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ABSTRACT 

Linear attacks against cryptosystems can be defeated when combiner functions 

are composed of highly nonlinear Boolean functions.  The highest nonlinearity Boolean 

functions, or bent functions, are not common—especially when they have many 

variables—bent functions are difficult to find.  Understanding what properties are 

common to bent functions will help ease the search for them.   

Using the SRC-6 reconfigurable computer, functions can be generated or tested at 

a rate much higher than a PC.  This thesis uses the SRC-6 to characterize data for 

functions with 4, 5 and 6 variables.  The data compiled showed trends based on the order, 

homogeneity, balance, and symmetry of Boolean functions.  The transeunt triangle is 

used to convert a Boolean function into Algebraic Normal Form, so that the properties 

are easily determined.  The first known proof that the transeunt triangle correctly converts 

between the two Boolean functions’ representations is included. 

The SRC-6, while capable of pipelining code so that it runs up to six thousand 

times faster than a PC, is limited by the speed of the FPGA, 100 MHz.  Functions with up 

to six variables were tested.  Predictions on this data, as well as ways to improve the 

computing capability of the SRC-6, are included.  
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EXECUTIVE SUMMARY 

This thesis presents an analysis of Boolean function properties with a focus on 

bent functions. Bent functions are Boolean functions with the highest nonlinearity.  An 

examination of the resulting data shows trends in nonlinearity based on degree, 

homogeneity, and certain types of symmetry.  The SRC-6, a reconfigurable computer 

with 100 MHz FPGAs, is used in this thesis as a parallel computation tool.  This thesis 

shows how the SRC-6 can be used to perform tests on very large data sets, i.e., greater 

than 220, in a fraction of the time it would take a PC.  Current limitations are discussed as 

well as ideas for future improvement. 

Boolean functions are used as components in many cryptosystems and must have 

properties that make the system secure against some known attacks (linear and 

differential cryptanalysis, algebraic attacks, etc.).  Introduced by O.S. Rothaus in the 

1960s, bent functions have as large a distance as possible from the set of affine functions.  

This property is a major factor in resisting linear and other code-breaking techniques.  

Since bent functions are few and far between, it is a challenge to find them.  For this 

thesis, the SRC-6 reconfigurable computer, a resource at the Naval Postgraduate School, 

enabled searches on billions of functions to produce those of interest.   

There have been several studies involving properties of bent functions and the 

search for specific groups of Boolean functions that are rich in bent functions.  For 

example, functions of certain degrees are known to include bent functions, while 

functions of other degrees are known to exclude bent functions.  If more characteristics 

like these can be discovered, bent function searches can become less time-consuming.  In 

this thesis, a study of groups of functions, such as homogeneous functions, rotation 

symmetric functions, dihedral symmetric functions and balanced functions, with respect 

to their nonlinearity, is conducted.  No bent function is balanced, but it is important to 

find balanced functions with high nonlinearity.  The results of tests for this property are 

also included in this thesis.  Further research can lead to the discovery of new groups of 

bent and highly nonlinear functions.    



 xvi

The SRC-6 reconfigurable computer currently uses a Xilinx Virtex II Field 

Programmable Gate Array that runs on a 100 MHz clock.  This means that, if a program 

written for the SRC-6 can produce and test one function per clock cycle, a maximum of 

100 million functions can be tested per second.  This speed is insufficient for testing very 

large groups of functions, groups greater than 240, especially when it takes more than one 

clock cycle to test a function.  This thesis provides several ideas on how to increase the 

throughput of a program run on the SRC-6. 

A function can be written as a truth table or in Algebraic Normal Form (ANF).  

Both forms are important for identifying certain properties of a function.  The ability to 

convert a function from one form to the other allows a function’s properties to be studied 

easily.  One conversion method is the transeunt triangle.  In 1986, Green introduced the 

transeunt triangle but did not prove that it correctly converted a truth table to an ANF.  

The proof included in this thesis is the first known proof that this conversion method 

holds.  The implementation of the transeunt triangle on a reconfigurable computer is also 

a unique contribution.  As far as we know, the transeunt triangle has never before been 

used in computation (only in design).  Because certain properties can only be recognized 

in one form or the other, the one-clock-cycle conversion method, developed in this thesis, 

allowed, for example, a function of degree 3 to be generated in Algebraic Normal Form, 

converted to a truth table and then tested for balance.  This important test cannot be done 

easily without this simple conversion method. 

Future work is described including the search for more groups of functions with 

good cryptographic properties.  Bentness is not the only desired property of good 

cryptographic functions.  Other properties include balancedness, strict avalanche criteria, 

propagation criteria and correlation immunity.  The SRC-6 can be used to investigate 

these other properties. 
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I. INTRODUCTION  

A. OBJECTIVE 

The importance of bent functions in modern cryptography motivates the study 

done for this master’s thesis.  By using the SRC-6 computer available at the Naval 

Postgraduate School, millions of Boolean functions were generated and tested.  An 

algorithm using the transeunt triangle has never been implemented in this magnitude. 

Data was broken down according to specific properties of Boolean functions, including 

degree, homogeneity, and symmetry.  Next, these groups were evaluated for relationships 

between nonlinearity and specific properties.  The objective is to find groups of Boolean 

functions that may be rich in bent functions [1].  These groups, if small enough, can be 

tested exhaustively whereas the entire set of functions, even for small numbers of 

variables, i.e., n=6, 7, 8, cannot be tested in a reasonable amount of time.  The use of the 

transeunt triangle enables functions to be generated easily in one form, converted to 

another form and then tested for nonlinearity.  Without the transeunt triangle [2], [3], 

important groups of functions could not be tested efficiently. 

B. BACKGROUND 

Bent functions were first introduced by O. S. Rothaus in 1976 [4].  His original 

paper had restricted circulation for about 10 years.  The term bent was probably chosen to 

mean the opposite of linear.  It is a function that is the maximum distance away from the 

set of affine functions.  Bent functions have practical applications in spread spectrum 

communications, cryptography and coding theory [5].  This thesis concentrates on 

properties of bent functions as they apply to cryptography.   

The Department of Defense and the National Security Agency are increasingly 

interested in cryptographic advances.  The importance of code-breaking in World War II 

showed that secure communications is necessary for Major Combat Operations.  Creating 

a source of extremely strong cryptographic components will ensure that the Department 

of Defense can communicate securely and even discourage potential adversaries from 

action if they believe they cannot communicate securely. 
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The information that flows across the Internet must also be secure.  The Advanced 

Encryption Standard was created in response to a competition initiated by NIST (National 

Institute of Standards and Technology) in 1998.  This current standard uses a block 

cipher involving a randomly generated key combined with the plaintext message in 

multiple steps, some of which involving substitution boxes (S-boxes) with high 

nonlinearity characteristics.  There are several types of stream and block ciphers, but the 

encryption part of the cipher is where the bent functions, or modifications of these, may 

be incorporated.  

Universities, technical businesses and government agencies are doing work on 

Boolean functions [6], [7], [8].  Since knowledge of these functions is important to all 

countries for cryptography, governments put emphasis on increasing expertise in this 

field.  The linear attack in code-breaking is one of the best known, but the use of 

nonlinear functions will counter this attack.  It follows that the more research completed 

on secure encryption techniques; the easier it will be to develop counter encryption 

techniques. 

Nonlinearity in functions is just one property necessary to create strong 

cryptographic functions.  Research is also performed on characteristics like propagation 

criteria, strict avalanche criteria, correlation immunity and balance [9].  Constructing a 

truly strong cryptographic function requires several tests and trials.  Understanding how 

to construct bent functions from smaller bent functions is a topic of increasing 

importance [10].  This capability will lessen the need to exhaustively test and search for 

them.  Creating a set of known bent functions on smaller numbers of variables, such as 

8n  , will increase the number of possible constructions that can be performed. 

C. METHOD 

A Boolean function is a series of ones and zeros represented by a specific number 

of variables and enumerated by assigning a Boolean value to all combinations of these 

variables.  A Boolean function can be represented by 1) a truth table (TT) or 2) Algebraic 

Normal Form (ANF).  A very simple algorithm for converting a function from one form 

to the other exists and is called the transeunt triangle, also known as the triangular 
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transform method [11].  It involves a series of Exclusive-Or operations.  In an ANF, 

properties of a function, like its degree or homogeneity, are easy to determine.  By 

examining a TT, it is easy to determine whether a function is rotational symmetric or 

dihedral symmetric.  The algorithm that tests for nonlinearity requires the TT of a 

function.  Using the transeunt triangle, it is simple to move between forms to find specific 

properties and test for nonlinearity and possibly other cryptographic features. 

The SRC-6 computer system is used to perform computations on millions of test 

functions.  The system uses Field Programmable Gate Array (FPGA) technology to turn 

code into hardware that can execute faster than a PC.  It gives the programmer more 

control over the actual design of the circuit, not just the function to be performed.  It can 

also use a type of parallel programming called pipelining.  This is important when the 

circuit is so large that it has large delay.  A circuit that uses pipelining can process more 

than one function at a time, dividing the process into steps so that a new function can be 

sent to the first step, while the previous function is being processed in the second step, 

etc.  The ability to test Boolean functions several at a time speeds up the computation 

time.  Using a pipeline, a computation can be produced at every clock cycle.  On a 100 

MHz FPGA processor, one hundred million functions can be tested per second.  This is 

much faster than a modern PC, since it cannot pipeline its tasks to the same degree as the 

SRC-6. 

D. REL ATED WORK 

Research on bent Boolean functions is a prominent subject in the cryptography 

community.  As the number of variables, n, increases, the length of the function (number 

of truth table entries) increases by 2n and the number of Boolean functions becomes 22
n

, 

making exhaustive testing extremely time consuming.  This is why finding trends in 

known bent functions and testing functions that follow these trends is often much more 

successful than exhaustive search [12], [13], [14].   

There are other ways of finding bent functions, such as binary decision trees [15] 

and genetic algorithms [16].  Bent functions can also be constructed from smaller bent 
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functions.  The ultimate goal is to create a database of bent functions, or find a 

mathematical description or construction that can generate them all. 

E. THESIS OUTLINE 

The outline is as follows.  Chapter I is the introduction, Chapter II is an 

explanation of bent functions, Chapter III is an explanation and proof of the transeunt 

triangle, Chapter IV is computation and analysis, and Chapter V provides conclusions.  

Appendix A contains code for the SRC-6, Appendix B contains C code, and Appendix C 

contains lists of functions of interest.  



 5

II. AN EXPLANATION OF BENT BOOLEAN FUNCTIONS 

A. UNDERSTANDING BENT FUNCTIONS 

1. Definitions 

Let nV  be the vector space of dimension n over the two-element field F2:  

1{( ,..., ) | [0,1]}n n iV x x x   

Definition 2.1.  A truth table  (TT)  is the output table of the Boolean function, 

where the input runs through the entire vector space in lexigraphical order. 

Definition 2.2.  The Algebraic Normal Form (ANF), also called the positive 

polarity Reed-Muller Form, of a function f is: 

1 2 0 1 1 1,2 1 2 1, 1 1,2,..., 1 2( , ,..., ) ... ... ... ...n n n n n n n n nf x x x a a x a x a x x a x x a x x x         

where ia  takes values in F2. 

Example 2.1. The truth table of the AND of two variables is:  

 
 
 
 
 
 
 
 
The ANF of this function is f(x1, x2)= x1x2. 

Example 2.2. The truth table of the Exclusive-Or ( ) of two variables is: 

 
 

 
 
 
 
 
 

The ANF of this function is f(x1, x2)= x1  x2. 

Definition 2.3. A term is the AND of variables or their complement. 

x2 x1 f 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

x2 x1 f 

0 0 0 

0 1 1 

1 0 1 

1 1 0 
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Definition 2.4. The degree of a function f is the largest number of variables in a 

term in the Algebraic Normal Form of f. 

Definition 2.5.  The Hamming distance d(f,g) between two functions f and g is 

the number of places where their truth tables do not have the same value. It can 

also be interpreted as the Hamming distance between f and g or the weight of 

f g , that is, the sum of the ones in the result of a bit-wise Exclusive-Or of f and 

g.  

Example 2.3. 

 f(x3, x2, x1):  00011011 

 g(x3, x2, x1): 11000101 

 f g:           11011110 

 Distance d(f,g): 6 (there are 6 ‘ones’ in the sum) 

 

Definition 2.6.  A linear function  is the Exclusive-Or of single variables.  Ex. 

1 2 3 4 1 2 4( , , , )f x x x x x x x   . 

Definition 2.7.  An affine function  is a linear function or the complement of a 

linear function. Ex. 1 2 3 4 1 2 4( , , , ) 1f x x x x x x x    . 

Definition 2.8.  The nonlinearity of a function f is the minimum Hamming 

distance between f and all affine functions.  Table 1 shows an example where the 

function 1 2 3 4B x x x x  is tested against all affine functions for n=4.  This 

function’s nonlinearity is 6. 
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Table 1.   The Computation of the Nonlinearity of 1 2 3 4B x x x x  (From [17]) 

Definition 2.9 . A bent function  is a Boolean function that is as far away as 

possible from all affine functions, i.e., it has the largest nonlinearity. 

Definition 2.10.  A homogeneous function  is a Boolean function whose ANF 

have terms all of the same degree. The disjoint quadratic function is one example:  

1 2 3 4 1... n nf x x x x x x     When n is a positive even integer, f is a homogeneous 

function. 

Definition 2.11. An orbit consists of terms that can be circularly rotated to form 

other terms within the orbit in the truth table. The variables in one term are 

shifted circularly n times and the resulting terms have the same truth table value.   

Example 2.4. An orbit is 1 2 2 3 3 4 1 4{ , , , }.x x x x x x x x  The function 

f( 1 2 3 4, , ,x x x x ) 1 2 2 3 3 4 1 4x x x x x x x x     contains one orbit where each truth 

table value is 1. 

Definition 2.12.  A Boolean function f is rotation symme tric if it is invariant 

under all cyclic rotations of the inputs.  Rotation symmetric functions can be 

divided into orbits so that each orbit consists of all cyclic shifts of one input [14].   
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Example 2.5. Below, we give the truth table of a rotation symmetric function: 

  

 

 

 

 

 

 

 

 

 

 

The ANF of this function is 1 2 3 1 2 4 1 3 4 2 3 4 1 2 3 4f x x x x x x x x x x x x x x x x       Note 

that the algebraic expression is unchanged by the permutation 

1 2 3 4 1x x x x x     

Definition 2.13. A dihedral symmetric function is a rotation symmetric function 

that also has the reflection property.  If a function f has orbits that, when their 

variables are flipped become equivalent to other orbits and the function values of 

every term in both orbits are equivalent, then f is dihedral symmetric.  Simply put, 

f must satisfy f(x1, x2,..,xn)=f(xn,…,x2,x1) in addition to the rotation symmetry. For 

n=4 all rotation symmetric functions are also dihedral symmetric, since the 

reflection of each orbit gives the same orbit.  

 

 

 

 

X4 X3 X2 X1   f

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1
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Example 2.6. Two dihedral symmetric orbits for n=6 are: 

Orbit 1  Orbit 2    
001011 (x1x2x4) 110100 (x3x5x6) 
010110 (x2x3x5) 011010 (x2x4x5) 
101100 (x3x4x6)  001101 (x1x3x4) 
110010 (x2x5x6)  010011 (x1x2x5) 
100101 (x1x3x6)  101001 (x1x4x6) 

In a dihedral symmetric function, all truth table values for the above places will 

be the same. 

Definition 2.14. The number of variables in a function is referred to as n in this 

paper.  If n=4, the variables are listed as 4 3 2 1x x x x  and the function length is 2n 

bits.  There are 22
n

possible functions on n variables.   

2.  Known Characteristics 

There have been numerous studies on bent Boolean functions, both theoretical 

and computational.  There are several important characteristics already known about bent 

functions.  The exact number of bent functions is known only for 8n  , as shown in 

Table 2.  The following are some important theorems and lemmas related to bent 

functions.  They help narrow the field of functions to search by eliminating groups of 

functions known not to be bent.  Bent functions are only found in the set of Boolean 

functions on even number of variables (n even).   

n Number of Bent Functions 

4 896 

6 5,425,430,528 

8 9.9x1031 

Table 2.    Number of Bent Functions on n Variables 
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Theorem 2. 1. There are no homogeneous bent functions of degree m on 2m 

variables for m>3. [13]   

Theorem 2. 2. The maximum nonlinearity for an n-variable function when n is 

even is 2n-1-2n/2-1. For odd n >= 7, the maximum nonlinearity is unknown. [1] 

Lemma 2.1. A bent function Exclusive-Or’d with an affine function is also a bent 

function.  That is, if f is bent and g is affine, then f g is also bent. [4]  

Lemma 2.2. Let f be a bent function, then 2 ( )
2

n
order f  , for 4n   [4] 

3. Limita tions 

Exhaustive search of bent functions is limited by the very large number of 

functions over which a search is conducted.  Since bent functions on 8 variables or less 

are already known, concentration on longer functions is the next step.  For example, the 

TT of a function of 10 variables is 1024 bits long.  While this is an appropriate length for 

a cryptographic component, most computers can only store 64 bits in a register.  In an 

FPGA, any size registers can be created.  The program is then limited by the speed of the 

FPGA.  The number of functions to be tested increases exponentially so even a pipelined 

code that can compute one function per clock cycle will take years to run.  The faster 

computer technology becomes, the easier it will be to test larger groups of functions.   

B. NOTATION AND COMPUTING NONLINEARITY 

Let n be the number of variables in the function set Fn, where f(x1, x2, …, xn) 

represents one of 22
n

functions as a truth table.  Let An be the set of 2n+1 affine functions 

where a(x1, x2, …, xn) is one affine function as a truth table.  The distance between one 

function in Fn and one function in An is the number of function values that are different 

between the two.  This is found by performing the operation f a  and counting the 

number of ones in the result.  D1 = wt( f a ) where wt represents the Hamming distance 

between f and a.  To find a bent function, the distance between a perspective bent 

function and each affine function must be computed and compared to 1 ( /2) 12 2 .n n   The 

minimum distance among the result is called the nonlinearity of the function, 
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10 1 2
min( , ,..., )nfNL D D D  .  After every function on n variables is tested and its 

nonlinearity is found, the functions with the highest nonlinearity are called bent when n is 

even.  The nonlinearity of a bent function is 
0 1 22 1

max( , ,..., )
nB f f fNL NL NL NL


 .  In other 

words, a function f(x1, x2,…,xn) is bent if its nonlinearity, NLB, is 2n-1-2n/2-1.   

Bent functions can be separated into classes.  One class is the A-class [1], where 

if h f g   and g is an affine function, then f and h belong to the same A-class.  Since 

affine functions have degree 1 or 0, functions with terms of these degrees do not need to 

be searched.  If a bent function is found with terms of degree 2 and 3, then 2n+1 more bent 

functions can be found by performing an Exclusive-Or operation with the bent function 

and each affine function. This will result in all functions of the same A-class.  This 

property aids in the search for bent functions by reducing the search area.   

C. CIRCUIT ANALYSIS 

A simple circuit can be created to compute the nonlinearity of a function.  The 

block form is shown in Figure 1. 

 

Figure 1.   Process for Computing Nonlinearity of a Function (From [17]) 

This circuit is built using the Verilog programming language.  The input is one 2n-

bit function and the output is an n+1-bit nonlinearity.  Two sets of code were used in 

computations.  The original code proved correct, but inefficiently designed and for large 
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n, the design did not meet compiler specifications.  This code is included in Appendix 

A.2.  The second version of this code was written by another student [16] and had a more 

efficient design.  This code was modified and is included in Appendix A.1.6.  The 

included code is designed for 6-variable functions, but can be easily adapted to test 

functions of other values of n. 

Based on this circuit, the number of functions that can be tested per second is 

based on the 100 MHz speed of the FPGA.  Table 3 shows the time required for small n.  

Since an exhaustive search for 6n  is not feasible, the next step is to test only some 

subsets of all functions.  If certain subsets are found to be rich in bent functions, the time 

required to search these smaller sets of functions becomes more practical. 

 

Table 3.   Time to Compute Nonlinearity of Listed Number of Functions (From [17]) 

Studying several properties of Boolean functions and choosing those properties 

that reduce the function set is the best way to begin the search.  The next challenge is 

learning how to generate a specific set of Boolean functions.  Functions with properties 

like rotation symmetry and dihedral symmetry can be generated by creating a mapper to 

specific truth table values and then inputting a counter into the mapper.  This will ensure 

that certain sets of terms always have the same value.  Other properties, like degree and 

homogeneity, cannot be easily determined from examining a truth table.  The function 
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must be in Algebraic Normal Form.  One way to transform a function from a truth table 

to Algebraic Normal Form is to use the transeunt triangle.  This conversion capability 

allows a set of functions to be created with any property, converted easily between 

function forms and tested for nonlinearity or other properties.  The transeunt triangle is 

discussed in the next chapter. 
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III. THE TRANSEUNT TRIANGLE 

The transeunt triangle is a data structure proposed by V. Suprun [18] to derive the 

minimum mixed-polarity Reed-Muller canonical expression for a given symmetric 

function.  About 10 years earlier, D. Green [11] observed that the transeunt triangle could 

be used to derive the positive polarity Reed-Muller canonical expression (ANF) from the 

truth table of a general (not necessarily symmetric) function.   Neither Green nor Suprun 

proved their observations.  Recently, Butler, Dueck, Yanushkevich, and Shmerko [19] 

proved Suprun's observation.  Green's observation is proven in this thesis.  

Another contribution of this thesis is to demonstrate that the transeunt triangle has 

significant benefit in computational applications.  That is, it is shown that one can quickly 

compute the ANF of a function f from the truth table of f.  Conversely, given the ANF of 

a function f, the truth table of f can be quickly computed.  This is important for two 

reasons: 

1. Properties, like homogeneity and A-class membership, are easily computed 
from the ANF, but not from the truth table. 

2. Properties, like nonlinearity and balancedness, are easily computed from the 
truth table, but not from the ANF. 

The code instantiating the transeunt triangle was initially written in Verilog by Dr. 

J. T. Butler utilizing n 2n-bit registers in a pipelined series of Exclusive-Or operations.  

The output is calculated in one clock cycle.  This code could only compile on the SRC-6 

for 8n   due to memory constraints.  The code was modified in this thesis to work for 

9n   and then further modified to work for larger n.  The code is listed in Appendix A.3 

and A.4.   

A. CONVERTING BET WEEN A TRUTH TAB LE AND AL GEBRAIC 
NORMAL FORM 

1. Expanding a Boolean Function Given as a Truth Table 

A Boolean function is created using a series of n variables where a value, either 1 

or 0, is assigned to each of the 2n combinations of variables.  The resulting truth table can 
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be written as a function by using the unique variable combination as an index to the 

assigned Boolean value. The value becomes a coefficient for the term represented by the 

logical AND of the variable combination. 

For n=3, the truth table is  

x3 x2 x1 f 

0 0 0 d0

0 0 1 d1 

0 1 0 d2 

0 1 1 d3 

1 0 0 d4 

1 0 1 d5 

1 1 0 d6 

1 1 1 d7 

 The coefficients are d0 through d7.  The expansion is: 

3 , 2 , 1 0 3 2 1 1 3 2 1 2 3 2 1 3 3 2 1 4 3 2 1

5 3 2 1 6 3 2 1 7 3 2 1

( )

                      (1 )

f x x x d x x x d x x x d x x x d x x x d x x x

d x x x d x x x d x x x

    

    

Any term can be formed by taking the n-bit binary value of the index, and, if the 

bit is a 1 the corresponding variable is included in the term, if the bit is a 0 the 

corresponding variable is complemented and included in the term. 

Example 3.1.  The term in 4-variables with coefficient d9 corresponds to the 

binary value  x4x3x2x1=1001(9)  so the term formed  is 9 4 3 2 1d x x x x .  

2. Expanding a Boolean Function Given in Algebraic Normal Form 

The Algebraic Normal Form (ANF) uses the Exclusive-Or operator to combine 

terms in a function.  The function string is not the same as the truth table string.  The 

formal expression is 1 1 0 , 1 1 2
1 1

( , ,..., ) ... ...n n i i i j i j n n
i n i j n

f x x x c c x c x x c x x x 
    

      .  For 

n=3 the function coefficients are c0 through c7.  The expansion is: 

3, 2, 1 0 1 1 2 2 3 2 1 4 3 5 3 1 6 3 2 7 3 2 1( )  (2)f x x x c c x c x c x x c x c x x c x x c x x x         
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In this case, any term can be formed by examining the binary value of the index, 

and if the bit is a 1, the corresponding variable is included in the term, if the bit is a 0, the 

corresponding variable is not included in the term.  If c0=1, the term is just 1. 

Example 3.2.  The term in 4-variables with coefficient c9 corresponds to 

x4x3x2x1=1001(9) so the term is c9x4x1.  

B. TRANSEUNT TRIANGLE STRUCTURE, USE AND PROOF 

1. Definition and Structure 

Definition3.1. The transeunt triangle is a series of Exclusive-Or operations with 

an input of 2n coefficients along the base and an output of 2ncoefficients along the 

left side.  The triangle is formed by performing an Exclusive-Or operation with 

every two consecutive values on one row and placing the result in the next higher 

row between the two values with which the operation was performed.  

Figure 2 shows the operations inside a transeunt triangle for n=3. 

 

7
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c

c

c

              

     

  

0 1 2 3 4 5 6 7

   3 4              4 5                5 6        6 7

                                                                                                                              d d d d d d d d

   

 

 

Figure 2.   Transeunt Triangle for n=3 (After [11]) 

In Figure 2, the coefficients (d0 to d7) that form the bottom row of the triangle are 

taken from the truth table of a 3-variable function.  Each succeeding operation shows the 

coefficients that are included in the Exclusive-Or operation. 0 10 1 denotes d d  .  Any 
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value that is included twice is cancelled out.  This follows from 0,i ix x   and 

0 g g  .  The values on the left side of the triangle when all operations are complete 

are then placed in the Algebraic Normal Form of the function as coefficients ci as in (2). 

The transeunt triangle creates a bijective relationship between the ANF and the 

truth table of a Boolean function f, i.e., it has a 1-to-1 correspondence. If T(S) is the 

transeunt triangle of the Boolean string S, t is the truth table string and a is the ANF 

string, then T(t)=a and T(a)=t. 

2. Examples 

Example 3.3: The 3-variable truth table of f is  

x3 x2 x1 f 

0 0 0 1

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 

 

When f is placed along the bottom row of a transeunt triangle, and the operations 

are computed, the triangle becomes the one shown in Figure 3.  The result can be 

read on the left side of the triangle from bottom to top where coefficients c0 and c7 

are 1s and all other coefficients are 0s.  The ANF expansion is 1 2 31 x x x . 
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Figure 3.   Transeunt Triangle for 3 2 1 1 2 3( , , ) 1f x x x x x x   

(End of Example) 

Example 3.4:  If the ANF coefficients are placed along the bottom row, the result 

is the truth table appears along the left side.  If the ANF is 1 2 3x x x  .  The 

triangle is shown in Figure 4. 

 

Figure 4.   Transeunt Triangle for 3 2 1 1 2 3( , , )f x x x x x x    
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The truth table is the left side of the triangle from bottom to top shown here: 

x3 x2 x1 f 

0 0 0 0

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

(End of Example) 

3. Proof that the Transeunt Triangle Converts between the ANF and the 
Truth Table of a Boolean Function f 

Theorem 3.1:  The transeunt triangle converts the truth table of an n-variable 

function f into the Algebraic Normal Form of f. 

Proof: (by induction) 

First, we show the hypothesis is true for n=1. 

Using the form 1 0 1 1 1( )f x d x d x   four possible functions on one variable are: 

0 1

1

1

       

  0   0    0

  0   1    

  1   0    1

  1   1    

d d f

x

x

 

 

There are four possible transeunt triangles that can be made for n=1. They are  

 

1

0

0 1

 0

 0    0

  

c

c

d d   

1

0

0 1

1

 0   1

  

c

c

d d   

1

0

0 1

1

1   0

 

c

c

d d   

1

0

0 1

 0

 1    1

  

c

c

d d  
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The new ANF expression for each triangle is 1 0 1 1( )f x c c x  , where 0 0c d  and 

1 0 1c d d  . 

To show that the left nodes of each triangle are indeed the coefficients of the ANF 

of each function, observe the following: 

1 0 1 1 1

1 0 1 1 1

1

The equation of  using its truth table coefficients (Shannon decomposition) :

( )   (3)

Replacing + by  preserves the equality:

( )  

Identity used to replace 

         1  ident

f

f x d x d x

f x d x d x

x

a a

 



 

 

1 0 1 1 1

0 1 0 1 1

0 0 1 1

1 0 1 1

ity

Using distributive and associative laws,  becomes 

( ) ( 1)

         

         ( )

 is now in Algebraic Normal Form:

( )   (4)

The ANF coefficients are:

      

f

f x d x d x

d x d d x

d d d x

f

f x c c x

  
  
  

 

0 0

1 0 1      

c d

c d d


   

Next, we assume the hypothesis is true for n=k.  We prove that this implies it is 

true for n=k+1.  The triangle for k+1 can be broken down into three triangles of size k as 

shown in Figure 5.  Along the bottom of the lower triangles are the coefficients of f, 

where xk=0 on the left and xk=1 on the right using the notation (0 )k kf x x  and 

(1 )k kf x x  , respectively, following the form of (3) where k=1.  We have assumed the 

triangle is correct for k, so the nodes on the left side of each lower triangle are the 

coefficients for the ANF represented by the functions (0 )L kf x  and (1 )L kf x for the 

left and right triangles, respectively.  This follows the form of (4) where 0 (0 )L kc f x  . 
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Figure 5.   The composition of k-sized triangles to form a k+1 sized triangle  

We show that the bottom line of the upper triangle can be represented by the 

function (0 )kf x    (1 )kf x , as follows.  The number of paths in a tree-like 

triangle with 2a+1 rows from a point on the bottom row to the root is determined by 

C(2a,i) where C(m, p) is the number of ways to choose p objects from m objects without 

repetition.  2a is the number of hops required to get to the top of the triangle (a=k in the 

proof for k+1) and i is the index for the base of this new triangle from 0 to 2a .  For i=0 or 

i=2a, the number of paths is 1, since C(2a, 0)=C(2a, 2a)=1.   

Theorem 3.2. C(2a, i) mod 2 =0 for 0<i<2a.  (Special use of Lucas’ Theorem, 

i·C(pa, i) = pa·C(pa - 1, i - 1), where p is prime). [20] 

From Theorem 3.2, for all other 0 2ai  , the number of possible paths from the 

base to the root is even.  Because this number is even, the inner coefficients traveling 

through the triangle will ultimately be cancelled out.   

The result along the base of the upper triangle is, therefore, 

' (0 ) (1 )k kS f x f x    , as shown in Figure 5.  It follows that the upper triangle (of 

size k) produces a left side (or ANF) of ( (0 ) (1 ))k k L kf x f x x   , where c1 in (4) is 
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( (0 ) (1 ))k k Lf x f x   .  The ANF string for the k+1 triangle is then the Exclusive-Or 

of the left sides of the lower left and upper triangles: 

(0 ) (( (0 ) (1 ))k L k k L kf x f x f x x     .   

Q.E.D. 

Figure 6 shows a triangle for n=3, where 4 triangles can be formed so that the root 

of each triangle makes up row 5.  The colored paths shown are the most direct paths from 

each base node to the corresponding root.  In the figure, each coefficient along the base of 

the outer triangle is included exactly once at the root with a direct path to it and is not 

included at any other roots.  The labels a, b, c, and d in the figure correspond to the 

Exclusive-Or of two coefficients 0 4 1 5 2 6 3 7,  ,  ,  a d d b d d c d d d d d        . This 

is the same as (0 )kf x    (1 )kf x .  

 

   d0 d1 d2 d3 d4 d5 d6 d7 

Figure 6.   Four triangles are formed showing only one path from the corner of each 
triangle to the top. 

To further show that each coefficient appears in (0 )kf x    (1 )kf x  only 

once, consider the following. The inner indices of each triangle in Figure 6 will travel 

a b c d
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through Exclusive-Or operators to the root of that triangle following an even number of 

possible paths.  This means that each coefficient value will be represented at the root an 

even number of times and will therefore cancel out leaving only the coefficients on the 

outside edge of each triangle.   

For coefficient d1 in Figure 6, there are C(22,1)=4 paths d1 will be included in to 

get to node a.  Node a includes 4 terms of d1, but since d1d1=0, all d1 terms will cancel.  

Only terms with an odd number of paths, d0 and d4 will remain at node a.  

C. PROPERTIES OF BOOLEAN FUNCTIONS 

1. Degree 

The degree of a function refers to the number of variables in the term with the 

most variables in Algebraic Normal Form.  For example, the function 

1 2 3 1 3 2f x x x x x x   has degree 3, since the term with the most variables has three 

variables.  Lemma 2.2 states that bent functions of degree n/2 for even n exist.  For 

example, the group of all 6-variable functions contains bent functions of degree 2 and 3 

only.  Affine functions are functions of degree 1 and 0, and so these functions never need 

to be tested for bentness.  Lemma 2.2 also states that there are no bent functions with 

degree greater than n/2 for 4n  , therefore, functions with degree greater than n/2 do not 

need to be tested.  This reduces the set of testable functions considerably; however, for 

larger n, the test set is still overwhelming.   

Figure 7 shows the number of functions for n=8 for each degree.  There are 

1.16920130986472x1049 functions of degree 4 for n=8.  This is only 1x10-28% of all 

functions on n=8.  Despite the massive reduction in the test set, the code to determine the 

nonlinearity of each function would take 3.7x1033 years to test on the SRC-6 at one 

function per clock cycle. 
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Figure 7.   Number of Functions on 8 Variables by Degree 

Code was written to both test a function for its degree and to generate functions 

with specific degree.  Both sets of code were useful.  When generating functions in truth 

table form, the degree was found by converting the function to ANF using the transeunt 

triangle and then testing it to determine the degree.  Generating functions with a specific 

degree in ANF created a new test set.  The transeunt triangle was then used to convert the 

function to a truth table and, in this form, find its nonlinearity.  The code used to 

determine the degree of a function within a subroutine is shown in Appendix A.7.2.  The 

code used to generate a function with degree d is shown in Appendix A.6. 

2. Homogeneity 

A function in which all terms have the same degree is called homogeneous.  

Homogeneous functions of order 1 or 0 and their complements are the affine functions.  

Homogeneous functions represent an even smaller test group than functions of specific 

degree, because they are a subset of these functions.  Figure 8 shows the distribution for 

homogeneous functions on n=8.  From Theorem 2.1, there are no homogeneous bent 

functions of degree m on 2m variables where m>3.   
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Figure 8.   Number of Homogeneous Functions on 8 Variables by Degree 

Continuing with the example for n=8, the number of homogeneous functions of 

degree 4, meaning all terms are 4 variables, is 1.18059162071741x1021.  This set of 

functions can be excluded from testing since Theorem 2.1 states that no bent functions 

exist in this group.  For comparison, it would take 3.7x1013 years to compute the 

nonlinearity of all functions.  This is 1020 times faster than the computation for all 

functions of degree 4. The homogenous functions of degree 3 would take 22 years to 

compute; however, it is possible to test functions of degree 2 since this would take less 

than 3 seconds.  As n increases, the time required to test a function is exponential in n. 

Along with code written for determining the degree of a function, code to 

determine if a function was homogenous was also written.  This was done in both C and 

Verilog.  It was determined that running the code in the subroutine as C code was much 

faster than calling a Verilog module as a macro.  It is simple to generate a mapper to 

create homogenous functions of a specific degree.  A separate mapper must be generated 

for each n and each degree.  Another way to generate homogenous functions using n and 

the degree as an input was used, but proved slower when computing.  Code used to test 

for homogeneity and to generate homogeneous functions is included in Appendix A.6. 
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3. Rotation Symmetric 

Functions whose value is unchanged when the variables in the function are rotated 

circularly to each position are called rotation symmetric (See Definition 2.12).  These 

functions have been tested for bentness as they are another small group.  Stanica and 

Maitra [21] conjectured that there are no homogeneous rotation symmetric bent functions 

of degree greater than two.  This is not proven but can be tested exhaustively for 8.n    

It cannot be tested exhaustively for n=10, since there are 3.24x1032 rotation symmetric 

functions requiring 1017 years to test.  For testable group sizes, rotation symmetric bent 

functions are found. Table 4 shows the number of rotation symmetric bent functions for 

n=4, 5, and 6.   

 

n  Number of Rotation Symmetric Bent Functions Total Bent Functions

4  8 896 

5  36 27,387,136 

6  48 5,425,430,528 

Table 4.   Number of Rotation Symmetric Bent Functions 

To generate rotation symmetric functions, a mapper must be created for each n.  A 

bit is assigned to each term of the truth table of the function so that rotation symmetric 

terms have the same value.  These assign statements were generated in a C program used 

to determine which sets of terms were rotation symmetric.  This code is included in 

Appendix B.1.  Once the function was formed, the nonlinearity could be determined.  For 

n=6, the distribution of nonlinearities of rotation symmetric functions is shown in Figure 

9.  
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Figure 9.   Nonlinearity Distribution for Rotation Symmetric Functions on 6 Variables 
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To determine the degree or homogeneity of the function, the function was 

converted to ANF using the transeunt triangle and the result was tested for these 

properties.  Figure 10 shows the rotation symmetric functions on 6 variables distributed 

by degree and homogeneity.  The number above the bar is the number of functions with 

the corresponding degree and the number below is the number of homogeneous functions 

for that degree.  

 

Figure 10.   The Distribution by Degree and Homogeneity of Rotation Symmetric 
Functions on 6 Variables (Degree: Upper Number and Blue Bar. Homogeneity: 

Lower Number and Red Bar.) 

4. Dihedral Symmetric  

Rotation symmetric functions that contain dihedral orbits with the same function 

values are called dihedral symmetric (See Definition 2.13).  

Example 3.6: For n=6, there are 14 orbits where rotating a combination of the 6 
variables will produce another combination of variables in the same orbit. Below 
are two orbits. 

Orbit 1: 1 2 4 2 3 5 3 4 6 2 5 6 1 3 6{ , , , , }.x x x x x x x x x x x x x x x  

Orbit 2: 3 5 6 2 4 5 1 3 4 1 2 5 1 4 6{ , , , , }.x x x x x x x x x x x x x x x  
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For rotation symmetric functions, each combination of variables in the same orbit 

must be assigned the same function value.  A function is dihedral symmetric if, in 

addition to rotation symmetry, it contains one or more orbits, such that, when flipped, 

another orbit is produced and all terms in both orbits have the same function values.  

Orbits 1 and 2 in Example 3.6 above are dihedral symmetric on 6 variables.  These 

functions are a subset of rotation symmetric functions.  In the case of n=4, all rotation 

symmetric functions are also dihedral symmetric.  This property is a good way to break 

down a large set of Boolean functions into a much smaller set.  For functions on 8 

variables, there are 236 rotationally symmetric functions, but only 230 dihedral symmetric 

functions. This group is just 1.5% of the rotation symmetric functions.  Some bent 

functions are dihedral symmetric.  

5. Balance 

The best functions for cryptography are balanced [10]; they have the same 

number of 1s as 0s.  The problem is that there are no bent functions that are balanced.  

Looking at balanced functions that are nearly bent is an interesting topic.  For example, 

the 213 dihedral symmetric functions of 6 variables were tested for nonlinearity and 

balance.  The highest possible nonlinearity for a bent function with 6 variables is 28.  The 

highest nonlinearity of a balanced function in the tested group was 24.  These functions 

could be altered in certain ways to make them more useful for cryptography.  They are 

listed in Appendix C.2. 
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IV. COMPUTATION AND ANALYSIS 

A. THE SRC-6 RECONFIGURABLE COMPUTER 

The SRC-6 reconfigurable computer in Spanagel Hall at the Naval Postgraduate 

School is the computation tool used for this thesis.  It provides greater flexibility to 

control compilation than a traditional PC.  It is composed of two PCs, each with a 

Pentium IV microprocessor, five Multi-Adaptive Processing (MAP) boards each 

containing three Xilinx Virtex-2 XC2V6000 FPGAs, two for computing and one for 

control as well, as 24 MB of On Board Memory (OBM).  These boards are connected by 

a high-bar switch.  There are four 8 GB banks of common memory.  The SNAP port can 

send data from the microprocessor to the MAP at a maximum speed of 1400 MB/s.  

Figure 11 shows the setup.   

 

Figure 11.   Layout of the SRC-6 (From [17]) 

There are several files required to run a program on the SRC-6. It can compile 

code to execute either on the Intel processor or on the MAP.  The files created are linked 

to create a single executable.  Intel targeted files compile to a .o file and MAP-targeted 
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files compile using the Map C Compiler (MCC).  main.c is written in C and calls a 

subroutine, where the bulk of the computation is done.  The main.c file usually formats 

and displays the output and can send inputs to the subroutine.  subr.mc is also written in 

C, and runs on the MAP.  It can call macros, either user-created or built-in.  Local 

memory and On Board Memory can be used for data storage.  There are 6 banks of 

usable OBM, each capable of storing 523,776 64-bit words.  The FPGA has 144 Block 

RAM units; each unit can store 2048 bytes.  These units are dual ported so that a read and 

a write can occur simultaneously.   

A user macro is written in Verilog or VHDL and specifies circuits in the FPGA.  

This is usually where the major computations occur.  The macro can be called millions of 

times in the subroutine.  It can be pipelined to increase throughput, a major advantage 

over a PC.  The pipelined characteristic allows one computation per clock cycle, after the 

first computation is complete.  Any user-defined macro needs a blk.v file and an info file 

to describe input and output names as well as list the macro characteristics. 

B. USING THE SRC-6 

The SRC-6 was extremely useful for computing the nonlinearity of millions of 

functions.  The subroutine generally used a counter where each number in the counter 

was sent into a macro that created a function to be tested.  The function was then tested 

for its nonlinearity.  The nonlinearity value was sent back to the subroutine and stored in 

a histogram that counted the number of functions with each nonlinearity.  The functions 

could also be sent into the subroutine to be tested for degree, homogeneity, and balance.   

1. Limita tions 

The main limitation of the SRC-6 was the speed of the FPGA, 100 MHz.  A 

maximum of 100,000,000 functions can be tested per second.  It takes too long to test all 

functions on more than 5 variables.  Because of this, functions had to be divided into 

smaller groups that might produce interesting results in the search for bent functions.  

The largest group that can be analyzed with the current speed of 100 MHz is about 240 

functions.  This would take around 3 hours to compute.  A faster FPGA would improve 
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this number drastically.  For example, a 500 MHz FPGA would be five times faster, 

allowing more than 242 functions to be tested in the same amount of time.   

There are certain designs that require extensive calculations to occur within one 

clock cycle.  A design like this cannot be compiled if the time required between clock 

cycles is more than 10 ns.  This is a limitation that can sometimes be worked around with 

smart programming techniques.  Verilog code can be written behaviorally or structurally.  

Behavioral code uses for loops, conditional statements and function calls.  Structural code 

uses simple functional blocks connected by wires to other blocks that perform simple 

operations on each clock pulse or new input. Registers store values that can be recalled or 

changed on a clock pulse.  Structural code can be more efficient for an FPGA.  The 

clocked pipeline splits the code into sections and allows the user to examine the longest 

path and to make improvements.  In behavioral code, like a for loop, it is more difficult to 

determine where the slowdown might occur and just as difficult to split up complicated 

actions into pipelined steps.  An extremely well written structural code used to compute 

the nonlinearity of a function was created by another graduate student and a modified 

version appears in Appendix A.1.6.  This code reduced the latency so that simple actions 

could be completed on each clock cycle.  The number of variables could be increased 

because even though the functions were longer and required more resources to test, the 

steps were clocked in a way that allowed each step to be completed within 10 ns.  As n 

grows; however, adjustments will need to be made and there will still be a limit on n due 

to the limitation of the FPGA speed. 

Another limitation of the SRC-6 is the amount of space available for hardware 

design on the FPGA.  As the number of variables in a function grows, the space required 

for the nonlinearity circuit grows.  If there are no ways to reduce the circuit and get the 

same results, then there will be a limit on n for the nonlinearity circuit.  More than one 

FPGA can be used for the same circuit; however, this has not been attempted for the 

nonlinearity circuit.   
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2. Advantages 

One advantage of the SRC-6 is its built-in, or callable, macros [22].  A test was 

performed to show the difference that a well-coded callable macro can make over a user-

defined macro.  The macro pop_count64 is designed to receive a string of 64 zeros and 

ones and output the number of ones in that string.  The user-defined macro ones_count 

performs the same operation, but requires the extra files needed in a user-defined macro.  

The space used on the FPGA is about the same, but the frequency required to get the 

result from ones_count was much less than 100 MHz.  This can cause incorrect output 

since the FPGA always runs on a 100 MHz clock.  Ones_count is also more complex 

since it required two extra logic levels.  The timing constraints are listed in Table 5.  Both 

tests were run on 224 64-bit Boolean functions.  For 64-bit functions, the pop_count64 

macro is more efficient than ones_count. 
-------------------------------------------------------------------------------- 
  Constraint (pop_count64)                  | Requested  | Actual     | Logic  
                                            |            |            | Levels 
-------------------------------------------------------------------------------- 
  TS_CLOCK = PERIOD TIMEGRP "CLOCK" 10 ns H | 10.000ns   | 9.598ns    | 8     

  IGH 50%                               |           |           |       

-------------------------------------------------------------------------------- 
  Constraint (ones_count)                   | Requested  | Actual     | Logic  
                                            |            |            | Levels 
-------------------------------------------------------------------------------- 
* TS_CLOCK = PERIOD TIMEGRP "CLOCK" 10 ns H | 10.000ns   | 11.704ns   | 10    
  IGH 50%                                   |            |            |       

-------------------------------------------------------------------------- 

Table 5.   Comparison of Timing Specifications Between Macros with the Same 
Functionality 

Ones_count has one advantage in that it can be parameterized to work for any n.  

Pop_count64 only works for 6n  .  Another difference is that the pop_count64 macro 

can only be called in the subroutine, but ones_count can be called from within another 

macro.  The advantage of ones_count is that the input value can be more than 64 bits, 

n>6.  In the module ones_count, there is a case statement that chooses which operation to 

perform based on n. 
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module Ones_Count (TT, Count); 
//*******************************************************************// 
// Ones_Count.v -  A program to count the 1s in an input            // 
//              // 
// Created:       August 18, 2007         // 
// Last Modified:  October 27, 2008         // 
// Author:        Jon T. Butler         // 
// Modified by:   Jennifer Shafer         // 
// Inputs:        TT  n-variable Truth Table 2^n bits                // 
// Outputs:       Count Number of 1s- n+1 bits                      // 
//                                                                   // 
//*******************************************************************// 
parameter n=6; 
parameter B=2**n;  
input[B-1:0] TT; 
output[n:0] Count; 
reg[n:0] Count; 
always @(TT) 
begin: CHECK_n 

case(n)      // case statement for n=2 through n=6  
2: Count = Count2(TT); 
3: Count = Count2(TT[7:4]) + Count2(TT[3:0]); 
4: Count = Count2(TT[15:12]) +Count2(TT[11:8]) + 
Count2(TT[7:4]) + Count2(TT[3:0]); 
5: Count = Count2(TT[31:28]) +Count2(TT[27:24]) + 
Count2(TT[23:20]) + Count2(TT[19:16]) + Count2(TT[15:12]) 
+Count2(TT[11:8]) + Count2(TT[7:4])+ Count2(TT[3:0]); 
6: Count = Count2(TT[63:60]) +Count2(TT[ 59:56]) + 
Count2(TT[55:52]) + Count2(TT[51:48]) + Count2(TT[47:44]) 
+Count2(TT[43:40]) + Count2(TT[39:36]) + Count2(TT[35:32]) 
+ Count2(TT[31:28]) +Count2(TT[27:24]) + Count2(TT[23:20]) 
+ Count2(TT[19:16]) + Count2(TT[15:12]) +Count2(TT[11:8]) + 
Count2(TT[7:4]) + Count2(TT[3:0]); 
default Count = Count2(TT); 

endcase 
end 
 
function [2:0] Count2; 
input [3:0] AA; 
begin: f2 

Count2[0]=AA[3]^AA[2]^AA[1]^AA[0]; 
Count2[1]=(AA[3]&AA[2]|AA[3]&AA[1]|AA[3]&AA[0]|AA[2]&AA[1]|AA[2]&
AA[0]|AA[1]&AA[0])&~(AA[3]&AA[2]&AA[1]&AA[0]); 
Count2[2]=AA[3]&AA[2]&AA[1]&AA[0]; 

end 
endfunction 
endmodule 
 

All that is needed in the code above to get the correct output is to change the 

parameter n to the desired number of variables.  If n>6, lines in the case statement can 

easily be added to count higher order bits.  Unfortunately, the disadvantage is that the 
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module needs to be completed within one clock cycle and as n increases, the number of 

required operations doubles.  The entire calculation for n>5 cannot be computed in one 

clock cycle using this code.  

C. ANALYSIS  

The amount of data able to be computed for this thesis is less than originally 

predicted.  The code written initially was inefficient and resulted in compile problems 

when n>5.  New code was written, and some additional results were generated.  The 

remainder of this section is an explanation of the data found using the SRC-6. 

1. Nonlinearity of Boolean Functions by Degree for n=4 

There are 216 Boolean functions on 4 variables.  Figure 12 shows the distribution 

of these functions by degree and nonlinearity.  There are 896 bent functions, all of which 

are of degree 2.  There are 32 affine functions, which can be seen in the figure with 

nonlinearity zero.  The two functions of degree zero are 0x0000 and 0xFFFF in truth 

table form, 1 2 3 4 1 2 3 4( , , , ) 0 and  ( , , , ) 1f x x x x f x x x x   in ANF.  The 30 functions of 

degree one are the set of functions where all combinations of terms with degree zero and 

one are found.  Figure 12 also shows that the nonlinearities are even for functions with 

degree 2 or 3.  This is not true for functions with degree 4.  In this case, all nonlinearities 

are odd.  McEliece’s Theorem from Coding Theory [23] states that, for a Boolean 

function of degree d on n variables, the nonlinearity is always divisible by / 12 n d    .  This 

means that the nonlinearity will be even as long as d n .  This can be seen throughout 

all sets of data. 
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Figure 12.   Distribution of Functions with 4 Variables by Nonlinearity and Degree 

2. Nonlinearity of Boolean Functions by Degree for n=5 

Functions on odd numbers of variables do not contain truly bent functions.  The 

results are shown in Figure 13, however, for degrees 0 through 3.  The higher degrees 

could not be computed, because there are almost 231 functions of degree 4, and 231 

functions of degree 5.  The highest nonlinearity found is 12.  It is interesting that 84 % of 

the functions of degree 2 have the highest nonlinearity.  Only 20 % of the functions of 

degree 3 have nonlinearity 12.  It is known that there are a total of 27,387,136 functions 

on 5 variables with nonlinearity 12.  The functions represented in degrees 2 and 3 make 

up about half of the total. 
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Figure 13.   Distribution of Functions with 5 Variables by Nonlinearity and Degrees 0 
through 3 

3. Nonlinearity of Boolean Functions by Degree for n=6, Degrees Less 
Than 3 Only 

Since Lemma 2.2 states that there are no bent functions with degrees higher than 

n/2, we know that there are no bent functions on 6 variables of degree 4, 5, or 6.  These, 

therefore, do not need to be evaluated.  All 242 functions of degree 3 could not be tested 

in a reasonable amount of time.  Table 6 shows the represented nonlinearities with the 

number of functions in each tested degree.  From the equation in Theorem 2.2, 2n-1-2n/2-1, 

the maximum nonlinearity is 25-22=28.  It is known that there are a total of 5,425,430,528 

bent functions on 6 variables. There are 1,777,664 bent functions of degree 2 so the 

remaining bent functions must be degree 3.    

Nonlinearity/Degree 0 1 2 

0 2 126 0 

16 0 0 83,328 

24 0 0 2,333,184 

28 0 0 1,777,664 

Table 6.   Distribution of Functions on 6 Variables by Nonlinearity and Degrees 0, 1, and 2 
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4. Nonlinearity of Homogeneous Boolean Functions by Degree for n=4 

There are 96 homogeneous functions on four variables.  Twenty-eight of these are 

bent.  This is 3.125% of all 896 4-variable bent functions.  There are 15 homogeneous 

functions of degree 1.  It is obvious that there is only one homogeneous function of 

degree n, since there is only one term of degree n.  In Figure 14, this function has 

nonlinearity 1, which is simple to verify.  The function in ANF, 1 2 3 4 1 2 3 4( , , , )f x x x x x x x x  

when converted to a TT, becomes 0x8000.  This function is not affine and is only one bit 

different from the affine function 0x0000, so its nonlinearity is one. 

 

Figure 14.   Distribution of Homogeneous Functions with 4 Variables by Nonlinearity 
and Degree 

5. Nonlinearity of Homogeneous Boolean Functions by Degree for n=5 

Figure 15 shows that there are 868 Boolean functions of degree 2 and highest 

nonlinearity 12.  There are also 15 Boolean functions of degree 3 and nonlinearity 12.  

An A-class of functions is a set where one highest nonlinearity function is combined with 

every affine function to form 2n+1 new functions with highest nonlinearity.  This comes 

from Lemma 2.1.  These 883 functions can therefore be used to form 55,629 more 

functions with nonlinearity 12.  There also exist functions with terms of both degree 2 

and 3 that have the highest nonlinearity.  These functions can also be combined with the 

affine functions to determine the rest of the highly nonlinear functions on 5 variables.  
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These functions are in the group of degree 3 functions with nonlinearity 12 from section 

2.  The number of this set of functions can be found by subtracting the 15x64=960 

functions that only have terms of degree 0, 1, and 3.  This leaves 13,999,104-

960=13,998,144 functions of nonlinearity 12 that have terms with degrees 0, 1, 2, and 3. 

 

Figure 15.   Distribution of Homogeneous Functions with 5 Variables by Nonlinearity 
and Degree 

6. Nonlinearity of Homogeneous Boolean Functions by Degree for n=6 

This set of results, shown in Figure 16, shows that there are at least 13,918 A-

classes of bent functions for n=6.  Other A-classes will be composed of functions with 

terms of both degree 3 and degree 2. 
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Figure 16.   Distribution of Homogeneous Functions on 6 Variables by Nonlinearity 
and Degree 

7. Nonlinearity of Rotation Symmetric Boolean Functions by  Degree for 
n=4 

Rotation symmetric functions are a small subset of all functions.  Research shows 

that bent functions can be found in these sets [14], [21].  For n=4, there are 26 rotation 

symmetric functions, eight of which are bent.  All eight functions are listed in ANF in 

Appendix C.1.1.   

 

Figure 17.   Distribution of Rotation Symmetric Functions on 4 Variables by Degree 
and Nonlinearity 
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8. Nonlinearity of Rotation Symmetric Boolean Functions by  Degree for 
n=5 

There are 28 rotation symmetric functions on 5 variables.  It is interesting that the 

number of functions in each group with nonlinearity greater than 12 in Figure 18 is a 

multiple of 12.  The functions with highest nonlinearity are listed in Appendix C.1.2. 

 

Figure 18.   Distribution of Rotation Symmetric Functions on 5 Variables by Degree 
and Nonlinearity 

9. Nonlinearity of Rotation Symmetric Boolean Functions by  Degree for 
n=6 

There are 214 rotation symmetric functions on 6 variables.  In this set, there are 8 

bent functions with degree 2 and 40 bent functions with degree 3.  This is only 0.29 % of 

the function set.  The graph in Figure 19 shows the distribution.  The functions are listed 

in Appendix C.1.3. 
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Figure 19.   Distribution of Rotation Symmetric Functions on 6 Variables by Degree 
and Nonlinearity 

10. Nonlinearity of Homogeneous Rotation Symmetric Boolean Functions 
by Degree for n=4 

To find the rotation symmetric functions that are homogeneous, all rotation 

symmetric functions were converted to ANF using the transeunt triangle, and then tested 

for homogeneity.  If the function was homogeneous, then it was stored along with its 

nonlinearity.  Figure 20 shows the results for n=4.   

 

Figure 20.   Distribution of Homogeneous Rotation Symmetric Functions on 4 
Variables by Degree and Nonlinearity 
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11. Nonlinearity of Homogeneous Rotation Symmetric Boolean Functions 
by Degree for n=5 

In this small group, the highest nonlinearity functions make up 30% of the entire 

set.  Figure 21 shows the distribution.   

 

Figure 21.   Distribution of Homogeneous Rotation Symmetric Function on 5 
Variables by Degree and Nonlinearity  

12. Nonlinearity of Homogeneous Rotation Symmetric Boolean Functions 
by Degree for n=6 

There are only two bent functions in this set of 32 functions.  In order to get this 

set of functions, all rotation symmetric functions had to be formed, converted to ANF 

using the transeunt triangle and then tested for homogeneity.  These additional tests 

require more time than just computing the nonlinearity of the group of 236 rotation 

symmetric functions on 6 variables.  Both groups can be tested at the same time. It is 

interesting to know what rotation symmetric functions are homogeneous, and the 

transeunt triangle is an efficient way to determine this.  It does not, however, reduce the 

number of functions to be tested.  The results are shown in Figure 22. 
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Figure 22.   Distribution of Homogeneous Rotation Symmetric Functions on 6 
Variables by Degree and Nonlinearity  

13. Nonlinearity of Dihedral Symmetric Boolean Functions by Degree for 
n=4 

One way to reduce the number of rotation symmetric functions is to test only 

dihedral symmetric functions.  For n=4 and n=5 all rotation symmetric functions are 

dihedral symmetric, so there is no reduction.  This data is the same as the data in section 

7. 

14. Nonlinearity of Dihedral Symmetric Boolean Functions by Degree for 
n=5 

As explained in the previous section, this data is the same as the data in section 8. 

15. Nonlinearity of Dihedral Symmetric Boolean Functions by Degree for 
n=6 

Reducing the set of rotation symmetric functions on 6 variables to only those that 

are also dihedral symmetric reduces the set by half.  Figure 23 shows that there are only 

16 bent functions in this set of 213 functions.  This is 33 % of the rotation symmetric bent 
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functions.  It is interesting to note that all of the rotation symmetric bent functions of 

degree 2 are dihedral symmetric, while only 8 of 40 rotation symmetric bent functions of 

degree 3 are dihedral symmetric. 

 

Figure 23.   Distribution of Dihedral Symmetric Functions on 6 Variables by Degree 
and Nonlinearity  

16. Nonlinearity of Homogeneous Dihedral Symmetric Boolean Functions 
by Degree for n=4 

This data is the same as the data in section 10. 

17. Nonlinearity of Homogeneous Dihedral Symmetric Boolean Functions 
by Degree for n=5 

This data is the same as the data in section 11. 

18. Nonlinearity of Homogeneous Dihedral Symmetric Boolean Functions 
by Degree for n=6 

The issue regarding the generation of this test set is the same as that in section 12.  

All dihedral symmetric functions must be formed, converted to ANF and then tested for 
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homogeneity.  This group cannot be generated independently.  It is interesting that the 

only two homogeneous rotation symmetric bent functions are also dihedral symmetric.  

The distribution is shown in Figure 24. 

 

Figure 24.   Distribution of Homogeneous Dihedral Symmetric Functions on 6 
Variables by Degree and Nonlinearity  

The compiled data demonstrates the utility of the SRC-6 computer system.  It was 

found to be an excellent way to search Boolean functions using several methods.  The 

nonlinearity circuit for n=7 was not built in order to concentrate on building the circuit 

for n=8.  The following section discusses problems and possible solutions for the circuit 

for n=8.   

D. OTHER CONTRIBUTIONS 

1. Functions on 8 Variables 

The code to determine the nonlinearity of 8-variable functions was created and 

compiled.  The resources used are shown in Table 7.  This is a large portion of resources 

and a very low frequency.  Expected results could not be calculated for any group of 8-

variable functions because the frequency was lower much than 100 MHz.   
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 Nonlinearity, 8 variables  

Number of Slice Flip Flops 14,404 out of 67,584 21% 

Number of 4-input LUTs 40,183 out of 67, 584 59% 

Number of occupied Slices 24,810 out of 33,792 73% 

Number of Block RAMs 4 out of 144 2% 

Freq 66.1MHz  

Table 7.   Resources Used for Finding Nonlinearity on 8-Variable Functions  

There is a way to reduce the circuit, using less FPGA resources.  The affine 

functions are all the linear functions and their complements.  The relationship between 

the Hamming distance of f a  and f a  is d( f a )+d( f a )=2n.  If only half of the 

affine functions are defined and used, the distance of the other half can be determined 

with a simple comparison and subtraction operation.  Then, if the distance of each f a  

is less than 2n-1 (or half of the bits), then it is the minimum of d( f a ) and d( f a ).  If 

the distance is greater than 2n-1, then the minimum distance is 2n- d( f a ). Changing the 

circuit to reflect this results in the resources used, shown in Table 8. 

 Nonlinearity, 8 variables  

Number of Slice Flip Flops 13,587 out of 67,584 20% 

Number of 4-input LUTs 31,092 out of 67, 584 46% 

Number of occupied Slices 20,218 out of 33,792 59% 

Number of Block RAMs 4 out of 144 2% 

Freq 65.8 MHz 

Table 8.    Resources Used for Finding Nonlinearity on 8-Variable Functions using a 
Minimized Circuit Design 

Table 8 shows a significant reduction in FPGA space required but does not 

change the frequency.  So this circuit, as it is, cannot produce reliable results.  Some 
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future modifications to expand the pipeline, however, could fix this issue.  The Verilog 

code did produce correct results when some functions were tested in ModelSim. 

The generation of this code in structural form required hundreds of calls to each 

major component, or module, of the nonlinearity computation.  These lines can be 

generated for the user using a simple C-code.  This will easily create Verilog code to 

compute nonlinearity for higher n in future work.  Following the structure of the code in 

Appendix A.1.6 for n=6, the min2, min4, and OC modules remain the same.  The module 

count will call OC 2n/4 times and add each result to get the number of 1s in one 2n-bit 

function.  The module fit does most of the computation.  It enumerates half of the 2n+1 

affine functions (the other half are the complements of the first half), performs the 

Exclusive-Or operation on the input function and each affine function, and then calls the 

count module with each result.  In count, the number of 1s is compared with 2n/2, and if it 

is less than or equal to this number, it is sent as the output, otherwise the difference 

between 2n and the number is sent as output.  This allows for both the affine function and 

its complement to be considered.   Next, it calls a series of min modules with the result of 

four count calls as input, and outputs the minimum count.  These results then go four at a 

time into min modules again in a tree-like fashion until the minimum of all count outputs 

is found.  The result is the nonlinearity of the input function.  The C-code to generate the 

modules count and fit for any n is included in Appendix B.3.  Using this program saves 

time and prevents inadvertent mistakes.   

The section of code that must be computed separately is the generation of the 

affine functions.  This was done with a user-defined macro since affine functions have 

more than the standard 64 bits for n>6.  The result is 2n Verilog assignment statements, 

one for each of half the affine functions.  The code is included in Appendix A.8.  There 

are corrections that must be made to this code because the program does not print leading 

zeros in hexadecimal numbers.  The code to generate affine functions uses a repetitive 

pattern.  There are missing zeros only in affine functions with the pattern made of 0xF 

and 0x0.  Because of the spaces left in between the patterns, it is easy to locate the 
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position for the missing zeros.  The user can add them in by hand and delete the space 

since it will cause an error.  When this is complete, the user can copy and paste the affine 

assign statements into the code results from above.   

2.  Parameterization 

Attempting to parameterize code so that programs work for multiple situations 

can save time, but it can also disrupt readability for future users.  For example, 

parameterized code was written to generate all Boolean functions given the number of 

variables n, the desired degree d.  The generation of only homogeneous functions can be 

done with a simple modification.  The generated function can then be transformed from 

ANF to TT and tested for nonlinearity.  When this code is parameterized, several sets of 

data can be tested without writing a new program; the user only needs to change the 

parameters.  The algorithm is explained here. 

The code given in Appendix A.6 shows a subroutine that calls three macros.  

Macro_1 creates a vector indicating the indexes in a function that have the specified 

degree.  If n=4 and d=2 the vector would be [0001011001101000] with the MSB of the 

vector on the left, index 15.  A bit in the vector that is a 1 represents the term in the ANF 

of the 4-variable function that has degree 2.  For non-homogeneous functions, another 

vector is created with a 1 in every place where the degree of the term is less than or equal 

to d.  Following the above example, the vector would be [0001011001111111].  The 

macro also returns lengthbuf, the result of 2 raised to either the number of ones in the first 

vector to generate homogeneous functions or the second vector to generate all functions 

of highest degree d.  The subroutine then calls macro_2 length-1 number of times using a 

counter.  For homogenous functions, the macro is called using a for loop as a counter for 

the input starting with 1 instead of zero since there must be at least one 1 in a term with 

the desired degree.  Macro_2 places each bit of the counter in a place in the new function 

where there is a 1 in the representative vector.  All other indices in the vector will receive 

a 0.  For non-homogeneous functions, there is a nested for loop where, for each bit in the 

first vector that is a 1, macro_2 is called length/2 times.  This will ensure that for each 

term of degree 2, all possible functions are formed.  The resulting function is in Algebraic 
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Normal Form.  It is converted to a truth table using the transeunt triangle and then sent to 

the nonlinearity module, macro_3, for testing.  The results are compiled into a histogram 

and the output is given in main.c.   

Unfortunately, the SRC-6 compiler gives the following error for n=6, d=1:  
--------------------------------------------------------------------------------- 
  Constraint                                | Requested  | Actual     | Logic  
                                            |            |            | Levels 
--------------------------------------------------------------------------------- 
* TS_CLOCK = PERIOD TIMEGRP "CLOCK" 10 ns H | 10.000ns   | 15.807ns   | 20    
  IGH 50%                                   |            |            |       
-------------------------------------------------------------------------------- 

The clock on the FPGA needs to run at 10 ns intervals.  In this example, the clock 

cannot run faster than 15.8 ns to get through all operations in a given clock period.  The 

code cannot be appropriately mapped.  Using the non-parameterized code, a simple 

mapper, the clock was able to get through its operations in 10 ns.  The following shows 

that the constraint is met: 
-------------------------------------------------------------------------------- 
  Constraint                                | Requested  | Actual     | Logic  
                                            |            |            | Levels 
-------------------------------------------------------------------------------- 
  TS_CLOCK = PERIOD TIMEGRP "CLOCK" 10 ns H | 10.000ns   | 9.989ns    | 9     
  IGH 50%                                   |            |            |       
-------------------------------------------------------------------------------- 

The above is from code written for n=6, d=2.  This lesson learned was 

disappointing because, without parameterization, it took much longer to write code and 

run tests.   

3. Circuit Minimization–Reducing Affine Function Comparators 

In attempting to find ways to make the search for bent functions more efficient, a 

look at affine functions was interesting.  In the definition of nonlinearity, it is specified 

that a test function must be compared to all the affine functions.  The reduction the 

number of affine functions actually compared to the test function can be critical to the 

design of a faster or smaller circuit.  In an attempt to find a trend on the nonlinearity of 

functions when they are compared to only a subset of affine functions the following 

results were discovered.  The nonlinearity was run on all 4-variable functions. 

Using only the five affine functions with one term 0, x1, x2, x3, x4 the results are 

shown in Table 9.  Although 6 is the maximum nonlinearity, many functions were 
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evaluated at higher nonlinearities, because the affine functions with lower Hamming 

distances to the test function were not evaluated.  Of the 19,941 functions found with 

nonlinearity 6, it is known that 896 of these are the actual bent functions. 

Nonlinearity Using only 5  
affine functions 

Actual Result 

0 5 32 

1 80 512 

2 600 3840 

3 2800 17920 

4 8681 28000 

5 17176 14336 

6 19941 896 

7 12345 0 

8 3546 0 

9 356 0 

10 6 0 

Table 9.   The SRC-6 Results of a Nonlinearity Circuit that Only Compares the Test 
Function Against Five Affine Functions for n=4 

A slight alteration can be made to evaluate nonlinearity based on the five affine 

functions listed above and their complements.  The results are listed in Table 10.  The 

circuit modification that adds the test of the complements of the five affine functions only 

very slightly increases the resources used, but the additional comparison in the count 

module reduces the frequency from 113.8 MHz to 100.8 MHz.  This frequency is still 

good for computations, but increasing n may cause problems. 
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Nonlinearity Using only 10  
affine functions 

Actual Result 

0 10 32 

1 157 512 

2 1174 3840 

3 5462 17920 

4 15480 28000 

5 23450 14336 

6 16045 896 

7 3665 0 

8 93 0 

Table 10.   The SRC-6 Results of a Nonlinearity Circuit that Only Compares the Test 
Function Against Five Affine Functions and their Complements for n=4 

Evaluating the above results leads to interesting observations.  It is known that 

there are only two distances between any bent function and any affine function.  For n=4 

these distances are 6 and 10.  Because the sum of the distance of f a  and f a  is 2n, 

if the distance between one affine function and a test function is 6, then the distance 

between the test function and the complement of that affine function must be 10.  Since 

we know the highest nonlinearity for even n, we could test all functions against only a 

certain set of affine functions and if the distance is equal to the highest nonlinearity or 2n-

(highest NL), then that function is kept and further tested; otherwise, it is not a bent 

function.  The group of functions kept is significantly reduced by this minimized circuit, 

as shown in Table 9.  The minimum distance between a test function and five affine 

functions was set as the nonlinearity.  In this choice of affine functions, it is known that if 

the test function is bent the distance will be 6.  From this, we know that all 896 bent 

functions are included in the set of 19,941 functions that were found.  Adding the 

complements of the five functions reduced the set of functions found with nonlinearity 6 

to 16,045.  The reduced circuit can reduce the group of functions that need to be tested 

against the entire group of affine functions, therefore reducing the amount of time needed 
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to test all functions.  The distance between all bent functions for any n and a certain 

group of affine functions is not always known; however, this idea can be used to reduce 

the circuit if a pattern can be found. 

Another way to further reduce the circuit is to test several functions at once.  

Since the nonlinearity circuit as it is now is too large to be able to fit multiple circuits on 

a single FPGA, a smaller circuit must be designed.  Using the idea of testing against only 

certain affine functions brings up an idea where 2n+1(the number of affine functions) test 

functions can begin testing on the same clock period, each function being Exclusive-Or’d 

with a different affine function.  If the distance is NLB or 2n-NLB , then the function 

should be further tested; otherwise, it is not a bent function and a new function should 

start the testing process.  This circuit seems complicated and was not built for this thesis.  

Future work on this idea could significantly improve Boolean function testing. 

4. Circuit Minimization–The Transeunt Triangle 

The full transeunt triangle uses many Exclusive-Or operations, and the SRC-6 

compiler cannot compile the trans_tri module for n>8.  The following is an explanation 

of the significant reduction of the number of required Exclusive-Or operators for this 

module.  From the proof of the transeunt triangle in Chapter III and Figure 5, it is shown 

that a transeunt triangle for n=k can be made from two triangles of size n=k-1.  This can 

be further reduced by forming the triangle using 2n-2 triangles of size n=2, where the 

triangle for n=2 is reduced from 6 Exclusive-Or operators to only 4.  This results in an 

even larger reduction in the number of Exclusive-Or operators required.  Consider Figure 

25.  There are two Exclusive-Or operators left off this triangle, but examination of the 

figure shows that they are redundant.  When moving from the first level of operations to 

the second level, the unnecessary coefficients are cancelled out.  In this reduced triangle, 

the redundant operations are left off. 

 

Figure 25.   Reduced Transeunt Triangle for n=2 

  

 

 

n = 2 
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This is a one third reduction in operators.  Following the logic of the proof in 

Chapter III, the triangle for n=3 can be formed by placing two n=2 triangles on the left 

side and adding 4 operators in between to connect all inputs to the upper triangle.  This is 

shown in Figure 26. 

 

 

 

 

 

 

       d0    d1      d2         d3      d4      d5    d6     d7 

Figure 26.   Reduced Transeunt Triangle for n=3 

The generalization of this reduction is that an n=k reduced triangle can be formed 

recursively using 2 n=k-1 triangles connected with 2n-1 operators.  Mathematically, the 

full transeunt triangle has the following number of Exclusive-Or operators: 

 

22 (2 1) 2 2
( ) (2 ,2)

2 2

4
( )  2-input exclusive-OR operators

2

n n n n
n

n

F n C

F n

  
  


 

The reduced triangle has:  

 

1

1

( ) 2 ( 1) 2  2-input exclusive-OR operators

Solving this Linear Recurrance Relation yields:

( ) 2

n

n

R n R n

R n n





  

 

 

As n increases, the reduction in Exclusive-Or operations increases significantly.  

Table 11 shows this for several n.  For example, the number of Exclusive-Or operators 

required for the full transeunt triangle for n=11 is about 2,000,000, where the number of 

operators required for the reduced triangle is only 11,264.  This is a 99.4% reduction.  
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n R(n) F(n) 

2 4 6 

3 12 28 

4 32 120 

5 80 496 

6 192 2,016 

7 448 8,128 

8 1,024 32,640 

9 2,304 130,816 

10 5,120 523,776 

11 11,264 2,096,128

12 24,576 8,386,560

Table 11.   The Difference in Number of Exclusive-Or Operators in the Reduced Circuit R(n) 
Versus the Full Circuit F(n) 

The full transeunt triangle for n=9 could not be compiled on the SRC-6.  The 

combination of two full n=8 triangles could be compiled to get an n=9 result, and the 

resources were listed as follows.   

  Number of Slice Flip Flops:       9,155 out of  67,584   13% 

  Number of 4 input LUTs:           6,413 out of  67,584    9% 

  Number of occupied Slices:        7,195 out of  33,792   21% 

  freq = 98.5 MHz 

The reduced triangle for n=9 compiled and the resources are listed below.  While 

the percent of Slice Flip Flops increases slightly, the number of LUTs and Slices are 

reduced.  Also the frequency is back above 100 MHz, the desired minimum.  The 

increase in flip flops is expected because the reduced triangle has a longer pipeline.  The 

flip flops are used to ensure data is clocked properly. 
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  Number of Slice Flip Flops: 11,658 out of  67,584 17% 

  Number of 4 input LUTs:  4,150 out of  67,584 6% 

  Number of occupied Slices: 6,717 out of  33,792 19% 

  freq = 101.9 MHz 

The reduced transeunt triangle can be used to convert functions with specific 

degree to a truth table, so that they may be studied.  The code is included in Appendix 

A.4.  At this time, the nonlinearity circuit on the SRC-6 cannot compute functions with 

more than 7 variables.  If the nonlinearity circuit can be optimized for greater n, the 

reduced transeunt triangle will help find more groups of Boolean functions. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCL USIONS 

A distribution of function groups based on their properties was accomplished in 

this thesis.  This work was limited by the capacity and speed of the Xilinx Virtex 2 

FPGA.  Table 12 shows a summary of results.   

n All Bent Homogeneous Bent ROTS Bent Homog ROTS Bent

4 216 896 96 28 26 8 8 2

5 232 27,387,136 2,111 883 28 36 10 3

6 264 5,425,430,528 1,114,238 13,918 214 48 32 2

 

n Dihedral Bent Homog Dihedral Bent Balanced ROTS Bal Bent Bal

4 26 8 8 2 12,870 (213.5) 6 0 

5 28 36 10 3 601,080,390 (229) 40 0 

6 213 16 26 2 1.83E+18 (260) 504  0 

Table 12.   Summary of Computational Results 

The table shows the total number of functions in a group followed by the number 

of bent functions in that group for each n.  The second to last column shows rotation 

symmetric functions according to balance.  The graphs shown in this thesis demonstrate 

that the SRC-6 is a good platform with which to test Boolean functions.  It also indicates 

that the code works correctly based on comparisons to previously known data.   

The implementation of the transeunt triangle was extremely beneficial for 

examining properties of functions and also for creating groups of functions.  Although the 

transeunt triangle is generally accepted as true, no proof was previously known; however, 

a proof is included in this thesis.  The use of the Synplicity Pro compiler for SRC-6 

programs was a great tool in examining the layout of the circuit designed by the user.  

Being able to trace the longest path helped to decide where to modify or simplify a 

circuit.  This led to significant improvements in circuit design, including the reduced 

transeunt triangle. 
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Included in the Appendices are several sets of code that will aid future students in 

continuing this research.  If the SRC-6 is upgraded or other groups of functions are 

predicted to have high nonlinearity, students can use the included code as a tool.  If 

further advances can be made, the nonlinearity circuit for n=10 or higher could be 

implemented.  

B. RECOMMENDATIONS  

Several ideas on how to improve upon the work presented in this thesis have been 

discussed.  There are several options to enhance the SRC-6’s effectiveness.  There are 

two programmable FPGAs on each MAP.  Currently, only one is used.  The issue with 

having two FPGAs communicate is that only one 64-bit value can be passed to and from 

the FPGAs at a time.  A 12-variable function is 4096 bits long, and would need 72 values 

passed across before the entire function could be reformed.  This can slow the pipelining 

process considerably.  An alternative is to implement separate instantiations of the same 

program, one on each FPGA.  This way, two functions per clock cycle could be tested 

instead of one.  In this case there is no communication between FPGAs.   

 Another possible improvement is to reduce the circuitry required to perform the 

same operations.  Possible ideas for this were discussed in this thesis, including not 

testing each function against all affine functions, but against only a subset.  Every 

reduction in the number of affine functions tested reduces the required circuit size.  Other 

possibilities include not counting all the ones in every function, or not testing certain 

groups for the minimum value, in the minimization circuit.  These ideas require a search 

for trends or patterns since the nonlinearity, as it is defined, would not be fully computed.  

For instance, the chosen subset of affine functions must be able to correctly predict the 

nonlinearity of the test functions, or perhaps give a range of its nonlinearity. 

 There are several possibilities in designing a circuit that tests several Boolean 

functions at one time.  One idea is a pipelined ladder, where functions are tested against 

one affine function, evaluated for possible high nonlinearity, then either dropped out or 

moved to the next affine function.  At every clock cycle, a new function would enter the 

ladder.  The pipeline would be much longer than the current circuit but could produce 

more functions of interest per clock cycle.  A similar idea is to develop a circular 
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pipeline, where 2n+1 functions are tested, each against a different affine function, 

evaluated for interest, then either dropped out or continued around the circle.  Every time 

a function drops out a new one will enter the circle in its place.  This circuit may be 

complicated but could result in a speed-up when testing larger groups of functions. 

 The addition of FPGAs with higher clock frequency into the SRC-6 would speed 

up the number of computations per second without having to change any code.  This 

would only be a slight increase, however, and not a permanent solution.  The ability to 

find smaller groups of test functions than the ones studied in this thesis would help 

increase the number of variables that can be tested.  The higher the number of variables 

in a function, the more truth table inputs there are, thus the more bit-by-bit operations that 

need to be completed per function.  This slows down the pipeline causing problems with 

frequency.  This can be examined and solutions found to accomplish each operation in 

only one clock cycle.  A longer pipeline may be needed here, but this does not hurt the 

overall throughput if one function per clock cycle can still be tested. 

 The circuitry for the transeunt triangle was reduced significantly in this thesis.  It 

can be further reduced considering the following.  It is common when generating specific 

groups of functions, especially in ANF, that several inputs will be zero.  For example, if 

generating only 6-variable functions with only terms of degree 3, at least 44 of the 64 

inputs will contain a zero (the number of terms that are not degree 3).  If converting from 

the ANF of a function to the truth table, and only functions with specific degree will be 

tested, several zeros will be input into the transeunt triangle in known locations.  

Depending on where the zeros are in the input, several reductions could be made.  For 

example, if bits 4, 5, 6, and 7 in an 8-bit input are all zero, then the result is just the 

transeunt triangle of inputs 0,1,2,3 two times since 0x x  .  This realization reduces 

the pipeline as well as the number of Exclusive-Or operators.  Further study of similar 

patterns based on the characteristics of the input can be made. 

 The overall recommendation is to 1) reduce the size of the circuitry required to 

run the program, i.e., the nonlinearity design or the transeunt triangle, 2) discover trends 
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in specific properties and test smaller groups of functions, 3) further pipeline the circuit 

so that longer Boolean functions can be tested, and 4) expand the capabilities of the SRC-

6 reconfigurable computer. 
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APPENDIX A. SRC-6 CODE 

The following includes code used to determine properties of functions including 

nonlinearity, degree, homogeneity, rotation symmetry, dihedral symmetry.  There are five 

major files required to run code on the SRC-6.  They are makefile, main.c, subr.mc, 

mymacro.v, info, and block.v.  The last three files are only required if a user macro is 

being implemented.  The makefile guides the compiler to the location of the files it needs.  

It is standard in most cases so only one sample is included here.  Some of the user 

defined macros are included without supporting files, when emphasis is on the macro.  

For code that is parameterized, only one instance is provided.   

A.1 NONLINEARITY COMPUTATION FOR N=6, DEGREE=2 

1. Main.c 

/*************************************************************************/ 
/*                                                                      */ 
/*  main.c  -C program to run an SRC-6E implementation of nonlin.v      */ 
/*                                                                      */ 
/*       Author:         Jennifer Shafer                                */ 
/*       Created:        April 3, 2009                                  */ 
/*       Last modified:  August 10, 2009                                */ 
/*                                                                      */ 
/*       Description:  This file calls the subroutine then returns the  */ 
/*         number of functions on 6 variables of degree 2 with each     */ 
/*         nonlinearity.                                                */ 
/*************************************************************************/ 
 
#include <map.h> 
#include <stdlib.h> 
#define NUMBER 28 //Highest nonlinearity for n=6 
 
//Initialization of subroutine 
void subr ( int64_t*, int64_t*, int ); 
 
// Main establishes arrays and sizes and calls the subroutine. 
// Using the output of the subroutine, the function displays the  
//  data for the user. 
int main (int argc, char *argv[]) { 
// Initialize variables   
  int mapnum = 0;   
  int i; 
  int64_t time_clk;  
  int64_t *b; 
       
// Allocate array output values 
  b  = (int64_t *) malloc (NUMBER * sizeof (int64_t));  
 
// Allocate the map  
  map_allocate (mapnum); 
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// Call subroutine subr.mc on the MAP. 
  subr ( b, &time_clk, mapnum); 
  
// Print out the number of clocks. 
  printf ("%lld clocks\n", time_clk); 
 
// Display output for the user. 
  for (i=0; i<NUMBER; i++){ 
    printf("Number of 6-variable functions of degree 2 and nonlinearity %d:  
%lld\n", i, b[i]);  
  } 
 
// Release the map resources 
  map_free (1); 
  exit(0); 

}//end of int main (int argc, char *argv[])  

2. Subr.mc 

/**************************************************************************/ 
/*                                                                       */ 
/*  subr.mc  - MAP subroutine to produce the nonlinearity of degree 2,   */ 
/*  6-variable functions.                                       */ 
/*                                                                       */ 
/*       Author:         Jennifer Shafer                                 */ 
/*       Created:        April 3, 2009                                   */ 
/*       Last modified:  August 10, 2009                                 */ 
/*                                                                       */ 
/*       Description:  This program calls the macro nl6n and creates     */ 
/*         a histogram of nonlinearity values to send back to main.c.    */ 
/*                                                                       */ 
/**************************************************************************/ 
 
#include <libmap.h> 
#define NUMBER 28  
// Subroutine runs on the map 
void subr (int64_t b[], int64_t *time, int mapnum) { 
 
// Declare OBM banks in SRC-6 
 OBM_BANK_B (B,  int64_t, NUMBER) 
// Declare variables         
 int64_t t0, t1; 
 uint64_t i0, i1; 
 uint64_t o0; 
 int i, sel; 
 uint64_t j, m; 
 int k=0; 
 int64_t H0[NUMBER], H1[NUMBER], H2[NUMBER], H3[NUMBER]; 
 
 read_timer(&t0); 
 
// The nested for loop creates two counters sent into the mapper section of  
//  nl6n.v to form a function of degree 2. 
 for (m=1; m<32768; m++){ 
  #pragma loop noloop_dep 
    for (j=0; j<128; j++){ 
 i0=m; 
 i1=j; 
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 my_nl6n(i0, i1, &o0); 
 // The nonlinearity computed becomes the index of a histogram.  The output 
 //  alternates between four arrays to ensure no extra clock cycles are needed  
 //  to read and write data. 
 sel = k&3; 
 if (sel==0) 
  H0[o0]++; 
 if (sel==1) 
  H1[o0]++; 
 if (sel==2) 
  H2[o0]++; 
 if (sel==3) 
  H3[o0]++; 
    } // end inner for loop 
 k++; 
  }// end outer for loop 
 
 // The four arrays are added together to form the final output 
  for (i=0; i<NUMBER; i++) 
     B[i]=H0[i]+H1[i]+H2[i]+H3[i]; 
 
 read_timer(&t1); 
 
 *time = (t1 - t0); 
 
// Return functions by DMAing TO the CPU 
 DMA_CPU (OBM2CM, B, MAP_OBM_stripe(1,"B"), b, 1, NUMBER*sizeof(int64_t), 0); 
 wait_DMA (0);  
 
} // End subr.mc 

3. Makefile 

# $Id: Makefile.template,v 1.13 2005/04/12 19:18:30 jls Exp $ 
# 
# Copyright 2003 SRC Computers, Inc.  All Rights Reserved. 
# 
#       Manufactured in the United States of America. 
# 
# SRC Computers, Inc. 
# 4240 N Nevada Avenue 
# Colorado Springs, CO 80907 
# (v) (719) 262-0213 
# (f) (719) 262-0223 
# 
# No permission has been granted to distribute this software 
# without the express permission of SRC Computers, Inc. 
# 
# This program is distributed WITHOUT ANY WARRANTY OF ANY KIND. 
# ---------------------------------- 
# User defines FILES, MAPFILES, and BIN here 
# ---------------------------------- 
FILES           = main.c 
MAPFILES        = subr.mc 
BIN             = main 
# ---------------------------------- 
# Multi chip info provided here 
# (Leave commented out if not used) 
# ---------------------------------- 
#PRIMARY        = <primary file 1>   <primary file 2> 
#SECONDARY      = <secondary file 1> <secondary file 2> 
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#CHIP2          = <file to compile to user chip 2> 
#----------------------------------- 
# User defined directory of code routines 
# that are to be inlined 
#------------------------------------ 
#INLINEDIR      = 
# ----------------------------------- 
# User defined macros info supplied here 
# 
# (Leave commented out if not used) 
# ----------------------------------- 
MACROS          = my_macro/nl6n.v 
MY_BLKBOX       = my_macro/blk.v 
MY_NGO_DIR      = my_macro 
MY_INFO         = my_macro/info 
# ----------------------------------- 
# Floating point macros selection 
# ----------------------------------- 
#FPMODE         = SRC_IEEE_V1 # Default SRC version IEEE 
#FPMODE         = SRC_IEEE_V2 # Size reduced SRC IEEE with 
                              # special rounding mode 
# ----------------------------------- 
# User supplied MCC and MFTN flags 
# ----------------------------------- 
MCCFLAGS        = -v -keep 
MFTNFLAGS       = -v 
# ----------------------------------- 
# User supplied flags for C & Fortran compilers 
# ----------------------------------- 
CC              = icc   # icc   for Intel cc for Gnu 
FC              = ifort # ifort for Intel f77 for Gnu 
#LD             = ifort -nofor_main # for mixed C and Fortran, main in C 
#LD             = ifort # for Fortran or C/Fortran mixed, main in Fortran 
LD              = icc   # for C codes 
MY_CFLAGS       = 
MY_FFLAGS       = 
MY_LDFLAGS      =       # Flags to include libs if needed 
# ----------------------------------- 
# VCS simulation settings 
# (Set as needed, otherwise just leave commented out) 
# ----------------------------------- 
#USEVCS         = yes   # YES or yes to use vcs instead of vcsi 
#VCSDUMP        = yes   # YES or yes to generate vcd+ trace dump 
# ----------------------------------- 
# MODELSIM simulation settings 
# (Set as needed, otherwise just leave commented out) 
# ----------------------------------- 
#USEMDL         = yes   # YES or yes to use modelsim instead of vcs/vcsi 
#USEMDLGUI      = yes   # YES or yes to use modelsim GUI interface 
#MDLDUMP        = yes   # YES or yes to generate vcd trace dump 
# ----------------------------------- 
# No modifications are required below 
# ----------------------------------- 
MAKIN   ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make 
include $(MAKIN) 
 

4. Blk.v  

/***************************************************************************/ 
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/*                                                                         */ 
/*  blk.v - black-box file that specifies input and output                 */ 
/*                                                                         */ 
/*       Author:         Jennifer Shafer                                   */ 
/*       Created:        May 15, 2009                                      */ 
/*       Last modified:  August 10, 2009                                   */ 
/*                                                                         */ 
/***************************************************************************/ 
 
module nl6n(val0, val1, CLK, fit0); 
 
// Initialize input and output variables for the compiler 
input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 */ ; 
input [14:0] val0;  
input [6:0] val1;  
output [6:0]fit0;  
 
endmodule 

5. Info 

//***************************************************************************/ 
//*                                                                         */ 
//*  info - info file to specify the input and output of the macros         */ 
//*                                                                         */ 
//*       Author:         Jennifer Shafer                                   */ 
//*       Created:        May 10, 2009                                      */ 
//*       Last modified:  August 10, 2009                                   */ 
//*                                                                         */ 
//***************************************************************************/ 
 
BEGIN_DEF "my_nl6n" 
 MACRO = "nl6n"; 
 STATEFUL = NO; 
 EXTERNAL = NO; 
 PIPELINED = YES; 
 LATENCY = 8; 
 
 INPUTS = 2: 
    I0 = INT 16 BITS (val0[14:0])       
          I1 = INT 16 BITS (val1[6:0])  
 ; 
  

OUTPUTS = 1: 
  O0 = INT 32 BITS (fit0[6:0]) 
 ; 
 IN_SIGNAL : 1 BITS "CLK" = "CLOCK"; 
 
END_DEF 
 
 
 
 

6. nl6n.v (After: Ref [16]) 

module min4(a, b, c, d, CLK, z); 
 input [6:0] a, b, c, d; 
 input CLK; 
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 output [6:0] z; 
 reg [6:0] z; 
  
 reg [6:0] alpha, beta; 
 
 always @(a, b, c, d) 
 begin 
  alpha <= (a<b)?a:b; 
  beta <= (c<d)?c:d; 
 end 
  
 always @(posedge CLK) 
 begin 
  z <= (alpha<beta)?alpha:beta; 
 end 
endmodule 
 
module OC (TT, Count); 
        input[3:0] TT;      //Only 4 of 8 bits are used. 
        output[2:0] Count;  //Only 3 of 8 bits are used. 
        wire[2:0] Count; 
 
      assign Count[0]=TT[3]^TT[2]^TT[1]^TT[0]; 
      assign Count[1]=(TT[3]&TT[2]|TT[3]&TT[1]|TT[3]&TT[0] 
|TT[2]&TT[1]|TT[2]&TT[0]|TT[1]&TT[0])&~(TT[3]&TT[2]&TT[1]&TT[0]); 
      assign Count[2]=TT[3]&TT[2]&TT[1]&TT[0]; 
endmodule 
 
module count64(TT, CLK, count); 
 input [63:0] TT; 
 input CLK; 
 output [6:0] count; 
 reg [6:0] count; 
 reg [6:0] cnt; 
 reg [4:0] counta, countb, countc, countd; 
 wire [2:0] count0, count1, count2, count3, count4, count5, 
count6, count7, count8, count9, count10, count11, count12, count13, 
count14, count15; 
   
 OC o0(TT[3:0], count0); 
 OC o1(TT[7:4], count1); 
 OC o2(TT[11:8], count2); 
 OC o3(TT[15:12], count3); 
 OC o4(TT[19:16], count4); 
 OC o5(TT[23:20], count5); 
 OC o6(TT[27:24], count6); 
 OC o7(TT[31:28], count7); 
 OC o8(TT[35:32], count8); 
 OC o9(TT[39:36], count9); 
 OC o10(TT[43:40], count10); 
 OC o11(TT[47:44], count11); 
 OC o12(TT[51:48], count12); 
 OC o13(TT[55:52], count13); 
 OC o14(TT[59:56], count14); 
 OC o15(TT[63:60], count15); 
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 always @(posedge CLK) 
 begin 
  counta <=count0+count1+count2+count3; 
  countb <=+count4+count5+count6+count7; 
  countc <=count8+count9+count10+count11; 
  countd <=count12+count13+count14+count15; 
  cnt <=counta+countb+countc+countd; 
  if(cnt<=32) count=cnt; 
  else count=64-cnt; 
 end 
endmodule 
 
module fit6n(TT, CLK, fit); 
 input [63:0] TT; 
 input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 */ ; 
 output [6:0] fit; 
 wire [6:0] fit; 
  
 wire [63:0] afns [127:0];  
 
 reg [63:0] res0, res1, res2, res3, res4, res5, res6, res7, res8, 
res9, res10, res11, res12, res13, res14, res15, res16, res17, res18, 
res19, res20, res21, res22, res23, res24, res25, res26, res27, res28, 
res29, res30, res31; 
 reg [63:0] res32, res33, res34, res35, res36, res37, res38, 
res39, res40, res41, res42, res43, res44, res45, res46, res47, res48, 
res49, res50, res51, res52, res53, res54, res55, res56, res57, res58, 
res59, res60, res61, res62, res63; 
  
 wire [6:0] counts0, counts1, counts2, counts3, counts4, counts5, 
counts6, counts7, counts8, counts9, counts10, counts11, counts12, 
counts13, counts14, counts15, counts16, counts17, counts18, counts19, 
counts20, counts21, counts22, counts23, counts24, counts25, counts26, 
counts27, counts28, counts29, counts30, counts31; 
 wire [6:0] counts32, counts33, counts34, counts35, counts36, 
counts37, counts38, counts39, counts40, counts41, counts42, counts43, 
counts44, counts45, counts46, counts47, counts48, counts49, counts50, 
counts51, counts52, counts53, counts54, counts55, counts56, counts57, 
counts58, counts59, counts60, counts61, counts62, counts63; 
   
 wire [6:0] min_1_0, min_1_1, min_1_2, min_1_3, min_1_4, min_1_5, 
min_1_6, min_1_7, min_1_8, min_1_9, min_1_10, min_1_11, min_1_12, 
min_1_13, min_1_14, min_1_15; 
 wire [6:0] min_2_0, min_2_1, min_2_2, min_2_3; 
 
 
assign afns[0]=64'h0;  
assign afns[1]=64'haaaaaaaaaaaaaaaa;  
assign afns[2]=64'hcccccccccccccccc;  
assign afns[3]=64'h6666666666666666;  
assign afns[4]=64'hf0f0f0f0f0f0f0f0;  
assign afns[5]=64'h5a5a5a5a5a5a5a5a;  
assign afns[6]=64'h3c3c3c3c3c3c3c3c;  
assign afns[7]=64'h9696969696969696;  
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assign afns[8]=64'hff00ff00ff00ff00;  
assign afns[9]=64'h55aa55aa55aa55aa;  
assign afns[10]=64'h33cc33cc33cc33cc;  
assign afns[11]=64'h9966996699669966;  
assign afns[12]=64'h0ff00ff00ff00ff0;  
assign afns[13]=64'ha55aa55aa55aa55a;  
assign afns[14]=64'hc33cc33cc33cc33c;  
assign afns[15]=64'h6996699669966996;  
assign afns[16]=64'hffff0000ffff0000;  
assign afns[17]=64'h5555aaaa5555aaaa;  
assign afns[18]=64'h3333cccc3333cccc;  
assign afns[19]=64'h9999666699996666;  
assign afns[20]=64'h0f0ff0f00f0ff0f0;  
assign afns[21]=64'ha5a55a5aa5a55a5a;  
assign afns[22]=64'hc3c33c3cc3c33c3c;  
assign afns[23]=64'h6969969669699696;  
assign afns[24]=64'h00ffff0000ffff00;  
assign afns[25]=64'haa5555aaaa5555aa;  
assign afns[26]=64'hcc3333cccc3333cc;  
assign afns[27]=64'h6699996666999966;  
assign afns[28]=64'hf00f0ff0f00f0ff0;  
assign afns[29]=64'h5aa5a55a5aa5a55a;  
assign afns[30]=64'h3cc3c33c3cc3c33c;  
assign afns[31]=64'h9669699696696996;  
assign afns[32]=64'hffffffff00000000;  
assign afns[33]=64'h55555555aaaaaaaa;  
assign afns[34]=64'h33333333cccccccc;  
assign afns[35]=64'h9999999966666666;  
assign afns[36]=64'h0f0f0f0ff0f0f0f0;  
assign afns[37]=64'ha5a5a5a55a5a5a5a;  
assign afns[38]=64'hc3c3c3c33c3c3c3c;  
assign afns[39]=64'h6969696996969696;  
assign afns[40]=64'h00ff00ffff00ff00;  
assign afns[41]=64'haa55aa5555aa55aa;  
assign afns[42]=64'hcc33cc3333cc33cc;  
assign afns[43]=64'h6699669999669966;  
assign afns[44]=64'hf00ff00f0ff00ff0;  
assign afns[45]=64'h5aa55aa5a55aa55a;  
assign afns[46]=64'h3cc33cc3c33cc33c;  
assign afns[47]=64'h9669966969966996;  
assign afns[48]=64'h0000ffffffff0000;  
assign afns[49]=64'haaaa55555555aaaa;  
assign afns[50]=64'hcccc33333333cccc;  
assign afns[51]=64'h6666999999996666;  
assign afns[52]=64'hf0f00f0f0f0ff0f0;  
assign afns[53]=64'h5a5aa5a5a5a55a5a;  
assign afns[54]=64'h3c3cc3c3c3c33c3c;  
assign afns[55]=64'h9696696969699696;  
assign afns[56]=64'hff0000ff00ffff00;  
assign afns[57]=64'h55aaaa55aa5555aa;  
assign afns[58]=64'h33cccc33cc3333cc;  
assign afns[59]=64'h9966669966999966;  
assign afns[60]=64'h0ff0f00ff00f0ff0;  
assign afns[61]=64'ha55a5aa55aa5a55a;  
assign afns[62]=64'hc33c3cc33cc3c33c;  
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assign afns[63]=64'h6996966996696996;  
 
 count64 c0(res0, CLK, counts0); 
 count64 c1(res1, CLK, counts1); 
 count64 c2(res2, CLK, counts2); 
 count64 c3(res3, CLK, counts3); 
 count64 c4(res4, CLK, counts4); 
 count64 c5(res5, CLK, counts5); 
 count64 c6(res6, CLK, counts6); 
 count64 c7(res7, CLK, counts7); 
 count64 c8(res8, CLK, counts8); 
 count64 c9(res9, CLK, counts9); 
 count64 c10(res10, CLK, counts10); 
 count64 c11(res11, CLK, counts11); 
 count64 c12(res12, CLK, counts12); 
 count64 c13(res13, CLK, counts13); 
 count64 c14(res14, CLK, counts14); 
 count64 c15(res15, CLK, counts15); 
 count64 c16(res16, CLK, counts16); 
 count64 c17(res17, CLK, counts17); 
 count64 c18(res18, CLK, counts18); 
 count64 c19(res19, CLK, counts19); 
 count64 c20(res20, CLK, counts20); 
 count64 c21(res21, CLK, counts21); 
 count64 c22(res22, CLK, counts22); 
 count64 c23(res23, CLK, counts23); 
 count64 c24(res24, CLK, counts24); 
 count64 c25(res25, CLK, counts25); 
 count64 c26(res26, CLK, counts26); 
 count64 c27(res27, CLK, counts27); 
 count64 c28(res28, CLK, counts28); 
 count64 c29(res29, CLK, counts29); 
 count64 c30(res30, CLK, counts30); 
 count64 c31(res31, CLK, counts31); 
 count64 c32(res32, CLK, counts32); 
 count64 c33(res33, CLK, counts33); 
 count64 c34(res34, CLK, counts34); 
 count64 c35(res35, CLK, counts35); 
 count64 c36(res36, CLK, counts36); 
 count64 c37(res37, CLK, counts37); 
 count64 c38(res38, CLK, counts38); 
 count64 c39(res39, CLK, counts39); 
 count64 c40(res40, CLK, counts40); 
 count64 c41(res41, CLK, counts41); 
 count64 c42(res42, CLK, counts42); 
 count64 c43(res43, CLK, counts43); 
 count64 c44(res44, CLK, counts44); 
 count64 c45(res45, CLK, counts45); 
 count64 c46(res46, CLK, counts46); 
 count64 c47(res47, CLK, counts47); 
 count64 c48(res48, CLK, counts48); 
 count64 c49(res49, CLK, counts49); 
 count64 c50(res50, CLK, counts50); 
 count64 c51(res51, CLK, counts51); 
 count64 c52(res52, CLK, counts52); 



 72

 count64 c53(res53, CLK, counts53); 
 count64 c54(res54, CLK, counts54); 
 count64 c55(res55, CLK, counts55); 
 count64 c56(res56, CLK, counts56); 
 count64 c57(res57, CLK, counts57); 
 count64 c58(res58, CLK, counts58); 
 count64 c59(res59, CLK, counts59); 
 count64 c60(res60, CLK, counts60); 
 count64 c61(res61, CLK, counts61); 
 count64 c62(res62, CLK, counts62); 
 count64 c63(res63, CLK, counts63); 
   
min4 m1_0(counts0, counts1, counts2, counts3, CLK, min_1_0); 
min4 m1_1(counts4, counts5, counts6, counts7, CLK, min_1_1); 
min4 m1_2(counts8, counts9, counts10, counts11, CLK, min_1_2); 
min4 m1_3(counts12, counts13, counts14, counts15, CLK, min_1_3); 
min4 m1_4(counts16, counts17, counts18, counts19, CLK, min_1_4); 
min4 m1_5(counts20, counts21, counts22, counts23, CLK, min_1_5); 
min4 m1_6(counts24, counts25, counts26, counts27, CLK, min_1_6); 
min4 m1_7(counts28, counts29, counts30, counts31, CLK, min_1_7); 
min4 m1_8(counts32, counts33, counts34, counts35, CLK, min_1_8); 
min4 m1_9(counts36, counts37, counts38, counts39, CLK, min_1_9); 
min4 m1_10(counts40, counts41, counts42, counts43, CLK, min_1_10); 
min4 m1_11(counts44, counts45, counts46, counts47, CLK, min_1_11); 
min4 m1_12(counts48, counts49, counts50, counts51, CLK, min_1_12); 
min4 m1_13(counts52, counts53, counts54, counts55, CLK, min_1_13); 
min4 m1_14(counts56, counts57, counts58, counts59, CLK, min_1_14); 
min4 m1_15(counts60, counts61, counts62, counts63, CLK, min_1_15); 
 
min4 m2_0(min_1_0, min_1_1, min_1_2, min_1_3, CLK, min_2_0); 
min4 m2_1(min_1_4, min_1_5, min_1_6, min_1_7, CLK, min_2_1); 
min4 m2_2(min_1_8, min_1_9, min_1_10, min_1_11, CLK, min_2_2); 
min4 m2_3(min_1_12, min_1_13, min_1_14, min_1_15, CLK, min_2_3); 
 
min4 m3_0(min_2_0, min_2_1, min_2_2, min_2_3, CLK, fit); 
 
  
 always @(posedge CLK) 
 begin 
  res0 <= TT ^ afns[0]; 
  res1 <= TT ^ afns[1]; 
  res2 <= TT ^ afns[2]; 
  res3 <= TT ^ afns[3]; 
  res4 <= TT ^ afns[4]; 
  res5 <= TT ^ afns[5]; 
  res6 <= TT ^ afns[6]; 
  res7 <= TT ^ afns[7]; 
  res8 <= TT ^ afns[8]; 
  res9 <= TT ^ afns[9]; 
  res10 <= TT ^ afns[10]; 
  res11 <= TT ^ afns[11]; 
  res12 <= TT ^ afns[12]; 
  res13 <= TT ^ afns[13]; 
  res14 <= TT ^ afns[14]; 
  res15 <= TT ^ afns[15]; 
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  res16 <= TT ^ afns[16]; 
  res17 <= TT ^ afns[17]; 
  res18 <= TT ^ afns[18]; 
  res19 <= TT ^ afns[19]; 
  res20 <= TT ^ afns[20]; 
  res21 <= TT ^ afns[21]; 
  res22 <= TT ^ afns[22]; 
  res23 <= TT ^ afns[23]; 
  res24 <= TT ^ afns[24]; 
  res25 <= TT ^ afns[25]; 
  res26 <= TT ^ afns[26]; 
  res27 <= TT ^ afns[27]; 
  res28 <= TT ^ afns[28]; 
  res29 <= TT ^ afns[29]; 
  res30 <= TT ^ afns[30]; 
  res31 <= TT ^ afns[31]; 
  res32 <= TT ^ afns[32]; 
  res33 <= TT ^ afns[33]; 
  res34 <= TT ^ afns[34]; 
  res35 <= TT ^ afns[35]; 
  res36 <= TT ^ afns[36]; 
  res37 <= TT ^ afns[37]; 
  res38 <= TT ^ afns[38]; 
  res39 <= TT ^ afns[39]; 
  res40 <= TT ^ afns[40]; 
  res41 <= TT ^ afns[41]; 
  res42 <= TT ^ afns[42]; 
  res43 <= TT ^ afns[43]; 
  res44 <= TT ^ afns[44]; 
  res45 <= TT ^ afns[45]; 
  res46 <= TT ^ afns[46]; 
  res47 <= TT ^ afns[47]; 
  res48 <= TT ^ afns[48]; 
  res49 <= TT ^ afns[49]; 
  res50 <= TT ^ afns[50]; 
  res51 <= TT ^ afns[51]; 
  res52 <= TT ^ afns[52]; 
  res53 <= TT ^ afns[53]; 
  res54 <= TT ^ afns[54]; 
  res55 <= TT ^ afns[55]; 
  res56 <= TT ^ afns[56]; 
  res57 <= TT ^ afns[57]; 
  res58 <= TT ^ afns[58]; 
  res59 <= TT ^ afns[59]; 
  res60 <= TT ^ afns[60]; 
  res61 <= TT ^ afns[61]; 
  res62 <= TT ^ afns[62]; 
  res63 <= TT ^ afns[63]; 
 end 
endmodule 
 
module mapn6d2(COUNTER, COUNTER1, ANF, CLK);  //all 
input [14:0] COUNTER; //counter should be 1 through(2^15)-1 to ensure 
at least one term of deg 2 is included 
input [6:0]COUNTER1; //counter should be 0 through (2^7)-1 
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input CLK; 
output[63:0] ANF; 
wire [14:0] COUNTER; 
reg [63:0] ANF; 
always @(posedge CLK) 
 begin 
  ANF[63] <= 1'b0; 
  ANF[62] <= 1'b0; 
  ANF[61] <= 1'b0; 
  ANF[60] <= 1'b0; 
  ANF[59] <= 1'b0; 
  ANF[58] <= 1'b0; 
  ANF[57] <= 1'b0; 
  ANF[56] <= 1'b0; 
  ANF[55] <= 1'b0; 
  ANF[54] <= 1'b0; 
  ANF[53] <= 1'b0; 
  ANF[52] <= 1'b0; 
  ANF[51] <= 1'b0; 
  ANF[50] <= 1'b0; 
  ANF[49] <= 1'b0; 
  ANF[48] <= COUNTER[14]; //2 
  ANF[47] <= 1'b0; 
  ANF[46] <= 1'b0; 
  ANF[45] <= 1'b0; 
  ANF[44] <= 1'b0; 
  ANF[43] <= 1'b0; 
  ANF[42] <= 1'b0; 
  ANF[41] <= 1'b0; 
  ANF[40] <= COUNTER[13]; //2 
  ANF[39] <= 1'b0; 
  ANF[38] <= 1'b0; 
  ANF[37] <= 1'b0; 
  ANF[36] <= COUNTER[12]; //2 
  ANF[35] <= 1'b0; 
  ANF[34] <= COUNTER[11]; //2 
  ANF[33] <= COUNTER[10]; //2 
  ANF[32] <= COUNTER1[6]; //1 
  ANF[31] <= 1'b0; 
  ANF[30] <= 1'b0; 
  ANF[29] <= 1'b0; 
  ANF[28] <= 1'b0; 
  ANF[27] <= 1'b0; 
  ANF[26] <= 1'b0; 
  ANF[25] <= 1'b0; 
  ANF[24] <= COUNTER[9]; //2 
  ANF[23] <= 1'b0; 
  ANF[22] <= 1'b0; 
  ANF[21] <= 1'b0; 
  ANF[20] <= COUNTER[8]; //2 
  ANF[19] <= 1'b0; 
  ANF[18] <= COUNTER[7]; //2 
  ANF[17] <= COUNTER[6]; //2 
  ANF[16] <= COUNTER1[5]; //1 
  ANF[15] <= 1'b0; 
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  ANF[14] <= 1'b0; 
  ANF[13] <= 1'b0; 
  ANF[12] <= COUNTER[5]; //2 
  ANF[11] <= 1'b0; 
  ANF[10] <= COUNTER[4]; //2 
  ANF[9] <= COUNTER[3]; //2 
  ANF[8] <= COUNTER1[4]; //1 
  ANF[7] <= 1'b0; 
  ANF[6] <= COUNTER[2];  //2 
  ANF[5] <= COUNTER[1]; //2 
  ANF[4] <= COUNTER1[3]; //1 
  ANF[3] <= COUNTER[0]; //2 
  ANF[2] <= COUNTER1[2]; //1 
  ANF[1] <= COUNTER1[1]; //1 
  ANF[0] <= COUNTER1[0]; //0 
end 
endmodule 
 
 
module trans_tri(IN, OUT, CLK); 
        parameter  n = 6;       // Number of variables. 
        localparam N = 2**n;    // Number of inputs and outputs.   
        output [N-1:0] OUT;     // OUT is the ANF of the input 
function. 
        input [N-1:0]  IN;      // IN is the specified truth table of 
the input function. 
        reg  [N-1:0] EXOR_array [N-1:0]; //The array in which the 
transeunt tringle is  
        input CLK;                      //  embedded. 
 
        integer i,j; 
 
        always @(posedge CLK) 
          begin 
     EXOR_array[0] = IN;      //Set left column of 
EXOR_array to IN. 
            for(i=1; i<N; i=i+1)     //Enumerate a level in the 
transeunt triangle. 
              begin 
                for(j=0; j<N; j=j+1) //Enumerate a position in the 
current level. 
                 begin:  level 
                       if(j <= i-1)  EXOR_array[i][j] = EXOR_array[i-
1][j]; 
                       else  EXOR_array[i][j]  =  EXOR_array[i-1][j] ^ 
EXOR_array[i-1][j-1]; 
                 end 
              end 
          end 
 
        assign OUT = EXOR_array[N-1]; 
 
endmodule 
 
module nl6n(val0, val1, CLK, fit0); 
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 input [14:0] val0; 
 input [6:0] val1; 
 input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 */ ; 
 output [6:0] fit0; 
 wire [6:0] fit0; 
 wire [63:0] val2; 
 wire [63:0] TT; 
  
 mapn6d2 A0(val0, val1, val2, CLK); 
 trans_tri B0(val2, TT, CLK); 
 fit6n f0(TT, CLK, fit0); 
 
endmodule 

A.2 CODE TO COMPUTE NONLINEARITY FOR N=4 AND N=5 

1. nonlin.v 

This code can be substituted for nl6n.v in A.1.6 and the other files can be slightly 

modified and used to run this program.  The appropriate mapper must also be added to 

generate functions of a specific degree.  An example mapper is shown in Appendix A.5.  

These functions must then be converted to truth tables using the trans_tri module shown 

in Appendix A.3 or A.4.  

//*******************************************************************// 
// nonlin.v  -  Compares a test function to all affine functions     // 
//              and gives the nonlinearity as the output.            // 
//                                                                   // 
// Created:       November 20, 2008                                  // 
// Last Modified: February 9, 2009                                   // 
// Author:        Jennifer Shafer                                    // 
// Description: nonlin receives a function as a truth table, then    // 
//    creates a string of the distances between the input and the    // 
//    affine functions, generates the correct number of ones_count   // 
//    modules and sends in the result of the exor operation and      // 
//    returns a long string of distances between the test function   // 
//    and each affine function the string is sent to the min module  // 
//    to determine the smallest distance in the string.  This        // 
//    distance is the nonlinearity of the test function.             //  
//*******************************************************************//  
 
module nonlin(TT, NL, CLK); 
 
// Define inputs, outputs, parameters, registers, and wires 
parameter n=4; 
parameter N=2**n;  
parameter NN=2**(n+1);  
input [N-1:0]TT; 
input CLK; 
output [7:0]NL; 
reg [NN*N-1:0]EXOR; 
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reg [NN*N-1:0]EXOR_REG; 
wire [(NN*(n+1))-1:0]MIN_IN; 
reg [N-1:0]IN_REG; 
reg [7:0] NL; 
wire [7:0] NL_REG; 
wire [N-1:0]TT; 
reg [(NN*(n+1))-1:0]MIN_REG; 
integer i,j; 
 
//Created a loop to clock different registers so timing is correct 
always @ (posedge CLK) 
begin 
IN_REG<=TT; 
MIN_REG<=MIN_IN; 
EXOR_REG<=EXOR; 
NL<=NL_REG; 
end 
 
// Enumerate affine functions and EXOR with test function 
always @ (*) 
begin 
  for (i =0; i<NN; i=i+1) 
  begin 
       for (j =0; j<N; j=j+1) 
       begin 
          EXOR[i*N+j]<=IN_REG[j]^(^(i&((j<<1)+1))); 
 end 
  end 
end 
 
// Generate the correct number of instantiations of Ones_count 
// Produce a long string of ones count values to be sent into MIN 
generate 
begin: CountOnes 
  genvar p; 
  for(p=0; p<NN; p=p+1) 
  begin: In1 
    Ones_Count I0 ( .TT(EXOR_REG[(p*N+(N-1))-:N]), 
.Count(MIN_IN[(((n+1)*p)+n)-:(n+1)])); 
  end 
end 
endgenerate 
 
// Call min to find the minimum of the distances 
// NL_REG is the minimum value of the ones count values and the 
//  nonlinearity of the input function 
min A0 ( .IN(MIN_REG), .OUT(NL_REG), .CLK(CLK)); 
 
endmodule 
 
module min(IN,OUT,CLK); 
//*******************************************************************// 
// min.v  -  Compares several n+1-bit binary values and delivers the // 
//            smaller one to the output.                             // 
//                                                                   // 
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// Created:       October 7, 2007                                    // 
// Last Modified: November 20, 2008                                  // 
// Author:        Jon T. Butler                                      // 
// Modified by:   Jennifer Shafer                                    // 
// Inputs:        IN- string of all values to compare                // 
// Outputs:       OUT- the minimum value                             // 
//*******************************************************************// 
 
parameter inputs=4; // Indicates number of variables in the function 
parameter n = inputs +1; // Indicates number of bits in the input to 
comparator 
parameter affine= 2**n; //Indicates number of affine functions created 
parameter length=n*affine; // Indicates length of input vector 
input [length-1:0] IN;  // Input is length of all inputs strung 
together 
reg [length-1:0] curr_IN[affine:0]; //Register in which to build a  
                                      'tree of comparators' 
output [7:0]  OUT; 
input CLK; 
integer i,j; //for for loops 
 always @(posedge CLK) 
          begin 
            curr_IN[0] <= IN; //Take in the whole input as the first 
                                 level of the tree 
            for(j=1; j<=n; j=j+1)  // Enumerate a level in the 
                                       comparison tree. 
              begin 
                for(i=0; i<2**(inputs+1-j); i=i+1) //Enumerate a 
                                         position in the current level. 
                 begin:  increment //Compare to values and store the  
                                      min in the next higher level. 
                    if(curr_IN[j-1][((2*i + 2)*n-1)-:n] < curr_IN[j-
1][((2*i + 1)*n-1)-:n]) 
       curr_IN[j][((i + 1)*n-1)-:n] <= curr_IN[j-1][((2*i + 
2)*n-1)-:n]; 
                    else  curr_IN[j][((i + 1)*n-1)-:n]  <= curr_IN[j-
1][((2*i + 1)*n-1)-:n]; 
                 end //end inner for loop 
              end  //end outer for loop 
          end //end always statement 
        assign OUT = curr_IN[n][(n-1)-:n]; //Out is the final value in 
the tree 
endmodule 
 
module Ones_Count (TT, Count); 
//*******************************************************************// 
// Ones_Count.v -  A program to count the 1s in an input            // 
//              // 
// Created:       August 18, 2007         // 
// Last Modified:  October 27, 2008         // 
// Author:        Jon T. Butler         // 
// Modified by:   Jennifer Shafer         // 
// Inputs:        TT  n-variable Truth Table 2^n bits                // 
// Outputs:       Count Number of 1s- n+1 bits                      // 
//                                                                   // 
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//*******************************************************************// 
        parameter n=4; 
   parameter B=2**n;  
        input[B-1:0] TT; 
        output[n:0] Count; 
        reg[n:0] Count; 
 
        always @(TT) 
           begin: CHECK_n 
               case(n)      // case statement for n=2 through n=6  
               2: Count = Count2(TT); 
     3: Count = Count2(TT[7:4]) + Count2(TT[3:0]); 
     4: Count = Count2(TT[15:12]) +Count2(TT[11:8]) + 
Count2(TT[7:4]) + Count2(TT[3:0]); 
     5: Count = Count2(TT[31:28]) +Count2(TT[27:24]) + 
Count2(TT[23:20]) + Count2(TT[19:16]) + Count2(TT[15:12]) 
+Count2(TT[11:8]) + Count2(TT[7:4]) + Count2(TT[3:0]); 
     default Count = Count2(TT); 
               endcase 
           end 
 
//---  The 1s count function - Count2 for 2-variable functions   ---// 
function [2:0] Count2; 
   input [3:0] AA; 
   begin: f2 
      Count2[0]=AA[3]^AA[2]^AA[1]^AA[0]; 
         
Count2[1]=(AA[3]&AA[2]|AA[3]&AA[1]|AA[3]&AA[0]|AA[2]&AA[1]|AA[2]&AA[0]|
AA[1]&AA[0])&~(AA[3]&AA[2]&AA[1]&AA[0]); 
      Count2[2]=AA[3]&AA[2]&AA[1]&AA[0]; 
   end 
endfunction 
endmodule 

A.3 FULL TRANSEUNT TRIANGLE VERILOG CODE 

This code executes every Exclusive-Or operation in the triangle even though 

some are redundant.  This module will compile up to n=8. 

//*******************************************************************// 
// trans_tri.v  -  A program to implement the transeunt triangle of  // 
//                  an n-variable function.                          // 
//              // 
// Created:       November 23, 2008         // 
// Last Modified: January 5, 2009         // 
// Author:        Jon T. Butler         // 
// Description:  This module uses a 2-D array to form the triangle   // 
//    The results of each EXOR operation are stored in the next      // 
//    higher row in the array.  The top row of the array upon        // 
//    completion of all operations becomes the output of the module. // 
//*******************************************************************// 
 
module trans_tri(IN, OUT, CLK); 
   parameter  n = 6;       // Number of variables. 
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   localparam N = 2**n;    // Number of inputs and outputs.   
   output [N-1:0] OUT;     // OUT is the ANF of the input  
                                   function. 
   input [N-1:0]  IN;      // IN is the specified truth table of the 
                           //  input function. 
   reg  [N-1:0] EXOR_array [N-1:0]; //The array in which the transeunt 
                                    // triangle is embedded. 
   input CLK;                      
   integer i,j; 
 
   always @(posedge CLK) 
    begin 
      EXOR_array[0] = IN; //Set left column of EXOR_array to IN. 
      for(i=1; i<N; i=i+1)     //Enumerate a level in the transeunt  

 //triangle. 
      begin 
      for(j=0; j<N; j=j+1) //Enumerate a position in the current level. 
      begin:  level 
       if(j <= i-1)  EXOR_array[i][j] = EXOR_array[i-1][j]; 
       else  EXOR_array[i][j]  =  EXOR_array[i-1][j] ^ EXOR_array[i-
1][j-1]; 
      end 
      end 
    end 
 
   assign OUT = EXOR_array[N-1]; 
endmodule 

A.4 REDUCED TRANSEUNT TRIANGLE VERILOG CODE 

This code reduces the number of operations greatly.  The code can work for n 

higher than 6 with the addition a new module for each additional n that calls the previous 

module twice.  It has been tested to work to at least n=9. 

module trans_tri(IN, OUT, CLK); 
      output [3:0] OUT;     // OUT is the ANF of the input function. 
      input [3:0]  IN;      // IN is the specified truth table of the 
input function. 
      reg  [3:0] EXOR_array [3:0]; // Used to form the triangle  
 reg OUT0; 
 reg OUTA; 
 reg OUT1; 
 reg OUT2; 
 reg OUT3; 
  input CLK; 
  
        always @(posedge CLK) 
          begin 
    EXOR_array[0]<=IN; 
  EXOR_array[1][0]<=EXOR_array[0][0]^EXOR_array[0][1]; 
  EXOR_array[2][0]<=EXOR_array[0][0]^EXOR_array[0][2]; 
  EXOR_array[2][1]<=EXOR_array[0][1]^EXOR_array[0][3]; 
  OUT3<=EXOR_array[2][0]^EXOR_array[2][1]; 
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  OUT2<=EXOR_array[2][0]; 
  OUT1<=EXOR_array[1][0];  
  OUTA<=EXOR_array[0][0]; 
  OUT0<=OUTA; 
     end 
        assign OUT = {OUT3, OUT2, OUT1, OUT0}; 
 
endmodule 
 
module n4tri(IN0, OUT0, CLK); 
output [15:0] OUT0;   
input [15:0]  IN0;   
input CLK;   
wire [15:0] TT0; 
reg [3:0] TT1; 
reg [7:0] TT2; 
reg [3:0] TT3; 
reg [3:0] TTA; 
wire [3:0] ANF0; 
wire [3:0] ANF1; 
wire [3:0] ANF2; 
wire [3:0] ANF3; 
integer i, k, j; 
 
assign TT0=IN0; 
always @(posedge CLK) 
begin 
  
 for(i=0; i<4; i=i+1) 
 begin 
  TT1[i]=TT0[i]^TT0[i+4]; 
 end 
  
 for(j=0; j<8; j=j+1) 
 begin 
  TT2[j]=TT0[j]^TT0[j+8]; 
 end 
 for(k=0; k<4; k=k+1) 
 begin 
  TT3[k]=TT2[k]^TT2[k+4]; 
 end 
 TTA<=TT0[3:0];  
end 
 
trans_tri A0(.IN(TTA), .OUT(ANF0), .CLK(CLK)); 
trans_tri A1(.IN(TT1), .OUT(ANF1), .CLK(CLK)); 
trans_tri A2(.IN(TT2[3:0]), .OUT(ANF2), .CLK(CLK)); 
trans_tri A3(.IN(TT3), .OUT(ANF3), .CLK(CLK)); 
 
assign OUT0={ANF3, ANF2, ANF1, ANF0};    
 
endmodule 
 
module n5tri(IN0, OUT0, CLK); 
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output [31:0] OUT0; 
input [31:0]  IN0; 
input CLK;   
reg [15:0] TT0; 
reg [15:0] TT1; 
 
wire [15:0] ANF0; 
wire [15:0] ANF1; 
integer i; 
 
 
n4tri B0(.IN0(TT0), .OUT0(ANF0), .CLK(CLK)); 
n4tri B1(.IN0(TT1), .OUT0(ANF1), .CLK(CLK)); 
always @(posedge CLK) 
begin 
  
 for(i=0; i<16; i=i+1) 
 begin 
  TT1[i]=IN0[i]^IN0[i+16]; 
 end 
 TT0<=IN0[15:0]; 
end 
 
assign OUT0={ANF1, ANF0};    
 
endmodule 
 
module n6tri(IN0, OUT0, CLK); 
output [63:0] OUT0; 
input [63:0]  IN0;  
input CLK;   
reg [31:0] TT0; 
reg [31:0] TT1; 
 
wire [31:0] ANF0; 
wire [31:0] ANF1; 
reg [31:0] ANF2; 
integer i; 
 
n5tri B0(.IN0(TT0), .OUT0(ANF0), .CLK(CLK)); 
n5tri B1(.IN0(TT1), .OUT0(ANF1), .CLK(CLK)); 
always @(posedge CLK) 
begin 
  
 for(i=0; i<32; i=i+1) 
 begin 
  TT1[i]=IN0[i]^IN0[i+32]; 
 end 
 TT0<=IN0[31:0]; 
end 
 
assign OUT0={ANF1, ANF0};    
 

endmodule 
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A.5 TWO EXAMPLE MAPPER MODULES 

The first module uses a counter from 1 to 220-1 to enumerate all homogeneous 

functions of degree 2 on 6 variables.  This function will be in ANF and need to be 

converted to a truth table using the trans_tri module in order to be tested for nonlinearity.  

The second module below uses two counters to enumerate all 6-variable functions of 

highest degree 2.  The first is the same counter used for homogeneous functions, and the 

second counter enumerates all functions with terms lower than degree 2.  The two 

counters can be sent to the module using nested for loops.  The call in the subroutine 

would look like the following: 

for (m=1; m<32768; m++){ 
 for (j=0; j<128; j++) 
 { 
  i0=m; 
  i1=j; 
  mapn6d2(i0, i1, &o0); 
 } 
} 

These modules can also be called from the nonlinearity module so the program 

only uses one macro call.  The module mapn6d2h creates all homogeneous functions of 

degree 2 for n=6.  The second module listed creates all functions of degree 2 for n=6.  

These functions will include terms of degree zero and one. 

module nl6n(counter1, counter2, CLK, NL); 
 input [19:0] counter1; 
 input [6:0] counter2; 
 input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 */ ; 
 output [6:0] NL; 
 wire [6:0] NL; 
 wire [63:0] ANF; 
 wire [63:0] TT; 
  
 mapn6d2 A0(counter1, counter2, ANF, CLK); 
 trans_tri B0(ANF, TT, CLK); 
 find_NL C0(TT, CLK, NL); 
 
endmodule 
 
 
module mapn6d2h(COUNTER, ANF);  //homogeneous 
input [19:0] COUNTER; //counter should be 1 through(2^20)-1 to ensure 
at least one term of deg 2 is included 
output[63:0] ANF; 
wire [19:0] COUNTER; 
 
always @(posedge CLK) 
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 begin 
  ANF[63] <= 1'b0; 
  ANF[62] <= 1'b0; 
  ANF[61] <= 1'b0; 
  ANF[60] <= 1'b0; 
  ANF[59] <= 1'b0; 
  ANF[58] <= 1'b0; 
  ANF[57] <= 1'b0; 
  ANF[56] <= 1'b0; 
  ANF[55] <= 1'b0; 
  ANF[54] <= 1'b0; 
  ANF[53] <= 1'b0; 
  ANF[52] <= 1'b0; 
  ANF[51] <= 1'b0; 
  ANF[50] <= 1'b0; 
  ANF[49] <= 1'b0; 
  ANF[48] <= COUNTER[14]; //2 
  ANF[47] <= 1'b0; 
  ANF[46] <= 1'b0; 
  ANF[45] <= 1'b0; 
  ANF[44] <= 1'b0; 
  ANF[43] <= 1'b0; 
  ANF[42] <= 1'b0; 
  ANF[41] <= 1'b0; 
  ANF[40] <= COUNTER[13]; //2 
  ANF[39] <= 1'b0; 
  ANF[38] <= 1'b0; 
  ANF[37] <= 1'b0; 
  ANF[36] <= COUNTER[12]; //2 
  ANF[35] <= 1'b0; 
  ANF[34] <= COUNTER[11]; //2 
  ANF[33] <= COUNTER[10]; //2 
  ANF[32] <= 1'b0; 
  ANF[31] <= 1'b0; 
  ANF[30] <= 1'b0; 
  ANF[29] <= 1'b0; 
  ANF[28] <= 1'b0; 
  ANF[27] <= 1'b0; 
  ANF[26] <= 1'b0; 
  ANF[25] <= 1'b0; 
  ANF[24] <= COUNTER[9]; //2 
  ANF[23] <= 1'b0; 
  ANF[22] <= 1'b0; 
  ANF[21] <= 1'b0; 
  ANF[20] <= COUNTER[8]; //2 
  ANF[19] <= 1'b0; 
  ANF[18] <= COUNTER[7]; //2 
  ANF[17] <= COUNTER[6]; //2 
  ANF[16] <= 1'b0; 
  ANF[15] <= 1'b0; 
  ANF[14] <= 1'b0; 
  ANF[13] <= 1'b0; 
  ANF[12] <= COUNTER[5]; //2 
  ANF[11] <= 1'b0; 
  ANF[10] <= COUNTER[4]; //2 
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  ANF[9] <= COUNTER[3]; //2 
  ANF[8] <= 1'b0; 
  ANF[7] <= 1'b0; 
  ANF[6] <= COUNTER[2];  //2 
  ANF[5] <= COUNTER[1]; //2 
  ANF[4] <= 1'b0; 
  ANF[3] <= COUNTER[0]; //2 
  ANF[2] <= 1'b0; 
  ANF[1] <= 1'b0; 
  ANF[0] <= 1'b0; 
end 
endmodule 
// [6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 5 4 
4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0] 
// Above is the degree of each term listed by index 
module mapn6d2(COUNTER, COUNTER1, ANF);  //all 
input [19:0] COUTNER; //counter should be 1 through(2^20)-1 to ensure 
at least one term of deg 2 is included 
input [6:0]COUNTER1; //counter should be 0 through (2^7)-1 
output[63:0] ANF; 
wire [19:0] COUNTER; 
 
always @(posedge CLK) 
 begin 
  ANF[63] <= 1'b0; 
  ANF[62] <= 1'b0; 
  ANF[61] <= 1'b0; 
  ANF[60] <= 1'b0; 
  ANF[59] <= 1'b0; 
  ANF[58] <= 1'b0; 
  ANF[57] <= 1'b0; 
  ANF[56] <= 1'b0; 
  ANF[55] <= 1'b0; 
  ANF[54] <= 1'b0; 
  ANF[53] <= 1'b0; 
  ANF[52] <= 1'b0; 
  ANF[51] <= 1'b0; 
  ANF[50] <= 1'b0; 
  ANF[49] <= 1'b0; 
  ANF[48] <= COUNTER[14]; //2 
  ANF[47] <= 1'b0; 
  ANF[46] <= 1'b0; 
  ANF[45] <= 1'b0; 
  ANF[44] <= 1'b0; 
  ANF[43] <= 1'b0; 
  ANF[42] <= 1'b0; 
  ANF[41] <= 1'b0; 
  ANF[40] <= COUNTER[13]; //2 
  ANF[39] <= 1'b0; 
  ANF[38] <= 1'b0; 
  ANF[37] <= 1'b0; 
  ANF[36] <= COUNTER[12]; //2 
  ANF[35] <= 1'b0; 
  ANF[34] <= COUNTER[11]; //2 
  ANF[33] <= COUNTER[10]; //2 
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  ANF[32] <= COUNTER1[6]; //1 
  ANF[31] <= 1'b0; 
  ANF[30] <= 1'b0; 
  ANF[29] <= 1'b0; 
  ANF[28] <= 1'b0; 
  ANF[27] <= 1'b0; 
  ANF[26] <= 1'b0; 
  ANF[25] <= 1'b0; 
  ANF[24] <= COUNTER[9]; //2 
  ANF[23] <= 1'b0; 
  ANF[22] <= 1'b0; 
  ANF[21] <= 1'b0; 
  ANF[20] <= COUNTER[8]; //2 
  ANF[19] <= 1'b0; 
  ANF[18] <= COUNTER[7]; //2 
  ANF[17] <= COUNTER[6]; //2 
  ANF[16] <= COUNTER1[5]; //1 
  ANF[15] <= 1'b0; 
  ANF[14] <= 1'b0; 
  ANF[13] <= 1'b0; 
  ANF[12] <= COUNTER[5]; //2 
  ANF[11] <= 1'b0; 
  ANF[10] <= COUNTER[4]; //2 
  ANF[9] <= COUNTER[3]; //2 
  ANF[8] <= COUNTER1[4]; //1 
  ANF[7] <= 1'b0; 
  ANF[6] <= COUNTER[2];  //2 
  ANF[5] <= COUNTER[1]; //2 
  ANF[4] <= COUNTER1[3]; //1 
  ANF[3] <= COUNTER[0]; //2 
  ANF[2] <= COUNTER1[2]; //1 
  ANF[1] <= COUNTER1[1]; //1 
  ANF[0] <= COUNTER1[0]; //0 
end 

endmodule 

A.6 PARAMETERIZED CODE TO GENERATE FUNCTIONS OF DEGREE D 

1. Macro_1.v 

Macro_1 creates two vectors the same length as the function.  Each bit in the 

vectors represents the degree of the corresponding term in the function.  The first vector, 

deg_vec1 contains a 1 if the corresponding term is degree d and a 0 otherwise.  The 

second vector, deg_vec2 contains a 1 if the corresponding term is degree d or less and a 0 

otherwise.  The output lengthbuf is the number of ones in deg_vec1.  Macro_1 and 

Macro_2 are alternatives to the mappers in Appendix A.5.  The mappers must be created 
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specifically for each n and d.  Macro_1 receives n and d as inputs.  Macro_1 and 

Macro_2, however, are too complex for n>5.   

module macro_1(n, d, buf1, buf2, lengthbuf, CLK); 
input [3:0] d; 
input [3:0] n; 
input CLK; 
output [31:0]buf1; 
output [31:0]buf2; 
output [31:0]lengthbuf; 
reg [31:0]deg_vec1; 
reg [31:0]deg_vec2; 
reg [31:0]buf1; 
reg [31:0]buf2; 
integer i; 
wire [3:0] n; 
wire [3:0] d; 
reg [31:0] length; 
reg [31:0] lengthbuf; 
reg [2:0] Count; 
reg [63:0] count1; 
reg [3:0] nbuf; 
reg [3:0] dbuf; 
 
// This section creates two vectors of length 2**n where 
// deg_vec1: each index indicates if the degree of that term is <= to d 
// deg_vec2: each index indicates if the degree of that term is = to d 
always@(posedge CLK) 
begin 
nbuf<=n; 
dbuf<=d; 
buf1<=deg_vec1; 
buf2<=deg_vec2; 
lengthbuf<=length; 
end 
 
always@(*) 
begin 
for (i=0; i<(2**nbuf); i=i+1) 
begin 
    Count = Count2(i[7:4])+Count2(i[3:0]); 
    if(Count<=dbuf)  // Creates vector for degree only 
         deg_vec1[i]=1'b1; 
         else deg_vec1[i]=1'b0; 
    if(Count==dbuf) //Creates vector for homogeneous functions 
          deg_vec2[i]=1'b1; 
           else deg_vec2[i]=1'b0; 
end  
end 
 
always@(buf1) 
begin 
//Count1 adds up the number of ones in DEG_VEC so you know how many 
functions you need to enumerate. 
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   count1= Count2(buf1[31:28]) + Count2(buf1[27:24]) + 
Count2(buf1[23:20]) + Count2(buf1[19:16])+Count2(buf1[15:12]) + 
Count2(buf1[11:8]) + Count2(buf1[7:4]) + Count2(buf1[3:0]); 
   length=2**count1; 
     
end //end always@(posedge CLK) 
 
//This function counts the number of ones in the input. 
function [2:0] Count2; 
input [3:0] AA; 
   begin: f2 
      Count2[0]=AA[3]^AA[2]^AA[1]^AA[0]; 
      
Count2[1]=(AA[3]&AA[2]|AA[3]&AA[1]|AA[3]&AA[0]|AA[2]&AA[1]|AA[2]&AA[0]|
AA[1]&AA[0])&~(AA[3]&AA[2]&AA[1]&AA[0]); 
      Count2[2]=AA[3]&AA[2]&AA[1]&AA[0]; 
    //  Count2[7:3]=5'b00000; 
   end 
endfunction 
 
endmodule 
          

2. Macro_2.v 

Macro_2 is called inside a for loop using the output of macro_1, the index of the 

for loop and a place in dec_vec1 that contains a one.  It forms a new Boolean function 

with degree d based on the inputs.  The for loop runs lengthbuf/2 times the first time it is 

called and cuts the length in half each time the for loop is reinitiated (when a new place in 

deg_vec1 contains a one.  The output of macro_2 is a function in ANF of degree d and 

that function is then sent to the transeunt triangle and then the TT result is sent to the 

nonlinearity module. 

module macro_2(index, deg_vec1, deg_vec2, i, fbuf, CLK); 
input [7:0] index; 
input [31:0]deg_vec1;   
input [31:0]deg_vec2;   
input [15:0] i; 
input CLK; 
output [31:0] fbuf; 
wire [7:0] index; 
wire [31:0] deg_vec1; 
wire [31:0] deg_vec2; 
wire [15:0] i; 
reg [31:0] f; 
reg [31:0] fbuf; 
reg [7:0] indexbuf; 
reg [31:0]deg_vec1buf; 
reg [31:0] deg_vec2buf; 
reg [15:0] ibuf; 
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integer j,k; 
always@(posedge CLK) 
begin 
  indexbuf<=index; 
  deg_vec1buf<=deg_vec1; 
  deg_vec2buf<=deg_vec2; 
  ibuf<=i; 
  fbuf<=f; 
end 
 
always@(*) 
begin 
 k=0; 
 for (j=31; j>=0; j=j-1) 
     begin 
    if(indexbuf ==j) 
           f[j]=1'b1;  //Ensure at least one term of degree d is a one 
        else if(deg_vec1buf[j] ==1'b0) 
                f[j]=1'b0;   //ensure all terms of degree > d are zero 
        else if((deg_vec2buf[j]==1'b1) && (j>indexbuf)) 
            f[j]=1'b0; 
    else  
      begin 
       f[j]=i[k];  //Fill in other bits with a counter 
       k=k+1; 
      end 
  end  
end //end always 

endmodule 

3. subr.mc 

/********************************************************************/ 
/*                                                                  */ 
/*  subr.mc  - MAP C subroutine to produce ANF homogeneous functions*/  
/*              of n variables of degree d.                         */ 
/*                                                                  */ 
/*       Author:         Jennifer Shafer                            */ 
/*       Created:        April 3, 2009                              */ 
/*       Last modified:  April 5, 2009                              */ 
/*                                                                  */ 
/*       Description:  This program calls two macros and outputs    */ 
/*                     ANF form of functions with degree d given n. */ 
/*                                                                  */ 
/********************************************************************/ 
 
#include <libmap.h> 
 
void subr (int64_t a[], int64_t b[], int64_t c[], int64_t *time, int 
mapnum) { 
 
// Declare OBM banks in SRC-6 
      OBM_BANK_A (A,  int64_t, 2) 
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 OBM_BANK_B (B,  int64_t, 15) 
      OBM_BANK_C (C,  int64_t, 2) 
 OBM_BANK_D (D,  int64_t, 100) 
 
 int64_t t0, t1, i, j, k, m, length; 
      int64_t n, deg, index, check_val; 
 int64_t deg_vec2, count1, f, NL; 
 int64_t idx, sel, max=0; 
 int16_t Hist0[]=0; //initialize the values to 0 
 int16_t Hist1[]=0; 
 int16_t Hist2[]=0; 
 int16_t Hist3[]=0; 
 
// Get input values by DMAing FROM the CPU 
        DMA_CPU (CM2OBM, A, MAP_OBM_stripe(1,"A"), a, 1, 
2*sizeof(int64_t), 0); 
        wait_DMA (0); 
 
// n and d are passed in from the main function 
 n= A[0]; 
 deg= A[1]; 
 
  read_timer(&t0); 
 
/////////////////////////////////////////////////////////////////////// 
// Macro1 takes n and d as inputs and outputs the following: 
//        deg_vec1: 2^n bits long, if bit is a one, the term is of  
//        degree d or less if bit is a zero, the term is of degree  
//         greater than d 
//        deg_vec2: 2^n bits long, if bit is a one, the term is of  
//        degree d if bit is a zero, the term is not of degree d 
//        count1:   the number of ones in deg_vec1 
//        count2:   the number of ones in deg_vec2 
///////////////////////////////////////////////////////////////////////  
 macro_1(n, deg, &deg_vec2, &length); 
 check_val= deg_vec2; 
/////////////////////////////////////////////////////////////////////// 
// For each term of degree d, call macro_2 with the following inputs 
and outputs: 
// Inputs: 
//    index: the next index of deg_vec2 that contains a '1' 
//    deg_vec1: the vector with ones at terms <= d 
//    i: the next number generated from the counter from count1  
// Outputs: 
//    f: the next function with degree d 
// Upon completion of this loop, all functions of degree d will be 
stored in B 
/////////////////////////////////////////////////////////////////////// 
 k=0; 
 for (j = 31; j >= 0; j--){ 
  if(check_val & 0x80000000){ 
   index=j; 
   length=length*0.5; 
   for (i=0; i<length; i++){ 
    macro_2(index, deg_vec2, i, &f); 
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    macro_3(f, &NL); 
    D[k]=NL; 
    k=k+1; 
   }//end for    
  }//end if 
  check_val=check_val<<1; 
 }//end for     
        C[0]=k; 
 
#pragma loop noloop_dep  //used for histogram 
  for(m=0; m<k; m++){ 
   idx=D[m]; 
   if(idx>max) max=idx; //set max to the highest NL 
found 
        sel = m & 3; 
           if (sel == 0) Hist0[idx]++; 
           if (sel == 1) Hist1[idx]++; 
           if (sel == 2) Hist2[idx]++; 
           if (sel == 3) Hist3[idx]++; 
  } //end for 
C[1]=max; 
 for(m=0; m<=max; m++){ //add the values back together to pass 
back to CPU 
  B[m]=Hist0[m]+ Hist1[m]+ Hist2[m]+Hist3[m]; 
 } //end for 
 
 
 read_timer(&t1); 
 
 *time = (t1 - t0); 
 
// Return functions by DMAing TO the CPU 
       DMA_CPU (OBM2CM, B, MAP_OBM_stripe(1,"B"), b, 1, 
15*sizeof(int64_t), 0); 
 wait_DMA (0); 
 DMA_CPU (OBM2CM, C, MAP_OBM_stripe(1,"C"), c, 1, 
2*sizeof(int64_t), 0); 
 wait_DMA (0); 
// DMA_CPU (OBM2CM, D, MAP_OBM_stripe(1,"D"), d, 1, 
100*sizeof(int64_t), 0);  
//        wait_DMA (0); 

} 
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A.7 CODE TO  GENERATE AND TES T RO TATION SYMMETRIC AND 
DIHEDRAL SYMMETRIC FUNCTIONS 

1. mapROTS.v 

//-------------------------------------------------------------------- 
// mapROTS.v- Takes in a number from a counter and outputs a rotation 
//  symmetric function 
// Created:       May 15, 2009 
// Last Modified: May 15, 2009 
// Author:        Jennifer Shafer 
//--------------------------------------------------------------------- 
 
module mapROTS(CLK, TT, ROTS_REG, ANF); 
parameter n=6; 
parameter N=2**n;  
input CLK; 
input [15:0]TT; 
output [N-1:0]ROTS_REG; 
output [N-1:0]ANF; 
wire [N-1:0]ANF; 
reg [N-1:0] ROTS; 
reg [N-1:0]ROTS_REG; 
reg [15:0]TT_reg; 
 
//Ensure all of TT goes into the Test_rs funcition together 
always @ (posedge CLK) 
begin 
TT_reg<=TT; 
ROTS_REG<=ROTS; 
end 
 
//get a ROTS function depending on n 
always @(TT_reg) 
           begin: sel_mod 
               case(n) 
        2: ROTS = Test_rs2(TT_reg); 
        3: ROTS = Test_rs3(TT_reg); 
        4: ROTS = Test_rs4(TT_reg); 
        5: ROTS = Test_rs5(TT_reg); 
        6: ROTS= Test_rs6(TT_reg); 
        default ; 
               endcase 
           end 
trans_tri I0 (.IN(ROTS_REG), .OUT(ANF), .CLK(CLK)); 
 
// The rest of this module is the function definitions for each n 
// The assign statements were generated from C-code  
 
function [N-1:0] Test_rs2; 
// for n=2 
input [N-1:0]RSi; //4 bits 
begin: rs2 
Test_rs2[0]= RSi[0]; 
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Test_rs2[1]= RSi[1]; 
Test_rs2[2]= RSi[1]; 
Test_rs2[3]= RSi[2]; 
end 
endfunction 
 
function [N-1:0] Test_rs3; 
// for n=3 
input [N-1:0]RSi; //8 bits 
begin: rs3 
Test_rs3[0]= RSi[0]; 
Test_rs3[1]= RSi[1]; 
Test_rs3[2]= RSi[1]; 
Test_rs3[3]= RSi[2]; 
Test_rs3[4]= RSi[1]; 
Test_rs3[5]= RSi[2]; 
Test_rs3[6]= RSi[2]; 
Test_rs3[7]= RSi[3]; 
end 
endfunction 
 
function [N-1:0] Test_rs4; 
// for n=4 
input [N-1:0]RSi; //16 bits 
begin: rs4 
 Test_rs4[0]= RSi[0]; 
 Test_rs4[1]= RSi[1]; 
 Test_rs4[2]= RSi[1]; 
 Test_rs4[3]= RSi[2]; 
 Test_rs4[4]= RSi[1]; 
 Test_rs4[5]= RSi[3]; 
 Test_rs4[6]= RSi[2]; 
 Test_rs4[7]= RSi[4]; 
 Test_rs4[8]= RSi[1]; 
 Test_rs4[9]= RSi[2]; 
 Test_rs4[10]= RSi[3]; 
 Test_rs4[11]= RSi[4]; 
 Test_rs4[12]= RSi[2]; 
 Test_rs4[13]= RSi[4]; 
 Test_rs4[14]= RSi[4]; 
 Test_rs4[15]= RSi[5]; 
end 
endfunction 
 
function [N-1:0] Test_rs5; 
// for n=5 
input [N-1:0]RSi; //32 bits 
begin: rs5 
 Test_rs5[0]= RSi[0]; 
 Test_rs5[1]= RSi[1]; 
 Test_rs5[2]= RSi[2]; 
 Test_rs5[3]= RSi[3]; 
 Test_rs5[4]= RSi[4]; 
 Test_rs5[5]= RSi[5]; 
 Test_rs5[6]= RSi[6]; 
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 Test_rs5[7]= RSi[7]; 
 Test_rs5[8]= RSi[2]; 
 Test_rs5[9]= RSi[8]; 
 Test_rs5[10]= RSi[9]; 
 Test_rs5[11]= RSi[10]; 
 Test_rs5[12]= RSi[6]; 
 Test_rs5[13]= RSi[11]; 
 Test_rs5[14]= RSi[12]; 
 Test_rs5[15]= RSi[13]; 
 Test_rs5[16]= RSi[1]; 
 Test_rs5[17]= RSi[14]; 
 Test_rs5[18]= RSi[8]; 
 Test_rs5[19]= RSi[15]; 
 Test_rs5[20]= RSi[5]; 
 Test_rs5[21]= RSi[16]; 
 Test_rs5[22]= RSi[11]; 
 Test_rs5[23]= RSi[17]; 
 Test_rs5[24]= RSi[3]; 
 Test_rs5[25]= RSi[15]; 
 Test_rs5[26]= RSi[10]; 
 Test_rs5[27]= RSi[18]; 
 Test_rs5[28]= RSi[7]; 
 Test_rs5[29]= RSi[17]; 
 Test_rs5[30]= RSi[13]; 
 Test_rs5[31]= RSi[19]; 
 
end 
endfunction 
 
function  [N-1:0] Test_rs6; 
// for n=6  
input [N-1:0]RSi; //64 bits 
begin: rs6 
Test_rs[0]= RSi[0]; 
Test_rs[1]= RSi[1]; 
Test_rs[2]= RSi[1]; 
Test_rs[3]= RSi[2]; 
Test_rs[4]= RSi[1]; 
Test_rs[5]= RSi[3]; 
Test_rs[6]= RSi[2]; 
Test_rs[7]= RSi[4]; 
Test_rs[8]= RSi[1]; 
Test_rs[9]= RSi[5]; 
Test_rs[10]= RSi[3]; 
Test_rs[11]= RSi[6]; 
Test_rs[12]= RSi[2]; 
Test_rs[13]= RSi[7]; 
Test_rs[14]= RSi[4]; 
Test_rs[15]= RSi[8]; 
Test_rs[16]= RSi[1]; 
Test_rs[17]= RSi[3]; 
Test_rs[18]= RSi[5]; 
Test_rs[19]= RSi[7]; 
Test_rs[20]= RSi[3]; 
Test_rs[21]= RSi[9]; 
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Test_rs[22]= RSi[6]; 
Test_rs[23]= RSi[10]; 
Test_rs[24]= RSi[2]; 
Test_rs[25]= RSi[6]; 
Test_rs[26]= RSi[7]; 
Test_rs[27]= RSi[11]; 
Test_rs[28]= RSi[4]; 
Test_rs[29]= RSi[10]; 
Test_rs[30]= RSi[8]; 
Test_rs[31]= RSi[12]; 
Test_rs[32]= RSi[1]; 
Test_rs[33]= RSi[2]; 
Test_rs[34]= RSi[3]; 
Test_rs[35]= RSi[4]; 
Test_rs[36]= RSi[5]; 
Test_rs[37]= RSi[6]; 
Test_rs[38]= RSi[7]; 
Test_rs[39]= RSi[8]; 
Test_rs[40]= RSi[3]; 
Test_rs[41]= RSi[7]; 
Test_rs[42]= RSi[9]; 
Test_rs[43]= RSi[10]; 
Test_rs[44]= RSi[6]; 
Test_rs[45]= RSi[11]; 
Test_rs[46]= RSi[10]; 
Test_rs[47]= RSi[12]; 
Test_rs[48]= RSi[2]; 
Test_rs[49]= RSi[4]; 
Test_rs[50]= RSi[6]; 
Test_rs[51]= RSi[8]; 
Test_rs[52]= RSi[7]; 
Test_rs[53]= RSi[10]; 
Test_rs[54]= RSi[11]; 
Test_rs[55]= RSi[12]; 
Test_rs[56]= RSi[4]; 
Test_rs[57]= RSi[8]; 
Test_rs[58]= RSi[10]; 
Test_rs[59]= RSi[12]; 
Test_rs[60]= RSi[8]; 
Test_rs[61]= RSi[12]; 
Test_rs[62]= RSi[12]; 
Test_rs[63]= RSi[13]; 
 
 
end 
endfunction 
 
endmodule 
 
module trans_tri(IN, OUT, CLK); 
        parameter  n = 6;       // Number of variables. 
        localparam N = 2**n;    // Number of inputs and outputs.   
        output [N-1:0] OUT;     // OUT is the ANF of the input 
function. 
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        input [N-1:0]  IN;      // IN is the specified truth table of 
the input function. 
        reg  [N-1:0] EXOR_array [N-1:0]; //The array in which the 
transeunt tringle is  
        input CLK;                      //  embedded. 
 
        integer i,j; 
 
        always @(posedge CLK) 
          begin 
     EXOR_array[0] = IN;      //Set left column of 
EXOR_array to IN. 
            for(i=1; i<N; i=i+1)     //Enumerate a level in the 
transeunt triangle. 
              begin 
                for(j=0; j<N; j=j+1) //Enumerate a position in the 
current level. 
                 begin:  level 
                       if(j <= i-1)  EXOR_array[i][j] = EXOR_array[i-
1][j]; 
                       else  EXOR_array[i][j]  =  EXOR_array[i-1][j] ^ 
EXOR_array[i-1][j-1]; 
                 end 
              end 
          end 
 
        assign OUT = EXOR_array[N-1]; 
 

endmodule 

2. subr.mc 

/********************************************************************/ 
/*                                                                  */ 
/*  subr.mc  - Subroutine to produce degree, NL and homog of a      */      
/*              function.                                           */ 
/*                                                                   */ 
/*       Author:         Jennifer Shafer                             */       
/*    Created:        May 2009                                    */ 
/*       Last modified:  July 7, 2009                                */ 
/*                                                                   */ 
/*       Description:  This program calls two macros and finds homog */ 
/*                     and degree using C-code.                      */ 
/*                                                                   */ 
/*********************************************************************/ 
 
#include <libmap.h> 
#define length 16384 //number of ROTS functions for n=6 
 
void subr (int64_t a[], int64_t b[], int64_t c[], int64_t d[], int64_t 
e[], int64_t f[], int64_t *time, int mapnum) { 
 
// Declare two OBM banks in SRC-6, one to store two number concatenated 
//    together and the other to store the minimum of the two. 
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      OBM_BANK_A (A,  int64_t, length) // Stores counter to mapper 
      OBM_BANK_B (B,  int64_t, length) // Stores degree 
 OBM_BANK_C (C,  int64_t, length) // Stores NL 
 OBM_BANK_D (D,  int64_t, length) // Stores homogeneity 
      OBM_BANK_E (E,  int64_t, length) // Store balance 
 OBM_BANK_F (F,  int64_t, length) // Stores truth table 
 
      int t0, t1, i, j, k, flag, cnt; 
      int check1, check2, ones_count, count; 
 uint64_t test, bithigh; 
 uint64_t out1, out2; 
 
DMA_CPU (CM2OBM, A, MAP_OBM_stripe(1,"A"), a, 1, 
length*sizeof(int64_t), 0); 
wait_DMA (0); 
read_timer(&t0); 
 
        for (i = 0; i < length; i++){ 
      E[i]=0; 
      mapROTS (A[i], &out1, &out2);  //Returns the ANF and TT of 
function  
      F[i]=out1; //TT form  
      popcount_64(out1, &count); 
      if(count==32) E[i]=1; 
      my_nl6n(out1, &C[i]); //Returns NL 
           // D[i] is 1 for homogeneous 0 for non-homogeneous 
      // B[i] is the degree of the function   
      D[i]=1; 
      B[i]=0; 
      check1=0; 
      check2=0; 
      flag=1; 
      ones_count=0; 
      test=out2; 
  //for loop checks each bit in the function one at a time 
        for (j = 0; j <= 63; j++){ 
  bithigh= (0x0000000000000001 & test); 
   if(bithigh != 0){ 
   cnt=j; 
   popcount_32(cnt, &ones_count); //finds the degree of 
the bit 
   // Set first degree in a degree tracker 
   if(flag){  
    check1=ones_count; 
    flag=0; 
    } 
   // If any degrees are different, the function is not 
homogeneous 
   if(ones_count != check1) D[i]=0; 
   // Sets degree to highest degree found in function 
   if(ones_count > check2){  
    B[i]=ones_count; 
    check2=ones_count; 
    } 
  } 
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  test=test>>1; 
      } 
} 
  
 read_timer(&t1); 
 *time = (t1 - t0); 
 
// Return 16 Min values by DMAing TO the CPU 
DMA_CPU (OBM2CM, B, MAP_OBM_stripe(1,"B"), b, 1, 
length*sizeof(int64_t), 0); 
wait_DMA (0); 
DMA_CPU (OBM2CM, C, MAP_OBM_stripe(1,"C"), c, 1, 
length*sizeof(int64_t), 0); 
wait_DMA (0); 
DMA_CPU (OBM2CM, D, MAP_OBM_stripe(1,"D"), d, 1, 
length*sizeof(int64_t), 0); 
wait_DMA (0); 
DMA_CPU (OBM2CM, E, MAP_OBM_stripe(1,"E"), e, 1, 
length*sizeof(int64_t), 0); 
wait_DMA (0); 
DMA_CPU (OBM2CM, F, MAP_OBM_stripe(1,"F"), f, 1, 
length*sizeof(int64_t), 0); 
wait_DMA (0); 
} 

A.8 CODE TO GENERATE ALL AFFINE FUNCTIONS 

This module generates every affine function for n=8.  The code can be modified 

for other n by changing the parameter N in the module to 2n and the number of outputs 

should be 2n/64.  This code can also be used to generate half of the affine functions.  

Every affine function has a complement that is also an affine function.  To do this, a 

change is made in the subroutine shown in the next section. 

1. genaff.v 

module genaff(IN, OUT1, OUT2, OUT3, OUT4, CLK); 
input [31:0]IN; 
output [63:0]OUT1; 
output [63:0]OUT2; 
output [63:0]OUT3; 
output [63:0]OUT4; 
input CLK; 
reg [255:0]TEMPOUT; 
reg [63:0]OUT1; 
reg [63:0]OUT2; 
reg [63:0]OUT3; 
reg [63:0]OUT4; 
wire [31:0]IN; 
integer j; 
parameter N=256; 
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always @ (*) 
begin 
       for (j =0; j<N; j=j+1) 
       begin 
          TEMPOUT[j]<=(^(IN&((j<<1)+1))); 
 end 
end 
 
always @ (posedge CLK) 
begin  
 OUT1<= TEMPOUT[255:192]; 
 OUT2<= TEMPOUT[191:128]; 
 OUT3<= TEMPOUT[127:64]; 
 OUT4<= TEMPOUT[63:0]; 
end 

endmodule 

2. subr.mc 

The subroutine calls the module 2n+1 times for all the affine functions or 2n times 

for half the affine functions.  Length is defined using a define statement and should be 

2n+1.  If generating only half the affine functions, the subroutine must be modified by 

changing the subroutine for loop to increment the index by two instead of one.  This is 

noted in the subroutine code.  Also, the length of vector A decreases by half. 

#include <libmap.h> 
#define length 512 
void subr (int64_t a[], int64_t *time, int mapnum) { 
 
// Declare OBM banks in SRC-6 
      OBM_BANK_A (A, int64_t, 4*length) 
 int64_t t0, t1; 
 int i; 
 
 read_timer(&t0); 
// To get only half the affine functions, change i++ to i=i+2 and 
change each i inside the brackets of A[] in the macro call to i/2 
 for (i=0; i<length; i++){  
 genaff(i, &A[i*4], &A[i*4+1], &A[i*4+2], &A[i*4+3]); 
 } 
  read_timer(&t1); 
  *time = (t1 - t0); 
 
// Return functions by DMAing TO the CPU 
DMA_CPU (OBM2CM, A, MAP_OBM_stripe(1,"A"), a, 1, 
4*length*sizeof(int64_t), 0); 
wait_DMA (0); 
} 
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3. main.c 

The main file composes the output to be printed in the form of Verilog assign 

statements.  Because printing a hexadecimal number leaves off leading zeros, they must 

be added in by hand.  The spaces added into the output make it easy to determine where 

zeros were left off.  They are only seen in functions with the pattern using 0x0 and 0xF.  

The spaces must then be removed to prevent errors when inserting the code into the final 

module.  If printing only half the affine functions, the parameter length would be 2n. 

#include <map.h> 
#include <stdlib.h> 
#define length 512 //2^(n+1) 
//Initialization of subroutine 
void subr ( int64_t*, int64_t*, int ); 
 
int main (int argc, char *argv[]) { 
  int mapnum = 0;  // Indicates which map to use 
  int64_t time_clk; //Reads internal clock 
  int64_t *a; // Input variables for the subroutine call 
  int i;     
 
// Allocate array of TT values, and array of ANF values 
    a     = (int64_t *) malloc (4*length* sizeof (int64_t)); 
    map_allocate (1); 
//  Call subroutine subr.mc on the MAP. 
    subr (a, &time_clk, mapnum); 
 
//  Print out the number of clocks. 
 printf ("%lld clocks\n", time_clk); 
 
for (i=0; i<length; i++){    
 printf("assign afns[%i]=256'h%llx %llx %llx %llx; \n", i, a[4*i], 
a[4*i+1], a[4*i+2], a[4*i+3]); 
    }    
    map_free (1); 
    exit(0); 
    }//int main (int argc, char *argv[])  
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APPENDIX B. C-CODE 

B.1 C-CODE TO GENERATE ROTATION SYMMETRIC MAPPER 

/*********************************************************************/ 
/*  createROTS.c  - Code to generate assign statements for Verilog   */ 
/*       Author:         Jennifer Shafer                             */ 
/*       Created:        October 31, 2008                            */ 
/*       Last modified:  February 23, 2009                           */ 
/*       Description: Takes a series of binary values and determines */ 
/*        which are rotational symmetric and prints assign statements*/ 
/*        for Verilog code to create a correct truth table.          */ 
/*********************************************************************/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <stdint.h> 
 
main() 
{ 
  int n=6; //number of variables 
  int i,j; //used in for loops 
  int length=64; //length of truth table, 2^n  
  int counter=0; 
  int type; 
  int RSi[length]; //vector to store number of ROTS 
 
  // Assign all values in RSi vector to 255 
for(i=0; i<length; i++) RSi[i]=255; 
 
// For each value in the list 0 -> 7 if the RSi value is 255, give the 
new ROTS a number and find the rest of them 
for (i=0; i<length; i++) 
  { if(RSi[i]==255){ 
// For each time you need to shift find the new value in the list and 
number it 
 for ( j=0; j<n; j++){ 
  type = shift(i, j, n); //Call the shift function and return 
the shifted value 
  RSi[type]=counter; 
  } 
 counter++; // If a new number has been assign to a series of 
ROTS, increment the number 
 } 
 } 
// Print the assign statements to use in Verilog code 
for (i=0; i<length; i++){ 
printf("\nTest_rs6[%i]= RSi[%i];", i, RSi[i]); 
   } 
} 
 
// k is number to shift (0 through length), m is number of times to 
shift (0 through n-1), n is number of variables 
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 int shift(int k, int m, int n) 
  { 
   unsigned int lower, upper, new;  //8-bit values 
 lower=k<<m; 
 upper=lower>>n; 
 new=lower | upper; //To create rotational shift 
 new=new<<(32-n); // To clear number in bits above n 
 new=new>>(32-n); 
 return(new); //Return the rotationally shifted number 
  } 

B.2 C-CODE TO GENERATE DIHEDRAL SYMMETRIC MAPPER 

/*********************************************************************/ 
/*  createDihedral.c  - Generates the assign statements for Verilog  */  
/*                                                                   */  
/*       Author:         Jennifer L. Shafer                          */ 
/*       Created:        April 6, 2009                               */  
/*       Last modified:  June 2, 2009                                */  
/*       Description: Takes a series of binary values and determines */  
/*        which are dihedral symmetric and prints assign statements  */  
/*        for Verilog code to create a correct truth table.          */  
/*********************************************************************/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <stdint.h> 
 
main() 
{ 
  int n=8; //number of variables 
  int i,j; //used in for loop 
  int length=256; //length of truth table, 2^n 
  int counter=0; 
  int type1, type2; 
  int RSi[length]; //vector to store number of ROTS 
 
// Assign all values in RSi vector to 260 
for(i=0; i<length; i++)  RSi[i]=260; 
 
// For each value in the list, if the RSi value is 260, give the new 
ROTS a number and find the other one 
for (i=0; i<length; i++){ 
 if(RSi[i]==260){ 
  RSi[i]=counter; 
  for ( j=0; j<n; j++){ 
   type1 = shift(i, j, n); 
   RSi[type1]=counter; 
  type2 = reverse(type1, n); //Call the reverse function and 
return the reversed value 
  RSi[type2]=counter; 
  } 
  counter++; // If a new number has been assign to a series 
of ROTS, increment the number 

} 
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} 
// Print the assign statements to use in Verilog code 
for (i=0; i<length; i++){ 
printf("\nassign TT[%i]= RSi[%i];", i, RSi[i]); 
} 
   printf("\n"); 
} 
 
// k is number to shift (0 through length), m is number of times to 
shift (0 through n-1), n is number of bits n 
int shift(int k, int m, int n) 
  { 
 unsigned int lower, upper, new;  //8-bit values 
 lower=k<<m; 
 upper=lower>>n; 
 new=lower | upper; //To create rotational shift 
 new=new<<(32-n); // To clear number in bits above n 
 new=new>>(32-n); 
 return(new); //Return the rotation shifted number 
  } 
 
// k is number to reverse (0 through length), n is number of bits n 
int reverse(int k, int n) 
  { 
   int lower, new, i, lsb, b;  //8-bit values 
 lower=k; 
 new=0; 
 for(i=0; i<n; i++){ 
 lsb=lower & 0x01; 
 lower=lower>>1; 
 b=lsb<<(n-(i+1)); 
 new=new | b; 
 } 
 return(new); //Return the dihedrally shifted number 
  } 

B.3 C-CODE TO GENERATE VERILOG MODULES FOR NONLINEARITY 

This code works for even n.  The modules min2, min4 and OC are the same for 

any n and should be added to the output of this code.  The code can be modified to 

produce the code needed if only enumerating half the affine functions and then finding 

the minimum of the complement of each affine function by subtracting the count from 2n.  

The lower of the two is the minimum of both the affine functions tested and its 

complement.  See Appendix A.1 for an example. 

#define n 6 
#define N 64 //2^n 
#define M N/4 
int main () { 
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int j; 
int i; 
int k; 
int temp, min; 
char a; 
 
printf(" module count(TT, CLK, count);\n"); 
printf(" input [%i:0] TT;\n", (N-1)); 
printf(" input CLK;\n"); 
printf(" output [%i:0] count;", n);  
printf(" reg [%i:0] count;\n\n", n); 
printf(" reg [%i:0] cnt;\n\n", n); 
 
a=0x41; 
for (j=0; j<(M/16); j++){ 
 if(a==0x59) a=0x61; 
 printf("reg [4:0] count%c, count%c, count%c, count%c;\n", a, a+1,a+2, 

a+3);  
 a=a+4;  
} 
printf("\n"); 
i=0; 
for (j=0; j<(M/16); j++){ 
 i=j*16; 
 printf("wire [2:0] count%i, count%i, count%i, count%i, count%i, count%i, 

count%i, count%i, count%i, count%i, count%i, count%i, count%i, count%i, count%i, 
count%i;\n", i, i+1,i+2, i+3, i+4, i+5, i+6, i+7, i+8, i+9, i+10, i+11, i+12, i+13, i+14, 
i+15);  

} 
printf("\n"); 
for (j=0; j<M; j++){ 
 printf(" OC o%i(TT[%i:%i], count%i);\n", j, (j*4)+3, (j*4), j); 
} 
printf("\n"); 
printf(" always@(posedge CLK)\n begin\n"); 
a=0x41; 
for(j=0; j<(M/4); j++){ 
 if(a==0x59) a=0x61; 
 i=j*4; 
 printf("  count%c <= count%i+ count%i+ count%i+ count%i;\n", a, 

i, i+1, i+2, i+3); 
 a=a+1; 
} 
printf("  cnt <= "); 
a=0x41; 
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for (j=0; j<(M/16); j++){ 
 if(a==0x59) a=0x61; 
 if(j==(M/16-1)) printf("count%c+ count%c+ count%c+ count%c ", a, a+1, 

a+2, a+3);  
 else printf("count%c+ count%c+ count%c+ count%c+ ", a, a+1, a+2, 

a+3);  
 a=a+4;  
} 
printf(";\n"); 
printf("  if(cnt<=%i) count=cnt;\n", N/2); 
printf("  else count=%i-cnt;\n", N); 
printf(" end\n endmodule\n"); 
 
printf(" module fit%in (TT, CLK, fit);\n", n); 
printf(" input [%i:0] TT;\n", (N-1)); 
printf(" input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 *;\n"); 
printf(" output [%i:0] fit; \n wire [%i:0]fit;\n", n, n); 
printf(" wire [%i:0] afns [%i:0];\n\n", (N-1), (N-1)); 
 
i=0; 
for (j=0; j<N/32; j++){ 
 printf("reg [%i:0] res%i, res%i, res%i, res%i, res%i, res%i, res%i, res%i, 

res%i, res%i, res%i, res%i, res%i, res%i, res%i, res%i, res%i, res%i, res%i, res%i, res%i, 
res%i, res%i, res%i, res%i, res%i, res%i, res%i, res%i, res%i, res%i, res%i;\n", (N-1), i, 
i+1,i+2, i+3, i+4, i+5, i+6, i+7, i+8, i+9, i+10, i+11, i+12, i+13, i+14, i+15, i+16, 
i+17,i+18, i+19, i+20, i+21, i+22, i+23, i+24, i+25, i+26, i+27, i+28, i+29, i+30, i+31);  

 i=i+32; 
} 
printf("\n"); 
 
i=0; 
for (j=0; j<N/32; j++){ 
 printf("wire [%i:0] counts%i, counts%i, counts%i, counts%i, counts%i, 

counts%i, counts%i, counts%i, counts%i, counts%i, counts%i, counts%i, counts%i, 
counts%i, counts%i, counts%i, counts%i, counts%i, counts%i, counts%i, counts%i, 
counts%i, counts%i, counts%i, counts%i, counts%i, counts%i, counts%i, counts%i, 
counts%i, counts%i, counts%i;\n", n, i, i+1,i+2, i+3, i+4, i+5, i+6, i+7, i+8, i+9, i+10, 
i+11, i+12, i+13, i+14, i+15, i+16, i+17,i+18, i+19, i+20, i+21, i+22, i+23, i+24, i+25, 
i+26, i+27, i+28, i+29, i+30, i+31);  

 i=i+32; 
} 
printf("\n"); 
 
i=0; 
for (j=0; j<(N/32); j++){ 
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 printf("wire [%i:0] min_1_%i, min_1_%i, min_1_%i, min_1_%i, 
min_1_%i, min_1_%i, min_1_%i, min_1_%i, min_1_%i, min_1_%i, min_1_%i, 
min_1_%i, min_1_%i, min_1_%i, min_1_%i, min_1_%i, min_1_%i, min_1_%i, 
min_1_%i, min_1_%i, min_1_%i, min_1_%i, min_1_%i, min_1_%i, min_1_%i, 
min_1_%i, min_1_%i, min_1_%i, min_1_%i, min_1_%i, min_1_%i, min_1_%i;\n", n, i, 
i+1,i+2, i+3, i+4, i+5, i+6, i+7, i+8, i+9, i+10, i+11, i+12, i+13, i+14, i+15, i+16, 
i+17,i+18, i+19, i+20, i+21, i+22, i+23, i+24, i+25, i+26, i+27, i+28, i+29, i+30, i+31);  

 i=i+32; 
} 
printf("\n"); 
 
i=0; 
for (j=0; j<(N/32); j++){ 
 printf("wire [%i:0] min_2_%i, min_2_%i, min_2_%i, min_2_%i, 

min_2_%i, min_2_%i, min_2_%i, min_2_%i;\n", n, i, i+1,i+2, i+3, i+4, i+5, i+6, i+7); 
 i=i+8; 
} 
 printf("\n"); 
 
 i=0; 
 k=3; 
 temp=N/32; 
 while (temp>0){ 
 for (j=0; j<temp; j++){ 
  printf("wire [%i:0] min_%i_%i, min_%i_%i;\n", n, k, i, k, i+1); 
  i=i+2; 
 } 
 k++; 
 i=0; 
 temp=temp/4; 
 printf("\n"); 
} 
 
//assign afns using code form SRC-6 module gen_affine 
printf("\n ***Insert affine functions here***\n\n"); 
 
for (j=0; j<N; j++){ 
 printf("count c%i(res%i, CLK, counts%i);\n", j,j,j); 
} 
printf("\n"); 
 
i=0; 
for (j=0; j<(N/4); j++){ 
printf("min4 m1_%i(counts%i, counts%i, counts%i, counts%i, CLK, 

min_1_%i);\n", j, i, i+1, i+2, i+3, j); 
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 i=i+4; 
} 
printf("\n");  
 
i=1; 
j=0;  
temp=N/16; 
while(temp>=1){ 
 min=temp; 
 for (k=0; k<min; k++){ 
  printf("min4 m%i_%i(min_%i_%i, min_%i_%i, min_%i_%i, 

min_%i_%i, CLK, min_%i_%i);\n", i+1, k, i, j, i, j+1, i, j+2, i, j+3, i+1, k); 
  j=j+4; 
 } 
 temp=temp/4; 
 i++; 
 j=0;  
 printf("\n"); 
} 
 
if(k==2) 
printf("min2 m%i_0(min_%i_0, min_%i_1, CLK, fit);\n", i+1, i, i); 
printf("\n"); 
 
printf(" always@(posedge CLK)\n begin\n"); 
if(k==1) 
printf("fit<=min_%i_%i;\n",i, k-1); 
for (j=0; j<N; j++){ 
printf("res%i <= TT ^ afns[%i];\n",j,j); 
} 
printf(" end\n endmodule\n"); 
} 
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APPENDIX C. LISTS OF FUNCTIONS OF INTEREST 

C.1 ROTATIO N SYMMETRIC FUNCTIONS WITH HIGHEST  
NONLINEARITY 

1. Functions on Four Variables in ANF with Nonlinearity 6 

 

1 2 3 4 2 4 4 1 3 3 2 1

1 2 3 4 3 4 2 4 1 4 4 2 3 1 3 3 1 2 2 1

1 2 3 4 2 4 1 3

1 2 3 4 3 4 2 4 1 4 2 3 1 3 1 2

1 2 3

( , , , )

( , , , )

( , , , )  (homogeneous)

( , , , )  (homogeneous)

( , , ,

f x x x x x x x x x x x x

f x x x x x x x x x x x x x x x x x x x x

f x x x x x x x x

f x x x x x x x x x x x x x x x x

f x x x x

     
         
 
     

4 2 4 4 1 3 3 2 1

1 2 3 4 3 4 2 4 1 4 4 2 3 1 3 3 1 2 2 1

1 2 3 4 2 4 1 3

1 2 3 4 3 4 2 4 1 4 2 3 1 3 1 2

) 1

( , , , ) 1

( , , , ) 1

( , , , ) 1 

x x x x x x x x

f x x x x x x x x x x x x x x x x x x x x

f x x x x x x x x

f x x x x x x x x x x x x x x x x

      
          
  
      

 

 

2. Functions on Five Variables in ANF String with Nonlinearity 12 

(h) indicates a homogeneous function of degree 2

  0x167c6ea1 

  0x01021049 

  0x131f57fe 

  0x00140621 

  0x176a78c9 

  0x05773f7e 

  0x04752f37 

  0x130b51df 

  0x01161668 (h) 

  0x131e56e9 

  0x0103115e 

  0x167d6fb6 

  0x05763e69 

  0x176b79de 

  0x00150736 

  0x0117177f 

  0x130a50c8 

  0x04742e20 

  0x04742e21 

  0x130a50c9 

  0x0117177e 

  0x00150737 

  0x176b79df 

  0x05763e68 

  0x167d6fb7 

  0x0103115f 

  0x131e56e8 

  0x01161669 

  0x130b51de 

  0x04752f36 

  0x05773f7f 

  0x176a78c8 

  0x00140620(h) 

  0x131f57ff 

  0x01021048(h) 

  0x167c6ea0 
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3. Functions on Six Variables in ANF string with Nonlinearity 28 

(h) indicates a homogeneous function of degree 2 

0x0000001100050317    

0x00100354041e2621    

0x0004113402560e21    

0x0102041910254397    

0x0112075c143e66a1    

0x0106153c12764ea1    

0x0113065a152c72c9    

0x0107143a13645ac9    

0x0103051f113757ff    

0x00110252050c3249    

0x0005103203441a49    

0x000101170117177f    

0x0102041810244281    

0x0106153d12774fb7    

0x0112075d143f67b7    

0x0000001000040201    

0x0004113502570f37    

0x00100355041f2737    

0x0005103303451b5f    

0x00110253050d335f    

0x0001011601161669    

0x0107143b13655bdf    

0x0113065b152d73df    

0x0103051e113656e9    

0x0103051e113656e8    

0x0113065b152d73de    

0x0107143b13655bde    

0x0001011601161668 (h) 

0x00110253050d335e    

0x0005103303451b5e    

0x00100355041f2736    

0x0004113502570f36    

0x0000001000040200 (h) 

0x0112075d143f67b6    

0x0106153d12774fb6    

0x0102041810244280    

0x000101170117177e    

0x0005103203441a48    

0x00110252050c3248    

0x0103051f113757fe    

0x0107143a13645ac8    

0x0113065a152c72c8    

0x0106153c12764ea0    

0x0112075c143e66a0    
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0x0102041910254396    

0x0004113402560e20    

0x00100354041e2620    

0x0000001100050316   

C.2 ROTATION SYMMETRIC BALANCED FUNCTIONS OF 6 VARIABL ES 
AND HIGHEST NONLINEARITY 

The following functions have nonlinearity 24, the highest nonlinearity for this 

group.  The bent functions for n=6 have nonlinearity 28.  The following functions are 

listed in truth table form. (h) means the function is homogeneous.

Degree2 : 0x5365f6c36fa6ca0(h) 

Degree 2 : 0x7b8b848bd121d1de 

Degree 2 : 0x84747b742ede2e21 

Degree 2 : 0xfac9a093c905935f 

Degree 3 : 0x107152f13735dfe 

Degree 3 : 0x113074f153b75fe 

Degree 3 : 0x131f16ea5768f8c8 

Degree 3 : 0x172e5ca972e1c996 

Degree 3 : 0x173a4ec974a9e196 

Degree 3 : 0x6987952e93725ce8 

Degree 3 : 0x6993874e953a74e8 

Degree 3 : 0x6da2cd0db0b345b6 

Degree3: 0x7faedca8f2e0c880(h) 

Degree 3 : 0x7faedca8f2e0c880 

Degree3: 0x7fbacec8f4a8e080(h) 

Degree 3 : 0x804531370b571f7f 

Degree 3 : 0x805123570d1f377f 

Degree 3 : 0x925d32f24f4cba49 

Degree 3 : 0x966c78b16ac58b17 

Degree 3 : 0x96786ad16c8da317 

Degree 3 : 0xe8c5b1368b561e69 

Degree 3 : 0xe8d1a3568d1e3669 

Degree 3 : 0xece0e915a8970737 

Degree 3 : 0xfeecf8b0eac48a01 

Degree 3 : 0xfef8ead0ec8ca201 

Degree 4 : 0x151767077b3d7e 

Degree 4 : 0x117176e177a7ce8 

Degree 4 : 0x130f14ab5361d9de 

Degree 4 : 0x131b06cb5529f1de 

Degree 4 : 0x121d16e34769b95e 

Degree 4 : 0x5265d2d32f34db6 

Degree 4 : 0x5324f4d34bb65b6 

Degree 4 : 0x4345f6526fb2d36 

Degree 4 : 0x163c5ee166e9a916 
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Degree 4 : 0x173e5ee876e8e880 

Degree 4 : 0x143251f193757fe 

Degree 4 : 0x4535370b771f7e 

Degree 4 : 0x147353e1b765ee8 

Degree 4 : 0x5127570d3f377e 

Degree 4 : 0x153275e1d3e76e8 

Degree 4 : 0x5537760f7e3e68 

Degree 4 : 0x134b249b5925d3de 

Degree 4 : 0x124d34b34b659b5e 

Degree 4 : 0x134f34ba5b64dac8 

Degree 4 : 0x125926d34d2db35e 

Degree 4 : 0x135b26da5d2cf2c8 

Degree 4 : 0x125d36f24f6cba48 

Degree 4 : 0x5626d1d38b747b6 

Degree 4 : 0x4647d352af70f36 

Degree 4 : 0x5667d3c3af64ea0 

Degree 4 : 0x4706f552cbf2736 

Degree 4 : 0x5726f5c3cbe66a0 

Degree 4 : 0x176a6c9978a5c396 

Degree 4 : 0x166c7cb16ae58b16 

Degree 4 : 0x176e7cb87ae4ca80 

Degree 4 : 0x16786ed16cada316 

Degree 4 : 0x177a6ed87cace280 

Degree 4 : 0x167c7ef06eecaa00 

Degree 4 : 0x6983850f913355fe 

Degree 4 : 0x6885952783731d7e 

Degree 4 : 0x68918747853b357e 

Degree 4 : 0x68959766877a3c68 

Degree 4 : 0x7a8d94a3c361995e 

Degree 4 : 0x7b8f94aad360d8c8 

Degree 4 : 0x7a9986c3c529b15e 

Degree 4 : 0x7b9b86cad528f0c8 

Degree 4 : 0x7a9d96e2c768b848 

Degree 4 : 0x6ca4dd25a2f30d36 

Degree 4 : 0x6da6dd2cb2f24ca0 

Degree 4 : 0x6cb0cf45a4bb2536 

Degree 4 : 0x6db2cf4cb4ba64a0 

Degree 4 : 0x6cb4df64a6fa2c20 

Degree 4 : 0x7faacc89f0a1c196 

Degree 4 : 0x7eacdca1e2e18916 

Degree 4 : 0x7eb8cec1e4a9a116 

Degree 4 : 0x7ebcdee0e6e8a800 

Degree 4 : 0x68c1a5178937177e 

Degree 4 : 0x69c3a51e993656e8 

Degree 4 : 0x68c5b5368b761e68 

Degree 4 : 0x68d1a7568d3e3668 

Degree 4 : 0x7bcba49ad924d2c8 

Degree 4 : 0x7acdb4b2cb649a48 
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Degree 4 : 0x7ad9a6d2cd2cb248 

Degree 4 : 0x6ce0ed15a8b70736 

Degree 4 : 0x6de2ed1cb8b646a0 

Degree 4 : 0x6ce4fd34aaf60e20 

Degree 4 : 0x6cf0ef54acbe2620 

Degree 4 : 0x7ee8ec91e8a58316 

Degree 4 : 0x7feaec98f8a4c280 

Degree 4 : 0x7eecfcb0eae48a00 

Degree 4 : 0x7ef8eed0ecaca200 

Degree 4 : 0x8107112f13535dff 

Degree 4 : 0x8113034f151b75ff 

Degree 4 : 0x80151367075b3d7f 

Degree 4 : 0x8117136e175a7ce9 

Degree 4 : 0x930f10ab5341d9df 

Degree 4 : 0x931b02cb5509f1df 

Degree 4 : 0x921d12e34749b95f 

Degree 4 : 0x931f12ea5748f8c9 

Degree 4 : 0x8526592d32d34db7 

Degree 4 : 0x85324b4d349b65b7 

Degree 4 : 0x84345b6526db2d37 

Degree 4 : 0x972e58a972c1c997 

Degree 4 : 0x973a4ac97489e197 

Degree 4 : 0x963c5ae166c9a917 

Degree 4 : 0x973e5ae876c8e881 

Degree 4 : 0x8153235e1d1e76e9 

Degree 4 : 0x805533760f5e3e69 

Degree 4 : 0x8143211f191757ff 

Degree 4 : 0x8147313e1b565ee9 

Degree 4 : 0x934b209b5905d3df 

Degree 4 : 0x924d30b34b459b5f 

Degree 4 : 0x934f30ba5b44dac9 

Degree 4 : 0x925922d34d0db35f 

Degree 4 : 0x935b22da5d0cf2c9 

Degree 4 : 0x8562691d389747b7 

Degree 4 : 0x846479352ad70f37 

Degree 4 : 0x8566793c3ad64ea1 

Degree 4 : 0x84706b552c9f2737 

Degree 4 : 0x85726b5c3c9e66a1 

Degree 4 : 0x976a68997885c397 

Degree 4 : 0x976e78b87ac4ca81 

Degree 4 : 0x977a6ad87c8ce281 

Degree 4 : 0x967c7af06eccaa01 

Degree 4 : 0xe983810f911355ff 

Degree 4 : 0xe885912783531d7f 

Degree 4 : 0xe987912e93525ce9 

Degree 4 : 0xe8918347851b357f 

Degree 4 : 0xe993834e951a74e9 

Degree 4 : 0xe8959366875a3c69 
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Degree 4 : 0xfa8d90a3c341995f 

Degree 4 : 0xfb8f90aad340d8c9 

Degree 4 : 0xfa9982c3c509b15f 

Degree 4 : 0xfb9b82cad508f0c9 

Degree 4 : 0xfa9d92e2c748b849 

Degree 4 : 0xeda2c90db09345b7 

Degree 4 : 0xeca4d925a2d30d37 

Degree 4 : 0xeda6d92cb2d24ca1 

Degree 4 : 0xecb0cb45a49b2537 

Degree 4 : 0xedb2cb4cb49a64a1 

Degree 4 : 0xecb4db64a6da2c21 

Degree 4 : 0xffaac889f081c197 

Degree 4 : 0xfeacd8a1e2c18917 

Degree 4 : 0xffaed8a8f2c0c881 

Degree 4 : 0xfeb8cac1e489a117 

Degree 4 : 0xffbacac8f488e081 

Degree 4 : 0xfebcdae0e6c8a801 

Degree 4 : 0xe8c1a1178917177f 

Degree 4 : 0xe9c3a11e991656e9 

Degree 4 : 0xfbcba09ad904d2c9 

Degree 4 : 0xfacdb0b2cb449a49 

Degree 4 : 0xfad9a2d2cd0cb249 

Degree 4 : 0xede2e91cb89646a1 

Degree 4 : 0xece4f934aad60e21 

Degree 4 : 0xecf0eb54ac9e2621 

Degree 4 : 0xfee8e891e8858317 

Degree 4 : 0xffeae898f884c281 

Degree 5 : 0xeca5d926a3d21c69 

Degree 5 : 0xeda3c90eb19254e9 

Degree 5 : 0xecb1cb46a59a3469 

Degree 5 : 0xeca1c907a193157f 

Degree 5 : 0xfea9c883e181915f 

Degree 5 : 0xfea8c985e0938537 

Degree 5 : 0xffabc88af180d0c9 

Degree 5 : 0xffaac98cf092c4a1 

Degree 5 : 0xfa8d91a6c3529c69 

Degree 5 : 0xfeadd8a2e3c09849 

Degree 5 : 0xfeacd9a4e2d28c21 

Degree 5 : 0xfeb9cac2e588b049 

Degree 5 : 0xfeb8cbc4e49aa421 

Degree 5 : 0xe9c3a01b990553df 

Degree 5 : 0xe9c2a11d981747b7 

Degree 5 : 0xfa9983c6c51ab469 

Degree 5 : 0x120d15a743739d7e 

Degree 5 : 0x8153225b1d0d73df 
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