complete.   What still requires 
attention is the provision of a complete and defensible accurate list of TCB calls cross-referenced to the 
model rules.   The justification of categorizing system calls and internal functions as not requiring modeling 
interpretation treatment needs to be completed and made rigorous.   A last topic not fully resolved is the 
extent to which the inheritance of current-accesses by a child under a fork-exec process creation necessitates 
re-evaluating the identification of  "process" as being the proper analogue of "subject" in the model. 
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Abstract—Almost all attempts at anti-viral software have been a reaction to specific viruses that have in- 
fected the user community. These solutions attempt to protect against a specific strain or strains of viruses 
rather than provide general protection against a wide variety of viruses. This paper describes a new, con- 
ceptually simple approach that provides a more general solution to the virus problem. Our approach asso- 
ciates with each file in a system an access control list (ACL) that explicidy specifies which programs can 
modify the file. Thus, a virus cannot modify arbitrary files and its possible effects are greaUy reduced. 
Our approach is unique in the way it uses ACL's to specify which programs can access a file; other 
schemes use ACL's to specify which users can access a file and how. We use the acronym PACL's, for 
Program ACL's, to refer to these ACL's and to our scheme. To see how our ideas can be incorporated 
into an existing operating system, we have designed an extension to the UNIX''* kernel. We also con- 
structed a simulator that has allowed us to gain operational experience with our ideas in a typical user en- 
vironment. The results indicate that our scheme is a promising approach for preventing the spread of 
viruses without being too intrusive on users. 
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1. Introduction 
A computer virus is a program that can 'infect' other programs by modifying them to include a possibly 
evolved copy of itself [6]. One attribute of viruses that allows them to spread so easily is that a virus 
inherits all of a user's privileges when the user runs an infected program. Typical operating system pro- 
tection schemes provide no help in such a case—they protect a user's files from other users, but not from 
him/herself. Thus, a virus can quickly infect all of a user's files. Even worse, if the user has special sys- 
tem privileges (e.g., 'superuser'), the virus can infect all files on a given system. 

A typical virus propagates itself by searching for an uninfected program and copying the viral part 
of its code into that program so that when the newly infected program is run, the viral code will be exe- 
cuted. To prevent propagation, viruses must be prevented from inserting themselves into other programs. 
(We assume that the operating system prevents programs, including viruses, from writing directly to 
disk.) 

Two simple observations form the basis of our approach. First, the typical virus carrier is unrelated 
to the programs that it infects. Second, programs executing on behalf of a user have more privileges than 
are necessary to complete their assigned task. For example, an infected game program might have the 
privilege to access all of a user's files. Yet it should only have access to those related to the game, e.g., a 
score file. Our approach, then, is to restrict a program's privileges to the minimum needed to complete its 
assigned task. Then, if a program is infected, it will not be able to infect unrelated programs (files). 

To impose this least privilege restriction, we associate an access control list (ACL) [7, 9] with each 
file in the system. In our scheme, a file's ACL contains the names of all the programs that may modify 
the file. We use the acronym PACL's, for Program ACL's, to refer to these ACL's and to our scheme. 
Thus, to modify (write, append, delete, etc.) the file, a program must be on the file's PACL. Our use of 
PACL's differs from that found in standard ACL schemes: we store names of programs, as opposed to the 
names of users, that can access each file. 

The notion of least privilege fits well with common system usage. Users create files using a number 
of different programs. These files are usually modified only by the programs that create them. For exam- 
ple, consider the typical steps involved in creating, compiling, and linking a C program. To create the 
program, the user uses his/her favorite editor to create source files. During the entire life of those files, 
they are only modified by the same editor that created them. When these files are compiled, the compiler 
generates object files. Each time the program is recompiled, these object files are written over by the 
same compiler, and not by any other program. Similarly, the linker creates the executable and writes over 
the executable file each time the program is relinked. This usage suggests that normal files are modified 
by a small number of programs, usually only one. Of course, more complicated usages exist, but they are 
less common. 

Since the number of programs that need to modify a single file is usually very small, we can keep 
track of these programs in order to prevent other programs from deliberately or accidentally modifying 
files. This method is similar to existing computer protection mechanisms based on access control lists. 
The standard ACL scheme is designed to control how each user's files can be accessed by other users. 
That is, a file's ACL indicates what users may access the files, and in what ways. If the ACL does not 
explicitly state that a user is allowed to perform the function requested, then it is not allowed. The differ- 
ence between this security problem and the virus problem is that a virus security system needs to protect a 
user from him/herself, not from other users. The virus problem is inherently a problem of integrity, not 
security. Our PACL-Integrity scheme is therefore simpler, associating with each file a list of all programs 
that can modify the file. 

To see how our ideas can be incorporated into an existing operating system, we have designed an 
extension to the UNIX kernel that incorporates our PACL scheme. We have also constructed a simulator 
to allow us to gain experience with the PACL-Integrity model without requiring actual changes to the 
kernel. The experience we have gained shows that the scheme seems reasonable to implement and is not 
too intrusive on the user. 
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The remainder of this paper is organized as follows. Section 2 discusses our PACL-Integrity model 
in more depth. Section 3 describes how the model can be realized in the UNIX kernel. Section 4 presents 
the simulator and section 5 describes our experience using it. Section 6 discusses the tradeoffs involved 
in our approach and outlines future work. Section 7 summarizes related work. Finally, section 8 contains 
some concluding remarks. 

2. The PACL-Integrity Model 

The PACL-Integrity model associates a PACL with each file on the system. The PACL for a given file 
names all programs that have the privilege to modify the file. When a file is created, its PACL is set to 
contain the name of the program that created the file. During the life of the file, the file's PACL can be 
changed only by a trusted utility program. This utility allows a user to tailor the protection mechanism to 
meet his/her needs. 

The success of a protection scheme depends on how intrusive users find it. A scheme that is too 
intrusive will effectively render a system unusable. For example, requiring an explicit acknowledgement 
from a user each time any file is to be accessed might be a secure scheme, but it is not usable. Moreover, 
if a scheme that is too intrusive provides a means by which the user can disable it, then users will simply 
run with security checks disabled, effectively rendering a system insecure. 

To make our approach secure yet usable, we include a number of 'user-friendly' features. These 
features simplify common usages of the PACL-Integrity mechanism. The first feature is an inheritance 
mechanism mat allows a user to define a default PACL for a directory. Any file (or subdirectory) created 
in this directory inherits the directory's default PACL, as well as the name of the program that created the 
file. This feature allows the user to tailor a directory to the type of work being done in it. An entire sys- 
tem (or account) can be tailored in this manner by creating a default at the root (or home) directory and 
then building directories below it. 

The second feature allows a user to specify a global inheritance policy. The user can define a 
default PACL for any file based on its extension (suffix). For example, a UNIX object file is typically 
created by an assembler or compiler and given the extension '.o'. Later, the linker reads in a number of 
object files, links them together, and generates executable code. When it has successfully generated an 
executable, it sometimes will remove the object files as they are no longer needed. Since the object files 
were created by the compiler, their PACL's will contain the name of the compiler, but not that of 'Id' (the 
linker). With the extension-based default mechanism, the user can define a default for '.o' files that con- 
tains 'Id', thereby allowing the linker to remove unwanted object files after it has created the executable. 

The third feature allows the user to enable/disable the PACL mechanism for a particular file. This 
feature is provided by associating a flag with each file. If this flag is enabled, the normal PACL security 
rules will be applied to that file. If the flag is disabled, then all PACL security rules for the file are 
ignored and only the 'normal' security rules will be used when the file is accessed; i.e., any program with 
appropriate access rights can modify the file. 

The final feature allows a user to temporarily disable the PACL mechanism for all of his/her files. It 
also allows the system administrator to temporarily disable the PACL mechanism for the entire system. 
This feature is needed to facilitate programs that need to modify many or all of a user's or system's files. 
For example, a utility program that restores files from backup tapes will typically modify many files dur- 
ing its execution. 

These features are provided to allow the system to be tailored to meet each individual user's needs. 
Once defaults have been set up correctly, each user should be able to use the system while being protected 
from viruses, without being unduly inconvenienced by the PACL mechanism. 

The PACL-Integrity mechanism makes several basic assumptions about the underlying hardware 
and operating system. The devices on which programs are stored (e.g., disk) must be protected so that 
they can only be accessed by kernel code. Without such protection, a virus could write directly to a dev- 
ice, bypassing all protection mechanisms.  This requirement rules out the possibility that this type of 
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system would be viable in some personal computer environments where direct disk access is not pro- 
tected, for example. The operating system itself must check all file accesses to make sure the PACL secu- 
rity rules are enforced. It must also protect the PACL's themselves from illegal modification. The 
hardware and operating system must also protect against standard attacks, such as modifying system 
buffers or kernel code. 

3. A PACL-Integrity Model for UNIX 

3.1. Overview 
Our PACL-Integrity model can be implemented for UNIX by extending the kernel. The PACL scheme 
must be included in the kernel to ensure that all file accesses are checked. The current UNIX protection 
mechanisms, based on user names, are still enforced. If an attempt to write satisfies the existing security 
rules, the PACL mechanism then further verifies the validity of the access. 

When a file is created, its PACL is created as well. A file's PACL is stored as part of the header 
information (i.e., inode) of the file, just like the mode bits, owner, size, date, and time fields. Since the 
PACL is part of a file's inode, the PACL information for a file is removed when the file is deleted, which 
simplifies the task of PACL maintenance. 

The kernel builds the PACL for a new file from three items. The first item put in the PACL is the 
name of program that creates the file. In UNIX, a program's name is its complete pathname. For exam- 
ple, the editor program 'vi' in the directory Vusr/ucb' has the name '/usr/ucb/vi*. The second item put in 
the PACL is the default PACL of the directory in which the file is created. The final item put in the 
PACL is the default, if any, for the new file's extension. (Note that the defaults put in the PACL are those 
in effect when the file is created; if the defaults are later changed, the PACL's of existing files are not 
modified automatically.) 

The specific kinds of access for which the kernel must check include opening a file for writing and 
unlinking a file. The former gives the program the privilege to modify the file in any manner while the 
latter deletes the file. We consider deletion a form of modification. 

3.2. New System Calls 

Nine new system calls give programs the ability to interact with the PACL mechanism. The first system 
call, setppriv(), is a privileged call that sets the state of the current process into a mode that allows it to 
call the other new system calls. (This method is analogous to a process setting its user-id to root in regu- 
lar UNIX.) Without executing this initial call, a process is not allowed to use any of the other system 
calls that interact with the PACL's, with one exception described below; in such a case, they simply 
return an error to the calling process. The only programs that are allowed to use setppriv() are the pro- 
grams listed in the file Vetc/paclprivs'. One example of an entry in this file is the utility program 
described later. 

The second call, paclenable(), is used to enable or disable (based on its argument) the entire PACL 
mechanism for the given process and its children. If. the initial system process (init) disables the PACL 
mechanism, then the effect is that the PACL mechanism is disabled for the entire system since all 
processes are children of init. 

The third call, clrppriv(), removes a process from PACL privileged mode. It allows the process to 
relinquish its privilege when no longer needed. The two calls setppriv() and clrppriv() allow programs to 
create critical regions in their code where they have privilege to access PACL's. Outside of these regions, 
PACL privileges are not necessary and hence should not be enabled. 

The fourth call, getppriv(), is the only call that will not return an error if setppriv() has not been pre- 
viously called. It tells the currently running process whether or not it is currently in PACL privileged 
mode, i.e., the process successfully called setppriv() without calling a corresponding clrpprivf). 
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The next two new system calls allow a program to manipulate PACL's. Only the owner of a file 
can change its PACL. The first, addpaclQ, adds a program name to a given file's PACL. The second, 
delpaclQ, deletes a program name from a given file's PACL. These system calls also allow a file's owner 
to enable/disable the PACL mechanism for a particular file. 

The remaining three system calls allow a program to query a file's PACL in various ways. These 
calls can only be executed by the file's owner. The first, getpacl(), returns a list of all the program names 
in a file's PACL. The second, verpaclm(), determines if a specified program has the privilege to modify a 
given file. It compares the program name with those in the file's PACL, handling links if the filename 
provided is a link to another file. The third, verpaclrf), determines if the specified program has the 
privilege to remove a given file. It is similar to verpaclmf) except it does not traverse links because any 
remove reference to a link would be removing the link, and not the file to which the link points. 

33. The ch Utility 

The above eight system calls provide the means for a system program to manage PACL's. The utility 
program, ch, described below uses these calls and is an example of a type of user interface that can be 
provided for user interaction with this mechanism, ch is listed in '/etc/paclprivs' so that it is authorized to 
use these PACL system calls on the user's behalf. 

To use the ch utility, the user must first enter his/her password. We make the assumption that a 
virus can assume a user's login name but it does not know the user's password. Otherwise, we cannot 
distinguish a virus from a legitimate user. 

ch allows the user to: 

• add/remove program names from PACL's; 

• display the contents of PACL's; 

• set/clear the enable flag in PACL's; 

• modify the default PACL's for directories and file extensions; and 

• temporarily turn off the entire PACL mechanism (e.g., for that user during a single login session). 

These features correspond to those described in section 2. Several additional features make the utility 
more usable. One feature allows the user to traverse the directory structure; a user can, therefore, move to 
different directories without exiting the utility. A second feature is that ch provides all the remove 
privileges that exist in a normal shell. The 'rm' (remove) program may not have privilege to remove 
most files; i.e., it may not be in the PACL for every file. The utility, therefore, provides an 'rm' com- 
mand with functionality equivalent to that of the 'rm' program. Without such a command, the user would 
need to add the 'rm' program to a file's PACL, exit the utility, and then use the 'rm' program to remove 
the program. For the same reason, the utility also provides an 'rmdir' (remove directory) command. 
Basically, ch provides a subset of the normal shell commands along with the features described above 
that allow the user to tailor the PACL security system. If the user executes a program from within ch, a 
new process is created to execute that program. This process is subject to the rules that apply to the new 
program, not those that apply to the ch program. Other utility programs can easily be generated by the 
system administrator by writing programs using these system calls and then adding the program names to 
Vetc/paclprivs'. 

3.4. The Role of the Superuser 
In existing UNIX systems, the superuser—e.g., the 'root' account—may bypass the normal protection 
mechanisms. Having root privilege is not sufficient to override the PACL protection mechanism in our 
system. In particular, a user (or would-be virus) executing as root can only disable the PACL mechanism 
using the ch utility, for which it must give the root password. A program running as root must, therefore, 
be listed in a file's PACL in order for that program to have the privilege to modify that particular file. 
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This approach limits the damage potential of a virus that somehow acquires root privilege. 
This restriction, however, requires us to change the current method by which the superuser changes 

the root password. Currently, the superuser uses the 'passwd' program to change the root password. The 
password program prompts for the new password without asking for the old one. Thus, any user (or pro- 
gram) that acquires root privilege can change the root password without knowing the previous password. 
Such a user could then use ch to break system security. Therefore, we now require passwd to ask the 
superuser for the old root password before changing it This additional requirement prevents a virus from 
changing the root password without knowing the previous password. The one exception is that the 
superuser can change the root password without entering the old password when the system is brought up 
in console (single user) mode. This exception exists to allow access to a system in case its password file 
gets corrupted. 

Since the success of our anti-viral scheme depends heavily upon password security, viruses must be 
prevented from obtaining passwords. In our scheme, the password file itself is protected so the only pro- 
grams allowed to modify it are 'passwd' and those that modify information about users (e.g., user names, 
phone numbers, etc.). A new user can be added according to one of two methods. The first method is to 
add an editor, say 'vi', to the password file's PACL, then edit the file to include the new user, and then 
remove 'vi' from the PACL. This method is not a major inconvenience to the system administrator if 
new users are added infrequently. On the other hand, the above method is cumbersome for a system 
where new users are added frequently. A better method, then, is to write a new utility program that is 
specifically designed to add users to the password file and to place the name of this new utility in the 
password file's PACL. Execution of this utility program should be restricted to only the system adminis- 
trator. 

4. A PACL-Integrity Model Simulator 
We constructed a UNIX-based simulator to allow us to experiment with our ideas. Building a simulator 
required less effort than making kernel modifications would have. Doing so also had no impact on other 
users of the system as making kernel modifications would have. 

The simulator consists of modifications to the standard C library. It is not a program itself. The 
simulator library contains modified versions of the normal system calls that deal with files (e.g., open) 
and code for the new system calls dealing specifically with PACL's. The normal system calls take the 
same arguments as usual. Thus, the simulation environment is transparent to most programs; they just 
need to be linked with the new library. The code in the library routine that handles a normal system call 
is an interface to the original routine that handles the system call. It first does whatever PACL checking 
is needed and then calls the original routine, which has been renamed. 

The simulator maintains a virtual root. The virtual root allows any directory to act as the root direc- 
tory during simulation experiments. The simulator maps any reference to root (i.e., a pathname that starts 
with '/') to the virtual root. For example, if "cook/test/pacl' is the virtual root, the simulator maps 
'/bin/cp', the copy program, to "cook/test/pacl/bin/cp'. Using a virtual root lets us test the PACL 
mechanism by defining a subdirectory that contains an entire UNIX environment, i.e., all the standard 
system programs. The programs in such a subdirectory are linked with the simulation library. Using a 
virtual root also allows a user to experiment on a system without requiring root privileges. Further, it 
allows several users to run experiments at the same time as each one can define their own virtual root 
(The idea of a virtual root is similar to the UNIX 'chroot' command except it works on a per-process 
basis and does not require root permission.) 

Section 3 described how a file's PACL information is stored as part of its inode. That is not possi- 
ble without kernel modifications. The simulator, therefore, stores the PACL information for file x in 
another file, x.pacl. Similarly, the default directory PACL for a directory is stored in the file 
'default.pacl'. These files are not visible to the user when running under the simulator. They can only be 
created by the simulator for its purposes. 
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The default PACL information for file extensions is stored in an environment variable. The simula- 
tor uses this information along with the default directory PACL information and the executing program's 
name (see below) when creating the PACL for a new file. 

The simulator needs the name of the currently executing program for creating PACL's and compar- 
ing access rights. The simulator maintains that name in an environment variable. The variable is set in 
the simulator library's execve() system call, which is invoked whenever a process is created. It is exam- 
ined whenever a process executes a system call that needs PACL privilege. This method is insecure 
because a process can modify its environment variables—e.g., a process can change the simulator's idea 
of its name to gain illegal access to a file. However, the method is adequate for our simulation purposes. 
In a kernel implementation, the name of the currently executing process would be stored so that only the 
kernel could modify it 

5. Experience 

The additions to the C library to form the simulator library required about 1000 lines of code. The addi- 
tional code intercepted system calls, translated pathnames to virtual root-based pathnames, and checked 
PACL permissions. 

We have used the simulator in a number of situations and have gained some idea as to the effective- 
ness and intrusiveness of our PACL scheme. Our tests fall into two categories: general interactive use 
and installation of software systems. In the first kind of tests, users performed the activities they normally 
would on a system—i.e., developing programs, writing papers, etc.—and would also occasionally attempt 
to defeat the PACL mechanism. In these tests, the PACL mechanism worked as it was intended: It was 
successful in preventing simulated viral attacks without being too intrusive. One observed drawback, 
however, was that users needed to be aware of the PACL mechanism. One common problem, for exam- 
ple, was that users had problems removing files since the remove program 'rm' was not on the PACL of 
the file being removed. The utility program proved useful, but it requires the user to learn a new tool. 

The second kind of simulator test—software installation—was also generally successful. We 
attempted to install two large software systems, GNU Emacs [11] and the SR concurrent programming 
language [1], in the simulated environment. Although the installations uncovered several problems with 
our simulator, they did demonstrate the validity of the overall design of our PACL scheme. 

6. Discussion 

Our PACL-Integrity model is an integrity model only. As such, it protects files from illegal modification 
but not from exposure. One advantage of it being just an integrity model is that the system is greatly 
simplified. PACL checks occur when the file is opened for writing and the checks themselves are very 
fast. A PACL check consists of looking up the program name to see if it exists in the file's PACL. Since 
a file's PACL will typically be very short, that check will be very fast and the space overhead involved 
per file will be minimal. (For simplicity, we have restricted in our initial designs a fixed sized space to 
store the PACL for each file.) 

Our PACL scheme is obviously not perfect. It can be defeated by exploiting existing operating sys- 
tem security loopholes or trojan horses. It also requires that the PACL's for the system are set up 
correctly, which requires user and system administrator cooperation. 

One potential vulnerability of our PACL scheme is that a virus could invoke other, more trusted 
programs to do its dirty work. For example, a virus could send commands to infect files to 'vi'. One pos- 
sible solution to this problem would be for programs to impose restrictions on how they operate; e.g., 'vi' 
might accept only interactive input rather than accepting input from another program. A more general 
solution, however, will require further study. Even with this vulnerability, our PACL scheme substan- 
tially reduces the vulnerability of the overall system. 

One issue that we have not fully resolved is exactly what constitutes the name of a program. As 
described earlier, the name of the file is its complete pathname. However, a single file on disk can have 
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many different names (i.e., paths to it) through hard or symbolic links. A hard link establishes another 
name for a file by having another directory entry point to the file's inode. A symbolic link is a file whose 
contents is a file name; when the symbolic link is opened, the kernel instead opens the contents of the 
link. Given such possibilities of multiple names for a given file, which name or names should be used in 
the PACL checks needs further study. 

Another issue related to naming is what to do when the name of a program changes. Since the 
PACL's store full pathnames of a file, they must be changed. One possible solution is to extend the ch 
utility to provide a rename option. However, that is expensive as it needs to search all PACL's for all 
files in the system. Moreover, it requires user intervention. Another possible solution is to store in the 
PACL the program's inode number instead of its name. A sequence number would also need to be main- 
tained for each inode to distinguish between different uses of an inode, e.g., to ensure that when a free 
inode is reused, it does not accidentally allow access to the wrong files. Renaming is important because it 
occurs fairly frequently, although more often for user programs than for system programs. Another 
related issue is what to do when a new version of a program is installed. If program names are stored, 
then the PACL scheme works fine. If inode numbers are stored, then they would need to be updated, 
which is expensive as described above. One final related issue is how to handle deletion of programs. 
When a program is deleted, it should be removed from all PACL's in which it appears. Otherwise, a 
virus might install a new program in that place. On the other hand, if a program is deleted just before a 
new version of it is installed, then the cost of cleaning up all PACL's should be avoided. These issues are 
important and related to one another. Further work and experience is needed before the 'right' solution 
can be determined. 

One possible objection to the entire PACL approach is that it requires future knowledge to be totally 
effective: it must know for all time what programs will need to access what files. That is clearly impossi- 
ble, especially since new programs can be added to a system. For example, suppose an existing file sys- 
tem has its PACL lists set up so that the C compiler, say located in '/bin/cc', is allowed to create '.o' files. 
If an alternate C compiler such as GNU's, say located in '/usr/local/gcc', is added to the system, then the 
PACL's for all '.o' files should be updated to also allow the new compiler to modify those files. Requir- 
ing users to perform such modifications of PACL's is not attractive; a tool to automate such modifications 
should be straightforward to develop. 

The use of the extension-based defaults and the directory inheritance in our PACL scheme provides 
a flexible enough environment for a user to perform most tasks without considering the PACL's. A more 
complicated task, especially one involving files with nonstandard extensions, may require the user to 
modify PACL defaults. However, once that is done, the task can be completed with little difficulty. User 
intervention is typically only required to set up defaults for a new task; repetitions of that task do not 
require further intervention. 

The initial setup of a system that uses PACL's is also a nontrivial task. In particular, the system 
administrator must determine PACL's for each system file, and directory and extension defaults. For- 
tunately, such work needs to be done just once. Of course, this problem will go away if PACL systems 
become the standard; vendors would then ship PACL-equipped systems already set up. 

7. Related Work 

Recently, Eugene Bacic [2] proposed a similar scheme that was developed independently from that pro- 
posed in this paper. His mechanism also associates an additional ACL-like list with each data object to 
provide integrity controls by constraining the programs that can manipulate an object. His paper 
addresses the subject from a more theoretical slant than the application specific (UNIX) approach dis- 
cussed here. 

Karger [8] and Boebert and Ferguson [4] have proposed solutions similar to each other that attempt 
to address the Trojan Horse problem. Both solutions interpose a protected subsystem between programs 
and the filesystem to protect the filesystem. They are related to the mechanism we described in that they 
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use some type of knowledge base (in our case the PACL's) to make access control decisions based on the 
user executing the program, the program being executed and the files being accessed. The methods they 
proposed to generate and use this knowledge base are quite different The intent of our solution is to gen- 
erate this knowledge base as simply and easily as possible, while making it simple to design, simple to 
build, simple to maintain, powerful to use and simple to understand. 

In a landmark paper, Clark and Wilson [5] introduced a model of integrity that is based on control 
of which actions users can perform on particular data items. The model is applied to constrained data 
items (CDI's) and only allows access to these CDI's through Transformation Procedures (TP's). The cen- 
tral system enforced property required by Clark-Wilson is that the system maintain a list with entries 
which describe for a user-id, TP pair, which CDI's the user can access with the given TP. The system 
must further ensure that no CDI can be manipulated except through a TP. The PACL mechanism 
described in this paper can directly support the enforcement of Clark Wilson controls with the restriction 
that there is only a single list of programs allowed to access a given file rather than a separate list for each 
user or group of users. Using the normal access control mechanism, the users which can access a CDI are 
described by the standard permissions, and the TP's which can access the CDI are listed in its PACL. 

8. Conclusions 

The PACL scheme presented in this paper is a step toward providing protection against viruses. It is an 
attractive approach since it is relatively simple, both conceptually and to implement, and it aims to pro- 
tea against all viruses, not just specific strains. The simulator allowed us to gain experience using our 
scheme. This experience has been quite positive and shows that our approach is feasible. Although this 
paper describes our scheme and experience in the UNIX environment, our PACL scheme also applies to 
other operating systems. We plan to gain additional experience using the simulator, and then to imple- 
ment our scheme in the kernel. Our other plans include extending the PACL scheme to a networked 
environment and considering how a collection of systems—some using our PACL scheme and some 
not—will interact. At a broader level, we are also investigating ways of combining various protection 
schemes (e.g., ACL's, capability lists, type enforcement schemes [10], integrity labels [3, 10], and 
POSET model [6]) into one unified scheme. The unified scheme will allow flexibility in choosing which 
scheme is appropriate for a given problem. 
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Abstract 

This paper proposes two heuristic tools for detecting viruses in a UNIX environment. The tools 
would be used to detect infected programs prior to their installation. The tools use static analysis and 
verification techniques. One tool, the detector, searches for duplication of operating system calls. A 
program compiled and linked from source code (such as C) makes calls to standard library routines 
for operating system services; relevant to detecting viruses are calls on files services, such as open and 
write. Such object code will contain only one instance of the standard library subroutine for each type 
of service requested by the program. A virus would most likely carry along its own system calls; hence 
an infected program would have duplicate calls to the file service and is easily caught by the detector. 
The second tool, the filter, uses static analysis to determine all of the files which a program is capable 
of writing to. By knowing what files a program can and cannot write, one can decide whether or not 
that program is suspicious. The paper discusses the features and shortcomings of both tools and gives 
some implementation details related to the detection of UNIX viruses. In order to defeat these tools, 
a virus would have to be quite complex and, if successful in avoiding detection by these tools, accept 
limited propagation. The tools are also useful for detecting more general malicious code, such as Trojan 
Horses. 

1     Introduction 

Ideally, one would like to be able to detect an infected program without having to execute it and 
without noticeably impairing the performance of the system. Some virus detection techniques (see 
[6] and [7]) rely on run-time checking of program behavior, but employ auxiliary hardware to avoid 
a performance penalty; the hardware can be viewed as a generalization of the familiar watchdog 
timer. However, these run-time methods potentially expose the system to a virus which is able 
to do its damage before being detected. Other run-time techniques (see [2], [3], and [8]) do not 
allow a program to execute if it fails to pass certain tests; these methods are useful, but they may 
introduce an unacceptable amount of overhead to the execution time of programs. Typically, these 
methods involve protecting programs stored on a disk with cryptographic checksums. Another 
method [10, 11] queries the users at runtime for all file modifications or requires users to identify 
the programs that can write to his files. Most virus detection techniques have serious limitations 
because they detect and inhibit the spread of viruses, not their presence. They cannot be applied 
to programs which are obtained from unreliable sources since they all rely upon having a clean 
copy of the program available for comparison, or they require user interaction at runtime, or they 
require access protection mechanism absent from most operating systems. Other approaches (e.g. 
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virus scanners) cope only with known viruses or virus strains. Our approach attempts to identify 
viruses through detecting their discerning characteristic in an infected program. 

Our approach involves the analysis of a program prior to installation, the analysis attempting to 
identify suspicious code. By statically analyzing a program, one can in principle determine whether 
a program contains suspicious code, regardless of whether or not clean code is available. This paper 
presents two static-analysis methods under implementation for detecting suspicious code indicative 
of a virus. These methods are based on the following premises: 

• Source programs are linked with the standard library during compilation. In most systems, 
the operating system services, e.g. file open, file read, file write, are provided to the user in 
the form of library functions. Hence a compiled and linked program should contain at most 
one instance of the trap instruction to the operating system for each system call. Simple 
viruses, attaching themselves to the beginning or end of a program, would carry along their 
own trap instructions. Infected programs would have duplication of such trap instructions 
for some system calls. 

• A program containing a virus will contain calls to write the virus to storage, e.g. to the 
disk, operating system memory, or to uninfected files. Suspicious code, then, could cause the 
program to write to files the program under investigation is not expected to write to. By 
enumerating all of the files a program can potentially open, the user of the program is alerted 
to potentially suspicious code before he runs the program. 

These two points form the basis of the two UNIX tools being presented here. The detector 
tool examines a program to determine if it contains any duplicate instances of operating system 
services (such as file operations like read and write), while the filter tool will examine a program 
to ascertain which files the program can write. These tools are promising because they can detect 
a large class of viruses and limit the propagation of others. Although these tools are limited by a 
number of factors, they form a firm foundation upon which more sophisticated tools may be built. 

To date, the detector tool has been implemented and tested on several programs with promis- 
ing results; we have determined that all but one of the UNIX utilities on our Sun-3 workstation 
running SunOS 3.4 have no duplicate trap instructions. Furthermore, the detector has detected a 
handcrafted virus that is typical of UNIX viruses. A prototype of the filter is under development, 
but it has been hand-simulated on several utility programs. 

The remainder of this paper discusses the basic approach of the detector and the filter tool. 
The discussion includes the assumptions attendant to each tool as well as the implications of 
these assumptions. The implementation of the detector is discussed, giving details about problems 
and results of experiments performed with it. A discussion of a simple UNIX virus is also given 
to facilitate the understanding of the implementation. Next, the concepts behind the filter are 
explained in detail. The shortcomings of each tool are discussed and extensions of the tools are 
suggested as work for the future. 

2    The Detector 

2.1     Basic Approach 

The purpose of the detector is to identify duplicate calls to operating system services; duplicated 
calls might be in an executable program and be indicative of a virus that has linked itself to the 
program. The first step in the detector's analysis is to disassemble a program into its equivalent 
assembly language representation. The next step consists of finding all instances of code which 
perform some operating system service.   If two different pieces of code are found to contain the 
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same operating system services, then this condition is nagged as a duplication of services. For most 
programs, it is reasonable (and necessary) to make the following assumptions: 

1. The program uses a standard interface for communicating with the operating system. 

2. The program is generated with a compiler. 

3. The source program does not call the operating system directly through a trap, instead it 
uses the operating system interface in the standard library. 

4. Virus code can only occur in the code (text) segment of a program. 

Assumption one ensures that determination of duplication of services will be relative straight- 
forward. If all programs use the same format for using system services, the detector can always 
determine what the service is. For instance, in most implementations of UNIX, system calls are 
performed by pushing the system call number onto the stack and then executing a trap to the oper- 
ating system. If the system call number is always pushed immediately before the trap is executed, 
the detector simply has to examine the instruction preceding the trap to determine which service 
is being used. If a program does not follow such a scheme but instead handles each system call in a 
different way, the detector must then symbolically execute the program to determine the contents of 
the stack at the time of the trap instruction—a more difficult and potentially intractable problem. 
Fortunately, most versions of UNIX use a standard calling scheme. Thus, this assumption is only 
restrictive for those programs which do not use the standard calling scheme, such as some programs 
written in assembly language. 

The second and third assumption are necessary to ensure that a legitimate, uninfected program 
will not have any duplication of services. Executable programs linked with the standard library 
will have one routine which handles all requests for a given operating system service. Any time 
the program needs a service, it effects the appropriate preparations, such as pushing the other 
information required for the call (e.g. arguments) onto the stack, and then calls the routine which 
performs the service. This technique to handle system service call is very common and not confined 
to UNIX. 

For portability and upgrade compatibility reasons, a compiler does not generate code that 
interface with the operating system directly. Instead, the compiler will treat a system service call 
as a subroutine provided by the standard library. The actual operating system interface code, i.e. 
the system trap, resides in the library subroutine. Therefore,the actual interface should appear at 
most once for each system call in any compiled program. 3 

Finally, assumption four stems from a consideration of file formats and their related restrictions 
under UNIX. Typically, UNIX uses three file formats for executable files: OMAGIC, ZMAGIC, 
and NMAGIC. The first, OMAGIC, is obsolete and rarely used. In this format, the text segment 
is non-sharable and not write protected, so the data segment is immediately contiguous with the 
text segment. The second, ZMAGIC, is the default format produced by Id, the link editor. For 
this format, the text and data sizes must both be multiples of the page size since the pages of the 
file are brought into the running image as needed. The third format is similar to the second except 
the data and text segments are not required to be multiples of the page size; the entire image 
is preloaded into memory at run time. Most versions of UNIX enforce segmentation of code and 
data, meaning that executable code and non-executable data must reside strictly in their respective 
segments. Furthermore, the text segment is not writable during run time and execution of the data 
segment is not allowed. As a result of these restrictions, a virus which infects a program must 
do so by placing all of its code into the text segment; it cannot hide any code in other parts of 

3In order to defeat the detector, a virus would have to use the operating system calls of the program it is attempting 
to infect, rather than trivially attaching itself to the beginning or end of the program. Later, we discuss ways to 
catch attempts to defeat the detector. 
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the file. NMAGIC and OMAGIC format files, therefore, are somewhat more resistant to viruses 
than ZMAGIC format files since no unused space is available for a virus. However, a virus may 
still be able to infect such files if it can somehow hide the increase in the size of the host program 
(perhaps through a flaw in the operating system or by compressing the original code to obtain 
space). ZMAGIC format files are even more vulnerable. For instance, under SunOS 4.0 the page 
size is eight kilobytes, meaning the average ZMAGIC format program will have approximately four 
kilobytes of zero-padded space in both its text and data sections. This space is large enough to 
hold a fairly complex virus written in assembly language. However, in all three cases, the virus 
code must still appear in the text segment, making it detectable by the detector. If all of these 
conditions are met, then the detector can be used to determine if the program under consideration 
contains any duplication of system calls. 

2.2 Implementation and Results 

A prototype of the detector has been implemented on a Sun 3 workstation running SunOS 3.4 
and has been tested on several of the standard programs from /bin, /usr/bin, and /usr/ucb, but 
its application is not limited to UNIX systems. This prototype, called Snitch, is written in the 
C and Icon programming languages and consists of two major modules: the disassembler and the 
analyzer. The first module, the disassembler, takes an executable program as input and produces 
the equivalent Motorola 68020 assembly language representation as output. The second module, 
the analyzer, takes the output from the disassembler and examines it for duplicated code. 

For SunOS 3.4, a system call is performed by pushing the system call number onto the stack 
and then executing a trap instruction. Because the call expects the top of the stack to contain the 
number of the call to be made, determination of duplication of services becomes straightforward: 
one only needs to backtrack from the point of the trap to determine the last item pushed on the 
stack; that item will be the system call number. Furthermore, most of the standard library routines 
push the system call number immediately before executing the trap, making the analysis phase even 
simpler. The analyzer reports any duplications found as well as the number of occurrences of all 
system calls. 

The results of the experiments performed on Snitch are as follows. Approximately one hundred 
programs (mostly UNIX utilities) were tested for duplication of services with some of them infected 
with a simple virus (described in Section 3.2). All of the infected programs were found to have 
duplicated system calls, while only one uninfected program was flagged as having duplication 
of services: /bin/csh contained two instances each of the getgid and getuid system calls. One 
may conjecture that such duplication occurred because of post-linking binary patching. Since the 
duplicated services were not of a serious nature; for a program as large as the C-shell, such an 
occurrence should not be surprising or indicative of malicious code. 

2.3 A Simple Virus 

For purposes of testing Snitch, a simple virus was created which infects SunOS 3.4 executables. 
The virus is considered simple because it makes no effort to conceal itself and it does not use a 
sophisticated method for replication and propagation, although it is capable of avoiding multiple 
infections of the same program. Basically, the virus works as follows: First, the virus determines 
whether it has previously infected the target program. Under SunOS, executables have a standard 
header which contains format information, start-up code, a branch to the user's code, and then 
clean-up code. The format information tells in which format (OMAGIC, ZMAGIC, or NMAGIC) 
the file is arranged. The start-up code initializes environment variables and other constructs while 
the clean-up code restores the old environment and makes a smooth return to the shell. All of this 
information is common to most executables and of a constant length. Therefore, the branch to 
the main body of code always occurs at a certain offset from the beginning of the text segment. 
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Furthermore, the user code always immediately follows the clean-up code, making the branch 
address the same for all programs. Thus, to determine previous infection, the virus simply examines 
the location in the text segment where the branch instruction occurs (bytes 70-73) and determines if 
the address is the standard address (20A0 hexadecimal). If it is, the virus commences the infection 
process. 

Next, the virus determines if it has enough space to infect the program without overwriting 
any legitimate code or increasing the size of the program. The only format which allows any zero- 
padded space is the ZMAGIC format; if the file is not in ZMAGIC format the virus exits and passes 
control to the legitimate code. If the file is in ZMAGIC format, the virus determines whether there 
is zero-padded space at the end of the text segment. This task is accomplished by looking for 
zero-padded space of length N between the end of program and the end of the text segment, which 
is multiple of 8K bytes. N is the length of the virus code. 

Finally, assuming there is enough room, the virus copies itself from the host program into the 
target program by copying the last N bytes from the host program's text segment. It then changes 
the branch instruction in the start-up code so that the virus code is executed after the start-up 
code and before the legitimate code. Five system calls are used by this virus (open, lseek, read, 
write, and close) and its length is approximately 150 bytes. A program infected with this virus is 
easily detected by the detector. 

2.4    Limitations of the Detector 

The most obvious way of defeating the detector is simply to make the infected program not have 
any duplication of actual interface to the operating system; if the virus uses the existing services 
it cannot be detected with the detector. Use of existing services would be simplified if the symbol 
table information was left in a given program. In this case, a virus could determine the location 
of the needed services and hook into them, thereby adding only that code which was not already 
present in the host program. Even without the symbol table, a virus could search the host program, 
looking for the services it requires. Then, it would import only those services which it could not 
find.4 Also the virus could escape detection by inserting a dummy system call that is absent 
from the uninfected program, pushing the system call number onto the stack and jumping to the 
trap instruction inserted. Such viruses would escape detection by the current detector, although 
it could be extended to identify code that searches a program for system calls. We are currently 
investigating these and other approaches to defeat the detector and to extend the detector to make 
it more robust. 

3    The Filter 

3.1     Basic Approach 

A virus filter is an automatic classifier which applies static analysis techniques to detect the presence 
of a virus. Since computer viruses multiply by implanting themselves in healthy programs, a 
necessary condition for propagation is their ability to modify executables. Our approach, although 
based on the technique of formal verification differs from classical verification. Verification entails 
proving a program with respect to a specification - a statement of what function the program is 
intended to compute. For the purpose of detecting suspicious code, we are assuming no specification 
will be provided. Instead, programmed into the filter is a property to be determined of the program 
under analysis. For the current version of the filter, the property is "the files that the program 
could write to".   The basic approach is first to identify all open calls in the program and then 

4This may not be as easy as it sounds, however, since the virus must then know where each of its constituent 
parts is located within its code as well as how to extract them. 
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to enumerate the possible filename arguments to these calls. As we demonstrate, the analysis is 
feasible as only a small fraction of a program is involved in generating filenames. Upon being 
presented with the names of files that the program could write, the user could determine if the 
program is suspicious. Of course, a virus could still be present, but its propagation would be 
severely limited - essentially to just those files. Crocker and Pozzo (see [4]) (hereafter abbreviated 
to Crocker) proposed a virus filter based on formal specification and verification techniques. But 
through the following hypotheses, they conjecture that the analysis will be vastly simple than that 
usually associated with program verification. 

Hypothesis 1 It is possible to formulate restrictions for the majority of useful programs such 
that the restriction is syntactically simple enough to be machine processable and fine-grained 
enough to represent the full range of authorized modifications made by real programs. A 
restriction is the specification of the modifications a program makes. It is created by a 
program developer wishing to submit an executable program for potential use. 

Hypothesis 2 It is possible, on the average, to analyze benign programs in a straightforward way. 

Hypothesis 3 It is possible to classify modifications such that ordinary changes can be distin- 
guished from suspicious ones. 

Generally, we agree with Crocker's hypotheses, but argue that for some programs (benign or 
infected) the semantic analysis required is more complicated than implied by these hypotheses. 

In UNIX systems, the propagation of a virus through direct access to files is through the 
open, create, rename, link and unlink system calls. A virus may open and write to an executable 
or replace an executable by its viral counterpart. Using symbolic evaluation techniques, it is 
sometimes possible to determine the arguments to these system calls and hence the names of 
files being modified. The enumeration of the files which may be modified by the program being 
investigated provides clues to detecting viruses. For example, the program date does not write to 
any files (except standard output). If the enumerated list of files the filter identifies for date is not 
empty, it can be concluded that the date program is suspicious. The analysis of the benign date 
program is very straightforward. Much less straightforward is the split program. Split reads a 
file and writes it in n-line pieces to a set of output files. The name of the first output file is an 
argument specified in the command line with "aa" appended, the second one with "ab" appended, 
and so on. If no output file argument is given, "x" is used as default. The program should only 
create files starting with the prefix specified in the command line or the default prefix. Therefore, 
we can say the split program is safe if the enumerated files satisfy this restriction. 

In general, a program is said to be suspicious when 

1. The program's acceptance criteria is not satisfied - there is a high potential for a virus. The 
acceptance criteria states that the enumerated set of filenames is acceptable to the user. 

2. The program is too complex to be evaluated by our filter. No definitive answer is obtained 
from the filter so the program is not accepted. In practice, it would be the responsibility of 
the programmer to argue that a suspicious program is not contaminated. 

Otherwise the program is said to be safe. 

After sampling some commonly-used programs, Crocker concluded that the patterns of filename 
generation could be classified as follows: 

Implied - There is a fixed, possibly empty, list of files to be modified. For example, date modifies 
no file, vipw modifies /etc/passwd. 
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Parameters - Filenames are passed to the program as command line arguments. For example, 
indent indents and formats a C program specified in the command line. 

Transformations - Some programs such as compilers and editors create new files based on the 
arguments in the command line. For example, compress transforms filename to filename. Z. 

Temporary files - New filenames are generated independently. For example, vi generates tem- 
porary files in the /tmp directory. 

Dialogs - The filename is provided by the user when the program is running. For example, csh 
(a standard UNIX command interpreter) file redirections are obtained from terminal input. 

In all of these classifications, the algorithms used to generate filenames are quite simple involve 
a small fraction of the total program. Since most realistic programs are far too complex to be 
analyzed in their entirety and most of the code is unrelated to filename processing, our approach is 
to isolate that part of the program concerned with filename generation and disregard the remaining 
part. The simplicity of the resulting reduced program should make the static analysis tractable. 

In summary, our filter tries to determine the names of all files which might be modified by the 
program. By comparing the enumeration of names and the specified restriction, the virus filter can 
claim the program is safe or is suspicious. The complexity of the programs in their entirety may 
prohibit comprehensive analysis, so part of our method eliminates that part of the program not 
related to filename processing. We call this method slicing. After slicing, the residual program is 
usually small in size and, thus, analyzable. 

A virus in a program could escape detection by the filter if it is content to contaminate only 
those files for which the program has legitimate access. For example, a virus hiding in the EMACS 
editor could infect a program being created using the editor. However, once infected this program 
could infect only those programs its designer has given it access to. Any code in the original virus 
that would involve writes to other files would be detected by the filter. 

3.2    Implementation and Results 

This section discusses the implementation of our approach. The input to the virus filter is a binary 
executable. The output is the enumerated set of the files that may be modified by this executable. 
The virus filter proceeds through six steps. The first five steps are the preprocessings required 
to extract the program fragments which contribute to filename generation. The last step involves 
symbolic execution and analysis. The six steps are as follows: 

1. Translation to an intermediate language 

2. Determination of basic block and life span 

3. Determination of data dependencies 

4. Anti-aliasing 

5. Slicing 

6. Symbolic evaluation and analysis 

Given a program to be analyzed, the virus filter first translates it into a C-like intermediate 
language. Then the filter relabels variables in order to decouple semantically disjoint variables 
sharing the same storage. Next, the data dependencies are found by analyzing the program syn- 
tactically. The filter performs anti-aliasing analysis to unify references to the same storage. Extra 
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dependencies are added to the data dependency graph when aliased storage is found. Based on the 
data dependence graph, the program is sliced into pieces. Finally, the pieces which are related to 
filename processing are extracted and symbolically executed. The filter also applies some theorem 
proving techniques, primarily to derive inductive assertions for the few, if any, loops involved in 
filename enumeration. 

The following simple example, written in our C-like intermediate language, is used to illustrate 
the different steps of the virus filter. This example program consists of two independent fragments 
of code which perform different operations although they share the same variables. It demonstrates 
our method of decoupling variables by relabeling. Then, we separate it into two independent 
program fragments by applying slicing. After locating the appropriate fragment containing the 
system calls, we apply symbolic evaluation and analysis to determine the filenames. 

Example: We pick up this example after translation to an intermediate C-like language, x is a 
filename string, i is an integer, strO is a function converting an integer to a string. Not shown 
are the open system calls, assumed to occur at any line in the program with filename argument x. 

Line number Intermediate code 
1 i =  1 
2 x =   "f" 
3 x = x ||  str(i) # string concatenation 
4 i = i + 1 
5 if   (i  <=  3)  goto line 3 
6 print x 
7 i = 200 
8 x = str(i) 

The filenames generated would be: 

f if the open system call follows line 2 
fl,  fl2, fl23    follows line 5 
fl23 follows line 6 
200 follows line 8. 

3.2.1     Translation to Intermediate Language 

The input to the virus filter is assumed to be a machine compiled binary program, not an arbitrary 
assembly language program. In the first stage, the program is decompiled into a machine indepen- 
dent, C-like, intermediate language. We have designed the intermediate language such that analysis 
attendant to steps 2-6 is simplified. To be specific, the intermediate language contains at most one 
assignment per statement and control is transferred by the goto statement only. The decompiler 
recovers semantic information about variables which are lost during the compilation. The goal is 
to partition memory into regions such that each region is the storage for a simple or structured 
variable. All storage locations are made explicit and side effects are eliminated. Library calls, 
like string assignments (string copy) and integer to string conversions, are replaced with defined 
functions in the intermediate language. Thus the virus filter is more likely to produce intelligible 
output through reference to higher level functions. 

Since our filter is designed to work with binary executables, we need a decompiler to translate 
machine codes to the intermediate language. Intuitively, the intermediate language should contain 
more information than the machine code, e.g.   concerning types and addresses of symbols.   We 
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should be able to locate extra information concerned with the high-level language from sources 
such as the symbol table. Even if we cannot find anything directly, we may still be able to deduce 
data types, procedure entries, etc, from the style in which the compiler generates code. 

3.2.2     Basic Block and Life Span Analysis 

Variables are often recycled in many programs in order to save storage or simply as a matter of 
programming style. In many programs, variable i is a general purpose loop counter which is reused 
in different, unrelated parts of the program. This recycling adds dependencies to the dataflow 
graph that can be eliminated. The elimination involves the renaming of the variables on the left 
hand side of an assignment statements. 

After translating to the intermediate language and relabeling, the program is decomposed into 
basic blocks for life span analysis. A basic block is a sequence of instructions in which 

1. All control transfer statements are at the end of the block. 

2. Only the head of a basic block can be the target of any control transfer statements. 

The life span of a variable corresponding to an assignment is the span of validity of its value. 
The life of a variable starts on its assignment and propagates to basic blocks that the current block 
can lead to. We now pick up the example be derived as the filter starts in step 2. In line 4 of the 
following table, the value of i at the right hand side may be derived from three possible sources 
because there are 3 assignments to i (lines 1, 4, and 7). The purpose of life span analysis is to 
eliminate impossible combinations, i.e. i.7 can never be the i.4 of line 4. 

Variables on the left hand side are relabeled uniquely by their name and line number. The 
program is broken into three basic blocks. The live variables are given in the rightmost columns. 

Line number    Intermediate code Life of i     Life of x 
1 i.l = 1 
2 x.2 =  "f" i.l 
3 x.3 = x || str(i) 
4 i.4 = i +  1 
5 if   (i <  3) goto line 3 

i.l  i.4    x.2 x.3 
i.l  i.4    x.3 
i.4            x.3 

6 print x 
7 i.7 = 200 
8 x.8 = str(i) 

i.4             x.3 
i.7             x.3 
i.7 

3.2.3    Finding Data Dependencies 

Given the life span of the variables, the syntactic data dependencies can be determined by dataflow 
analysis. Consider, for example, statement 3 in the example after step 2: "x.3 = x || str(i)". The 
variables x and i are referenced; x.2 and x.3 are live when x is referenced; i.l and i.4 are live when 
i is referenced; x.3 is written to. Thus x.3 depends on i.l, i.4, x.2, and x.3. 

Thus for step 3, the dependencies are determined to be: 
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x.3 «- x.2, /* x.3 depends on x.2 */ 
x.3  «- x.3 
x.3 <-  i.l 
x.3 «-  i.4 
i.4 —  i.l 
i.4 «- i.4 
x.8  •-  i.7 

The objective of the data dependency analysis is to slice the program into independent portions 
to simplify static analysis. Since filenames are usually generated by simple algorithms, syntactic 
dependencies are considered instead of semantic (real) dependencies. This simplified analysis is 
adequate for the worst case dependencies. In the above example, we can recursively trace back and 
find all variables on which x depends at line 8. The dependency subset is found to be "x.8 <— i.7". 
The subset program is composed of lines 7 and 8 as indicated by line numbers in the dependency 
subset. 

Similarly, the variables x.2, x.3, i.l, i.4 are related to the computation of x at line 6. Lines 1 to 
4 constitute the corresponding subset program. 

3.2.4 Performing Anti-aliasing 

We need to solve the aliasing problem which results from the possibility of referencing a memory 
location directly through a variable or indirectly through a pointer. Such sharing of storage must 
be identified before we can have a correct data dependency graph. After the virus filter identifies 
the aliases, additional dependency arcs are added into the graph. The aliasing is found by con- 
sidering the pointer assignments. Let us call the variable on the left hand side of the assignment 
statement the 'home' variable. Reference through a pointer will add a dependency to this variable. 
Modification through the pointer will add new labels to the home variable. Since the life of the 
new label must be computed, the virus filter may need to iterate through steps 2 to 4 several times. 
The iteration stops when no new dependencies are identified. 

3.2.5 Slicing 

After completing steps 1 to 4, we have the data dependency graph and the next step is slicing to 
identify the program fragment associated with each open system call. A fragment terminates with 
an implied system call, the arguments of which are to be determined in step 6. 

Continuing with example 1, if the system call immediately follows line 8, the sliced fragment 
would be: 

7 i = 200 
8 x = str(i) 

If the system call immediately follows line 3, the slice fragment would be: 

1 i =  1 
2 x =   "f" 
3 x = x ||  str(i) 

To obtain the pertinent program fragment, the filter traces back from the system call through 
the data dependency graph to obtain all of the variables the system call depends on, i.e, the line 
numbers of the relevant program statements. Having the line numbers, we can easily slice out the 
program fragment. 
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3.2.6    Symbolic Evaluation and Analysis 

The sliced program is then symbolically executed to identify filenames generated. Proceeding 
forward through the statements in a program fragment, each variable obtains a set of values, each 
value in the set being a value the variable could' be assigned in a real execution. 

The symbolic evaluation is straightforward when the program has no loops. For a program 
containing loops, more complicated techniques, as described by German and Wegbreit in [5], are 
required. 

Given the input and output assertions for a loop, four methods to obtain inductive assertions 
for the program have been proposed: (1) weak interpretation, (2) using loop exit tests and gener- 
alization, (3) predicate propagation, and (4) extracting information from unsuccessful proofs. The 
first three methods can be used in our virus filter. The last one is not applicable because it works 
backward from the output assertion, which we assume will not be available. 

The followings are the salient points of German and Wegbreit's first three methods as they bear 
on the virus filter: 

1. Symbolic evaluation in a weak interpretation. 

P = start address of S; 
{I:  start address of S <= P <= end address of S} 
while  (P <  end address of S) 

{1} 
P = P + 1; 
{1} 

For example, suppose P is a pointer variable and S is a string variable. P is initialized to the 
start address of S on entry to a loop; P is incremented on each pass through the loop, and 
the loop is exited when P is greater than the end address of S. It follows that inside the loop, 
the inductive assertion I will contain the expression: start address of S < P < end address of 
S. Weak interpretation attempts to derive simple facts of this kind; specifically, it considers 
only simple linear equalities or inequalities relating two variables. 

2. Combining assertions with loop exit information. 

Suppose a loop is exited when some test D is true and that after the loop some assertion P 
is to hold. Since P is to hold after the loop, the assertion D —> P (read D implies P) must be 
true inside the loop and just before the exit test. It is very likely that D —• P is sufficiently 
strong a loop invariant for our purpose. 

3. Propagating valid assertions forward through the program, modifying them as required by 
the program transformations. 

Whenever an assertion is known to be valid, it is useful to propagate it forward in the 
program, deriving the strongest consequences of the assertion downstream. Through sub- 
stitutions, assertions are modified on passing through decisions and assignments to produce 
their consequences. 

Our preliminary analysis of the filter has determined that these 3 methods are adequate for 
the analysis of loops involving file enumeration code. 

3.3    Example: The Split and the Copy Programs 

The program split.c is analyzed. The synopsis of split is 
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split [-number] [infile] [outfile]. 

In short, split reads a file and writes it in n-lines pieces onto a set of output files. The name of 
the first output file is an argument specified in the command line with "aa" appended, the second 
one is outfile with "ab" appended, and so on; the name generated form a lexicographic sequence. 
If no argument is given, "x" is used as default. The following is the sliced split program, resulting 
from applying steps 1-5 of the filter. 

10 argc = INPUT;     argv = INPUT 
16 outfile =  "x" 
21 for (i = 1;   i < argc;   i++) 
38 outfile = argv[i] 
42 outfile = outfile  I I   "aa" 
43 for  (suffix = outfile;  *suffix  != 0;  suffix++) 
45 suffix— 
47  *suffix =   'a'   -   1 
81 if  (++*suffix >   'z') 
82 *suffix =   'a' 
83 ++*(suffix -  1) 
87 creat(outfile,  0644) 

The slicing reduces the 104 line program to 12 lines. As we can see, the program fragment for 
the generation of filenames is very small even though not trivial compared with other programs we 
have considered. By symbolic evaluation, and tracing through the loop several times, the result is 

("x"   |   argv[*])     ||   ("aa"   I   "ab"   I   ...   ). 

Using German and Wegbreit's methods for the derivation of the loop invariant, we have the 
conditions *suffix > V, *(suffix-(-l) > V, *suffix = 'a' - 1, and *suffix is not decremented in the 
loop. From these conditions, the following represents possible value for the filenames. 

("x"   I   argv[*])   II   a  I I  b. 

where "a" < a, b < "z". 

The user would accept split as safe, as it writes only to files that he expects. 

As another example, consider 'cp' which copies files. The synopsis is 

"cp filenamel filename2" 

or 

"cp filename ... dirname". 

In the first format, cp copies filenamel to filename2. In the second format, cp copies the filename 
... to the directory dirname. The sliced program fragment is like 

39 creat(argv[2],  sbuf.stmode ft 0777) 
70 ptr = argv[argc -  1] 
71 dp = dirname 
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72 while (*ptr != 0) *dp++ = *ptr++ 
74 *dp++ =7' 
75 ptr = argv[i] 
78 while (*ptr != 0) ptr++ 
79 while (ptr > argv[i] && *ptr != '/') ptr-- 
80 if (*ptr == '/') ptr++ 
81 while Optr != 0) *dp++ = *ptr++ 
82 *dp++ = 0 
84 creat(dirname,  sbuf.stmode & 0777) 

The original program is 154 lines, lines. The sliced fragment is very small and most of the 
programming statements are strings operations consisting of small loops. 

3.4    Limitations of the Filter 

Since static analysis techniques are crucial to the operation of the virus filter program, it is assumed 
that the program being analyzed is constrained to good programming practice. That is, the code 
segment cannot be altered and control may not be transferred to the data segment or the stack 
segment. These constraints are satisfied for Sun UNIX 3.2 programs. Most programs do not 
change their code segment or try to execute the data segment. Dynamic linking programs and 
debuggers are exceptions, albeit important ones. Furthermore, our model assumes a single thread 
of control. Modifications would be required for a parallel program with shared memory. Some 
specific limitations of the current virus filter design are discussed below. 

3.4.1     Pointer reference 

There is no constraint on indirect memory references (any pointer or array reference) in our low- 
level language. Whenever this kind of reference is associated with a string of unknown length or 
with a non-deterministic event (e.g. a user input), any memory cell can potentially be modified. 
The overwritten cell can be anywhere, possibly a filename argument to system calls. 

If the symbolic evaluator works conservatively, its output will be too pessimistic, as most storage 
contains non-determined values. Otherwise the output of the evaluator could be incorrect and a 
virus could slip into the system without being detected. 

The following are common statements in C programs; see Figure 1. 

while  (*p++ = *q++);   
I       str 

  | 

scanf("V/.d", &i) ; I 
str[i]  =  'x'; I    file- 

I     name 

Figure 1. Two examples to illustrate the difficulty of deciding pointer references. 

In the first example, if p points initially to a variable 'str' and memory is allocated as shown, p 
can overflow and, potentially, clobber storage that holds the filename argument to a future system 
call. We potentially have to determine till possible values of pointers in order to determine what 
storage can be clobbered. 

The undisciplined use of pointers severely hampers effective static analysis, but also represents 
bad programming style. In the first example, a better alternative is to use 
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strncpy(p, q, MAXLEN). 

The second example should have a conditional statement such as 

if  ((i < 0)   II   (i >= UPPER.BOUND))  input.error(); 

before the array reference to avoid an out-of-bound array reference. Assuming these extra state- 
ments, it is possible to bound the pointer references to facilitate analysis. 

We may be able to infer the range of pointers from the program and prove the pointers are 
constrained with their associated variable. For example, during the life of a pointer P associated 
with string S, our filter proves the assertion {S < P < S + length(S)}. 

Another difficulty with pointers is with respect to dynamic allocation of memory. It is almost 
impossible to find the bounds of pointers pointing to dynamically allocated memory variables 
because there is no way to determine their addresses statically. If we assume the worst case - all 
pointers can share all dynamically allocated storage - it is not likely that the filter can perform an 
effective analysis of the program. 

Although not acceptable in all situations, it appears that software users can impose a strict 
programming style on their vendors to simplify the work of the virus filter in pointer analysis. 

3.4.2 Loops 

As discussed before, the presence of loops makes symbolic evaluation much more complicated 
because of the indefinite number of iterations. Several methods may suggest solutions to this 
problem. One of these is to determine the maximum number of iterations of the loop and have 
the symbolic evaluator go through the loop that number of times. Other methods include the 
determination of loop invariants to give significant representation for the loop. A method which 
uses linear inequalities to constrain the variables may be useful [5]. However, all existing solutions 
are heuristics and do not work in all situations. 

3.4.3 Structured Data Types 

The symbolic evaluator needs to understand structured data such as strings and records. String 
operations are common in generating filenames. The evaluator should be able to understand that 
the code fragment while (*p++) is equivalent to moving the character pointer p to the end of the 
string. Some heuristics are helpful in giving understandable reports to a user. For instance, it is 
preferable for the filter to output the statement, "A new string Si is generated from S by appending 
character V to it" rather than output the assertion 

{ 3j((V» < j : S[i\\ = 0 and S[j] == 0) and 
(Vt < j : Sl[i] = S[i\) and 
Sl[j] =' c' and 
5l[i+l] = 0)}. 

In some situations, the complete filenames may not be generable in the absence of specific 
details of the environment. For example, when a temporary file is generated with the constant 
prefix /tmp/vi and the process-id, the symbolic evaluator is unable to give the exact filename 
because the filename depends on the runtime environment. However, if the evaluator is sufficiently 
intelligent, it may give a partial result such as /tmp/vi* as the generated filename. However, the 
cost of having such intelligence is not low as the evaluator needs to understand the semantics of 
strings and essentially all possible operations on a string. 
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4    Conclusions and Future Work 

There is a need for improved defenses against computer viruses. Defenses include 

1. preventing the propagation of viruses 

2. detecting an infected program 

3. determining if a newly issued program contains a virus. 

This paper concentrates on (2) and (3). Our detector tool checks for duplication of services. A 
program linked with the standard library, typical of UNIX systems, will contain no duplication of 
system services. A simple virus would carry its own services and would be easily detected by our 
detector tool. The detector can be defeated, but only by a virus that searches for the services in a 
program; such a virus will be more complex than current viruses and might contain code that an 
extension of the detector would flag as malicious. 

The filter tool extends the concepts proposed by Crocker and Pozzo. It carries out a static 
analysis of a given program to determine the capability of a program to modify files. A user of 
the program under test could then determine if any unexpected files are written to, for example 
those obtained by searching a directory. The filter uses verification techniques, but since only a 
subset of a program is usually concerned with filename generation, the technique appears to be 
more feasible than verification in general. We have simulated the behavior of the filter on typical 
system programs, such as date, split and cp. Heuristics are required to generate loop invariants 
(but the loops appear to be quite simple) and to demonstrate that pointers are well-behaved. 
Implementation is underway. 

The prototype of the virus filter will be tested on MINIX system utilities executing on a 80286- 
based machine. MINIX is a UNIX-like operating system written by Tanenbaum [9]. The MINIX 
programs are usually small, making them ideal for an initial evaluation of the virus filter. Also, the 
assembly language is quite simple, which will simplify the translation to the intermediate language. 

The similarity between the detector tool and the filter tool is that both attempt to determine 
if a program under test contains suspicious code. The difference lies in the suspicious code under 
searching. The detector tool considers program structure, i.e. the way that system calls are made. 
The filter focuses on the arguments to the system calls. System calls are interesting because a 
program may interact with other objects in the system, hence cause damage, only through operating 
system calls. 

Generalizations of the detector would involve more complex checks on program structure. For 
example, the detector might look for the getdirentries (get directory entries) system call which is 
useful to viruses, but not to most programs. Different compilers generate code in slightly different 
ways. If the virus code is compiled with a foreign compiler, the detector may be able to detect 
it with statistical or pattern-matching methods. Furthermore, it is common for a virus to attach 
itself to the beginning or the end of a program. By looking at the pattern of flow controls, we may 
obtain some hints to the presence of viruses. 

The filter tool uses symbolic evaluation and verification to determine the possible arguments 
of the system calls. It can be extended to determine values of variables in the program; hence we 
can prove assertions composed of program variables, which characterize the program behavior. The 
filter may determine the input conditions which lead to execution of certain sections in the program. 
For example, if we apply this technique to the login program and ask for the condition that the 
setuid statement is executed, the filter should find that a necessary condition is the matching of 
passwords. 

The techniques described in this paper are not limited to the detection of viruses. Trojan Horses 
are detected in similar way, albeit the detector and filter need to be programmed with different 
properties. 
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Because virus detection is undecidable (see [1]), these tools certainly cannot claim to have the 
ability to detect all viruses. The detector tool can be defeated in at least one sure way by using 
the existing services of a program. Similarly, the filter can also be defeated: a virus can propagate 
through the files to which the program has legitimate access. Although these tools cannot detect all 
viruses, viruses have to hide all the traits we are looking for. A virus designed with these constraints 
is very complicated, cannot be very infective, and also very hard to write. The mere complexity of 
such a virus should lead to its early discovery by more common methods of debugging. 
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ABSTRACT 

This paper describes a program recently instituted at NASA's Johnson 
Space Center to reduce the impact of Personal Computer Viruses.  The 
program attempts to provide successive levels of detection and control 
for virus programs in a cost effective and consistent manner. This 
description includes design notes and an outline of problems encountered 
while planning the implementation. 

INTRODUCTION 

During 1989 the NASA Johnson space Center (JSC) had approximately 100 
suspected virus infections.  Of those suspected infections only 30 
proved to be actual viruses.  Of the 30 actual viruses handled in 1989, 
only one MS-DOS compatible machine was infected. 

During that same year there were over 5000 PC's owned by the U.S. 
Government and thousands more owned, or leased by local contractors. 
Over 90% of those PC's were MS-DOS compatible systems.  The PC's were 
connected to virtually every major scientific research facility in the 
U.S. and most were connected to a wide area network that served more 
than 200,000 NASA users worldwide. 

This information brings viruses into a more appropriate perspective.  It 
also belies the fact that hundreds of employee hours were spent checking 
for non-existent viruses during that year.  After the Datacrime Virus 
scare of 1989 many of us at the center began working on possible 
solutions to the problem.  The solution is officially named the JSC 
Virus Intervention/Disinfection Program. This paper explores the 
mechanism of that solution. 

BACKGROUND 

The experience of supporting several thousand users in a communication 
intensive environment forces managers to place a strong emphasis on 
practical, cost effective solutions to problems.  For 98% of our PC's, 
the loss of any 1, or 2 machines would not seriously affect center 
operations.  Therefore, the idea of preventing, or detecting, every 
virus on every machine became a tradeoff between the time saved by the 
solution and the time spent on the problem.  In this regard it became 
obvious that isolation, user convenience, and transparency were more 
important than 100% prevention.  Going into this effort we understood 
that viruses were not completely preventable on the target platform.  So 
our exploration focused on providing a reasonable level of detection and 
isolation for center PC's in accordance with the risk anticipated over 
the next 2 years. 

We initially attempted to identify a commercial product which would 
satisfy our objectives.  After an extensive search, we eliminated all 
candidates because they failed in at least one of the following areas: 
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1. The cost to procure and implement exceeded our available 
discretionary funding limit of $50,000. 

2. The software required frequent updates to remain effective. 

3. The software was not simple, or user-friendly. 

4. The software would not identify all existing boot infector, or 
file infector viruses.  (Failure to identify all existing viruses 
would seriously impair user trust over the next 2 years.) 

5. The software was not resistant to a directed virus, or Trojan 
Horse.  With file comparison programs, this usually stemmed from a 
lack of sufficient granularity, or sophistication during the scan. 

Thus, although we had not intended to become developers, we were forced 
to explore novel approaches to the problem. 

PROJECT DESIGN AND OBJECTIVES 

One of the authors had previously been using a public domain program 
called FILETEST, which used Cyclic Redundancy Checks (CRC's) to check 
for file modifications.  Using this as a starting point, we proposed 
modifying FILETEST and using the modified program as a virus detector on 
MS-DOS based machines at the center.  Using an integrity check utility 
as the first line of defense, we would then be able to quickly identify 
problems.  Once the existence of a problem had been detected, we would 
then be able to more efficiently employ our other virus response 
techniques in_the repair. 

Although we had also proposed a hard disk write protection utility, 
this concept was omitted from the task.  It was suggested by management 
that write protecting hard disks might be too complicated an option for 
novice users.  Later testing proved this point to be true.  After 
several initial meetings with user representatives and JSC management we 
refined the proposal above into a single goal statement.  The initial 
goal statement for the project was: 

Perform an integrity check of executable files on user hard disks 
on a routine basis to identify all modifications.  Provide users 
with appropriate instructions when changes are noted. 

Based upon this goal, a utility was designed to meet the following 
requirements: 

1. The utility should be a first line of defense.  It does not need 
to be a "Universal Virus Detector," but should give all users a 
reasonable amount of assurance that their machines are clean. 

2. It should work without needing updates for extended periods of 
time.  Updates not more than every 2-3 years would be desirable. 

3. The detection program should be simple and provide user-friendly 
feedback on what it finds.  It should not confuse the 
inexperienced user. 

4. An unskilled user should not be able to do more harm than good 
when using this utility. 

5. The utility should significantly reduce the number of unnecessary 
virus response visits made by Help Desk personnel, (ie.  User 
alerts should provide enough information so that false alarms can 
be debugged over the phone.) 
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6. The finished product should be placed into the public domain so 
that other NASA centers or contractors may use it without charge 
or license fees. 

7. Trained personnel will install the utility.  Therefore, detailed 
installation instructions will not be required. 

At the preliminary design meeting we added the following criteria to our 
design: 

1. The utility should perform a static analysis of executable files. 
Too many potential memory conflicts would result if the program 
were installed as a Terminate & Stay Resident (TSR) routine. 

2. The program should become an integral part of the menu utility. 
This means that whenever the program is installed, it should be 
installed along with a new version of the menu.  As such, it will 
become a permanent part of "extended operating system." 

SYSTEM INTEGRITY CHECK 

The System Integrity Check utility has a long history, which must be 
noted in order to give credit to the appropriate parties.  Dr. Ted H. 
Emigh initially wrote a public domain program called FILECRC (4), using 
a set of CRC routines written by David Dantowitz.  The CRC's implemented 
are based upon 16 bit polynomials, one of which is a CCITT standard CRC 
polynomial. They were chosen because of their ability to detect 
significant bit errors in data streams. 

The standard CCITT Cyclic Redundancy Check is mathematically represented 
by the equation: CRC-CCITT = XA16 + X~12 + X*5 + 1.  This 16 bit CRC 
will catch all 16 bit bursts1, a high percentage of random 17 bit 
bursts (-99.997%) and also a large percentage of random 18 bit or larger 
bursts (-99.998%).(4) 

The FILECRC program was then modified by Dr. Leonard P. Levine of the 
University of Wisconsin and placed into the public domain.  Dr. Levine 
wrote his program, called FILETEST (6) in Turbo Pascal 3.0. 

To make FILETEST more efficient and take advantage of Turbo Pascal, we 
rewrote the program in Turbo Pascal version 5.5 before proceeding 
further.  This conversion caused program performance to improve by an 
average of 40%. 

However, while using FILETEST. we discovered a virus that completely 
escaped detection by the package.   The specific problem surrounded the 
4096 virus, which replaced a part of DOS and masked infections 
dynamically during the read process.  In this situation, a simple read 
operation failed to identify the infection.  Since our design goal 
dictated a utility that could detect all existing viruses, we began 
examining ways to enhance our derivation of the program. 

In order to combat this general type of virus, we examined several 
alternatives, such as reading to the end of each physical disk cluster, 
or timing known operations.  Further examination showed these operations 
insufficient to combat future infections. 

Then Chris Ruhl defined a logical model for a robust virus detection 
mechanism.  After several weeks of work, the model was refined into its 

1 A burst of length N is defined as a sequence of N bits, where the first 
and last bits are incorrect and the bits in the middle are any possible 
combination of correct and incorrect.  From (1) Peterson and Brown. 
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present state.  (We will briefly describe the model here.  A complete 
description of the model is available from the authors.) 

VIRUS DETECTION MODEL 

Assuming that [a] a virus must modify existing executable files on a 
computer system (any program that spreads by itself is a "worm," and a 
malicious program that does not spread is a Trojan Horse) and [b] that 
the initial state of the machine does not contain a virus, we can assert 
that i 

1. A virus infection occurs when an executable resource on the system 
(in primary, or secondary storage) is altered. 

Consequence:  If we have a baseline configuration to work from 
(assumption b) then we can compare this baseline against future states. 
In this way, a CRC, or other polynomial manipulation of file data can be 
used to uniquely identify the state of the file.  If the file is ever 
changed, this computational method can detect the change.  Once the 
change is detected, the user must determine if the change was authorized 
(ie. software installation, or upgrade) or not. 

2. Masking occurs when a scanning entity is prevented from seeing the 
change in an executable resource.  Masking requires external 
intervention at some point in the read process.  Therefore, if a 
program has not intervened in the read process, masking cannot 
occur. 

Consequence:  Infections on disk can be masked by an intelligent virus, 
but RAM based infections cannot be masked unless the operating system 
intervenes in a fetch or jump (ie. address translation etc.).  Since a 
program can only execute from main memory, the masking code must reside 
somewhere in main memory to execute.  This means that if we can 
effectively compare the memory-based read procedure against an 
uninfected state we will be able to detect masking in all cases. 

3. If masking has not occurred, the only way for a virus to escape 
detection is to interfere with the detection program itself and/or 
its reference data. 

Consequence:  A directed virus could update either the detection program 
or its base tables.  Subsequently, it is important to validate the 
integrity of the program and either protect, or authenticate the 
reference data used by the utility. 

General Consequence:  A carefully written CRC based program can detect 
all known viruses and validate the integrity of the operating system 
under which it operates.  Although it is still vulnerable to certain 
directed attacks on specific systems, it should provide a high level of 
reliability across a variety of platforms. 

As rewritten, the System Integrity Check provides a range of system 
checks based upon user input.  Our derivation of the program is called 
DETECT.  For the purposes of this paper we may use the names "Detect" 
and "System Integrity Check" interchangeably. 

PROGRAM OPERATION 

Detect can perform either a limited check, or an extended check of a 
target system. We will outline those checks here. 

During installation of the program, an extended check is performed. All 
executable files, and the boot sector on the default disk are checked. 
This then becomes the master list that is used to generate the master 
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CRC table.  A baseline set of CRC's is computed for this master table 
which encompasses every potentially executable file on the hard disk. 
This baseline must be computed from a clean machine.  Therefore we have 
set up an installation process that scans the machine prior to initial 
installation. 

Detect will also create a configuration file called USER.CFG. The user 
will be instructed that he/she may edit the table to include only the 
most commonly used files.  Once this is done, the table will be used for 
each limited check.  When the program is run using this table, any files 
not found in the USER.CFG file, or on the disk will be flagged with a 1 
line entry such as: 

File C:\NORTON\SD.EXE        Removed from Detect file, 
or 
File C:\NORTON\SD.EXE        Not Found on Disk Drive. 

Files that are changed will register in one of 2 ways.  Any file that 
was updated using normal DOS calls (eg. through recompilation, or 
copying in a new file over a file with the same name) will be flagged as 
normal updates in the following manner: 

File C:\COMMAND.COM Modified Normally. 
Old Date =  7/24/1987   New Date  =  1/17/1990 
Old Time =  0: 1: 2     New Time   =  7:27: 2 
Old Size =  25276 New Size  =  25276 
Old Attr =       0       New Attr  =     32 
Old CRC (1)=  -31695        New CRC (1)=  -16742 
Old CRC (2)=   -4475        New CRC (2)=   21008 

If you did not make this change, please contact the User Support Desk 
for assistance. 

In this case users are instructed to contact the help desk if they do 
not recall updating the file.  This message is designed to avoid causing 
panic in a novice user who has just received an update to his/her word 
processor. 

If, however, the directory entries match and the CRC's do not, the file 
has been modified in a non-standard way.  This should not occur in 
normal practice, so the program writes a special alarm message to the 
terminal.  This can occur when using NORTON UTILITIES, or other such 
programs to modify the disk directly, bypassing the normal DOS handling 
of the files.  It is also a common method used by virus programs to 
infect other executables. 

If this occurs the following alarm message will appear: 

File C:\COMMAND.COM Modified Abnormally!  ««« 
Old Date =  1/17/1990 New Date  =  1/17/1990 
Old Time =  7:27: 2 New Time  =  7:27: 2 
Old Size =   25276 New Size  =   25276 
Old Attr =      32 New Attr  =     32 
Old CRC (1)=  -31695 New CRC (1)=    7054 
Old CRC (2)=   -4475 New CRC (2)=  -25852 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Virus Alert 1 File(s) have been Abnormally Modified % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

This could be serious! Please call the User Support Desk at   - . 
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In any event, at the end of each scan a summary message will also 
appear, displaying the number of files scanned and their problems. 

Finally, the user is prompted to update all changes. 

During program initialization, Detect will check the date stamp of the 
last full disk scan.  If the date is more than 30 days old, the program 
will execute an extended scan of the system again.  This is designed to 
do two things: 

1. The check is designed to catch illicit modifications to little-used 
files and to find new executables added to the system.  By doing so 
on a monthly basis, all files are regularly checked, but the user 
is spared a lengthy wait for the daily checks. 

2. The check will display a summary of all files modified, added, or 
deleted in the past month.  This record can be saved for future 
reference. 

When the extended check is run, all deleted files are listed, but files 
which are added are listed also. 

Some of the special features of this program are: 

1. It computes 2 different CRC's for each file.  Using 2 CRC's 
together significantly reduces the chances that any virus will 
infect the file without being discovered. 

2. It checks the boot sector and partition table, thus showing 
infections by boot infector viruses. 

3. During initialization, the program validates the memory based read 
procedure, thus detecting viruses which attempt to modify DOS 
services.  This prevents masking by the 4096 virus and other 
viruses of its type, while allowing the user to confidently run the 
program from the hard disk. 

4. It can be run when the disk is write protected, allowing users to 
run the program while using a disk write protect utility.  A 
special feature in the program will check the return code from the 
first write attempt and notify the user that updating the tables 
will be prevented. 

5. It occupies an average of 60K bytes on a hard disk, allowing 
installation on disks where space is critical. 

6. It has been tested to work on a variety of platforms.  We have 
found that the utility can check 1 MB of executable code per minute 
on an AT class machine and 11 MB per minute on a 80486 system.  We 
have also eliminated false alarms under most supported packages. 

DESIGN TRADEOFFS 

As with the design of any program, many options were available to us. 
As the design progressed, we were repeatedly faced with choices between 
user friendly operation and security enhancements.  The principal goals 
in this development were to make the implementation resistant to 
directed viruses while finding the simplest implementation for the 
unskilled user. 

One example of the tradeoffs concerned possible restoration of the boot 
sector.  Because of the way we checked the boot sector, we found it 
possible to restore sector 0 if it had been modified in some way. Then 
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if the user found a problem with modifications, he/she could simply 
rewrite the old boot sector back to its original location. 

Before making the change we realized that, all disk integrity questions 
aside, we would be generating a separate security exposure.  If a 
restore option had been added, a penetrator could then modify the file 
where the boot sector was stored and harmlessly change a byte in the 
boot sector.  In this way, a restoration of the boot sector would 
actually cause an undetectable infection.  For this reason we avoided 
any attempts at fixing modified files. 

Another design question revolved around the execution of the program. 
Technically, Detect would have been more secure if it had run from a 
bootable floppy disk.  When booting from a floppy we had a significantly 
higher level of control over the execution environment.  Even so, it was 
determined, during the design phase, that ease of use was more important 
than a completely secure execution environment.  Therefore the program 
was designed to run from the hard drive, although it could reside in 
virtually any directory.  In this way directory hiding and name changes 
could increase the program's resistance to directed attacks. 

While the original program has been designed to run from the hard drive, 
we found it necessary to create another version that runs from a 
bootable floppy.  This version supports network servers and non-standard 
hardware or DOS types.  When this version is released, it should achieve 
a much higher level of detection integrity than the original program. 
We have requested approval to place this version into the public domain. 

IMPLEMENTATION 

Once the program had been developed and tested, implementation became 
the major concern.  The logistics surrounding installation of any 
software package on over 5000 PC's can be staggering. Fortunately the 
high visibility of recent virus infections has resulted in a great deal 
of management support for virus detection and control. 

We knew that sending out service personnel to install the utility would 
cost more than $50,000 by itself.  (Typically a service organization 
must plan on 3-5 working hours to support each service call.)  We 
proposed that the most efficient implementation involved the use of 
dedicated teams of installers who worked building by building after 
hours.  In this way the time required to install the utility could be 
reduced to less than 30 minutes per PC. 

We developed the following plan for installation: 

Installation will proceed according to office areas in specific 
buildings, just as carpet cleaning, or window washing is done. 
Notification will be handled by designated representatives of 
each organization.  After users have been notified and the 
schedule is set, the team can move through in a coordinated and 
supervised fashion. Users who wish to be present during the 
installation may either lock their doors, or post a notice on 
the PC.  In these cases, the room number will be noted and 
reported to the central supervisor.  Using these reports, a 
later installation can be coordinated. 

During installation a team member will first scan the hard disk 
for viruses using a commercial package.  If an infection is 
found it will be corrected before proceeding.  Next, the 
utilities will be installed along with the updated menu system 
and a baseline set of CRC's will be generated.  After this 
process is complete, the installer will leave an informational 
brochure at the machine and proceed to the next machine.  If 
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this approach accomplishes installation for 90% of the PC's at 
the center, the rest can be handled on a case-by-case basis. 

PACKAGE SUPPORT 

Once the package is installed, other implementation concerns will arise. 
If a user detects a potential virus, the local help desk must be able to 
dispatch trained personnel to support an identification/disinfection of 
the virus.  We have a central user support function that is able to 
provide this type of assistance to local users.  Additionally, we are 
currently evaluating various commercial packages to support virus 
identification and removal.  Copies of the package will be maintained by 
designated personnel who can periodically be trained in identification 
and disinfection techniques. 

SUMMARY 

In order to allay user fears and to respond quickly to possible virus 
infections, the Johnson Space Center has begun a comprehensive program 
to detect and control PC-based viruses.  As part of that program, all 
users are being provided with free utilities to detect possible 
infections.  If a possible infection is detected, there are several 
levels of support that can be provided to that user. Although the 
program is still in its initial stages, response has been universally 
good.  We anticipate that we will soon have a low-cost and comprehensive 
method for limiting the impacts of computer viruses in a large, complex 
organization. 
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Abstract: As the viral property is generally undecidable, effective protection from special 
anomalies requires detailed information about all known viruses. In this paper, different 
approaches to classifying computer anomalies are introduced and compared. The VTC virus 
catalog in its current version and new efforts of its improvement by constructing a machine 
readable virus catalog to allow automatic information retrieval and by defining a threat 
description language for an expert system,are described in more detail. 

1. Introduction: 

The number of known viruses has been growing rapidly. We know of about 200 
viruses, of which over 150 are on IBM-PC's, over 70 on Amiga, at least 25 on Atari, and 
over 25 on Macintosh (in mid 1990). Extrapolating the development, by 1994/95 at the latest 
more than 1000 computer viruses will be known. Whereas early viruses were rather simply 
programed, easy to detect with gamelike character, recent viruses show more professional 
techniques and malicious intent. They have become more difficult to detect and often do 
serious damage. Moreover, viruses are apparently beginning to be used as (D-) weapons in 
criminal attacks against commercial or political institutions. To deal with this problem, the 
computer user must have a minimum knowledge to be able to determine whether anomalous 
behaviour can be attributed to a virus. Information sources containing computer virus 
classification are needed as early warning 

The computer virus catalog comprises of such information necessary to identify a 
known virus. It was developed at the Virus Test Center, together with the valuable help of D. 
Ferbrache, C. Fischer, Y. Radai, and F. Skulason. It deliberately does not contain enough 
details of virus programming techniques to be of much use for virus programmers, thus 
rigorously following the IFIP decision that strongly advises against the publishing of virus 
code. 

2. Terminology 

There is still much confusion about the exact definitions of the various computer 
anomalies, even amongst computer specialists. This has led to many misunderstandings. To 
this day there are no generally accepted definitions of all anomalies. Although, a very 
important part of the classification process, an extensive discussion of them would go beyond 
the scope of this paper. We have provided definitions that are the lowest common 
denominator. 
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In the following definitions we use the term 'routine' to mean a non-autonomous set 
of instructions capable of being executed on some platform, eg. a machine or an interpreter. 
A 'program' is an autonomous set of routines. 

Def: A Virus is a non-autonomous set of routines that is capable of modifying 
programs or systems so that they contain executable copies of itself. 

A virus may contain a routine that can perform a malicious function, known as the 
damage, unrelated to the function of the actual virus. 

We have had some criticism for insisting on viruses to be non-autonomous. There are 
real viruses that do not need any other program to run, as they contain start-up code, or have 
been designed to cope without a host. We think that the explicite or implicite start-up code is 
a form of host, which allows our definition to hold for this exception. 

Def: A Trojan Horse is an autonomous program that performs a harmless function, 
but also contains a hidden function, often destructive, unknown to the user but 
intentionally implemented. 

Technically speaking, any program becomes a trojan horse if it becomes infected with 
a virus. 

Many people define a Trojan Horse to be any malicious routine. We recommend 
rereading Homer's 'Illiad', for there it is clear that the wooden horse was the 'Trojan Horse' 
and not the warriors inside. 

Def: A Worm is a set of programs or routines, that are capable of independently, or 
with the help of an unsuspecting user, propagating throughout a network. 

Although a worm is arguably a virus, in that it reproduces itself, the difference lies in its 
capability to propagate over networks and that it is (in most cases) an autonomous (set of) 
program(s). Likewise, many viruses (esp. in PC networks) can spread over networks, but 
have not been explicitly programed to do so and are therefore not worms. 

In the mathematical sense of the term virus (according to [Cohen 86]), our definition 
of virus and worm are variations of the same thing. Unfortunately, the mathematical 
definition also includes such MS-DOS programs like DISKCOPY (as Fred Cohen points out 
himself in 'Virus Bulletin'). The technical implementation of Worms and Viruses are very 
different, and these differences are what we are most interrested in. 

There are many other 'anomalies', such as Trapdoors, Moles, Timebombs, 
Logicbombs, etc. It is often useful to talk of, for example, a timebomb being transported by a 
virus or a worm. These anomalies can however be autonomous programs, with, for example, 
the task of preventing detection by monitoring system usage of the operator (in this case a 
'mole'). Trapdoors, albeit primitive ones, are being increasingly used to make the 
disassembly of viruses more difficult. 

3. Current classification attempts 

The problem of identifying a virus has been proven to be undecidable in the most 
general case [Cohen 86]. Current virus identification programs can and have been bypassed, 
and in general one must say ultimately that any protection scheme can be bypassed. For 
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example, the recently discovered "4096" or "Frodo" virus intercepts each read access and if 
an infected program is read, it is restored (disinfected) on the fly, so that the user only sees a 
clean version of the program. This practice is also common amongst some boot sector 
viruses. 

As a result of the media-hype, malfunctions in software or hardware are very often 
attributed falsely to viruses. Extensive classification is necessary, so that even an average 
user can quickly identify an anomaly as (or better: as not) a virus. 

As the number of computer viruses grew, the necessity for detailed information 
became apparent. Various lists of known viruses and trojan horses were published in the past, 
often on electronic bulletin board systems. Initially called the 'Dirty Dozen' (counting only 
the strains of viruses), these lists soon became known as the 'Terrible Twenty (plus 3)' 
[RADAI 89a] and finally escalating to be called the 'Threatening Thirty' [RADAI 89b], and 
perhaps the next version will be called the 'Filthy Fifty'. Meanwhile we have reached 
approximately 300 viruses, counting all variations and systems. The most prominent lists are 
presently published by John McAfee, David Chess, Yisrael Radai, Patricia Hoffmann, Virus 
Bulletin and the Virus Test Center. 

3.1. McAfee/David Chess 

John McAfee uses the table format designed by David Chess. It describes primarily 
the scope and method of infection and the type of damage the virus does [McAfee 90]. 

McAfee describes the various attributes a virus may have as: self-encryption, memory 
resident, infects COMMAND.COM, infects .COM files, infects .EXE files, infects overlay 
files, infects floppy disks, infects boot sectors, infects partition sector table, and length of 
virus. In addition the following damage is possible: corrupts boot sector, affects run-time 
operation, corrupts executable files, corrupts data files, makes part/all of disk unusable, and 
corrupts file linkage. 

The following is an extract from John McAfee's Virus Characteristics List 
(Version_57): 

VIRUS CHARACTERISTICS LIST  V57 
Copyright 1989, McAfee Associates 

408 988 3832 

The following list outlines the critical characteristics of the known 
IBM PC and compatible viruses. 
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Infects Fixed Disk Partition Table + 
Infects Fixed Disk Boot Sector + 
Infects Floppy Diskette Boot + 
Infects Overlay Files + 
Infects EXE Files + 
Infects COM files + 
Infects COMMAND.COM + | 
Virus Remains Resident + I I 
Virus Uses Self-Encryption + 

I I 

Virus Disinfector V V 

I I 
I I 

Increase in 
Infected 
Program's 

Size 

V V V V V Damage 

Ping Pong-B 
Lehigh 
Vienna/648 
Jerusalem-B 
Jerusalem 

Cleanup 
Cleanup 
M-VIENNA 
Cleanup 
Cleanup 

x . . . . 
XX... 

. . X . . 
X . X X X 

X  .  X X X 

X X N/A 
Overwrites 

648 
1808 
1808 

0,B 
P,F 
P 
0,P 
0,P 

Legend: 

Damage Fields B - Corrupts or overwrites Boot Sector 
O - Affects system run-time operation 
P - Corrupts program or overlay files 
D - Corrupts data files 
F - Formats or erases all/part of disk 
L - Directly or indirectly corrupts file linkage 

Size Increase - The length, in bytes, by which an infected 
program or overlay file will increase 

Characteristics Yes 
No 

Disinfectors -   SCAN/D      - VIRUSCAN with /D option 
SCAN/D/A    - VIRUSCAN with /D and /A options 
MDISK/P      - MDISK with "P" option 
All Others - The name of disinfecting program 

3.2. Radai 

Yisrael Radai also uses a table format for classifying the viruses 
[Radai 89a][Radai 89b]. He lists the names and aliases of each strain, the number of viruses 
in the strain, the type of virus, including possible lengths and the date of first appearance. 
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'89): 
The following is an extract from Yisrael Radai's PC/MS-DOS Virus List (October 

No. of First 
Strains Type 

COMMAND.COM RO 0 

Appearance 

2 Nov 87 

3 COM D 648 Dec? 87 

12 COM/EXE R 1813/1808 Dec 87 

3 Boot sector 2K Mar 88 

Names 

4. Lehigh 
5. Vienna, Austrian 

DOS-62, Unesco 
6. Israeli, Friday-13, 

Jerusalem 
9. Ping Pong, Bouncing- 

Ball, Italian 

Yisrael Radai's virus list is useful as it lists viruses by strain. As most viruses in a 
strain have similar characteristics this makes the list easier to read. 

3.3. Virus Bulletin 

Virus Bulletin is published in the U.K. by Edward Wilding. It contains written articles 
on various viruses as well as lists of known viruses. In recent issues the information given has 
been restricted to search string and lengths of the viruses, with to occasional added 
information. They regretably parted from describing the viruses in greater detail (with 
approximately the same scope as Radai) early on. 

3.4. Patricia M. Hoffman: Virus Information Summary List 

This year Patricia Hoffmann published the "Virus Information Summary List" that 
contains information that she has collected on over 70 MS-DOS viruses [Hoffmann 90]. As 
she says in the introduction, it is not intended to provide a very technical description, but to 
show what the virus generally does, how it activates and how to get rid of it. 

The current summary list contains the following entry fields: 

Virus Name 
Aliases 
Effective Length 
Type Code(s): Following codes to indicate general behavior characteristics: 

A=Infects all program files (COM&EXE), B= Boot virus, C= Infects COM-Files only, 
D= Infects DOS boot sector on hard disks, E= Infects EXE files only, F= Floppy 
(360K) only, K= Infects COMMAND.COM, M= Infects Master boot sector on hard 
disk, N= Non resident, 0= Overwriting virus, P=Parasitic virus, R= Resident, 
S=Swapping virus, T= Manipulation of the FAT, X= Manipulationyinfection of the 
Partition Table. 

Detection Method: e.g. available detecting programs (Skulason's F-PROT, 
IBM Scan, and McAfee's Pro-Scan, ViruScan are referenced in the entries). 
Removal Instructions: e.g. availble virus disinfectors 
General Comments. 
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3.5. VTC Virus catalog 1.2 

The Computer Virus Catalog (developed first in October 1988) was intended to 
describe the viruses in enough detail so that a user can positively identify a possible virus 
attack (see Appendix 1). The catalog distinguishes between the most prominent features of 
viruses and leaves room for finer technical detail to be given. All catalog entries provide 
technical information obtained by reverse engineering and analysis of the virus by either our 
own team or by trusted colleagues. Moreover, new entries are checked by others before being 
published. 

In its current format (version 1.2) the Computer Virus Catalog contains the following 
information: 

- General information: name, aliases, strain, when and where detected, general 
classification. 

- Precondition: System and models, operating system and versions. 
- Easy identification: eg. texts displayed or stored. 
- Infection mechanisms, media affected, triggers. 
- Modification of the operating system: eg. interrupts hooked. 
- Damage: perminent/transient, triggers, special effects. 
- Similarities with other viruses. 
- Countermeasures as divided into the 6 catagories: 

Category 1: Monitoring of files, system vectors or areas 
Category 2: Alteration detection 
Category 3: Eradication 
Category 4: Vaccine 
Category 5: Hardware methods 
Category 6: Cryptographic methods (hard/software) 

- Tested countermeasures and standard means 
- Acknowledgements 

As the number of antivirus products grew, it quickly became impossible to test all of 
them. Apart from the catalog entries recieved from others (such as Yuval Tal, or Fridrik 
Skulason), only our own antiviruses have been mentioned in the catalog. We hope to include 
the major antivirus packages in the future. 

The current version (June-1990) describes 53 MS-DOS, 2 Macintosh, 35 Amiga and 
18 Atari viruses. 

As German viruses (such as Oropax, Hello, XA1) or other European ones (Vienna, 
Cascade) form a small (but growing) portion of the international virus scene, VTC Hamburg 
often gets viruses only some time after the threat appeared elsewhere. We therefore 
appreciate the help of colleagues all over the world; we are specially aware of the outstanding 
assistance of David Ferbrache, Christoph Fischer, Yisrael Radai, and Fridrik Skulason, who, 
by checking new versions of the Virus Catalog, serve as its editorial board. 

The catalog is published as a part of Virus Telex, a German Publication similar to 
Virus Bulletin, and on many e-mail servers throughout the world. 
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3.4. Limits of these classification methods 

On their own, both McAfee's and Radai's classifications are excellent as surveys, but 
they are not specific enough to help with the identification of a virus. The user will still need 
full-bodied reports in written form to identify a given virus. They lack information on how to 
easily detect a virus, exactly what it does, and what to do about it. Recent viruses have also 
overcome some of the most prominent features, such as file length extension. McAfee's list, 
the more structured of the two, would have to be expanded (ultimately indefinitely) to 
incorporate new features of viruses. This would lead to a great many redundant columns. 

As mentioned earlier, the Virus Bulletin list offers only little information. The 
hexadecimal patterns that it publishes can be a valuable help in detecting viruses, but may 
mislead the user in the case of a virus having the same signature string, but otherwise 
different. 

The Computer Virus Catalog's advantage is the greater detail it offers. It is fairly free-form in 
structure, which has allowed new types of viruses to be easily incorporated without actually 
changing the format of the catalog. In many cases, however, the formulation of the entries 
have left too much room for false interpretation. 

4. New efforts 

Our new efforts of classifying viruses go in the direction of more advanced uses of the 
information available on viruses. 

4.1. Machine readable version of the virus catalog 

As the number of known viruses and virus strains grow, it has become more and more 
difficult to stay informed on all of the characteristics of viruses - even for us! A solution is to 
create an information retrieval system that contains information on all viruses. A prerequisate 
to this is a machine readable form of the present Virus Catalog. 

The scope of the machine readable virus catalog entries is roughly the same as in its 
print form. It is divided into four sections: index, classification, damage, counter-measures. 

Index: 

It includes the same index information such as the name(s) and strain, and platform. 
An index number has been added as the names given to the viruses are not always unique. 
This allows the replacing of entry if it need be. This section also includes the information 
formerly supplied in the acknowledgement section. 

eg for the 1701 virus: 

VIRUS 

ID 1704.020.1; ;is a unique number given to each virus 
NAME "1701", "Cascade-B", "Herbst", "Autumn" 
FAMILY "1701" 
DETECTED "Vienna", 1988 
CLASSIFIED "Virus Test Center, M. Reinschmiedt" 
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Classification: 

The next section is the classification of the virus mechansism. We were forced to 
depart from our previous form of classifying system viruses. System viruses now only 
include viruses that infect the system without the file system being loaded. On PCs, this 
includes boot sector and partition sector viruses, but excludes viruses that only infect system 
files (such as the Lehigh virus). These are now variations of program viruses. 

The next departure resulted from an observation we had made: many viruses have 
more than one infection target and mechanism. Viruses have been found that target files as 
well as the boot sector. Many viruses also target the memory for infection, before infecting 
the files from memory. This is what we previously called 'indirect action'. This form of 
classification allows for hitherto unknown forms to be classified. 

We then go on to describe the effects of infecting each possible target, ie. how much 
memory is reserved when infecting memory, what interrupts are hooked in the process, when 
files are infected (on what interrupt), by how much the files are extended, etc. 

Such a mechanism record looks like this: 

(initiator): IF (condition)   INFECT (target) 
{ 

attributes  of the infection mechanism and the  target 
) 

eg for the 1701-virus: 

(FILE ON ".COM"): 
IF () INFECT 
(MCB M EMORY) ;uses memory control blocks 

I 
TARGET LENGTH 1728 .length in memory 
HOOK INT 21 h FN 4B00h ;hooks interrupt 21 h function 4B00h 

} 

(MEMORY ON INT 21 h FN 4B00h):     ;virus is activated in memory by 
interrupt 21 h function 4B00h 

IF () INFECT 
("*.COM" AND program.length < 65806) 

{ 

} 

TARGET LENGTH 1701 .length in file 
POSTFIX .appends itself to file 

;the virus replaces the first 
.first 3 bytes with a jump statement 
,?o the virus 

COPY program[offset 0..2] TO virus[offset 223h] 
COPY &(EBh) TO program[offset 0] 
COPY &(program.length-1701) TO program[offset 1] 

Even if this method of describing the behaviour of viruses seems more complex, it 
makes an accurate description easier, which is our aim. 
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Damage: 

The damage section is less formal. Here we only describe roughly what is affected. 
There are text fields where the damage may be further specified. Perhaps this will be 
expanded at a later date. 

Countermeasures: 

The last section describes how to identify and remove the virus. This will be 
described using virus-specific pseudo-code. 

Most of this was still under construction at the time of writing, but the structure is not 
likely to change much. 

4.2. A "Threat Description Language: TDL" 

The machine readable virus catalog is a mostly descriptive language. At the same 
time, we are working on a version of the language that contains more algorithmical details: 
TDL/V (Threat Description Language for Viruses). The goal of this project is to create the 
description of the virus knowledge to be used in an expert system capable of detecting known 
viruses as well as most unknown variants of known virus strains using data generated by an 
audit program. The TDL/V entries will be used to generate the knowledge base. 

Why an expert system? It has been proven mathematically that there is no 
algorithmical method for universally detecting viruses. The "viral property" is undecidable 
and therefore a Universal Virus Detector (UVD) cannot exist, even if many attempts are still 
made to disprove this very fundamental insight. As in many such problems, the only way to 
attempt a solution is to try the heuristical approach. If an expert system contains the 
functional patterns of all (or most) known viruses, an unknown virus that uses a similar 
pattern will be identified. 

5. Conclusion 

On September 4th 1989 at its international assembly, the EFIP issued the following 
recommendations with respect to computer viruses: 

"That in  view of the potentially  serious and even fatal consequences of the 
introduction of 'virus' programs into computer systems, the Technical and General 
Assemblies of IFIP urge; 
all computer professionals to recognize the disastrous potencial of computer viruses; 
all computer educators to impress upon their students the dangers of virus programs; 
all publishers to refrain from publication of the details of actual virus programs; 
all computer professionals worldwide not to knowingly distribute virus code, except 
in controlled and laboratory environment and all developers of virus detection and 
prevention systems to stop distribution of virus code for test purposes; 
governments,  universities  and computer  system  manufacturers  to devote more 
resources to research into and the developement of new  technologies for the 
protection of computer systems, and 
government to take action to make distribution of viruses a criminal offence." (sic) 
[IFIP89] 
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In view of these strong words, things must be rapidly done to help counter ever 
increasing number of viruses. Existing antiviral protection schemes will eventually fail, if 
they haven't done so already, in light of recently discovered viruses. To combat the problem 
in the future, more intelligent tools will be necassary. Although a universal virus detector is 
impossible, intelligent detectors with up-to-date expert knowledge might be a solution. 

One of the dangers the TDL/V may lie within the concept itself: if you have a 
function language that can describe a virus accurately enough to identify one, wouldn't that 
enable another expert program to write a functionally identical virus using that knowledge? 
Or even worse: using the entire knowledge to write a hitherto unknown virus? Such things 
must be considered and, if possible, protected against. 
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Appendix 1: 

 Computer Virus Catalog 1.2: "Virusname" (Date of Entry)  

Entry : "Virusname" (=Name of virus) 
Alias(es) : Alternate Name(s) 
Virus Strain : "Family" (if any) to which this virus belongs 
Virus detected when : Date of first appearance 

where : Where was Virus produced or first detectedfboth entries only if well-known) 
Classification : System Virus (BootSector, Command.Com, BAT V.) Link or Program Virus (Overwriting/Extending V.) Resident, Direct 

Action 
Length of Virus : I.Length (Byte) on storage medium 2.Length (Byte) in RAM 
 Preconditions  

Operating System(s) : e.g. AMIGA-DOS, ATARI-TOS, MacOS, MS-DOS, UNIX, VMS, MVS, VM 
Version/Release : Special Version of OS (e.g. UNIX System V, UNIX BSD, VMS etc) if needed, and Release (e.g. MS-DOS 3.2, UNIX 

BSD 4.2) 
Computer model(s) : The Computer models (e.g. ROM BIOS versions) on which the Virus runs. 
 Attributes   

Easy Identification : if applicable: Typical texts, either messages (e.g. screen), or texts in Virus body (readable with HexDump-facilities), 
Volume Labels etc. by which viruses may easily identified 

Type of infection : Self-Identification methods; Executable File infection(.COM,.EXE):overwriting, extending; resident; (RAM/File) Direct 
Action; WCS infection (e.g. CMOS at initialisation setup); System infection; RAM-Resident, Reset-Resident, 
Bootblock/Bootsedors, Command.Com, BAT, Device Handlers/Libraries etc; Infection of unlinked Object Files; 
Source Code Infection. 

Infection Trigger : e.g. time/date, other events, random, reset (CTRL+ALT+DEL), operations such as: DIR, execution of specific program 
(.COM/.EXE). Storage media affected: Infection of (particular) diskettes, hard disks, DiskPacks, etc. 

Interrupts hooked : Interrupts used and changed by this virus. 
Damage : Permanent Damage: e.g. overwriting bootblock, repeated restart/format, zeroing of sectors, Bad Sectors in FAT etc; 

Transient Damage: e.g. screen buffer manipulation, audio effects, blinking LEDs; Transient/Permanent Damage: 
viruses which (under specified conditions) produce parmanent damage while "normally" producing transient damage. 

Damage Trigger : e.g. time/date, value of infection counter, other events, random, reset, operations. 
Particularities : special effects e.g. process velocity slowed-down 
Similarities : dis/similarities to other viruses (either from same "family" (•strain) or different viruses); names of related viruses. 

Countermeasures : Names of tested products of Category 1 -5: 
Category 1:1 Monitoring Files: program which monitors (attempted) changes in files 
2 Monitoring System Vectors: program which monitors changes in vectors (e.g. resident, interrupt vectors) 
3 Monitoring System Areas: program which monitors System Areas such as BootSectors/Biocks. 
Category 2: Alteration Detection: a program which detects changes in given files 
Category 3: Eradication: a program which erases a specific virus code from files or from RAM (if resident) 
Category 4: Vaccine: a program which alters files (on permanent storage) or RAM resident programs such that viruses 
regard them as already infected 
Category 5: Hardware Methods: methods to detect or prevent alteration or infection of files, vectors or system areas. 
Category 6: Cryptographic Methods (Hard/Software): methods keeping programs on storage in encrypted form, and 
decrypting them before execution, 

-ditto- successful : Names of those countermeasures (of given category) which, without (or with known "small") restrictions or side effects, 
were "successful" to detect, identify, inactivate or erase the given virus or exclude infection by it. 

Standard means.: : Means in the respective System which may be used to identify/destroy this virus. 
  Acknowledgement  

Location : e.g. Virus Test Center, University Hamburg, FRG 
Classification by : Author(s) of Reverse-Engineering Document 
Documentation by : Author(s) of this Catalog Entry; Translator of Non-English document (if applicable) 
Date : Production/last Update of this Catalog Entry (this information also in the 1st line) 
Information Source : Information used for Documentation (only in cases where Reverse-Analysis was not possible). 
  — En(j 0) "Virusname"-Virus -    
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