
Final Report: Scrambled Soból Sequences via Permutation

1 Introduction

The Soból sequence [12, 13] is one of the standard quasirandom sequences, and is widely used in Quasi-
Monte Carlo (QMC) applications. QMC methods are a variant of ordinary Monte Carlo (MC) methods
that employ highly uniform quasirandom numbers in place of the pseudorandom numbers used in
ordinary Monte Carlo (MC) [3]. QMC methods are now widely used in scientific computation, especially
in estimating integrals over multidimensional domains and in many different financial computations.
The error of MC methods is asymptotically O(N−

1
2 ), where N is the number of samples, while QMC

methods can have an error bound which behaves as well as O((logN)sN−1), for s-dimensional problems.
While quasirandom numbers do improve the convergence of applications like numerical integration, it is
by no means trivial to provide practical error estimates in QMC due to the fact that the only rigorous
error bounds, provided via the Koksma-Hlawka inequality [3, 21, 25], are very hard to utilize. In fact,
the common practice in MC of using a predetermined error criterion as a deterministic termination
condition, is almost impossible to achieve in QMC without extra technology. In order to provide such
dynamic error estimates for QMC methods, several researchers [21, 25] proposed the use of Randomized
QMC (RQMC) methods, where randomness can be brought to bear on quasirandom sequences through
scrambling and other related randomization techniques [4, 5, 9]. The core of RQMC is to find fast and
effective algorithms to randomize (scramble) quasirandom sequences.

Besides providing practical error estimates, another byproduct of scrambled quasirandom numbers
is that they furnish a natural way to generate quasirandom numbers in parallel and distributed appli-
cations. This is because an elegant solution to this problem is to take a single quasirandom sequence
and to provide a differently scrambled version of this sequence to each process requiring quasirandom
numbers. Moreover, QMC applications have high degrees of parallelism, can tolerate large latencies,
and usually require considerable computational effort, making them extremely well suited to parallel,
distributed, and even Grid-based computational environments. In these environments, a large QMC
problem is broken up into many small subproblems. These subproblems are then scheduled on the
parallel, distributed, or Grid-based environment. In a more traditional instantiation, these environ-
ments are usually a workstation cluster connected by a local-area network, where the computational
workload is cleverly distributed. Recently, peer-to-peer or Grid computing, the cooperative use of ge-
ographically distributed resources unified to act as a single powerful computer, has been investigated
as an appropriate computational environment for MC applications [15, 16]. The computational infras-
tructure developed for this was based on the existence of a high-quality tool for parallel pseudorandom
number generation, the Scalable Parallel Random Number Generators (SPRNG) library [18, 17]. The
extension of this technology to quasirandom numbers would be very useful.

Unlike pseudorandom numbers, there are only a few common choices for quasirandom number
generation. However, by scrambling a quasirandom sequence, one can produce a family of related
quasirandom sequences. Finding one or a group of optimal quasirandom sequences within this family
is an interesting problem, as such optimal quasirandom sequences can be quite useful for enhancing the
performance of ordinary QMC. The process of finding such optimal quasirandom sequences is called
the derandomization of a randomized (scrambled) family of quasirandom sequences. In addition to
providing more quasirandom sequences for QMC, derandomization can help us to improve the accuracy
of error estimation provided by RQMC. This is due to the fact that one can find a set of optimal
sequences within a family of scrambled sequence family, and use sequences within this set for error
estimation.

The purpose of randomizing (scrambling) in QMC is threefold. Primarily, it provides a practical
method to obtain error estimates for QMC based by treating each scrambled sequence as a different and
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independent random sample from a family of randomly scrambled quasirandom numbers [21]. Thus,
RQMC overcomes the main disadvantage of QMC while maintaining the favorable convergence rate of
QMC. Secondarily, scrambling gives us a simple and unified way to generate quasirandom numbers for
parallel, distributed, and Grid-based computational environments. Finally, RQMC provides many more
choices of quality quasirandom sequences for QMC applications, and perhaps even optimal choices as
a result of derandomization. Thus, a careful exploration of scrambling and derandomization methods
coupled with library-level implementations will play a central role in the continued development and
use of RQMC techniques.

In this paper, we propose a new Soból scrambling algorithm based on the permutation of several
groups of bits from the individual Soból numbers. Most of the current scrambling methods either
randomize a single digit at each iteration, or randomize a group of digits through linear operations. In
contrast, our multiple-digit scrambling is efficient and fast because it permutes small groups of digits.
We implemented this new Soból scrambling algorithm in the software context of the SPRNGlibrary,
because SPRNGnot only generates parallel pseudorandom numbers, but it also provides an extensible
object-orient interfaces for merging scrambled Soból sequences.

The remainder of this paper is organized as follows. In § 2, we give a brief introduction to quasiran-
dom or low-discrepancy sequences and the Soból sequence in particular. Our scrambling algorithm is
described in § 3. In § 3, we also discus the implementation of the algorithm and how it is implemented
in the object-oriented environment provided by the SPRNGlibrary. The results of our experiments de-
signed to verify the performance of the algorithm are demonstrated in § 4. In § 5, we summarize our
conclusions and describes our future work.

2 The Soból Sequence

In this section, we first discuss quasirandom sequences and the conventional measure used for evaluating
the uniformity of low-discrepancy sequences. Then we define the Soból sequence and algorithm used to
generate it are given. Then, a few general scrambling algorithms are presented.

2.1 Low-Discrepancy Sequences

Quasirandom numbers are produced by a deterministic sequence, and as we will see below, they are
often used in quasi-Monte Carlo integration. The reason behind using deterministic sequences is that
the independence of random numbers plays a secondary role to their uniformity in certain Monte Carlo
calculations, so sequences with better uniformity properties may lead to smaller errors in certain ap-
plications. To quantify how uniform a given sequence is, we need a well-defined measure of uniformity.
There are, in fact, many ways to define and measure uniformity, we here use the one based on Nieder-
reiter’s development of the topic [20].

Let Is denote the s dimensional unit cube. An infinite sequence {xn} in Is is called uniformly
distributed if for all measurable subsets J of Is

limN→∞
1
N

N∑
n=1

χJ(xn) = m(J), (1)

holds, where χJ is the characteristic function of J , and m(J) is the volume of J . Thus in the limit of
an infinite number of points, every region in Is has proportionally the right number of points. From
this definition it follows that a sequence {xn} is uniformly distributed if for all Riemann integrable
functions, f , defined on Is it holds that

limN→∞
1
N

N∑
n=1

f(xn) =
∫

Is
f(x)dx. (2)



It follows from the Central Limit Theorem that a sequence of independent, identically distributed points
chosen from the uniform distribution on the interval Is is indeed a uniformly distributed sequence.

Practically, it is only possible to deal with a finite number of integration nodes, so it is necessary to
define some measure of uniformity for finite point sets. Such a quantity is known as the discrepancy.
For a set J ⊂ Is and a sequence of N points {xn} in Is, define this measure of the deviation of the
point set, {xn}, from being uniform in the set J ∈ Is

RN (J) =
1
N

N∑
n=1

χJ(xn)−m(J). (3)

Various kinds of discrepancy can be defined then by restricting J to a certain class of subsets and taking
a norm of RN over this class. If E is the set of all rectangular parallelepipeds of Is, then the L∞ and
L2 norms are defined as:

DN = supJ∈E |RN (J)| , (4)

and

TN =

[∫
(x,y)∈I2s,xi<yi

(RN (J(x, y)))2dxdy

] 1
2

. (5)

Here J(x,y) indicates the rectangular parallelepiped with opposite corners at (x,y). If E∗ is the set
of subrectangles with one corner at x = 0, then the traditional measures, the star discrepancies are
defined as:

D∗N = supJ∈E∗ |RN (J)| , (6)

and

T ∗N =
[∫

Is
(RN (J(x)))2dx

] 1
2

. (7)

Here J(x) is the rectangular parallelepiped with one corner at 0 and the opposite corner at x.
Equation 5 is only a theoretical definition of the L2 discrepancy, [19] gave a practical equation for

calculating this L2 discrepancy.

T 2
N =

1
N2

N∑
n=1

N∑
m=1

s∏
i=1

(1−max(an,i, am,i))×min(an,i, am,i)−
21−s

N

N∑
n=1

s∏
i=1

an,j(1− an,i) + 12−s (8)

The Halton [10], Soból and Faure [8] sequences are well known and widely applied low-discrepancy
sequences. They are very uniform in Is, however they have some very poor two-dimensional projections.
Fig. 1 shows a 2-D projection of Soból sequence. The two dimensions are 27th and 28th. Clearly banded
structures and large gap exists in the figure. The organized structures in Fig. 1 indicates that these two
dimensions of the Soból sequence are not very uniformly distributed. The organized shape and large
gaps in Fig. 1 may cause biased samples in quasi-Monte Carlo applications. Scrambling is a solution
for these poor low-dimensional projections.

2.2 Generating the Soból Sequence

Before discussing how to scramble the Soból sequence, let us first look at how an unscrambled Soból
sequence is created so that we can identify the important characteristics of Soból sequence that we will
use in its scrambling. The Soból sequence, as originally defined by Soból, is generated from a set of
special binary vectors of length w bits, vj

i , i = 1, 2, · · · , w, j = 1, 2, · · · , d. These numbers, vj
i , are called

direction numbers. In order to generate direction numbers for dimension j, we start with a primitive



Figure 1: A Poor 2-D Projection of the Soból Sequence

(irreducible) polynomial over the finite field F2 with elements {0, 1}. Let us suppose the primitive
polynomial used in generating dimension j of the Soból sequence is

pj(x) = xq + a1x
q−1 + ...+ aq−1x+ 1. (9)

Once we have chosen this polynomial, we use its coefficients to define a recurrence for calculating vj
i ,

the direction number in dimension j. It is generated using the following q-term recurrence relation:

vj
i = a1v

j
i−1 ⊕ a2v

j
i−2 ⊕ · · · ⊕ aq−1v

j
i−q+1 ⊕ v

j
i−q ⊕ (vj

i−q/2
q), (10)

where i > q, ⊕ denotes the bitwise XOR operation, and the last term is vi−q shifted right q places. The
initial numbers vj

1 · 2w, vj
2 · 2w, · · · ,vj

q · 2w can be arbitrary odd integers smaller than 2, 22,..., and 2q,
respectively. The Soból sequence xj

n (n =
∑w

i=0 bi2
i, bi ∈ {0, 1}) in dimension j is generated by

xj
n = b1v

j
1 ⊕ b2v

j
2 ⊕ · · · ⊕ bwv

j
w (11)

We should use a different primitive polynomial to generate Soból sequence in each dimension.
Generating the Soból sequence as defined by equations ?? is tedious and time consuming. Antonov

and Saleev [1] provided another efficient way to calculate the Soból sequence. They proved that taking

xj
n = g1v

j
1 ⊕ g2v

j
2 ⊕ · · · (12)

where · · · g3g2g1 is the Gray code representation of n does not affect the asymptotic discrepancy. For
k = 2, 3, · · · , this shuffles (permutes) each initial segment of length 2k of Soból’s original sequence. We
remind the reader of the following properties of the Gray code:

• The Gray code for n is obtained from the binary representation of n using · · · g3g2g1 = · · · b3b2b1⊕
· · · b4b3b2.



• The Gray code for n and the Gray code for n + 1 differ in only one bit. If bc is the rightmost
zero-bit in the binary representation of n (add a leading zero to n if there are no others), the gc

is the bit whose value changes.

Using these properties, and defining xj
n by equation 12, we can calculate xj

n+1 in terms of xj
n as

xj
n+1 = xj

n ⊕ vj
c , (13)

where bc is the rightmost zero-bit in the binary representation of n. The Antonov-Saleev method is
thus faster than Soból’s original scheme, and so we will use Antonov-Saleev method to implement the
original Soból sequence.

3 Scrambling the Soból Sequence

This section discusses about our scrambling algorithm and its implementation in SPRNG. First we briefly
introduce some currently used scrambling algorithms.

3.1 Current Scrambling Methods

Owen investigated a general approach to scrambling of nets and sequences in [23]. His scrambling
scheme can be described as follows. Let b ≥ 2 be an integer. Let δ is a mapping from interval [0, 1) to
the b-ary representation of δ(A) ∈ [0, 1) determined in the following way. Let A = a1b

−1 + a2b
−2 + · · · ,

where a1, a2, · · · are in {0, 1, · · · , b − 1}. Next, for each possible value of a1, we fix a permutation πa1

of {0, 1, ..., b − 1}, and define the second b-ary digit as πa1(a2). We can continue in this way with the
definition of the third digit, fourth digit, and so on, and so obtain πa1,a2(a3), πa1,a2,a3(a4), · · · . In Owen’s
scrambling scheme, each permutation is uniformly distributed over the b! possible permutations, and the
permutations are mutually independent. In s dimensions, we consider an s-tuple of b-ary scramblings
(δ1, · · · , δs). Owen showed that if δ1, · · · , δs are chosen as fully random and mutually independent.
then the s-dimensional scramblings preserve the properties of (t,m, s)-nets and (t, s)-sequences. A
consequence of this is a sequence and its scrambling under this scheme have the same asymptotic
discrepancy.

Based on Owen’s scrambling scheme, many scrambling other algorithms [22, 14, 2, 11] that ran-
domize a single digit at a time have been proposed. Alternatively, [6] proposed a multiple digital
scrambling approach using a popular pseudorandom number generator as a scrambler, namely the
Linear Congruential Generator (LCG). From now on we call this algorithm linear scrambling. The
procedure is described as follows:

• yn =
⌊
xn × 2k

⌋
, is the k most-significant bits of C, the number to be scrambled.

• y∗ = ayn(mod m) and m ≥ 2k − 1, is the linear scrambling applied to this integer.

• zn = y∗n
2k

+ (xn − yn
2k

), is the final scrambled form derived from xn.

The LCG is the key to the success of this scrambling method. LCGs with both power-of-two and prime
moduli are common pseudorandom number generators. When the modulus of an LCG is a power-of-
two, the implementation is cheap and fast due to the fact that modular addition and multiplication
are just ordinary computer arithmetic when the modulus corresponds to the size of a computer word.
The disadvantage, is in terms of quality, as it is hard to obtain the desired quality of pseudorandom
numbers when using a power-of-two as modulus LCG. The linear scramblings thus used prime moduli,
but only primes with special form such as the Mersenne or a Sophie-Germain primes.



3.2 Scrambling via Permutation

Owen’s scrambling scheme randomizes each b-ary number an by uniformly choosing permutations
πa1,a2,··· ,an−1 of a1, a2, · · · , an−1. And linear scrambling produce randomization through multiplication
with a pseudorandom integer. Our new algorithm can be regarded as a variant of Owen’s scrambling
scheme. It uses a random number to choose a permutation randomly and uniformly, then the permu-
tation is applied to a certain number of digits for scrambling. The algorithm is described in detail as
the follows.

Let Ωw denote the set of all permutation of the numbers {0, 1, · · · , w−1}, obviously the cardinality of
Ωw is w!. A bijection, φw ,is defined as φw : {0, 1, · · · , w!−1} → Ωw, so that for any a ∈ {0, 1, · · · , w!−1},
φw(a) is a permutation of the numbers {0, 1, · · · , w − 1}. To simplify notation, we use φw

a to denote
φw(a). Assume that xj

n is the Soból number in the jth dimension corresponding to n as used in § 2.2.
Then xj

n = g0 × (2k)0 + g1 × (2k)1 + g2 × (2k)2+, · · · , where k ≥ 1. If rn,j is the nth random number
from random number sequence, j, and rn,j ∈ {0, 1, 2, · · · , w!− 1}, then the scrambled Soból number is

xj∗
n = φ2k

rn,j (g0)× (2k)0 + φ2k

rn,j (g1)× (2k)1 + φ2k

rn,j (g2)× (2k)2+, · · · . (14)

The idea behind this algorithm is to replace each k-bit digit in xj
n by the permutation φ2k

rn,j . We
represent the Soból number in binary because Soból sequence generation is done with operations in
the finite field F2. The algorithm can be easily modified to handle other low-discrepancy sequences
represented in bases other than 2, e.g. the prime number based Halton sequence.

One problem in this algorithm is that for each iteration we need to permute multiple groups of
digits to scramble all the digits. Since the first k significant bits play a key role in deciding the value
of the number, we can get by with only significant the most significant k bits, i.e. given xj

n, there is an
integer m ≥ 0 which satisfies xj

n = g0 × (2k)0 + g1 × (2k)1 + g2 × (2k)2+, · · · ,+gm × (2k)m and gm 6= 0.
The scrambled Soból number is thus

xj∗
n = g0 × (2k)0 + g1 × (2k)1+, ...,+gm−1 × (2k)m−1 + φ2k

rn,j (gm)× (2k)m. (15)

The algorithm can be further extended to replace the first p significant k-bit digits through permu-
tations, m ≥ p ≥ 1. Algorithm 1 illustrates our Soból scrambling algorithm.

1. Generate the nth Soból number in dimension j: xj
n;

2. Disassemble xj
n into {g0, g1, · · · , gm};

3. Get a random number rn,j from a pseudorandom number generator;
4. Choose a permutation φrn,j from the permutation set Ω2k ;
5. Replace {g0, g1, · · · , gm} with {g0, · · · , gm−p, φrn,j (gm−p+1), · · · , φrn,j (gm)};
6. Reassemble the Soból number as
xj

n ← g0 × (2k)0+, · · · ,+gm−p × (2k)m−p + φrn,j (gm−p+1)× (2k)m−p+1+, · · · ,+φrn,j (gm)× (2k)m;
Algorithm 1: Our Algorithm for Scrambling the Soból Sequence

3.3 Implementing the Scrambling inSPRNG

The algorithm 1 described in the previous section was implemented using the software infrastructure
provide by the SPRNGlibrary. The SPRNGlibrary was designed to support parallel Monte Carlo appli-
cations on scalable and distributed architectures. It contains most of the important pseudorandom
number generators, and many tools for statistical testing of pseudorandom number generators. Fig. 2
illustrates the software structure of SPRNGusing UML, the Unified MModeling language. The directory
SRC is the major directory, which contains all the core implementations of the SPRNGlibrary. Codes
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Figure 2: The Software Structure of SPRNG

for the different pseudorandom number generators are within the subdirectory SRC. SRC also includes
some important utility tools like a prime number generator. Directory TEST is the directory containing
different kinds of statistical tests for random number generators, including the collision test, coupon col-
lector’s test, equidistribution test. Directory EXAMPLES includes not only applications for demonstrating
the usage of the SPRNGlibrary, but also a few driver programs for testing and debugging purposes.

The key class in SPRNGis the Sprng class, which is the parent class of all the other pseudorandom
number generator classes. In other words, as long as the pseudorandom number generator class inherits
and implements the Sprng class’s interface, it can be merged into the SPRNGlibrary seamlessly. For this
reason, our Soból sequence generator class Soboĺ inherits the class Sprng, as demonstrated in Fig. 3.
Considering that the low-discrepancy sequences are widely used in high dimensional integration, we
extended the interface by adding a new class function get rn vector. The vector value returned by
this function is a point in Is.

Scrambler is a virtual class which defines the general interface for all the scrambler classes. LinearScrambler
is an implementation of the scrambling algorithm in [6]. PermutationScrambler implements the algo-
rithm 1.

PermuationFactory is a virtual class to generate the permutation used in step 4 of algorithm 1.
Two child classes of PermuationFactory are implemented to provide real permutations for an input
random number rn,j . StaticFactory will generate and store all the n! permutations for {0, 1, · · · , n−1}
at initialization. For any integer n! − 1 ≥ r ≥ 0, StaticFactory retrieves the rth permutation and
returns it.

Except for the cost of initializing all of the n! permutations, StaticFactory is quite efficient, but
clearly the n used must be confined to a small values. For the Soból sequence, 22! and 23! are already
big enough for scrambling the sequences as shown by the empirical evidence in § 4.

Unlike StaticeFactory, DynamicFactory generates one permutation according to the value of
the random number rn,j at the time the class’s function is called, not when the class is initialized.
Theoretically it can generate any permutation of arbitrarily large Ωw. In [24], a few fast algorithms to
randomly generate permutations were introduced. DynamicFactory uses the algorithm published by
R. Durstenfeld [7] to randomly generate permutations.
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Figure 3: Soból in SPRNG

CPU Memory Compiler OS SPRNG
Pentium(R) D 3.00 GHz 2GB gcc 4.1.1 Linux 2.6.18-8.e15 version 4.0

Table 1: Experiment Configurations

4 Computational Experiments

We designed a group of experiments to verify the performance of our scrambling algorithm. The tests
were executed on a Linux PC. The software and hardware configurations of the experiments are listed
in table 1.

In the experiments, we used the LCG of SPRNGto generate pseudorandom numbers for picking a
permutation from Ωw. The experiments comprise two types: 2-D projections tests (to visually verify
scrambled points) and the computation of the L2 discrepancy test, where 5 is used to calculate it. Two
parameters are critical in our scrambling algorithm, one is the number of bits to be replaced at a time
(k in algorithm 1), and the other is the number of k-bit digits to be replaced in one iteration (p in
Alg. 1). We use the notation k × p to denote these two parameters. For example, 2 × 8 means eight
2-bit digits (from most-significant bits to the least) will be replaced for each Soból number.

4.1 2-D Projections

Fig. 1 demonstrates the banded structure and large gaps in the 2-D projection of 27th and 28th di-
mensions of the Soból sequence. This illustrates the correlated relationship between those dimensions.
Our scrambled Soból sequence successfully breaks such such structures, as demonstrated in Fig. 4 and
Fig. 5. In Fig. 1, 4096 points were generated, and the 27th and 28th dimensions were projected on the
plane in Fig. 4 and Fig. 5. In the left figure of Fig. 4, although most of the banded structures have been
destroyed, a few still exist in the center, left-bottom and right-top corner. The reason for this is that



Figure 4: A 2-D Projection of Scrambled Soból Sequence. Left: 2× 1; Middle: 2× 8; Right: 2× 15

Figure 5: A 2-D Projection of Scrambled Soból Sequence. Left: 3× 1; Middle: 3× 5; Right: 3× 10

only randomizing the 2 most-significant bits could not effectively scramble the Soból sequence. This is
verified by the middle and right graphs of Fig. 4. In the middle graph of Fig. 4, the banded structures
have totally disappeared after half of bits were scrambled. But it is enough to randomize three bits
at one time to destroy the correlations between the 27th and 28th dimensions as demonstrated in left
graph of Fig. 5.

4.2 The L2 Discrepancy

This section explores the empirical relationship between number of points and L2 discrepancy in terms
of our scrambling algorithm. We plot the logarithm of both of number of points and of L2 discrepancy,
so that the two values produce a linear relation in the graph if the L2 discrepancy obeys a power-law
relationship with the number of points. In that case, the slope in the log-log plot is the exponent. All
of the tests were done on two Soból sequences: one is 10-dimensional and the other is 100-dimensional.
Fig. 6 illustrates the linear relation between L2 discrepancy and number of points for the 10- and
100-dimensional Soból sequences. We scrambled the Soból sequences with different parameter configu-
rations, and for each parameter configuration, we generated four scrambled streams. There were 16384
points created for each scrambled or unscrambled Soból sequence. The interval [1, 16384] is equally
divided into 32 subintervals, and the L2 discrepancy is calculated on those boundary points of the 32
subintervals that are 512, 1024, · · · , 16384.

Fig. 7 and Fig. 8 are for the scrambled 10-dimensional Soból sequences with 8 groups and 16 groups
of 2-bit permutations. Compared with the left graph of Fig. 6 (the unscrambled 10-dimensional Soból
sequence), all the eight graphs have a quite similar linear relationship. The slopes of the log-log plots



Figure 6: L2 Discrepancy of Soból Sequences. Left: 10-Dimension Soból; Right: 100-Dimension Soból

Dimensions Unscrambled 2× 8 2× 15 3× 5 3× 10
10 0.005999 0.024497 0.029746 0.026246 0.031496
100 0.055993 0.302454 0.351697 0.314202 0.350697

Table 2: CPU Time for Generating 16384 Scrambled and Unscrambled Soból Points

are close to −0.5.
Similarly, Fig. 9 and Fig. 10 are for scrambled 10-dimensional Soból sequences with 5 and 10 groups

of 3-bit permutations. The slopes of the log-log plots are also close to −0.5, but a little bigger than
−0.5. And the result of 5 groups scrambling is very similar to 10 groups scrambling.

The next four figures are all for scrambled 100-dimensional Soból sequences. Fig. 11 and Fig. 12 are
for 8 groups and 15 groups of 2-bit permutations. Fig. 13 and Fig 14 are for 5 groups and 10 groups 3-bit
permutations. Compared with right graph of Fig. 6 (the unscrambled 100-dimensional Soból sequence),
all the 8 streams of 2-bit scramblings (Fig. 11 and Fig. 12) have a very similar linear relationship to
that of original Soból sequence – the slope values are close to −1. But for 3-bit scramblings (Fig. 13
and Fig. 14), only two of eight streams have a linear relationship similar to that of the unscrambled
Soból sequence (right graph of Fig. 6). To further investigate this, we put all of the L2 discrepancy data
of 3-bit scramblings in Fig 14 together with that of the unscrambled Soból sequence into Fig. 15, and
we used the number of points, not the logarithm, on the x-axis of Fig. 15. All the scrambled sequences
have lower discrepancy than the unscrambled sequence does. The scrambled sequence (stream 3 in
Fig. 15 and Fig. 14) whose linear relation is similar to that of unscrambled sequence has a more smooth
shape than other scrambled sequences do.

Table 2 lists the time used for generating those scrambled and unscrambled Soból sequences in units
of seconds. Clearly our scrambling algorithm is about 4 to 6 times slower than the unscrambled Soból
sequence. But time used for generating the scrambled 100-dimension Soból sequence is almost 10 times
that of generating the scrambled 10-dimension Soból sequences. This means that our algorithm appears
to scale linearly with dimension. We also want to mention that we did not optimize the implementation
of our algorithm.

5 Conclusions

We provide an algorithm to effectively randomize the Soból sequence vi multi-bit permutation. The
advantage of this algorithm is that randomization and scrambling speed can be balanced through setting
different parameter configurations – k and p. Experimental results verify that our algorithm not only



Figure 7: L2 Discrepancy of Scrambled 10-Dimension Soból 2× 8

Figure 8: L2 Discrepancy of the Scrambled 10-Dimensional Soból 2× 15



Figure 9: L2 Discrepancy of the Scrambled 10-Dimensional Soból 3× 5

Figure 10: L2 Discrepancy of the Scrambled 10-Dimensional Soból 3× 10



Figure 11: L2 Discrepancy of the Scrambled 100-Dimensional Soból 2× 8

Figure 12: L2 Discrepancy of the Scrambled 100-Dimensional Soból 2× 15



Figure 13: L2 Discrepancy of the Scrambled 100-Dimensional Soból 3× 5

Figure 14: L2 Discrepancy of the Scrambled 100-Dimensional Soból 3× 10



Figure 15: L2 Discrepancy of the Unscrambled and All the Scrambled (3× 10) 100-Dimensional Soból
Sequences

effectively breaks the correlations between dimensions, but also has a low discrepancy similar to the
unscrambled Soból sequence. While our method is not strictly an Owen scrambling, this confirms that
it behaves as such.

With certain modifications, the scrambling algorithm can also be applied to other low-discrepancy
sequences such as the Halton and Faure sequences. One problem for applying the algorithm to other
quasirandom sequences such as the Halton sequence, is how to generate randomly and efficiently the
large number permutations required for large bases. It is also important to point out that our current
implementation has not been optimized. We plan to do this in the future. But we also need to develop
a measure to evaluate how the algorithm’s randomization process effects the discrepancy properties of
the sequences, or in other words, how to derandomize the Soból sequences scrambled by our algorithm.
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