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Abstract 
 
New multiscale methods have been developed for the study of microcracking and 
dislocations. The multiscale method for microcracking aggregates the effect of an 
arbitrary number of cracks at the micro level into a single equivalent crack at the 
macrolevel. The methodology is based on the concept of a perforated unit cell, which 
excludes all subdomains of the unit cell where the material loses stability in the averaging 
operations. We have shown that for this approach, the macro bulk material does not lose 
ellipticity when failure occurs. This is an important development since it avoids the ill-
posedness usually associated with multiscale modeling of failure. Comparisons with 
direct numerical simulations show excellent accuracy. We have also developed new 
models for dislocations and concurrent methods that couple atomistic models with these 
new continuum dislocation methods. These enable dislocation dynamics in arbitrary 
geometries and materials to be modeled in terms of fundamental physics. 
 
 
Statement of the Problem Studied 
 
Two problems were studied in this investigation: 

1. the multiscale modeling of failure 
2. the multiscale modeling of dislocations 

 
The multiscale modeling of failure remains an unresolved problem because when a 
subscale model predicts that the stress-strain behavior at the coarser scale loses ellipticity, 
the coarse scale model becomes ill-posed. Consequently, the results of the coarse-scale 
model become very mesh dependent and unreliable. This occurs for example when 
microcracking takes place at the finer scale. The objective of this investigation was to 
develop methods for circumventing these difficulties by separating out the unstable 
material behavior at the finer scale into an equivalent discontinuity and traction. The 
failure behavior at the fine scale is thus isolated as either a crack, shear band or 
dislocation at the coarser scale. This is in agreement with observed physics of failure 
processes, since they are always associated with the aforementioned phenomena. 
 
Dislocations are closely related phenomena which are associated with plasticity. 
Dislocations are characterized by relative atomic displacements at the crystalline level 
which can be characterized by discontinuities at the macrolevel. In this work, new 
methods have been developed for modeling dislocations by the extended finite element 
method. Furthermore, methods have been developed for coupling continuum models of 
dislocations with atomistic models. These coupled multiscale models will allow 
investigators to bypass the heuristic, phenomenological rules which are used to drive the 
displacements of dislocation cores in dislocation dynamics models.   
 
 



Summary of Important Results 
 
It has been found that ill-posedness can be avoided in both hierarchical and 
semiconcurrent couplings of multiscale models through the use of two key concepts. The 
first key concept is the definition of a perforated representative volume element (or unit 
cell) which excludes all material points that are unstable (to be more precise, not convex). 
The second key concept is a method for defining an equivalent discontinuity in terms of 
the behavior of the perforated unit cell. The method is called the multiscale aggregating 
discontinuity method (MAD). 
 
Let the perforated subdomain of the unit cell 0

m  be denoted by 0
m . The macroscale first 

Piola-Kirchhoff stress MP  is then defined in terms of the microscale first Piola-Kirchhoff 
stress mP  by 
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Similarly the macroscale deformation gradient MF  is defined in terms of the microscale 
deformation gradient mF  by 
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Let the motion ( , )m m t X  on the sides of the unit cell be given by 
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We have shown that an equivalent discontinuity at the macrolevel MU  with normal MN  
can then be extracted by 
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This macroscale discontinuity is then injected into the macroscale model. The forces 
required to enforce this discontinuity are the traction across the macrocrack. 
 
We have shown that the macroscale model is elliptic as long if the perforated unit cell 
excludes all material that is not convex. To put this in more precise terms, recall that the 
convexity of the micromaterial requires that 
 

: : 0m m m m F C F F                                               (1.5) 
 



where mC  is the tangent modulus for the micromaterial. Ellipticity of the macromaterial 
requires that 
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It has been shown in Belytschko et al. [1] that Equation (1.5) implies (1.6) for the method 
as described. Therefore the multiscale aggregating equivalent discontinuity method 
guarantees well-posedness. 
 
The evaluation of a multiscale method for failure poses some particular challenges. 
Comparison with experimental results is usually inconclusive, since the material 
constants for failure are not readily available. We were not able to find experiments that 
provide both subscale properties and a macroscale response. Therefore, we have chosen 
to use comparison of the multiscale results with direct numerical simulation (DNS) to 
evaluate the method. We show one example here: a four-point bending problem of a 
composite beam. 
 
The problem is shown in Figure 1. The fibers are oriented normal to the plane of the 
beam. The beam is initially notched at the center on the bottom surface as shown. Figure 
1 also shows the unit cells for the multiscale model. Each unit cell is represented by a 
finite element in the coarse scale model.  
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Figure 1. Initial setup for failure of composite beam due to four-point bending. 

 
Figure 2(a) shows the DNS model, which represents the detailed structure of the 
composite. The crack path in the DNS model is shown in Figure 2(b). Note that the crack 
path for the DNS is quite jagged, since it bypasses many of the fibers. The coarse-grained 
solution is shown in Figure 2(c). Here the crack path is much smoother, because the 
subscale structure in the unit cells is not apparent to the coarse scale computation. 
However, the overall crack path is quite similar. 
 



 
Figure 2. Four-point bending beam problem: (a) finite element discretization for the DNS, (b) the 

plots of effective stress contour for the DNS, and (c) the plots of effective stress contour for the 
coarse-grained MAD method. 

 
The adequacy of the coarse scale computation by our method can be judged by the force-
deflection curve shown in Figure 3. We first compare the MAD result with the hourglass 
mode (which is a recent improvement in the MAD method that accounts for hourglassing 
in the unit cell, see [1]). In that case, the agreement with the DNS solution is 
exceptionally good: although there are some deviations in the time history that are as 
large as 15%, the peak load is reproduced very well. The older method, which does not 
account for the hourglass deformations, agrees better in the early part of the response, but 
the force overshoots the DNS force significantly, which indicates that without the 
hourglass deformation modes the method is too stiff. 
 
As can be seen, the multiscale method reproduces the fine scale result quite accurately. It 
does so with a speedup of approximately 30. This is the major benefit of multiscale 
methods, for without such speedups, larger problems are beyond the reach of even the 
largest computers. 



 
Figure 3. Comparison of load-deflection curves between the DNS and the MAD for the four-point 

bending beam problem. 
 
 
The new method for modeling dislocations is based on introducing discontinuities into 
the displacement field in the spirit of Volterra’s concept of dislocations and the extended 
finite element method (XFEM) framework. The displacement field surrounding a 
network of dislocations in a material is represented in a finite element model by the 
combination of standard piecewise continuous polynomial basis functions and 
discontinuous enrichment functions.  The enrichment functions are nonzero only in 
elements which have been intersected by the slip plane, and since the relative slip across 
the glide plane is fixed to a translation vector of the lattice, the enrichment adds no 
additional degrees of freedom to the discretized finite element system of equations but 
instead can be treated as an additional set of nodal forces.  The advantage of this 
approach is that it can be used with complex geometries, anisotropic and non-uniform 
materials, and nonlinear materials [2].  
 
A key feature of this method is the use of level set functions to describe the location of 
slip surfaces and dislocation lines, and the enrichment functions that inject the 
discontinuity across the glide plane to the solution.  Each dislocation is defined by two 
scalar fields; the first, f(x), is a signed distance function to the slip surface, and the second, 
g(x), gives the signed distance to the dislocation line from the projection of every 
material point to the slip surface. Figure 4 shows how, for a curved dislocation line, the 
level set functions f and g vary and make up a local coordinate system around the 
dislocation core. 



 
 

Figure 4. Illustration of the local coordinate system defined about the core of a dislocation by the 
level set functions f(x) and g(x). 

 
The second major component of this new method for dislocations is the construction of 
the enrichment functions.  The simplest possibility is a constant jump across the glide 
surface following the Volterra construction.  In addition to its simplicity, since the 
function is constant everywhere except for the discontinuity, there are no enrichment 
strains to be integrated.  This is especially helpful when the dislocation line is curved 
because it eliminates the enrichment strain caused by the rotation of the local level set 
coordinate system.  As shown in Oswald et al. [3] a more sophisticated option for 
enrichment is to take the infinite domain solutions to dislocations near the core using the 
local coordinate system defined by the level set functions.  The analytical solutions can 
dramatically improve the accuracy of the computation, as shown in Figure 5 where a 
27,000 element solution with singular enrichments has comparable accuracy to a two-
million element solution with the jump enrichment.  Both of the solutions employed a 
uniform mesh, so with an adaptively generated mesh the number of degrees of freedom 
for the jump enrichment could be significantly reduced. 

 
Figure 5. Comparison of σxx stress values on a line parallel to the x-axis passing above a circular 

dislocation loop lying in the x-y plane of an isotropic material for a constant jump enrichment and 
singular enrichments formed from the solutions of infinite-length straight dislocations. 

 
As an illustration of the application of this approach, consider the silicon-germanium 
quantum dot shown in Figure 6.  This problem features several of the difficulties faced by 
current dislocation modeling methods.  The quantum dot geometry considered here is 
composed of 36 facets representing 9 unique energetically favorable crystalline surfaces.  



Both the quantum dot and the silicon substrate are single crystals, and therefore exhibit 
considerable anisotropic effects.  Additionally, as reported by Malachias et al. [4] the Ge 
concentration varies from nearly pure germanium at the top of the quantum dot to a 
silicon rich core at the base.  As a result, not only is there a material interface to the 
substrate at the base, but the elastic properties vary spatially throughout the quantum dot.  
Previous elastic analyses of dislocations in these structures have required the assumption 
of uniform isotropic material properties, but the XFEM method can treat these issues 
without complication. 
 
 

 
Figure 6. Finite element model of a dislocation loop at the interface of a SiGe quantum dot deposited 

on a (001) Si surface (left), and the resulting magnitude of the stress generated by the lattice 
mismatch between SiGe and Si, and distortions in the lattice caused by the dislocation loop. 

 
Another way that this dislocation method can be extended is by modeling the core 
structure of the dislocation by an atomistic method such as molecular statics or molecular 
dynamics.  The modifications needed to achieve this are a suitable physical model for the 
interactions between atoms, a nonlinear minimization solver for molecular statics or a 
time integrator for molecular dynamics, and a coupling method to the continuum 
description of the material.  To demonstrate this extension, a dislocation dipole ejected by 
a vacancy was modeled in a graphene sheet, where the carbon-carbon interaction energies 
are approximated by the Tersoff-Brenner potential.  A modified version of the bridging 
domain method (BDM) enforces compatibility between the continuum and atomistic 
regions.  The modification to the BDM allows the discontinuity to intersect the coupling 
domain such that it perfectly matches the discontinuity of atomic displacements along the 
slipped edges of the graphene.  Figure 7 shows the computed displacement fields for the 
dislocation dipole and vacancy, and the XFEM enriched elements encompass the glide 
plane in the continuum. 
 
This new method for dislocations makes possible the modeling of dislocations in very 
complex geometries and arbitrary material, including both anisotropy and nonlinearities. 
Furthermore, it is ideally suited for combined atomistic, continuum solutions, so it can 
efficiently solve large scale problems where first principles models are used for the core. 
This will avoid the need for phenomenological rules for the motion of the dislocations. 



 
 

Figure 7. Modeling of a dislocation ejected by a vacancy in graphene sheet by the extended finite 
element method coupled to a molecular mechanics simulation in the defect regions. 
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