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The high-strain-rate mechanical properties (including deformation and fracture mechanisms) 

as well as high-pressure phase transformation characteristics of a Zr-based bulk metallic glass 
(BMG) and its composite with tungsten have been investigated through impact experiments and 
constitutive modeling. BMGs exhibit unique properties including high strength, deformation by 
shear banding, high strength-to-weight ratio, and excellent corrosion resistance; however, they 
undergo catastrophic failure due to localized deformation. Restricted shear band propagation and 
controlled fracture response can be achieved via addition of reinforcement particles or alteration 
of microstructure by crystallization phase transformations.  

Our work has involved performing controlled impact experiments on bulk metallic glass 
(BMG) composites consisting of an amorphous Zr57Nb5Cu15.4Ni12.6Al10 (Vitreloy106) matrix 
with crystalline tungsten reinforcement particles. The deformation and failure response of 
monolithic Vitreloy106 have also been examined to aid in the understanding of the composite. 
The high-strain-rate mechanical properties of both the monolithic BMG and BMG-W composite 
have been investigated using dynamic compression (reverse Taylor) and dynamic tension (spall) 
impact experiments performed using our single-stage 80-mm gas gun instrumented with velocity 
interferometry (VISAR) and high-speed digital photography combined with the 2-stage gun at 
NIMS in Japan, as well the dynamic testing facilities at Chemnitz University, in Germany. The 
experiments have provided information about the dynamic strength and deformation modes over 
a range of temperatures and strain rates, and allowed validation of constitutive models via 
comparison of experimental and simulated transient deformation profiles and free surface 
velocity traces. Equation of state (Hugoniot) measurements performed on the monolithic BMG 
reveal a polyamorphism transformation to a high-modulus and high-density whose formation 
increases the strain-rate sensitivity of strength and fracture stress.  

The overall objective of this research has been to determine the high-strain-rate deformation 
and failure mechanisms and high-pressure behavior of BMG and BMG-matrix composites under 
dynamic compressive and tensile loads and to correlate these mechanisms to develop and 
validate constitutive models that describe the mechanical behavior over a range of loading 
conditions. The significance of this research has been the development of the fundamental 
materials-science based understanding that can enable the design of the bulk metallic glass of 
compositional that can undergo stress-induced polyamorphism transformation and thereby 
enable increased deformation and fracture resistance under high-strain-rate and shock-loading 
conditions. The research conducted involved collaborations with researchers at the Army 
Research laboratory, the National Institute of Materials Science in Japan, and the Dynamic 
Testing Laboratory at the Chemnitz University in Germany. The key results obtained during the 
course of this program are briefly summarized next.  
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High-Strain-Rate Compressive Response of W-BMG composite 
 
Rod-shaped samples of W-Vitreloy106 (Zr57Nb5Cu15.4Ni12.6Al10) composite (density – 14.59 

g/cm3) were obtained from the Army Research Laboratory (courtesy of Dr. Laszlo Kecskes). As 
shown in Fig. 1(a), the composite samples contain nominally 70wt% W particles embedded in 
Vitreloy 106 bulk metallic glass matrix. Figure 1(b) shows typical fracture surface of composite, 
revealing cleavage failure of W particles and the inherent brittle behavior of the glassy matrix.  

Fig. 1. SEM images showing (a) polished and (b) fracture surface of W-Vitreloy106 composite.    
 
Figure 2 shows results from dynamic compression (anvil-on-rod impact) experiments 

performed on the W-BMG composite. Constitutive modeling using the Drucker-Prager strength 
model was performed and correlated with experimental results. The figure shows images 
comparing the experimental (lower half) and simulated (upper half) profiles of the deforming 
sample at various times during impact at (a) 134 m/s, (b) 155 m/s, and (c) 186 m/s. The 
simulation contours represent effective plastic strain.  These comparisons show that the Drucker-
Prager model provides a decent fit to the experimentally obtained final and transient deformation 
shapes prior to fracture initiation. 

Fig. 2: Correlation between images captured during dynamic compression experiments and simulated 
specimen profiles of W-BMG composites. 
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Uniaxial/biaxial Compressive Response of W-BMG composite  
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The uniaxial and biaxial compressive responses of Zr57Nb5Al10Cu15.4Ni12.6 -W composite 
were investigated over a range of strain rates (~10-3 to 103 s-1) using an Instron universal testing 
machine (~10-3 to 100 s-1), Drop Weight Tower (~200 s-1), and Split Hopkinson Pressure Bar (103 

s-1). The temperature dependence of the mechanical behavior was also investigated at 
temperatures ranging from RT to 600 °C using the instrumented Drop Weight testing apparatus, 
mounted with an inductive heating device. The deformed and fractured specimens were 
examined using optical and scanning electron microscopy. Stopped experiments were used to 
investigate deformation and failure mechanisms at specified strain intervals in both the Drop 
Weight and Split Hopkinson Bar tests. These stopped specimens were also subsequently 
examined using optical and scanning electron microscopy to observe shear band and crack 
formation and development after increasingly more strain. Figure 3 shows results of stress-strain 
curves from drop-weight testing and micrographs of stopped specimens.  

Fig. 3. Stress-strain curves obtained from (a) Drop Weight and (b) Hopkinson bar tests. Circles along 
curves show strain levels at which tests were stopped and specimen was examined for microstructural 
evidence of deformation and failure processes. Micrographs of stopped specimen sections which 
revealed shear bands are shown as well as photographs of failed specimens. Width of shear bands in 
Drop Weight tests were about ~50-100 μm, while those in Hopkinson bar tests were ~10-20 μm. 

The results show an increase in yield strength with strain rate and a decrease in failure 
strength, plasticity, and hardening with strain rate. Comparison of uniaxial and biaxial loading 
showed strong susceptibility to shear failure since the additional 10% shear stress caused failure 
at much lower strains in all cases. Results also showed a decrease in flow stress and plasticity 
with increased temperature, as illustrated in Figure 4. Also notable was the anomalous behavior 
at 450 °C, which lies between the Tg and Tx and as such is in a temperature regime where 
homogeneous flow, as opposed to heterogeneous deformation via shear banding, is the dominant 
mechanism in the BMG. From the overall results, it can be generalized that the tungsten 
dominates the deformation behavior of the composite given the hardening and large degree of 
plasticity, which are characteristic of the BCC metal and not the BMG. However, the additional 
shear stress during biaxial loading causes the BMG to play a strong role. Additionally, at 
temperatures between Tg and Tx, the BMG deforms homogeneously and this mechanistic change 
is so significant that the deformation of the BMG plays a significant role in the overall 
deformation of the composite in spite of its minor volume content (30%). 



Fig. 4. Temperature dependence of mechanical behavior of uniaxial and biaxial LM106-70W specimens 
tested at ~200 s-1. (a) Yield and failure stresses and (b) yield and failure strains as function of temperature. 
In (a) and (b) the data from 450 °C tests (circled) deviate from otherwise linear trend. For both uniaxial 
and biaxial specimens, yield stress decreases with increasing test temperature, and this decrease occurs at 
the same rate, regardless of specimen configuration. Additionally, failure stress decreases with increasing 
test temperature, but the uniaxial failure stress, which is always above that of the corresponding biaxial 
specimen, decreases at a much higher rate such that at 600 °C the uniaxial and biaxial failure stresses are 
approximately same. Strain to failure decreases with increasing test temperature, as shown in (b). Both the 
failure stress and failure strain measured for the 450 °C test temperature, deviate from otherwise nearly 
linear trend (circled points), due to difference in deformation mechanism in the temperature  range. 
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High-Strain-Rate Compressive Response of Monolithic Vitrealoy BMG  

The dynamic compressive response of the monolithic BMG, using anvil-on-rod impact 
experiments, has been investigated using sleeved and un-sleeved samples to probe the effect of 
the imposed radial confinement stress. Figure 5 shows the schematic and photographs of the 
fractured BMG rods recovered after being impacted at (a) 59, (b) 98 and (c) 131 m/s. Black lines 
indicate starting sleeve/specimen configurations and gray lines indicate fracture and 
final/recovered configurations. The photographs show the obvious difference in failure 
mechanisms when comparing the sleeved and non-sleeved specimens (Fig. 5 (b)), both of which 
were impacted at 98 m/s. Because the sleeve allows for preservation of shear planes, we can also 
see the shear plane failure angles and the differences in orientation and locations of these planes. 
The photographs also reveal the fracture response as a function of impact velocity, illustrating 
almost single shear failue (42.5o angle) at 59 m/s, to multiple shear failure at 98 m/s, and conical 
symmetry failure at 131 m/s. These differences are attributed to the triggering and propagation of 
single, double, and multiple (symmetry) shear bands leading to failure under compression. 

 

Fig. 5. Monolithic BMG rods (confined by stainless steel sleeves) recovered post-impact after anvil-
on-rod dynamic compression tests performed at (a) 59 m/s, (b) 98 m/s, and (c) 131 m/s. 

High-Pressure Phase Stability and Equation of State  
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 The high-pressure stability of the BMG was investigated via Hugoniot equations of state 
measurements, based on PVDF+VISAR experiments performed at Georgia Tech and streak 
camera experiments performed at the National Institute of Materials Science. Fig. 6 (a) illustrates 
Us-Up data, in which bulk sound speed (CB) and longitudinal sound speed (CL) were calculated 
from elastic properties data, and Up values obtained either using impedance matching (in high 
pressure regime >67 GPa), and experimentally determined, are plotted in the mixed phase and 
the low pressure regions. All lines are linear fits to the corresponding data. Figure 6(b) shows a 
plot of pressure as a function of density. The lines in the elastic and mixed phase regions are 
linear fits and the lines in the low and high pressure regions are Birch-Murnaghan equation fits. 
For low pressure phase, the Birch-Murnaghan Equation is plotted using the known bulk modulus 
(K0) value and K0’ is taken as 4S-1. For the high pressure phase, the best fits of K0, K0’ and ρ0’ 
were determined using least squares regression.  



Figure 6: Equation of state data plotted as (a) Us-Up and P-ρ plots showing evidence of a transition to a 
mixed phase at 26 GPa and a transition to a second phase at 67 GPa. 

 
The Us-Up plot shows four regions; (1) HEL region (Up ≤ 0.24 km/s), (2) the low pressure 

plastic region (0.27 ≤ Up ≤ 0.72 km/s), (3) the mixed phase region (0.72 ≤ Up ≤ 1.71 km/s), and 
(4) high pressure plastic region (Up ≥ 1.71 km/s). The onset stress for the phase transition is 
about 26 GPa. The Us-Up relation in the elastic region is given by Us=5.03-0.54Up (Up ≤  0.24 
km/s). The negative slope is not unexpected due to the existence of dispersed elastic shock fronts 
in amorphous materials, because of the negative first pressure derivative of elastic modulus. 
However, because of only one point causing the negative trend, it possibly could be due to 
experimental error and thus the slope may be closer to horizontal or slightly positive. The Us-Up 
relations in the plastic regions are given by Us=2.63+4.95Up (0.27 ≤ Up ≤ 0.72 km/s), Us=5.96-
0.05Up (0.72 ≤ Up ≤ 1.71 km/s), and Us=3.83+1.21Up (Up ≥ 1.71 km/s). The pressure versus 
density plot also shows four distinct regions: an elastic region, a low pressure phase, a mixed 
phase region and a high pressure phase. The Birch-Murnaghan equation was used to calculate the 
pressure-density relationship for the BMG in respective low and high pressure regions. For the 
low pressure phase, the equation was plotted using known value of K0 (118 GPa) and K0’ was 
taken to be 4S-1, where S was determined from the Us-Up plot. For the high pressure phase, the 
values of K0, K0’ and ρ0’ (zero pressure density of the high pressure phase) were determined 
using least squares regression to determine the best fit to the experimental data, and were found 
to be 288 GPa, 2.3 and 7.8 g/cm3, respectively. The analysis confirms that the BMG goes 
through polyamorphism transition to high-pressure phase having a bulk modulus of 288 GPa, 
which is ~144% higher than the ambient pressure phase, but not unrealistic.  
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Effect of Polyamorphism on Strain Rate Sensitivity 
 The polyamorphism transition has an influence on the yield and failure strength 
(normalized by elastic and plastic modulus, respectively) of the BMG as shown in Figure 8, 
which compare the strain rate effects in the BMG with pure BCC-tungsten and a BMG-tungsten 
composite. While the BCC-tungsten and the BMG-W composite (with tungsten dominating its 
response) have an obvious effect of strain rate on strength and failure response, the monolithic 
BMG shows a substantial increase in yield (strengthening) and fracture (toughening) stress. The 
effect is attributed to the influence of polyamorphism, with the high-pressure phase contributing 
to strengthening and the mechanical (PdV) work being dissipated in producing the phase change 
rather than in crack propagation. The experimental results thus illustrate that the change in 
mechanical behavior of the monolithic BMG at high strain rates, due to energy dissipation 
associated with high-pressure polyamorphism, can potentially be used to design BMGs with high 
yield strength and fracture toughness. 
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Fig. 8. Strain rate sensitivity of yield and failure strengths (normalized by elastic and plastic modulus, 
respectively) of monolithic BMG, with pure BCC-tungsten, and BMG-tungsten composite. 
 
Summary and Concluding Remarks 

The mechanical behavior of a Zr-based bulk metallic glass and its composite with 
tungsten has been investigated to determine the deformation response over a range of stress 
states, strain rates, and temperatures. The equation of state (EOS) of the monolithic glass has also 
bee investigated to determine its phase stability. Anvil-on-rod impact experiments performed on 
the BMG (with and without steel sleeve) reveal the deformation, fracture, and elastic-plastic 
wave propagation response characterized by the Drucker-Prager model. The deformation 
response of the composite is dominated by the flow and failure characteristics of tungsten. The 
equation of state experiments performed over a wide range of shock pressure show a 
polyamorphism transition starting at 26 GPa. The bulk modulus of the high-pressure phase is 
~144 times that of the ambient pressure phase. Correlation of normalized yield and fracture 
stress with strain rate shows that the phase transition contributes to a substantial increase in yield 
and fracture stress at strain rates >104 s-1, which is more so than that observed for bcc-tungsten 
and BMG-W composite. 
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