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1. Introduction 

In recent years, organic molecules have garnered increasing attention as components of 
high-hyperpolarizability materials, partly due to the variety of synthetically accessible 

compounds (1, 2). Applications for materials with high hyperpolarizabilities are found in 

telecommunication ( 3). The nonlinear response of organic molecules often finds its origin in 

the conjugated 1r-system, which facilitates the electronic polarizability. The design of such 
molecules in silica is complicated by the fact that chemical space, even constrained to 
smaller organic compounds, is combinatorially complex. The number of organic molecules 

of medium size is estimated to be on the order of 10200 (4). Enumeration is therefore 
unfeasibly costly and other methods for property optimization need to be developed. 

Including conformational searching further complicates molecular design. 

Methods for optimization in discrete spaces have been studied extensively and recently 
reviewed ( 5). Optimization methods include integer programming, as in branch-and-bound 

techniques (including dead-end elimination [ 6]), simulated annealing ( 7), and genetic 
algorithms ( 8). These algorithms have found renewed interest and application in molecular 
and materials design (9- 12) . Recently, new approaches have been explored to embed 
discrete chemical space in continuous spaces to take advantage of continuous optimization 
techniques. These include, in particular, activities in our group on the linear combination 

of atomic potentials (LCAP) (13- 15) method and the approach of von Lilienfeld (16- 18), 
using a grand-canonical ensemble strategy. Here, we further employ continuous 

optimization methods aimed at discovering structures with optimal properties. 

The problem of discrete optimization in chemical space can be tackled by embedding the 
discrete space in a virtual continuous space, parameterized by a set of continuous variables. 
This strategy establishes a continuous path from one molecule to another. Such a space 
can be constructed by defining molecules as a succession of replacements of an atom or 

molecular fragment by another. These fragment or atom placements need only satisfy the 

rules of valency. For example, a hydrogen in CH4 might be replaced by a halogen or a 
methyl group, each corresponding to a specific geometry (or ensemble of geometries), 
energy(ies), and property value(s). It is possible to construct a continuous transition 
between Hamiltonians for the chemical structures as was done for LCAP (13). Equation 1 

illustrates the procedure. 

(1) 

Each Hamiltonian Hi acts only on its own molecular subspace ni projecting all other 
wave-functions out, and H acts on the direct sum of these spaces EBi ni. In equation 1, the 
summation constraint implies the mutual exclusivity of the groups in the library (e.g. , in 
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the previous example, as the hydrogen component increases toward 1, the halogen 

component decreases toward 0). In this approach, the groups are still linked through the 
wave function. Therefore, it is possible that all optima are at non-physical configurations 

(e.g., half hydrogen and half halogen in the same location). Starting with each.-\ E {0, 1} , 
it is possible to compute the numerical derivative of a property P. We now explore the 
application of this idea for discrete optimization of the first hyperpolarizability. 

2. Methods 

2.1 Linear Interpolation of Discrete Spaces 

Analogous to LCAP optimization, any property can be interpolated in a virtual continuous 
space. We call the interpolated space "virtual" since non-integer Ai-values correspond to 

intermediate or "alchemical" species. In general , given a library with N molecules with 
property values Ps for molecule s, log2 N variables may be used to embed the discrete 
library in the continuous space [0 , 1 pog2 N. For example, assume a library consisting of 

methane, ethane, propane, and butane in exactly that order (figure 1). It is possible to 
interpolate among the four molecules using the parameters .\0 and .\1 . A (quadratic) 
polynomial interpolating the ground state energies (for example) is 

E(.\o, .\I) =Eo(1 - .\o)(1 -.\I)+ E1.\o(1 - .\1)+ 

E2(1 - .\o).\1 + E3.\o.\1 
(2) 

This energy equation has a well-defined minimum. Interpolation using a single variable for 
this set of compounds would produce a third degree polynomial, but homogeneous 

solutions to third order polynomials are not trivial, and the optimum is not guaranteed to 
correspond to a molecule, i.e.,.\ E {0, 1, 2, 3} . 

Molecule s .\1.\o 
CH4 0 0,0 
C2H6 1 0,1 
C3Hs 2 1,0 

10--11 

.\1 r 0'0-011 C4Hw 3 1,1 

.\ 
Figure 1. Simple example for interpolation. The bits >. 1 >.0 repres~nt the molecule numbers = 2>. 1 + >.0 

in the binary system. 
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The preceding example highlights the dependence of the property polynomial on the 

ordering of the molecules. Generalization of the example to a library £ of size N leads to 

equations 3 and 4. Equation 3 describes the bit-string (binary) representation of a number 

s with bit s( i) at the ith position: 

s = L s(i) · 2\ s(i) E {0, 1} (3) 

N-l log2 N 

F (>.) = L p9 II ((1- Ab)s(b) A~ -s(b)) (4) 
s=O b=l 

Equation 4 defines the property interpolation P based on the bit-strings. We differentiate 

between P and P to emphasize the domain of definition. The former is defined on the 
"virtual" space [0, 1 pog2 N, while the latter is defined on the discrete space £. This 

polynomial of the same order as it has variables (log2 N) is continuous on [0, 1 pog2 N. 

2.2 Derivatives of P 

In order to use conventional optimization algorithms on continuous spaces, it is necessary 

to find the derivatives of P. 
- N - l log2 N g; (>.) = LPs(-1)s(j) II ((1- Ab)s(b)Ai-s(b)) 

J s=O bf-j 

(5) 

2 - N-1 log2 N 

a~ :A (>.) = L P9(-l)s(k)+s(l) II ((1- Ab)s(b)Ai-s(b)) 

k l s=O b\l { k ,l} 

(6) 

Equations 5 and 6 show first and second order analytical derivatives of P. The derivative 

of P at >. corresponding to the molecule with number s in the library £ can be computed 
from nearest bit-string neighbors ( sUl, s(k,l)): 

s(j) = s + ( -1 )s(j) · 2s(j) (7) 

s(k,l) = s + ( -1)s(k). 2s(k) + ( -1)s(l). 2s(l) (8) 

8P (.) 
Ai = s(i), (),\(>.) = (-1tJ (Ps- P 8 (j)) (9) 

J 

a~::Az (>.) = ( -1)s(k) ( -l)s(ll( Ps - P su'J - P8 (l ) + P8 ( k ,l) ), l =1- k, Ai = s(i) (10) 

The highly nonlinear, but continuous description P allows the development of optimization 

methods by substituting derivatives by finite differences in continuous optimization 
methods. In this case, the analytical property derivatives for a molecule are computed from 
simple (finite) property value differences, unlike in LCAP. The derivatives of LCAP need 

not be on straight lines pointing from one physical (non- "alchemical") molecule to another , 
although the property values of each real molecule are the same for either optimization 

scheme. 
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2.3 Comparison with Dead-End Elimination 

To compare our approach (equation 4) with dead-end-elimination algorithms (DEE), we 
consider the minimization of a pairwise additive property function comprised of unary 
contributions P?") acting on site i with occupation p, and binary contributions P8''v) acting 
on sites i and j with occupation p, and v (equation 11): 

p
9 

= "'""'p(s(i)) + "'""'p(s(i),s(j)) 
. ~t ~ t] (11) 

i <j 

Collecting all terms, we find a quadratic dependence of P on the pairwise terms Pij with 
the parameters Ai· Consequently, the derivatives are linear with respect to Ai (equation 13): 

Pp..) = L (P?) Ai + pp)(l- Ai)) + 
i 

i<j 

PijO,l)Ai(1- Aj) + PS '
1)(1- >.i)(1- Aj)) 

fJP = p(O) _ p(l) +"'""' (lp(O,O) _ p(l,O)].\ + 
OA· I I ~ ~ ~ J 

t j=f.i 

[PijO,l)- PS 'l)](1- Aj)) 

(12) 

(13) 

From equation 13, a pruning argument for minimization, reminiscent of DEE, can be 
derived. Whenever the gradient with respect to a parameter Ai is negative for all 
configurations of .A E [0, 1jlog2N (equation 14) , then Ai = 1 minimizes P. This condition is 
only met when inequality 15 is fulfilled: 

aP 
s(i) = 1 <= fJ).i < 0 V.\1 E [0, 1] <=> 

P (O) _ p(l) < "'""' . {P(l ,O) _ p(O,O) p(l ,l) _ p(O,l)} 
t t ~ min tJ tJ ' t J tJ 

j=f.i 

Conversely, a positive gradient implies that Ai = 0 (equation 16) and the corresponding 
necessary and sufficient condition can be found in equation 17. Thus it has been 
demonstrated that P naturally leads to DEE-like algorithms. 

aP 
s( i) = 0 <= ~ > 0 V.\1 E [0, 1] <=> 

UAi 

P (O) _ p(l) > "'""' {P(l ,O) _ p(O,O) p(l ,l) _ p(O,l)} 
t I ~ lllax t] IJ ' t ] IJ 

j=f.i 

4 
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2.4 Library Construction and Ordering 

The choice of enumeration of the library .C determines the assignment of specific molecules 

to ..X. Consequently, this choice greatly influences the characteristics of P, such as its 

smoothness. Just exchanging the position of two neighboring molecules in the library 

changes the sign of the derivative at the corresponding ..X. If the Hessian of the 

pairwise-additive property function is positive-semi-definite, the corresponding P is convex 

and optimization quickly reaches the global minimum. Using steepest gradient or 

Newton-Raphson algorithms locates property extrema (minima). It is beneficial to find an 

ordering of the library that produces a convex property surface. The linearity in each 

parameter .\ implies convexity of P with respect to that parameter. 

Assuming that molecules of similar structure have similar properties, a measure of 

similarity may be used to decrease the ruggedness/convexity of P. One choice to facilitate 

smooth property surfaces is the enumeration of molecules by subsequent substitutions from 

a starting compound (figure 2). The substitutions may be defined recursively. Each level of 

a hierarchy of substitutions consists of a molecular fragment or atom to be connected to 

the next higher level, a list of substitution sites and a set of subsequent levels for each site 

(figure 2). Each element of the set of subsequent levels is identified with a coefficient 

between 0 and 1, and the sum of these coefficients for each set must equal 1 (see equation 

18). For a case in which more than two possible substitutions are available at a site, the 

bit-string representation must be extended to allow mixed numeric bases bk. The properties 

discussed above remain unchanged in this alternative interpolation (equation 20). 

L Aij = 1, j E {0, ... 'bi- 1} 
j 

N-l bi-l 

P ({.\ ·}. ·) = ~ p (II II .\s(i,j)) tJ JE{O, ... ,bi} ,t ~ s tJ 

s =O i j=O 

5 

(18) 

(19) 

(20) 



y or xi-1 

x1-... -x. z,J, l,J,rn 

Figure 2. Sub:otitution pattern hierarchy. Y contains a Z-matrix that has several open valences. The 
fir:ot can be filled with substituents found in X1 , which are connected substituents found in 
X2 , etc. The second is filled from Xm in the same manner. The Xi themselves are taken 
from a set of substitution patterns of the same kind as Y. Each instance is anchored to Y at 
the appropriate valence. The substitutions are terminated by Z-matrices that have no open 
valences. 

2.5 Inclusion of Conformational Complexity 

For each molecule , it is important to find low-energy conformers for the optimization to be 
physically meaningful. For each molecule in the molecular library, another optimization 
can be started with the (second) library consisting of the corresponding conformers. Each 
dihedral degree of freedom can be treated as a substitution site at the lowest level with a 
number of rotations as possible substitutions, as is commonly done in conformational 
searches ( 6, 19). In this manner, the conformational search can be introduced as the lowest 
level in the previously described substitution hierarchy. Thus, the conformational search 
precedes property computation in property optimizations. More general constraints on the 
optimal molecule can be introduced via alternate methods, like Lagrange multipliers or 
stochastic algorithms. Lagrange multipliers can be implemented using (soft) penalty 
functions with weightings that increase throughout the optimization. 

2.6 Algorithm 

Here, a line search algorithm is used, in particular , each parameter Ai is followed to a 
minimum in that direction before varying the next parameter ).i+l· Maximization via this 
algorithm can be achieved , for instance, by minimizing the negative objective function. 
This line search algorithm is an implicit branch-and-bound algorithm. A flowchart for the 
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employed recursive algorithm appears in figure 3 and application of the algorithm to a 

small example will be discussed in section 3 under framework A (see also the accompanying 
figure 6) . 

No 
No 

No 
'---

1. Initial structure 

l 
2. L eve = 0 

! 
3. Site = o-

! N 
4. Substitution = 0 

L ! 
o, 
evel= Level+l 

5. Highest level?-

! Yes 
6. Compute Property 

~ 
7. Substitution=Substitution + 1 . 

' Exhaust Substitutions? 

! Yes 

8. Set substitution at this site to No, 
ust Level= Level-l best choice, Site=Site+ 1, exha 

sites? 

! 
9. Level = 0? 

! Yes 

10. Current best 
best? 

- last Yes 
-End. 

Figure 3. Flowchart of the algorithm. 

Since P(> .. ) is locally convex, t his algorithm converges locally. The line-search steps 4- 7 in 
figure 3 correspond to a linear tree search or branch-and-bound algorithm. The 
computational complexity is on the order O(log N) in t he library size N due to the linear 
dependence on the log N variables. In contrast to conventional branch-and-bound methods, 
no structures are explicitly excluded from the search space. Since each molecule chosen in 
step 8 in figure 3 is strictly better in the sense of property optimization than its predecessor, 
the algorithm quickly converges to a local property value minimum in the library (20) . 

All property minima for this algorithm are minima for the steepest-descent derived method 
and vice versa. This algorithm traverses the library in a smoother fashion compared to the 
steepest-descent derived method, successfully employed by Keinan et al. (15), because the 
molecules are traversed variationally by single substitutions. While on one hand the 
steepest-descent based approach can sidestep barriers in the immediate vicinity efficiently, 
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due to the simultaneous change of potentially several bits, the variational nature of this line 

search guarantees convergence, which is particularly useful on rugged property surfaces. 

For the sake of computational accessibility, all geometries were optimized using the 
semi-empirical Austin Model 1 (AM1) method as implemented in Gaussian03 (21). The 
static electronic hyperpolarizability was computed using Intermediate Neglect of 

Differential Overlap/Screened Approximation (INDO/S) as implemented in Complete 

Neglect of Differential Overlap ( CNDO) by Reimers et al. ( 22) using the sum-over-states 
expression in equation 21. The configuration interaction ( CI) space was spanned by up to 
100 unoccupied or occupied orbitals to accommodate for the large number of electrons in 
some of the investigated systems. 

(21) 

1 
(Ji = 3 I: ((Jijj + (Jjij + (Jjji) 

j 

(22) 

(23) 

where Eov is the excitation energy from the ground state to the vth excited state, jJ is the 

static electronic hyperpolarizability with components f3i and corresponding 
hyperpolarizability t ensor elements (Jijk, (30 is the isotropic hyperpolarizability, (311 is the 

hyperpolarizability component in direction of the ground state dipole moment, x is the 
dipole operator with components Xi, and j1 is the ground state dipole moment with 

components /Ji· 

Figures 4 and 5 summarize the tolane-based system studies. Tolane spectroscopic 
properties are favorable for applications, so their first and second hyperpolarizabilities have 
been studied extensively (23, 24) . In addition, these structures are readily modified (25) 
and present a large number of possible derivatives. Tolanes, therefore, present a 
particularly rich testbed for these optimization studies. 

Xs 

Figure 4. Tolane framework in which Xi and Ri are variable substituents. 

8 



H H 

B. X5 is empty; R=H; Xl,X2,X3,X4,X6 ,X7,Xs,Xg E {CH20CH3, CH20H, CH2NH2, NH2, OH, 
N02} 

A B 

D c 

(1) X1=X4=X7=Xs=H; A, B, C, D, X2, X3, X5, Xg E {CH20Me, 
CH20H, CH2NH2, NH2, OH, CHO, N02}; R=CH3 

(2) X1=X4=X7=X8=H; A, B, C, D, X2, X3, X6, X9 E {H, F, Cl, 
Br} ; R=CH3 

(3) X1=X4=X7=Xs=H; A, B, C, D, X2 , X3 , X5, Xg E {CH20Me, 
CH20H, CH2NH2, NH2, F, Cl, Br, CHO, N02} 

Figure 5. Tolane libraries investigated. 

3. Results and Discussion 

Overall, five different tolane libraries were investigated (general structure in figure 4). The 
first three sets of molecules are optimized with respect to their static isotropic 
hyperpolarizability {30 (equation 23) , while the remaining sets are optimized with respect to 
the component of the hyperpolarizability in direction of the dipole {3J.L (equation 23). 

3.1 Framework A 

Validation of the algorithm was performed on the structure framework A in figure 5. 
Figure 6 shows the progress of the algorithm. There are 200 molecules in this library, but 
hyperpolarizabilities of only 24 different molecules were computed during the optimization, 
the minimum number of molecules required for the algorithm to finish the optimization. 
Regardless of the starting structure, the algorithm consistently finishes with the global 
hyperpolarizability optimum (figure 6), which has also been confirmed experimentally (26) . 
For comparison, if the library is searched randomly, the expected number of computed 
molecules before finding the global minimum is 200 molecules. If repeats are avoided, then 
st ill 101 molecules would need to be computed on average in order to obtain the same 

result. 
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/3o = 7.83 X 10- 30 esu 

Steps 4-8, site 1 I _~ ---"---:---'---. 
+4 molecules 

f3o = 11.35 X 10-30 esu 

Steps 4-8, site 2 
+3 molecules 

~-~ · _S_t~ep._s_4_-_8.:....., _si_te_3 __ : . M M ').__( 
+4 molecules "'~ 

/3o = 23.41 X 10-30 esu 

Steps 4-8, site 4 
+ 1 molecules 

.{_ H . . . i-<. .. i -<. !' 
'"\,~" 
/3o = 46.43 X 10-30 esu 

repeat cycle, steps 2-10 
+ 11 molecules 

/3o = 20.95 X 10-30 esu 

Figure 6. Progress of the optimization algorithm. The steps refer to the steps in figure 3. The number 
of molecules indicated is the number of previously unvisited molecules for which the property 
is computed in performing the steps. Carbons are marked in orange, hydrogens in white, 
oxygens in red, and nitrogens in light blue. 

3.2 Framework B 

The static hyperpolarizability (30 of framework B in figure 5 optimizes to an unstable, 
perhaps explosive, structure with mostly nitro- and amino-substituents (figure 7). The final 

computed (30-value was 131.9 x 10-30 esu after 121 computed structures from 68 ~ 1.7 x 106 

possible molecules. Additionally, conformational analysis was performed. CHO and OH 
were allowed two possible orientations in the plane of the tolane. For CH20H and CH2 NH2 , 

three-fold rotation around the C-0 and C-N bonds, respectively, was included, while only 
two-fold rotations around the bonds connecting to the tolane framework were allowed. 
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Figure 7. Final structure of framework B. Carbons are marked in orange, hydrogens in white, oxygens 
in red , and nitrogens in light blue. 

3.3 Framework C-1 

The static hyperpolarizability for compounds in C-1 of figure 5 was optimized starting from 

three different initial structures. A total of 78 
;:::j 5.8 x 106 possible molecules exist in this 

family. Conformational considerations were treated as in framework B. Two of the three 
runs converged to the same structure ((30 = 214.6 x w-30esu) , while the third converged to 
a second structure with comparable hyperpolarizability ((30 = 216.9 x w-30esu, see tables 1 
and 2). All three runs finished after computing less than 0.1% of all possible molecules and 
achieved three- to four-fold improvements of the hyperpolarizability. Comparing the two 
structures, some common motifs emerge: the variable fragments X2 and X3 contain 

nitro-groups, while X6 and X9 are occupied by amino-groups; furthermore, positions B and 
C are occupied by electron acceptors and sites A and D are occupied by electron donors. It 
is notable that not all positions are occupied by the "strongest" donors or acceptors in the 
substitution set, i.e. , NH2 and N02, respectively. 

3.4 Framework C-2 

Halogen substituents do not necessitate extensive conformational analysis, so they allow 
the evaluation of the optimization method without added constraints. The structures C-2 

in figure 5 were optimized for the hyperpolarizability in the direction of the dipole moment 
((31-l, see equation 23). Entries (a) and (c) in table 3 show the results of two optimizations 
of framework C-2 in figure 5 starting from the same initial structure with all substitutions 
set to hydrogens. In this case, convergence to a hyperpolarizability maximum is confirmed 

to be logarithmic in the library size, i. e., squaring the library size from 256 to 65536 leads 
to roughly twice the number of computed molecules. 
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Table 1. Starting and final structures offramework C-1 of figure 5. Carbons are marked 
in orange, hydrogens in white, oxygens in red, and nitrogens in light blue. 

Run Initial structure Final structure 
1 

2 

3 

Table 2. Starting and final hyperpolarizabilities and number of computed molecules for 
framework C-1 in figure 5. 

Run Initial {30 / 10 30esu Final {30 / 10 30esu Molecules 
Corn2uted 

1 55.1 214.6 157 
2 71.0 214 .6 109 
3 49.9 216.9 169 
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Table 3. Optimized structures for frameworks C-2 in figure 5. 

Compound fJ/L/10 30esu Molecules Library size 
ComQuted 

(a) A,D,X5,Xg=H; X2,X3=Br; 84.1 67 65536 
B=Cl; C=F 

(b) A,B,C,D,X6,X9=H; X2,X3=Br 77.4 69 65536 
(c) A,D=Br; X6,Xg=H; X2,X3=Br; 83.5 28 256 

B,C=F 
(d) A,D=H; X6,Xg=H; X2,X3=Br; 83.2 28 256 

B C=Br 

Figure 8. Largest /3p, structure for framework C-2 in figure 5. Carbons are marked in 
orange, hydrogens in white, oxygens in red, nitrogens in light blue, bromine 
in dark red, fluorine in dark blue, and chlorine in purple. 

The stability of the optimization procedure was tested by constraining substitutions to be 

symmetric with respect to the mirror plane perpendicular to the plane of the backbone 

(runs (c) and (d) in table 3), as well as starting from different initial structures: runs (a) 

and (c) were started with all substituents set to hydrogen, while run (b) starts from 

X 2 =Brand X 8=F, and run (d) starts from X 2 = X 3 =Brand X 7 = Xs =F. The 
hyperpolarizabilities of the initial structures were within 4 units of 50 x 10-30 esu. Since 

the procedure is not a global optimization algorithm, it is possible to end at different local 

maxima, here each run ended in a different structure with corresponding 

hyperpolarizabilities (j]J.L/10-30 esu = 84.1, 77.4, 83.5, 83.2, respectively, see table 3). 
Nonetheless, the optimizations lead to significant and comparable improvements between 

runs. The found maxima all place bromine in the X 2 and X 3 positions, implying that a 

large fraction of the gain in /3p, arises from bromine to amino charge transfer interactions. 
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3.5 Framework C-3 

Combining parts of libraries of C-1 and C-2 in figure 5, structures C-3 in figure 5 were 

subjected to optimization of the static hyperpolarizability in the direction of the dipole 

moment ({3/L). Four optimizations from different starting configurations were performed 

(see tables 4 and 5 for results). The "unbiased" first optimization leads to a five-fold 

increase in {3/L (37.0-----+ 181.5 X w-30esu). The final structure (see table 4) indeed is a 

mixture of the results for C-1 and C-2 in figure 5. The second optimization was started 

with a structure concentrating equal numbers of donors on one side and acceptors on the 

other, analogous to the final structure of framework B in figure 5. This starting structure 

exhibited only a marginally larger hyperpolarizability (55.6 x 10-30esu) than the 

"unbiased" starting structure, but optimized to an alternating donor-acceptor arrangement 

(171.6 X w-30esu) that failed to reach the optimum found in the first optimization. The 

low hyperpolarizability is presumably due to the benzene rings twisting out of plane and 

reducing conjugation. 

A biased starting point, with alternating donor and acceptor groups, leads to a marginally 

increased final hyperpolarizability (191.6 X w-30 ) over the first optimization. The attempt 

to exceed this value by substituting the "strongest" electron donors and acceptors, NH2 

and N02 , fails despite the fact that this structure is indeed a local maximum 
(173.3 x 10-30esu). All four optimization runs finish compute less than 0.001% out of the 

possible 98 ~ 4.3 x 107 molecules. 
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Table 4. Starting and final structures of framework C-3 in figure 5. Carbons are marked 
in orange, hydrogens in white, oxygens in red, nitrogens in light blue, bromine 
in dark red, fluorine in dark blue, and chlorine in purple. 

Run Initial structure Final structure 
1 

2 

3 

4 

Table 5. Starting and final hyperpolarizabilities and number of computed molecules for 
framework C-3 in figure 5. 

Run Initial ;311 /10 30esu Final /311 /10 30esu # Comp. 
1 37.0 181.5 181 
2 55.6 171.6 153 
3 139.8 191.6 161 
4 173.3 173.3 65 
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4. Summary and Conclusions 

We have introduced an embedding of discrete molecular spaces in a continuous space, 

similar to the embedding of discrete Hamiltonians in LCAP (27). From this embedding, an 

optimization based on differentiation in the continuous space was developed. The 

theoretical framework transforms a discrete optimization problem into a continuous 

optimization problem, which then gives rise to a discrete optimization strategy. The 

theoretical complexity of the used line-search algorithm is O(log N) in the library size N 
and applications of the algorithm to a variety of conditions confirm the method's 

effectiveness. A design strategy for tolanes of alternating donors and acceptors along a 

conjugated framework is suggested by the optimization results. Further applications and 

improvements are under study including an extension to second-order derivative methods, 

probabilistic methods ( 28), and dynamic ordering of the parameters to achieve overall 

convexity. 
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List of Symbols, Abbreviations, and Acronyms 

AM1 Austin Model 1 

ARL U.S. Army Research Laboratory 

ARO Army Research Office 

CI configuration interaction 

CNDO Complete Neglect of Differential Overlap 

DARPA Defense Advanced Research Projects Agency 

DEE dead-end-elimination algorithms 

INDO/ S Intermediate Neglect of Differential Overlap/ Screened Approximation 

LCAP linear combination of atomic potentials 
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