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Introduction
Prostate cancer accounts for one-third of noncutaneous cancers diagnosed in US men,1 is a 
leading cause of cancer-related death and is, appropriately, the subject of heightened public 
awareness and widespread screening. If prostate-specific antigen (PSA)2 or digital rectal screens 
are abnormal,3 a biopsy is considered to detect or rule out cancer. Pathologic status of biopsied 
tissue forms the definitive diagnosis for prostate cancer and constitutes an important cornerstone 
of therapy and prognosis.4 There is, hence, a need to add useful information to diagnoses and to 
introduce new technologies that allow efficient analyses of cancer to focus limited healthcare 
resources. For the reasons underlined above, there is an urgent need for high-throughput, 
automated and objective pathology tools. Our general hypothesis is that these requirements are 
satisfied through innovative spectroscopic imaging approaches that are compatible with, and add 
substantially to, current pathology practice. Hence, the overall aim of this project is to 
demonstrate the utility of novel Fourier transform infrared (FTIR) spectroscopy-based, 
computer-aided diagnoses for prostate cancer and develop the required microscopy and software 
tools to enable its application. FTIR spectroscopic imaging is a new technique that combines the 
spatial specificity of optical microscopy and the biochemical content of spectroscopy.5 As 
opposed to thermal infrared imaging, FTIR imaging measures the absorption properties of tissue 
through a spectrum consisting of (typically) 1024 to 2048 wavelength elements per pixel.6 Since 
mid-IR (2-12 m wavelength) spectra reflect the molecular composition of the tissue, image 
contrast arises from differences in endogenous chemical species. As opposed to visible 
microscopy of stained tissue that requires a human eye to detect changes, numerical computation 
is required to extract information from IR spectra of unstained tissue. Extracted information, 
based on a computer algorithm, is inherently objective and automated. Recent work has 
demonstrated that these determinations are also accurate and reproducible in large patient 
populations.7 Hence, we focused, in the first year of this project, on demonstrating that the 
laboratory results could be optimized using novel approaches to fast imaging. This is a critical 
step, since we propose next to analyze 375 radical prostatectomy samples. We have been able to 
optimize data acquisition parameters and develop a novel algorithm for processing data that 
enables almost 50-fold faster imaging.  

We apologize for an incomplete report earlier as the PI misunderstood the length of detail 
in the body of the report versus attachments.

Body 
Specific activities and tasks as per statement of work are below: 

Task 1. Perform infrared spectroscopic imaging on prostate biopsy specimens 

Goal: Obtain high throughput IR imaging on prostate biopsy specimens 
Activities: A focal plane array (FPA) detector was interfaced to an infrared interferometer and 
microscope to record high-throughput spectroscopic imaging data. A rapid-scanning FTIR 
imaging system that can image more than 16,000 spectra per second was available. The system, 
however, provided low signal to noise ratio (SNR) data. In increasing the SNR of data acquired, 
there are typically hardware or experimental approaches. It is prohibitively expensive to procure 
new hardware. Hence, typically, the approach has been to increase SNR by averaging 
successively acquired images. The benefits in SNR are , where n is the numbers of averaged 
spectral data cubes. Hence, we focused next on developing post-processing methods, as detailed 
next.
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Goal: Develop a route to mathematically transform data to eliminate noise and yield high quality 
data. A custom algorithm will be developed in which the covariance matrix is employed to first 
perform a factor analysis equivalent operation followed by image separation from noise and re-
transformation. Software to automatically correct data will be available. (Months 2-6) 
Activities: The methodology was developed and is demonstrated to show a 50-fold improvement 
in SNR. Results are reported in publication to Journal of Chemometrics (submitted) and were 
presented at 2 conferences. 

The first and simplest approach to higher fidelity imaging required co-adding a large number of 
array detector snapshots of the same scene, resulted in long dwell times of the mirror at every 
optical retardation8. We operated the interferometer in step-scan mode and wrote custom 
software to analyze the data. The advantages of this frame co-addition process were limited due 
to the noise characteristics of the detector. Hence, an optimal combination of frame co-addition 
and repeated scanning was implemented, as previously proposed9. Though these methods make 
the best use of the available hardware, they unfortunately, require large increases in data 
acquisition time as the SNR reduction scales less than linearly with the acquisition time. In order 
to obtain high SNR data using acquisition-side approaches, the trade-off with respect to time is 
unavoidable. Such a trade-off limits the possible applications of FT-IR imaging as a routine 
microscopic analysis tool in prostate cancer.

For a finite data acquisition time, other schemes to extract low noise information are available10

but these methods neglect the image as a whole and result in loss of image fidelity. While we 
implemented these schemes here, it was clear that structural fidelity of the tissue image was 
being affected. Hence, we turned our attention to another alternative to hardware improvement or 
co-addition schemes for high fidelity imaging. This approach is the use of mathematical noise 
reduction techniques. For example, a procedure based on the Minimum Noise Fraction (MNF) 
transform was adopted from the satellite and airborne imaging community11. With rapid 
development of powerful computers and increased storage capacities, using computation to 
enhance instrument performance is becoming an attractive option. Using chemometric methods 
to enhance acquired FT-IR imaging data has been a relatively recent development. A convenient 
approach is to use an Eigenvalue decomposition of the data using a forward transform, e.g. PCA. 
After selecting eigenimages with sufficient SNR, the selected data are inverse transformed to 
yield the entire dataset with lower noise content. This approach was used12 to examine phase 
compositions by enhancing contrast between different regions. PCA reorders data in decreasing 
order of variance.

A similar technique called MNF transform was proposed13 to re-order image data in decreasing 
order of SNR. A modified version14 of this transform has been shown to improve image fidelity 
and achieve better noise reduction than PCA, for example. Mathematical transform techniques 
for noise reduction generally utilize the fact that noise in uncorrelated where as spectra (signals) 
have a fairly high degree of correlation. In the transform domain, the signal is primarily 
restricted to a few factors where as the noise is spread across all factors. We use the term 'factors' 
to refer to images of eigenvalues in the transform domain.  Noise reduction can be achieved by 
retaining factors corresponding to high signal content, removing factors predominantly 
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corresponding to noise and computing the inverse transform. Identifying factors corresponding to 
high signal content is an important step in the noise reduction process. 

The identification of factors to include is invariably a manual process and is the key impediment 
to routine application of these methods for noise reduction. First, the manual selection will vary 
from practitioner to practitioner, leading to variance in the results obtained from the same data 
set. The scientific conclusions or confidence in results, hence, may vary in an unpredictable 
manner. Second, the need to examine every eigenvalue image (or, at least, a large set of images) 
is time-consuming. The decision to exclude or include images with questionable content is 
especially difficult and requires significant time as some quantitative guidance is often used. For 
example, we have used comparisons of values from sample and sample-less regions. These two 
factors are a key barrier in the use of these post-processing techniques for enhancing IR imaging 
data. There are many dimensional reduction and noise reduction schemes proposed15,16 to address 
this issue. Many of these methods15,17,18 choose all factors before a certain cut off (k) determined 
based on predefined criteria. However, the assumption that all of the first k factors are important 
is questionable. The MNF approach was specifically developed to overcome the observation that 
the first k factors in PCA were not always optimal. Other methods16,19 can be computationally 
expensive or do not utilize some of the features of the data in factors.  

We recognized that a major limitation of these methods is that they do not explicitly account for 
the spatial and spectral information in the data. For example, PCA separates features in the 
spatial domain by accounting for variance in the scene. The variance may arise from the data, 
sensor or may be an artifact. Similarly, the signal in the re-ordering of MNF factors is assumed 
to be features in the image but could come from factors other than the sample of interest. For 
example, Figure 1 shows the 4th, 8th, 12th and 19th MNF factor for FT-IR data from a breast tissue 
sample. The 4th MNF factor shows interesting tissue structural features. Although the  8th  factor 
has higher SNR compared to the  12th  or  19th  factor, the  12th  and  19th  factors contain 
relatively more features of interest. We would include the 12th and 19th factors but not the 8th in a 
noise reduction scheme involving MNF transform. The 8th factor likely arises from illumination 
or water vapor differences and not from the sample itself.  

-7.0 

 3.5 

 0.0 

A B 

C D 
-3.5 
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Figure 1 (A) 4th MNF Factor (Tissue structural features visible) (B) 8th MNF factor (C) 12th

MNF factor (D) 19th MNF factor. The 8th factor has less structural features compared to 
12th or 19th factor. 

Hence, we proposed a factor selection algorithm that selects factors based on structural features 
in a quantitative manner. The MNF transform of our dataset is computed to obtain factor images 
corresponding to decreasing SNR values. We are interested in retaining only those factor images 
that have visible structural features. These features include boundaries of tissue samples, ducts 
and boundaries between different structural units. An important observation here is that images 
having distinct features have well defined edges. Edges capture these structural features and form 
the basis of our factor selection scheme. Several methods for edge detection20 based on different 
filters and different thresholding schemes have been proposed and studied. Three well known 
edge detection techniques (Sobel, Roberts, and Canny) were used and Canny's method21 was 
found to be the most effective one for our application. The result of edge detection is a binary 
image that we will call an 'edge map'. A typical edge map is shown in figure 2. It must be noted 
that the presence of impulsive noise hinders edge detection. A median filter is used to mitigate 
the effect of such impulsive noise. The choice of size of the median filter is a compromise 
between the size of structural features in the image and the size of noise clusters that need to be 
removed. Using a large median filter would be effective in removing large clusters of noise but 
could also result in loss of features, especially those that are smaller than the size of the median 
filter. Median filters of sizes between 7x7 and 13x13 were found to be effective in our 
application. It may be noted that the edge map in Figure 2 has been obtained after median 
filtering with a size 9x9 filter. 

Figure 2. Left: Typical 'ideal' image (I) Right: corresponding edge map (EI)

The next step in factor selection is to choose an 'ideal', high SNR image (I) that has all the 
structural features of interest. The edge map of I and edge maps of factors images are compared 
to decide whether or not a factor is significant. Since the first MNF factor corresponds to the 
highest SNR, it could be used as our 'ideal' image I. However, it may be possible to choose a 
better image than the first factor in terms of structure if we have some prior knowledge about the 
sample, for example, information about its spectral characteristics. For many biological tissues, 
the wavenumber region between 1050cm-1 to 1810cm-1 and from 2165cm-1 to 3050cm-1 is known 
to have chemical significance. The ideal image I could be computed by first calculating the 
second derivative of spectra in these ranges using a Savitzky-Golay algorithm22. The sum of the 
absolute values of the second derivative data is indicative of the chemical composition of the 
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tissue. While we have used specific knowledge regarding tissue in this case, the finger print 
region of the IR spectrum is likely universally applicable for this procedure. The Savitzky-Golay 
filter reduces noise while preserving peak heights and widths, and the summation helps improve 
overall SNR by averaging noise. This gives us a high SNR I (figure 2) that captures features 
from important spectral bands. An alternative is to simply calculate the Gram-Schmidt intensity 
of the interferogram of the sample23. Hence, the image would retain the structural and 
biochemical contributions from all functional groups and scattering interfaces. Yet another 
approach could be to use the bright field optical microscopy image. The optical image may not 
contain sufficient contrast, have differences observed in the IR image or may experience a 
mismatch in resolution. Hence, we would suggest the use of the IR “bright field” equivalent, 
which is simply the height of the centerburst. Since a background is always collected for 
absorbance data. The ceterburst height in the sample data set could be corrected for illumination 
differences using background data. 

Having chosen an 'ideal' image I, its edge map EI is computed after median filtering. Next, each 
MNF factor image is median filtered and edge maps Ej, j=0,1, …,N-1 are found. In practice, the 
number of significant MNF factors for our data was much smaller (<60) than the number of 
spectral bands (~1640) and it would be prudent to compute only the first few (~60) factors so as 
to save computation time.  The significant factors could be chosen from this subset of factor 
images. Next, the root mean square error (RMSE) between EI and Ej, j=0,…,N-1 is computed. A 
typical plot of RMSE vs factor number is shown in Figure 3. RMSE here is an estimate of the 
closeness of a factor image to the ideal image I in terms of structural features. The plot reveals 
that factors corresponding to higher eigen values may not necessarily have more significant 
features. Significant factors are those which have lower RMSE. The RMSE values are sorted in 
ascending order while keeping track of the indices (corresponding to MNF factor numbers).  

Figure 3. Typical error plot before sorting RMSE 

A typical RMSE plot after sorting is shown in 
Figure 4. A characteristic of this curve is that it increases rapidly in the beginning and transitions 
to a plateau later. Comparing edge maps and factor images corresponding to various points on 
the curve, we observe that the initial steep region corresponds to factors with significant features 
and the later plateau region of the curve corresponds to noise. Therefore, a good cut-off point for 
factor selection would be a point on the curve just before the onset of the plateau. By choosing 
all factors corresponding to RMSE values less than that at the cut-off point, we select only those 
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factors with significant features. The derivative of the curve in the plateau region is zero and this 
could be utilized in finding the cut off point. However, in order to mitigate the effect of local 
variation, a moving average filter is first used to smooth the curve before finding the discrete 
derivative. The cut-off is chosen to be the point after which the derivative does not rise more 
than μ+3  where μ and  correspond to the mean and standard deviation of the derivative of flat 
region of the curve. 

Figure 4. Typical error plot after sorting RMSE and reordering MNF factors in terms of 
increasing RMSE 

Finally, the MNF factors corresponding to the chosen indices are rearranged in the order of 
decreasing correspondence with the reference image and only the objectively selected factors are 
used in the inverse MNF transform. Computing the MNF transform, selecting factors based on 
edge maps and computing the inverse MNF using these factors gives a complete automated noise 
reduction algorithm that does not require human input. There are choices that can be made while 
setting up the protocol, for example, in choice of the reference image, that are under operator 
control. Once the protocol is finalized, however, the process is entirely automated and can be 
high throughput. Thus, the criteria of both objectivity and automation for noise reduction are 
addressed.

Although we illustrate the utility of the proposed algorithm for tissue FT-IR data, the technique 
is more general and can be applied to any other data in which structures in images are well 
described by edges. We could also use the proposed factor selection algorithm with other 
transform techniques like PCA for example. A generalization of the MNF transform has been 
proposed by24. However, we did not observe the kind of distortion described in [24] in our data 
and therefore did not find the need to use the generalized MNF. We demonstrate the efficacy of 
this automated SNR enhancement by applying the process to breast tissue data. The effects of 
SNR are quantitatively measured by the accuracy of classifying tissue. 

Tissue classification accuracy is related to SNR of the data. In Figure 5, we report the qualitative 
evaluation of classified images from example tissue from both as-acquired FT-IR imaging data 
(A) and from the data with added noise (B-D), as discussed previously. There is a significant 
decrease in classification accuracy when the noise is greater than 0.01a.u.. Image sets with higher 
noise produce classified images with regions of distinguishable classes (stroma and epithelium). 
Increasing noise produces increasingly noisy images until pixels in the high noise image become 

0 10 20 30 40 50 60

100

110

120

130

140

150

160

170

M
SE

MNF Factor index (after sorting)



10

almost randomly assigned to a class (D).  This evaluation is confirmed in the plot of 
classification accuracy vs added noise (E), in which the accuracy value does not change initially 
but decreases with the addition of noise. The accuracy measure is the area under the receiver 
operating characteristic (ROC) curve (AUC). AUC values finally fall to about 0.5, which is 
equivalent to random guessing and does not provide any useful classification information. These 
results also give us the order of magnitude estimate of acceptable noise for reasonable 
classification accuracy. The dependence of prostate classification accuracy on SNR is detailed in 
the next section for a more complete model.  

Figure 5. Effect of noise on FT-IR image classification. Classified images correspond to (A) 
as-acquired data, (B) data with added Gaussian noise of  ~ 0.001a.u., (C)  0.01a.u., and (D) 
0.1a.u. (E) Classification accuracy is provided as a function of noise for two classes of 
breast tissue.

Figure 6. Image classification improvement upon using the noise reduction algorithm. 
Classified images correspond to noise reduced (A) raw data, (B) 0.001 noise (C) 0.01 noise 
(D) 0.1 noise (E) Comparing classification before and after noise reduction. 
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The impact of noise reduction on classification is demonstrated in Fig. 6. The proposed noise 
reduction scheme is used on data shown in figure 5. Classified images are displayed for each 
noise-reduced case (A-D) and the classification accuracy values for the noise reduced images are 
compared with the classification accuracy values for original images (E). Examination of 
classified images and classification accuracy values indicates that our noise reduction scheme 
improves classifier performance in each case. For as-acquired data and data with noise 
~0.001a.u. added, noise reduction does not appear to significantly impact classification since the 
classification accuracy is already close to 1. On the other hand, noise reduction significantly 
improves classification from FT-IR spectroscopic imaging data with higher noise levels. Hence, 
a potential route to faster data acquisition for histopathology, without the need to modify 
hardware or change any experimental configuration, can be proposed based on post-processing 
noise reduction. Instead of needing ~300 hrs (12 days) to scan a 1 cm x 1 cm area, the proposed 
approach will allow the same in a few hours.    

In summary, a noise reduction algorithm with a factor selection scheme based on object 
structural features has been proposed. An order of magnitude reduction in noise could be 
achieved using this algorithm. When noise reduced data is subject to further processing, for 
example for tissue classification, there is a substantial improvement in classification performance 
at higher noise levels. The improvement translates directly time required for data collection, 
while preserving the accuracy of classification. It must be noted that the gain here is through 
post-acquisition computational techniques and does not involve changes in instrumentation 
hardware or data acquisition schemes. Hence, it is easy to implement and inexpensive to deploy 
routinely. It is anticipated that the automated nature of the proposed approach will allow it to 
become routinely applied to enhance data quality and the quality of scientific information 
derived. For translating prostate tissue histopathology using IR to clinical studies, this 
development is critical. Further, it allows us to image tissues in large numbers as proposed next. 

Goal: Data acquisition and treatment protocol will be optimized and feedback loop implemented. 
Image sets will be acquired at low averaging and extensive averaging conditions to verify 
performance and optimize algorithm. A validated protocol for collecting data will be available.  
(Months 5-7) 

Activities: Data were acquired and experimental conditions were optimized to help determine 
the operating points for prostate histology. Briefly, the spectral resolution was not found to be 
important unless coarse resolution was obtained. SNR was found to be crucial and a plot of the 
SNR versus the classification accuracy yielded the optimal operating point. Results are 
summarized in a peer-reviewed manuscript25 and the methodology is described in a review 
paper. Results were presented at three different meetings. A single button operation is 
implemented in our software that now pre-processes data and adjusts for appropriate SNR. A 
second step can then classify the resulting data into histologically correct classes. The work is 
described in detail next. 

Effect of Signal to Noise Ratio: There are two issues: what is the “best” SNR to formulate 
algorithms and second, provided an algorithm, what is the least SNR that would provide 
adequate classification. Only the latter issue is examined here. As with conventional FTIR 
spectrometers, imaging spectrometers obey the trading rules of IR spectroscopy. Hence, if an n-
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fold reduction in SNR provides the same results, data acquisition will be n2-fold faster. Thus, in 
addition to an interesting fundamental behavior of the classifier, the role of SNR has a direct 
bearing on the speed at which data is acquired.

We examined classification accuracy as a function of average spectral noise. To strictly examine 
the effect of noise, data must be acquired at different co-added spectral numbers. The time 
required for imaging an array multiple times, however, is prohibitive. Hence, we computationally 
added random, Gaussian noise to the original spectral data. Peak-to-peak and root mean square 
(rms) noise were measured in the 1950-2150 cm-1 region adjacent to the amide I peak.26

Representative single pixel spectra from the data sets are shown, as a function of noise, in Figure 
7(a). We additionally plotted the observed noise levels against the added noise to verify linearity 
(plot not shown). The linear relationship conforms to the expected result and provides a scaling 
factor to express the equivalent reduction in data acquisition time (co-addition) that would be 
realized at that noise level. For example, the addition of 0.005 a.u. of noise raises the peak-to-
peak noise from 0.0013 to 0.015 a.u., corresponding to a decrease in data acquisition time by a 
factor of ~100 for this data set. In addition to increasing noise, we employed an MNF-
transform27,28 based algorithm to mathematically eliminate noise. The observed peak-to-peak 
noise was 0.00017 a.u. corresponding to an increase in data acquisition time by a factor greater 
than ~100. Hence, the data examined span about 5 orders in magnitude of collection time. 

The average height of the Amide I peak was 0.42 a.u. in all cases, providing a SNR of 2500 
(MNF-corrected data) to 1.5 for the data sets.  Accuracy as a function of the noise level is shown 
in Figure 7(b). While the x-error bars indicate the standard deviation of noise levels in pixels, the 
y-error bars indicate the standard deviation in AUC values of all ten classes. As a general rule, 
the classification improves with lower noise levels. We first note that the classification does not 
become perfect for any noise level and there is a significantly diminishing return in increasing 
the SNR beyond a level. At the other end, the ability to distinguish classes is entirely lost at 
levels of ~0.1. Performance across multiple data sets observed using our prediction model 
indicates that the increases demonstrated at noise levels lower than ~0.003 a.u. are within the 
variance. Hence, there is little benefit to decreasing the noise levels below ~0.003 a.u. for this 
data set, or to increasing the SNR beyond ~150. It must be emphasized that the model, prediction 
algorithm and discriminant function are intimately linked in a non-linear manner. While this 
makes it impossible to predict the behavior generally of all classification approaches, this simple 
exercise may be conducted to determine the optimal data acquisition parameters. For our selected 
metrics and model, it appears that the data acquisition time can be decreased by a factor of ~3 
without significant degradation in accuracy.
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Figure 7. (a) Noise in the data set as a function of added random noise. (b) Effect of spectral 
noise on the accuracy of classification as measured by AUC values.

Spectral Resolution: We next examined the effect of spectral resolution on the results that would 
be obtained using the developed algorithm. As in the previous section, the data were not re-
acquired but were downsampled from acquired data using a neighbor binning procedure. Spectra 
from the same epithelial class pixel, at different resolutions (Figure 8(a)), demonstrate the effect 
of downsampling on feature definition. Figure 8(b) demonstrates, first, that the peak-to-peak 
noise levels over the region remain the same with spectral resolution. As previously observed, 
noise is an important control in comparing spectra; the peak-to-peak noise over the same number 
of data points was preserved by neighbor binning. In practice, the constant throughput 
spectrometer would provide a SNR (or noise level, in this case) that decreases linearly with 
resolution. Since most array detectors can be operated with higher integration times, it is fair to 
assume that the time advantage in decreasing resolution would be linear. Second, the 
performance of the classifier is very nearly the same for finer spectral resolutions and degrades 
only significantly for 32 cm-1. While the results may appear to be surprising, a closer analysis of 
the basis of the algorithms provides insight into the trends. 
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Figure 8.(a) Spectra obtained by downsampling acquired data to different resolutions using 
a neighbor binning procedure. The inset demonstrates the effect of resolution on narrower 
features in the spectrum. (b) AUC values for each class and average AUC values as a 
function of spectral resolution demonstrate a decrease only for coarse spectral resolution.  

The classifier is based on absorbance and center of gravity measures of the peaks. It is well-
established that absorbance is measured accurately, provided that the FWHH of the peak is not 
significantly smaller than the resolution. The Ramsay resolution parameter, , is a useful 
measure that was originally developed for monochromators but has been shown to be applicable 
to FTIR spectrometers as well.29 While most bands are broad and peak absorbance lower than 
~0.7, absorbance values are not expected to be adversely impacted from the measurement 
process. With decreasing resolution, however, broadening within complex peaks shapes may 
lead to observed changes in the apparent absorption at a specific wavenumber. The change itself 
may not have a significant influence on the classifier performance as it depends on several such 
metrics. A second type of metric calculates the area under the curve. This is not expected to be 
impacted significantly for most peaks. The third type of metric we have used is the center of 
gravity of a spectral region. While spectral analyses ordinarily attempt to locate the peak position 
and use it as a metric, we chose the center of gravity for its sensitivity to both position and 
asymmetrical shape changes in complex spectral envelopes observed in biological samples.    
Since the classifier is based on center of gravity of a feature and not on the wavenumber of the 
peak maximum, it is a very robust measure that is relatively unaffected by spectral resolution or 
noise.

Generalization of developed algorithms to instruments and practical approaches
The characterization of classification with regard to spectrometer performance (SNR) and 
spectral resolution provides information to optimize parameters on one spectrometer. It is 
unclear, however, if the calibration would transfer to another spectrometer. We contend that the 
potential for a successful transfer is high as the classification process is relatively insensitive to 
resolution, implying that it would only be weakly sensitive to apodization or to small 
inaccuracies in wavelength scale. Similarly, if the SNR of acquired data is used as control, 
perturbations due to fixed pattern noise in focal plane array detectors or the different use of 
electronic filters by different manufacturers is likely to be insignificant in classifying tissue 
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correctly. Various instrument manufacturers also set the nominal optical resolution differently in 
their instruments. The issue of spatial resolution, of course, is more complex. Nevertheless, any 
resolution setting around the wavelength limited case will likely provide consistent results. To 
our knowledge, there has been no comparison yet of classifier performance across mid-IR FTIR 
imaging spectrometers using algorithms developed on one specific instrument. The developed 
protocol provides for such a framework and detailed results are awaited from on-going work.30

The analysis of spectral SNR and resolution, however, are critical first steps in ensuring that the 
results from different instruments can be compared. The optimization of detection (as 
demonstrated here) is accomplished and we image tissues at the optimal parameters with 
sufficient SNR. 

Goal: Data will be acquired from samples identified in Task 2, sub-task a. 4 cm^(-1) spectral 
resolution data, imaging ~6 micrometer of sample per pixel will be acquired with a signal to 
noise ratio of greater than 1000:1. At least 375 samples will be imaged to provide as estimated 
40 million spectra. Data will continuously be available for analysis in this period. (Months 8-18) 
Activities: Over 4 million spectra have been acquired from approx. 460 samples. Data handling 
and analysis is on-going. The data were acquired using a tissue microarray with no restrictions 
on age or prior PSA reading. The samples organized into a tissue microarray format. 

Task 2. Analyze spectroscopic imaging data for biochemical markers of tumor and develop 
numerical algorithms for grading cancer 
Goal: Study is anticipated to be exempt and appropriate permissions will be obtained from the 
IRBs involved. (Month 1) 
Activities: Appropriate permissions were obtained and the work was initiated. 

Goal: Identify samples to be imaged by examining stained slides with collaborators. Samples 
spanning the range of pathologic conditions and outcome will be identified for use in the study. 
A compilation of anonymized cases and samples will be available. (Months 1-3) 
Activities: A cohort of almost 400 samples has been identified and imaging has been begun. The 
samples are all archival tissue samples from which tissue microarrays have been constructed. 
Thus, we are able to access both a representative and a diverse group of patients. All patients 
have undergone radical prostatectomy. The samples themselves are formalin-fixed and paraffin 
embedded. The samples were obtained by microtoming a thin slice of tissue and depositing it on 
a substrate. We used two substrates, a BaF2 one for optimal IR transmission and a reflective 
slide for reflective IR imaging. The samples were subsequently de-paraffinized using gentle 
washing in hexane for 24 hours and used as is. 

Goal: Obtain unstained samples to be imaged and define regions for calibration and validation. 
A set of samples for training and for validation will be available. (Months 4-7) 
Activities: A cohort of almost 400 samples has been identified and imaging has been begun. 
Using the optimized version of the algorithms in task 1 was used to image tissue and classify 
histology. The results are shown in Figure 9. This is a subset of a total of 460 patients. The lower 
yield of 400 is due to damage and destruction during processing of some tissue samples. 
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Figure 9. Optimized classification of a tissue microarray incorporating normal and at least 
400 lesions of varying grades. 

The availability of this data is augmented by the availability of clinical data associated with the 
samples. All patients underwent radical prostatectomy (RP) and have varying outcomes over a 
period of 15 years. Simple Bayesian methods, as used for classification of previous tissue 
samples, could not be used to predict outcome in this case. The primary challenge is that there 
are no specific peaks or markers in the spectrum that correlate with outcome. It is also not easy 
to analyse 2000 data points in the spectrum to correlate with outcome. Hence, we turned to 
methods that will help extract the key spectral quantities that can be used to predict outcome. 
These methods are based on genetic algorithms and are described next. 

Goal: Perform histologic identification on prostate samples and validate. We will apply 
previously developed protocols and carefully verify that accurate histologic segmentation is 
achieved using receiver operating characteristic (ROC) curves and confusion matrices. 
Histological images will be available for malignancy analysis. (Months 8-10) 
Activities: A number of other data dimensionality reduction strategies may be used but make the 
dependence of classification on spectral parameters rather opaque, for example, neural networks. 
Hence, a new classification procedure based on Genetic Algorithms was developed and shown to 
be very effective.31 The new method’s advantage over previous methods is the ability to 
explicitly choose spectral indices that are correlated with histopathology and to explicitly see 
which indices influence classification accuracy. The method was tested on histologic 
segmentation and is now being adapted for cancer segmentation. A major challenge in 
implementing this method was the large data set (typically 100 GB) that needed to be panned for 
spectral indices and the large possible space of spectral index combinations that provides the 
optimal classification. 
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Hence we undertook development to demonstrate how genetics-based machine learning (GBML) 
tools can achieve such a goal. Interpretability of the learned models and efficient processing of 
very large data sets have lead us to rule-based models—easy to interpret—and genetics-based 
machine learning—inherent massively parallel methods with the required scalability properties 
to address very large data sets. We present the method and the efficiency enhancement 
techniques proposed to address automated tissues classification. When pushed beyond the 
relatively small problems traditionally used to test such methods, a need for efficient and 
scalable implementations becomes a key research topic that needs to be addressed. This is a 
major challenge as canned analysis programs do not provide the capability to handle such large 
sets efficiently. Hence, we designed the technique described next with such constraints in mind. 
A modified version of an incremental genetics-based rule learner that exploits massive 
parallelisms—via the message passing interface (MPI)—and efficient rule-matching using 
hardware-oriented operations. We name this system NAX and compared the implementation first 
to traditional and genetics-based machine learning techniques on an array of publicly available 
data sets. We report below the major points of development and initial results achieved using 
NAX when classifying prostate tissue. 

Another important issue in real-world problems is the histologic class distribution. For example, 
a lot of epithelial cells are encountered and significantly fewer endothelial cells may be 
encountered. Usually most real problems have a clear class imbalance. Recently, GBML 
techniques were used by other groups to successfully learn and maintain proper descriptions for 
those minority classes. If not designed properly, descriptions of majority classes will tend to 
govern the learned models, starving the description of minority classes. Prostate tissue 
classification is a clear example of extreme class imbalance. Figure 10 presents the tissue type 
class distribution. The smaller tissue type (endothelial cells) has 64 records, where as the larger 
classes have several tens of thousands records. Hence, the developed approaches must account 
for class size variation. This is a major challenge in any classification approach and is especially 
relevant here as endothelial cells provide clues to microvessel density (MVD). MVD is a critical 
parameter shown to have relevance in the growth of cancers. We propose to use it later as an 
index in classifying poor from good outcome tumors. Hence, it was crucial to examine the results 
from our GBML methods. 
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Figure 10. Histologic class distribution in prostate tissue. Once the classes are reordered 
according to their frequency in the data set, we can easily appreciate the extreme 
imbalance—the smaller tissue type has 64 records, where as the larger classes have several 
tens of thousands records  

We describe the steps we took to design a GBML method ( ) able to deal with very large 
data sets with class imbalance: evolves, one at a time, maximally general and maximally 
accurate rules. Then, the covered instance are removed and another maximally general and 
maximally general rule is evolved and added to the previously stored one forming a decision list. 
This process continues until no uncovered instances are left—this process is also referred as the 
sequential covering procedure. Llorà et al. showed that maximally general and maximally 
accurate rulescould also be evolved using Pittsburgh-style Learning Classifier Systems. Later, 
Llorà et al. showed that competent genetic algorithms evolve such rules quickly, reliably, and 
accurately. Hence, we explored next efficient implementation techniques to deal with very large 
data sets, the impact of class imbalance, and the algorithm proposed.

As introduced earlier, when dealing with very large data sets, and regardless of the flavor of the 
GBML technique used, we may spend up to 98% of the computational cycles trying to match 
rules to the original data set. Each solution evaluation is independent of each other and, hence, it 
can be computed in parallel. Moreover, even the matching nature of a rule—the representation 
we will use from now on—is highly parallel, since conditions require performing simultaneous 
checks against different attributes per record. Thus, efficient implementation can take advantage 
of parallelizing both elements. Recently, multimedia and scientific applications have pushed 
CPU manufactures to include support for vector instructions again in their processors. Both 
applications areas require heavy calculations based on vector arithmetic. Simple vector 
operations such as add or product are repeated over and over. During 1980s and 1990s 
supercomputers, such as Cray machines, were able to issue hardware instructions that enabled 
basic vector arithmetics. A more constrained scheme, however, has made its way into general-



19

purpose processors thanks to the push of multimedia and scientific applications. Main chip 
manufactures—IBM, Intel, and AMD—have introduced vector instruction sets—Altivec, SSE3, 
and 3DNow+—that allow vector operations over packs of 128 bits by hardware. We took 
advantage of these developments by focusing on a subset of instructions that are able to deal with 
floating point vectors. This subset of instructions manipulate groups of four floating-point 
numbers. These instructions are the basis of the fast rule matching mechanism proposed.  

Using a knowledge representation based on rules allows us to inspect the learned model, gaining 
insight into the biological problem as well. All the attributes of the domain are real-value and the 
conditions of the rules need to be able to express conditions in a spaces. We use a similar 
rule encoding to the one proposed by Wilson previously — and widely used in the GBML 
community. Rules express the conjunction of tests across attributes. Each test may be defined in 
multiple flavors but, without loss of generality, we picked a simple interval based one. A simple 
example of an if-then rule, could be expressed as follows:  

(1)
Where the condition is the conjunction of the different attribute tests and the outcome is the 
predicted class—a tissue type. We also allow a special condition— —which just 
always returns , allowing condition generalization. The rule below illustrates an example 
of a generalized rule.

(2)

All attributes except a 0 and a 3 were marked as 

Each condition can be encoded using 2 floating-point numbers per condition, where i contains
the lower bound of the condition and i its upper bound. Thus, the condition i a 0 i just 
requires to store the two floating-point numbers. For efficiency reasons we store them in two 
separate vectors, on containing the lower bounds and the other containing the upper bounds. The 
position in a vector indicates the attribute being tested. The condition is simply 
encoded as i  > i and, hence, we do not need to store any extra information. 

Matching a rule requires performing the individual condition tests before the final and operation 
can be computed. Vector instruction sets improve the performance of this process by performing 
four operations at once. Actually, this process may be regarded as four parallel running pipelines. 
The process can be further improved by stopping the matching process when one test fails—
since that will turn the condition into false. Figure 11 presents a implementation the proposed 
hardware-supported rule matching. The code assumes that the two vectors containing the upper 
and lower bounds are provided and records are stored in a two dimensional matrix. We found 
that exploiting the hardware available can speed between 3 and 3.5 times the matching process.  
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Figure 11.  sequential implementation of the rule matched process in . A rule set is match 
against a data set. Lines 16, 17, and 18 implement the condition test for one attribute. The 
implementation also computes the confusion matrix that contains the ground truth versus 
predicted class

Since most of the time is spent on the evaluation of candidate rules when dealing with large data 
sets, our next goal was to find a parallelization model that could take advantage of this 
peculiarity. Due the quasi embarrassing parallel nature of the candidate rule evaluation, we 
designed a coarse-grain parallel model for distributing the evaluation load. The importance of the 
trade-off between computation time and time spent communicating needed to be evaluated but in 
this case was assumed to be fairly low given the intrinsic parallel nature of the data. When 
designing the parallel model, we focused on minimizing the communication cost. Usually, a 
feasible solution could be a master/slave one—the computation time is much larger than the 
communication time. However, GBML approaches tend to use rather large populations, forcing 
us to send rule sets to the evaluation slaves and collect the resulting fitness. These schemes also 
increment the sequential sections that cannot be parallelized, threatening the overall speedup of 
the parallel implementation as a result of Ambdhals law. 

To minimize such communication cost, each processor runs an identical algorithm. They are 
all seeded in the same manner, hence, performing the same genetic operations and only differing 
in the portion of the population being evaluated. Thus, the population is treated as collection of 
chunks where each processor evaluates its own assigned chunk, sharing the fitness of the 
individuals in its chunk with the rest of the processors. Fitness can be encapsulated and 



21

broadcasted maximizing the occupation of the underlying packing frames used by the network 
infrastructure. Moreover, this approach also removes the need for sending the actual rules back 
and forth between processors—as a master/slave approach would require—thus, minimizing the 
communication to the bare minimum—the fitness. Figure 12 presents a conceptual scheme of the 
parallel architecture of  

Figure 12. The parallel model implemented. Each processor is running the same identical 
algorithm. They only differ in the portion of the population being evaluated. The 

population is treated as collection of chunks where each processor evaluates its own 
assigned chunks sharing the fitness of these individuals with the rest of the processors. This 
approach minimizes the communication cost  

To implement the model presented above, we used and a message passing interface (MPI)—
we used the OpenMPI implementation. Figure 13 shows the code in charge of the parallel 
evaluation. Each processor computes which individuals are assigned to it. Then it computes the 
fitness and, finally, it just broadcast the computed fitness. The rest of the process is left 
untouched, and besides the cooperative evaluation, all the processors end generating the same 
evolutionary trace. The same program can be readily tweaked to parallelize the classification of 
tumor or grading in prostate tissue. The drawback in this method, however, is that the spatial 
structure in the tissue is not taken into account. This is an on-going concern and methods to 
address this need are being developed. 
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Figure 13. An implementation of the proposed parallel evaluation scheme using and 
The piece of code presented below is the only one modified to provide such 

parallelization capabilities. Each processor computes which individuals are assigned to it 
(lines 6–10), then it computes the fitness (lines 10–23), and then it just broadcast the 
computed fitness (lines 26–31)

We conducted stratified 10-fold cross-validation experiments to measure the generalization 
capabilities of for histologic classification of the prostate and compared results to previously 
published data. Since the problem was rather small—larger data set are being prepared to be run 
at the supercomputing facilities provided by the National Center for Supercomputing 
Applications—we ran the ten-fold cross-validation runs in a 3GHz dual core Pentium D 
computer with 4 GB of RAM. took advantage of the hardware support to speedup the 
matching process and uses two MPI processes to parallelize the evaluation of the overall 
population. Each fold took about one hour to complete, with the entire classification lasting less 
than half a day. We conducted a simple test of adding a second computer with an identical 
configuration. The overall time for cross-validation was reduced to half. Rough estimates—
which will better measured when larger experiments are conducted on NCSA super computers—
show that the sequential portion is around 1:1000 for this small data set. Numbers get better as 
data set increases, which demonstrates that we will be able to process very large data sets and 
efficiently exploit larger numbers of processors.  
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We proposed another measure of effectiveness, namely how many records can be processed per 
second. Using a single processor with the hardware acceleration mechanisms built into , and 
the evolved rule set formed by 1,028 rules, the average throughput was around 60,000 pixels per 
second. For the prostate tissue classification, it took less than three seconds to classify the entire 
data set. Once the rule set is learnt, the classification problem falls again into the category of 
parallel problems. Since no communication is needed, the speedup grows linearly with the 
number of processors added—with the proper rule set replication and data set chunking. Thus, 
with the dual core box used we where able to just double the throughput (120,000 pixels per 
second) by chunking the data set and use both processors.

The previous results show the benefits of hardware acceleration and parallelization, but was 
also able to achieve very competitive classification accuracy in generalization, correctly 
classifying 97.09 ± 0.09 of the records (pixels) during the stratified ten-fold cross-validation. 
Most of the mistakes by the rule set involve similar tissues with few training records available. 
This trend was also shown elsewhere and our approach does not provide any statistically 
significant improvement (only a marginal, not statistically significant, 0.7%) and provided large 
decision trees with more than 5,000 leaves—not to mention the lack of scalability when 
compared to  

The rule set assembled by represents an incremental assembling of maximally general and 
maximally accurate rules. Thus, we can compute how the accuracy of such ensemble improves 
as new rules are added. Figure 14 presents the overall accuracy as rules are added. It shows an 
interesting behavior for classifying prostate tissue. Using only 20 rules out of the 1,028 evolved 
ones, the overall accuracy is 90%, the incorrectly classified 1.3% pixels, and 8.7% were left 
unclassified. After inspecting the misclassified pixels most of them belongs to borders between 
tissues and mislabeling arises from the image discretization—one pixel containing different 
tissue types. Such results are relevant, not only for their accuracy, but also because of the insight 
they provide to the spectroscopist about the problem structure. In summary, the development and 
application of NAX is a major step in allowing us to handle large data sets and efficiently extract 
information from them. Hence, we are now convinced that we can handle very large data sets 
and the considerably more complex problem of determining cancer and grades using the 
implementation of NAX. 

Figure 14. The rule set as a decision list. The figure presents the classification accuracy as 
we keep adding rules to the decision list. The first 20 initial rules are able to cover 91% of 
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the records with a classification accuracy of 98.5–90% overall accuracy presented in the 
figure

Goal: Develop algorithm for malignancy recognition. Spectral metrics will be identified in a 
manner similar to 2d (above) and reduced to those useful in identifying atypia. Models will be 
constructed and optimized using Genetic Algorithms operating on identified metrics. Models will 
be tested and validated using ROC curves with pathologist marking as the ground truth. A 
protocol for segmenting benign from atypical condition will be available.  (Months 11-18) 

Activities: Efforts are underway and preliminary tests of the algorithms are being undertaken. The initial 
results did not provide effective classification and we discovered that there is a strong sample to sample 
variability in the data. Hence, two avenues are being pursued. First, can we use a normal sample from the 
same patient to normalize for the effect of inter-person variance. Second, can there be a transformation 
that will scale spectra such that this variation is reduced. An effort is also underway to understand the 
relative variance offered by measurement noise, by person-to-person variance and by within sample 
variance. Quantification of these factors and their relative importance will help understand the source of 
variance leading to poor classification accuracy. For example, if the dominant variance is found to be 
measurement noise, we will re-acquire the data at higher SNR. If the variance is largely person-to-person, 
then a normalization strategy would have to be considered.  
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Key Research Accomplishments 

Optimization of experimental parameters for spectroscopic imaging experiments. The 
optimization provides an understanding of the classification process and allows ~40 fold 
decrease in data acquisition time.  
Classification of prostate histology using Genetic Algorithms. The work explicitly identifies 
spectroscopic biomarkers needed to classify tissue correctly.  
A new method is introduced to reduce noise by nearly an order of magnitude. The method is 
based on post-processing to reduce non-correlated signals in images using the covariance of 
the recorded data. The method enables a ~7 fold higher signal to noise ratio, which translates 
into a 50-fold faster data acquisition rate.

Reportable Outcomes………………………………………………………………      
Manuscripts 
Peer reviewed manuscripts published 
1. R. Bhargava “Practical FTIR chemical imaging for cancer pathology” Anal. Bioanal. Chem., 389, 1155-

1169 (2007) 
2. X. Llora, A. Priya, R. Bhargava “Observer-Invariant Histopathology using Genetics-Based Machine 

Learning” Nat. Computing, In press (2007) 
3. G. Srinivasan, R. Bhargava “Fourier transform infrared spectroscopic imaging: the emerging evolution 

from a microscopy tool to a cancer imaging modality” Spectroscopy, 22, 40-51 (2007) 

Book Chapters 
1. R. Bhargava, I.W. Levin “Prostate Cancer Diagnosis by FTIR Imaging”, M. Diem, P.R. Griffiths and J. 

Chalmers, eds (2008-anticipated) 

Published abstracts 
1. F. Keith, R.K. Reddy and R. Bhargava, “Practical protocols for ultrafast histopathology by 

Fourier transform infrared imaging,” SPIE Photonics West (2008)
2. X. Llora, R.K. Reddy, B. Matesic, R. Bhargava “Towards Better than Human Capability in Diagnosing 

Prostate Cancer Using Infrared Spectroscopic Imaging”, Genetic and Evolutionary Computation 
conference (GECCO) (2007) 

3. F.N. Keith, R. Kong, A. Priya, R. Bhargava “Data Processing for Tissue Histopathology Using Fourier 
Transform Infrared Spectral Data” Proceedings of the 29th Asilomar Conference on Signals, Systems 
and Computers, IEEE (2007)  

Presentations
Invited conference presentations
First author is the presenting author; First author is also the invited author unless indicated by *
1. R. Bhargava, R.K. Reddy, R. Kong, G. Srinivasan “Engineering practical protocols for histopathology of 

human tissues and models using infrared spectroscopic imaging”, Pittcon08, New Orleans, March 2008 
2. R. Bhargava, R.K. Reddy, R. Kong, F. N. Keith, G. Srinivasan “Automated Cancer Histopathology by 

Practical Infrared Spectroscopic Imaging: Progress and Potential” The  International Conference on 
Perspectives in Vibrational Spectroscopy (ICOPVS), Thiruvananthapuram, Kerala ,  India, February 
2008 

3. R. Bhargava, F.N. Keith, G. Srinivasan, R.K. Reddy, R. Kong “FTIR Imaging for pathology”, EAS 07, 
Somerset, November 2007 

4. R. Bhargava, F.N. Keith, G. Srinivasan, R.K. Reddy, R. Kong “Practical Aspects of Automated 
Histopathology using FTIR Imaging”, FACSS 07, Memphis, October 2007  
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5. X. Llora, R.K. Reddy, B. Matesic, R. Bhargava* “Towards Better than Human Capability in Diagnosing 
Prostate Cancer Using Infrared Spectroscopic Imaging”, Human-Competitive Awards Symposium, 
Genetic and Evolutionary Computation conference (GECCO07, London, July 2007 

6. R. Bhargava, F.N. Keith, G. Srinivasan, R.K. Reddy, R. Kong “Mid-infrared Spectroscopic Imaging for 
Automated Cancer Pathology”, ECI conferences, Naples, June 2007 

7. IW Levin, R. Bhargava “Fourier-Transform Infrared Histopathologic Imaging: A Practical Protocol”, 
ICAVS-4 Greece, June 2007 

Other invited presentations
Laser Science Center, Indian Institute of Technology, Kanpur, 2008 
National Center for Supercomputing Applications, UIUC, 2007 
Department of Pathology, University of Illinois, Chicago, 2007 

Contributed presentations
First author is the presenting author, unless indicated by * 
1. F.N. Keith, R.K. Reddy, R. Bhargava “Practical protocols for ultrafast histopathology by FTIR imaging”, 

SPIE Photonics West, January 2008 
2. R. Bhargava, R.K. Reddy, X. Llora “Histopathology without Human Supervision”, BMES annual 

meeting, Los Angeles, September 2007 

Infomatics such as databases 
Databases of spectra and spectral data sets have been combined for a new website –metaspectra.org 

Funding applied for based on work supported by this award 

Title of Grant
Automated and Objective Laser Microdissection 
Using Infrared Microspectroscopy  
Grant ID  RFA-RR-

06-004
Role and 
% LOE  

PI and 1.1 Academic Year 
Months
Supporting Agency (including 
name and address of grants 
officer)
National Institutes of Health  

Performance Period  
1/1/08 - 12/31/10  

Amount of 
Funding
$494,000



27

Description (Include the goals and specific aims 
of the project)

The goal is to construct a laser capture 
microdissection instrument that does not require 
any human supervision or staining. The specific 
aims are to:  

1. Develop an IR imaging device that is 
compatible with laser capture microdissection  

2. Demonstrated IR-recognition guided 
microdissection of prostate tissue  
3. Compare the gene expression profile of 
normal, cancer and adjacent normal prostate 
tissue using microdissected cells  
Title of Grant
Quantifying stromal transformations for 
detecting lethal prostate cancer.
Grant ID  
Idea Development Award  

Role and 
% LOE  

PI and 1 Summer Month  
Supporting Agency (including 
name and address of grants 
officer)
Department of Defense  Performance Period  

3/1/08 - 2/28/11  
Amount of 
Funding
$308,000

Description (Include the goals and specific aims 
of the project)

The goal is to measure the changes in prostate 
stromal tissue as a function of different 
pathologic conditions to predict onset of lethal 
disease. The specific aims are to:  

1. Determine stromal components of prostate 
tissue without staining or human input  

2. Correlate changes in stromal tissue with 
disease progression  
3. Provide a model that incorporates both stromal 
and epithelial changes in predicting risk of 
cancer recurrence

Employment or research opportunities applied for and/or received based on 
experience/training supported by this award. 
Dr. Gokulakrishnan Srinivasan, a post-doctoral fellow working on this project obtained employment with 
Bruker Optics. 
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Conclusion……………………………………………………………………………
The work accomplished is a critical first step in establishing FT-IR imaging for pathology applications. 
Parameters were optimized and a fast data acquisition method is developed. 

So What Section 
If the reported progress is sustained, an automated method for prostate pathology will be available. 
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Abstract Fourier transform infrared (FTIR) chemical im-
aging is a strongly emerging technology that is being
increasingly applied to examine tissues in a high-throughput
manner. The resulting data quality and quantity have
permitted several groups to provide evidence for applica-
bility to cancer pathology. It is critical to understand,
however, that an integrated approach with optimal data
acquisition, classification, and validation is necessary to
realize practical protocols that can be translated to the clinic.
Here, we first review the development of technology
relevant to clinical translation of FTIR imaging for cancer
pathology. The role of each component in this approach is
discussed separately by quantitative analysis of the effects
of changing parameters on the classification results. We
focus on the histology of prostate tissue to illustrate factors
in developing a practical protocol for automated histopa-
thology. Next, we demonstrate how these protocols can be
used to analyze the effect of experimental parameters on
prediction accuracy by analyzing the effects of varying
spatial resolution, spectral resolution, and signal to noise
ratio. Classification accuracy is shown to depend on the
signal to noise ratio of recorded data, while depending only
weakly on spectral resolution.

Keywords Fourier transform infrared spectroscopy .

FTIR imaging . Infrared microscopy . Prostate .

Histopathology .Microspectroscopy

Introduction

Cancer is one of the leading causes of death in the western
world and is becoming increasingly prevalent worldwide. It
is well established that appropriate therapy for cancers
diagnosed early generally leads to improved prognosis and
longer survival. Consequently, population screening tests to
detect disease are increasingly being deployed. The
emphasis in screening populations is on obtaining a high
sensitivity through simple diagnostic tests. For example, the
prostate-specific antigen (PSA) assay [1] helps triage
persons at risk for prostate cancer. A cutoff level (typically
4 ng mL−1) or increase in PSA velocity implies that the
screened person should be at heightened surveillance and
typically undergoes a biopsy to confirm disease. Morpho-
logic structures in biopsied tissue, as diagnosed by a
pathologist, are the only definitive indicator of disease
and form the gold standard of diagnosis [2]. Along with
clinical history, stage, and PSA values, pathologic diagno-
ses form a cornerstone of clinical therapy and serve as a
basis for a vast majority of research activity [3].

Typically, multiple samples are withdrawn from the
organ during biopsy. Extracted tissue samples are fixed,
embedded, and sectioned (typically to 1- to 5-μm thickness)
onto a glass slide for review. By itself, tissue does not have
much useful contrast in optical brightfield microscopy.
Hence, the prepared slide is stained with dyes. A mixture of
hematoxylin and eosin (H&E) is commonly employed,
staining protein-rich regions pink and nucleic acid-rich
regions of the tissue blue, for example, as shown in Fig. 1.
Using the contrast, a trained person can recognize specific
cell types and alterations in local tissue morphology that are
indicative of disease. In prostate tissue, epithelial cells line
three-dimensional ducts. In two-dimensional thin sections,
thus, the cells appear to line empty circular regions (lumen).

Anal Bioanal Chem (2007) 389:1155–1169
DOI 10.1007/s00216-007-1511-9

R. Bhargava (*)
Department of Bioengineering and Beckman Institute for
Advanced Science and Technology,
University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA
e-mail: rxb@uiuc.edu



Distortions in normal lumen appearance provide evidence
of cancer and characterize its severity (grade). The process
is fundamentally a manual pattern recognition that seeks
to match observations to known healthy or diseased
morphologies.

Manual examination of biopsies is very powerful in that
humans can not only recognize disease generally but can
also overcome confounding preparation artifacts, detect
unusual cases, and recognize deficiencies in diagnostic
quality This capability of considering and neglecting fea-
tures based on prior knowledge is crucial for accurate and
robust diagnoses. The process, however, is time consuming,
allows for limited throughput and, frequently, leads to
variance in subjective judgments about the disease severity,
i.e., grade [4]. As an alternative, computer-based pattern
recognition approaches to diagnose disease may provide
more accurate, reproducible, and automated approaches that
could reduce variance in diagnosis while proving econom-
ically favorable. Hence, attempts have been made to
characterize morphology using H&E image analysis as
well as biomarkers to stain for specific molecular features.
Automated approaches that can rival human performance in
usual clinical settings, however, are still unavailable.
Specifically, the attributes of high accuracy and robust
applicability are lacking.

The information content of H&E-stained images is
limited and attempts to automatically recognize structural
patterns indicative of prostate cancer, unfortunately, have
not led to clinical protocols. Similarly, probe-based molec-
ular imaging can provide exquisite information regarding
the location and content of specific epitopes but is limited
by complex diseases not expressing universally the same
epitopes or panels of markers. Stains used can generally
detect one feature that may aid diagnosis (e.g., AMACR)
but do not provide entire diagnostic information in
themselves. An exciting alternative is emerging in the form
of chemical imaging and microscopy [5]. As opposed to
conventional dye-assisted imaging or probe-assisted molec-
ular imaging, chemical imaging [6] seeks to directly
measure the identity and/or concentration of chemical
species in the sample using spectroscopy. Hence, no

molecular probes (MPs) are needed to see the presence of
specific epitopes; instead computer algorithms are used to
extract information from the data (instead of MP hybrid-
ization) and statistical methods are used to provide
confidence (as opposed to brown tints for MPs). The
approach is limited only by the ability of the technology to
sense specific types of molecules or otherwise resolve
chemical species and morphologic structures. Among the
prominent approaches are vibrational spectroscopic imag-
ing, both Raman and infrared (IR), as well as mass
spectroscopic imaging (MSI) [7, 8] and magnetic resonance
spectroscopic imaging (MRSI) [9]. While each technology
promises a specific measurement (e.g., proteins or meta-
bolic products) for specific situations (e.g., in vivo or ex
vivo), IR spectroscopic imaging [10] is particularly attrac-
tive for the analysis of tissue biopsies in that it permits a
rapid and simultaneous fingerprinting of inherent biologic
content, extraneous materials, and metabolic state [11–14].

IR spectroscopic imaging, generally practiced using
interferometry and termed Fourier transform infrared
(FTIR) spectroscopic imaging or, succinctly, FTIR imaging,
offers a particular combination of spatial, spectral, and
chemical detail [15]. Limitations of FTIR imaging include
coarser spatial resolution compared to Raman imaging or
high powered optical microscopy and lack of specific
molecular detail compared to MSI. Tissue biopsies are
examined as thin sections on a solid substrate. The tissue is
dehydrated and is stable due to fixation. Typically, struc-
tures of pathologic interest are several to hundreds of
micrometers in size, requiring fairly moderate magnifica-
tions for decision making. These conditions imply that the
need to image in vivo, at exceptionally high spatial
resolution, or in aqueous environments is not critical and
that standard pathologic laboratory processing can be
employed for IR imaging. Due to the linear absorption
process being utilized, the signal from IR spectroscopy is
large and readily obtained, promising relatively simple
instrumentation. Hence, the technology provides a platform
that is potentially useful for clinical practice in pathology. It
must be emphasized that no particular technology is ideally
suited to all applications but a careful matching of the

Fig. 1 Brightfield microscopy
images of unstained (left) and
stained (right) prostate tissue
sections. Hematoxylin and eosin
(H&E) stains provides contrast,
allowing a trained person to
recognize epithelial cells and
ductal structure (lumen), while
ignoring artifacts and confound-
ing morphologies. A trained
human can also learn to robustly
recognize patterns within lumen
that indicate cancer. The scale
bar corresponds to 100 μm
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technique to the application can lead to useful protocols.
While the potential advantages of FTIR imaging for
examining tissue biopsies is high, practical protocols for
clinical deployment are being developed by many groups.

Numerous recent reviews are available to address
biomedical applications of FTIR spectroscopy and imaging
[16–20], especially related to diseases and cancer. These
reviews address instrumentation, the applicability to various

systems, spectroscopic bases and classification algorithms
for decision making, and controversial aspects in the
backdrop of the evolution of the field. The commercial
availability of high-fidelity FTIR imaging instruments,
advances in computers and data analysis algorithms, and
increasing interest have combined to generate an increasing
volume of studies. At the same time, there is considerable
debate emerging on various aspects of the process. Reports
study a variety of organs that may not correlate in behavior,
utilize different sample acquisition and processing tech-
niques, employ different instrumentation, data acquisition,
or handling protocols, and apply a variety of decision-
making algorithms. While this has led to a lively community
of practitioners and exploration of various facets such as
resolution, biological diversity, and chemometric or statis-
tical methods, studies have generally focused on one aspect.
Many excellent studies have developed each of these
aspects to the point of routine use in advanced laboratory.
The focus in the field is now on understanding biochemical
signals and developing protocols from high quality data that
can actually lead to clinical acceptance. We contend that the
development of clinical protocols is necessarily integrative
and, in this manuscript, review first the salient aspects in
developing a practical, integrative approach to spectroscopic
imaging for cancer histopathology. Second, we discuss the
issues of spatial selectivity, sample size calculations,
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Fig. 2 Potential application of FTIR imaging for pathology. The
current paradigm of cancer diagnosis and grading upon biopsy
involves sample processing, staining, and pathologist review (left,
shaded boxes). To implement the paradigm of automated analysis
(right, unshaded boxes), IR chemical imaging is followed by
computer analysis for diagnosis. Since IR imaging is label-free and
non-perturbing, the sample can be stained, providing the pathologist
with both IR chemical and conventional stained images

Fig. 3 Correspondence of conventionally stained and FTIR chemical
images for pathology applications. a Hematoxylin and eosin (H&E)-
stained image of prostate tissue section. Hematoxylin stains negatively
charged nucleic acids (nuclei & ribosomes) blue, while eosin stains
protein-rich regions pink. The diameter of the sample is ca. 500 μm.
Simple univariate plots of specific vibrational modes provides for
enhancement or suppression of specific cell types. b Absorption at

1,080 cm−1 commonly attributed to nucleic acids, highlights nuclei-
rich epithelial cells in the manner of hematoxylin. c Spatial
distribution of a protein-specific peak (ca. 1,245 cm−1 ) highlights
differences in the manner of eosin. The entire spectrum can be
analyzed for a series of markers that provide more information than
H&E or univariate images, as shown in d where specific cells are
color coded based on their spectral features (e)
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optimization considerations, and potential improvements in
algorithms that can provide faster results. Tests to determine
performance and limits of accuracy are reported as a
function of experimental parameters. We focus here on
prostate histology as an illustrative test case, but emphasize
that the approach is applicable and similar insight is gained
with other tissues [21]. Further, exciting results have
recently been reported for diagnosis, grading, and classifi-
cation of prostate cancer [22–26], including the effects of
zonal anatomy [27] and cytokinetic activity on spectra [28].
An extension of the methodology here to pathology will
help formulate better protocols and allow a better under-
standing of the performance of classifiers.

Approach and essentials

The promise of chemical imaging for pathology is
illustrated in Fig. 2. Our approach has been to attempt
integration of our developments with current clinical
practice. Hence, we employ tissues that have been biopsied,
fixed, embedded, and sectioned as per usual clinical
protocols. We differ in the de-paraffinization step, suggest-
ing a gentle wash with hexane and do not stain the tissue.
Additionally, as IR chemical imaging only employs benign
light, it is non-perturbing and entirely compatible with all
downstream pathology processes. Hence, the sample may
be stained as usual (Fig. 2, dashed arrow, top). Visual-
izations similar to those observed in conventional pathol-
ogy are possible without staining the tissue. For example,

Fig. 3 correlates H&E and infrared spectral images.
Visualizations similar to H&E images may be “dialed-in”
by utilizing specific spectral features indicative of tissue
chemistry. Although, the IR data only demonstrate univar-
iate representations in the images, automated mathematical
algorithms can determine the cell types and their locations
within the image, while providing quantitative measures of
accuracy and statistical confidence in results [29]. These
data may be employed to directly provide diagnoses or to
inform the pathologist (Fig. 2, dashed arrow, bottom),
helping them make better decisions. Since the results are
images, information exchange between spectroscopists and
clinicians is facilitated. Spectroscopic analyses can poten-
tially be fully automated; thus, no additional users need to
be trained or knowledge base acquired by current clinicians.

A major challenge in the field is the development of
robust algorithms that employ spectral data to provide
histopathologic information. Both supervised and unsuper-
vised approaches have been employed. We believe that
unsupervised methods are more suited to research and
discovery. Supervised methods are preferred when the data
need to be related to known conditions, e.g., clinical
diagnoses. The development of supervised classification
of IR chemical imaging data for histopathology is fairly
straightforward [30]. The process is shown in Fig. 4. First, a
model for classification is selected. The model comprises
all possible outcomes for any pixel in the images and is,
hence, bounded by definition. We term each histologic
constituent of the model a class to denote that it may not
correspond to specific cell types or entities corresponding

Fig. 4 Process for relating path-
ologic or physiologic state to
FTIR chemical imaging data. A
model is chosen for supervised
classification (a). b–d Training
data is reduced in size and
optimized into a prediction
algorithm using gold standard
data. The developed algorithm
is validated against a second,
independent data set and the
accuracy is measured using
three different methods: ROC
curves, confusion matrices, and
image comparisons
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to morphology-based pathology. While this allows for
simplifications and allows the user to focus on specific
cells relevant in disease, it is also likely to prove useful in
the discovery of different chemical entities that appear
morphologically identical.

Next, data from a large number of tissue samples is
recorded. A set of pixels are specifically marked (gold
standard) by different colors to correspond to known
regions of tissue, usually by comparison with an H&E-
stained image or with immunohistochemically stained
images [21]. The recorded data set is reduced to a smaller
set of measures that capture the classification capability of
the entire data set. We termed these measures metrics.
There are numerous means of obtaining the metric data
set: manual selection of large spectral regions, principal
components analysis, genetic algorithms, or a sequential
forward selection algorithm. A numerical algorithm is then
chosen, for example, a linear discriminant analysis, neural
network, SIMCA, or modified Bayesian classifier [31]. The
classifier is optimized iteratively, if needed, to optimally
predict the training data set. Subsequently, the algorithm is
applied to a second data set (independent validation) that
has been independently marked for each class. A compar-
ison of the gold standard marking with the computation-
ally predicted class provides a measure of the accuracy.
We have employed three measures of accuracy: receiver
operating characteristic (ROC) curves [32] that represent
the sensitivity and specificity trade-off of the classifier,
confusion matrices that provide the fraction of pixels of
each class classified as pixels of all classes, and classified
images that can be compared pixel-for-pixel to other
images. Additionally, it is often instructive to drill into the
classifier to obtain the basis for classification or the
distribution of confidence intervals for various samples.
The last two factors are generally not apparent in previous
studies.

There are three key developments that are needed for
this approach to be successful: (a) high-fidelity FTIR
imaging instrumentation, (b) high-throughput sampling,
and (c) robust classification that provides statistically
significant results in a manner that can be appreciated by
non-experts in spectroscopy. We briefly review the three
developments next.

FTIR imaging

Need for spatially resolved data

The need for spatially resolved data has been recognized
[33], but the effect of limited resolution data on classifica-
tion is not entirely clear. The primary complication of
coarse spatial resolution, obviously, arises from boundary

pixels. These can be defined as pixels that are assigned to
one class but would likely yield more classes, to their
physical limits, were finer resolution available. As a
consequence, the spectral content of the boundary pixel is
likely to be mixed and will likely lead to errors in
classification. For example, the confounding contribution
of stromal spectra to cancerous epithelial cells in breast
tissue has been proposed [34]. As the resolution becomes
coarser, the fraction of pixels in an image that belong to
boundary pixels increases. Inclusion of these pixels has
been shown to be a primary contributor to error rates in data
[29], while their exclusion in accounting for accuracy
necessarily implies that not all pixels are included. We
sought to examine the effect of spatial resolution on the
prevalence of boundary pixels.

We binned data acquired at 6.25-μm pixel size from 148
samples in a validation data set (≈7000 pixels/sample) to 10-,
15-, 20-, 30-, and 50-μm pixel sizes. There is an important
distinction between pixel size and spatial resolution. The
pixel size denotes the best possible optical resolution, which
may be limited by longer wavelengths in the spectrum and
optical effects to yield a poorer measured resolution [35–38].
For each dataset, we classified the tissue and determined
neighbors of each pixel that did not belong to the class of
the pixel. Some pixels that have no neighbors of other
classes may still have empty pixels as neighbors. Since
neighboring empty pixels can only provide optical distor-
tion [39] but do not affect spectral content; we do not
consider them further. The number of neighbors for
epithelial pixels for different spatial resolutions may be
seen in Fig. 5. The first observation is that a large majority
of pixels have the same class pixels as all eight neighbors.
The fraction of pixels with all neighbors of the same class

Fig. 5 Neighbors of cell types other than epithelium or empty space
for different spatial resolutions. The inset shows the decrease in
percent epithelial pixels that do not have any other cell types as
neighbors
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decreases rapidly with decreasing resolution and stabilizes
at ca. 20 μm. Hence, a spatial resolution coarser than
20 μm is unlikely to have an effect on the classification but
is expected to lead to about 25% more epithelial pixels
being contaminated compared to 6.25-μm pixel sizes. The
precise effect on a specific sample is very dependent on the
sample morphology and is generally associated weakly
with pathologic state. While in itself, the statistic does not
imply that results from coarser resolution studies will be
invalid, practitioners must recognize that error rates may be
higher and that this contribution may be mitigated by using
commonly available imaging systems.

One danger of classifying mixed composition pixels is
whether they may be classified as an entirely different class
or disregarded from the data set as belonging to no class.
We simulated pixels of composition ranging from 0 to
100% for pairs of each class. We also added noise to
simulate different data acquisition conditions. An example
of the data can be seen in Fig. 6. Average spectra, one each
from the two classes, are baselined and added in ratios
varying linearly from 0 to 100%. Figure 6b demonstrates
the classification of the gradient data set. In general, the
classification works well, favoring the class with higher
concentration. The classifier is also stable at the noise levels
examined. A surprising result is that pixels between
epithelium and fibroblast-rich stroma are classified as
mixed stroma. This drawback, however, is the only
example of two classes mixing to yield an entirely different
one. The reason also stems from the definition of the mixed
stroma class. While the class was designed to handle those

stromal cells that were not clearly fibroblasts or smooth
muscle in origin but appeared mixed, a mix of epithelium and
fibroblast-type stroma also leads to the classification as mixed
stroma. Noise seems to have little effect on this behavior.

The full simulation of all classes (not shown) reveals that
mixed pixels generally can be classified as the constituent
classes with the higher concentration. Clearly, boundary
pixels at epithelial fibroblast-rich regions must be handled
with care. The increase in boundary pixels at lower
resolution also implies that this type of systematic mis-
assignment may arise more frequently. The rate of
occurrence of boundary pixels may be even lower for
synchrotron-based imaging that is conducted at higher pixel
density or in emerging approaches that utilize synchrotron-
based interferometers and array detectors. The simulated
example above, however, demonstrates that simply over-
sampling a spatial region to increase pixel density may
allow for better definition of the interface and assignment
of pixels, though it will not address spectral purity. Hence,
for analyses based on spectral discrimination, mixture
models will have to be developed based on entire spectra.
For example, multivariate curve resolution techniques hold
promise.

A further complication arises in using data from his-
tologic classification for pathologic diagnoses. For exam-
ple, the boundary epithelial pixels classified above may
disproportionately contribute to classification errors. We
have found evidence for the same in studies for both cancer
pathology and for histology in tissue from different organs.
For example, the boundary pixels in benign tissue get
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Fig. 6 Mixture models and
classification for prostate histol-
ogy. a Absorbance at
1,080 cm−1 for three classes and
their mixtures. The first column
contains mixtures of epithelial
cell spectra with the average
spectrum from fibroblast-rich
stroma and mixed stroma.
The second and third columns
contain mixtures with fibroblast-
rich and mixed stroma, respec-
tively. The concentration
changes from 0 to 100% linearly
along the y-direction as indicat-
ed by the color bar in c. b
Along the x-axis of the com-
posite image, the noise in each
cell increases linearly. Error
bars are standard deviations of
noise in the spectra. c Classified
image for the data, demonstrat-
ing the effect of composition
and noise on classification. d
Probability profiles of the three
cell types at columns 1 and 25,
demonstrating the effect of noise

1160 Anal Bioanal Chem (2007) 389:1155–1169



misclassified as cancerous, leading to the major source of
error in applying this approach to pathology. At this time,
the evidence is anecdotal and needs further investigation to
quantify the extent of the error and its mitigation by
advanced numerical processing. The last interesting aspect
of lower spatial resolution is that it tends to over-predict
certain classes. For example, Table 1 demonstrates the
regression results of each samples composition against that
obtained at 6.25 μm for three classes. While the regression
coefficient is high, it is clear that epithelial and mixed
stroma fractions are overestimated and fibroblast-rich
stroma is underestimated with decreasing pixel size. There
are differences based on underlying pathology. For exam-
ple, normal epithelium is generally encountered in 10- to
40-μm-wide strips, while high grade tumor may be
hundreds of micrometers to millimeters in size. Individual
sample variability reflected in the regression coefficient
decreases with increasing pixel size. In spectroscopic
models to predict diseases that include morphological units
but are based on average spectra, mixed pixels may lead to
estimates with large errors. For example, a 1:1 mixed region
of epithelial and fibroblast pixels at 6.25-μm pixel size
increases to ca. 1.19:1 for 50-μm pixel size. Hence, the use of
histologic mixture models at limited spatial resolution may
not be estimated correctly, providing evidence that the
percentage content of cell types in a limited field of view is
likely to be a less robust measure of tissue histopathology.

Evolution and capabilities of current instrumentation

To overcome confounding by mixing, as discussed above,
microscopectroscopy was proposed as an alternative [40].
Single spectra (non-FTIR) have been recorded from
microscopic samples for over 50 years [41] by restricting
light incident on the sample through an aperture. More than
one point, however, is required for tissue analysis. Hence,
sequentially rastering the point at which spectra are
recorded, termed mapping or point microscopy, was
proposed [42]. A practical instrument obtained by coupling
an interferometer, a microscope, and automated stage in the

late 1980s [43] helped in numerous materials science [44],
forensic [45], and biomedical [46, 47] studies. Unfortu-
nately, the mapping approach has a number of drawbacks in
realizing the goal of an FTIR microscopy analog to optical
microscopy [48].

More than 85% of cancer arises in epithelial cells, which
often form surface layers that are 10- to 100-μm wide. As
we demonstrated in the previous section, however, a
resolution higher than ca. 10×10 μm is preferable.
Consequently, the illuminated spot at the sample has to be
made smaller, throughput decreases proportionally, which
in turn decreases the signal to noise ratio (SNR) of acquired
spectra. Orders of magnitude brighter sources, e.g., syn-
chrotrons, may be employed to recover the lost SNR.
Unfortunately, synchrotron or free electron lasers [49] are
prohibitively expensive and no laboratory lasers exist for
the wide spectral region. An alternative is to average
successive measurements (co-adding) to increase statisti-
cally the SNR. Since the SNR increases only as the square
root of the number of averaged spectra, long averaging
periods are required. The situation may be mitigated by
using higher condensing optics, sources at higher temper-
atures, slightly faster scanning than used here,1 gain
ranging [50], or ultra-sensitive detectors [51]. Even if a
hypothetical instrument with all these advances were
constructed, ca. 10- to 20-fold reduction in time would be
obtained. Furthermore, this calculation underestimates the
time required by not considering losses due to diffraction or
stage movement.

In prostate tissue, for example, the situation is similar to
Fig. 1. Epithelial cells form 10- to 35-μm-wide foci around
the cross-sections of ducts. Ducts appear as white circles in
Fig. 1b, surrounded by epithelial cells that are depicted in
blue. To analyze this morphology, aperture dimensions of
ca. 6 μm×6 μm (≈ cell size) are proposed [31]; for this
case, the mapping approach would require ca. 1,028 h for a

1 There is no advantage to faster scanning once the modulation
frequency has reached optimum level for MCT detectors (1 MHz).
The reduced time to observe signal then decreases the SNR.

Table 1 Correlation of composition for samples between 6.25-mm pixel sizes and other pixel sizes

Pixel size (micron) Epithelium Fibroblast-rich stroma Mixed stroma

10 0.9913x(0.9976) 0.9847x(0.9923) 1.0300x(0.9957)
20 1.0156x(0.9906) 0.9671x(0.9775) 1.0473x(0.9787)
25 1.0404x(0.9896) 0.9768x(0.9624) 1.0262x(0.9617)
30 1.0720x(0.9773) 0.9683x(0.9507) 1.0175x(0.9363)
50 1.1180x(0.9459) 0.9410x(0.8947) 1.0390x(0.8723)

The first row in each cell denotes the composition factor for that pixel size and class. For example, for every 100 μm2 , the area of epithelial pixels
at 10-μm pixel size is 99.13% of that at 6.25-μm pixel size. Increasing/decreasing numbers represent pixels being increasingly/decreasingly
classified as that class. The ratios are not uniform for every sample and the regression coefficient of the best fit line passing through the origin is
provided in the second row of the each table cell. Increasing pixel sizes reflect greater variance from the fit line
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500 μm×500 μm sample [31]. Hence, mapping is not a
viable option. In contrast to point mapping using apertures,
large fields of view are measured in FTIR imaging.
Contributions from different sample areas in imaging are
separated by an array of mid-IR-sensitive detection ele-
ments in the manner of imaging with CCD devices for
optical microscopy. By coupling the multichannel detection
of focal plane array (FPA) detectors with the spectral
multiplexing advantage of interferometry, an entire sample
field of view is spectroscopically imaged in a single
interferometer scan [52]. Depending on the microscopy
configuration, thousands of moderate resolution spectra can
be acquired at near-diffraction-limited spatial resolution in
minutes [53, 54]. The time advantage over mapping is
nominally the number of pixels in the FPA (16- to 65,000-
fold) but the noise characteristics of FPAs are poorer than
sensitive single point detectors [55]. Hence, the SNR-
normalized advantage is lower [56]. Faster detectors are
being used for imaging and promise significantly higher
SNR in the same time. For example, we have employed a
128×128 element MCT array operating at ca. 16 kHz to
acquire a full data set in ca. 0.07 s [unpublished]. These
rates of data acquisition are approximately a factor of 10
higher than commercially available, but are required for
practical data acquisition times. Increase in data acquisition
speed remains a bottleneck for applications of IR imaging
to routine clinical studies. Coupled with the complexity and
cost of instrumentation, present technology provides pre-
liminary capability but is likely to prove a barrier to
practical clinical translation.

High-throughput sampling and statistical pitfalls

Quantitative analyses of results

The best imaging instruments (which employ sensitive
detectors and a small multichannel advantage) can acquire
data in about 0.1% of the time required for mapping for
equivalent parameters. Hence, point mapping studies in
pathology typically exceed numbers in only one of these
categories: spatial resolution (ca. 15–20 μm), numbers of
patients (ca. 50) or recorded small numbers of spectra per
patient (ca. 100). These numbers may typically be improved
an order of magnitude with imaging. For example, a recent
report analyzed ca. ten million spectra from ca. 1,000
samples at a spatial resolution of 6.25 μm [26]. This
quantitative validation is necessary for any automated
biomarker approach (vide infra) [57]. Studies are underway
in our and other laboratories to correlate spectral patterns
with other physiologic and pathologic conditions; recent
published studies verify the robustness and potentially wide
applicability of FTIR microscopy [58, 59].

Sample size

Though these studies demonstrate potential, [60, 61]
considerable debate exists on reproducibility and accuracy
measures for larger studies [29]. The first response of many
practitioners to new data is a question of validity based in
limited statistical confidence. A detailed understanding is
emerging from the work of several groups regarding
appropriate sample control [62] and confounding factors
due to biology [63]. Inherent differences between patient
cohorts, effects of sample preparations and measurement
noise are topics that can be addressed with the available
imaging technology but are yet to be fully explored. Hence,
validating robust spectral markers for large sample pop-
ulations [64, 65] is exceptionally challenging and the
chance for chance and bias influencing results exists.

Most importantly, the fundamental question of sample
size required has remained open. There are two major
concerns: first, the optimal sample size in forming calibra-
tion sets and a prediction algorithm. Second, investigators
must determine whether the results shown can be supported
by statistical considerations. While the first problem is
essentially one of optimizing a model and prediction
algorithm, the second impacts the quality of results and
claims of applicability directly. In this manuscript, we
examine only the second aspect. Determining the optimal
sample size to form robust models is a more involved
problem and is discussed elsewhere. The statistical validity
of obtained results and dependence on data acquisition
parameters are discussed later in this manuscript. Specifi-
cally, we estimate sample size based on the standard error
for the area under the curve for an ROC curve.

Gold standard

The selection of pixels as gold standards needs great care. It
must be done independently of any classifier training or
validation, thus ensuring a blinded study design. Once the
gold standard set is determined, it must not be changed.
This will ensure that there is no bias in the process. Care
must be taken to avoid pixels that do not lie on the tissue or
those that are at the boundary as these may artificially
inflate the error. The use of all pixels in an image has been
suggested and their exclusion has been proposed to
contribute selection bias. Selection bias, however, does
not arise in pixels that are chosen independent of validation
algorithms. The exclusion of boundary pixels is necessary
in both training (to avoid spurious probability distribution
functions) and validation (to prevent introduction of errors).
There are major technological difficulties in relating stained
visible to IR images from unstained tissue due to changes
during staining, leading to errors. Hence, it has been
proposed that the exclusion of boundary pixels in akin to
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the performance of a classifier with a reject option for the
boundary.

Sampling, archiving, and consistency

While it is unclear what an optimal sample size would be, it
is clear that a large number of tissue samples are needed for
effective validation. While it may theoretically be possible
to train on a single sample, validation of a protocol is
required on more samples. We recognized that one does not
need to observe the full surgically resected tumor for
validating IR protocols, but would need a representative
small section. Hence, we employed tissue microarrays
(TMAs) [66] as a platform for high-throughput sampling.
TMAs consist of a large number of small tissue samples
arranged in a grid and deposited on the same substrate.
They are typically manufactured by embedding cylindrical
cores in a receiving block and sectioning the block
perpendicular to the long axis of the core. Thin sections
are then floated on to a rigid substrate for analysis. The
technique facilitates rapid visualization of results of any
classification protocol, while revealing localization and
prevalence of any errors. Sample processing times may
easily be increased 100-fold, valuable tissues are optimally
utilized, and consecutive TMA sections can be used to
correlate with staining results. Construction and analysis of
TMAs has been automated, further increasing the through-
put. For spectroscopists, TMAs provide a ready source of
tissue to test hypothesis and develop prediction models.

The validity of employing TMAs for prostate cancer
research and, especially, for cancer grading has been
addressed by a number of authors [67]. For example, a
study of genitourinary pathologists [4] with images from
TMA cores assesses that ca. 90% considered this approach
useful for resident training and for pathology teaching.
Further, Gleason score was easily assigned to each TMA
spot of a 0.6-mm-diameter prostate cancer sample. Hence,
the utility of TMAs is not only in providing numerous
samples in a compact manner for the advantages above,
but also in consistency of the diagnoses and precision in
analyzing similar areas. Virtual tissue microarrays could
be constructed from different areas of large samples, thus
providing many sub-samples for within-patient and among-
patient comparisons. This approach has not yet been re-
ported but is likely a useful extension of the TMA concept.

Prediction algorithms and high-throughput data
analysis

Univariate algorithms

The major technological advances of fast FTIR microscopy
and high-throughput tissue sampling have been addressed

by imaging and TMAs respectively. There is still some
confusion and widespread disagreement, however, about
the “best” approach to extract histopathologic information
from FTIR imaging data. Several early manuscripts employ
univariate correlations to disease states [68]. While the
results were exciting, it is now realized that they were
statistically flawed and did not necessarily contain a
fundamental basis in cancer biology. To our knowledge,
there is no manuscript that has expressly demonstrated,
using statistics arguments, why univariate analyses are
likely to fail. There is widespread consensus and anecdotal
evidence, however, among practitioners that argues against
the approach. Consider the distributions for a univariate
measure (absorbance at 1,080 cm−1 that is normalized to
the amide I peak height) for benign and malignant cases as
shown in Fig. 7.

The normalized histograms reveal that for specific,
single samples the distribution of absorbance at pixels is
such that it clearly indicates the metric to be a good one for
cancer discrimination. When the distribution from all
samples is considered, however, there is little difference in
the distributions. Hence, many univariate measures de-
scribed in the literature do not hold up in wide population
testing. A TMA-based, high-throughput validation can
easily prove that the measure is not a good one but does
discriminate some samples. In Fig. 7, a cutoff value can
generally be found that distinguishes disease, leading to the
erroneous conclusion that the feature is universally indic-
ative of disease state. Since a typical infrared spectrum has
numerous frequencies and even non-chemically specific
features that can provide discrimination, a small number of
samples increases the probability of finding such discrim-
ination by chance alone. Univariate measures that appar-
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ently provide discrimination when none exists can be
equated to the false discovery rate (FDR) [69] of metrics.
The FDR is very different from the p-value for determining
that a metric separates two distributions; a much higher
FDR can be tolerated than can a p-value. Similarly, a false
negative rate has been proposed [70], which is not critical
for our case as we have observed high accuracy without use
of any erroneously left out metrics. While detailed cal-
culations and their underlying concepts are too lengthy to
reproduce here, for the sake of completeness, it suffices to
say that for the expected number of metrics demonstrating
discrimination, the FDR tends to zero for larger than ca.
30 samples. While correlations due to chance can be min-
imized by this approach, there is potential for unknown
bias or error in prediction for small numbers of samples.
Hence the algorithm must be integrated with sampling
considerations.

Multivariate algorithms

It was argued in the previous section that univariate
analysis may not provide a good measure of the population
distribution. It can alternatively be argued that the individ-
ual differences in univariate measures are masked if
population measures of the same are employed. Similarly,
multivariate techniques may mask the individual measures
in population testing. Hence, our philosophy has been to
employ a multivariate, supervised classification in which
the metrics are derived from univariate analyses. This
enables us to carefully examine each metric for both
population as well as individual sample relevance. While
unsupervised clustering approaches provide good insight
into spectral similarity, a supervised method forces a
relation to common clinical knowledge. For example, as
shown in Fig. 4 for prostate tissue, we consider a ten-class
model to determine histology. The drawback is that the
sensitivity of the approach to individual samples is lost at
the expense of generality. One could potentially combine
clustering and supervised classification. Clustering infor-
mation on the training data set would emphasize individual
sample distributions, which would allow for supervised
classification tailored to each cluster type. Such an
approach has not been implemented yet but is being
attempted in our laboratories to classify samples optimally.

Dimensionality reduction

It is well recognized that the spectrum at each pixel needs
to be reduced to a smaller set of useful descriptors that
capture the essential information inherent in the spectrum.
The reduction of full spectral information to essential
measures helps eliminate from consideration those spectral
features that have no information (non-absorbing frequen-

cies), little biochemical significance (e.g., apparent absorp-
tion at non-chemically specific frequencies), inconsistent
measures that may degrade classification, and those with
redundant information. The number of useful measures is
significantly smaller than the number spectral resolution
elements and, hence, the process is also termed dimension-
ality reduction. Dimensionality reduction and further
refinement (vide infra) also helps reduce the incidence of
prediction by chance alone, reduce computation time and
storage requirements. Potential measures of a spectrum’s
useful features are termed metrics and are defined manually
in our scheme.

It may be argued that the metrics are not selected in an
objective manner due to a human performing this task and
some computer routines must be employed. While the use
of an automated computer program is most certainly
objective and reproducible, the algorithm that drives such
programs is generated from spectroscopy knowledge. A
well-trained spectroscopist can recognize spectral features
and assign them to appropriate their biochemical basis.
While a computer algorithm may be able to enhance subtle
features in the spectrum, automated peak-picking algo-
rithms run the risk of substantial error as they are based on
some very specific criteria that may not be universally
valid. We believe that computer algorithms are more suited
to finding correlations and patterns that a human cannot for
the sheer size and complexity of data. Hence, the process of
determining which spectral features to consider is entirely
manual in our approach. It must be emphasized that the
universal set of metrics is selected manually but that the
data reduction step to a set of metrics to be used in
algorithms is entirely based on objective algorithms.
Manual refinement of metrics for classification is, obvious-
ly, not recommended for possibilities of overlooking
specific features, biasing the selection to specific feature
sets, or in determining the optimal set of metrics for a
classifier. Dimensionality reduction is also intimately linked
to the data quality and classification algorithm employed.

Classification algorithm

A number of supervised algorithms have been applied to
dimensionally reduced data, including those based on linear
discriminant analysis, neural networks, decision trees, and
modified Bayesian Classifiers. An intermediate step in
some of these algorithms provides for a fuzzy result in
which every pixel has a probability of belonging to every
class. For example, in our approach, each pixel can have a
probability (between zero and one) of belonging to each
class. A discriminant function then assigns each pixel to a
class based on a decision rule. The pre-discriminant data
set, termed rule imaging set, contains important informa-
tion. In our algorithm, it is a direct measure of the
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probability of the pixel belonging to the class. Hence, the
probability value may be used to compare the potential of
two protocols to distinguish a cell type or to quantify
confidence in results for tissue classified by different
methods.

Measures of accuracy and optimization

We prefer the use of the AUC for both optimizing
algorithms and for validating results. Confidence in the
value of the AUC, hence, is the primary test for the valid-
ity of developed algorithms and is characterized by the
standard error of the value. For example, in validating the
discrimination of epithelial from stromal pixels in a blinded
validation set, the cumulative distribution of AUC in a
TMA is shown in Fig. 8. More than 20% of the spots had
an AUC >95% and no AUC value below 0.8 was recorded.
One drawback of using ROC curves and AUC values is that
the results are valid for one at a time classification. Hence,
we have analyzed here the segmentation of epithelium from
all other cell types. The tissue is classified into ten classes
as before but the results are lumped into epithelial and non-
epithelial pixels. Further, not all TMA cores have all types
of cells. Hence, the two-class model also allows us to
examine a large number of samples. Last, we excluded
cores that did not contain at least 100 pixels of each class to
leave 103 cores for the analysis.

Quantitative measures of performance and accuracy are
perhaps the weakest portion of reports using IR spectros-
copy for cancer pathology. Typically, sensitivity and spec-
ificity have been employed as summary measures. While
these are indeed very relevant, we demonstrate that they are
insufficient and classification analysis must utilize more
measures to understand the process. Specifically, the use of

receiver operating characteristic (ROC) curves [71] is an
excellent direction. The area under the ROC curve is a
further summary measure that provides both a quantitative
understanding of the discrimination potential of the model
and a convenient measure to compare multiple classifica-
tion models. The third tool we introduced was the
confusion matrix. While ROC curves provide the potential
for correct classification of a binary rule at a time, con-
fusion matrices correspond to a particular point on the
ROC curve under the constraints of accuracy measures of
other classes. These also directly correspond to the final
segmentation of the rule image under an optimization
condition. The optimization condition may simply be the
maximization of the accuracy or may be the minimization
of certain types of errors.

Discriminant and class assignment

In a multi-class analysis, our approach to evaluating ROC
curves for a class is one at a time, i.e., all other classes are
essentially lumped in the rule data and the highest
probability of the lumped ensemble is compared to the
class whose ROC curve is being built. Hence, the AUC
values must be regarded as a potential for classification.
They are best suited to answer the binary question of
whether a pixel is correctly identified or not when
considering a single class. This method is ideally suited to
a cascaded classifier one at a time. Such a classifier has not
been reported yet but would provide a means to explicitly
determine the error for any given classification scheme.

Experimental parameters and classification

Here, we take advantage of the trading rules of FTIR
spectroscopy and imaging to model the effects of the
experimental parameters on the classification process.
While the signal to noise ratio (SNR) and resolution are
generally arbitrarily fixed in most studies, we demonstrate
their importance in classification.

Effect of signal to noise ratio

There are two issues: what is the “best” SNR to formulate
algorithms and second, provided an algorithm, what is the
least SNR that would provide adequate classification. Only
the latter issue is examined here. As with conventional
FTIR spectrometers, imaging spectrometers obey the
trading rules of IR spectroscopy. Hence, if an n-fold
reduction in SNR provides the same results, data acquisi-
tion will be n2-fold faster. Thus, in addition to an interesting
fundamental behavior of the classifier, the role of SNR has
a direct bearing on the speed at which data is acquired.
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We examined classification accuracy as a function of
average spectral noise. To strictly examine the effect of
noise, data must be acquired at different co-added spectral
numbers. The time required for imaging an array multiple
times, however, is prohibitive. Hence, we computationally
added random, Gaussian noise to the original spectral data.
Peak-to-peak and root mean square (rms) noise were
measured in the 1,950- to 2,150-cm−1 region adjacent to
the amide I peak.2 Representative single pixel spectra from
the data sets are shown, as a function of noise, in Fig. 9a.
We additionally plotted the observed noise levels against
the added noise to verify linearity (plot not shown). The
linear relationship conforms to the expected result and
provides a scaling factor to express the equivalent reduction
in data acquisition time (co-addition) that would be realized
at that noise level. For example, the addition of 0.005 a.u.
of noise raises the peak-to-peak noise from 0.0013 to
0.015 a.u., corresponding to a decrease in data acquisition
time by a factor of ca. 100 for this data set. In addition to
increasing noise, we employed an algorithm based on an
MNF transform [72, 73] to mathematically eliminate noise.
The observed peak-to-peak noise was 0.00017 a.u.,
corresponding to an increase in data acquisition time by a
factor greater than ca. 100. Hence, the data examined span
about 5 orders in magnitude of collection time.

The average height of the amide I peak was 0.42 a.u. in
all cases, providing a SNR of 2,500 (MNF-corrected data)
to 1.5 for the data sets. Accuracy as a function of the noise
level is shown in Fig. 9b. While the x-error bars indicate the
standard deviation of noise levels in pixels, the y-error bars
indicate the standard deviation in AUC values of all ten

classes. As a general rule, the classification improves with
lower noise levels. We first note that the classification does
not become perfect for any noise level and there is a
significantly diminishing return in increasing the SNR
beyond a level. At the other end, the ability to distinguish
classes is entirely lost at levels of ca. 0.1. Performance
across multiple data sets observed using our prediction
model indicates that the increases demonstrated at noise
levels lower than ca. 0.003 a.u. are within the variance.
Hence, there is little benefit to decreasing the noise levels
below ca. 0.003 a.u. for this data set, or to increasing the
SNR beyond ca. 150. It must be emphasized that the model,
prediction algorithm, and discriminant function are inti-
mately linked in a non-linear manner. While this makes it
impossible to predict the behavior generally of all classifi-
cation approaches, this simple exercise may be conducted
to determine the optimal data acquisition parameters. For
our selected metrics and model, it appears that the data
acquisition time can be decreased by a factor of ca. 3
without significant degradation in accuracy.

Spectral resolution

We next examined the effect of spectral resolution on the
results that would be obtained using the developed
algorithm. As in the previous section, the data were not
re-acquired but were downsampled from acquired data
using a neighbor binning procedure. Spectra from the same
epithelial class pixel, at different resolutions (Fig. 10a),
demonstrate the effect of downsampling on feature defini-
tion. Figure 10b demonstrates, first, that the peak-to-peak
noise levels over the region remain the same with spectral
resolution. As previously observed, noise is an important
control in comparing spectra; the peak-to-peak noise over
the same number of data points was preserved by neighbor
binning. In practice, the constant-throughput spectrometer
would provide a SNR (or noise level, in this case) that
decreases linearly with resolution. Since most array
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2 It is noteworthy that we are examining trends in the absorbance
spectra. Strictly, SNR should be measured in single beam spectra to
relate rigorously to theory. It can be shown, however, that the trend
will hold approximately for the absorbance spectra as well. Many
practitioners advocate the use of rms SNR. We are employing peak-to-
peak fluctuations over the same spectral range. Hence, the noise
values we obtain will be higher but will follow the same trend.

1166 Anal Bioanal Chem (2007) 389:1155–1169



detectors can be operated with higher integration times, it is
fair to assume that the time advantage in decreasing
resolution would be linear. Second, the performance of the
classifier is very nearly the same for finer spectral resolutions
and degrades only significantly for 32 cm−1. While the
results may appear to be surprising, a closer analysis of the
basis of the algorithms provides insight into the trends.

The classifier is based on absorbance and center of
gravity measures of the peaks. It is well established that
absorbance is measured accurately, provided that the
FWHH of the peak is not significantly smaller than the
resolution. The Ramsay resolution parameter, σ, is a useful
measure that was originally developed for monochromators
but has been shown to be applicable to FTIR spectrometers
as well [74]. While most bands are broad and peak
absorbance lower than ca. 0.7, absorbance values are not
expected to be adversely impacted from the measurement
process. With decreasing resolution, however, broadening
within complex peaks shapes may lead to observed changes
in the apparent absorption at a specific wavenumber. The
change itself may not have a significant influence on the
classifier performance as it depends on several such
metrics. A second type of metric calculates the area under
the curve. This is not expected to be impacted significantly
for most peaks. The third type of metric we have used is the
center of gravity of a spectral region. While spectral
analyses ordinarily attempt to locate the peak position and
use it as a metric, we chose the center of gravity for its
sensitivity to both position and asymmetrical shape changes
in complex spectral envelopes observed in biological
samples. Since the classifier is based on center of gravity
of a feature and not on the wavenumber of the peak
maximum, it is a very robust measure that is relatively
unaffected by spectral resolution or noise.

Generalization of developed algorithms to instruments
and practical approaches

The characterization of classification with regard to
spectrometer performance (SNR) and spectral resolution

provides information to optimize parameters on one spec-
trometer. It is unclear, however, if the calibration would
transfer to another spectrometer. We contend that the
potential for a successful transfer is high as the classifica-
tion process is relatively insensitive to resolution, implying
that it would only be weakly sensitive to apodization or to
small inaccuracies in wavelength scale. Similarly, if the
SNR of acquired data is used as control, perturbations due
to fixed pattern noise in focal plane array detectors or the
different use of electronic filters by different manufacturers
is likely to be insignificant in classifying tissue correctly.
Various instrument manufacturers also set the nominal
optical resolution differently in their instruments. The issue
of spatial resolution, of course, is more complex. Never-
theless, any resolution setting around the wavelength-
limited case will likely provide consistent results. To our
knowledge, there has been no comparison yet of classifier
performance across mid-IR FTIR imaging spectrometers
using algorithms developed on one specific instrument. The
developed protocol provides for such a framework and
detailed results are awaited from on-going work [75].

Outlook and prospects

An exciting period in imaging tissues spectroscopically
with low power, optical microscopy-comparable resolution
is emerging. Considerable work, however, needs to be
accomplished before this idea can become a clinical reality.
An ultimate goal of such studies is to provide a key
technology for emerging molecular pathology. The ap-
proach promises greatly reduced error rates, automation,
and economic benefits in current pathology practice. Look-
ing to the future, chemical imaging approaches will be
employed for diagnosing cancers in pre-malignant stages
prior to their apparent changes observable by conventional
means, predicting the prognosis of the lesion and intra-
operative imaging in real-time. Fundamental studies in drug
discovery and mechanisms of molecular interactions are
further examples that would be enabled by progress in this
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area. Doubtless, exciting applications lie ahead and prog-
ress is rapidly being made towards practical applications
but much work needs to be done to carefully apply this
powerful technology to multiple aspects of pathology.
Success in this endeavor promises to change the practice
of pathology radically and alter the clinical management of
cancer patients.
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Abstract Prostate cancer accounts for one-third of noncutaneous cancers diagnosed in US

men and is a leading cause of cancer-related death. Advances in Fourier transform infrared

spectroscopic imaging now provide very large data sets describing both the structural and

local chemical properties of cells within prostate tissue. Uniting spectroscopic imaging data

and computer-aided diagnoses (CADx), our long term goal is to provide a new approach to

pathology by automating the recognition of cancer in complex tissue. The first step toward the

creation of such CADx tools requires mechanisms for automatically learning to classify tissue

types—a key step on the diagnosis process. Here we demonstrate that genetics-based machine

learning (GBML) can be used to approach such a problem. However, to efficiently analyze

this problem there is a need to develop efficient and scalable GBML implementations that are

able to process very large data sets. In this paper, we propose and validate an efficient GBML

technique—NAX—based on an incremental genetics-based rule learner. NAX exploits mas-

sive parallelisms via the message passing interface (MPI) and efficient rule-matching using

hardware-implemented operations. Results demonstrate that NAX is capable of performing

prostate tissue classification efficiently, making a compelling case for using GBML

implementations as efficient and powerful tools for biomedical image processing.
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1 Introduction

Pathologist opinion of structures in stained tissue is the definitive diagnosis for almost all

cancers and provides critical input for therapy. In particular, prostate cancer accounts for

one-third of noncutaneous cancers diagnosed in US men. Hence, it is, appropriately, the

subject of heightened public awareness and widespread screening. If prostate-specific

antigen (PSA) or digital rectal screens are abnormal, a biopsy is needed to definitively

detect or rule out cancer. Pathologic status of biopsied tissue not only forms the definitive

diagnosis but constitutes an important cornerstone of therapy and prognosis. There is,

however, a need to add useful information to diagnoses and to introduce new technologies

that allow economical cancer detection to focus limited healthcare resources. In pathology

practice, widespread screening results in a large workload of biopsied men, in turn, placing

a increasing demand on services. Operator fatigue is well documented and guidelines limit

the workload and rate of examination of samples by a single operator. Importantly, newly

detected cancers are increasingly moderate grade tumors in which pathologist opinion

variation complicates decision-making.

For the reasons above, there is an urgent need for automated and objective pathology

tools. We have sought to address these requirements through novel Fourier transform

infrared (FTIR) spectroscopy-based, computer-aided diagnoses for prostate cancer and

develop the required microscopy and software tools to enable its application. FTIR

spectroscopic imaging is a new technique that combines the spatial specificity of optical

microscopy and the biochemical content of spectroscopy. As opposed to thermal infrared

imaging, FTIR imaging measures the absorption properties of tissue through a spectrum

consisting of (typically) 1024–2048 wavelength elements per pixel. Since IR spectra reflect

the molecular composition of the tissue, image contrast arises from differences in

endogenous chemical species. As opposed to visible microscopy of stained tissue that

requires a human eye to detect changes, numerical computation is required to extract

information from IR spectra of unstained tissue. Extracted information, based on a com-

puter algorithm, is inherently objective and automated (Lattouf and Saad 2002; Fernandez

et al. 2005; Levin and Bhargava 2005; Bhargava et al. 2006).

Uniting spectroscopic imaging data and computer-aided diagnoses (CADx), we seek to

provide a new approach to pathology by automating the recognition of cancer in complex

tissue. This is an exciting paradigm in which disease diagnoses are objective and repro-

ducible; yet do not require any specialized reagents or human intervention. The first step

toward the creation of such CADx tools requires mechanisms for reliable and automated

tissue type classification. In this paper we demonstrate how genetics-based machine

learning tools can achieve such a goal. Interpretability of the learned models and efficient

processing of very large data sets have lead us to rule-based models—easy to interpret—

and genetics-based machine learning—inherent massively parallel methods with the

required scalability properties to address very large data sets. We present the method and

the efficiency enhancement techniques proposed to address automated tissues classifica-

tion. When pushed beyond the relatively small problems traditionally used to test such

methods, an need for efficient and scalable implementations becomes a key research topic
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that needs to be addressed. We designed the proposed a technique with such constraints in

mind. A modified version of an incremental genetics-based rule learner that exploits

massive parallelisms—via the message passing interface (MPI)—and efficient rule-

matching using hardware-oriented operations. We name this system NAX: NAX is compared

to traditional and genetics-based machine learning techniques on an array of publicly

available data sets. We also report the initial results achieved using the proposed technique

when classifying prostate tissue.

The remainder of the paper is structured as follows. We present an overview of the

problem addressed in Sect. 2, paying special attention to tissue classification. We discuss in

Sect. 3 the hurdles that traditional genetics-based machine learning implementations face

when applied to very large data sets. Section 4 presents our solution to those hurdles. We

also describe the incremental rule learner proposed for tissue classification. Last, we

summarize results on publicly-available data sets and the preliminary results for tissue

classification on a prostate tissue microarray in Sect. 5. Finally, in Sect. 6, we present

conclusions and further work.

2 Biomedical imaging and data mining

This section presents an overview of the problem addressed in this paper. We first intro-

duce infrared spectroscopic imaging as a potentially powerful tool for cancer diagnosis and

prognosis. Then, we explore the protocols that provide raw high-quality data that for data

mining. Finally, we conclude by focusing on the key task, tissue classification, by focusing

on prostate tissue.

2.1 Infrared spectroscopy and imaging for cancer diagnosis and prognosis

Infrared spectroscopy is a well-established molecular technique and is widely used in

chemical analyses. The fundamental principle governing the response of any material is

that the vibrational modes of molecules are resonant in energy with photons in the mid-

infrared region (2–14 mm) of the electromagnetic spectrum. Hence, when photons of

energy that are resonant with the material’s molecular composition are incident, a number

are absorbed. The number absorbed is directly proportion to the number of chemical

species that are excited. Hence, any material has a characteristic frequency-dependent

absorption profile called a spectrum. An infrared spectrum is often termed the ‘‘optical

fingerprint’’ of a material as it can help uniquely identify molecular composition—see

Fig. 1.

Researchers, including us, have contributed to develop an imaging version of spec-

troscopy that is essentially similar to an optical microscope. In this mode of spectroscopy,

images are acquired in the manner of optical microscopy with one important difference.

Instead of measuring the intensity of three colors for a visible image, several thousand

intensity values are acquired at each pixel in the image as a function of wavelength

(spectrum at each pixel). The resulting data set is three dimensional (2 spatial and 1

spectral indices) consisting typically of a size 256 · 256 · 1024, but extending to sizes

such as 3500 · 3500 · 2048. Since each data point is stored as a 16-bit number, the

data size typically runs into several tens to hundreds of gigabytes.
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2.2 Mining the spectra: Two sequential problems

Though the continued development of fast FTIR microspectroscopy represents an exciting

opportunity for pathology, handling the resultant data and rapidly providing classifications

remains a critical challenge. First, the sheer volume of data—potentially larger than 10 GB

a day—represents an organizational and retrieval challenge. Next, extraction of useful

information in short time periods requires the formulation of optimal protocols. Third, the

automated cancer segmentation problem is very complex and offers a number of routes and

levels of data that need to be analyzed to determine the optimal approach for application in

a laboratory.

The typical application is the need to extract information from the data set such that it is

clinically relevant. Hence, the output of the data mining algorithm to be developed is well-

bounded and clearly defined. For example, in the prostate there are two levels of interest. In

the first level, the pathologist examines the tissue to determine if there are any epithelial

cells. Since more than 95% of prostate cancers arise in epithelial cells, transformations in

this class of cells forms the diagnostic basis and a primary determinant of therapy. Other

cell types of interest are lymphocytes that may indicate inflammation, blood vessel density

that may indicate the development of new blood supply indicative of cancer growth and

nerves that may be invaded by cancer cells. Hence, any automated approach to pathology

must first identify cell types accurately. The second step in pathology follows. Once

Fig. 1 Conventional staining and automated recognition by chemical imaging. (A) Typical H&E stained
sample, in which structures are deduced from experience by a human. Highlights of specific regions in the
manner of H&E is possible using FTIR imaging without stains. (B) Absorption at 1080 cm–1 commonly
attributed to nucleic acids and (C) to proteins of the stroma. The data obtained is 3 dimensional (D) from
which spectra (E) or images at specific spectral features may be plotted
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epithelial cells are located, their spatial patterns are indicative of disease states. In our

imaging approach, we can identify both spatial patterns as well as chemical patterns in

epithelial cells. Hence, the task would be to use either or both to classify disease. In this

paper, we focus only on the accurate identification/classification of tissue types as the first

step of the path that leads to obtaining the correct pixels of epithelium.

2.3 Tissue classification for prostate arrays

Prostate tissue is structurally complex, consisting primarily of glandular ducts lined by

epithelial cells and supported by heterogeneous stroma. This tissue also contains blood

vessels, blood, nerves, ganglion cells, lymphocytes and stones (which are comprised of

luminal secretions of cellular debris) that organize into structure measuring from tens to

hundreds of microns. These structures are readily observable within stained tissue using

bright-field microscopy at low to medium magnifications. Hence, in applying FTIR

imaging (Levin and Bhargava 2005), we obtain the common structural detail employed

clinically and, additionally, spectral information indicative of tissue biochemistry. As

histologic classes contain identical chemical components, infrared vibrational spectra are

similar but reveal small differences in specific absorbance features. The technique pro-

posed by Fernandez et al. (2005) examines each cell types’ spectra and transforms each

spectrum into a vector of describing features—usually around the hundreds. A complete

description of this process is beyond the scope of this paper and can be found elsewhere

(Fernandez et al. 2005). Each pixel (cell present in the slice of micro array under analysis)

has an assigned spatial position in the array while the tissue type is assigned by a highly

experienced pathologist. Thus, the tissue classification can be cast into a supervised

classification problem (Mitchell 1997), where all the attributes are real-valued and the class

is the tissue type—ten classes: ephithelium, fibrous stroma, mixed stroma, muscle, stone,
lymphocytes, endothelium, nerve, ganglion, and blood. Figure 2 presents tissue types that

can be assigned by examining a stained image obtained, after the FTIR microsprectroscopy

on unstained tissue,by the pathologist. Each marked pixel in the image becomes a train-

ing example; hence, the usual smallest data set is around hundreds of thousand records

per array.

3 Larger, bigger, and faster genetics-based machine learning

Bernadó et al. (2001) presented a first empirical comparison between genetics-based

machine learning techniques (GBML) and traditional machine learning approached. The

authors reported that GBML techniques were as competent as traditional techniques. Later,

Bacardit and Butz (2006) repeated the analysis, obtaining similar results. Most of the

experiments presented on both papers used publicly available data sets provided by the

University of California at Irvine repository (Merz and Murphy 1998). Most of the data

sets are defined over tens of features and up to few thousands of records—in the larger

cases. However, a key property of GBML approaches is its intrinsic massive parallelism

and scalability properties. Cantú-Paz (2000) presented how efficient and accurate genetics

algorithms could be assembled, and Llorà (2002) presented how such algorithms can be

efficiently used for machine learning and data mining. However, there are elements that

need to be revisited when we want to efficiently apply GBML techniques to large data sets

such as the one described in the previous section.
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The GBML techniques require evaluating candidate solutions against the original data

set matching the candidate solutions (e.g., rules, decision trees, prototypes) against all

the instances in the data set. Regardless of the flavor used, Llorà and Sastry (2006)

showed that, as the problem grows, rule matching governs the execution time. For small

data sets (teens of attributes and few thousands of records) the matching process takes

more than 85% of the overall execution time marginalizing the contribution of the other

genetic operators. This number increases to 98% and above, when we move to data sets

with few hundreds of attributes and few hundred thousands of records. More than 98%

of the time is spent evaluating candidate solutions. Each evaluation can be computed in

parallel. Moreover, the evaluation process may also be parallelized on very large data

sets by splitting and distributing the data across the computational resources. A detailed

description of the parallelization alternatives of GBML techniques can be found else-

where (Llorà 2002).

Currently available off-the-shelf GBML methods and software distributions (Barry

and Drugow-itsch 1997; Llorà 2006) do not usually target large data sets. The two main

bottlenecks are large memory footprints and sequential-processing oriented processes.

Generally speaking, they were designed to run on single processor machines with

enough memory to fit the entire data set. Hence, designers did not paying much

Fig. 2 The figure presents the tissue labeling provided by a pathologist biopsy section of human prostate
tissue. Each spot represents the section of a needle. Different colors represent different tissue types
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attention to the memory footprint required to store the data set—usually completely

loaded into memory and the population of candidate solutions. These large complex

structures were geared to facilitate the programming effort, but they are not designed

toward the efficient evaluation of the candidate solutions. However, efforts have been

made to push GBML methods into domains which require processing large data sets.

Three different works need to be mentioned here. Flockhart (1995) proposed and

implemented GA-MINER, one of the earliest effort to create data mining systems based

on GBML systems that scale across symmetric multi-processors and massively parallel

multi-processors. Flockhart (1995) reviewed different encoding and parallelization

schemes and conducted proper scalability studies. Llorà (2002) explored how fine-

grained parallel genetic algorithms could become efficient models for data mining.

Theoretical analysis of performance and scalability were developed and validated with

proper simulations. Recently, Llorà and Sastry (2006) explored how current hardware

can efficiently speed up rule matching against large data sets. These three approaches

are the basis of the incremental rule learning proposed in the next section to approach

very large data sets.

Another important issue in real-world problems is the class distribution. Usually

most real problems have a clear class imbalance. Recently, Orriols-Puig and Bernadó-

Mansilla (2006) have revisited this issue, showing how GBML techniques successfully

learn and maintain proper descriptions for those minority classes. If not designed

properly, descriptions of majority classes will tend to govern the learned models,

starving the description of minority classes. Prostate tissue classification is a clear

example of extreme class imbalance. Figure 3 presents the tissue type class distribution.

The smaller tissue type has 64 records, where as the larger classes have several tens of

thousands records. hence, the developed approaches must account for class size

variation.

Fig. 3 Figure shows the tissue class distribution. Once the classes are reordered according to their
frequency in the data set, we can easily appreciate the extreme imbalance—the smaller tissue type has 64
records, where as the larger classes have several tens of thousands records
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4 The road to tractability

We describe in this section the steps we took to design a GBML method (NAX) able to deal

with very large data sets with class imbalance. NAX evolves, one at a time, maximally

general and maximally accurate rules. Then, the covered instance are removed and another

maximally general and maximally general rule is evolved and added to the previously

stored one forming a decision list. This process continues until no uncovered instances are

left—this process is also referred as the sequential covering procedure (Cordón et al.

2001). Llorà et al. (2005) showed that maximally general and maximally accurate rules

(Wilson 1995) could also be evolved using Pittsburgh-style Learning Classifier Systems.

Later, Llorà et al. (2007) showed that competent genetic algorithms (Goldberg 2002)

evolve such rules quickly, reliably, and accurately. The rest of this section describes (1)

efficient implementation techniques to deal with very large data sets, (2) the impact of class

imbalance, and (3) the NAX algorithm proposed.

4.1 Efficient implementations

As introduced earlier, when dealing with very large data sets, and regardless of the flavor

of the GBML technique used, we may spend up to 98% of the computational cycles trying

to match rules to the original data set (Llorà and Sastry 2006). Each solution evaluation is

independent of each other and, hence, it can be computed in parallel. Moreover, even the

matching nature of a rule—the representation we will use from now on—is highly parallel,

since conditions require performing simultaneous checks against different attributes per

record. Thus, efficient implementation can take advantage of parallelizing both elements.

4.1.1 Exploiting the hardware acceleration

Recently, multimedia and scientific applications have pushed CPU manufactures to include

support for vector instructions again in their processors. Both applications areas require

heavy calculations based on vector arithmetic. Simple vector operations such as add or

product are repeated over and over. During 1980s and 1990s supercomputers, such as Cray

machines, were able to issue hardware instructions that enabled basic vector arithmetics. A

more constrained scheme, however, has made its way into general-purpose processors

thanks to the push of multimedia and scientific applications. Main chip manufactures—

IBM, Intel, and AMD—have introduced vector instruction sets—Altivec, SSE3, and

3DNow+—that allow vector operations over packs of 128 bits by hardware. We will focus

on a subset of instructions that are able to deal with floating point vectors. This subset of

instructions manipulate groups of four floating-point numbers. These instructions are the

basis of the fast rule matching mechanism proposed.

Our goal is to evolve a set of rules that correctly classifies the current data set rom

prostate tissue. Using a knowledge representation based on rules allows us to inspect the

learned model, gaining insight into the biological problem as well. All the attributes of the

domain are real-value and the conditions of the rules need to be able to express conditions

in a <n spaces. We use a similar rule encoding to the one proposed by Wilson (2000b)—a

variation of the original work proposed by Wilson (2000a) and later reviewed by Stone and

Bull (2003)—and widely used in the GBML community. Rules express the conjunction of

tests across attributes. Each test may be defined in multiple flavors but, without loss of
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generality, we picked a simple interval based one. A simple example of an if-then rule,

could be expressed as follows:

1:0� a0 � 2:3 ^ � � � ^ 10:0� an � 23 ! c1 ð1Þ
Where the condition is the conjunction of the different attribute tests and the outcome is the

predicted class—a tissue type. We also allow a special condition—don0t care —which

just always returns true , allowing condition generalization. The rule below illustrates an

example of a generalized rule.

1:0� a0 � 2:3 ^ �3:0� a3 � 2 �! c1 ð2Þ

All attributes except a0 and a3 were marked as don0t care:
Each condition can be encoded using 2 floating-point numbers per condition, where ai

contains the lower bound of the condition and xi its upper bound. Thus, the condition ai £
a0 £ xi just requires to store the two floating-point numbers. For efficiency reasons we

store them in two separate vectors, on containing the lower bounds and the other con-

taining the upper bounds. The position in a vector indicates the attribute being tested. The

don0t care condition is simply encoded as ai[xi and, hence, we do not need to store any

extra information.

Matching a rule requires performing the individual condition tests before the final and
operation can be computed. Vector instruction sets improve the performance of this pro-

cess by performing four operations at once. Actually, this process may be regarded as four

parallel running pipelines. The process can be further improved by stopping the matching

process when one test fails—since that will turn the condition into false.

Figure 4 presents a C implementation the proposed hardware-supported rule matching.

The code assumes that the two vectors containing the upper and lower bounds are provided

and records are stored in a two dimensional matrix. Figure 5 presents the vectorized

implementation of the code presented in Fig. 4 using SSE2 instructions. Exploiting the

hardware available can speed between 3 and 3.5 times the matching process, as also shown

elsewhere (Llorà and Sastry 2006).

4.1.2 Massive parallelism

Since most of the time is spent on the evaluation of candidate rules when dealing with large

data sets, our next goal was to find a parallelization model that could take advantage of this

peculiarity. Due the quasi embarrassing parallel (Grama et al. 2003) nature of the candi-

date rule evaluation, we designed a coarse-grain parallel model for distributing the

evaluation load. Cantú-Paz (2000) proposed several schemes, showing the importance of

the trade-off between computation time and time spent communicating. When designing

the parallel model, we focused on minimizing the communication cost. Usually, a feasible

solution could be a master/slave one—the computation time is much larger than the

communication time. However, GBML approaches tend to use rather large populations,

forcing us to send rule sets to the evaluation slaves and collect the resulting fitness. These

schemes also increment the sequential sections that cannot be parallelized, threatening the

overall speedup of the parallel implementation as a result of Ambdhals law (Amdahl 1967).

To minimize such communication cost, each processor runs an identical NAX algorithm.

They are all seeded in the same manner, hence, performing the same genetic operations

and only differing in the portion of the population being evaluated. Thus, the population is
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treated as collection of chunks where each processor evaluates its own assigned chunk,

sharing the fitness of the individuals in its chunk with the rest of the processors. Fitness can

be encapsulated and broadcasted maximizing the occupation of the underlying packing

frames used by the network infrastructure. Moreover, this approach also removes the need

for sending the actual rules back and forth between processors—as a master/slave approach

would require—thus, minimizing the communication to the bare minimum—the fitness.

Figure 6 presents a conceptual scheme of the parallel architecture of NAX:
To implement the model presented in Fig. 6, we used C and a message passing interface

(MPI)—we used the OpenMPI implementation (Gabriel et al. 2004). Figure 7 shows the

code in charge of the parallel evaluation. Each processor computes which individuals are

assigned to it. Then it computes the fitness and, finally, it just broadcast the computed

fitness. The rest of the process is left untouched, and besides the cooperative evaluation, all

the processors end generating the same evolutionary trace.

4.2 Rule sets as individuals

One main characteristic of the so-called Pittsburgh-style learning classifier systems—a

particular type of GBML—is that individuals encode a rule set (Goldberg 1989; Llorà and

Garrell 2001; Goldberg 2002). Thus, evolutionary mechanisms directly recombine one rule

set against another one. For classification tasks of moderate complexity, the rule sets are

1. void match_seq_rule_set ( RuleSet * rs, InstanceSet is, int iDim, int iRows ) {
2. int i,j,k,iCnt,iClsIdx,iGround,iPred;
3. register int iMatcheable;
4. Instance ins;
5.
6. iClsIdx = rs->iCorrectedDim;
7. clean_fitness_rules_set(rs);
8. for ( i=0 ; i<iRows ; i++ ) {
9. ins = is[i];
10. iPred=-1;
11. for ( j=0 ; iPred==-1 && j<rs->iLen ; j++ ) {
12. iMatcheable = 1;
13. for ( iCnt=0,k=j*(rs->iCorrectedDim+VBSIF) ;
14. iMatcheable && k<j*(rs->iCorrectedDim+VBSIF)+rs->iDim ;
15. k++,iCnt++ ) {
16. iMatcheable = iMatcheable &&
17. !( (rs->pfLB[k]<=rs->pfUB[k]) &&
18. ( ins[iCnt]<rs->pfLB[k] || ins[iCnt]>rs->pfUB[k]));
19. }
20. if ( iMatcheable )
21. iPred = rs->pfLB[j*(rs->iCorrectedDim+VBSIF)+rs->iCorrectedDim];
22. }
23. iPred = (iPred==-1)?rs->iClasses:iPred;
24. iGround=(int)ins[iClsIdx];
25. rs->pConfMat[iGround][iPred]++;
26. }
27. }

Fig. 4 This figure presents a sequential implementation of the rule matched process in C . A rule set is
match against a data set. Lines 16, 17, and 18 implement the condition test for one attribute. The
implementation also computes the confusion matrix that contains the ground truth versus predicted class
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not large. However, for complex problems, the potential number of required rules to ensure

proper classification may need large amounts of memory that become prohibitive. The

requirements increase even further in the presence of noise (Llorà and Goldberg 2003).

1. #define VEC_MATCH(vecFLB,fLB,vecFUB,fUB,vecINS,fIN,vecTmp,vecOne,vecRes) {\
2. vecFLB = _mm_load_ps(fLB);\
3. vecFUB = _mm_load_ps(fUB);\
4. vecINS = _mm_load_ps(fIN);\
5. \
6. vecRes = (__m128i)_mm_cmpgt_ps(vecFUB,vecFLB);\
7. vecTmp = _mm_or_si128(\
8. (__m128i)_mm_cmpgt_ps(vecFLB,vecINS),\
9. (__m128i)_mm_cmpgt_ps(vecINS,vecFUB)\

10. );\
11. vecRes = _mm_andnot_si128(_mm_and_si128(vecRes,vecTmp),vecOne);\
12. }
13.
14. void match_rule_set ( RuleSet * rs, InstanceSet is, int iDim, int iRows ) {
15. int i,j,k,iCnt,iClsIdx,iGround,iPred;
16. register int iMatcheable;
17. Instance ins;
18.
19. __m128i vecRes,vecTmp,vecOne;
20. __m128 vecFLB,vecFUB,vecINS;
21.
22. vecOne = (__m128i){-1,-1};
23.
24. iClsIdx = rs->iCorrectedDim;
25. clean_fitness_rules_set(rs);
26. for ( i=0 ; i<iRows ; i++ ) {
27. // Classify the instance
28. ins = is[i];
29. iPred=-1;
30. for ( j=0 ; iPred==-1 && j<rs->iLen ; j++ ) {
31. iMatcheable = 1;
32. for ( iCnt=0,k=j*(rs->iCorrectedDim+VBSIF) ;
33. iMatcheable && k<j*(rs->iCorrectedDim+VBSIF)+rs->iDim ;
34. k+=VBSIF,iCnt+=VBSIF ) {
35. VEC_MATCH(vecFLB,&(rs->pfLB[k]),
36. vecFUB,&(rs->pfUB[k]),
37. vecINS,&(ins[iCnt]),vecTmp,vecOne,vecRes);
38. iMatcheable = 0xFFFF==_mm_movemask_epi8(vecRes);
39. }
40. if ( iMatcheable )
41. iPred = rs->pfLB[j*(rs->iCorrectedDim+VBSIF)+rs->iCorrectedDim];
42. iPred = (iPred==-1)?rs->iClasses:iPred;
43. iGround=(int)ins[iClsIdx];
44. rs->pConfMat[iGround][iPred]++;
45. }
46. }

Fig. 5 This figure presents a vectorized implementation of the rule matching process presented in Fig. 4.
Lines 1–12 implement the parallelized test against four attributes using vector instructions. The code is
written using C intrinsics for SSE2 compatible architectures. This code runs on P4 or newer Intel processors
and Opteron or Athlon 64 AMD processors
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Parallelization may not help much if we need to send large rule sets across the commu-

nication network. For such reasons, GBML techniques work very well on moderate

complexity problems (Bernadó et al. 2001; Bacardit and Butz 2006). However, they need

to be modified to deal with complex and large data set, and also avoid the boundaries

imposed by the issues mentioned above.

4.3 NAX: Incremental rule learning for very large data sets

An incremental rule learning approach may alleviate memory footprint requirements by

evolving only one rule at a time, hence, reducing the memory requirements. However, one

rule by itself cannot solve complex problems. For such a reason, each evolved rule is added

to the final rule set, and the covered examples are removed from the current training set.

The process is repeated until no instances are left in the training set. This approach already

introduced by Cordón et al. (2001) and later also used by Bacardit and Krasnogor (2006)

allows maintaining relatively small memory footprints, making feasible processing large

data sets—as the prostate tissue classification data set. However, an incremental approach

to the construction of the rule set requires paying special attention to the way rules are

evolved. For each run of the genetic algorithm used to evolve a rule, we would like to

obtain a maximally general and maximally accurate rule, that is, a rule that covers the

maximum number of example without making mistakes (Wilson 1995).

Initialize

Evaluate Chunk

Selection

Recombination

Replacement

Finalize

Done?

Synchronize

Processor 0

Initialize

Evaluate Chunk

Selection

Recombination

Replacement

Finalize

Done?

Synchronize

Processor 1

Initialize

Evaluate Chunk

Selection

Recombination

Replacement

Finalize

Done?

Synchronize

Processor p

Fig. 6 This figure illustrates the parallel model implemented. Each processor is running the same identical
NAX algorithm. They only differ in the portion of the population being evaluated. The population is treated as
collection of chunks where each processor evaluates its own assigned chunks sharing the fitness of these
individuals with the rest of the processors. This approach minimizes the communication cost
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Llorà et al. (2007) have shown that evolving such rules is possible. In order to promote

maximally general and maximally accurate rules à la XCS (Wilson 1995), we compute the

accuracy (a) and the error (e) of a rule (Llorà et al. 2005). The accuracy is the proportion
of overall examples correctly classified, and the error is the proportion of incorrect clas-

sifications issued. For simplicity reasons, we use the proportion of correctly issues

classifications instead, simplifying the final fitness calculation. Let nt+ be the number of

positive examples correctly classified, nt- the number of negative examples correctly

classified, nm the number of times a rule has been matched, and nt the number of examples

available. Using these values, the accuracy and error of a rule r can be computed as:

aðrÞ ¼ ntþðrÞ þ nt�ðrÞ
nt

ð3Þ

eðrÞ ¼ ntþðrÞ
nmðrÞ ð4Þ

Once the accuracy and error of a rule are known, the fitness can be computed as

follows.

1. void evaluate_population ( Population * pp, InstanceSet is, int iDim, int iRows )
2. {
3. int i;
4.
5. /* Compute the fragments of this processor */
6. int iFrag = pp->iLen/FCS_processes;
7. int iInit = FCS_process_id*iFrag;
8. int iLast = (FCS_process_id+1==FCS_processes)?
9. pp->iLen:
10. (FCS_process_id+1)*iFrag;
11. int iCnt = 0;
12. int j,k,l;
13.
14. /* Create the bucket for the broadcast */
15. float faFit[2*iFrag];
16. float faTmp[2*iFrag];
17.
18. /* Evaluate the given chunk assigned to the processor */
19. for ( i=iInit,iCnt=0 ; i<iLast ; i++,iCnt++ ) {
20. match_rule_set(pp->prs[i],is,iDim,iRows );
21. compute_raw_accuracy_fitness_rule_set(pp->prs[i]);
22. faFit[iCnt] = pp->prs[i]->fFitness;
23. }
24.
25. /* Broadcast each of the chunks */
26. for ( i=0 ; i<FCS_processes ; i++ ) {
27. MPI_Bcast((i==FCS_process_id)?faFit:faTmp,iCnt,MPI_FLOAT,i,MPI_COMM_WORLD);
28. if ( i!=FCS_process_id )
29. for ( l=0,j=i*iFrag, k=(i+1)*iFrag ; j<k ; j++,l++ )
30. pp->prs[j]->fFitness = faTmp[l];
31. }
32. }

Fig. 7 This figure presents an implementation of the proposed parallel evaluation scheme using C and MPI:
The piece of code presented below is the only one modified to provide such parallelization capabilities.
Each processor computes which individuals are assigned to it (lines 6–10), then it computes the fitness (lines
10–23), and then it just broadcast the computed fitness (lines 26–31)
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f ðrÞ ¼ aðrÞ � eðrÞc ð5Þ
where c is the error penalization coefficient. The above fitness measure favors rules with a

good classification accuracy and a low error, or maximally general and maximally accurate

rules. By increasing c, we can bias the search towards correct rules. This is an important

element because assembling a rule set based on accurate rules guarantees the overall

performance of the assembled rule set. In our experiments, we have set c to 18 to strongly

bias the search toward maximally general and maximally accurate rules.

NAX ’s efficient implementation of the evolutionary process is based on the techniques

described using hardware acceleration—Sect. 4.1.1—and coarse-grain parallelism—

Sect. 4.1.2. The genetic algorithm used was a modified version of the simple genetic
algorithm (Goldberg 1989) using tournament selection (s = 4), one point crossover, and

mutation based on generating new random boundary elements.

5 Experiments

This section present the results achieved using NAX: To allow the reader to compare with

other techniques, we compare the results obtained using NAX on small data sets provided by

the UCI repository (Merz and Murphy 1998) to other well-known supervised learning

algorithms. Finally, we present the first results on the prostate tissue prediction obtained

using NAX. Results focus on the viability of the NAX approach.

5.1 Some UCI repository data sets

The UCI repository (Merz and Murphy 1998) provides several data sets for different

machine learning problems. These data sets have been widely used to test traditional

machine learning and GBML techniques. Table 1 list the data sets used. Due to the nature

of the prostate tissue type classification, we only chose data sets with numeric attributes.

Three of these data sets are of relevant interest: (1) son, by far the one with larger

dimensionality, (2) gls, the one with large number of classes, (3) tao, proposed by Llorà

and Garrell (2001), having complex and non-linear boundaries.

Table 1 Summary of the data sets used in the experiments

ID Data set Size Missing
values(%)

Numeric
attributes

Nominal
attributes

Classes

bre Wisconsin Breast Cancer 699 0.3 9 – 2

bpa Bupa Liver Disorders 345 0.0 6 – 2

gls Glass 214 0.0 9 – 6

h� s Heart Stats-Log 270 0.0 13 – 2

ion Ionosphere 351 0.0 34 – 2

irs Iris 150 0.0 4 – 3

son Sonar 208 0.0 60 – 2

tao Tao 1888 0.0 2 – 2

win Wine 178 0.0 13 – 3
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We could have chosen complex algorithms as baselines for NAX . However, we would

not be able to use them to repeat the experimentation on the prostate tissue classification

domain. The algorithms used in the comparison presented in Table 2 were 0-R (Holte

1993) (a simple base line based on majority class classification) and C4.5 (Quinlan 1993).

Results show percentage of correct classifications and standard deviation from stratified

ten-fold cross-validation runs. Paired t-test comparisons showed no statistically significant

differences between the pruned tree produced by C4.5 and NAX results. This experiments

also helped validate the distributed implementation proposed by NAX: Further results on

empirical comparisons can be found elsewhere (Bernadó et al. 2001; Bacardit and Butz

2006).

5.2 Prostate tissue classification

With the previous results at hand, we ran NAX against the prostate tissue classification data

set. The original data set is defined by 93 attributes. In this paper, however, we used the

reduced version of this data set proposed by (Fernandez et al. 2005) which contains 20

selected attributes out of the 93 available. The dataset is form by 171,314 records. Our goal

was to explore how well NAX could generalize over unseen tissue—this is the first step to be

able to address the cancer prediction problem. The other reason that motivated such

experimentation was to achieve similar accuracy results as the ones published earlier by

Fernandez et al. (2005) using a modified Bayes technique. If NAX could perform at the

same level, we will also obtain a set of rules of interest to the spectroscopist. The inter-

pretation of the rules will provide insight on how to interpret the models provided by

NAX —which could not be done with the models early used by Fernandez et al. (2005).

We conducted stratified 10-fold cross-validation experiments to measure the general-

ization capabilities of NAX for this problem. Since the problem was rather small—larger

data set are being prepared to be run at the supercomputing facilities provided by the

National Center for Supercomputing Applications—we run the ten-fold cross-validation

runs in a 3GHz dual core Pentium D computer with 4 GB of RAM. NAX took advantage of

the hardware support to speedup the matching process and uses two MPI processes to

parallelize—as introduced in Fig. 6—the evaluation of the overall population. Each fold

Table 2 Experimental results: percentage of correct classifications and standard deviation from stratified
ten-fold cross-validation runs

ID 0–R C4.5 NAX

bre 65.52 ± 1.16 95.42 ± 1.69 96.43 ± 1.72

bpa 57.97 ± 1.23 65.70 ± 3.84 64.07 ± 8.36

gls 35.51 ± 4.49 65.89 ± 10.47 68.02 ± 8.69

h� s 55.55 ± 0.00 76.30 ± 5.85 75.56 ± 9.39

ion 64.10 ± 1.19 89.74 ± 5.23 89.19 ± 5.27

irs 33.33 ± 0.00 95.33 ± 3.26 94.67 ± 4.98

son 53.37 ± 3.78 71.15 ± 8.54 73.62 ± 9.72

tao 49.79 ± 0.17 95.07 ± 2.11 97.41 ± 0.92

win 39.89 ± 3.22 93.82 ± 2.85 94.34 ± 6.09

Paired t-test comparisons showed no statistically significant differences between C4.5 and NAX results

0–R result are just provided as guiding base line
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took about one hour to complete, with the entire classification lasting less than half a day.

We conducted a simple test of adding a second computer with an identical configuration.

The overall time for cross-validation was reduced to half. Rough estimates—which will

better measured when larger experiments are conducted on NCSA super computers—show

that the sequential portion is around 1:1000 for this small data set. Numbers get better as

data set increases, which demonstrates that we will be able to process very large data sets

and efficiently exploit larger numbers of processors.

We proposed another measure of effectiveness, namely how many records can be

processed per second. Using a single processor with the hardware acceleration mechanisms

built into NAX, and the evolved rule set formed by 1,028 rules, the average throughput was

around 60,000 records per second. For the prostate tissue classification, it took less than

three seconds to classify the entire data set. Once the rule set is learnt, the classification

problem falls again into the category of embarrassingly parallel problems (Grama et al.

2003). Since no communication is needed, the speedup grows linearly with the number of

processors added—with the proper rule set replication and data set chunking. Thus, with

the dual core box used we where able to just double the throughput (120,000 records per

second) by chunking the data set and use both processors.

The previous results show the benefits of hardware acceleration and parallelization, but

NAX was also able to achieve very competitive classification accuracy in generalization,

correctly classifying 97.09 ± 0.09 of the records (pixels) during the stratified ten-fold

cross-validation. Figure 8 presents the regenerated prostate tissue classification image

presented in Fig. 2 using a rule set assembled by NAX: Figure 8a presents the incorrectly

classified pixels. Most of the mistakes by the rule set involve similar tissues with few

training records available. This trend was also shown elsewhere (Fernandez et al. 2005).

C4.5 does not provide any statistically significant improvement (only a marginal, not

statistically significant, 0.7%) and provided large decision trees with more than 5,000

leaves—not to mention the lack of scalability when compared to NAX:
The rule set assembled by NAX represents an incremental assembling of maximally

general and maximally accurate rules. Thus, we can compute how the accuracy of such

ensemble improves as new rules are added. Figure 9 presents the overall accuracy as rules

are added. It shows an interesting behavior for classifying prostate tissue. Using only 20

rules out of the 1,028 evolved ones, the overall accuracy is 90%, the incorrectly classified

1.3% pixels, and 8.7% were left unclassified. After inspecting the misclassified pixels most

of them belongs to borders between tissues and mislabeling arises from the image dis-

cretization—one pixel containing different tissue types. Table 3 presents the initial four

rules that covering 80% of the instances belonging to the two larger tissue types—

epithelium and fibrous stroma. Such results are relevant, not only for their accuracy, but

also because of the insight they provide to the spectroscopist about the problem structure.

6 Conclusions and further work

This paper has presented the initial results achieved in predicting prostate tissue type using

GBML techniques. Being able to classify unseen tissue quickly, reliably, and accurately, is

the first step towards the creation of CADx systems that may assist a pathologist diag-

nosing prostate cancer. We have proposed two main efficiency enhancement techniques for

GBML—exploiting hardware parallelization via vector instructions and coarse-grain par-

allelism via the usage of MPI libraries—which allowed us to approach very large data sets.

These techniques, together with an incremental genetics-based rule learning approach to
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assemble rule sets formed by maximally general and maximally accurate rules, have led to

the creation of NAX, a system specialized on dealing with large data sets.

Results have shown accurate classification models for prostate tissue along with good

scalability of the NAX implementation. Results also reveal peculiarities of the underlying

problem structure. With very few rules—20—we were able to correctly classify up to 90%

Fig. 8 The figures presented
above show the regenerated
prostate tissue classification
image presented in Fig. 2. (a)
presents the correctly classified
pixels. (b) presents the
incorrectly classified pixels
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of the tissue. Our current work is focused on analyzing the larger data sets containing all

the available features and different tissue sources to test the parallelization scalability of

NAX on NCSA supercomputers. Once accomplished, the procedure will provide confidence

in creating a CADx system to generate a diagnosis based on the evolved models.
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Llorà X, Garrell J (2001) Knowledge-independent data mining with fine-grained parallel evolutionary
algorithms. In Proceedings of the genetic and evolutionary computation conference (GECCO’2001).
Morgan Kaufmann Publishers, pp 461–468

Histopathology using genetics-based machine learning

123
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Orriols-Puig A, Bernadó-Mansilla E (2006) A further look at UCS classifier system. In Proceedings of the

8th annual conference on genetic and evolutionary computation workshop program. ACM Press
Quinlan JR (1993) C4.5: Programs for machine learning. Morgan Kaufmann
Stone C, Bull L (2003) For real! XCS with continuous-valued inputs. Evol Comput J 11(3):279–298
Wilson S (1995) Classifier fitness based on accuracy. Evol Comput 3(2):149–175
Wilson S (2000a) Get real! XCS with continuous-valued inputs. Lect Notes Comput Sci 1813:209–219
Wilson S (2000b) Mining oblique data with xcs. In Revised papers of the 3th international workshop on

Learning Classifier Systems (IWLCS 2000). Springer, pp 158–176

X. Llorà et al.
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ABSTRACT
Cancer diagnosis is essentially a human task. Almost univer-
sally, the process requires the extraction of tissue (biopsy)
and examination of its microstructure by a human. To im-
prove diagnoses based on limited and inconsistent morpho-
logic knowledge, a new approach has recently been proposed
that uses molecular spectroscopic imaging to utilize micro-
scopic chemical composition for diagnoses. In contrast to
visible imaging, the approach results in very large data sets
as each pixel contains the entire molecular vibrational spec-
troscopy data from all chemical species. Here, we propose
data handling and analysis strategies to allow computer-
based diagnosis of human prostate cancer by applying a
novel genetics-based machine learning technique (NAX). We
apply this technique to demonstrate both fast learning and
accurate classification that, additionally, scales well with
parallelization. Preliminary results demonstrate that this
approach can improve current clinical practice in diagnos-
ing prostate cancer.

Categories & Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning–Concept Learning.
I.5.4 [Pattern Recognition]: Applications.
J.3 [Life & Medical Science]: Medical Information Systems.

General Terms
Algorithms, Design, Performance, Experimentation.
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Genetics-Based Machine Learning, Learning Classifier Sys-
tems, Parallelization, Prostate Cancer.
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1. INTRODUCTION
Pathologist opinion of structures in stained tissue is the

definitive diagnosis for almost all cancers and provides criti-
cal input for therapy. In particular, prostate cancer accounts
for one-third of noncutaneous cancers diagnosed in US men,
and it is a leading cause of cancer-related death. Hence,
it is, appropriately, the subject of heightened public aware-
ness and widespread screening. If prostate-specific antigen
(PSA) or digital rectal screens are abnormal, a biopsy is
considered to detect or rule out cancer. Prostate tissue is
extracted, or biopsied, from the patient and examined for
structural alterations. The diagnosis procedure involves the
removal of cells or tissues, staining them with dyes to pro-
vide visual contrast and examination under a microscope by
a skilled person (pathologist).

The challenge in prostate cancer research and practice
is to provide a novel Due to personnel, tarining, natural
variability and biologic differences, the challenge in prostate
cancer research and practice is to provide accurate, objec-
tive and reproducible decisions. Conventional optical mi-
croscopy followed by manual recognition has been demon-
strated to be inadequate for this task. [18]. Hence, we have
recently proposed developing a practical approach to this
problem using chemical, rather than morphologic, imaging.
[19]. In this approach, Fourier transform infrared imag-
ing (FTIR) is employed to provide the entire vibrational
spectroscopic information from every pixel of a sample’s mi-
croscopy image. While the first steps of developing novel
imaging and sampling technologies is now reliable, [7] the
computational challenge of providing robust classification
algorithms that can rapidly provide decisions remains. Due
to the above advances in imaging and sampling, data from
thousands of patients is available to train and validate al-
gorithms for different disease states. While the application
and type of data are unique, a further confounding factor re-
quired efficiently processing large volumes of data generated
by FTIR imaging. The classification problem can be for-
mulated as a supervised learning problem in which several
million pixels (hundred of gigabytes) of accurately labeled
data are available for model training and validation. The
volume of tissue and (future) need for intra-operative diag-
noses imply that rapid and accurate diagnoses are crucial
to allow physicians to explore all possible courses of action.
Under these conditions, traditional supervised learning ap-
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proaches and implementations do not scale to provide diag-
noses in an appropriate time frame. Hence, efficiently pro-
cessing and learning models from gigabytes of FITR imag-
ing data requires a careful design of the supervised learning
algorithm. Moreover, the biological nature of the problem
requires that such models be interpretable to provide funda-
mental new insight into the disease process. Genetics-based
machine learning (GBML) techniques take advantage of the
“quasi embarrassing parallelism” [17] to provide scaleable,
fast, accurate, reliable, and interpretable models. In this
paper we present an approach engineered to the desired so-
lutiona and constraints of addressing this human task. A
modified version of a sequential genetics-based rule learner
that exploits massive parallelisms via the message passing
interface (MPI) and efficient rule-matching using hardware-
oriented operations is developed. We named this system NAX

[24], and we have shown that its performance is compara-
ble to traditional and genetics-based machine learning tech-
niques on an array of publicly available data sets. We now
show thatNAX—taking advantage of both hardware and soft-
ware parallelism—is able to provide prostate cancer diag-
noses that are human-competitive. In this paper, we present
preliminary results supporting this outcome.

The paper is structured as follows. Section 2 provides
an overview of our approach towards computer-aided diag-
noses for prostate cancer. Procedure and form of the data
are summarized in section 3. NAX is introduced in section
4, where we describe the basic components and design deci-
sions in this approach. In section 5 we present preliminary
results indicating that the approach presented in this paper
is human-competitive. Finally, section 6 summarizes some
conclusions and further research.

2. PROBLEM DESCRIPTION
Prostate cancer is the most common non-skin malignancy

in the western world. The American Cancer Society
estimated 234,460 new cases of prostate cancer in 2006
[31]. Recognizing the public health implications of this
disease, men are actively screened through digital rectal
examinations and/or serum prostate specific antigen (PSA)
level testing. If these screening tests are suspicious, prostate
tissue is extracted, or biopsied, from the patient and exam-
ined for structural alterations. Due to imperfect screening
technologies and repeated examinations, it is estimated that
more than 1 million people undergo biopsies in the US alone.

2.1 Prostate Cancer Diagnosis
The removal of a small section of prostate is most of-

ten accomplished by core biopsy. A needle is inserted into
the tissue and several (6-23) samples are obtained from dif-
ferent positions. Biopsy, followed by manual examination
under a microscope is the primary means to definitively di-
agnose prostate cancer as well as most internal cancers in
the human body. Pathologists are trained to recognize pat-
terns of disease in the architecture of tissue, local structural
morphology and alterations in cell size and shape. Specific
patterns of specific cell types distinguish cancerous and non-
cancerous tissues. Hence, the primary task of the patholo-
gist examining tissue for cancer is to locate foci of the cell
of interest and examine them for alterations indicative of
disease.

The specific cells in which cancer arises in the prostate

are epithelial cells. While epithelial-origin cancers account
for over 85% of all human cancers, they account for more
than 95% of prostate cancers. In prostate tissue, epithe-
lial line secretory ducts within the structural cells (collec-
tively termed ‘stroma’) that allow the tissue to maintain its
structure and function. Hence, a pathologist will first locate
epithelial cells in a biopsy and, to examine for cancer, will
mentally segment them from stroma.

Biopsy samples are prepared in a specific manner to aid
in recognition of cells and disease. The sample is sliced thin
(∼ 5μm thickness), placed on a glass slide and stained with
a dye to provide contrast. The most common dye is a mix-
ture of hematoxylin and eosin (H&E), which stains protein-
rich regions pink and nucleic acid-rich regions blue. Empty
space, lipids and carbohydrates are typically not stained and
characterized by white color in images. Staining allows the
pathologist to identify cells based on their nucleus and extra-
nuclear regions. Patterns of the same cell type characterize
structures. For example, epithelial cells arranged in a circu-
lar manner around empty space are characteristic of a duct
and endothelial cells similarly arranged are characteristic of
blood vessels. The empty space enclosed within a duct in
pathology images is termed a lumen. The distortion of the
circular pattern of epithelial cells around a lumen is charac-
teristic of cancer.

In low severity cancers, lumens are only slightly distorted,
while higher grades of cancer display a lack of lumen and
simply consist of masses of epithelial cells supported by little
stroma. The relative distortion and change in lumen shape
is organized into a grading scheme to assess the severity of
the disease, Gleason Scoring system, which is the primary
measure of disease that defines diagnosis, helps direct ther-
apy and helps predict those at danger of dying from the
disease. Since prostate cancer is multi-focal and the disease
quite variable, two dominant patterns of epithelial distortion
are selected and each is independently graded on a scale of
1-5. The grades are then summed to provide a Gleason score
ranging from 2 (low grade cancer) to 10 (maximum danger
cancer). This scale has been widely used since its creation
in the 1960s and currently forms the clinical standard of
practice. Manual Gleason scoring, however, has severe lim-
itations.

2.2 Limitations of Current Practice
Widespread screening for prostate cancer has resulted in

a large workload of biopsied men [16], placing an increasing
demand on services. Operator fatigue is well-documented
and guidelines limit the workload and rate of examination
of samples by a single operator (examination speed and
throughput). Importantly, inter- and intra-pathologist vari-
ation complicates decision-making. The consistency in de-
termining Gleason scores is rather poor. Intra-observer mea-
surements show that a pathologist confirms their own score
less than 50% of the time and are ±1 score no more than
80% of cases [2]. Hence, the diagnoses for ∼ 50% of cases
may change and may be significantly altered for ∼ 20% of
cases ultimately leading to changes in therapy for a patient
subset [30]. The numbers are decidedly cause for concern.
For example, a recent study including 15 pathologists and
537 prostate cancer patients, 70.8% of Gleason scores were
shown to be inaccurate when compared with the patient’s
final outcome [18]. Second opinions [29] improve assessment
and are cost-effective [10], not to mention their utility in mit-
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igating the effects of healthcare costs, lost wages, morbidity,
or potential litigation. In summary, the manual recognition
of spatial patterns leaves much to be desired from a process
perspective and has far-reaching social effects from a public
health perspective.

For the reasons underlined above, there is an urgent need
for high-throughput, automated and objective pathology
tools. We believe that this need is best met by employing
the power of computer algorithms and advanced processing
to address prostate cancer diagnosis and grading.

The information content of conventionally stained images
is limited, inherently non-specific and varies greatly within
patient populations and processing conditions. Hence, the
information derived from visible microscopy images is fun-
damentally limited and automated methods of analyzing
stained images have failed to provide a sufficiently robust al-
gorithm to diagnose disease. An alternative to morphology-
based microscopy are molecular microscopy techniques to
probe disease. Molecular technologies for disease diagnosis
are an exciting venue for investigations as they promise bet-
ter diagnostic capabilities through objective means and a
multitude of chemicals to provide insight into the changes
indicative of the disease process. In particular, spec-
troscopy tools allow for the measurement of many molecular
species simultaneously. Spectroscopic techniques in imaging
form, notably using optics, further enable the analysis to
be conducted without perturbing the tissue [11]. In this
manuscript, we present the analysis of prostate tissue with
one such technique, Fourier transform infrared (FTIR) spec-
troscopic imaging.

2.3 Molecular Imaging
Infrared spectroscopy is a classical technique for measur-

ing the chemical composition of specimens. At specific fre-
quencies, the vibrational modes of molecules are resonant
with the frequency of infrared light. By monitoring all fre-
quencies in the region, a pattern of absorption can be cre-
ated. This pattern, or spectrum, is characteristic of the
chemical composition and is hypothesized to contain infor-
mation that will help determine the cell type and disease
state of the tissue. Recently, FTIR spectroscopy has been
developed in an imaging sense. Hence, The data are similar
to optical microscopy. The first difference is that no external
dyes are needed and the contrast in images can be directly
obtained from the chemical composition of the tissue. The
second is that each pixel in the visible image contains RGB
values but in IR imaging contains several thousand values
across a bandwidth (2000 − 14000nm) that is ∼ 40 times
larger than the visible spectrum (400 − 700nm) [7].

3. DATA AND METHODOLOGY

3.1 Experimental Details
Prostate tissues were obtained from Cooperative Hu-

man Tissue Network for the tissue array research program
(TARP) laboratory. Using these tissues, tissue microarrays
were prepared using a Beecher automated tissue arrayer con-
taining a video overlap system and 0.6mm needles. Appro-
priate institutional review board and National Institutes of
Health (USA) guidelines for the protection of human sub-
jects were followed. 5μm sections of tissue were floated on an
infrared transmissive optical window for FTIR spectroscopic
imaging. Another 5μm section obtained from the same point

Figure 1: Conventional Staining and Automated
Recognition by Chemical Imaging. (A) Typical
H&E stained sample, in which structures are de-
duced from experience by a human. Highlights of
specific regions in the manner of H&E is possible
using FTIR imaging without stains. (B) Absorp-
tion at 1080 cm-1 commonly attributed to nucleic
acids and (C) to proteins of the stroma. The data
obtained is 3 dimensional (D) from which spectra
(E) or images at specific spectral features may be
plotted.

on the tissue specimen was observed using traditional mi-
croscopy for comparison. Expert pathologists determined
the tissue classification using these microscopy samples by
staining with H&E. Pathologists’ classification were used
as the ‘gold standard’ for comparison with the results from
the methods mentioned in this paper.

Tissues were analyzed using a Michelson interferometer
attached to a microscope (Perkin-Elmer Spotlight 300) in
transmission mode at a resolution of 4cm−1 The sample
was then raster scanned to obtain images of the entire spec-
imen. Typical specimen size is 600μm × 600μm with each
pixel being 6.25μm × 6.25μm on the sample plane. Spectra
are composed of 1, 641 sample points of the spectral range
4, 000 − 720cm−1. Data acquisition using these techniques
required 40 minutes per cylindrical core of the tissue mi-
croarray to yield a root mean square signal to noise ratio of
500 : 1. A typical array was composed of approximately 2.5
million pixels and required 40 GB of storage space.

The data obtained from FTIR imaging is three-
dimensional. The x− and y−dimensions locate pixels on
the tissue-sample plane. The z-dimension values compose
the IR spectrum for the corresponding pixel. The spectra
can be analyzed to determine what type of tissue (epithe-
lium, stroma, or muscle) the specimen is as well as whether
the tissue is malignant or benign. We have developed this
technology to provide data from tissue in minutes and em-
ploy a high-throughput sampling strategy using Tissue Mi-
croarrays (TMA) to obtain data.[19] Samples from multiple
tissues, from multiple patients and multiple clinical settings
are included in the data set to maximize the sampling of
natural variability and ensure the development of robust
analysis algorithms. These high-throughput imaging and
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microarray technologies combine to provide very large data
sets—see Figure 1. A typical single core consists of 300×300
pixels on the x − y plane with 1641 bands on the z-axis. A
tissue microarray consists of several hundred such cores and
analysis of such large datasets (typically, tens of GB) is com-
putationally expensive.

3.2 Data Format
Each pixel’s z-dimension contains a spectrum character-

istic of the chemical composition of that region of the speci-
men. Certain spectral quantities provide measures of chem-
istry. For example, the height of each feature is propor-
tional to its abundance, the peak position is associated with
the vibrational identity and peak shape often reflects the
multitude of environments around the molecule. Therefore,
differences in spectral characteristics can be used in classifi-
cation and these exact spectral features are termed ‘metrics’.
For example, the ratio of absorbance of the spectral peak at
1080cm−1 to the spectral peak at 1545cm−1 is commonly
used to distinguish epithelial from stromal cells. Trained
spectroscopists determine these metrics based upon exam-
ination of spectral patterns. Hence, the reduction of ull
spectra to descriptive metrics forms an intelligent dimen-
sionality reduction strategy. Genetic algorithms form de-
cision rules based upon these metrics to classify pixels by
tissue type. Furthermore, the transparency of the genetic
algorithms allows the scientist to correlate specific rules to
biological features (tissue type and cancer classification) via
metrics based upon spectral characteristics.

4. APPROACH
In this section we review related work on the GBML com-

munity, highlighting previous efforts to deal with large data
sets. We also present the motivation and techniques that
lead to the design of NAX. Special attention is paid to the
description of the hardware and software techniques used,
as well as to the design of a scalable GBML algorithm.

4.1 Related Background
Bernadó, Llorà & Garrell [6] presented a first empir-

ical comparison between genetics-based machine learning
techniques (GBML) and traditional machine learning ap-
proached. The authors reported that GBML techniques
were able to perform as well as traditional techniques. Later
on, Bacardit & Butz [3] repeated the analysis again obtain-
ing similar results. Most of the experiments presented on
both papers were conducted using publicly available data
sets provided by the University of California at Irvine repos-
itory [28]. Most of the data sets are defined over tens of
features and up to few thousands of records. However, a
key property of GBML approaches is its intrinsic massive
parallelism and scalability properties. Cantú-Paz [8] pre-
sented how efficient and accurate genetics algorithms could
be assembled, and Llorà [21] presented how such algorithms
can be efficiently used as machine learning and data mining
techniques.

GBML techniques require evaluating candidate solutions
against the original data set matching the candidate solu-
tions (e.g. rules, decision trees, prototypes) against all the
instances in the data set. Regardless of the GBML flavor
used, Llorà & Sastry [25] showed that as the problem grows,
the matching process governs the execution time. For small
data sets (teens of attributes and few thousands of records)

the matching process takes more than 85% of the overall
execution time marginalizing the contribution of the other
genetic operators. This number easily passes 99% when we
move to data sets with few hundreds of attributes and few
hundred thousands of records. Such results emphasize one
unique facet of GBML approaches: scalability via exploiting
massive parallelism. More than 99% of the time required is
spent on evaluated candidate solutions. Each solution evalu-
ation is independent of each other and, hence, it can be com-
puted in parallel. Moreover, the evaluation process can also
be parallelized further on large data sets by splitting and
distributing the data across the computational resources.
A detailed description of the parallelization alternatives of
GBML techniques can be found elsewhere [21].

Currently available off-the-shelf GBML methods and soft-
ware distributions [5, 20] do not usually target dealing
with very large data sets. Three different works need to
be mentioned here. Flockhart [12] proposed and imple-
mented GA-MINER, one of the earliest effort to create data
mining systems based on GBML systems that scale across
symmetric multi-processors and massively parallel multi-
processors. The work review different encoding and par-
allelization schemes and conducted proper scalability stud-
ies. Llorà [21] explored how fine-grained parallel genetic
algorithms could become efficient models for data mining.
Theoretical analysis of performance and scalability were de-
veloped and validated with proper simulations. Recently,
Llorà & Sastry [25] explored how current hardware can be
efficiently used to speed up the required matching of so-
lutions against the data set. These three approaches are
the basis of the incremental rule learning proposed in the
next section to approach very large data sets—such as the
prostate tissue classification one.

4.2 The Road to Tractability
NAX evolves, one at a time, maximally general and max-

imally accurate rules. Then, the covered instance are re-
moved and another rule is added to the previously stored
one, forming a decision list. This process continues until
no uncovered instances are left. Llorà, Sastry & Goldberg
[26] showed that maximally general and maximally accu-
rate rules [32] could also be evolved using Pittsburgh-style
learning classifier systems. Later, Llorà, Sastry & Goldberg
[27] showed that competent genetic algorithms [15] evolve
such rules quickly, reliably, and accurately. From these early
works, it can be inferred that approaching real-world prob-
lems, such as the prostate tissue classification and cancer
diagnosis, using GBML techniques may produce the desired
byproduct: proper scalability. We discuss next efficient im-
plementation techniques to deal with very large data sets
using NAX [24].

4.3 Exploiting the Hardware
Recently, multimedia and scientific applications have

pushed CPU manufactures to include support for vector
instruction sets again in their processors. Both applica-
tions areas require heavy calculations based on vector arith-
metic. Simple vector operations such as add or product are
repeated over and over. During 80s and 90s supercomput-
ers, such as Cray machines, were able to issue hardware
instructions that took care of basic vector operations. A
more constrained scheme, however, has made its way into
general-purpose processors thanks to the push of multime-
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(a) Original labeled array (b) Automatically classified array

Figure 3: This figure on the left-hand side presents the original labeled data contained in the P80 array. The
figure on the right-hand side presents the reconstructed image based on the predictions issued by the the
rule set evolved by NAX. Green represent non cancerous tissue spots; red represent malignant tissue spots.

ing frames used by the network infrastructure. Moreover,
this approach also removes the need for sending the actual
rules back and forth between processors—as a master/slave
approach would require—thus, maintaining the communi-
cation to the bare minimum—namely, the fitness. Figure 2
presents a conceptual scheme of the parallel architecture of
NAX.

To implement the model presented in Figure 2, we used
C and the open message passing interface (openMPI) imple-
mentation [13]. Each processor computes which individuals
are assigned to it. Then it computes the fitness and, finally,
it broadcasts the computed fitness. The rest of the process
is unchanged. Except for the cooperative evaluation, all the
processors generate the same evolutionary trace.

4.5 Lists of Maximally General and
Maximally Accurate Rules

One main characteristic of the so-called Pittsburgh-style
learning classifier systems—a particular type of GBML—is
that the individuals encode a rule set [14, 22, 15]. Thus
evolutionary mechanisms directly recombine one rule set
against another one. For classification tasks of moderate
complexity, the rule sets are not large. For complex prob-
lems, however, the potential number of rules required to
ensure accurate classification may use prohibitively large
amounts of memory. The requirements increase even fur-
ther in the presence of noise [23]. Hence, this family of
GBML techniques works very well on moderate complexity
problems [6, 3], but needs to be modified for complex and
large data sets.

A sequential rule learning approach may alleviate the re-

quirements by evolving only one rule at a time, hence, reduc-
ing the memory requirements [9, 4]. This allows maintaining
relatively small memory footprints that makes feasible pro-
cessing large data sets. However, an incremental approach
to the construction of the rule set requires paying special
attention to the way rules are evolved. For each run of the
genetic algorithm, we would like to obtain a maximally gen-
eral and maximally accurate rule, that is, a rule that covers
the maximum number of examples without making mistakes
[32]. NAX (our proposed incremental rule learner) evolves
maximally general and maximally accurate rules by com-
puting the accuracy (α) and the error (ε) of a rule [26]. In a
Pittsburgh-style classifier, the accuracy may be computed as
the proportion of overall examples correctly classified, and
the error is the proportion of incorrect classifications issued.
Once the accuracy and error of a rule are known, the fitness
can be computed as follows.

f(r) = α(r) · ε(r)γ (3)

where γ is the error penalization coefficient. We have set γ
to 18 to guarantee that the evolutionary process will pro-
duce maximally general and maximally accurate solutions.
Further details may be found elsewhere [24]. The above
fitness measure favors rules with a good classification accu-
racy and a low error, or maximally general and maximally
accurate rules. By increasing γ, we can bias the search to-
wards correct rules. This is an important element because
assembling a rule set based on accurate rules guarantees the
overall performance of the assembled rule set. NAX’s efficient
implementation of the evolutionary process is based on the
techniques described using hardware acceleration—section
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4.3—and coarse-grain parallelism—section 4.4. The genetic
algorithm used was a modified version of the simple genetic
algorithm [14] using tournament selection (s = 4), one point
crossover, and mutation based on generating new random
boundary elements.

5. RESULTS
NAX has shown competitiveness in evolving rule sets that

perform as accurately as the ones evolved by other genetics-
based machine learning and non-evolutionary machine learn-
ing techniques. However, NAXs key element is the ability to
deal with large data sets. In this paper, we present prelim-
inary results towards evolving a model capable of correctly
classifying pixels as cancerous or non-cancerous. The origi-
nal array of spots is presented in figure 3(a). Each spot cor-
responds to a different biopsy sample from a patient. The
pixels present in each spot correspond to the epithelial tis-
sue of the biopsy, we supress all other tissue types with
a prior classification filter based on Bayesian Likelihood.[7]
Each pixel of a spot is defined by 93 different metrics ex-
tracted from the processed infrared spectra—as described
in section 3. Finally, each pixel in the array was labeled
with the diagnostic class provided by a human pathologist.
Figure 3(a) presents in green all the non-cancerous pixels
while red identifies cancerous ones.

Our goal with the initial experiments here was to demon-
strate the usefulness of the proposed approach to computer-
aided diagnosis. Our current experimental efforts are plan-
ning mass experimentation on several tissue arrays using the
Tungsten cluster at the National Center for Supercomput-
ing Applications. These initial experiments were conducted
on a dual core Intel Xeon 2.8GHz Linux computer with 1Gb
of RAM. NAX was run using both processors. The training
time to obtain a model describing all the data took less than
ten hours—indicating that very competitive training times
can be achieved by just using more processors. The ob-
tained model was able to correctly classify > 99.99% of the
training pixels correctly. However, these results do not illus-
trate the generalization capabilities of the models evolved
by NAX. Hence, we ran a series of ten-fold stratified cross-
validation runs [34] to measure generalization and test per-
formance of the evolved models. It is important to mention
that tools such as WEKA [34] and other off-the-shelf data
miners were not able to handle the volume of data required
to evolve a model— either due to the large memory foot-
print required or by not being able to provide an accurate
model in a feasible time period. The results of the cross-
validation experiments using NAX correctly classified 87.34%
of validation pixels. Such results are more than encouraging,
because they show a human-competitive computer-aided di-
agnosis system is possible. Another interesting property is
that a few rules classify a large number of pixels—see Fig-
ure 4. Such a result is interesting for the interpretability
of the model, since a small number of rules have a great
expressiveness, and hence may provide valuable biological
insight. Most importantly, they allow us to classify tissue
accurately. Subsequent to this pixel level classification, each
circular spot in figure 3 was assigned as malignant or benign
based on the majority of pixels of he class in the sample. We
were able to accurately classify 68 of 69 malignant spots and
70 of 71 benign spots in this manner. While human accu-
racy is difficult to quantify due to the variation between
persons,a generally accepted anecdotal figure is about 5%
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Figure 4: Performance of the evolved model as a
function of the number of rules used.

error rates. The preliminary results we demonstrate here
could potentially reduce that five-fold to about 1%, provid-
ing a solution to this real-world problem by a combination
of novel spectroscopy and advanced machine learning.

6. CONCLUSION
In this manuscript, we present the application of advanced

genetics-based machine learning algorithms to a real-world
problem of large scope, namely, the diagnosis of prostate
cancer. As opposed to subjective human recognition of dis-
ease in tissue using light microscopy, we employed a chemical
microscopy approach that required extensive computation
but provided a decision without human input. Our devel-
opment of a learning algorithm based on maximally general
and maximally accurate rules was scalable to very large data
sets and parallelized to provide learning and classification
speed advantages. The algorithm was able to classify a ma-
jority of pixels correctly, resulting in overall error rates that
were comparable to human examination, the current gold
standard of care.
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[23] X. Llorà and D. Goldberg. Bounding the effect of noise in
multiobjective learning classifier systems. Evolutionary
Computation Journal, 11(3):279–298, 2003.
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INTRODUCTION
The integration of FTIR spectroscopy with microscopy facilitates recording of spatially resolved 
spectral information, allowing the examination of both the structure and chemical composition of 
a heterogeneous material. While the first such attempt was over 50 years ago,1 present day 
instrumentation largely evolved from the point microscopy detection of interferometric signals 
that developed in the mid-80s.2 The successful coupling of interferometry for spectral recording 
and microscopy for spatial specificity in these systems spurred interest in a variety of fields, 
including the materials,3 forensic4 and biomedical arenas.5, 6 Point microscopy utilizes an 
aperture to restrict radiation incident on a sample and permits the recording of spatially localized 
data. The primary utilities of this form of microscopy lay in acquiring accurate spectra from 
small-size samples, in determining the chemical structure and composition of heterogeneous 
phases at specified points and in building a two-dimensional map of the chemical composition of 
samples. Since the data were acquired at a single point, composition maps could only be 
acquired by rastering the sample. Hence, the approach was termed mapping or point mapping 
and involved as many spectral scans as the number of pixels in the map.  

The use of focal plane array (FPA) detectors for microscopy7, 8 allowed for the acquisition of 
large fields of view in a single interferogram acquisition sweep. The multichannel detection 
enabled by array detectors was similar to the concept of recording images with charge coupled 
devices in optical microscopy; hence, the approach was termed imaging.  The unique advantages 
of observing an entire field of view rapidly permitted applications that allowed monitoring of 
dynamic processes, spatially resolved spectroscopy of large samples or many samples and 
enhancement of spatial resolution due to retention of radiation throughput that was lost in point 
microscopy systems due to diffraction at the aperture. Just as for the previous generation of 
microspectroscopy instruments, applications  rapidly followed in the materials9 and biomedical 
fields.10-14 Research activity in this area can be divided into three major categories: 
instrumentation and sampling methodologies, applications and data extraction algorithms. In this 
manuscript, we review key advances and recent developments in the context of biomedical 
imaging. We do not provide comprehensive overview but selectively highlight certain features of 
importance for cancer-related imaging. Last, we focus on one emerging application area, namely 
tissue histopathology, and provide illustrative examples from our laboratory indicating the 
integrative nature of the three in developing protocols. 
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INSTRUMENTATION, SAMPLING AND DATA HANDLING TECHNIQUES

Instrumentation 
Since imaging is largely based on new detectors with unique performance characteristics for 
spectroscopy, efforts in instrumentation have largely focused on the efficient integration of FPA 
detectors with interferometers. Due to the size, different electronics and unique noise 
characteristics of FPAs, an optimization of data acquisition methodology was a primary activity 
in the initial time period of availability of instrumentation. The first rational attempt at 
understanding performance and optimizing the data acquisition process revealed the unique noise 
characteristics that limited the first generation of array detectors.15  Briefly, this paper established 
that the general behavior of FTIR spectrometers is generally held for imaging spectrometers but 
the detector may serve to limit the applicability of established practices in IR spectrometry. An 
explicit optimization of the data acquisition time revealed several strategies for speeding data 
collection for both the step scan and rapid scan mode.16 The first example of rapid-scan FTIR 
imaging17was conducted using asynchronous sampling, followed by descriptions of 
synchronously triggered sampling and generalized methodologies18 that could use any detector at 
any modulation frequency using post-acquisition techniques. Advances in detector technology 
have now allowed for rapid scan imaging to become routine for large FPA detectors, while 
innovative new detectors have been developed (first by PerkinElmer) that trade off a large 
multichannel detection advantage of arrays against the speed of smaller detector arrays to 
provide a very high performance instrument.19

At present, rapid scan imaging has become the mode of choice for most manufacturers and 
detector sizes have proliferated from the classic 64 x 64 format to range from 16 x 1 to 256 x 256 
formats (see figure 1). While the smaller detectors require rastering to image most samples and 
can provide data of higher quality more efficiently, larger detectors are generally employed for 
their large field of view and are useful for studying dynamics. It is interesting to note that the 
linear array approach has an entirely different detector technology and considerations for 
electronics compared to the two-dimensional FPAs. While it is beyond the scope of this article to 
discuss the differences, the use of “macro” electronics that are offset from the actual detector and 
AC mode of operation are the two major differences that affect data. Consequently, comparisons 
in performance are slightly more complicated. On the large format FPA front, the latest advance 
seems to be a detector developed jointly by NIH and FBI personnel in 2005. The detector can 
operate at 16 KHz for 128 x 128 pixel snaps (Bhargava, Levin, Perlman and Bartick, 
Unpublished). This is in the speed regime of single element detectors. Hence, the development 
can truly lead to the acquisition of an entire image in a single interferometer mirror sweep in the 
same time that it takes to acquire 1 spectrum with a benchtop IR spectrometer. To handle the 
large data output, we designed on-chip co-addition and various corrections. We believe that 
similar detector systems, operating in a fast regime and integrating processing with electronics, 
are likely to be the technology of tomorrow for FTIR imaging.  

The wide variety of instrumentation makes comparisons difficult, especially when manufacturers 
provide different specifications for instruments. We have proposed a comparison index for these 
systems based on performance per unit time. Recognizing that spectral resolution, time for 
scanning, data processing (e.g. apodization) and resultant image size are the primary 
determinants of performance, a measure can be formulated to describe performance. For a fixed 
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data processing scheme (filtering, apodization etc.), the time taken to acquire 1 megapixels of 
data for 8 cm-1 resolution at a signal to noise ratio (SNR) of 1000:1 is found to be a good 
measure. We would like to emphasize that the performance is the performance of the entire 
imaging spectrometer and not due to the detector alone. Efficient coupling of the interferometer 
and optimization of the optical train will both affect performance as will the correct setup of the 
experiment. This index also does not consider the ease of use or “user-friendliness” of systems. 
These are other important considerations and must also be considered by organizations interested 
in FTIR imaging technology. The issue of time resolution for acquiring data is one such concern. 
The first approach is the kinetics approach in which the interferometer is repeatedly scanned and 
imaging data sets are sequentially acquired as quickly as possible. Clearly, rapid scan is favored 
and the availability of fast readout detectors is mandatory for fast events. The limit to this 
method is the readout speed of the array (frames in ms) as interferometers can generally be 
scanned fast enough and the integration time required is typically in the tens of microseconds 
regime. An example is shown in figure 2 to demonstrate applicability in monitoring 
polymerization kinetics. 

Though rapid scan imaging has displaced the step-scan mode in most new instrumentation, a 
very important application of the step-scan approach remains in time-resolved imaging.20-22

Briefly, the method is applicable to systems that can be repeatedly and reproducibly excited and 
relax back to their ground state. At each mirror retardation, the FPA is repeatedly triggered to 
acquire data. At the same time, the sample is excited once and the dynamics of excitation and 
decay of the excited state are monitored. Mirror stepping, data acquisition and sample excitation 
are all precisely synchronized. Figure 3 demonstrates the synchronization. Time resolved FTIR 
imaging was first demonstrated using polymer-liquid crystal composites. Examples of the types 
of data that may be obtained are also shown in figure 3. Last, the technology was extended to 
provide significantly higher time resolution than could be obtained by the electronics of the 
detector alone.23 While FPA detectors are slow compared to single point detectors used in 
conventional FTIR spectroscopy, the cause is the need to read out data from several thousand 
pixels and not from the need to record data from all pixels. Hence, by staggering the data 
recording time over multiple sample excitations, higher temporal resolution may be obtained. 
With current detectors, a time resolution of ~30 s should be possible. 

Sampling 
Interferometer Issues 
Among the sampling configurations, the first clearly was the optimization of the microscope for 
transmission and sampling. Unexpected issues were encountered in initial devices. For example, 
the detector for the mono-wavelength laser provides a fringe pattern to allow for tracking mirror 
retardation. The signal from this laser is measured by a small detector located at the center of the 
beamsplitter (to minimize errors) with an arm that extends out to the edge. When imaged onto 
the FPA, this laser detector leads to a pattern with low signal levels. Hence, the field of view is 
not uniform, leading in turn, to lower signal to noise ratios (SNR) for the affected region. Many 
manufacturers, hence, have re-designed their spectrometers for imaging use. Another 
manufacturer has avoided this issue by aligning their microscope to sample only the unaffected 
part of the beam. Since the non-imaging spectrometer did not require imaging and the 
interferometer was simply coupled to a microscope, these issues were slowly addressed.
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Sampling Modes: Transmission, Transmission-reflection, Reflection and Attenuated Total 
Reflection 
A vast majority of studies report the use of transmission sampling. Other major developments 
have been the incorporation of reflective slides,24, 25, 26 the integration of ATR elements for both 
microscopy and large sample imaging, integration of ATR technology with various sample 
forming accessories, grazing angle accessories and multi-sample accessories. Reflective slides 
actually result in reflection-absorption that allows the beam to sample the signal twice, though 
with a different phase and lower signal due to half the objective being used for transmitting light 
to the sample and the other half being used to acquire light from it. A detailed theoretical 
understanding of the confounding effects has not been published, though an example of the 
possible data correction algorithm has been reported. ATR imaging is also highly prevalent and 
available as attachments to conventional imaging microscopes, using the sample chamber of the 
spectrometer and using it as a solid immersion lens.27 We discuss examples of ATR imaging next.  

ATR
In the Attenuated Total Reflection (ATR) mode, an IR transmitting crystal of precise geometry 
of high refractive index is employed as a solid immersion lens. Light is totally reflected at the 
sample-crystal interface and an evanescent field penetrates into the sample to provide the 
interaction to be observed using the traveling wave. Since the sample interaction is largely 
determined by the lens and not by the sample, precise and controlled depth of interaction is 
available. The sample, however, needs to be in good contact to allow efficient coupling with the 
evanescent wave. ATR imaging allows users to work with relatively thick sample sections that 
do not require much sample preparation expertise or time. The first use of ATR imaging was 
reported by Digilab in analyzing large samples that were not sectioned, as for transmission. ATR 
imaging microscopy was demonstrated soon after,28 followed by other novel accessories. There 
were other unpublished attempts that one of the authors is aware of: In 1999, for example, 
Snively et al. (personal communication, unpublished) demonstrated imaging data from an 
inverted ZnSe prism acting as a single bounce ATR. Soon after, we employed a Ge crystal but 
found the signal to noise ratio of the imaging system of that time to be very poor. In addition to 
the ease of sample preparation, another major advantage of ATR imaging lies in improving the 
limited spatial resolution of transmission microscopy.29 The authors assessed that they were able 
to achieve a spatial resolution of 1 m with a Ge internal reflection element  

Both micro and macro sampling has been extensively utilized.30 A spatial resolution of 3-4 m
using a Ge ATR element was claimed based on more stringent criteria than used previously.29 Ge, 
ZnSe and diamond30 crystals have been the materials of choice for most applications. In 
particular, Kazarian and co-workers have extensively employed ATR-FTIR imaging for various 
applications including drug release; polymer/drug formulations and biological systems.30-33 The 
same group has provided other innovative sampling configurations for specific experiments, 
including a compaction cell that allows compaction of a tablet directly on a diamond crystal with 
a subsequent imaging.34 The changes in the distribution of a tablet consisting of hydroxypropyl 
methylcellulose (HPMC) and caffeine upon contact with water were studied. In this manner,  
conventional dissolution measurements were combined  with a concurrent assessment of the 
compacted tablet structure.35 As opposed to the organic solvent-polymer dissolution experiments 
reported earlier, this configuration allows for easy handling and imaging of water-induced 
dissolution. The setup can also provide high throughput analysis of materials under controlled 
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environments.36 Microdroplet sample deposition system was combined with a humidity control 
device to image about 100 samples deposited on the surface of an ATR crystal simultaneously. 
The approach was extended to 165 samples and were reported to study parallel dissolution of 
formulations.37

Multi-sample Accessories and Sampling 
While imaging the structure of materials has been the primary focus of FTIR imaging, a number 
of applications utilize the imaging of multiple samples. The first examples were from the field of 
catalyst research.38 Typically 2-12 samples could be imaged and analyzed under the same 
conditions. High throughput validation or method development was the primary goal in these 
studies. Tissue microarrays (TMAs) provide the same function in biomedical imaging. TMAs 
consist of tens to hundreds of samples arranged on a grid format. This allows for easy 
visualization of the structure and classification accuracy across many patients and the statistical 
measures needed for rigorous validation. The primary utility of the multisample image in this 
case is to provide wide-ranging sampling and convenient archiving or data storage, not 
necessarily to provide a higher throughput.14, 39 With the appropriate geometry, many samples 
can be imaged to understand their dynamics in a concerted fashion. To accommodate the 
samples, the field of view is often expanded. This results in a lower spatial resolution. For 
imaging multiple samples, though, the spatial resolution can be conserved but temporal 
resolution is restricted. 

BIOMEDICAL APPLICATIONS
Bone
Bone has been the tissue studied most by FTIR imaging. Bone composition changes with 
development, environment, genetics, health and disease, is amenable to imaging at the resolution 
length scale of imaging and has a limited chemical composition that is characterized using IR 
spectroscopy.40  For almost 30 years until the late 1980s,41 bone structure was studied using 
single element detectors in FTIR spectrometers. Typically, ground bone was analyzed using the 
conventional KBr pellet method. This pellet method obviously destroyed local structures, 
precluding an understanding of molecular variations due to disease. Nevertheless, it was 
sensitive to chemical composition and did provide useful information. With microscopy and now 
with FTIR imaging, sample integrity is maintained and ability to acquire spectral information at 
anatomically discrete sites is possible. From the resulting spectra, several important pieces of 
information can be obtained. For example, a) relative mixture composition of hydroxyapatite and 
collagen by calculating the ratio of the integrated 1, 3 phosphate and amide 1 (mineral: matrix 
ratio), b) carbonate substitution by calculating the ratio of carbonate/phosphate ratio from the 
ratio of integrated 2 carbonate peak (850-900 cm-1) and 1, 3 phosphate contour (900-1200 cm-

1), c) crystallinity of the mineral phase from the ratio of 1030/1020 peak intensity.42 These assays 
illustrate several quantities important to bone research and disease diagnoses that can be readily 
performed. Though a complete discussion is available in the reference40, 42-44, we pick three 
illustrative examples demonstrating the applicability in disease and in research. 

IR spectral analysis of healthy and disease bone has been reviewed by Boskey et al.42 with 
particular emphasis on changes in bones composition, physiochemical status of mineral and 
matrix of bones during osteoporosis and the effect of therapeutics on these parameters. 
Osteoporosis or porous bone is a bone disease characterized by low bone mass and structural 
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deterioration of bone tissue. This leads to bone fragility and an increased susceptibility to 
fractures, especially at the hip, spine and wrist. FTIR images of the mineral content and 
crystallinity in trabecular bone of normal and osteoporotic samples clearly depicts that the 
trabeculae in diseased tissue are thinner. Moreover, the mineral/matrix ratio in osteoporotic bone 
is significantly reduced, whereas crystallinity is increased. These advances demonstrate the 
potential and applicability of the technique to characterize diseased tissue. Bone mineral changes 
between a healthy mouse model and Fabry diseased (lipid storage disease) mouse model were 
also analyzed in which globotriaosylceramide (Gb3) accumulates in tissues.43 No significant 
differences in the bone mineral properties were observed between Fabry and healthy mice, which 
might reflect the similar lack of major bone phenotype in human patients with Fabry’s disease 
and may also be related to the developmental age of these animals. The study provides an 
example of the applicability to laboratory research. 

Calcified tissue in biopsies from adults with osteomalica has been studied.44 Osteomalacia results 
in a deficiency of the primary mineralization of the matrix, leading to an accumulation of osteoid 
tissue and reduction in bone’s mechanical strength. A decrease in trabecular bone content with 
absence of changes in matrix or mineral is noticed when iliac crest biopsies of individuals with 
vitamin D deficient osteomalacia are compared to normal controls. These findings support the 
assumption that, in osteomalacia, the quality of the organic matrix and of mineral in the centre of 
the bone does not vary, where as less-than optimal mineralization occurs at the bone surface.

Brain
Monkey brain tissues were one among the first tissues examined by using FTIR imaging.12

Lately, the applications have experienced a renaissance with applications to the human brain. 
Grossly, brain can be divided into two types of matter, namely gray matter and white matter. 
These names derive simply from their appearance to the naked eye. Gray matter consists of cell 
bodies of nerve cells while white matter consists of the long filaments that extend from the cell 
bodies - the "telephone wires" of the neuronal network, transmitting the electrical signals that 
carry the messages between neurons. A visualization of the two compartments formed the first 
demonstrative application of FTIR microspectroscopic imaging. 

FTIR imaging and multivariate statistical analyses (unsupervised hierarchical cluster analysis) 
were applied alongwith histology and immunohistochemistry in an animal model having 
Glioblastoma multiform (GBM).45 GBM is a highly malignant human brain tumor that is 
considered to be the one of the most difficult to treat effectively.46 Authors were able to identify 
the tumor growth as chemically distinct from the surrounding brain tissue. The distribution of the 
absorbance of amide I in images highlighted high concentrations of proteins in the corpus 
callosum and regions of basal ganglia for healthy brain. Low absorbance was generally observed 
in the cortex, whilst a higher absorbance was observed at outer layer of the cortex. For a GBM 
bearing animal, the highest absorbance was found at the tumor site. In contrast to healthy brain, a 
lower absorbance of the amide I band was observed at the corpus callosum when compared to 
that in the cortex and the caudoputamen. The study demonstrates a powerful application of 
simple analyses that can indicate disease. It also highlights the multitude of spatial and spectral 
clues that can be use to diagnose or understand the disease. 
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In addition to primary disease sites, diagnoses metastatic spread from various cancers was also 
reported.47 A multivariate classification algorithm was used to distinguish normal tissue from 
brain metastases successfully and to classify the primary tumor of brain metastases from renal 
cell carcinoma, lung cancer, colorectal cancer, and breast cancer. In the cluster averaged IR 
spectra from a brain metastasis of renal cell carcinoma, the main spectral differences were 
observed for the three tissue regions in the region from 950 to 1200 cm-1 and from 1500 to 1700 
cm-1. Band intensities of 1026, 1080 and 1153 cm-1 are at maximum in the spectrum of black 
cluster and minimum in the spectrum of light gray cluster. The comparisons of the IR spectra of 
normal brain tissue and brain metastases of lung, breast cancer and colorectal cancer were made 
and found that these spectra do not contain spectral features at 1026, 1080 and 1153 cm-1 that are 
indicative of the presence of glycogen. It was concluded that these aforementioned spectral 
features would be considered as a biomarkers for brain metastases of the primary tumor renal 
cell carcinoma. In addition to these three bands, the spectral differences were observed for the 
bands at 1542 and 1655 cm-1, owing to the presence of amide I and amide II vibrations. It is clear 
from the results that the maximum protein concentrations correlate with minimum glycogen 
concentrations in the IR image. However, the protein and glycogen properties evident in the IR 
image are not visible in the unstained cryosection. It is noteworthy that simple univariate 
analyses provide the end clues to the disease. Even on application of multivariate techniques, the 
most prominent and easy to understand biomarkers of disease are those defined by conventional 
spectroscopic knowledge as being important for identification, namely, features and their 
absorption.

In the cluster–averaged IR spectra of white matter from the three normal brain tissue samples, 
intense bands at 1060, 1233, 1466, 1735, 2850 and 2920 cm-1 due to the high lipid concentration 
in white matter were noticed. Intensity changes were due to inter-sample and patient to patient 
variances of the same tissue type. In addition, cluster-averaged IR spectra of a brain metastasis of 
(renal cell carcinoma, breast cancer, lung cancer, and colorectal cancer) and gray matter of 
normal brain tissue were compared after baseline subtraction and then normalization with respect 
to the amide I band. Significant differences in the band positions, intensities and area were 
observed between these samples which were then used as potential candidates to differentiate 
normal and tumor tissue and for the identification of the primary tumor. Here, authors used only 
eight spectroscopic features for LDA model. They were able to classify correctly for three out of 
three normal brain tissue and 16 out of 17 brain metastases samples. Hence, though univariate 
analyses and features provide useful recognition, their integration into a multivariate algorithm 
provides for automated recognition of clinical importance. It may also be argued, however, that it 
is questionable whether the small numbers of samples employed represent a true performance 
condition for the algorithm or are simply reflective of bias arising from the clinical setting or 
sample sources. The advent of faster imaging approaches and advanced sampling techniques like 
TMAs can allow for larger numbers of samples to be analyzed and such doubts about the validity 
of studies be put to rest. 

Similarly, tissues from rat Glioma models have been characterized and used to discriminate 
healthy from tumor  sections using principal component analysis and K-means.48 Pseudo color 
maps reported were constructed on 8-means clusters, where each cluster is consisting of similar 
spectra. The lipids/protein ratio (1466/1452 cm-1) was found to be decreased and the band at 
1740 cm-1 became weak and almost vanished as compared to the corresponding bands in the 
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healthy tissue. In addition to the above mentioned differences, significant differences between 
healthy and tumor affected tissue were observed in the finger print region. In the healthy tissue, a 
weak band at 1172 cm-1, representing the stretching mode of C-O groups were observed. 
Reduced intensity as well as shifting of peak to 1190 cm-1 was noted for tumor and surrounding 
tumor spectra. Tumor tissue was observed to contain a decreased intensity of the asymmetric 
phosphate stretching and C-C stretching and an increased intensity of the symmetric phosphate 
stretching when compared to the healthy tissue. Variations in lipid features (methylene and 
methyl stretching) were also observed. The major point here is that the entire spectrum contains 
numerous points of difference between healthy and diseased tissue. Results were found to be in 
agreement with those obtained from pathology.49 The structural difference around the tumor was 
noted, which could be ascribed to the peritumoral aedoma observed during glioma development. 
An increase in the permeability of the blood-brain barrier and aggravation in the mass effect of 
tumors are the rationale for aedoma, which is associated with brain tumor. Fundamental 
understanding can be enhanced by a complete understanding of the spectral differences but 
prediction algorithms need only a few measures of the spectral data to be effective.

Breast
Two major applications in breast tissue deal with complications arising from artificial alterations 
of the tissue and the evolution of cancer. While breast augmentation by implants is highly 
prevalent, its complications have been discussed more recently. On the other hand, the 
conventional method for diagnosing and evaluating the prediction of breast disease is a 
histopathological examination of biopsy samples, a practice that has some shortcomings. For 
breast implants, a major question is the containment of filling material as its leakage can lead to 
potential diseases. The silicone gel in implants is very different chemically from surrounding 
tissue and its presence in tissue sections indicates a definite leak from the implant either due to 
material failure as a consequence of aging. A spectroscopic image50 generated from the 
asymmetric stretching modes of the methyl groups attached to silicon in the gel allowed for the 
examination of silicone in the tissue. Due to the unique chemical contrast employed in FTIR 
imaging, such presence can be discerned within the tissue, even when optical microscopy 
contrast was poor. An example of presence of Dacron (a commercial name for poly(ethylene 
terepthalate)) fixative patch threads in the breast tissues was shown.50 It was noted that the 
technique is capable of rapid analysis within minutes of sectioning the tissue.  

A few reports have also applied FTIR imaging for diagnosing breast diseases. Breast tumor 
tissues were characterized by both FTIR Imaging and point mapping techniques and advantages 
over the other were evaluated.51 Similar comparisons had previously been reported for polymeric 
materials, analyzing both static and dynamic samples.52 Comparison images from the two 
methods, imaging data provided a clearer structure in the tumor area than the data obtained from 
point mapping. Since breast tumor cells are ~10 μm in diameter, point mapping data (with an 
aperture of 30 μm) would always contains the spectrum of tumor cells as well as from the 
contributions of other components surrounding the cells. The study clearly indicated that the 
conventional point mapping approach can fail to detect a small number of malignant cells due to 
its poor resolution capabilities. Nevertheless, the contamination problem, i.e., the spectral 
contributions of other components surrounding the cell is found to be less severe in case of 
ductal carcinoma in situ (DCIS). The study illustrates the need for matching the appropriate level 
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of spatial resolution to the task. While the 30 m resolution may be appropriate for some 
applications, it was clearly insufficient for detecting smaller numbers of cells. 

Artificial network and K-means cluster analysis have also been employed for the classification of 
FTIR imaging data from normal and malignant immortalized human breast cell lines.53 Normal 
cells, carcinoma cells, mixed normal and carcinoma cells were used. Differences in the spectral 
backgrounds between the training and test data were observed, which confounds the 
reproducibility of recorded spectra and, thus, causes the classifier to fail. Using rejection 
thresholds in the application of the ANN classifier was reported to be helpful in identifying 
doubtful classifications. Another study54 reported imaging fibroadenoma, a benign breast tumor. 
Data were evaluated using unsupervised cluster analysis by utilizing two spectral regions, 
namely 1000-1500 and 2800-3000 cm-1. The distribution of four main tissue components- 
epithelium, retro nuclear basal epithelial regions, mantle zone and distant connective tissue were 
visualized. The spectral features from each component were discussed in detail. Furthermore, 
comparing epithelia from fibroaedenoma and DCIS, the authors determined that subtle 
distinctions between the IR characteristics of these two are reproducible. The initial study used 
tissue from a single patient. 

The work was recently extended55 to diagnose benign and malignant lesions from 22 patients. 
The study utilized only spectra from well-defined tumor areas owing to the heterogeneity of 
tissues. Based on the cluster analysis and on comparison with the H & E images, four classes of 
distinct breast tissue spectra were identified - fibroadenoma (FA), ductal carcinoma in situ 
(DCIS), connective tissue and adipose tissue. Further, ANNs were developed as an automated 
classifier to differentiate the four classes. All spectra of connective tissue and adipose tissue were 
classified correctly, where the spectral features are clearly different from each other and from 
tumors as well. Differentiating fibroadenoma from DCIS was more difficult. A toplevel/sublevel 
strategy was further applied and was able to differentiate 93% between fibroadenoma and DCIS 
spectra by employing principal component analysis. From the mean spectra, it was found that the 
DCIS has more lipid content than the fibroadenoma. Invasive ductal carcinoma (IDC) could not 
be well characterized due to contamination from surrounding cells, illustrating the limited spatial 
resolution.

Cervical Cancer 
The cervix is the lower part of the uterus (womb) in which two major types of cancers occur: 
squamous cell carcinoma and adenocarcinoma. About 80% to 90% of cervical cancers are 
squamous cell carcinomas, and the remaining 10% to 20% are adenocarcinomas. Less commonly, 
cervical cancers have features of both squamous cell carcinomas and adenocarcinomas. These 
are called adenosquamous carcinomas or mixed carcinomas. Typically, the Papanicolaou (Pap) 
test checks for changes in the exfoliated cells of cervix to find the presence of any infection, 
abnormal (unhealthy) cervical cells, or cervical cancer. FTIR spectroscopy, micro spectroscopy 
and FTIR imaging have been widely utilized to study cervical cancer and to perform the same 
function using computer analyses of spectra.26, 56-60 While the first reports in diagnosing cervical 
cancer are now generally not regarded as leading to solutions,56 two groups have provided 
definitive proof of the potential of IR spectroscopy by careful microscopy studies.26, 57, 45, 59, 60

While FTIR images of the amide I and asy PO2
- bands with H&E stained image were compared 

and only a rough correlation with the pathological features or cell types were obtained, cluster 
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maps of two, five and eight clusters resulting from UHC analysis for the whole spectrum 
demonstrated good segmentation. In five clusters, most cell types are apparent including 
superficial (1), intermediate (2), parabasal (3), and connective tissue (5) upon correlation with 
the stained image. As in univariate images, the connective tissue region (5) is split in to two 
clusters. Furthermore, by comparing between the UHC analysis of the whole spectrum and only 
the amide I region, authors demonstrated that minimizing the spectral region for analysis and 
using fewer clusters does not lead to the loss of useful information. Both univariate FTIR and 
multivariate images of the sample with several endocervical ducts within the connective tissue 
were shown. These endocervical ducts lined with columnar endocervical cells were apparent in 
all those images, in particular even with two clusters.

Cultures derived from cervical cancer cells (HeLa) are one of the most popular model systems 
and have been studied using FTIR imaging.61 The cells were directly grown as sparse 
monolayers onto low-e slides. FTIR image of amide I band region was shown; where large 
differences in spectral intensities associated with the cells were observed even though these cells 
are from a homogeneous and exponential cell culture. Cluster analyses of normalized spectra 
shows distinct differences that were not appreciated in the univariate image. Similarly,62 IR 
imaging with fuzzy C- means clustering and hierarchical cluster analysis were utilized to study 
the thin sections of cervix uteri encompassing normal, precancerous and squamous cell 
carcinoma. These studies demonstrate that IR imaging, in combination with multivariate 
techniques, is capable of segmenting cervical tissues in a manner that is comparable to H&E 
stained image differentiation and is significantly more sensitive in terms of the chemical 
composition of the cells – whether it be due to metabolic or disease reasons. 

Prostate 
Prostate cancer is the most prevalent internal cancer in the US.63 Hence, its pathologic diagnosis 
and correct interpretation of disease state is crucial.64 FTIR imaging has been proposed as 
solution that can potentially help pathologists by providing an objective and reproducible 
assessment of disease in a manner that is easily understood by clinicians. It is also a good model 
system for the development of FTIR imaging protocols. We first review progress in the field and 
then describe efforts in our and collaborator’s laboratories towards formulating a practical 
algorithm for prostate cancer pathology. While a number of studies examined human prostate 
tissue with IR spectroscopy65-68  microscopy approaches have recently been extensively utilized 
to study both fundamental properties of prostate tissue and to determine structural units in 
normal and disease states.69-75 An understanding of the tissue is now emerging as a result of these 
studies. While the fundamental properties of the tissue are being examined, we have focused on 
developed statistically validated diagnostic methods. 

We have utilized high throughout imaging with the express purpose of correlating spectra to 
clinical practice.39, 64, 76 It is instructive to first examine the approaches of some previous studies 
and then describe our approach in some detail. A variety of techniques have been reported for 
analyzing prostate tissue, including unsupervised multivariate data analysis techniques such as 
agglomerative hierarchical clustering (AH), fuzzy C-means (FCM), or k-means (KM) clustering 
to construct infrared spectral maps of tissue structures.77 The results from these multivariate 
techniques confirmed the standard histopathological techniques and found out to be helpful for 
identifying and discriminating the tissues structures. Agglomerative hierarchical clustering was 
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found to be the best method among the cluster imaging methods in terms of segmenting the 
tissue. While these techniques comprise one end of the approach in using large spectral regions 
and completely objective methods, the other extreme has also proven to be useful. In the second 
paradigm, careful examination of the spectral data yields some measures that prove useful. For 
example, the ratio of peak areas at 1030 and 1080 cm-1, corresponding to the glycogen and 
phosphate vibrations respectively were utilized as a diagnostic marker for the differentiation of 
benign from malignant cells.69 Authors summarized that the use of this ratio in association with 
FTIR spectral imaging provides a basis for estimating areas of malignant tissue within defined 
regions of a specimen. While it may be argued that the former is not based on clinical knowledge 
and is more suited for discovery, it also involves the choice of selecting specific number of 
clusters and their subsequent interpretation. The latter is based on a single parameter whose 
utility for universal diagnoses remains to be tested. Nevertheless, these studies indicate that both 
approaches provide information about the tissue that is useful.

Our approach has used elements from both pattern recognition and spectroscopic analyses of 
univariate measures. 39, 76 In all cases, one starts with the acquired imaging data (figure 4). Since 
the data set is large (typically 10-1000 GB), it is advisable to reduce the dimensionality of data 
using some numerical procedure. Compression algorithms, principal components analyses or 
simply storing only the information needed for classification (if the algorithm is known) is useful.  
We sought expressly to relate the recorded IR imaging data to clinical knowledge base. Hence 
we started with a model that is derived from clinical practice. Clearly, the approach limits the 
discovery of new knowledge but it assures the clinician that all quantities of importance for 
diagnoses will be considered. The acquired data is labeled with known cell identity or disease 
states.  These pixels are best identified by a combination of very careful manual labeling and test 
for absorbance fidelity.78 Spectra from the label regions are employed via average values, 
medians and standard deviation analyses to determine a set of spectral features that are 
descriptive of the major features of all spectra. We first note that the characteristic IR absorbance 
spectra of ten histological classes comprising prostate tissue look similar. Though small 
differences in spectral features were observed at many frequencies, summary statistics are 
limited in their examination of spectra for classification. Further, the small differences indicate 
that noise and biological variability may render univariate measures less reliable. The large 
number of classes usually implies that univariate analyses cannot distinguish all histological 
classes present in the tissues and hence the need for multivariate analyses is apparent. Here the 
similarity of the spectral features for all classes works in our favor. Very similar baseline points 
are obtained from an analysis of all spectra and only subtle feature differences are noted to 
distinguish the various class spectra. Hence, unknown spectra can be processed in the same 
specified manner, without introducing any bias. Each of these features is termed a metric to 
denote that it is a useful measure of the spectrum. Individual metrics can allow segmentation of 
various tissue types if they are sufficiently different in a sampled population. 

We then employ the equivalent of a t-test in that the overlap between the absorbance 
distributions of metrics is determined and equated to the error in prediction. The metrics are 
arranged in the order of increasing overlap. Hence, we have an ordered set that differentiates at 
least two classes. To obtain overall accuracy, we employ a modified Bayesian algorithm to 
provide the probability of each class for every pixel. This fuzzy result is employed to determine 
the area under the curve (AUC) of a receiver operating characteristic (ROC) curve. The ROC 
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curve is built from accepting the probability of each class at an increasing threshold that varies 
between 0 and 1. For optimized threshold values, the fuzzy classification is turned into a 
classified image, where each pixel is assigned a distinct class. We note that the method 
incorporates analysis of all spectral features, a selection of the best features based on statistical 
analysis of data and an optimal prediction of the class of each pixel based on an objective 
selection rule from the fuzzy classification. The method is very powerful in that it employs 
spectral features that are ordinarily employed by spectroscopists as metrics, which permits a 
spectroscopic analysis of the basis of decision-making. Further, the method explicitly obtains the 
fuzzy rule data for final classification. The value of the rule data for each class is actually the 
probability of belonging to the class without consideration for the prior prevalence of the class. 
Hence, the method can allow direct comparisons between performances for different classes. The 
dependence of the process on various experimental parameters has also been reported. 

The complication inherent in translating the results from small data set of patients to clinical 
applications is well recognized in the spectroscopy community. The variability in data, arising 
from variations within and between patients, sample preparation and handling, is likely to 
provide noisy estimates of performance. Hence, statistical stability may be obtained by 
examining a large number of samples. Similarly, large number of patients may be employed to 
provide calibration models, likely improving the robustness of the developed algorithm. We have 
described a high throughput sampling method from tissues.14, 39, 76 Briefly, the approach uses a 
combinatorial sampling of tissue type and pathology to first acquire small sections of tissues 
from large archival cases. These small sections are arranged in a grid pattern and placed on the 
same substrate. The sample is termed a tissue microarray to reflect the similarity with cDNA 
microarrays. For spectroscopic imaging and the development of automated algorithms, the 
approach represents a large number of cases that can be used both for accurate prediction 
algorithm building and for extensive validations. The same approach is likely to prove useful for 
extensions to determining pathology. Figure 5 demonstrates the typical workflow of a validation 
algorithm and methods used for statistical comparison. We strongly suggest a variety of methods 
for measuring performance as each method has its own advantages and disadvantages. For 
example, summary measures from ROC curves only provide information about accuracy but do 
not provide which class the inaccuracies arise from. Similarly, confusion matrices provide cross-
class information but do not provide global performance measures in the mold of ROC curves. 

OUTLOOK
FTIR imaging has experienced rapid growth in the past 10 years and is increasingly being 
applied to biomedical tissue, especially for the analyses of cancer. The major trends emerging in 
instrumentation include faster detectors and novel modes of data collection (e.g. time –resolved 
imaging), of sampling (e.g. ATR) and application areas. For biomedical samples, the information 
content is quite rich and is often available through simple univariate analysis. For more complex 
applications, e.g. cancer diagnoses, the data acquisition, sampling and data analyses must be 
integrated in a coherent manner to provide a practical solution. We anticipate that the technology 
and its application to biomedical problem will continue to grow with the cooperation of 
instrument manufacturers, applications scientists, numerical methods developers and 
communities that can utilize the information effectively, e.g. pathologists or surgeons. 
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- 64 x 64 : 615 Hz, Triggered Mode (2001)
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Figure 1. Various MCT FPA detectors employed for FTIR imaging since the first reports using Santa 
Barbara Focalplane (SBFP) array detectors. The years in parentheses are the first reports of use for 
FTIR imaging. Perkin-Elmer introdcued the concept of utilizing a small linear array for very high signal to 
noise ratios, an approach that has since been adopted by Thermo. Our research efforts have involved 
the use of a high end, custom-built detector that allows for fast imaging. 
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ABSTRACT 

Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that combines the molecular 
selectivity of spectroscopy with the spatial specificity of optical microscopy. We demonstrate a new concept in obtaining 
high fidelity data using commercial array detectors coupled to a microscope and Michelson interferometer. Next, we 
apply the developed technique to rapidly provide automated histopathologic information for breast cancer. Traditionally, 
disease diagnoses are based on optical examinations of stained tissue and involve a skilled recognition of morphological 
patterns of specific cell types (histopathology). Consequently, histopathologic determinations are a time consuming, 
subjective process with innate intra- and inter-operator variability. Utilizing endogenous molecular contrast inherent in 
vibrational spectra, specially designed tissue microarrays and pattern recognition of specific biochemical features, we 
report an integrated algorithm for automated classifications. The developed protocol is objective, statistically significant 
and, being compatible with current tissue processing procedures, holds potential for routine clinical diagnoses. We first 
demonstrate that the classification of tissue type (histology) can be accomplished in a manner that is robust and rigorous. 
Since data quality and classifier performance are linked, we quantify the relationship through our analysis model. Last, 
we demonstrate the application of the minimum noise fraction (MNF) transform to improve tissue segmentation. 

Keywords:  Breast Cancer, FT-IR Spectroscopy, Hyperspectral, Histopathology, Imaging, Diagnostics, MNF Transform 

1. INTRODUCTION 

As histologic analysis of biopsied tissue forms the standard in definitive diagnosis of breast lesions, it is estimated that 
more than 1.6 million women undergo breast biopsies each year in the US alone. Biopsy samples are fixed to ensure 
tissue stability1 and then sectioned for staining.2 Microscopic examinations of stained tissue sections by a trained 
pathologist are the gold standard used in diagnosing breast cancer.3 Unfortunately, these evaluations are time consuming4

and do not always lead to an unequivocal diagnosis. For example, a study of 481 breast cancer patients from 1982-2000 
at a regional cancer center indicated that 73% of ductal carcinoma in situ (DCIS) patients are referred by a general 
pathologist to an expert pathologist for review.5 After review, 43% of these cases received different treatment 
recommendations. Another study found that 52% of cases referred to a multidisciplinary tumor review board received 
different surgery recommendations.6 Clearly, the diagnostic process is sub-optimal. Rapid, objective second opinions are 
desirable. The use of emerging biological understanding and technologies for diagnoses could provide additional 
information in tumor evaluation and help make accurate therapy decisions. Further, it is likely that the morphologic 
parameters of current diagnoses are insufficient and additional information must be added. This information is typically 
biochemical in nature. For example, staining for human epidermal growth factor receptor 2 (HER2) can identify 25-30% 
of breast cancers.7 Such examples of success, unfortunately, are uncommon for cancers in complex tissues. Hence, 
alternative methods are urgently required to aid diagnostic pathology. 

One such means is the use of molecular spectroscopy. For example, Fourier transform infrared (FT-IR) spectroscopy is 
traditionally used for molecular identifications and biomolecular structure elucidations, but is not currently applied in 
clinical pathology.8 An IR spectrum provides a unique molecular fingerprint with a quantitative measure of the 
molecular bonds present in an examined material.9 Thus it should give a reproducible measurement of tissue 
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composition. Tissue, however, is microscopically heterogeneous and the measurement of chemical composition must be 
made in the context of knowledge of tissue structure (histology).10 The recent emergence of FT-IR imaging couples 
spectroscopy and microscopy to permit rapid acquisition of spectra from tens of thousands of pixels at a high spatial 
resolution. Each pixel (spectrum) typically contains thousands of data points in the mid-IR wavelength region (2-
12μm).11 Automated classification can then be employed for rapid computerized tissue image analysis, as has been 
practiced in both the spectral processing and image processing communities. The end goal of the measurement and 
associated data processing steps is to permit the rapid segmentation of different types of tissue without the need for 
chemical dyes or contrast agents.10 Last, the use of FT-IR imaging only involves light interacting with a sample and, 
unlike conventional biochemical analysis methods, does not alter the tissue in any manner. Thus it can provide additional 
information for pathology without the necessity of additional materials, tissue samples or changes in clinical protocols. 

In this manuscript we use breast tissue as an example to illustrate the application of FT-IR imaging coupled with 
computerized classification for histopathology. Specifically, we demonstrate that a combination of FT-IR imaging, 
classification algorithms and integrated computational methods for enhancement of acquired data can be used in tandem 
to optimize the development of practical protocols for automated histopathology. Previous studies report on the potential 
for IR spectroscopy in breast pathology,12,13,14,15,16,17 but no complete study on the spectral features of different histologic 
types of breast tissue exists. Preliminary efforts indicate significant spectral variation between different types of breast 
tissue and breast tumors,18,19,20 but a protocol for clinical translation is lacking. We combine fast FT-IR imaging and 
tissue microarray sampling to demonstrate the effectiveness of our approach for automated breast histopathology on 
normal and malignant tissue from five patients. This approach is distinct from that in Raman spectroscopy, where 
histologic models are used in analyzing spectra.21,22 As a first step towards automated tissue segmentation, we 
distinguish breast stroma and epithelium. This is a critical step, as over 99% of breast tumors arise in the epithelial tissue 
lining milk ducts and lobules.23 False color classified images denoting stroma and epithelium are produced, followed by 
analysis of data collection parameters. We evaluate the impact of spectral resolution and noise on classification accuracy 
to demonstrate potential for faster data acquisition without loss in classification confidence. This study presents an initial 
effort in developing applications for FT-IR imaging in clinical pathology. 

2. METHODOLOGY 

2.1 Data Acquisition 

The first studies to examine IR spectra of tissue began over fifty years ago,24 but the field did not truly make progress 
due to limitations in instrumentation. Today, a combination of an IR microscope, Michelson interferometer and focal 
plane array (FPA) detector25 permits efficient data acquisition for large sample areas. The data presented in this study is 
collected using the Perkin-Elmer Spotlight 400 imaging spectrometer. A spatial pixel size of 6.25 μm and a spectral 
resolution of 4 cm-1 were employed, with 2 scans averaged for each pixel. An IR background is collected with 120 scans 
co-added at a location on the substrate where no tissue is present. No undersampling was employing in data acquisition 
and a NB medium apodization function was used. A ratio of the background to tissue spectra is then computed to remove 
substrate and air contributions to the spectral data. The Spotlight software atmospheric correction algorithm is applied to 
eliminate remaining atmospheric contributions to the tissue spectra. As opposed to other configurations that employ a 
large FPA detector, this instrument employs a linear array detector that is raster scanned to acquire data from large 
sample areas. We use a combination of instrument control and post-processing software to computationally re-organize 
data acquired into large image sizes. Images of stained tissue are acquired using a standard Zeiss optical microscope. 

2.2 Tissue sampling 

Tissue microarrays (TMAs) permit facile comparison of small tissue samples from numerous patients26 and are an 
especially useful sampling medium for spectroscopic analyses.27 A TMA contains numerous small round tissue samples, 
termed cores, which are extracted from biopsy samples from different patients. Two paraffin-embedded TMAs were 
obtained from a commercial source (US Biomax) for this study. The first TMA section is placed on a glass slide and 
stained with hematoxylin and eosin (H&E) dyes. In H&E staining, hematoxylin stains nucleic acids and eosin stains 
protein-rich tissue regions. This section is used for visual morphology interpretation by a pathologist. The second TMA 
section is placed on a barium fluoride (BaF2) substrate for FT-IR imaging. Though the arrays contained a large number 
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of samples, a smaller subset of malignant and normal tissue cores from five patients with invasive ductal carcinoma 
(IDC) is selected for this study as the illustrative example. Each of the ten cores is 1.5 mm in diameter; hence, at a 6.25 
μm pixel size, approximately 280,000 spectra are collected for each core. This results in the collection of over 560,000 
spectra for each patient and approximately 2.8 million total spectra for all ten cores. This large spectral dataset facilitates
rigorous validation of classification protocols at a pixel level. Paraffin is removed from the TMA by immersion in 
hexane with continuous stirring at 40 0C for 48-72 hours. Spectra are recorded at several locations on the TMA every 24 
hours during this period to monitor paraffin removal with the disappearance of the 1462 cm-1 peak.

2.3 Image analysis and classification 

A supervised segmentation method is used for FT-IR image classification. This algorithm has been described in detail 
elsewhere,28 but is based on a modified version of a Bayesian classifier. First, the spectral profile of 1641 bands is 
reduced to a set of 89 useful metrics by examination of spectra from manually selected stroma and epithelium tissue 
regions. Metrics are manually selected to include peak ratios, peak areas, and peak centers of gravity. A metric profile M
is generated for each pixel in each tissue image of the form 

M m m m mnm
[ , , ,... ]1 2 3 , nm=89     (1) 

where each mi is the value for a single metric and nm is the total number of manually selected metrics. Frequency 
distributions for stroma and epithelium are determined for each metric and used to estimate the probability of a given 
metric profile representing either of these two classes. The probability of an image pixel from each class ci being 
represented by a given metric profile is determined using Bayes’ Rule  

p c M
p M c p c

p Mi
i i( )

( ) ( )
( )

      (2) 

where p M ci( )  is estimated from the metric class frequency distributions and p M( )  is the probability of a given metric 
profile. The prior probability of particular tissue class p ci( )  in this model cannot be determined due the manual 
selection of tissue classes on FT-IR images, and is estimated as 0.5. Other ways to estimate or optimize the class prior 
probability may be utilized; we have noticed anecdotally, however, that the choice of this value across a large range does 
not significantly affect the classification results. Classification accuracy is estimated with receiver operating 
characteristic (ROC) analysis for selected tissue regions. The area under the ROC curve (AUC) is used to evaluate 
classifier sensitivity and specificity and estimate the potential of the algorithm for accurate histology determinations. The 
classification algorithm is trained on a large array dataset and separately validated on a second array. It is notable that we 
do not develop the entire classification algorithm anew here. First, the central idea of this manuscript is to demonstrate 
the optimization of a developed protocol and second, the sample sizes chosen here are insufficient for de novo algorithm 
development. Data is analyzed using the Environment for Visualizing Images (ENVI) software and with programs 
written in-house using Interactive Data Language (IDL).

2.4 Spectral resolution and noise analysis 

Spectral resolution and noise are two common experimental variables that affect results in IR spectral analyses. The 
effects of spectral resolution and spectral noise are evaluated here in the context of quantitative histologic segmentation 
to minimize data collection time. As per the trading rules of IR spectroscopy, data collection time is expected to decrease 
linearly with spectral resolution and a quadratic rate with reduction in signal-to-noise ratio (SNR).29 Ideally, these 
parameters would be analyzed by acquiring data at different spectral resolutions and numbers of spectral co-adds. 
However, the time required to collect multiple images for the TMA is prohibitive. Instead, computational methods are 
used to examine these parameters using the original FT-IR images acquired at 4 cm-1 and 2 scans per pixel. First, spectral 
resolution is evaluated by downsampling the data using a neighbor binning procedure to resolutions of 8, 16, 32, 64 and 
128 cm-1. Classification is then performed on downsampled datasets to determine the coarsest spectral resolution needed 
for satisfactory stroma and epithelium segmentation. For a fine spectral resolution data set at 4 cm-1, the effect of noise is 
evaluated by adding to each spectrum noise in Gaussian distributions with standard deviations of 0.001, 0.01, and 0.1 au. 
Classification accuracy is estimated by evaluating the AUC at each noise standard deviation. Computational noise 
reduction with the minimum noise fraction (MNF) transform30 is evaluated by reducing noise in all the data sets. 
Classification is performed with the same algorithm on these MNF transformed images to determine the impact of this 
noise reduction algorithm on stroma and epithelium segmentation. 
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3. DATA 

The classification model presented in this manuscript involves segmentation of stroma and epithelium, which are the two 
most prominent tissue classes in fixed breast tissue used for pathology evaluation.31 In practice, the recognition of 
epithelial cells is especially critical for cancer diagnoses, as the vast majority (>99%) of breast cancers arise in this cell 
type.23 Hence, the two class model is of practical significance. While seemingly simple and practical, however, the 
model can potentially be confounding as stroma consists of many cell types with disparate spectral characteristics. This 
model was employed to develop a classifier using training data from a TMA with forty patients. Final model calibration 
for sixty eight tissue cores yielded an AUC value of 0.99 with an eight metric classifier.32,33 In this study we validate this 
classifier with one malignant and a matched normal TMA core from a subset of five patients. As seen in Figure 1A and 
B, absorbance images based on spectral features closely compare with images of H&E stained tissue. Hence, using 
conventional pathology knowledge we can select image pixels that unequivocally correspond between the two images - 
representing both stroma and epithelium. These pixels are selected by examining FT-IR images at 1080 cm-1 to highlight 
asymmetric PO2 stretching vibrations in glycoprotein in epithelium,14 1236 cm-1 to highlight CH2 wagging vibrations 
associated with collagen proteins,34 1652 cm-1 to highlight C=O stretching vibrations at the protein amide I mode,34 and 
3292 cm-1 to highlight NH bending vibrations at the protein amide A mode (shown as an example in Figure 1B).35 We 
emphasize that multiple vibrational modes must be examined in tandem and pixels identified with great care and 
diligence as these form the gold standard for future comparisons. Over 185,000 pixels are marked in these ten tissue 
cores to serve as the gold standard for ROC analysis (as shown in Figure 1C). Selecting this large set of pixels is 
important to achieve a reasonable sample size to accurately estimate classification potential for the entire data set. 
Boundary pixels are not marked to avoid errors associated with mixed pixels in FT-IR images.27 A qualitative 
comparison of stained and classified images indicates that stroma and epithelium segmentation is reasonable (Figure 
1D), and this is confirmed with an AUC value of 0.98 after quantitative ROC analysis. Stroma and epithelium are easily 
identified on false color classified images without detailed examination and interpretation. This is advantageous over 
traditional staining methods that require the use of chemical dyes and subsequent expert pathologist examination for 
evaluation.

Fig. 1. Conventional H&E stained images, FT-IR spectral images and classification. (A) An H&E stained image of tissue 
cores from five invasive ductal carcinoma patients. Each row represents a single patient, with malignant tissue samples 
on the left and normal samples on the right. (B) An FT-IR image at 3292 cm-1 denotes the NH bending vibration at the 
amide A protein mode. Brighter regions denote relatively protein-rich stroma. (C) A ground truth FITR image with 
pixels marked as stroma or epithelium serves as the gold standard for ROC analysis and classification evaluation. (D) A 
classified FT-IR image in which all pixels are labeled as stroma or epithelium accurately corresponds to the H&E 
stained image. The classification does not require stains or human interpretation. 

A B C D

1mm 0.0            0.2            0.4             0.6 stroma 

epithelium

A B C D

1mm 0.0            0.2            0.4             0.6 stroma 

epithelium

stroma stroma 

epithelium

Proc. of SPIE Vol. 6853  685306-4



4. RESULTS 

4.1 Effect of spectral resolution on tissue segmentation 

The impact of spectral resolution on classification performance is evaluated by downsampling spectra at every pixel with 
a neighbor binning and interpolation procedure. FT-IR image data sets are acquired at 4 cm-1 spectral resolution and are 
downsampled to 8, 16, 32, 64, and 128 cm-1 resolution. As seen in Figure 2A, an average spectrum at each resolution 
from epithelial cells in the gold standard demonstrates that important spectral elements remain identifiable at coarser 
resolutions. While we anticipate that the area under the peaks would be preserved, peak shapes begin to change at a 
courser spectral resolution of 32 or 64 cm-1 due to overlaps in the complicated spectral response. It would not be 
surprising to note that the most robust predictors of class incorporate best both biological diversity and spectral noise 
(arising from both measurement and artifacts). Hence, we anticipate that the use of these metrics would also prove robust 
when spectra are downsampled. Figure 2B demonstrates that the classification accuracy is not significantly affected until 
the spectral resolution is decreased to 128 cm-1.

The result is indeed surprising as numerous prior biomedical studies with vibrational spectroscopy have employed 4 cm-1

to 16 cm-1 spectral resolution. There are two important differences between the problem here and a majority of those 
studies. First, many of the reported studies used sensitive spectral analysis tools (e.g. second derivatives) or were looking 
for fine spectral features. Second, models for pathology may have needed more complex information. Here, we are 
examining a 2 class problem of very distinct cell types. Hence, the acceptable classification at very coarse resolutions is 
likely permitted by the significant biochemical differences between stroma and epithelium in the metrics selected. 
Previous studies have provided evidence of clear differences in IR spectra from DNA-rich tissues such as epithelium and 
RNA and protein-rich tissues such as stroma,14,20 especially in the IR fingerprint region from 500-1500 cm-1.8  We 
hypothesize that a more complex model with additional tissue classes would likely require a higher spectral resolution 
for reasonable classification, but that this resolution is not required to distinguish stroma and epithelium.  

A powerful feature of the algorithm we employ is the utilization of prominent spectral features for classification. Here, 
the features selected as classification metrics are not very sensitive to changes in spectral resolution.36 Absorbance values 
are accurate if the peak full width at half maximum (FWHM) is not significantly less than the spectral resolution. As 
biological materials have broad and overlapping lineshapes, the condition holds even for very coarse resolutions. 
Therefore, the values of spectral metrics are not significantly altered even if some details in the spectrum are affected at 
coarser spectral resolutions. The center of gravity metrics used for classification are particularly robust, as they 
incorporate peak position and shape and are not strongly influenced by peak modifications in downsampled spectra. Care 
must be exercised in making this extrapolation to all data quality. For example, for poor signal to noise ratio spectra, the 
center of gravity calculation will be sensitive to noise.  

Fig. 2. Spectral resolution effect on classification. (A) Epithelial spectra obtained by downsampling data acquired at 4 cm-1

indicate that IR spectrum quality degrades appreciably at a spectral resolution coarser that 16 cm-1, as anticipated for 
condensed phase biological materials. (B) AUC analysis for stroma and epithelium segmentation for each resolution 
demonstrates a significant decrease in classification accuracy only at a very course spectral resolution beyond 64 cm-1.
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The effective classification in downsampled FT-IR images presented in this manuscript indicates potential for faster data 
acquisition without significant loss in classification accuracy. Figure 2 suggests that no significant classification 
differences are observed in images up to 64 cm-1. Since data acquisition time is estimated to decreased linearly with 
spectral resolution,29 FT-IR images could be acquired 16 times as fast without any loss in classification performance for 
the two class model presented in this manuscript. Again, we emphasize that the results are preliminary and should be 
carefully validated. Nevertheless, the idea of optimizing data acquisition by modeling the results of other experimental 
conditions is an important one that should be pursued in practical translation of these protocols for clinical use. 

4.2  Effect of spectral noise on tissue segmentation 

Evaluation of acceptable spectral noise for FT-IR image classification is important for efficient data collection. For 
practical applications, it is advantageous to acquire data with the lowest SNR that permits reasonable classification. Raw 
data is acquired with a peak-to-peak noise value of 0.011 au, a root mean square (rms) noise value of 0.008 au, and an 
average amide I height of 0.328 au. To assess the impact of spectral noise on classification accuracy, Gaussian noise is 
added with a standard deviation of 0.001, 0.01, and 0.1 au. Figure 3 provides a qualitative evaluation of histologic 
images from the acquired data set (Figure 3A) and from the data sets with added Gaussian noise (Figures 3B-D).  

These images indicate that acceptable classification is achieved when noise is added at a standard deviation of 0.001 au 
(Figure 3B), but that classification accuracy appreciably decreases with the addition of noise at or above a standard 
deviation of 0.01 au. This is expected, since adding noise at a standard deviation of 0.001 au does not significantly 
change the FT-IR image data SNR. The data set with noise added at a standard deviation of 0.01 au (Figure 3C) produces 
a classified image with regions of distinguishable stroma and epithelium, although there are numerous stray pixels that 
are not correctly classified, similar to salt and pepper noise. Upon the addition of noise of ~0.1 au, classified images 
become completely indistinguishable (Figure 3D), including the misidentification of many pixels on the empty region of 
the slides as tissue. This loss in classification accuracy is caused by an underlying broadening of spectral metric 
distributions for each class. This broadening bridges the difference in metric values. The overlap in values in turn 
decreases classification confidence as measured by the AUC. Hence, we have used the AUC as a reasonable measure of 
the classification accuracy at every experimental condition. 

A plot of AUC against the added noise (Figure 3E) demonstrates that the AUC value remains relatively constant with the 
addition of low levels of noise. It then decreases to a mean AUC of 0.77 with the addition of noise at a standard 
deviation of 0.01 au and falls to a mean AUC of ~0.5 at a noise standard deviation of 0.1 au. It is surprising that the 
stroma AUC actually falls below 0.5. Though the AUC values should not be below 0.5 for classified images, our 
algorithm contains a pixel rejection step. A pixel is rejected if the measured metric values do not lie within the prior 
probability distributions. Hence, a small number of pixels are rejected at low noise levels and are not accounted. 

Fig. 3. Effect of noise on FT-IR image classification. Classified images are shown for (A) raw data, (B) data with Gaussian 
noise added at a standard deviation of 0.001 au, (C) data with Gaussian noise added at a standard deviation of 0.01 au, 
and (D) data with Gaussian noise added at a standard deviation of 0.1 au. (E) The AUC values for classification with 
noise added at a standard deviation of 0.001, 0.01, and 0.1 au confirm that classification accuracy is reasonable with a 
small amount of additional noise but unsatisfactory in data with a noise standard deviation at or above 0.01 au.  
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For the two class stroma and epithelium segmentation model presented in this manuscript, an AUC value of 0.77 does 
not indicate sufficient classification confidence. We would expect nearly perfect discrimination of theses two types of 
tissue since there are numerous spectral features that distinguish epithelium and stroma.14,20,32,34 An estimated 
classification accuracy of 0.5 for this model is equivalent to random guessing and does not provide any information 
about tissue histology. Examination of the curve in Figure 3E indicates that some additional spectral noise at a level of 
0.001 can be present without loss in classification accuracy for this two class model. We did not observe any difference 
in this behavior with pathology of the tissue. Breast tumor tissue is often very heterogeneous and precise pixel 
classification is needed to produce reasonable automated classification results. Hence these results represent a good 
starting point to optimize a practical protocol. There may also be a patient or clinical setting dependence of these optimal 
operating points that remains to be probed. From the plot, it is likely that we are close to the operating point of a practical
protocol, as addition of a small amount of noise (>0.01 au) makes the classification unstable.  

Last, the classification algorithm was optimized using a noise level similar to that of the acquired data set presented in 
this manuscript. Hence, the optimal metric sets and discriminant function are obtained for that noise level. It would not 
prove surprising if a de novo training and optimization of lower quality data could yield similar results. A de novo 
classification algorithm development, however, is not guaranteed to produce equivalent results for the higher noise cases 
and will fail where overlap between the prior distributions is significant due to noise broadening. Hence, we believe that 
the conditions found here are close to optimal.  

4.3 Noise reduction with the MNF transform 

In this manuscript, we have used an instrument with a high performance detector that has a low multichannel detection 
advantage. FT-IR imaging using large focal plane array (FPA) detectors, however, is a promising avenue for rapid data 
acquisitions due to the large multichannel advantage. Imaging with FPAs, unfortunately, often results in low signal-to-
noise (SNR) data due to the poor detector characteristics and other limitations.37 From the trading rules of FT-IR 
spectroscopy,29 achieving a factor of n improvement in SNR would result in a increase of n2 in data collection time. An 
alternative to improve SNR is to employ post-processing algorithms to reduce noise. One such avenue for noise 
reduction is the use of the minimum noise fraction (MNF) transform. The MNF transform can be used in a mathematical 
procedure to remove uncorrelated contributions from the spatial and spectral domains. First, a forward transform is used 
to perform a factor analysis and re-order spectral data in the order of decreasing SNR. The MNF calculation is a two-step 
process. A noise covariance matrix is estimated and used to decorrelate and rescale the noise in the data. Subsequently, a 
standard PCA performed on the noise-whitened data. A second step is to select only those factors that correspond to a 
sufficiently high SNR by examining the eigenvalue images. The first few eigenvalue images generally correspond to 
higher SNR values and contain most of the useful information. Noise reduction is achieved by suppressing the later 
factors corresponding largely to noise or zero-filling components and inverse transforming the data. A noise reduction by 
a factor greater than 5 could be achieved by this technique if the initial SNR is sufficiently high.38,39 Though the utility of 
this method is demonstrated for IR imaging,40 its use has not been widespread. Further, the use of MNF transformed data 
for tissue classification has not been attempted.  

We propose to use the MNF transform route as a method for fast data acquisition without loss in classification accuracy. 
The protocol involves rapid data collection at a low SNR, followed by application of MNF transform for noise reduction. 
Classification is then performed on these noise-reduced images. It must be noted that the gain here is through 
computational techniques and does not involve changes in instrumentation hardware or data acquisition time. A 
secondary advantage that may arise is that decreasing the variance in spectral data could also decrease the biologic 
variance in the data and should improve separation of tissue classes. Excessive image noise will broaden spectral metric 
distributions for each class, which increases the error associated with each metric and decreases classification 
confidence. Therefore, if the metric distribution mean values for each class are sufficiently different decreasing noise 
will decrease the area of metric distribution overlap and improve segmentation confidence.  

The impact of noise reduction on classification is demonstrated in Figure 4. The MNF transform-based protocol is 
applied to the acquired data set and the data sets with Gaussian noise added as discussed in the previous section. 
Classified images are displayed for each noise level after MNF transform-aided noise reduction (Figures 4A-D). The 
AUC values for the MNF transformed image sets are compared with the AUC values for noisy images (Figure 4E).  
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Fig. 4. Improvement in automated FT-IR image classification with the application of the MNF transform. Classified images 
from  MNF transformed FT-IR images are shown for (A) raw data, (B) data with Gaussian noise added at a standard 
deviation of 0.001 au, (C) data with Gaussian noise added at a standard deviation of 0.01 au, and (D) data with 
Gaussian noise added at a standard deviation of 0.1 au. (E) Comparing AUC values for original FT-IR images and 
MNF transformed FT-IR images demonstrates that classification improves with noise reduction, especially when the 
noise has a standard deviation of 0.01 - 0.1 au.  

Evaluation of classified images and AUC values indicates that the MNF transform improves classifier performance for 
each image. Given that the classification accuracy was very high, the effects of MNF transform are significant only when 
the noise level degrades the original data. Nevertheless, it can be seen from the figure that the high accuracy is recovered 
for an order of magnitude increase in data noise. Therefore, application of the MNF transform on data acquired with 
these noise distributions will make a significant difference in classifier performance. Specifically, we can acquire data 
with a noise standard deviation of 0.01 au and provide accuracy levels that are comparable to those obtained in our 
measurements of lower noise. This finding is significant in that noise levels of 0.01 au are commonly obtained in rapidly 
acquired FT-IR imaging data sets with large array detectors. Further, since the classification accuracy seems to be little 
affected by spectral resolution, we can anticipate that it will be little affected by the choice of an apodization function 
and other minor sources of error for a reasonable spectral resolution. Hence, we contend that the protocol developed here 
would be well-suited to rapid imaging with large array detectors. 

5. CONCLUSIONS 

Recent developments in FT-IR imaging and data processing facilitate new applications for this technology. In this 
manuscript, we report an initial application in automating histopathology of breast tissue. Supervised segmentation of 
breast stroma and epithelium in FT-IR images is presented and nearly-perfect classification accuracy is estimated. The 
impacts of spectral resolution and noise on image classification are evaluated. Results in this paper demonstrate that 
spectral resolution can be decreased 16-fold without loss in classification accuracy. The classification algorithm is more 
sensitive to noise, but noise reduction with the MNF transform can improve classification accuracy while decreasing the 
time required for data collection. This evaluation of the impact of experimental parameters on classification accuracy 
represents a first step in developing a practical protocol for rapid and automated histopathology. 
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