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Introduction

In this report, we will summarize the work supported by AFOSR over the past few years.
Producing a report of vast length does not seem advisable, so the emphasis is on the word
"summarize". We would, of course, be happy to provide great detail about any of the
projects described here. The report will be organized around the three aims of the grant.
Within each aim, we will organize the information around the papers and manuscripts that
have resulted from this work.

AIM 1: Transcending the serial/parallel dichotomy in visual search: Guided
Search, our model of human visual search behavior, has proposed that "preattentive"
visual processes guide the deployment of attention from item to item in a serial, item
by-item fashion. Others have argued for deployment of attention to multiple items in
parallel. These views have been seen as opposed to one another. The work in this aim
is intended to reconcile them in a single framework.

The primary synthesis of our current views on "Guided Search" can be found in:

Our primary interest is in visual search tasks. These are tasks where an observer looks for
some target in a display containing distractors. "Classic" Guided Search (Wolfe, 1994;
Wolfe, Cave & Franzel, 1989) is a two-stage model of visual search. With support from
AFOSR, we developed Guided Search 4.0 (GS4). The basic architecture is shown here:

Non-selective processing

.... DecisionO
(Awareness?)

7A.B.

2 Objecto
Recognition

bottleneck

Selective processing

Figure One: The large-scale structure of GS4. See text for details.

Using the numbers on the figure as reference: Parallel processes in early vision (1) provide
input to object recognition processes (2) via a mandatory selective bottleneck (3). The
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parallel processes can provide information about a limited set of attributes (Wolfe &
Horowitz, 2004). Below, we discuss our most recent contributions to the understanding of
that set. The bottleneck allows one "preattentive object file" (Wolfe & Bennett, 1997) at a
time to pas to the object recognition processes at a rate of about one every 50 msec.
Another way to describe this is that the front-end of the system creates a "priority map"
(Serences & Yantis, 2006) that represents the preattentive guess about the likely location(s)
of targets. The bottleneck represents a winner-take-all (WTA) process that passes the most
likely item to the next stage. (For recent evidence for the WTA nature of selection, see
Zenon, Hamed, Duhamel & Olivier, 2009)

We model object recognition as a diffusion process (Ratcliff, 1978; Ratcliff, Gomez &
McKoon, 2004). The details of object recognition are outside the scope of our work (and a
very hard problem, altogether). Diffusion of the information required to identify a target
takes place over several hundred msec. This means that, although items are selected into
the object-recognition diffuser one at a time, several objects will be in the process of being
identified at the same time. As a consequence, GS4 is a hybrid serial/parallel model
(Moore & Wolfe, 2001; Wolfe, 2003).

As noted, the guidance in Guided Search is the use of information from early visual
processes to guide access to the selective bottleneck (3). In GS4, guidance is imagined as a
control device, sitting to one side of the pathway from input to object recognition (4). The
reason for this is that the properties of guidance tum out to differ from the processes that
give rise to perception and this is hard to explain if guidance is in the main pathway. To
give a very recent example, we have had Os search for desaturated (e.g. pink, light blue)
targets among saturated (e.g. red, blue) and white distractors. We carefully equated the
perceptual distances between targets and distractors. Thus, the perceptual distance from
pink to white was the same as the perceptual distance from light blue to white, for
example. Interestingly, search for pink among red and white was hundreds of msec faster
than search for light blue among blue and white (Kuzmova et aI., 2008). For present
purposes, the point is that pink's ability to guide differs from its perceptual salience.

GS I-GS3 were single pathway models. In GS4, we model visual processing as having two
pathways: a selective pathway and a non-selective pathway (5). The non-selective pathway
is not subject to the bottleneck in the selective pathway (3). It is capable of processes like
analysis of texture statistics (Ariely, 2001) (Chong & Treisman, 2003) and even some
crude semantic analysis of scenes ("beach" or "city street", not "comer of 4th and Main")
(Oliva & Torralba, 2001) (Oliva 2005; Potter, Staub, & O'Connor, 2004). It is not capable
of object recognition (Evans & Treisman, 2005) (Walker, Stafford, & Davis, 2008). There
is support for these ideas in recent neural data (Peelen, Fei-Fei, & Kastner, 2009).

It is probable that some relatively late information, perhaps semantic information, can
influence guidance (6). Examples include (Henderson, Brockmole, Castelhano, & Mack,
2007; J. M. Henderson & Ferreira, 2004; Hidalgo-Sotelo, Oliva, & Torralba, 2005; Vo &
Henderson, 2009). This is implied in models like Ahissar and Hochstein's "Reverse
Hierarchy Model" (Ahissar & Hochstein, 2004; Hochstein & Ahissar, 2002). We continue
to investigate this topic.
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GS4 envisions at least two bottlenecks in processing since the selective bottleneck in visual
search (3) seems to be separable from the bottleneck (7) that produces effects like the
attentional blink ("AB" in the figure, see Shapiro, 1994). For example, while some scene
processing may be possible via a non-selective pathway, perception of that scene seems to
be fully blocked by the attentional blink (Marois, Yi, & Chun, 2004)

The GS4 chapter describes the results of simulations that mimic the main results of visual
search experiments. Notably, it produces RT distributions that are qualitatively similar to
the data. Part of our work has been to better characterize RT distributions in search. This
work is summarized in two papers:

There is theoretically useful information in the distribution of reaction times in visual
search tasks. However, two difficulties stand in the way of exploiting RT distributions.
First, there are too few trials in a typical dataset and second, unlike means, RT
distributions are not trivial to combine across observers. We addressed both of those
problems in a pair ofpapers. First, we collected a very large data set, running ten observers
on 1000 trials at each of 4 set sizes in each of three search tasks: The search tasks were a
feature search, with the target defined by color; conjunction search, with the target defined
by a combination of color and orientation; and spatial configuration search, where the
target was a 2 among distractor 5~.

This large data set allows us to characterize the RT distributions in detail. Figure 2 (from
the paper) shows the individual target present and absent distributions for ten observers
performing the conjunction task:
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Figure Two: Set size versus response time.

Note that the distributions all have similar positively skewed forms. White lines are target
present distributions. Black lines are target absent. Moreover, the present and absent
distributions tend to overlap extensively (in ways that are puzzling from the point of view
of the effort to model target-absent trials).

We fit several psychologically motivated functions (ex-Gaussian, ex-Wald, Gamma, and
Weibull) to the data. All fit reasonably well so if a model had a theoretically motivated
reason to believe that the distribution should have a specific form, these data would be
supportive. That said, it is not obvious that these distributions should be fit by any very
simple function. After all, the RT will be the product of, at least, initial visual processing,
search, and the motor output. Each of these processes will have its own temporal character
and there is no reason to assume that the concatenation of the processes will result in some
simple distribution. Of more importance are the more qualitative statements that can be
made on the basis ofthe RT distribution data.

In order to make such statements, we developed a non-parametric normalization procedure,
the "x-score transform", that allows us to compare distributions via quantile alignment.
The x-score transform aligns the 25th and 75th percentiles of a distribution to any two
arbitrary values (e.g., -1 and +1, respectively). This procedure removes linear scaling
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differences in distributions while preserving non-linear properties such as skew and
kurtosis. The x-score transform tends to isolate the shapes of distributions regardless of
their original mean and variance. In the second RT distribution paper, we applied the x
score transform to the distributions from feature, conjunction, and spatial configuration
search data from the first paper. We used an iterative Kolmogorov-Smimov cluster
analysis to determine which distributions should be combined or kept separate. The most
striking finding is that, while there are some reliable differences between specific
conditions, the great majority of these normalized distributions cluster together and share a
common underlying shape across variations in set size and target presence or absence. This
finding has implications for theories of search. For example, if your model predicts that RT
distributions should change in shape as a function of set size, your model is wrong.
Regrettably, it is hard to find a model that does not predict such a change. This remains an
interesting problem for modeling. The easy way out would be to imagine that the shape of
the RT function is driven largely by non-search components but this does not seem terribly
plausible.

We have posted the data from these papers on our website so that anyone else who wants
to model RT distributions will have the distributions to model.
http://search.bwh.harvard.edu/new/data set.html

This paper represents another effort to make a qualitative distinction between two broad
classes of visual search models. Attention-limited models propose two stages ofperceptual
processing: an unlimited capacity preattentive stage and a limited-capacity selective
attention stage. Conversely, noise-limited models propose a single unlimited capacity
perceptual processing stage, with decision processes limited by perceptual signal quality.

In this study, we arranged for a feature search to be harder than a spatial configuration
search for a set size of one (not really a search at that point). Stimuli were presented briefly
so the measures of interest were accuracy and related signal detection measures, notably,
d'. Now consider what should happen if set size is increased. A single stage, parallel
processing model, will predict that, if task A is harder than B at set size 1, it must remain
harder at all set sizes. In contrast, a two-stage model (e.g. Guided Search) makes a
different prediction. Performance on the easier spatial configuration search degrades more
rapidly as set size goes up because the initial guidance stage does nothing useful for that
search. By contrast, front-end guidance can help a second decision stage in the feature
search task. The prediction would be a crossover interaction with spatial configuration
easier at small set sizes and feature search easier at larger set sizes.
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Figure Three: Results from the Palmer et al. "cross over" experiment.

Figure Three shows the results from two versions of this experiment. The data show the
clear cross-over interaction predicted by Guided Search. The useful feature of this
experiment is its qualitative nature. A cross-over interaction rules out a whole class of
models without the need engage in detailed curve fitting or parameter estimation. If your
model proposes that search for an item of one orientation and search for a 2 among 5s are
both done by a parallel process with a single decision rule, then these data will be a
problem for your model.

Consider a search for a red letter "T" among red and black letters. How is attention guided
to red items? There are several views of how this guidance might be implemented in the
visual system. First, it could be that top-down guidance acts like a filter, placed across the
input stream for an entire block of trials, effectively passing only items of the correct color
as candidates for attention as in Figure 4, below.
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Figure Four: Guidance as a filter

Alternatively, all items might be initially passed up the visual pathway, with top-down
guidance intervening only after a delay or in some feedback process to weed out items of
the wrong color.

Figures Five and Six illustrate an approach to this problem that we took in a set of
experiments. The observer was faced with a set of Cs in four possible orientations. All but
one opened up or down. The target, present on each trial, opened to the left or right, and
observers were asked to report its orientation. Each C was placed on a colored disk.
Suppose that observers knew that the target was always on a gray disk (We used color in
the actual experiment). If the top-down guidance to gray acted like a persistent filter, then
that filter should reduce the effective set size to the set of four gray items. If no guidance
were available, this would be a search through the 16 Cs on the left side of the figure.

To examine the temporal dynamics of guidance, we varied the time of onset of the colors
relative to the onset of the Cs (Figure Five).
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Figure Five: Hypothetical outcomes for the time-to-guide experiments. Solid line
assumes that color guidance is available as soon as the color is available. Dashed line
assumes that guidance begins about 300 msec after the color becomes available.

Consider a simple, two-state model. At any moment, observers are either searching
through all 16 items in an unguided manner, or they are restricting their search to the four
items of the target color. For simplicity, assume that there is a sharp transition between
those two states. Suppose that the Cs appear 400 msec before the color cue (SOA = -400 in
Figure Five). When the Cs appear, observers must begin by searching through 16 items
because there is no guiding information. After 400 msec, the color information appears.
Once it becomes effective, this becomes a search through four items. The RT, therefore, is
a mixture distribution of some purely unguided searches, when the observer finds the
target before the color ever appears, and some that benefit from eventual guidance. As the
SOA becomes increasingly negative, there is a greater chance that the search will finish
before the color becomes available. At the longest negative SOAs, RTs should
approximate the 16-item baseline, the time required to find a target when there is no color
guidance. The four-item baseline is the RT for an unguided search through a set of just
four items.

The solid curved line in the bottom half of Figure Five illustrates the prediction if guidance
starts as soon as the guiding information is presented (solid line). For any positive SOA,
the task looks like search through just 4 items. The dashed line shows what the results
would look like for a hypothetical 300 msec delay in guidance. The search doesn't look
like a 4-item search until the colors precede the Cs by 300 msec.
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Figure Six: Results for one set of time-to-guide experiments. Black line shows data
from Blocked trials. Gray line shows data for Mixed trials with consistent mapping of
target and distractor colors. The dashed line shows data for Mixed trials with
inconsistent mapping.

Figure Six shows average of the median RTs for 15 observers. Each observer was tested
for 30 trials at each of 13 SOAs. Each observer also completed 27 trials ofunguided search
with set sizes of4 and 16 items to establish the baselines, plotted as horizontal lines at their
median value.

The most important data are those plotted in black. They show the results for a blocked
condition where observers knew that the 4 item subset containing the target would always
be the same color (e.g. "Look for red"). The 12 distractors also preserved the same
distractor color for the entire block. Performance at SOA 0 is significantly above the
baseline. This argues that, even under conditions when an observer can maintain the same
'guiding principles' for an entire block of hundreds of trials, guidance takes time to
develop on any given trial. Apparently, when the stimuli first appear, everyone is passed
through as a candidate target. Only after 200-300 msec does guidance become fully
effective.

The gray line shows a consistent mapping condition in which Os knew that some colors
(e.g. red, purple, blue) were target colors and others (e.g. yellow, green, cyan) were
distractor colors but where the specific colors could vary from trial to trial. This produces
similar results to the blocked condition. In contrast, the dashed line shows data from
conditions where Os knew only that the target would be in the smaller color subset but the
colors changed at random from trial to trial. Under these conditions, full guidance took
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much longer to establish. This can be considered to be a version of a switch cost (Wylie &
Allport, 2000) (Mayr & Kliegl, 2003).

Guiding Features

As part of the effort to understand guidance, we carried out several series experiments on
the attributes that might guide attention. We describe these briefly here:

We know that motion is a basic guiding attribute (e.g. find the moving item among
stationary) (Dick, Ullman, & Sagi, 1987; McLeod, Driver, & Crisp, 1988). Here we asked
if it is possible to search for items based on their type ofmotion? We examined three types
of motion: 1) ballistic motion, in which objects move in a straight line until they encounter
an obstacle; 2) random walk motion, in which objects change direction randomly; 3)
composite motion, in which objects move with random fluctuations around a generally
ballistic trajectory. The data, a complicated pattern of search asymmetries, can be modeled
ifwe assume that Os can guide attention using processes sensitive to the presence of linear
motion and change in motion. The results do not support the idea that we have a more
sophisticated ability to segregate items based on the nature of their motion.

In these experiments, we considered whether attention could be guided by Kanizsa-type
subjective contours and by subjective contours induced by line ends. This is a topic with
some history (Davis & Driver, 1994; Davis & Driver, 1998; Gurnsey, Humphrey, &
Kapitan, 1992; Gurnsey, Poirier, & Gascon, 1996). In our work, unlike in previous
experiments, we compared search performance with subjective contours against
performance with real, luminance contours. Moreover, observers searched for shapes and
orientations or shapes created by the subjective contours, rather than searching for the
presence of the contours themselves. We replicated the usual finding that visual search for
one orientation or shape among distractors of another orientation or shape was efficient
when the items were defined by luminance contours. Search was much less efficient
among items defined by Kanizsa-type subjective contours. However, search remained
efficient when the items were defined by subjective contours induced by line ends. This
may reflect a difference in the underlying neural computations that support these types of
subjective contours.
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These experiments involved stimuli like those shown
here in Figure Seven. Os search for a T among Ls. We
could provide "classic" guidance by telling Os that the
T, ifpresent, would be yellow. Alternatively, we could
guide to the surface. Here, the cue would be that the T
was on a left-facing surface. We can certainly us some
sort of surface guidance in the world. If you were
asked to look for a painting, you would look on walls,
not floors or ceilings, for example. We wanted to
know if the two forms of guidance are equivalent. As the title of the paper states, they are
not. When a target can lie on one of many surfaces, color guidance is effective but surface
guidance is not (Exp. 1-3 of the paper). We found that there was effective guidance to
multiple cubes if all those cubes were coplanar. In that case, Os could guide to the coplanar
tops of the cubes (Exp. 4). Similarly, Os could guide to a limited number of surfaces (Exp.
5). We believe that, while surface guidance must exist, it is slow compared to color
guidance and seems to be limited to fewer surfaces at one time.

a

b

c

d

e

f

Figure Eight: Do occluded bars behave like 'real' bars in visual search.

In this project, we were concerned with the ability of preattentive processes to complete
contours behind occluders. Searching for vertical among horizontals using stimuli like
those in Fig. 8a,b is very easy. What about the stimuli in 8c,d? Is the orientation of those
occluded bars available to guide search or not. Fig 8e,f show stimuli for control conditions.
In a rather long series of experiments, we have found that it is possible to create conditions
where the occluded bars support efficient search and the control conditions do not.
However, the effect is rather fragile suggesting that the orientation signal created by those
occluded bars is rather weak.
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Contextual Cueing

About 10 years ago, Chun and Jiang (1998) described a new phenomenon that they called
"contextual cueing". They showed that RTs became faster if the same search displays were
repeated. Observers learned something about the displays even though theses were random
collections of meaningless stimuli (e.g. Ts among Ls). Chun and Jiang (and many others
since) argued that this was a form of guidance. The believed that Os were implicitly
learning that they should guide attention to this location in the presence of this
arrangement of items. Such a phenomenon with such an explanation is of obvious
relevance to our Guided Search project.

Most of the work on contextual cueing (CC) had used mean RT as the measure of interest.
However, if one is interested in guidance, the critical measure is the slope of the RT x set
size function. Indeed, if CC provided perfect guidance, slopes should drop to zero. The
display configuration would point the observer directly to the target, regardless of the
number of distractors present. We did an extensive series of CC experiments with set size
manipulations and simply could not find an effect of CC on search efficiency. We could
replicate the basic CC effect on RT but the slope did not change. We, reluctantly, conclude
that CC is not a form of guidance. Our guess is that it is a form of response priming. You
are a bit faster to say that the target is the target if it is in a familiar setting.

At some level, we must be wrong about this. You can certainly use your overt knowledge
of ascene to guide your attention. You look for your coffee maker in a specific location
because you have learned and remembered that context. The issue might be one of time
scale. In another series of experiments, we found that we could get a form of CC guidance
if we slowed search. If there was enough time, knowledge about the layout of a display
could be used to direct attention to target locations.

We extended the CC phenomenon to what we call global features. For the bulk of the
studies report here, the global feature was color. This meant that, if the display was red, the
target could be found in one location. If it was blue, the target was consistently presented
in another location, and so forth. The results are similar in their essentials to the classic
CC. Os could learn the association between color and target location. This learning
speeded RTs but did not change the slope of the RT X set size function, suggesting no
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guidance. However, if a relatively long delay intervened between the appearance of the
global cue and the start of the search, then search efficiency could be improved.

One final piece of information about contextual cueing: Nothing seems to be learned on
target absent trials. On the face of it, there is no good reason why Os should not learn that
this display configuration means that there no target. However, that does not seem to be the
case.

Microsaccades

One of our long-time fantasies has been that someone would develop a "covert attention
tracker", akin to an eye tracker. If we assume that it is being deployed from item to item,
covert attention is being deployed at a rate of something like 20-40 Hz. Under most
circumstances, the deployment of the eyes is closely tied to the deployment of attention but
at a slower rate of 3-4 Hz. Thus, we were excited by reports that microsaccadic eye
movements might serve as pointers to the loci of covert attention (Engbert & Kliegl, 2003).
Unfortunately, in our hands, as the title says these "eye movements are not an index of
covert attention." This is not a settled issue (hence the second article). However, we still
await a method that would allow tracking of covert attention within a trial.

AIM 2: Understanding the role of memory in visual search: Standard serial models
of attention have assumed that items in the display are sampled without replacement. In
the previous grant period, we have shown that the data reject this assertion of perfect
memory for rejected distractors. We have proposed that items are sample with
replacement in typical search tasks. Data from other labs suggest the possibility that
some partial memory (perhaps oculomotor) discourages deployment to recently
attended items. In the next grant period, we will investigate the theoretical and practical
consequences of visual search with limited memory for previous deployments of
attention.
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Several aspects of the role of memory in visual search have interested us during the grant
period. The original roots of our interest lie in our 1998 finding that, as we put it, "Visual
search has no memory." (Horowitz & Wolfe, 1998). This claim was based on a series of
experiments in which items in a visual search task were randomly repositioned every 100
msec (or every 500 msec in some experiments). This makes it impossible to mark rejected
distractors. If it were the case that rejected distractors were marked to eliminate them as
candidate targets in normal search, then random replotting should make search efficiency
significantly worse. In fact, search efficiency is about the same in the standard static and
the dynamic, replotting conditions.

Our claim of no memory for rejected distractors has proven controversial (Beck, Peterson,
& Vomela, 2006; Dukewich & Klein, 2005; Kristjansson, 2000; McCarley, Wang, Kramer,
Irwin, & Peterson, 2003; Peterson, Kramer, Wang, Irwin, & McCarley, 2001; Shore &
Klein, 2000? von Muhlenen, Muller, & Muller, 2003). Though we continued to find no
reliable evidence for marking of rejected distractors (Horowitz & Wolfe, 2001), others,
using different methods, found some. There are various possibilities. It may be that there is
memory attached to the deployment of the eyes, if not to the deployment of covert
attention. It may be that there is some memory for a few deployments of covert attention.
Our position, as argued in the papers noted here, is that a reasonable consensus might be
that "visual search has very little memory". It may have just enough to prevent
perseveration in search. If there is nothing biasing observers away from recently visited
items, it is hard to see why attention doesn't get stuck on the most salient item in the field.

Memory & Search In Autistic Observers

Special populations of observers can provide insight into the mechanisms of search. It is
interesting, therefore, to find that individuals diagnosed with Autism Spectrum Disorder
(ASD) outperform controls on visual search tasks (O'Riordan, Plaisted,Driver, & Baron
Cohen, 2001; Plaisted, O'Riordan, & Baron-Cohen, 1998). We wondered if this was due to
superior memory for rejected distractors. Maybe visual search does have memory in the
autistic population.

To assess this possibility, we compared the performance of 21 children with ASD and 21
age- and IQ-matched typically developing (TD) children in a standard static search task
and a dynamic search task, like those describe above, with targets and distractors randomly
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changing positions every 500 ms. The ASD observers had faster RTs than the TD children.
However, as in our previous work, they showed no disruption in search efficiency in the
dynamic condition. If they had memory for rejected distractors in the static search
conditions, then they should have had elevated RT x set size slopes in the dynamic case.
Thus, it seems unlikely that memory for rejected distractors is the source of the enhanced
visual search abilities in the ASD group.

While there were differences in slopes, there were lower intercepts for the ASD group in
both static and dynamic search, suggesting that the ASD group has an advantage in some
non-search processes. We suspect that they are faster to determine if the current object of
attention is a target or a distractor. We gain some support for this from eye-movement data.
ASD and TD groups produced similar in numbers and spatial distributions of fixations.
However, fixation duration was in the ASD group as if they needed to spend less time on
each fixation.

Why Don't We Use Memory?

As noted above, all of these failures to show an influence of memory are a bit mysterious
since it is self-evidently true that we can use memory in search. We explored this puzzle in
a follow-up on studies of repeated search (largely the topic of a different grant and not
extensively discussed here). The core observation is that search efficiency remains
essentially unchanged even when Os search through the same, unchanging display
hundreds of times (Wolfe, Klempen, & Dahlen, 2000). In our standard, repeated search
experiments, Os search through an array of letters. Why doesn't the search become more
efficient? Certainly Os know where the "K" or the "Q" are after a few dozen trials. They
could do the task with there eyes closed. We didn't have Os close their eyes. We simply
removed the display and had Os make a localizing mouse click on the remembered
location of the target letter. When Os make these localizing responses on visible displays,
the slope of the RT x set size function is about 35 msec/item. Os can do the task with
memory, but the slope is about 100 msec/item. So, here is a case where Os do not use
memory because it is too slow. It is more efficient to do the visual search de novo than to
rely on memory.

Similarly, within a search, we suspect that memory processes are slow. They do not playa
role in a standard, laboratory search for a T among Ls. However, in a real world search,
strategic planning can playa role (e.g. I remember looking on the desk. The keys were not
there. I will turn my attention to the sofa.)

AIM 3: The relationship of different modes of attentional control. There are
multiple processes that can control attention. Some of these appear to be very fast.
Others are closely coupled with eye movements. The work in Aim 3 is intended to
determine how these share control ofvisual attentional resources.
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In the lab, we tend to examine search (or other processes) in relative isolation. In the
world, several tasks may be running at the same time. The papers described in this section
are united by their concern with the interaction of search with other processes.

We begin with a set of experiments on what we, somewhat expansively, call "free will".
The original question grew out of our work on memory in search. Recall that our data
show little or no memory for the course of a search. This seems odd. In a random display
where the target could be anywhere, one could produce the same benefits offered by
perfect memory if one merely searched the display in order. Any order will do, but one can
imagine "reading" the array from upper left to lower right. In an earlier paper (Wolfe,
Alvarez, & Horowitz, 2000), we compare search under conditions that allowed covert
attention to be deployed in each usual anarchic manner to other conditions in which
attention was moved by an act of volition from item to item. We estimated the time
required for each type of deployment and found that anarchic deployments were fast (35
100 msec per shift) while volitional deployments were slow (200-300 msec per shift).

The 2000 paper was a very short report. In the 2009 paper, we report on a much more
extensive set of experiments that provide converging evidence for this point. Volitional
control of the deployments of attention is possible but it is much slower than the free
running deployments that occur when our personal "search engine" is given a task and left
to solve it in any manner it chooses. It seems more than coincidental that the speed of
volitional attentional deployments is very similar to the rate of saccadic eye movements.
We suspect that the underlying mechanisms are related.

Pursuing this connection between movements of the eyes and movements of attention, we
devised a task in which attention either made ballistic (saccadic) movements from point to
point or tracked a moving target (pursuit). We found that pursuit was faster than saccadic
jumps in this case. The broader point is that the control of attentional pursuit is different
than the control of attentional saccades.

Alvarez,
Search
Hum Perce

Multiple object tracking (MOT) can be thought of a form of attention pursuit. In a display
of several identical items, a subset is briefly highlighted. All items then begin to move and
the observer's task is to track the designated subset. This task certainly takes 'attention'.
How is the resource, used in MOT, related to the attentional resources required in visual
search? To answer this question, we had as perform both tasks during a single trial. as
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began tracking a set of dots. At some point, a search array appeared and Os were asked
perform a search task while still being able to report on the tracked set when asked later.
We used an "attentional operating characteristic" (AOC) method to determine if the two
tasks interfered with each other (Sperling & Melchner, 1978). Measured in this manner, we
found that the two tasks did not interfere any more than other essentially independent
tasks.

We did notice that RTs in the search task were much longer when Os were also tracking.
We developed the hypothesis that Os can task switch between search and MOT. In effect,
it is possible to put down the tracked balls, perform a few hundred msec of search, and then
return to the MOT task. This observation is sufficiently interesting that it has lead to an
separate line of investigation. The primary funding for that work comes from another
grant. However, it can be seen as a logical extension of the work in Aim 3 on the
interaction of different modes of attention. The primary publications in this line are shown
below.

CHAPTERS

Finally, we note that AFOSR funding was instrumental in the preparation of several review
chapters on visual search:
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