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Abstract 
 
The Defense Applied Research Projects Agency (DARPA) Learning Applied to Ground Vehicles (LAGR) 
program aims to develop algorithms for autonomous vehicle navigation that learn how to operate in com-
plex terrain. Over many years, the National Institute of Standards and Technology (NIST) has developed a 
reference model control system architecture called 4D/RCS that has been applied to many kinds of robot 
control, including autonomous vehicle control. For the LAGR program, NIST has embedded learning into a 
4D/RCS controller to enable the small robot used in the program to learn to navigate through a range of 
terrain types. The vehicle learns in several ways. These include learning by example, learning by experi-
ence, and learning how to optimize traversal. Learning takes place in the sensory processing, world model-
ing, and behavior generation parts of the control system. The 4D/RCS architecture is explained in the paper, 
its application to LAGR is described, and the learning algorithms are discussed. Results are shown of the 
performance of the NIST control system on independently-conducted tests. Further work on the system and 
its learning capabilities is discussed. 

1. Introduction 
The DARPA LAGR program [1] aims to develop algorithms that will enable a robotic 
vehicle to travel through complex terrain without having to rely on hand-tuned algorithms 
that only apply in limited environments. The goal is to enable the control system of the 
vehicle to learn which areas are traversable and how to avoid areas that are impassable or 
that limit the mobility of the vehicle. To accomplish this goal, the program provided 
small robotic vehicles to each of the participants (Figure 1). The vehicles are used by the 
teams to develop software. A separate LAGR Government Team, with an identical vehi-
cle, conducts tests of the software each month.  
 
The vehicle provided by DARPA is a small but very capable robot with substantial on-
board processing capacity and a rich set of sensors. The sensors include two pairs of color 
cameras mounted on a turret on the front of the vehicle, a pair of infra-red range sensors 
(non-contact bumpers) on the front of the vehicle, and a physical bumper centered on the 
front wheels of the vehicle. For position sensing, the vehicle has a Global Positioning 
System (GPS) sensor, wheel encoders, and an inertial navigation system (INS). In addi-
tion, there are sensors for motor current, battery level, and temperature.  There are four 
single-board computers on the vehicle, one for low-level vehicle control, one for each of 
the stereo camera pairs, and one for overall control of the vehicle. All processors use the 
Linux operating system. The vehicle has an internal Ethernet network connecting the 
processors, and a wireless Ethernet link to external processors.  
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Figure 1. The small robot used in the DARPA LAGR program. 

The availability of range information from stereo vision enables the robot to navigate 
largely using the geometry of the scene. Another viable approach is to use the topology of 
the surrounding space [2]. We chose to use a geometric approach, although both are com-
patible with the 4D/RCS architecture. Sensor processing is aimed at determining where 
the vehicle is and what parts of the world around it are traversable. The robot can then 
plan a path over the traversable region to get to its goal. A typical range sensor will not be 
able to provide reliable range very far in front of the vehicle, and it is part of the aim of 
this work to extend the traversability analysis beyond the range sensing limit. This is 
done by associating traversability with appearance, under the assumption that regions that 
look similar will have similar traversability. Because there is no direct relationship be-
tween traversability and appearance, the system must learn the correspondence from ex-
amples and from experience. 
 
One of the expectations in the LAGR program is that the vehicle will learn to do without 
stereo vision at times, so it must learn to distinguish traversable terrain from non-
traversable terrain based on other sensor inputs. The main sensors we use to do this are 
the color cameras (monocular) and the bumper sensors. We also use the position sensors 
to tell if we are traversing terrain we have previously driven over, in which case we may 
have a map, or a remembered path, or a traversability model. Further, if we are traversing 
terrain that has already been modeled, we use the fact that the vehicle is able to cross a 
region to modify the traversability models for this terrain. Similarly, if the bumpers hit an 
object, this fact is remembered in maps and in traversability models. 
 
The NIST team took the approach of building a control system for the vehicle based on 
the 4D/RCS (Four Dimensional/Real-Time Control System) architecture [3,4]. 4D/RCS is 
a version of the NIST RCS reference control system architecture that is specially oriented 
towards robotic vehicles. It is described in Section 2, while the operator interface is de-
scribed in Section  6. For the LAGR program, the team is embedding learning modules 
into the control architecture. The team has developed learning algorithms for the sensory 
processing (Section  3.1), world modeling (Section  4), and behavior generation (Section 
 5) parts of the control system. The sensory processing algorithms try to learn from cam-
era images the appearance of regions that are safe to traverse (which we call ground re-
gions) and those that are not traversable (obstacles). More precisely, the algorithms pro-
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vide an estimate of the cost of traversing a region rather than a single label of obstacle or 
ground. The world modeling modules remember maps of known regions with their asso-
ciated traversabilities, while for behavior generation the system remembers paths taken 
when previously traversing a region. It can then optimize paths through these regions by 
avoiding regions with poor traversability and control the speed of the vehicle based on its 
knowledge of the local traversability. 
 
Learning has been applied to computer vision for a variety of applications, including 
traversability prediction. Wellington and Stentz [5] predicted the load-bearing surface 
under vegetation by extracting features from range data and associating them with the 
actual surface height measured when the vehicle drove over the corresponding terrain. 
The system learned a mapping from terrain features to surface height using a technique 
called locally weighted regression. Learning was done in a map domain. We also use a 
map in the current work, although it is a two dimensional (2D) rather than a three dimen-
sional (3D) map, and we also make use of the information gained when driving over ter-
rain to update traversability estimates, although not as the primary source of traversability 
information. The models we construct are not based on range information, however, since 
this would prevent the extrapolation of the traversability prediction to regions where 
range is not available. 
 
Howard et al. [6] presented a learning approach to determining terrain traversability 
based on fuzzy logic. A human expert was used to train a fuzzy terrain classifier based on 
terrain roughness and slope measures computed from stereo imagery. The fuzzy logic 
approach was also adopted by Shirkhodaie et al. [7], who applied a set of texture meas-
ures to windows of an image followed by a fuzzy classifier and region growing to locate 
traversable parts of the image. 
 
The problem faced by a robot of finding a path to a goal point is a feedback control prob-
lem. The sensed feedback information comes from the cameras, Global Positioning Sys-
tem (GPS), etc.  The actuators are the drive motors on the wheels. The on-board com-
puter implements the feedback controller that drives the vehicle position (part of the 
state) to the goal position. It is for this reason that there are similarities between learning 
methods for robots and the field of adaptive control (sometimes called learning control). 
The closest relationships are to the area of “on-line approximation based feedback con-
trol” [8], and in particular the “indirect adaptive control strategy” where a parameterized 
nonlinear map (e.g., implemented by a fuzzy or neural system) is adjusted to represent 
the process (environment) and then control decisions are based on that map. Stability, 
convergence, and robustness analysis is conducted for such feedback systems and princi-
ples of operation offer insights into the design of navigation methods for learning robots 
(e.g., the use of the notion of “probing” the environment vs. making progress toward 
reaching the goal, one of the most central ideas in adaptive control). Moreover, extended 
notions of adaptive control use learned models for planning and route selection by marry-
ing ideas in adaptive and “model predictive control” [9].  Indeed, the map-based strategy 
here is an excellent example of how successful such approaches can be. 
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The notions of learning we use in this paper arose in the field of psychology.  First, the 
most basic low levels of learning represented by the notions of “habituation” and “sensi-
tization” [10] are embedded in our algorithms. If the robot learns via multiple sensor in-
puts that an area is traversable, then it has been habituated to that input (it has learned to 
ignore information and go ahead and travel in a direction). Correspondingly, if the robot 
has learned that some sensory inputs correspond to a lack of traversability, then if such 
situations are encountered again the robot is sensitized and hence may not make the same 
attempts to travel through nontraversable areas as it did in the past. Such learning in the 
form of habituation and sensitization sets the foundation for the elements of “classical 
and operant conditioning” [10] that occur in our robot. Our cell update strategies corre-
spond to learning strategies where via repeated sensory inputs it can learn to associate 
sensed features with a lack of traversability or good traversability so that the basics of 
classical conditioning are present. Indeed, our robot can exhibit the property of “block-
ing” since in learning it can initially use some sensed information to determine traver-
sability, and then later when there are other learning opportunities, it will at times ignore 
new sensory information (model updates) since it is confident that for instance more sen-
sory verification of the model is not needed.  With respect to the “behaviorist” approach 
to operant conditioning, if the robot senses some scene and it has learned that certain fea-
tures are associated with rewards (getting closer to the goal by making forward progress), 
it will try to apply the same actions that were successful before, leading to the 
“Thorndike’s effect” similar to what occurs in a “Skinner box” [10].  And, such opportu-
nities for conditioning can occur during a single attempt by the robot to find a goal point 
via storage, updating, and later use of information in our maps as the robot travels. More-
over, our learned maps can be used between trials so that on successive attempts the robot 
learns how to direct its behavior to succeed even faster; hence, a basic property of 
“speed-up” in the rate of reward acquisition seen experimentally in rats in mazes [10] can 
also be exhibited by our system.  Finally, we note that our use of maps is quite similar to 
the idea that animals and humans build (learn) and use “cognitive maps” of their envi-
ronment for planning spatial movement ([11]; [12]; [13]). 
 

2. The 4D/RCS architecture 
 
The 4D/RCS architecture specifies a multi-resolution hierarchy containing multiple levels 
of generic computational nodes[3,4]. Each node contains sensory processing (SP), world 
modeling (WM), value judgment (VG), and behavior generation (BG) modules, as well 
as a knowledge database (Figure 2). Commands come in to each node from a higher level 
in the hierarchy, usually in the form of actions to be taken. These actions are broken 
down into a list of sub-actions by the behavior generation module, based on its interac-
tions with the world model, value-judgment and, indirectly, sensory processing modules. 
The sub-actions are passed down to the next lowest level. At the bottom of the hierarchy, 
the BG modules operate actuators that cause changes in the real world. Information also 
passes up the hierarchy, usually in the form of status information for behavior generation, 
and in the form of partially processed sensory data for sensory processing and summa-
rized map information for world modeling. 
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Each node within the hierarchy functions as a goal-driven, model-based, closed-loop con-
troller.  It is capable of accepting and decomposing task commands into actions that ac-
complish task goals despite unexpected conditions and dynamic perturbations in the 
world. At the heart of the control loop through each node is a rich, dynamic world model 
that provides the node with an internal model of the external world (Figure 3).  In each 
node, the world model provides a site for data fusion, acts as a buffer between perception 
and behavior, and supports both sensory processing and behavior generation. 
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Figure 2. Internal structure of a 4D/RCS NODE. 
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Figure 3. The fundamental structure of a 4D/RCS control loop. 

 
In support of behavior generation, the world model provides knowledge of the environ-
ment with a range and resolution in space and time that is appropriate to task decomposi-
tion and control decisions that are the responsibility of that node.  The world model also 
provides simulation and modeling for planning and reasoning about the future. This en-
ables behavior generation to plan and control actions that are most likely to achieve the 
given goal at minimum cost and maximum benefit. In support of sensory processing, the 
world model provides predictions that can be matched with observations for recursive 
estimation and Kalman filtering.  The world model can also provide hypotheses for ge-
stalt grouping and segmentation.  Thus, each node in the 4D/RCS hierarchy is an intelli-
gent system that accepts goals from above and generates commands for subordinates so 
as to achieve those goals. 

 5



 
The centrality of the world model to each control loop is a principal distinguishing fea-
ture between 4D/RCS and behaviorist (i.e., purely reactive) architectures [14,15].  Behav-
iorist architectures rely solely on sensory feedback from the world.  They do not fuse in-
formation from multiple sensors over time, nor do they integrate sensory feedback with a 
priori knowledge.  All behavior is a reaction to immediate sensory feedback.  In contrast, 
the 4D/RCS world model integrates all available knowledge into an internal representa-
tion that is far richer and more complete than is available from immediate sensory feed-
back alone.  This enables more sophisticated behavior than can be achieved from purely 
reactive systems. 
 
The character and structure of the world model also distinguishes 4D/RCS from conven-
tional artificial intelligence (AI) architectures.  Most AI world models are purely sym-
bolic.  In 4D/RCS, the world model is much more than a symbolic abstraction of the 
world.  It is, rather, a combination of instantaneous signal values from sensors, state vari-
ables, images, and maps that are linked to symbolic representations of entities, events, 
objects, classes, situations, and relationships in a composite of immediate experience, 
short-term memory, and long-term memory. Real-time performance in modeling and 
planning is achieved by restricting the range and resolution of maps and data structures to 
what is required by the behavior generation module at each level.  Short range and high 
resolution maps are implemented in the lowest level, with longer range and lower resolu-
tion maps at the higher level. 
 
Sensory processing modules pass information up the hierarchy, starting at the bottom 
with input from the sensors. At each level, more and more complex processing is done, 
and higher and higher levels of grouping and classification are carried out. The world 
model at each level serves as a buffer between sensory processing and behavior genera-
tion, fuses and manages information coming in from the sensory processing and behavior 
generation modules, and keeps the internal model of the world up to date. 
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Figure 4. The basic internal structure of a 4D/RCS control loop.   

 
At every level, events are detected, objects recognized, situations analyzed, and status 
reported to superiors at the next higher level.  The world model at each level enables the 
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intelligent system to analyze the past, plan for the future, and perceive sensory informa-
tion in the context of expectations. A set of cost functions enable value judgments and 
determine priorities that support intelligent decision making, planning, and situation 
analysis.  This provides a robust form of value driven behavior that can function effec-
tively in an environment filled with uncertainties and unpredictable events. At the lower 
levels of the hierarchy, closer to the real world on which the system acts, modules operate 
with short update rates on small distances at high resolution. This enables high precision 
and quick response to be achieved over short intervals of time and space. At each succes-
sively higher level, range in space and time increase by about an order of magnitude, ac-
companied by an order of magnitude decrease in resolution. 
 
4D/RCS is a hybrid architecture, with both deliberative (reasoning and planning) and re-
active (rapid response to exigencies) capabilities.  Each level of the control hierarchy in-
cludes deliberative planning processes that receive goals and priorities from superiors and 
decompose them into subgoals and priorities for subordinates at levels below.  Each level 
also has reactive loops that respond quickly to feedback to modify planned actions so that 
goals are accomplished despite unexpected events.  Thus, planning and decision making 
are distributed throughout the hierarchy.  At every level, plans are formulated, decisions 
are made, and reactive actions are taken locally by the units that are most affected and 
best able to analyze the situation and respond effectively.  
 
For the LAGR program, a two-level hierarchy is being implemented (Figure 5). This has 
been all that is necessary for the small size of the LAGR test courses (typically about 100 
m on a side) and the relatively short duration of the test missions (typically less than 4 
minutes). In the second phase of the LAGR program, the small robot will be replaced 
with a much larger vehicle (the Spinner vehicle). For this vehicle, additional levels of the 
hierarchy will need to be added, especially if the complexity of the missions is increased.  
 
In a typical 4D/RCS system, there would be a level below the lowest LAGR level imple-
mented, which would directly interface with the sensors and actuators. The lowest level 
actuators and sensors are not, however, directly available to the 4D/RCS system in the 
LAGR vehicle implementation, but must be accessed through an interface provided by 
the system. Thus, the lowest 4D/RCS level sends commands to this interface and receives 
status from the interface instead of communicating directly with the hardware on the sys-
tem. The modules of the system will be described in the next section. We conclude this 
section with an overview of the way that communications are implemented. 

2.1. Inter-Process Communication 
A very rich interconnection is established between modules at each level and across lev-
els in the hierarchy (Figure 2). In practice, levels and modules can be scattered across 
multiple processors on multiple systems, perhaps with different operating systems, pro-
gramming languages, and hardware architectures. The physical links can range from 
shared memory to wide-area networks. All the complexities of inter-process communica-
tions are hidden from the 4D/RCS implementation through system-wide use of the Neu-
tral Messaging Language (NML) [16]. Extensive documentation and complete source 
code for both NML and RCS (the architecture underlying 4D/RCS) are available at [17]. 
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Figure 5. Two-level instantition of the 4D/RCS hierarchy for LAGR. For clarity, not all the interac-

tions are shown. 

 
NML provides a uniform way of sending information between processes. It implements 
an Application Programmer’s Interface (API) to communication functions that include 
many popular protocols: intra-process shared memory; inter-processor backplane global 
memory; and Internet networking. NML implements a mailbox model for communica-
tion, with both queued- and non-queued access, blocking- and non-blocking reads and 
writes, and multiple readers and writers. NML provides language bindings for C++ and 
Java. The protocol parameters are contained in configuration files that are read at run 
time, so that a system’s allocation of processes to processors can be deferred as late as 
desired and modified dynamically. NML handles mutual exclusion for data integrity, and 
converts between native machine format and neutral data encoding when necessary. 
 
The sender and receiver of an NML message need to agree ahead of time on the format of 
the message and what behavior should result from its transmission. There is no restriction 
on what messages can mean, but typically they contain commands, status, sensory proc-
essing data, or world model information. Messages typically range in size from a few 
bytes to hundreds of kilobytes, and can be of fixed or variable length. There is no limit to 
message size other than practical memory limits. A valuable advantage of this messaging 
approach to communication is that an operator can have access to all the message buffers 
to either monitor what is happening in the system or to modify it by inserting information 
into one or more buffers. The operator control interface described in Section 26 makes 
extensive use of this capability. 
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3. 4D/RCS Mapped to LAGR 
 
We describe the modules that have been implemented in the two-level 4D/RCS hierarchy 
that controls the LAGR vehicle. These include two levels each of sensory processing, 
world modeling, and behavior generation. The value judgment modules have not been 
independently implemented; their functionality is shared between the world model and 
behavior generation modules. We also describe the operator control interface developed 
to monitor and control the system. Example output of the sensory processing and map 
building are shown both in the relevant sections and in the description of the operator 
control unit. All examples are taken from log files of runs of the system by the LAGR 
Government Team. 

3.1. Sensory Processing 
 
The sensor processing column in the 4D/RCS hierarchy for LAGR will be described from 
the bottom up. It starts with the sensors. Those used in the sensory processing module 
include the two pairs of stereo color cameras, the physical bumper and infra-red bumper 
sensors, the motor current sensor (for terrain resistance), and the navigation sensors 
(GPS, wheel encoder, and INS). Sensory processing modules include a stereo obstacle 
detection module, a bumper obstacle detection module, an infrared obstacle detection 
module, an image classification module, and a terrain slipperyness detection module. We 
describe only those components that are important for learning. 

3.1.1. Stereo Vision 
Stereo vision is primarily used for detecting obstacles, while the individual color camera 
data are used for classification and learning. Stereo processing takes place in the lowest 
SP level, SP1. We use the very efficient SRI Stereo Vision Engine [18] to process pairs of 
images from the two stereo camera pairs. This algorithm computes rectification to re-
move distortion from images and extracts features by computing the Laplacian of Gaus-
sian for each image. Next, correlation computes disparities by matching. Uncertain 
matches are removed in a filtering stage, and finally disparities are converted to 3D 
points. The 3D points are associated with registered color data and pixel locations in the 
reference image. 
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Figure 6. A single vertical scanline detecting the ground.  Pixel 0 corresponds to the elevation of the 
vehicle’s wheels.  Pixels 1, 2, 3, 8 and 9 are ground pixels due to shallow slopes.  Pixel 4, 5, 6 and 7 are 

obstacles due to steeper slopes.  The slopes are shown by the direction vectors on the bottom of the figure 

Obstacles are defined as objects that project more than some distance d above or below 
the ground. Positive obstacles are detected in the range images, while negative obstacles 
are detected in the world model map [19]. The algorithm scans column by column in the 
image, starting with a point known to be on the ground. An initial ground value is as-
signed at the location where the front wheels of the vehicle touch the ground, known 
from Inertial Navigational System (INS) and GPS sensors. A pixel is labeled a positive 
obstacle if it rises high enough and abruptly enough from the ground plane (Figure 6).  
 
The negative obstacle detection algorithm maintains its own high-resolution ground map 
centered on the vehicle.  This ground map contains all the projected ground pixels de-
tected by the positive obstacle detection module.  The algorithm first identifies the pixels 
in the range image that potentially correspond to a negative obstacle because they are be-
low the ground level and are large enough. For efficiency, the algorithm detects only the 
borders of negative obstacles. For each newly acquired stereo image pair, the obstacle 
detection algorithm processes each vertical scan line in the reference image independ-
ently and classifies each pixel. Pixels that are not in the 3D point cloud (places where the 
stereo algorithm failed) are marked INVALID.  Pixels corresponding to obstacles that are 
shorter than 5 cm high are marked as SHORT_OBSTACLE.  The obstacle height thresh-
old value of 5 cm was chosen such that the LAGR vehicle can ignore and drive over 
small pebbles and rocks.  Similarly, COVER corresponds to obstacles that are taller than 
1.5 m, a safe clearance height for the LAGR vehicle. 
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Figure 7. Operator Control Unit Displays showing right and left: original color images (top), results 
of obstacle detection (middle), and cost maps (bottom).  Cost values are converted to colors for visu-
alization purpose. Red corresponds to obstacles, green to ground, and blue to regions so far away the 
confidence in the stereo output is too low for processing. 

 
Within each reference image, the corresponding 3D points are accumulated onto a 2D 
cost map of 20 cm by 20 cm cell resolution.  Each cell has a cost value representing the 
percentage of OBSTACLE pixels in the cell.  The output of the stereo obstacle detection 
is sent to the world model (WM1 and WM2) and to the second level of sensory process-
ing (SP2). Figure 7 illustrates obstacle detection with an image captured while the vehicle 
was driving on a dirt road lined with trees and with an orange fence across the road 
ahead. The top row shows images from one of the left and one of the right stereo pair of 
cameras. The second row of the display shows an overlay of the obstacle detection results 
on the image. In this image, green is used to show ground points, red for obstacles, and 
blue for regions that were not processed, because the were too far away for the stereo al-
gorithm to provide reliable range information. The bottom row shows an overhead view 
of the results of the processing for each of the eyes. 
 

3.1.2. Learning Color Models for Classification 
 
A color-based image classification module runs independently from the obstacle detec-
tion module in SP1.  It learns to classify objects in the scene by their color and appear-
ance.  This enables it to provide information about obstacles and ground points even 
when stereo is not available. A flat world assumption is used when determining the 3D 
location of a pixel in the image.  This assumption is valid for points close to the vehicle 
providing that the vehicle does not get too close to an obstacle. 
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In [20] Ulrich and Nourbakhsh also addressed the issue of appearance-based obstacle de-
tection using a color camera and no range information. Their approach makes the same 
assumptions that the ground is flat and that the region directly in front of the robot is 
ground. This region is characterized by Hue and Saturation histograms and used as a 
model for ground. The authors used the motion of the robot to determine if the ground 
region was free of obstacles by saving the histograms of trapezoidal regions in the image 
associated with positions. When the vehicle moved over a region, the region became 
known to be empty, and the associated histograms were merged with the model. In an-
other learning method, to be discussed in Section  3.2, information about traveling over a 
region is used in a different way to learn traversability. Ulrich and Nourbakhsh do not 
model the background, and have only a single ground model (although they observe that 
more complex environments would call for multiple ground models). Their work was ap-
plied to more homogeneous environments than ours, and we found that multiple models 
of ground are essential for good performance in the kinds of terrain used to test the 
LAGR vehicles. 
 
Our algorithm segments an image of a region by building color models similar to those 
proposed by Tan et. al. [21], who applied the approach to road following. For off-road 
driving, the algorithm was modified to segment an image into traversable and non-
traversable regions. Color models are created for each region based on two-dimensional 
histograms of the colors in selected regions of the image. Previous approaches to color 
modeling have often made use of Gaussian mixture models.  However, this approach as-
sumes Gaussian color distributions.  Our experiments have shown this assumption to be 
false.  A superior method is to make use of color histograms.  In addition, many road de-
tection systems have simply made use of the RGB color space in their methods.  How-
ever, previous research (He et al., [22], Kristensen, [23], Lin and Chen,[24]) has shown 
that other color spaces may offer advantages in terms of robustness against changes in 
illumination, which should prove useful in the real world environment. It was found that 
a 30 x 30 histogram of red (R) and green (G) gives the best results in the LAGR envi-
ronment. 
 
The approach makes the assumption that the area in front of the vehicle is safe to traverse 
That is, it can be classified as ground. A trapezoidal region at the bottom of the image 
(i.e., in front of the vehicle) is assumed to be ground (Figure 8). A color histogram is con-
structed for the points in this region to create the initial ground model. The trapezoidal 
region is the projection of a 1 m wide by 2 m long area in front of the vehicle under the 
assumption that the vehicle is on a plane defined by its current pose. Multiple color mod-
els are learned for road regions, as discussed below. 
 
Construction of the background model initially randomly samples pixels in the area 
above the horizon, assuming that they represent non-traversable regions. Because this 
area might only contain sky pixels, we extend the sampling area to 50 pixels below the 
horizon. Once the algorithm is running, the algorithm randomly samples pixels in the cur-
rent frame that the previous result identified as background. This enables the background 
regions to expand below the horizon.  These samples are used to update the background 
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color model using temporal fusion. Only one background model is constructed since 
there is no need to distinguish one type of background from another. 
 
To enable the vehicle to remember traversable terrain with different color characteristics, 
multiple ground color models are learned.  As new data are processed, each color distri-
bution model is updated with new histograms, changing with time to fit changing condi-
tions. Potential new histograms for representing ground are compared to existing models.  
If the difference is less than a threshold, the histogram is used to upgrade the best match-
ing ground model. Otherwise, if a maximum number of ground models has not yet been 
reached, the algorithm enters a period known as learning mode. Learning mode is a pe-
riod of time in which the algorithm monitors new histograms in an attempt to pick out the 
histogram that is most different from the existing ground models.  This is done to avoid 
picking color models that contain significant amounts of overlap.  In the learning mode, if 
a histogram is found to be more different than a previous histogram, learning mode is ex-
tended.  Eventually learning mode will end, and the most different histogram is used to 
create a new color model. 
 
Learning mode is turned off when the region assumed to be ground contains obstacles. 
This is determined by projecting obstacles in the world model map into the image. It is 
also disabled if the LAGR vehicle is turning faster than 10 degrees per second or if the 
LAGR vehicle is not moving.  
 
The algorithm can also read in a priori models of certain features that commonly appear 
in the LAGR tests. These include models for a path covered in mulch, a path covered in 
white lime (Figure 8b), and an orange obstacle (to deal with orange plastic fences such as 
that seen in Figure 7. 
 
Figure 8 shows two examples of the output of the color model based classifier. Figure 8a 
shows a view on an unpaved road, while Figure 8b shows a path laid down in a field that 
the vehicle is supposed to follow. Note that in all the display of images from the color 
stereo cameras the output from the right camera is shown on the left because the right 
camera looks to the left so that the images it captures are of the left field of view of the 
vehicle. Similarly, the left camera looks to the right. The display thus shows the vehicle’s 
field of view in a natural way. 
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(a) 

 
 

 

(b) 

Figure 8. a. Top: the original color images, with the classification images based on the histogram 
color model shown underneath. Green means ground, the other colors are background regions with 
higher traversability costs. b. Another scene showing clearly the algorithm’s ability to learn to asso-
ciate traversability with a distinctively-colored path. 

 
Given the models, the algorithm goes through every pixel in an image and calculates a 
ground probability based upon its color.  The end result is a probability map that repre-
sents the likelihood that an area is ground.  Given the pixel’s color, a ground color model 
and the model for background, ground probability is calculated as:  

backgroundground

ground
ground NN

N
P

+
=

 
where  is the count in the ground histogram bin indexed by the pixel,  is 
the count in the background histogram bin indexed by the pixel, and  is the prob-
ability that the pixel is a ground pixel. When there are multiple ground models, all are 
matched and the largest ground probability is selected. Multiple ground probabilities are 
calculated at each pixel. The largest ground probability is selected as the ground probabil-
ity for that pixel. 

groundN backgroundN

groundP

 
A further step applied to the ground histograms is temporal fusion. This combines ground 
probabilities across multiple image frames to improve stability and reduce noise. The 
temporal fusion algorithm can be described as a running average with a parameter to ad-
just for the influence of new data.  The update equation is: 
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Where P is the current probability that the pixel should be labeled ground, is the 
probability that the same pixel was labeled ground in the previous frame, is the ground 
probability of temporal fusion of the pixel. And w and c are the weighting constants. 

is the maximum number of images used for temporal fusion. The final probability 
map is used to determine the traversability cost at each pixel as   

1−tP
tP

maxW

 
250*)1( tPCost −=  

Costs run from 0 being most traversable to 250 being least traversable. 
 
In order to reduce processing requirements, probabilities are calculated on a reduced ver-
sion of the original image.  The original image is resized down to 128 x 96 through an 
averaging filter.  This step has the additional benefit of noise reduction.  Experimentation 
shows that this step does not significantly impact the final segmentation.  A noteworthy 
aspect of this algorithm is that the color models are constructed from the original image 
for better accuracy, whereas probabilities are calculated on a reduced version of the im-
age for greater speed. The cost of each pixel in the image is sent to the world model with 
a 3D location determined using the assumption of a flat ground plane. 

3.2. Learning Traversability Models from Color and Range 
 

Another model-based learning process occurs in the SP2 module of the 4D/RCS architec-
ture, taking input from SP1 in the form of labeled pixels with associated (x, y, z) positions 
as described in Section  3.1.1. This process learns color and texture models of traversable 
and non-traversable regions, which are used in SP1 for terrain classification. Thus, there 
is two-way communication between the levels, with labeled 3D data passing up, and 
models passing down. The approach to model building is to make use of the labeled data 
including range, color, and position to describe regions in the environment around the 
vehicle and to associate a cost of traversing each region with its description. Models of 
the terrain are learned using an unsupervised scheme that makes use of both geometric 
and appearance information.  
 
The appearance of regions in an image has been described in many ways, but most fre-
quently in terms of color and/or texture. Ulrich and Nourbakhsh  [25] used color imagery 
to learn the appearance of a set of locations to enable a robot to recognize where it is. A 
set of images was recorded at each location and served as descriptors for that location. 
Images were represented by a set of one-dimensional histograms in both HLS (hue, lumi-
nance, saturation) and normalized Red, Green, and Blue (RGB) color spaces. When the 
robot needed to recognize its location, it compared its current image with the set of im-
ages associated with locations. To compare histograms when matching images, the Jef-
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frey divergence was used. The location was recognized as that associated with the best-
matching stored image. 
 
An assumption is made that terrain regions that look similar will have similar traversabil-
ity. The learning works as follows [26]. The system constructs a map of a 40 m by 40 m 
region of terrain surrounding the vehicle, with map cells of size 0.2 m by 0.2 m and the 
vehicle in the center of the map. The map is always oriented with one axis pointing north 
and the other east. The map scrolls under the vehicle as the vehicle moves, and cells that 
scroll off the end of the map are forgotten. Cells that move onto the map are cleared and 
made ready for new information.  
 
The model-building algorithm takes as input from SP1 the color image, the associated 
and registered range data (x, y, z points), and the labels (GROUND and OBSTACLE) 
computed by the obstacle-detection step. Also associated with these data is the location 
and pose of the vehicle when the data were collected. The process works as follows: 
 
When new data are received from SP1, the pose and location information are used to 
scroll the map so that the vehicle occupies the center cell of the map. Each point of the 
incoming data is processed as follows: 
 

1. If the vehicle is turning too fast or is stationary, learning is disabled. 

 
2. If the point is not labeled as GROUND or OBSTACLE, it is skipped. Points that 

do not have associated range values are also skipped. 
 
3. Points that pass step 1 and 2 are projected into the map using the x, y, and z val-

ues of the point and the pose of the vehicle. If a point projects outside the map it 
is skipped. Each cell receives all points that fall within the square region in the 
world determined by the location of the cell, regardless of the height of the point 
above the ground. The cell to which the point projects accumulates information 
that summarizes the characteristics of all points seen by this cell. This includes 
color, texture, and contrast properties of the projected points, as well as the num-
ber of OBSTACLE and GROUND points that have projected into the cell.  
 
Color is represented by ratios R/G, R/B, and G/B rather than directly using R, G, 
and B. This provides a small amount of protection from the color of ambient illu-
mination. Each color ratio is represented by an 8-bin histogram. Intensity is also 
computed and stored in an 8-bin histogram. All histogram values are stored in a 
normalized form so that they can be viewed as probabilities of the occurrence of 
each ratio. Texture and contrast are computed using Local Binary Patterns (LBP) 
[27]. These patterns represent the relationships between pixels in a 3x3 neighbor-
hood in the image, and their values range from 0 to 255. The texture measure is 
represented by a histogram with 8 bins, also normalized. Contrast is represented 
by a single number ranging from 0 to 1. 
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4. When a cell accumulates enough points it is ready to be considered as a model. In 
order to build a model, we require that 95% of the points projected into a cell 
have the same label (OBSTACLE or GROUND). If a cell is the first to accumu-
late enough points, its values are copied to instantiate the first model. Models 
have exactly the same structure as cells, so this is trivial. If there are al-
ready defined models, the cell is matched to the existing models to see if it can be 
merged or if a new model must be created. Matching is done by computing a 
weighted sum of the squared difference of the elements of the model and the cell. 
Cells that are similar enough are merged into existing models; otherwise, new 
models are constructed. 

 
5. At this stage, there is a set of models representing regions whose appearance in 

the color images is distinct (Figure 9). Our interest is not so much in 
the appearance of the models, but in the traversability of the regions associated 
with them. Traversability is computed from a count of the number of GROUND 
and OBSTACLE points that have been projected into each cell, and accumulated 
into the model. Models are given traversability values computed as 

. When all the points in the input data have been 
processed, the traversability map is sent to the World Model (WM1 and WM2) as 
follows. Only cells that have values that have changed are sent. If a cell does not 
have an associated model, its local traversability measure is sent. If it does have a 
model, the traversability computed from the model is sent. This means that infor-
mation learned in one region is propagated to other, similar regions. The WM has 
no knowledge of the local models, and receives only traversability information 
rather than region identity. 

)/( OBSTACLEGROUNDOBSTACLE NNN +

 
The models are built as a kind of learning by example. The obstacle detection module 
identifies regions by height as either obstacles or ground. Models associate color and tex-
ture information with these labels, and use these examples to classify newly-seen regions. 
Another kind of learning is also used to measure traversability. This is especially useful in 
cases where the obstacle detection reports a region to be of one class when it is actually 
of another, such as when the system sees tall grass that looks like an obstacle but is tra-
versable, perhaps with a greater cost than clear ground. This second kind of learning is 
learning by experience: Observing what actually happens when the vehicle traverses dif-
ferent kinds of terrain. The vehicle itself occupies a region of space that maps into some 
neighborhood of cells in the traversability cost map. These cells and their associated 
models are given an increased traversability weight because the vehicle is traversing 
them. If the bumper on the vehicle is triggered, the cell that corresponds to the bumper 
location and its model, if any, are given a decreased traversability weight. We plan to fur-
ther modify the traversability weights by observing when the wheels on the vehicle slip 
or the motor has to work harder to traverse a cell. 
 
The color model used to represent the appearance of the terrain models is a descendent of 
the histogram intersection approach developed by Swain and Ballard [28]. Instead of 
three-dimensional histograms, we use three one-dimensional histograms, and instead of 
their histogram intersection algorithm for comparing histograms, we use a sum of 
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squared difference measure (which is very similar to the sum of absolute differences used 
in histogram intersection). The size of the histograms we use is substantially smaller also, 
but, as expected from Swain and Ballard’s analysis, this has little impact on the accuracy 
of the matching. Pietikainen  et al. [29] showed that three one-dimensional histograms 
perform almost as well as one three-dimensional histogram, although they did not use 
color ratio histograms in their experiments.  
 

G/BR/G R/ B LBP

R/G R/ B G/B LBP

R/G R/ B G/B LBP

Figure 9. Histograms representing three different models. Models include other elements, 
such as intensity, contrast and traversability.

 

Figure 10 shows a set of views from the vehicles Operator Control Unit during learning 
and classification. Figure 10a shows the points selected for learning models. The top of 
the Figure shows camera views from one of each of the stereo camera pairs. The bottom 
shows an overlay of the learned points. Points displayed in green correspond to ground, 
while those in red correspond to obstacles. Note that models for the left and right stereo 
pairs are learned independently. For subsequent runs, the system provides the option for 
combining the learned models from each eye (the usual case) or for keeping the models 
separate. 
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3.3. Using the Models to Classify Images 
 
The models are used in the lower sensory processing module, SP1, to classify image re-
gions and assign traversability costs to them. For this process only color information is 
available, with the traversability being inferred from that stored in the models. The ap-
proach is to pass a window over the image and to compute the same color and texture 
measures at each window location as are used in model construction. Matching between 
the windows and the models operates exactly as it does when a cell is matched to a model 
in the learning stage. Windows do not have to be large, however. They can be as small as 
a single pixel and the matching will still determine the closest model, although with low 
confidence. In the implementation the window size is a parameter, typically set to 16x16. 
If the best match has an acceptable score, the window is labeled with the matching 
model. If not, the window is not classified. Windows that match with models inherit the 
traversability measure associated with the model. In this way large portions of the image 
are classified. 
 
When the stereo module is working, the main use of the classifier is to assign traversabil-
ity to regions beyond the range of stereo. Thus, a window in the image is processed start-
ing at the end of good stereo and ending a little above the horizon (obstacles are expected 
to rise above the horizon). When stereo is not available, the whole image is processed to 
provide traversable and non-traversable regions for navigation. It is possible to classify 
the entire image while stereo is operating, but this is seldom done because of the compu-
tational cost of running both processes in the same processor. Figure 10b shows an exam-
ple of the long-range classification done during learning with stereo. Yellow regions indi-
cate those classified as traversable, while magenta regions are non-traversable. Figure 
10c shows an example of classification from the learned models when stereo is not avail-
able. Note that while only two colors are used in the Figures, traversability cost is com-
puted as a number between 0 and 250, with lower numbers meaning greater traversabil-
ity. 
 

 

                    (a)                     (b)                    (c) 

Figure 10.  (a) Points selected for learning. Green indicates ground points, red indicates obstacle 
points. (b) Classification in the region beyond stereo. Yellow indicates traversable, magenta non-
traversable. (c). Classification of the ground out to the horizon. 

 
A problem arises in sending the results to the World Model, which requires a 3D location 
to be associated with each point. As in Section  3.1.2, we make the assumption that the 
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ground is flat, i.e., that the pose of the vehicle defines a ground plane through the wheels. 
This allows windows that match with models to be mapped to 3D locations. Another as-
sumption is that all obstacle windows (matching with models created from obstacle 
points) are normal to the ground plane. This allows obstacle windows to be projected into 
the ground plane and thus to acquire 3D locations. The output of the classifier is sent to 
both WM1 and WM2. We are implementing the capability to let information from the 
world model help guide the classification, especially to help find the true location of ob-
stacles which otherwise are positioned at a range determined by the closest ground below 
the obstacle.  
 
Because of the flat ground assumption, which is usually valid very close to the vehicle, 
the models can be modified by the experience of driving over a region or bumping into an 
obstacle even without stereo. This use of the vehicle’s position is similar to that devel-
oped by Ulrich and Nourbakhsh [20] discussed in Section  3.1.2. 

4. World Modeling 
 
The world model (WM) is the system’s internal representation of the external world. It 
acts as a bridge between sensory processing and behavior by providing a central reposi-
tory for storing sensory data in a unified representation.  It decouples the real-time sen-
sory updates from the rest of the system. The WM process has two primary functions: 
 
1. To create a knowledge database and keep it current and consistent. In this role, it up-

dates existing data in accordance with inputs from the sensors, and deletes informa-
tion no longer believed to be representative of the world. It also assigns (multiple) 
confidence factors to all map data and adjusts these factors as new data are sensed. 
The types of information included in the map are state variables (e.g., time, position, 
orientation), system parameters (e.g., coordinate transforms, sensor-to-vehicle offsets, 
etc.), and lists or classes of sensed objects. The WM process also provides functions 
to update and fuse data and to manage the map (e.g. scrolling and fusing.) 

 
2. To generate predictions of expected sensory input based on the current state of the 

world and estimated future states of the world. For the LAGR autonomous, off-road, 
learning application, very little a priori information is initially available to support 
path planning between the vehicle’s current position and a final goal position. How-
ever, as it learns, the world model memorizes, constructs and maintains all the infor-
mation necessary for intelligent sensing. 

 
For the LAGR project, two WM levels have been implemented (Figure 5). Each level of 
the world model (WM1 and WM2) builds a two dimensional map with 200 x 200 cells. 
WM1 builds a map of a 40 m by 40 m region, with cells of size 0.2 m by 0.2 m. WM2 
builds a map of a 120 m by 120 m region, with cells of size 0.6 m by 0.6 m. Sensory in-
formation is inserted into these maps and fused with existing information over time.  Cur-
rently SP1 is fused into both WM1 and WM2 as the learning module in SP2 does not yet 
send its models to WM. Figure 8 shows the WM1 and WM2 maps constructed from the 
stereo obstacle detection module in SP1. The position of the vehicle is shown as an over-
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lay on the map.  The red, yellow, blue, light blue, and green colors represent cost values 
ranging from high to low cost, and black represents unknown areas. The information 
stored in each cell includes: 
 

1. The average ground and obstacle elevation height; the variance, minimum and 
maximum height; and a confidence measure reflecting the “goodness” of the ele-
vation data. 

 
2. A data structure describing the terrain traversability cost and the cost confidence 

updated by the stereo obstacle detection module, image classification module, 
bumper module, infrared sensor module, etc. The costs and the confidences are 
stored separately for each input source. When an overall cost is needed for a cell, 
the individual values are combined. The updating algorithm is based on the con-
cept of confidence-based mapping described in Oskard [30]. In this algorithm, 
confidence measures increase or decrease linearly as the model receives updated 
information from the sensors. When a map cell receives a vote for a class such as 
an obstacle, an elevation measurement, a terrain classification, etc., the cell’s con-
fidence in that class is incremented by a predefined constant. The cost to traverse 
each cell (region) is updated and temporally fused based on the traversability 
measurements which are computed from the learning module, stereo range data, 
infrared and physical bumpers. The obstacle’s confidence increases by an empiri-
cally defined weight constant with the following equation: 

 
tionclassificaclagrLearnlstereObsscell CostWCostWCostWCost ++=  

where:  

cellCost  is the cost to traverse for each grid cell.  

lagrLarnCost  is the fused cost in the world model based only on the output from the 

learning module. 

tionclassificaCost  is the fused cost in the world model based only on the output from the 

classification detection module. 

and are weighting constants for each cost.  
clsW ,,

The final cost placed in each map cell represents the best estimate of terrain traversability 
in the region represented by that cell, based on information fused over time. Each cost 
has a confidence associated with it and the WM process selects the label with the highest 
confidence. Determining the weights is technically a function of the Value Judgment 
module, which is not explicitly represented in the current LAGR architecture. We are ex-
perimenting with ways of learning the weights so that they can be changed dynamically 
according to the vehicle’s mode of operation. 
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Figure 11. World Model Cost Maps built from sensor processing data. The WM1 module builds a 0.6 
m resolution cost map (left) and the WM2 module builds a 0.2 m resolution cost map (right). The 
white line in the left image and white squares in the right image indicate the planned path at low and 
high resolutions, respectively. 

 
The WM maps must be maintained and updated in a timely manner. WM functions have 
been developed to scroll the maps as the vehicle moves, to update map data, and to fuse 
data from the SP modules. An efficient scrolling algorithm keeps the vehicle centered on 
the map as new sensor data are merged into the map. This approach has the advantage of 
minimizing grid relocation. No copying, only updating, of data is done. The scrolling 
function includes re-centering the map and reinitializing the map borders. Because the 
map is vehicle-centered, only the borders of the map contain new regions that must be 
initialized. The initialization information can be obtained from initial information or re-
membered maps which are saved from previous test runs as shown in Figure 12. 

 

 

Figure 12.  Initial (left) and remembered (right) cost maps as the system starts without and with 
saved maps, respectively. The white line indicates the planned path, which is clearly helped by having 
the saved model in the right map. 
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The cost and elevation confidence of each map cell is updated every sensor cycle: 5 Hz 
for the stereo obstacle detection module, 3 Hz for the learning module, 5 Hz for the clas-
sification module, and 10 Hz to 20 Hz for the bumper module. The confidence values are 
used as a cost factor in determining the traversability of a cell. In the future, we plan to 
include representation of moving objects (cars, targets, etc.) and the ability to recognize 
and represent bodies of water, rocky roads, buildings, fences, etc. 
 
Learning in the world model takes the form of remembering maps. A major problem with 
using stored maps is that they have to be registered with the new maps being created from 
sensory processing input. If maps are not registered, they will insert obstacles in the 
wrong places and potentially make navigation impossible. In our implementation, we 
again take advantage of the 4D/RCS hierarchical structure to mitigate this problem. First, 
the WM1 and WM2 maps have different resolutions. Second, we represent the WM1 and 
WM2 maps in different coordinate systems. 
 
There are two different position estimates used in the system. Global position is strongly 
affected by the GPS position data quality. While the GPS position is noisy, it does not 
drift with respect to actual positions in the world. It therefore provides constant accuracy 
over large areas. Local position uses only the wheel encoders and the accelerometers and 
gyroscopes in the inertial measurement unit (IMU). It is less noisy than GPS but drifts 
significantly as the vehicle moves over longer distances and drifts even more if the 
wheels slip. We use local coordinates for WM1 maps and global coordinates for WM2 
maps. For learning, we save only the WM2 map. Because of its lower resolution, it is less 
affected by small registration errors, and has been successfully integrated with new in-
formation as shown in Figure 12. 
 

5. Behavior Generation 
 
At the top level of the 4D/RCS hierarchy, the Behavior Generation (BG) module (Figure 
13) reads a file containing the final goal point for the vehicle in UTM (Universal Trans-
verse Mercator) coordinates for each test created by the LAGR Government Team. At the 
bottom level in the hierarchy, BG produces a speed for each of the two drive wheels, up-
dated every 20 ms. This is input to the Carnegie Mellon University (CMU) developed 
low-level controller that was included with the vehicle. The CMU system provides a 
number of inputs directly to the BG system including, motor currents, position estimate, 
the physical bumper switch state, raw GPS and encoder feedback, etc. These are used di-
rectly by BG rather than passing them through sensor processing and world modeling 
since they are time-critical and relatively simple to process.   
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Figure 13.  Behavior Generation High Level Data Flow Diagram. 

The BG system is built from five separate executables. Each runs as an independent 
process, which repeatedly sleeps until the beginning of its cycle.  It then reads its inputs, 
does some planning, writes its outputs and then starts the cycle again. Each process 
communicates using NML in a non-blocking mode which wraps the shared-memory in-
terface [31].  Each module also posts a status message, via NML, that can be used by 
both the supervising process and by developers via a diagnostics tool to monitor the proc-
ess. 
 
The LAGR Supervisor is the highest level module in the system. It is primarily responsi-
ble for starting and shutting down the system.  It reads the final goal and sends this in a 
command to the waypoint generator. It also sends commands to the SP and WM modules 
telling them when to save and clear their maps. 
 
The waypoint generator chooses a series of waypoints for the lowest-cost traversable path 
to the goal using global position and translates the points into local coordinates. The 
waypoint generator uses either the output of the A* Planner [32] or a previously recorded 
known route to the goal, recorded from a previous run to the goal, to generate the list of 
waypoints. The A* Planner was originally built into the waypoint generator but was 
moved into a separate program to allow the waypoint generator to act faster and for easier 
code debugging.  The planner takes a 201 X 201 enumerated terrain grid, which it gets 
from WM, classifies the grid, and translates it into a grid of costs of the same size. In 
most cases the cost is simply looked up in a small table from the corresponding element 
of the input grid. However, costs also depend on neighboring costs. For example, costs 
are lowered for cells directly in front of the vehicle and increased behind the vehicle to 
favor paths that keep the vehicle moving in the current direction rather than flipping be-
tween two nearly equal cost paths. 
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The waypoint follower receives a series of waypoints from the waypoint generator, 
spaced approximately 0.6 m apart, that could be used to drive blindly without a map. 
However, there are some features of the path that make this less than optimal.  When the 
path contains a turn, it is either at a 0.8 rad (45°) or 1.6 rad (90°) angle with respect to the 
previous heading. The waypoint follower could smooth the path, but inevitably it would 
at least partially enter cells that were not covered by the path chosen at the higher level. 
The A* planner might also plan through a cell that was partially blocked by an obstacle. 
The waypoint follower is then responsible for avoiding the obstacle. 
 
The first step in creating a short range plan each cycle is to choose a goal point from the 
list provided by the A* Planner. One option would be to use the point where the path in-
tersects the edge of the 40 m map. However, due to the differences between local and 
global positioning, this point might be on one side of an obstacle in the long range map 
and on the other side in the short range map.  To avoid this situation, the first major turn-
ing point is selected. The waypoint follower searches a preset list of possible paths start-
ing at the current position and chooses the one that gets the best score. The score repre-
sents a compromise between getting close to the turning point, staying far away from ob-
stacles and higher cost areas, and keeping the speed up by avoiding turns. 
 
The waypoint follower also implements a number of custom behaviors selected from a 
state table.  These include: 
 

• AGGRESSIVE MODE – Ignore the map except for obstacles detected with 
the bumper and drive directly in the direction of the final goal. Terrain such as 
tall grass causes so much noise in the map that the vehicle will wander around 
aimlessly, and short bursts of aggressive mode help to get out of these situa-
tions. 

• HILL CLIMB – Wheel motor currents and roll and pitch angle sensors are 
used to sense a hill. The vehicle will attempt to drive up hills without stop-
ping, since pausing causes momentum loss and slipping. 

• NARROW CORRIDOR/CLOSE TO OBSTACLE – In tight spaces the system 
needs to slow down, build a detailed and high confidence world model, and 
consider a larger number of possible alternative paths to get around tight cor-
ners. 

• HIGH MOTOR AMPS/SLIPPING –When the motor currents are high or the 
system thinks the wheels are slipping it will first try to reverse direction and 
then try a random series of speeds and directions, searching for a solution 
where the wheels seem to be able to move without slipping. 

• REVERSE FROM BUMPER HIT - Immediately after a bumper hit the vehi-
cle always back up to allow vehicle rotation to avoid the obstacle it hit. 
 

The lowest level module called the LAGR Comms Interface takes a desired heading and 
direction from the waypoint follower and slows the velocity to limit acceleration, con-
verts it to a more vehicle specific set of wheel speeds, and handles all communications 
between the controller and vehicle hardware. It also posts a copy of the information re-
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ceived from the Comms Interface about vehicle status to NML buffers making it easier to 
use for some of the sensory processing and world modeling functions. 
 
Learning in the BG module takes the form of saving successful paths. When the vehicle 
successfully travels from the start point to the goal, the path it took is first examined to 
find ways of shortening it so that a future run can be faster. Loops and excursions are re-
moved since they are the result of exploring unfruitful areas before getting to the goal. 
The optimized path will be read at the start of a new run and will help avoid such explo-
ration. Only the path created in BG2 is saved for the same reasons that only the map from 
WM2 is saved: they are both stored in global coordinates and at low resolution, which 
reduces registration problems when they are merged with sensed information.  

6. Operator Control Unit and Diagnostic Tools 
 

6.1. Operator Control Unit (OCU) 
The Operator Control Unit (OCU) provides views of the processing in the system and 
enables the operator to modify processor behavior on the fly. The OCU uses a number of 
graphic displays to illustrate what is happening inside the system while it is running. 
These displays typically run on a processor connected through a wireless link to the 
LAGR vehicle so that they do not slow down the processors on that vehicle. The OCU 
makes heavy use of NML to access information from all the processes. NML enables 
processes to write out information to buffers whenever it is ready, and lets the OCU read 
these buffers at its own pace. Queuing is not specified for the OCU buffers, so the OCU 
always displays the latest information when it reads a buffer. A capability has been im-
plemented, however, to let the system be “single stepped” when running on stored log 
files. This is often useful for debugging. 
 
For each process, the programmer decides what data to make available to the OCU. This 
may include images, maps, symbolic descriptions of regions, or whatever makes sense to 
the application. In addition, the OCU has access to all the buffers in the system used for 
communication between processes. This gives it a comprehensive view of the entire sys-
tem that is useful for debugging, for monitoring the system while it is running, and for 
controlling how processing is carried out. There are two parts to the OCU. One is a 
graphical user interface (GUI) for viewing the various images, maps, planned routes, etc. 
in the system. The other is a diagnostic tool that requires a deeper understanding of how 
the system works, but provides access to all the variables that appear in message buffers, 
enabling reading from, writing to, and graphing the values of these variables over time. 
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Figure 14. Examples of the maps that can be displayed in the Operator Control Unit. The ability to 
look at the contributions of individual sensory processing modules to the world model is an invalu-
able debugging tool.  
 
The GUI tool displays maps with color coding to indicate traversability cost. Maps from 
both the high resolution (WM1) process and low resolution (WM2) process are dis-
played, and any or all of the map overlays can be shown individually. For example, 
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Figure 14a shows a view of a scene with the color-model based classification results. In 
Figure 14b and c, the high resolution and low resolution world model maps that result 
only from the color classification algorithm are shown. Similarly,  Figure 14d to f provide 
another example, but with the maps showing information only from the range-based 
models. In Figure 14g, a high-resolution (WM1) map is shown built from all sensory in-
formation, and with the planned path overlaid. Figure 14h shows the same information 
for the low resolution (WM2) map. Finally, Figure 14i illustrates the ability to examine 
the output to the world model of a selected sensor on an instantaneous basis. The Figure 
shows the output from processing a single frame using the range-based learning to clas-
sify the scene. As can be seen, only half of the robot’s field of view is covered, since the 
output is from a single camera. The lines correspond to rows in the image as projected 
onto the estimated ground plane. 
 
The GUI can also display output from SP1 and SP2, with overlays showing the results of 
various processing operations. The OCU image display is tabbed, and the different views 
are accessed by selecting the appropriate tab. This greatly reduces the clutter on the OCU 
display. Figure 14a shows the OCU display of the color model classification processing, 
while Figure 14d show the same for the range-based model classification. The tabs are 
shown at the top of the images.  

6.2. The RCS Diagnostics Tool 
 
The RCS Diagnostics tool is available on the web as public domain software [17,33]. To 
use the tool it is necessary to use NML as the communications API within the system.  
NML does not need to be the only communications API used, but the more NML is used 
the more information and options are available for controlling and displaying the state of 
the system and the more useful the Diagnostic tool becomes. The LAGR system uses 
NML for all communications above the lowest level, which uses the CMU-developed 
LAGR baseline communication system. Each process reports its status each cycle to the 
Supervisor through an NML buffer. The diagnostic tool, by examining the way buffers 
are used to communicate between processes, can establish a hierarchy of processes, and 
can indicate the status of each one from the information in the status buffer sent to the 
Supervisor. The tool has access to all the communication channels on the system. It can 
be used to observe and graph the data that is passed between processes, or to modify the 
contents of buffers to change the behavior of the system. It can be used to cause processes 
to switch modes if they have been designed to monitor particular variables in their buff-
ers. The tool includes a graphic display of the status of running processes in a hierarchical 
diagram, with message paths shown as links between process nodes. 
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Figure 15. View of the LAGR hierarchy showing processes, communications, and status. 
 
Figure 15 shows a view of the hierarchy, which provides a quick way to simultaneously 
monitor a large number of processes. Each process in the system is represented by a rec-
tangular box that changes color to indicate the state of that process. Lines are shown con-
necting each processor to its supervisor and subordinates and to peers with which it ex-
changes data.  Box colors can indicate that a process is not running (pink), is in an error 
state (red), is unresponsive (yellow), is running normally (green), is finished (white), or is 
not connected probably due to a configuration error (grey). Within each box there is a la-
bel for the process as well as a text description of the current status and the name of the 
current command. The vertical lines between boxes turn white when a recent status mes-
sage flowed up that line, red when a recent command message flowed down and black 
when neither command nor status changed.  
 
The diagnostic tool has many more capabilities. Perhaps the most useful is the ability to 
view the contents of buffers in real time and to change the values of variables on the fly. 
Figure 16 shows the details view, which lists all of the modules at the top left. When a 
module is selected, the view lists the commands available for that module in the middle 
column and the parameters for the currently selected command on the right. The current 
value of all the variables in the current module’s command and status buffers are shown 
at the lower right. On the lower left the last command sent to this module is shown. 
 
For many variables a plot of the variable over time is more useful than simply a textual 
display of its current value. So when examining any variable you can select the variable 
and check the “plot this variable” checkbox at the bottom to begin plotting (Figure 17). 
The data can be saved to a text file. Multiple variables can be plotted at the same time 
either on the same graph or on separate graphs. Since some variables naturally have very 
different ranges than others there is a FitToGraph button to set the plot to automatically 
scale to match the data. Several functions are available from a pull-down menu including 
smoothing, standard deviation, derivative, integral, differences, the differences between 
two plotted variables, and one plotted variable versus another.  
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Figure 16. Details view of  RCS Diagnostic tool. 

 
 

 
Figure 17. A sample of graphic output from the RCS Diagnostic Tool. 

 

7. Discussion and Conclusions 
 
Participating in the LAGR program involves developing a lot more than the learning 
methods highlighted in its name. Before learning can be accomplished, the vehicle itself 
must be controlled and the sensor data processed to provide feedback. While the vehicle 
was delivered with a working control system, one of the goals for NIST was to demon-
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strate the capabilities of the 4D/RCS architecture to control the vehicle, and to show how 
learning could be embedded into 4D/RCS. To do this, the controller provided with the 
vehicle was replaced as completely as possible with a 4D/RCS two-level hierarchy. A lot 
of the basic software was ported from other systems, but the learning algorithms had to 
be written from scratch. 
 
Incorporating learning into the operating system of a robotic vehicle requires many com-
promises. The vehicle places limits on processing time because it must have the informa-
tion it needs fast enough for control to remain stable and for the vehicle to avoid obsta-
cles. A balance must be maintained between learning and other processing in each mod-
ule so that each can operate effectively. The overall cycle time of the processing of each 
component must be fast enough that other modules that use its information are not forced 
to wait for it. These issues are addressed in our system partly by the use of the 4D/RCS 
architecture and partly by careful implementation of the algorithms. 
 
The role of 4D/RCS in balancing the system comes from the breakdown of processing 
components into units, each of which considers a small part of the problem. In the LAGR 
system, this is most evident in the world model and planner, since most of the sensory 
processing is carried out in only one of the SP levels. The learning algorithms are spread 
over the modules and work on the information available at their level in the hierarchy. 
For example, there are two planners, one that uses information in WM1 and makes plans 
that look out about 20 m from the vehicle. The other planner uses information in WM2 
and makes lower resolution plans out to about 60 m from the vehicle. 
 
Another issue is assigning processing to computing resources on the vehicle. There are 
four processors, one of which runs the low-level control of the vehicle and is not avail-
able for other use. It would seem natural from the 4D/RCS architecture to assign the re-
maining three processors to the individual modules (one for SP, one for WM, and one for 
BG) but this is not optimal in practice. While it could be argued that the use of NML al-
lows the choice to be arbitrary, there are limits to communication speed that strongly 
constrain the location of processes. It is much better for a process to be closer (in terms of 
the cost of data transfer) to the source of its input or consumer of its output, whichever 
has greater data volume. Thus, in our implementation, two of the processors are dedicated 
to sensory processing. One processor is assigned to each of the stereo cameras, and the 
other is used for both planning and world modeling. 
 
Sensory processing and the associated learning algorithms run independently in each SP 
processor. Both SP1 and SP2 processes run simultaneously in the processors for the left 
and right eyes and communicate using shared memory. They send their output to the WM 
processes over the Ethernet. Because of the substantial processing load of stereo process-
ing and obstacle detection, the learning and classification processes have limited re-
sources and can’t be too complicated. Both the world model (WM1 and WM2) and the 
behavior generation (BG1 and BG2) run on the third processor. This has proved to be a 
good distribution of tasks to resources, but the processors in the system run at close to 
their limits. Sometimes the vehicle has to slow down to ensure that obstacles are detected, 
inserted into the world model, and seen by the planner in time to be avoided. 
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Any complex system with many goals is challenging to build. Imposing a structure on the 
system provides a principled way of implementing it and enables the individual compo-
nents to be explained in the general context of this structure. In this paper, the 4D/RCS 
architecture has been shown to be capable of both controlling the LAGR vehicle and 
learning about the world. Learning has been demonstrated in the three major components 
of the 4D/RCS architecture. 
 
In Sensory Processing, both learning by example and learning by experience were shown. 
Two methods of learning by example were developed. One method builds color models 
to differentiate traversable terrain from non-traversable, while the other uses labeled ste-
reo and color data to build models based on color and texture from selected data points. 
These second models can be modified by the experience of the vehicle as it travels. Re-
gions that the vehicle can travel over have their traversability increased, while regions 
that are less traversable or in which the bumper sensor is triggered have their traversabil-
ity reduced. 
 
In the World Model, learning involves keeping copies of maps from one run to the next. 
Map registration is still not a solved problem, which introduces uncertainties when re-
membered maps are to be used with maps being built from incoming sensory data. The 
4D/RCS hierarchical architecture, with resolution being reduced at each higher level, re-
duces this problem because registration is less likely to be a problem at higher levels. 
Within world modeling, another approach to learning that is being explored lies in learn-
ing how to adjust the weights used to fuse information from different sensory processing 
processes and from a priori knowledge. Instead of using constant weights, the plan is to 
adjust the weights by evaluating how well the different data sources agree with each 
other. 
 
In the Behavior Generation module, the paths selected by the planner are remembered 
from run to run. Paths are optimized by removing loops and excursions, and serve as 
guidance to the planner for future runs. Paths are not simply following in future runs, but 
are integrated into the analysis of the data in the maps that computed the least cost path. 
 
The learning methods developed for the LAGR program have constantly been expanded 
as the program has progressed. The LAGR Government team provided general guidelines 
for what must be learned, but have introduced challenges for some of the tests, including 
requiring the vehicle to learn to follow a path, to learn to recognize obstacles in the dis-
tance so as to avoid entering a region with no outlet, and to operate without stereo. Other 
challenges are expected in future tests. This has led to the requirement that learning be 
flexible. It has also led us to incorporate learning capability throughout the system be-
cause the different modules can learn different aspects of the environment. This enables 
quick response to the challenges. 
 
The learning in each of these modules is not simply added on to the process that imple-
ments the module. It is embedded as part of the module, and operates in accordance with 
its location in the hierarchy. Thus, model learning in SP1 uses simpler features than that 
in SP2, maps learned in WM1 and WM2 have different sizes and attributes, and plans in 
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BG have different resolution and range. The LAGR program has provided the opportu-
nity to develop learning in 4D/RCS, which promises to substantially enrich the demon-
strated capabilities of the architecture. 
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