

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

FUNCTIONALITY MINIMIZATION ANALYSIS OF
ASTERISK FOR FUTURE USE IN SECURE

ENVIRONMENTS

by

Jeffrey A. Wiley, Jr.

September 2009

 Thesis Advisor: Cynthia E. Irvine
 Second Reader: Mark Gondree

Approved for public release; distribution is unlimited

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Functionality Minimization Analysis of
Asterisk for Future Use in Secure Environments

6. AUTHOR(S) Jeffrey A. Wiley, Jr.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Asterisk, the open-source PBX, supports various implementations of voice over Internet Protocol
(VoIP), a popular alternative to public switched telephone networks (PSTN) that offers cost benefits and
ease of management. The Monterey Security Architecture (MYSEA) is a distributed multilevel security
(MLS) environment designed to provide secure, collaborative sharing of information. It does not currently
support either real-time voice communications or voice mail. The purposes of this thesis are to determine
high-level VoIP requirements and to build a minimized version of Asterisk that supports these
requirements. This minimized version of Asterisk could then be ported to run within the MYSEA
architecture.

To achieve this goal, threats were enumerated and requirements were determined. Then the
modules within Asterisk were minimized to eliminate unnecessary functionality while still supporting
mechanisms required for voice communications and voice mail. Testing showed that voice calls could be
placed and voice mail messages could be left and retrieved using the minimized Asterisk server.

Asterisk’s functionality was successfully minimized to meet the requirements determined through
the VoIP analysis by reducing the number of modules used for the build. This work provides the
groundwork for future implementations of VoIP and voice mailboxes provided by Asterisk within MYSEA.

15. NUMBER OF
PAGES

106

14. SUBJECT TERMS Asterisk, MYSEA, Open-source PBX, VoIP, Voice over Internet
Protocol, Voice mail

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

FUNCTIONALITY MINIMIZATION ANALYSIS OF ASTERISK FOR FUTURE
USE IN SECURE ENVIRONMENTS

Jeffrey A. Wiley, Jr.

Civilian, Naval Postgraduate School
B.S., Brigham Young University—Hawai’i, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2009

Author: Jeffrey A. Wiley, Jr.

Approved by: Cynthia E. Irvine
Thesis Advisor

Mark Gondree
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Asterisk, the open-source PBX, supports various implementations of voice

over Internet Protocol (VoIP), a popular alternative to public switched telephone

networks (PSTN) that offers cost benefits and ease of management. The

Monterey Security Architecture (MYSEA) is a distributed multilevel security

(MLS) environment designed to provide secure, collaborative sharing of

information. It does not currently support either real-time voice communications

or voice mail. The purposes of this thesis are to determine high-level VoIP

requirements and to build a minimized version of Asterisk that supports these

requirements. This minimized version of Asterisk could then be ported to run

within the MYSEA architecture.

To achieve this goal, threats were enumerated and requirements were

determined. Then the modules within Asterisk were minimized to eliminate

unnecessary functionality while still supporting mechanisms required for voice

communications and voice mail. Testing showed that voice calls could be placed

and voice mail messages could be left and retrieved using the minimized Asterisk

server.

Asterisk’s functionality was successfully minimized to meet the

requirements determined through the VoIP analysis by reducing the number of

modules used for the build. This work provides the groundwork for future

implementations of VoIP and voice mail provided by Asterisk within MYSEA.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. MOTIVATION... 1
B. PURPOSE OF CURRENT STUDY .. 2
C. ORGANIZATION OF PAPER .. 2

II. BACKGROUND.. 3
A. VOIP... 3

1. Concept of Operation .. 3
a. General VoIP.. 3
b. Voice Mail .. 4

2. Call Setup Protocol.. 4
a. Session Initiation Protocol... 4

3. Call Media and Data Transfer Protocols 5
a. Real-time Transfer Protocol ... 5

4. VoIP Using SIP/RTP... 6
B. ASTERISK ... 7
C. THE MONTEREY SECURITY ARCHITECTURE............................... 12
D. SUMMARY... 12

III. THREAT ANALYSIS .. 13
A. INTRODUCTION.. 13
B. CONCEPT OF OPERATION.. 13

1. Voice Mail in MYSEA ... 13
C. THREAT ANALYSIS.. 14

1. Threats in VoIP... 15
2. Threats in SIP... 16
3. Threats in RTP ... 18
4. Threats in Asterisk .. 19

D. MITIGATIONS.. 20
E. SUMMARY... 21

IV. ARCHITECTURE, REQUIREMENTS, AND SPECIFICATION
SELECTION.. 23
A. GOALS... 23
B. ASTERISK ARCHITECTURE .. 23

1. Back-to-back User Agent .. 23
2. Thread Architecture... 24
3. Software Architecture ... 24
4. Asterisk Concepts ... 26
5. Codec Background.. 27
6. Asterisk Threads.. 28

C. REQUIREMENTS... 31
1. System Requirements ... 32

 viii

2. Asterisk Requirements.. 33
D. MODULE SELECTION .. 34

1. Asterisk Module Relevance .. 35
E. SUMMARY... 37

V. EXPERIMENTATION.. 39
A. INTRODUCTION.. 39
B. EXPERIMENTATION... 39

1. Module Selection ... 40
2. Build Process... 41

C. TESTING.. 42
1. Voice-Call Asterisk Testing... 44

a. Configuration Files ... 44
b. Description of Tests.. 47

2. Voice Mail Asterisk testing ... 49
a. Configuration files .. 49
b. Description of tests... 52

D. ANALYSIS AND RECOMMENDATIONS .. 54
1. Analysis of Minimal Asterisk .. 54
2. Recommendations... 54

E. SUMMARY... 55

VI. FUTURE WORK AND CONCLUSION ... 57
A. INTRODUCTION.. 57
B. FUTURE WORK... 57

1. Real-time Voice Communication within MLS Context........ 57
2. Voice Communications Originating Outside the MLS

Network .. 57
3. Voice Communications between MLS Enclaves................. 58

C. CONCLUSION ... 58

APPENDIX A: INSTALLATION PROCEDURES ... 59

APPENDIX B: CONFIGURATION FILES .. 71

APPENDIX C: TEST PROCEDURES .. 78

LIST OF REFERENCES.. 84

INITIAL DISTRIBUTION LIST ... 88

 ix

LIST OF FIGURES

Figure 1. SIP-based VoIP Architecture.. 6
Figure 2. Asterisk Architecture... 26
Figure 3. Configuration file extensions.conf... 27
Figure 4. Thread and channel for an incoming call (native bridge) 30
Figure 5. Thread and channel for an incoming call using transcoding............... 31
Figure 6. Experimentation network topology.. 40
Figure 7. Background threads in Voice Mail Asterisk .. 42
Figure 8. Voice-Call and Voice Mail Asterisk’s modules.conf 45
Figure 9. Voice-Call Asterisk’s extensions.conf file ... 46
Figure 10. Voice-Call Asterisk’s sip.conf file .. 47
Figure 11. CLI sip show peers output .. 48
Figure 12. Error associated with dialing extension “544” 49
Figure 13. Error associated with dialing extension “100” 49
Figure 14. Voice Mail Asterisk’s extensions.conf file ... 50
Figure 15. Voice Mail Asterisk’s voicemail.conf file ... 51
Figure 16. Voice Mail Asterisk’s sip.conf file.. 52
Figure 17. CLI command sip show peers .. 53
Figure 18. Test Network Topology... 59

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Call Features in Asterisk... 8
Table 2. Required Modules for Voice-Call Asterisk .. 35
Table 3. Modules for Minimized Voice-Call and Voice Mail Asterisk 36
Table 4. Asterisk Build Details.. 42
Table 5. Voice-Call Asterisk Requirements Tests .. 43
Table 6. Voice Mail Asterisk Requirements Tests .. 44

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ABBREVIATIONS AND ACRONYMS

AES Advanced Encryption Standard

AMI Asterisk Management Interface

API Application Programming Interface

ARP Address Resolution Protocol

CDR Call Detail Record

CLI Command Line Interface

COTS Commercial Off-the-Shelf

DNS Domain Name System

DoD Department of Defense

DOS Denial of Service

GPL General Public License

GSM Global System for Mobile communications

HTTP Hypertext Transfer Protocol

IAX Inter-Asterisk Exchange

IETF Internet Engineering Task Force

IP Internet Protocol

IPsec Internet Protocol Security

LAN Local Area Network

MGCP Media Gateway Control Protocol

MLS Multilevel Secure

MYSEA Monterey Security Architecture

PBX Private Branch Exchange

 xiv

PSTN Public Switched Telephone Network

RFC Request for Comments

RTCP Real-time Transfer Control Protocol

RTP Real-time Transfer Protocol

SIP Session Initiation Protocol

SSRC Signaling Source

TDM Time Division Multiplexing

TLS Transport Layer Security

VoIP Voice over Internet Protocol

 xv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Cynthia Irvine, for her support during

this process. I would also like to thank Thuy Nguyen, for the assistance she

provided. I also express appreciation to Dr. Mark Gondree, for his technical

assistance and helpful guidance.

I am also deeply grateful to the Federal Cyber Service: Scholarship for

Service program for making the pursuit of this degree possible.

Finally, I want to thank my dear, sweet wife, Starlyn Wiley, for her love and

support through this growing experience.

This material is based upon work supported by the National Science

Foundation, under grant No. DUE-0414102. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the

author, and do not necessarily reflect the views of the National Science

Foundation.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

Department of Defense (DoD) missions require data and communications

at various levels of classification. Separating these functions across physically

separated networks dedicated to work at a single classification level is often

inefficient, and a potential barrier to mission success; in such instances, the use

of a multilevel secure (MLS) architecture may be beneficial. A MLS architecture

maintains the separation of data at varying classification levels and enforces

policy regarding access to that data. The Monterey Security Architecture

(MYSEA) is a MLS architecture. In fact, MYSEA is a distributed MLS

architecture, extending MLS capabilities to a local area network (LAN). MYSEA

combines a small number of high-assurance components which enforce security

policies and allows the use of open-source and commercial off-the-shelf (COTS)

components. The services currently provided by MYSEA include e-mail and

web-browsing capabilities.

Voice over Internet Protocol (VoIP) is a low-cost alternative to the public

switched telephone network (PSTN) for real-time voice communication. Unlike

the PSTN, VoIP does not need a dedicated connection; rather, it can use

commonly available network infrastructures to provide services on a packet-

switched network. Within the context of MYSEA, VoIP would be a beneficial

service for providing real-time voice communication.

Asterisk, the open-source private branch exchange (PBX), is telephony

software that contains a wide range of functionality supporting VoIP. Asterisk is

flexible and allows different functionality to be added as it becomes necessary.

This makes it a good choice for an integrated VoIP solution. Modifying Asterisk

work within the MYSEA architecture, however, is no small task. This task is

complicated by the size and complexity of the configuration chosen by default

during the Asterisk build process. This leads to the following objective.

 2

B. PURPOSE OF CURRENT STUDY

This research has the objective of determining high-level requirements

and constructing an Asterisk-based VoIP system that meets these requirements.

The ability of the system to meet these requirements will be validated by a set of

well-defined experiments. We believe that our simplified Asterisk system may be

helpful during the task of modifying Asterisk to provide VoIP services in the

MYSEA MLS environment.

C. ORGANIZATION OF PAPER

Chapter II contains a discussion of background topics. These topics

include a basic overview of VoIP and Asterisk, as well as general information

about MYSEA. In Chapter III, a discussion of recognized VoIP threats is

presented, helping to provide information concerning risks that need to be

mitigated. Chapter IV introduces requirements and the specifics of a slimmed-

down version of Asterisk as well as a discussion about Asterisk’s architecture.

Chapter V describes the experiments and tests which illustrate that the Asterisk

configuration meets the VoIP and voice mail requirements. Finally, Chapter VI

presents conclusions and suggests future work.

 3

II. BACKGROUND

A. VOIP

Use of the Voice over Internet Protocol (VoIP) represents a shift for voice

communication from standard circuit-based to packet-based communication.

Traditionally, telephone communication has consisted of a direct circuit between

two ends allowing real-time communication for the sending and receiving parties.

Since the birth of internetworking and the spread of the Internet, packet-based

communication has become the norm. Through the improvement of these

technologies in such facets as latency reduction, throughput, and voice quality, it

has become possible to use packet-based networks to send voice

communications of reasonable quality. Although VoIP sends data using the

Internet Protocol, higher level transport functions, such as session negotiation,

media transport, and session control, are achieved using various technologies,

for which there is no single standard.

1. Concept of Operation

a. General VoIP

The basic scenario for a VoIP call is from one personal computer

using a software-based phone (softphone) to another computer with a similar

configuration. Given this situation, suppose Alice needs to call Bob. Using her

softphone, Alice would dial some identifier associated with Bob to cause his

softphone to ring. Instead of a circuit connecting Alice and Bob directly, packets

go from Alice to Bob via any number of routes between the two computers. At

both ends, the users have a means of speaking and listening—such as using a

microphone and speaker, or a headset—in which the two are integrated. When

Bob becomes aware of an incoming call, he pushes a button to answer the

 4

phone and the call begins. While this description is straightforward, there are a

number of underlying operations taking place that are not perceived by the user.

b. Voice Mail

Continuing with the previous scenario, suppose that Bob is unable

to answer his softphone to receive Alice’s call. After a predetermined amount of

time, the call is directed to the voice mail system, which automatically answers

the call and prompts Alice to leave a message. After Alice leaves her message

and the call is complete, this message is saved in Bob’s personal voice mailbox.

An indicator on Bob’s phone informs him that a message has been received.

Bob can then dial into the system and access his mailbox to retrieve the

message Alice left for him. Bob may then perform a number of different actions

with this message, including saving it, deleting it, or forwarding it to another

mailbox.

2. Call Setup Protocol

In much the same manner that traditional telephony needed a switchboard

and an operator to help establish circuits for communication, VoIP requires a

similar logic to manage a call. The creation of a connection to Bob from Alice is

managed using a collection of protocols and technologies. Although these

protocols are standards-based, there are multiple protocols from which to

choose. We have chosen to focus on a strategy using the Session Initiation

Protocol. This strategy is particularly promising for our future applications, as

determined from a survey and comparison performed by previous research [1].

a. Session Initiation Protocol

Session Initiation Protocol (SIP) has evolved through a number of

revisions and updates since it was first proposed, in 1999, as a standards-track

document for consideration by the Internet Engineering Task Force (IETF).

From the latest revision of the protocol’s request for comments (RFC): “SIP is an

 5

agile, general-purpose tool for creating, modifying, and terminating sessions that

works independently of underlying transport protocols and without dependency

on the type of session that is being established” [2]. As stated, SIP is involved

with the creation and termination of a session. It handles the signaling data used

to prepare for communication, but does not actually handle the transport of voice

media. SIP is not the only technology needed for SIP-based VoIP

communications. We explore media transport next.

3. Call Media and Data Transfer Protocols

Many VoIP specifications consist of at least two different protocols, one for

call setup and one for the actual transmission of the call. A standard SIP-based

implementation of VoIP typically follows this pattern by using the Real-time

Transfer Protocol (RTP) to send the contents of a voice call.

a. Real-time Transfer Protocol

First proposed as a standard in 1996, RTP is a flexible protocol that

is suited for any type of real-time data traveling over a network. From the

protocol’s RFC: “[RTP] provides end-to-end network transport functions suitable

for applications transmitting real-time data, such as audio, video or simulation

data, over multicast or unicast network services” [3]. This versatility makes it a

prime choice for use with VoIP and other types of communication. Its generality

affords implementers the choice of communicating a variety of media and does

not limit communication to voice data.

RTP uses a clearly-defined header, with fields that correspond to

the particular media the protocol is handling. For VoIP, this is typically an audio

format. The RTP standard also defines the Real-time Transport Control Protocol

(RTCP), a control protocol that helps manage the RTP connection and data

transfer quality. Thus, a single RTP channel actually uses two ports: one for data,

and one for control. The RTP portion (the actual media) is always carried on the

lower, even-numbered port, while the next, odd-numbered port, carries the RTCP

portion (the control data).

4. VoIP Using SIP/RTP

The following are the details of a SIP-based implementation of VoIP.

When Alice makes a call to Bob, her softphone contacts a VoIP proxy using SIP.

If Bob is connected and registered to the VoIP proxy, it sends him an invitation

on behalf of Alice. His softphone receives and handles this invitation by ringing,

and perhaps, displaying caller ID data. The SIP proxy also sends a message to

Alice’s phone, indicating that an invitation has been sent to Bob. As Bob

answers the call, his softphone sends signaling data, including what type of audio

format it supports, to the VoIP proxy, to be forwarded to Alice’s softphone. The

VoIP proxy is an intermediary throughout the SIP connection, during which the

softphones negotiate a new, ephemeral port over which to communicate voice

data via RTP. The voice media travels directly between Alice and Bob over RTP.

This simple SIP-based VoIP session is illustrated in Figure 1.

Figure 1. SIP-based VoIP Architecture

 6

 7

B. ASTERISK

Asterisk® [4] is a software project implementing a private branch

exchange (PBX) system. Asterisk was created by Mark Spencer in 1999. It is the

main product of Digium, Inc. [5], a company originally founded as Linux Support

Services, L.L.C. by Spencer in 1999, later renamed and incorporated in 2002.

Asterisk is released under a dual software license model, allowing licensees to

choose either the GNU General Public License (GPL) or an alternate, proprietary

license negotiated with Digium. Asterisk has grown and developed since its

inception, and now touts a wide range of telephony features and support for

various protocols and technologies. With appropriate hardware, Asterisk can

connect to both standard circuit-switched telephone networks and packet-

switched computer networks. Currently, Asterisk is one of the most popular PBX

products available, claiming over 80% of the open-source PBX market [6].

Using a foundation of programs written in C, Asterisk is configured using a

series of text files using a simple, yet flexible and extensible, language. The

actions a PBX performs when a particular extension is dialed is defined in its

“dialplan.” For Asterisk, the dialplan is defined in the extensions.conf file.

Asterisk’s dialplan may take advantage of a range of custom applications,

scripting languages, and external databases.

The Asterisk Project’s development community constantly adds to the list

of features available within Asterisk. Table 1 summarizes the features available

in the version of Asterisk (v1.6.1.0) under consideration in this work. For more

information on these features, we refer the reader to [7], [8], [9]. Of most interest

to us is the fact that Asterisk supports the features relevant to the current study,

SIP-based VoIP and voice mail. The main goal of this study is to reduce the

unnecessary logic and complexity of our PBX software (i.e., remove those

features that are irrelevant to us), identifying those features integral to our

functional requirements and their dependencies.

 8

Table 1. Call Features in Asterisk

Number Feature Description
1 ADSI On-Screen Menu

System
Analog display services interface (ADSI) allows Asterisk
to provide menu items and customized information, such
as name lookups, to appear on the screen of a telephone
(customer premises equipment, or CPE) device
connected to the network.

2 Alarm Receiver Allows Asterisk to interface with some fire and burglar
alarms.

3 Append Message Append a voice mail message to an e-mail.
4 Authentication IAX method of authentication using plaintext, md5, RSA

methods to limit access to server.
5 Automated Attendant Allows Asterisk to create an interactive session with a

caller to direct an incoming call in various ways. Voice
mail is an example of this.

6 Blacklists Ability to explicitly deny calls based on a list of numbers.
7 Blind Transfer Transfer of a call to a recipient without notifying the

recipient, also unsupervised transfer.
8 Call Detail Records Calls within or to the Asterisk server are able to store

various types of information about a call. Types of
information that can be stored includes call duration,
caller ID of the incoming call, and destination of the call
It is possible to configure what information will be saved,
thus allowing the administrator to determine what types of
information are to be stored. This is an extended form of
logging and auditing.

9 Call Forward on Busy Allows configuration of the system to forward an incoming
call to another phone number or extension if the line is
busy.

10 Call Forward on No
Answer

Allows configuration of the system to forward an incoming
call to another phone number or extension if the line is
not answered.

11 Call Forward Variable Ability to forward a call based on different results such as
time of day, caller ID, or an extension’s status (e.g. busy).

12 Call Monitoring Records call of a given agent (user) within the system.
Allows monitoring incoming, outgoing, or both.

13 Call Parking Sets up a “parking lot” to which calls can be transferred.
This allows a call to be placed on hold, another party to
be notified that someone is on hold in the “parking” area,
and then dial the corresponding extension to “pick up” the
call.

14 Call Queuing Creates a queue for incoming calls, especially in a
situation where there are more calls than extensions (e.g.
a helpdesk). This also allows Asterisk to have control
over whose phone (extension) rings next and can be
used with other functions such as music on hold.

15 Call Recording Allows calls to be recorded.
16 Call Retrieval Paging for the correct person to pick up the call.
17 Call Routing (DID & ANI) Allows the Asterisk server to ring several numbers at

which the user may be available when a Direct Inward
Dialing (DID) number is dialed. Automatic Number
Identification (ANI) allows an incoming number to be
recognized and handled accordingly.

 9

18 Call Snooping Allows calls to be heard based on a channel or an
extension.

19 Call Transfer Allows several ways to transfer a call to another
extension or number.

20 Call Waiting Allows a call to come into an extension that may be
currently on a call. A sound is heard to indicate an
incoming call to the extension owner who is then able to
switch over to the incoming call.

21 Caller ID Defines how an incoming call’s number is to be
displayed.

22 Caller ID Blocking Ability to block caller ID from appearing when a number is
called.

23 Caller ID on Call Waiting Uses the phone’s display to show the caller ID of an
incoming call during an active call.

24 Calling Cards Allows Asterisk to act like a calling card service: in order
to make a call, there must be sufficient funds on the
account. Asterisk examines the account, based on a PIN
number to determine if enough credits are available for
the call to be completed.

25 Conference Bridging Allows the creation of conference calls.
26 Database Store /

Retrieve
Allows Call Detail Records and voice mail to be stored in
a database.

27 Database Integration Allows information to be stored in a third-party database
and accessed or changed during a call.

28 Dial by Name From an on-screen menu (available on most softphone
and some hard phones) a user is able to dial another
user based on his or her name. Users can be looked up
from a directory on the system. Additionally, suppose
there is only one user named Alice: she would be able to
be dialed by her extension or by entering alice as her
extension.

29 Direct Inward System
Access

Allows outside callers to call inside the system as if they
were placing a call from a system-internal phone.

30 Distinctive Ring Allows the phone to ring in a specific manner based on
desired criteria.

31 Distributed Universal
Number Discovery
(DUNDi™)

DUNDi [10] is a peer-to-peer system for locating Internet
gateways to telephony services. Unlike traditional
centralized services (such as ENUM), DUNDi is fully
distributed with no centralized authority whatsoever.

32 Do Not Disturb Allows an extension to be set to “Do not disturb”. Under
this setting, the phone does not ring, rather it is
automatically handled (e.g., by voice mail or forwarded to
another extension).

33 E911 Allows users to dial 911 emergency services.
34 ENUM ENUM is the common name for a collection of

technologies which enable ordinary telephone numbers
(E.164 numbers) to be mapped to an IP address, using
special Domain Name System (DNS) record types.

35 Fax Transmit and
Receive (3rd Party OSS
Package)

Using a third party application, allows transmission and
receipt of faxes; without this additional application, it is
only possible for Asterisk to transmit–but not originate or
receive–a fax.

36 Flexible Extension Logic Ability to set and enable various features for different
extensions.

 10

37 Interactive Directory
Listing

Allows the use of a directory from the system that can
display on the screen of various phone devices.

38 Interactive Voice
Response (IVR)

An automated voice system that allows callers to
navigate a phone system and be directed to the correct
extension by pressing a series of numbers on a touch-
tone phone. (i.e. Push 1 for sales, push 2 for support,
etc..)

39 Local and Remote Call
Agents

People can log on to the PBX system from any phone
using a Login ID, allowing them to receive and place
calls.

40 Macros A set of configurable functions available for use within the
dialplan, allowing dynamic or complex functionality to be
expressed simply.

41 Music On Hold Music plays for the incoming party when they are placed
on hold.

42 Music On Transfer: Music plays for a party while the call is transferred.
42a Flexible Mp3-

based System

Allows use of audio encoded with the MP3 format. This
requires the possession of a license for the music being
played.

42b Random or
Linear Play

Plays music in a random order or linearly.

42c Volume Control The volume of the MP3 music can be controlled.
43 Predictive Dialer A predictive dialer is an outbound call processing system

designed to maintain a high level of utilization and cost
efficiency in the contact center. The dialer automatically
calls a list of telephone numbers, screens the
unnecessary calls such as answering machines and busy
signals, and then connects a waiting representative with
the customer.

44 Privacy Requires the caller to enter her phone number if Caller ID
information is not sent.

45 Open Settlement
Protocol (OSP)

OSP is a protocol standard [11] for securely routing and
accounting for inter-domain VoIP calls. OSP is not a VoIP
protocol, but rather a standard for managing the billable
exchange of VoIP sessions between IP networks. OSP is
used by wholesale VoIP carriers to establish secure
point-to-point peering between source and destination
networks.

46 Overhead Paging Also called intercom, this allows a centrally-located
speaker to be "dialed into", for making announcements.
Frequently seen in retail stores, car dealers, factory floors
and other non-office type situations.

47 Protocol Conversion Allows call endpoints to use different protocols and
supports the conversion of one protocol to another.

48 Remote Call Pickup Allows a user to call into the server and answer a call.
49 Remote Office Support A remote office could be set up that interfaces with the

local Asterisk server but provides a small network at a
separate location.

50 Roaming Extensions Phones can quickly be configured with an extension.
This may allow a temporary employee to be able to work
at any desk with a phone while keeping a single
extension.

51 Route by Caller ID A call can be routed to a specific recipient (extension)

 11

based on the result of the Caller ID information.
52 SMS Messaging Ability to send SMS messages to mobile phones.
53 Spell / Say Can "read" letters and numbers to a caller, for example

reading back the current time.
54 Streaming Media Access Allows streaming of media such as mp3s directly into the

phone system, useful for hold messages.
55 Supervised Transfer Similar to blind transfer, allows a person to transfer a call

to another extension by first announcing that call to the
transferred extension. Useful in situations like "I have Joe
Carseller on the phone, do you want to talk to him?"

56 Talk Detection There are a few modules which allow various types of
noise detection on certain channels; talk detection can be
used to trigger an event, for example, play an automated
message when somebody says "hello."

57 Text-to-Speech (via
Festival)

Asterisk may read text via the Festival voice synthesis
suite. For example, this could be used to read a web
page containing the current weather or an e-mail.

58 Three-way Calling Supports standard 3-way calling, which allows another
person to be added to a standard conversation between
two users.

59 Time and Date Upon calling a specified extension the current time and
date information is played on the line.

60 Transcoding Allows Asterisk to bridge calls that use different audio
formats.

61 Trunking Logically grouping together multiple phone lines for
outbound dialing; typically seen in medium to large
deployments. The PBX can be configured to auto-select
an available line for outbound dialing rather than the user
having to choose which line to dial out on.

62 VoIP Gateways Asterisk can act as a bridge between VoIP telephones
and the PSTN; additionally, Asterisk can be used to route
calls to some third-party VoIP gateways (e.g. Vonage).

63 Voice mail: Allows storage and retrieval of messages on a given
extension.

63a Visual Indicator
for Message
Waiting

Creates a visual cue on the phone to indicate a message
is in voice mail (e.g. a blinking light).

63b Stutter Dialtone
for Message
Waiting

A different dial tone is heard if the phone from which a
call is being made has a message in the mailbox.

63c Voice mail to e-
mail

Asterisk's native voice mail can send an e-mail to the
voice mail recipient, and can optionally attach a WAV file
of the entire message.

63d Voice mail
Groups

Can be configured to leave a voice mail in multiple
mailboxes or have a single shared voice mail for several
users.

63e Web Voice mail
Interface

A way to retrieve voice mail via the internet or a web
client by connecting to an internal page.

64 Zapateller Intended to block telemarketers, Asterisk plays a special
tone recognized by some telemarketing centers as an
indicator the number they have dialed has been
disconnected.

 12

C. THE MONTEREY SECURITY ARCHITECTURE

The Monterey Security Architecture (MYSEA) is a high assurance

multilevel security environment used for the research and advancement of high

assurance data processing and distributed multilevel security. MYSEA leverages

evaluated, high-assurance products to allow untrusted, unevaluated, commercial

off-the-shelf (COTS) products to operate in a multilevel secure (MLS)

environment. Using relatively few trusted components, assurance is maintained,

and the architecture is able to support applications operating concurrently, at

different classification levels.

One of the goals of MYSEA is to “facilitate experimentation with . . .

Secure collaborative information sharing” [12]. Currently, MYSEA has support

for several services, such as e-mail and web browsing. “Secure multilevel VoIP”

is a novel concept that has been considered in the context of MYSEA [1]. This

work extends efforts towards this goal. We hope a future implementation of MLS

VoIP may complement existing MLS services in MYSEA, providing a type of

interactive and collaborative service that adds dimension to e-mail.

D. SUMMARY

Asterisk is an open-source PBX for VoIP with an active development

community and an ever-expanding list of features. Its support for the SIP and

RTP protocols makes it a natural candidate for future work investigating VoIP for

MYSEA, following the guidance and methodology established by Tse [1]. We

have provided some general background information on VoIP, Asterisk and

MYSEA, to motivate the current research: feature elimination in Asterisk, in

preparation for its use to provide VoIP services in a high-assurance environment

like MYSEA. Next, we will explore some common security issues relevant to

VoIP implementations and Asterisk.

 13

III. THREAT ANALYSIS

A. INTRODUCTION

This chapter provides an overview of issues that threaten the security of

VoIP communication. It commences with a concept of operation to help illustrate

the type of VoIP implementation that may be possible within MYSEA. Then, we

review threats common to many VoIP implementations and security issues facing

VoIP protocols. This section also discusses the security issues specifically

relevant to Asterisk and how they are addressed by the Asterisk community. The

chapter concludes by reviewing mitigations to some of these threats.

B. CONCEPT OF OPERATION

Our concept of operation for voice mail in a multilevel secure environment

retains many of the features of standard voice mail. The difference between

these two are attributable to the multilevel secure system’s enforcement of MLS

policy, as described by the Bell-LaPadula [13] Model for confidentiality and the

Biba Integrity Model [14]. These models describe constraints on information flow

and the resulting mandatory access control policy (e.g., a secret subject shall not

write to an object classified below the secret level).

Ideally, a minimized version of Asterisk that supports voice phone calls as

well as voice mailboxes can be ported to the MYSEA architecture. This

minimized version of Asterisk may have functionality added as needed, but is

otherwise limited at build time to some narrow set of functionalities. The

following is the concept of operations for VoIP in MYSEA from which we will

extract requirements and define this narrowed set of functionalities.

1. Voice Mail in MYSEA

Alice logs in at the secret level and needs to relay an important message

to her coworker, Bob. Bob is currently logged in at the secret level and is already

 14

using his phone on another call. Thus, Alice must leave a message. When Alice

uses her softphone to leave a message, she hears a generic prompt to leave a

message at the extension she has called. After Alice leaves a message, an

indicator on Bob’s softphone alerts him to the message waiting in his mailbox. In

this example, no classification boundaries are crossed and voice mail operates

as in a single-level system.

Now, suppose Alice logs on at the secret level but Bob, unbeknownst to

Alice, is currently logged in at the unclassified level. Since the mandatory

confidentiality policy as reflected in the Bell-LaPadula model prevents Alice from

writing down, she is again presented with generic instructions to leave Bob a

message. In particular, Alice does not know the level of the session at which

Bob is currently operating. Alice’s message for Bob is left at her session level,

regardless of Bob’s current level. Bob, however, will not be able to retrieve this

mail (nor will he be notified that he even has a message waiting for him) until he

negotiates another session whose level dominates secret. The message is

stored in a mailbox dedicated to Bob at the secret level. The messages are

saved by Asterisk within the file system of a multilevel operating system that

enforces the rules of the Bell-LaPadula model. This way, the message cannot be

saved to a file whose level does not dominate the sender’s classification level. In

short, the message is saved at the secret level and can only be retrieved by Bob

when he is working at a session level that is secret or higher.

C. THREAT ANALYSIS

Since our concept of operation is VoIP in MYSEA, we inherit the many

strong security features of MYSEA. In particular, this includes IPsec, the

identification and authentication of users and processes, and confinement to a

specific security level [15], [16], [17]. It is, however, important to have knowledge

of the basic threats to VoIP and its underlying protocols within a more general

context. This knowledge helps designers to articulate security requirements that

prevent possible insecure implementations or the possibility of configuring VoIP

 15

in a manner that makes it insecure in spite of the features available within the

MYSEA architecture. A brief discussion of the threats specific to VoIP and

Asterisk is presented next.

1. Threats in VoIP

In the absence of any extra measures, VoIP has a number of

vulnerabilities against which attacks can be mounted. Some of the basic threats

against VoIP include unauthorized use of telephone services, attacks taking

advantage of poor phone configurations, and malicious impersonation of various

parts of the VoIP infrastructure.

A potentially expensive threat against VoIP is the unauthorized use of

telephone services, such as long distance calls. By calling into a number that is

part of a VoIP system, an attacker may use various techniques to make a call

without paying for the service. Such a call would originate from another system to

which the attacker has connected, either legitimately or illegitimately. By using a

certain sequence of menu choices within an automated attendant menu, an

attacker could gain the ability to make a long-distance phone call. The end result

might be that the call is placed at the expense of the recipient. This can be a

costly experience and, if the attacker is conservative in her use of the services,

might continue undetected for a long time, especially in the absence of regular

auditing [18].

Another vector of attack against VoIP is the phone device itself. This type

of attack focuses on the configuration of a VoIP handset. It is possible to retrieve

the configuration file from a phone, giving an attacker information that may be

used to further attack or infiltrate a VoIP network [19]. In some cases, it is also

possible for an attacker to create her own configuration file and send it to other

handsets, across the network. For some phones, a malicious configuration file

could cause the phone to direct the VoIP system to record calls, unbeknownst to

either caller. Using this ability, an attacker could cause a phone to connect to a

rogue server under her control, to intercept and record the call [19].

 16

In addition to using a malicious configuration file that redirects a phone to

connect to a rogue VoIP server, it is quite trivial for an attacker to impersonate a

legitimate VoIP server. The attacker could accomplish this by building a rogue

Asterisk server and monitoring network traffic. In the case of a SIP server, when

the attacker sees an INVITE message sent by a user agent on the network, the

rogue server could respond with its own messages. These spoofed messages

would make the user agent think that it needs to authenticate with the rogue

server. In the absence of any authentication, the attacker is given access to the

legitimate party’s calls and possibly other information. Of course, similar attacks

exist for VoIP protocols other than SIP.

2. Threats in SIP

Many of the threats to SIP result from the fact that the protocol data, by

default, is sent in clear text. Passwords and other potentially sensitive data can

be captured over the network quite trivially. Known threats include lifting data out

of the clear text protocol, offline password cracking, Man-in-the-Middle attacks,

registrar and proxy spoofing, and denial of service attacks.

Since information is sent in the clear through SIP signaling channels, it is

trivial to capture data from the packets being transmitted. The types of data

valuable to an attacker that can be captured from these packets include

usernames, passwords, and sequence numbers. This data has value to an

attacker as it may be used in other exploits and in multi-stage attacks.

The RFC for SIP suggests a way to perform (one-way) authentication at

the start of a SIP session [2], [20]. Following the HTTP digest authentication

scheme, the RFC suggests hashing parts of authentication messages to create a

digest, instead of sending authentication data in the clear. The messages that

are hashed include the username, realm (i.e., SIP domain), password, and

challenge-response data. The digest is a token that can be computed by either

party based on pre-shared (e.g., password), and recently communicated, data,

allowing a user to authenticate without sending her password in the clear. There

 17

are, however, well-known attacks to extract messages from digests when the

search space is small, e.g., using brute force password cracking or rainbow table

lookups [19], [21]. Since everything except the password was provided in the

clear, at some earlier point during the SIP conversation, the search space is very

small and these techniques are quite applicable. Making the situation worse,

many passwords used for voice mail and other telephony services often consist

of only 4-6 characters, usually limited to numbers. This further reduces the

search space and increases the speed with which an offline password lookup or

brute force attack could be performed.

As with many protocols lacking mutual authentication, SIP is susceptible

to Man-in-the-Middle attacks. Through ARP cache poisoning or DNS spoofing,

an attacker can redirect and capture all of the data from the softphone and create

her own connections to a SIP server [19], [22], [23]. This could potentially

provide the infiltrator with passwords or even the data stream from a call (for

more details, see Section 3). Spoofing proxy servers and SIP registrars allows

attackers to record and change whole conversations [19]. For example, an

unintended party who is spoofing a legitimate registrar could submit a forged

response to a SIP REGISTER message [19]. When the unsuspecting user

makes a call, it will be routed to the attacker’s server instead, allowing the call to

be intercepted.

Finally, another well-known class of attack to which SIP is susceptible is

the denial of service (DOS) attack. Abusing the basic signaling messages of the

SIP protocol, a call can be forcibly ended or even prevented. By gaining just a

few bits of information from a SIP session, such as an IP address and call

identification, a BYE message can be forged and sent on behalf of a user

currently in a call. When the party at the other end of the call receives this

message, the recipient’s softphone acts as if the call is complete and the

connection will be torn down. Similarly, if a user is trying to make a call, an

 18

attacker can forge a CANCEL message that appears to originate from the caller.

This message tells the callee’s softphone to cancel the attempt to initiate a

session [19].

Although this is not an exhaustive list of all of the attacks possible against

SIP, it suggests that attention is warranted when configuring SIP as a mission-

critical application. Many of these attacks can be mitigated and prevented, or

have their likelihood of occurring greatly diminished (see Section D).

3. Threats in RTP

The Real-time Transfer Protocol (RTP) is susceptible to a number of

attacks. These attacks include spoofing, hijacking, denial of service, and traffic

manipulation. Since data is not encrypted, an attacker can eavesdrop on a

conversation or inject into it her own audio. The potential loss of integrity and

confidentiality makes these attacks against RTP especially severe.

Since RTP transfers the media stream of a conversation, a significant

portion of a conversation’s stream may need to be captured for an attacker to

have any useful data. By using a Man-in-the-Middle attack, however, a

perpetrator could easily capture the entire stream of a conversation. Without

encryption, the captured audio simply needs to be played back and the attacker

has access to the entire conversation [19].

Though slightly more complex, voice injection uses the same Man-in-the-

Middle attack to allow the data to be modified by the attacker. The attacker can

use captured packets to extract sequence numbers and signaling source values

(SSRC) from the conversation. These allow the attacker to spoof packets and

send a prerecorded audio message [19]. In this manner, the conversation may

receive messages that were not actually intended by either legitimate call

participant.

 19

4. Threats in Asterisk

Both the Makefile and README [24], included with Asterisk’s source

code, encourage those interested in running Asterisk to read the section of

Asterisk’s documentation about security before continuing. At less than two

pages in length, this section of the Asterisk documentation begins with a warning

regarding the topic which is the main focus of Asterisk security: the potential

unauthorized use of phone services by attackers, resulting in hefty phone bills

[25]. This document breaks down Asterisk security into two areas: network

security and dialplan security.

Network security from the standpoint of Asterisk entails limiting access to

an Asterisk server. The documentation encourages use of SSH or VPN solutions

for access to the management portion of the Asterisk server, if remote

management is enabled. Also, since certain ports are opened by default for

various channels, like SIP, the documentation encourages using the

configuration files for these protocols to explicitly configure Asterisk to permit or

deny access to the port on a per-user basis. This section of the documentation

explicitly mentions that Asterisk (v1.6.1.0) does not yet support encryption for SIP

[25].

Dialplan security in Asterisk is intended to prevent the use of unauthorized

phone services. Several measures are suggested to prevent this. First, if one

uses the default extensions.conf file, the unused and unnecessary contexts

should be removed. Second, dialplan contexts should be used to keep incoming

calls out of contexts that allow outgoing and long-distance calls. Otherwise, if an

attacker is able to be transferred to a line that can access a context with

privileges to call long distance, the attacker may be able to incur charges for the

owner of the system. This does not prevent an outside party from calling a user

with access to long-distance calling; rather, it refers to a separation of privilege

between trusted parties (e.g., users with a valid internal line) and untrusted

 20

parties (e.g., individuals calling into the system). By following this guidance, the

potential for an attacker to make unauthorized calls is reduced.

In addition to these threats, Asterisk is occasionally faced with security

issues due to exploitable flaws in the code. In order to respond to known

problems and mitigate their possible exploitation, the Asterisk community

publishes security advisories [26]. These advisories provide detailed information

about each problem and, whenever possible, provide patches or guidance on

problem mitigation.

D. MITIGATIONS

As mentioned earlier, guidance for securing Asterisk focuses on securing

the dialplan to prevent the unauthorized use of telephone services. A number of

tutorials and other documents have been written to help Asterisk administrators

secure their dialplan [27], [28]. This problem can also be mitigated by ensuring

there is no connection from the system to another telephony infrastructure. In

particular, if Asterisk is on an isolated local area network and is not able to make

outside calls, the threat is essentially eliminated.

Asterisk can be configured to ensure that SIP passwords are not sent in

the clear over the network. When configured this way, the cryptographic hash of

the password is sent. However, as previously described, these hashes can be

captured on the network and the passwords can be extracted using well-known

techniques. One mitigation for this is the use of Secure SIP (SIPS) [2], in which

transport layer security (TLS) protects the SIP conversation. As of this writing, a

stable version of SIPS for Asterisk remains a work in progress [29], [30], [31].

Another security feature that is the subject of active development for

Asterisk is secure RTP (SRTP) [32]. The goal of SRTP is to provide protection

from eavesdropping and audio injection. The most intuitively valuable part of the

conversation, voice data, is sent unencrypted when RTP is used to distribute the

 21

media. With the use of SRTP, voice media is protected using strong encryption,

such as the advanced encryption standard (AES) algorithm.

E. SUMMARY

Numerous attacks can be mounted against VoIP, targeting a range of

weaknesses, from protocol issues and telephony hardware problems to bugs in

Asterisk’s implementation. Asterisk has a community actively engaged in

implementing the latest secure features and improvements of protocols, including

SIPS and SRTP. Overall, knowledge of these threats helps to highlight the

technology layers wherein a VoIP implementation may need additional

protection.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

IV. ARCHITECTURE, REQUIREMENTS, AND SPECIFICATION
SELECTION

A. GOALS

Asterisk contains a large number of functions unnecessary for the future

goal of creating a VoIP implementation for use in a multilevel secure context.

This is evidenced in our summary of Asterisk’s features (Table 1, Chapter II).

These extra features, however, ultimately translate into performance overhead

and unnecessary logic, in which vulnerabilities may exist. In order to minimize

the necessary functions, Asterisk’s core functionality and modules must be

identified. The superfluous functionality may then be eliminated. First, we

summarize the design and architecture of Asterisk’s implementation. Then, we

define the requirements for our target Asterisk system, capturing the functionality

required by our concept of operation from Chapter III.

B. ASTERISK ARCHITECTURE

The following section summarizes those architectural components of

Asterisk useful to understanding the basic process by which the software

implements SIP-based VoIP. This discussion will be helpful in understanding the

dependencies identified later, in our minimal Asterisk system.

1. Back-to-back User Agent

While Asterisk may be configured to act as a SIP proxy (Figure 1, Chapter

II), its default behavior is as a “Back-to-back User Agent” (B2BUA). As a B2BUA,

Asterisk acts as a user agent from the perspective of both users involved in a

conversation. This results in two simultaneous conversations within Asterisk:

one between the call originator, and one with the call recipient. In this manner,

 24

Asterisk stands between the callers throughout all communication. In particular,

the RTP portion (voice data) passes through Asterisk, and not directly between

the two callers.

2. Thread Architecture

Asterisk is a multi-threaded program. Upon startup, a main Asterisk

process starts a number of threads, each associated with a module or a specific

functionality. It may be possible to configure an installation with a minimal

number of threads. For us, a minimal set of threads would necessarily include

those used to manage core PBX functions and calls over a SIP channel.

3. Software Architecture

Asterisk’s software architecture is modular and extensible. Asterisk was

designed to encourage its development community to contribute to its features,

through the creation of modules. These modules are made accessible to the

other parts of Asterisk by conforming to one of several module application

programming interfaces (APIs). Standardized APIs allow new modules to be

integrated easily into Asterisk, expanding its support for new codecs, file formats,

communication protocols, and dialplan functions. The essential APIs of Asterisk

are discussed below.

The Channel API defines the interfaces each channel technology must

implement and make available. These interfaces, in effect, hide technology-

specific details from the PBX and from other modules. Thus, incoming calls can

be handled in a technology-independent fashion. For example, calls are

transferred or bridged, with little difference to Asterisk’s PBX subsystem, whether

they originate from an Inter-Asterisk eXchange (IAX) trunk or over H.323. As a

consequence, as new protocols and standards for VoIP telephony are

developed, the channel technologies supported by Asterisk may be extended

with little modification to the rest of its code base.

 25

The Codec Translator API defines those interfaces each codec module

must implement and make available. The modules enable Asterisk to transcode

audio between channels when the clients fail to negotiate a common audio

format during the call. When transcoding, Asterisk converts audio data from one

format to another, allowing the two clients to communicate. For example, a user

on a mobile phone may call a user on the public switched telephone network

(PSTN) through Asterisk, and the PBX will bridge the call, acting as the

middleman by transcoding the audio between G.711 and GSM. These clients

would otherwise be unable to communicate, if Asterisk did not operate as a

B2BUA and transcode their audio.

Asterisk also provides a File Format API to read and write files of different

types. These modules are invoked, for example, when a file is written after

leaving a voice mail message. In this case, the caller speaks and Asterisk

collects and saves the incoming media. Asterisk will save this file using a format,

such as GSM or wav, chosen according to its configuration. Similarly, saved

messages must be opened and read by Asterisk, to be played back to the user.

Asterisk’s Application API provides those interfaces that allow applications

(or “apps”) to register with the various subsystems of Asterisk during start-up.

For example, an application might make itself available as a function callable

during dialplan execution (a dialplan function), accessible via Asterisk’s

management interface (an AMI function), or via the command line interface (a

CLI function). In essence, the Application API allows third-party “apps” to be

integrated into Asterisk’s various subsystems.

In addition to the functionality provided by each module, there are also

many Asterisk subsystems that are configurable and feature-rich. Some of these

systems are singular in purpose, like the “loader” (which reads in modules during

start-up) and the “PBX core” (which handles the majority of the PBX

functionality). Other systems, however, provide very general functionality that is

useful throughout Asterisk, like the scheduler, the I/O polling manager, the thread

manager, the call detail record (CDR) handler, and the logging subsystem. The

relationships among Asterisk’s subsystems and modules are suggested in Figure

2.

Figure 2. Asterisk Architecture1

4. Asterisk Concepts

A channel refers to the connection over which a VoIP conversation occurs.

Gonçalves provides a good definition of an Asterisk channel as follows, “A

channel is the equivalent of a telephone line, but in digital format. It usually

consists of an analogic or digital (TDM) signaling system or a combination of

codec and signaling protocol (e.g., SIP-GSM, IAX-ulaw)” [9]. A number of

signaling protocols are available to Asterisk, such as SIP, MGCP, or H.323, via

its channel modules [32]. The subsystem managing the protocol’s logic is said to

“drive the channel,” and is called the channel driver. Asterisk can also access a

1 Image reproduced with the permission of Digium, Inc. [34].

 26

variety of audio codecs, including GSM, Speex, and µ-Law, via its codec

modules [32]. Our minimized Asterisk systems exclusively use SIP-GSM

channels.

In Asterisk, the PBX’s dialplan is defined in the extensions.conf

configuration file. Recall, the dialplan determines what actions are taken when an

extension is requested. In our example dialplan (Figure 3, below), when

extension 1000 is requested, Asterisk invokes the Dial() function, to call an

extension (1000) on a particular channel (SIP). Additionally, our dialplan states

that, after a predetermined time (10 seconds), if the Dial() function fails to

connect, Asterisk should invoke the VoiceMail() function.

Figure 3. Configuration file extensions.conf

5. Codec Background

A codec is an algorithm that encodes and decodes audio/video data. With

respect to the current discussion, Asterisk codecs encode and decode voice

data. For our minimized system, we chose to configure Asterisk to use a single

codec: the Global System for Mobile communications (GSM) codec. The GSM

codec is popular for use in mobile communications, provides decent sound

 27

 28

quality, low processing impact for conversion and it has no royalty fees [33]. The

choice to support only a single audio codec in our systems—our voice mail audio

files and clients all use the GSM format—reduces the complexity of our Asterisk

systems and helps to avoid the heavy performance cost associated with

transcoding during operation [35].

6. Asterisk Threads

Asterisk starts a number of threads during its initialization process. The

number and purpose of threads vary depending on the configuration, modules,

and settings of Asterisk. One of the primary goals of this research is to minimize

the number of running threads on an Asterisk system. In order to accomplish

this, it is important to have an idea of some of the threads and the actions they

perform.

Upon startup, a number of subsystems start and modules are loaded,

many of which use persistent threads to manage specific background tasks. A

typical installation of Asterisk has more than 30 background threads handling

tasks as diverse as monitoring I/O, handling scheduled tasks, and managing

specific channels. We will mention the behavior of some notable background

threads present in our minimized Asterisk system (Figure 7, Chapter V). The first

of these is the core event dispatcher thread2, which manages generic internal

Asterisk events. Next, the listener thread begins, which manages switching

Asterisk between daemon and console modes. Then, the logger thread begins,

which initializes and manages Asterisk’s logging capabilities. The

do_devstate_changes thread then starts to manage the state (not in use, ringing,

busy) of extensions and channels. A thread2 managing the PBX core is then

started. The do_parking thread then starts, which is involved in call transfers,

“call parking”, and related features. The do_monitor thread is the SIP channel

driver, investigated in more detail later. The next thread2 manages certain voice

2 This thread is created by a subsystem in Asterisk that handles some thread management. It

is listed in Figure 7 as a tps_processing_function thread.

 29

mail tasks. The final thread to be loaded is the monitor_sig_flags thread, which

responds to events registered with the signal handlers in Asterisk.

The SIP channel driver thread (do_monitor) polls the default UDP port for

SIP traffic and manages open “SIP conversations” on other ports. After handling

the portions of the conversation related to registering, authenticating, etc, this

thread starts the pbx_thread to handle the rest of the call. The pbx_thread

executes the dialplan, which results in a wide range of possible activities that

includes using applications, reading and writing media to the channel, etc.—a

nearly unlimited number of scenarios can follow. One of the more interesting

scenarios occurs when an outgoing call is requested. In this case, the

pbx_thread creates an outbound channel to the recipient, and bridges these

channels when the recipient answers the call. When two user agents involved in

the call request to use the same codec and connect via the same channel

technology, Asterisk is able to bridge the call using a “native bridge.” During a

native bridge, no audio transcoding is required during the conversation and the

data transfer occurs directly in the channel driver (Figure 4). When clients use

different codecs, however, the pbx_thread must perform audio transcoding on

their behalf. In this scenario, the pbx_thread bridges the channels and converts

the audio from one format to another (Figure 5). If the outgoing call is not

answered, the dialplan directs the PBX what steps to take next. When the call

completes, the pbx_thread terminates.

Figure 4. Thread and channel for an incoming call (native bridge)

 30

Figure 5. Thread and channel for an incoming call using transcoding

C. REQUIREMENTS

The idea of a “minimal” Asterisk system only makes sense relative to a set

of requirements satisfied by the system. Our systems are minimal in the sense

that any configuration selecting fewer modules or installation options results in a

system that fails to meet these requirements. In particular, for our system,

modules were added during Asterisk’s installation until our requirements were

met. Using this methodology, an Asterisk server with few additional capabilities

resulted.

 31

 32

In this section, we develop two sets of requirements, each describing a set

of abilities required in our target concept of operations (Chapter II). The first set

of requirements pertains to support for SIP-based phone calls. We call a minimal

Asterisk system meeting these requirements a “Voice-Call Asterisk” system. The

next set of requirements includes some additional support for voice mail. We call

a minimal Asterisk system meeting these requirements a “Voice Mail Asterisk”

system. These two sets of requirements are described in detail next.

1. System Requirements

The following are functional requirements for any Voice-Call Asterisk

system. These pertain to a system in which callers may have VoIP conversations

with other system users, where Asterisk uses SIP as its signaling protocol.

 A caller shall be able to contact another user by entering that

party’s extension (SIP identifier) using a softphone.

 Asterisk shall be able to determine valid extensions and send the

necessary information for the destination party’s softphone to ring.

 Using SIP, the users’ softphones shall be able to successfully

negotiate an audio codec to be used for the voice portion of their

communication.

In addition to the above functional requirements, the following items are

necessary for any Voice Mail Asterisk system. These requirements are the

minimum for a working voice mail system. Some features may be

administratively controlled (e.g., mailbox size), but this is to be limited by the

policy of the individual implementation. The administrative controls we have

chosen are the default settings from the samples shipped with the version of

Asterisk under consideration (see Appendix B, voicemail.conf).

 The dialplan shall be able to direct an unanswered call so that it is

handled by the voice mail system.

 33

 The voice mail system shall be able to provide a caller with an

option to leave a message for the intended party.

 The voice mail recipient shall be able to receive a notification

indicating that a voice mail has been received.

 The voice mail recipient shall be able to call an extension that

connects to the voice mail system.

 The voice mail recipient shall have the ability to retrieve voice mail

messages from a personal account within the voice mail system.

 The voice mail recipient shall be able to manage personal

messages, including saving or deleting them.

2. Asterisk Requirements

To support these functional requirements, Voice-Call Asterisk must be

able to do the following:

 Understand the session initiation protocol

 Handle SIP INVITE messages

 Dial other users (forward the INVITE message to the recipient)

Additionally, to support the voice mail functional requirements in the

previous section, Voice Mail Asterisk must be able to meet the following

requirements:

 Send notifications when a voice message is recorded

 Answer a call if it is not answered by the intended party

 Use format translators to read and play back the static sound files

that make up the menus, selections, and information of the voice

mail system

 34

 Use an audio codec to save the voice mail into a file following a

predetermined format

 Store voice mail for later retrieval by the receiving party

 Play voice messages back to the recipient during subsequent

retrieval

Due to our decision to support the SIP signaling protocol, Asterisk needs

to have the capability to receive and process SIP requests. As SIP INVITE

requests are made, the codecs and RTP ports are negotiated. For Voice-Call

Asterisk, the configuration has been simplified through the choice to use a single,

system-wide audio codec. Since our softphones use the same codec, Asterisk

will create a native bridge during the calls and does not need to transcode audio

data.

As will be seen in the next section, Voice Mail Asterisk contains those

modules needed to meet this set of requirements. Adding voice mail functionality

increases the number of Asterisk modules required, compared to Voice-Call

Asterisk. In Voice-Call Asterisk, the system does not interact directly with a call

other than to set up, bridge, and tear down the call. To add voice mail support to

the system, Asterisk now needs to perform additional tasks, including answering

calls, sending voice data over the network, and receiving voice data.

D. MODULE SELECTION

Initially, trial systems meeting our requirements were created based on

what could be gleaned from Asterisk’s documentation and module names.

Essentially, much of the process was an ad-hoc search for the “core modules”

supporting our requirements. The outcome of our search for relevant modules is

discussed next. We describe the modules ultimately chosen for our minimized

systems and discuss their specific relevance in the next section.

 35

Table 2.

1. Asterisk Module Relevance

Modules we identified as necessary for any Voice-Call Asterisk system are

listed in Table 2. A number of these modules bring key components to Voice-

Call Asterisk, while others are needed to satisfy dependencies. The pbx_config

module allows the use of user extensions from a static configuration file [36].

The chan_sip module allows Asterisk to register SIP clients and perform

necessary SIP interactions. This module requires the chan_local module, which

is used internally by Asterisk for creating and managing channels. The app_dial

module is needed to link one party to another. It enables the Dial() function to be

used within the dialplan. When used, this function directs Asterisk to dial some

extension on behalf of an incoming call. Appendix A provides details concerning

configuring and installing our minimized Voice-Call Asterisk system.

Required Modules for Voice-Call Asterisk

Module Type Module Name Why it is necessary Dependencies
Application app_dial.c Allows an extension to be

reached when it is dialed.
Enables the Dial() function for
use within the dialplan.

Channel Driver chan_local.c Used internally by channel driver
modules.

Channel Driver chan_sip.c Enables Asterisk to use the
Session Initiation Protocol.

chan_local.c

PBX Module pbx_config.c Enables the use of extensions
from the static file
extensions.conf

Our Voice Mail Asterisk system requires four additional modules to meet

its requirements (Table 3). First, the app_voicemail module needs to be enabled.

A number of other modules are necessary for the app_voicemail module to

function correctly. For example, this module depends on a resource module

called res_smdi. This allows Asterisk to interact with the various capabilities of

phones and the voice mail system, such as setting a message waiting indicator

on a phone. Asterisk provides an archive of royalty-free recordings in the CORE-

SOUNDS-EN-GSM file (see Appendix A for details on this sounds archive).

 36

Table 3.

When these are installed, the voice mail system uses the recordings to provide

incoming callers directions on how to leave and retrieve voice mail messages.

The GSM codec is needed to allow Asterisk to play back these prerecorded

messages. The codec_gsm module enables the GSM codec for use by Asterisk.

Similarly, in order to read these files or save new voicemail messages as GSM

files, the format_gsm module needs to be installed to enable the GSM audio file

format interpreter.

Modules for Minimized Voice-Call and Voice Mail Asterisk

Module Type Module Name Why it is necessary Dependencies
Application app_dial.c Allows an extension to be

reached when it is dialed.
Enables the Dial() function for use
within the dialplan.

Application app_voicemail.c Gives access to voice mail
functionality. Enables functions
within the dialplan such as
VoiceMail() and VoiceMailMain()

res_smdi.c

Channel Driver chan_local.c Used internally by channel driver
modules.

Channel Driver chan_sip.c Enables Asterisk to use the
Session Initiation Protocol.

chan_local.c

Codec Translator codec_gsm.c Handles GSM audio format
Format Interpreter format_gsm.c Allows Asterisk to store or play

GSM formatted sound files (voice
mail messages, and pre-recorded
core sound files).

PBX Module pbx_config.c Enables the use of extensions
from the static file extensions.conf

Resource Module res_smdi.c Used by voice mail
Core Sound Files CORE-SOUNDS-

EN-GSM
Archive of prerecorded sound
files used for a number of
services including voice mail

 37

E. SUMMARY

We have defined a set of functional requirements and technical

requirements for a Voice-Call Asterisk system and a Voice Mail Asterisk system.

We described the set of Asterisk modules needed by the minimal Asterisk

systems we found to meet these requirements. Next, we describe the

experimental process used to discover these minimal systems and verify that

they met their respective requirements.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

V. EXPERIMENTATION

A. INTRODUCTION

This chapter describes the experiments performed using candidate

Asterisk configurations to verify that they meet our requirements. First, the

experimentation platforms are described. In addition, we provide a brief overview

of how each candidate system tested was built from its source code (see

Appendix A for more specific information). Next, the tests are briefly outlined and

described (see Appendix C for more details). Then, we describe how each

Asterisk test system was configured for the experiments. After this, the tests are

described and our results presented. We conclude with an analysis based on the

results of our experiments.

B. EXPERIMENTATION

The minimal set of modules needed for various Asterisk functions was

determined based on the requirements identified in Chapter IV. Using these

requirements makes it simple to develop tests for our target functionalities in any

candidate minimal Asterisk system. The network topology for our experiments is

illustrated in Figure 6. Each Asterisk system was installed on a Fedora 10 virtual

machine running in VMware Workstation. The directions for building Asterisk on

Fedora can be found in Appendix A. Since the experimentation was focused on

the functionality of the server, the clients used for the tests only needed to satisfy

two requirements. The clients must be able to support a softphone that can use

SIP to communicate with a SIP server and use GSM for the audio format. The

client machine configuration should be able to be reproduced on any platform,

assuming it meets these requirements. For these experiments, the open source

Ekiga softphone (v.3.0.1) [37] was installed on Fedora 10 and used for both of

the SIP clients (for detailed directions, see Appendix A).

Figure 6. Experimentation network topology

1. Module Selection

Because the Asterisk code is not accompanied by detailed specifications

or descriptions of its internal organization, initial candidate systems were built

based on the names and available descriptions of modules selected during

installation. These names and descriptions, combined with the requirements

outlined in Chapter IV, were the basis for choosing modules for inclusion into the

systems. Initially, this set of modules was larger than necessary, but using our

testing procedures the set was quickly reduced to the minimal required set of

modules. Eventually, the target functionality for each Asterisk system was met

with regards to the Voice-Call Asterisk and Voice Mail Asterisk system

 40

 41

requirements from Chapter IV. Additionally, no system with fewer modules

selected during the build process was able to pass all of our functional testing

during experimentation.

2. Build Process

The build process is used to construct an executable file. This file will

execute as the Asterisk server. A number of steps are included in this process,

but only a brief overview is given in this section. For greater detail about

installing Asterisk, see Appendix A.

In order to ensure that Asterisk worked with the selected modules, a new

virtual machine for each candidate Voice-Call Asterisk and Voice Mail Asterisk

system was created. Additionally, a third virtual machine was created to install a

default Asterisk build to be used for comparison purposes. The process for

building Asterisk made use of the /usr/src directory to decompress the source

archive. The resulting directory was then entered. The make clean command

was then issued to ensure that previous remnants of possible Asterisk installs

were removed (since these were pristine VMs, this step was technically

unnecessary). Next, ./configure was run to determine system variables and

settings, and to check for dependency requirements. At this point, the actual

Asterisk instance was ready for construction. Upon running make menuselect, a

menu was displayed in the terminal. This interface allows modules to be

selected or deselected. All of the modules were deselected, with the exception

of the appropriate modules for the desired build. The final modules included in

each minimal system are listed in Table 2 and Table 3 in Chapter IV, and

detailed installation instructions can be found in Appendix A. These settings

were saved and menuselect was exited. Finally, the make install command was

used to install Asterisk. Since the experimentation was confined to a local

network, there was no Internet connectivity. This resulted in the need to

download the sound files used by the voice mail system on a separate system

(with Internet connectivity), and install them into the necessary directory.

Once all of the modules were identified, the Voice-Call Asterisk, Voice

Mail Asterisk, and a default configuration of Asterisk were built and installed.

This allowed for a comparison of file and process sizes, as well as individual

testing. As seen in Table 4, for our final minimized Asterisk systems, there was

a significant reduction in the overall size of Asterisk, compared to the default

system built. As a note, these sizes and thread counts were obtained from

freshly started instances of Asterisk. In addition, there were no calls being

handled when the values were reported. The background threads active after

startup for Voice Mail Asterisk are listed in Figure 7.

 42

Table 4. Asterisk Build Details

Asterisk
System

Resident Set
Size

Virtual
Size

Threads
when Idle

Executable
Size

default 7856 Kb 27156 Kb 32 47784 Kb
Voice-Call 2448 Kb 9128 Kb 8 18316 Kb
Voice Mail 2800 Kb 9624 Kb 9 19824 Kb

Figure 7. Background threads in Voice Mail Asterisk

C. TESTING

A number of tests were performed for both of the minimal Asterisk

instances. These tests demonstrated that each configuration met its

requirements from Chapter IV. Due to the fact that slightly different features and

functions were being tested, the tests for each set of requirements are not

identical. The following is a list of pertinent items tested.

 43

Table 5.

 SIP registration

 Users’ ability to call each other

 Unanswered calls continuing to ring (Voice-Call Asterisk only)

 Undefined extensions cannot complete a call (exception test)

 With no answer after a certain amount of time, the voice mail

system handles the call and allows the user to leave a message

 A message’s recipient is able to call the voice mail system to

retrieve and manage her mailbox

The testing is outlined in the following tables. Each test is more fully

described later in this chapter.

Voice-Call Asterisk Requirements Tests

Test
Number

Exception
Test

Test Description Test Objective

A1 Register user agent with Asterisk
Server.

Determine if SIP is working for
registration

A2 Alice calls Bob and vice versa. The call
recipient does not answer. The callee’s
phone continues to ring until the caller
hangs up.

Determine if SIP signaling
works and ensure call is not
handled automatically

A3 Alice calls Bob and vice versa. The call
recipient answers.

Determine that SIP signaling
works and RTP works in
network

A4 X Users dial undefined extensions. Ensure that no unintentional
extensions can be reached
(non-exhaustive)

 44

Table 6. Voice Mail Asterisk Requirements Tests

Test
Number

Exception
Test

Test Description Test Objective

B1 Register user agent with Asterisk
Server.

Determine if SIP is working for
registration

B2 Alice calls Bob, and vice versa. Determine that SIP signaling
works and RTP works in
network

B3 X Users dial undefined extensions. Ensure that no unintentional
extensions can be reached
(non-exhaustive)

B4 Alice calls Bob, and the line is not
answered by Bob, and vice versa.

Ensure that voice mail system
handles incoming call at
appropriate time. Ensure
codecs and translators work to
save a message and play
menu instructions.

B5 User calls voice mail system to retrieve
mail.

Ensure that voice mail system
handles incoming call directly
to the voice mail system.
Ensure codecs and translators
work to save a message and
play menu instructions.

Before conducting each of the tests, a number of steps were taken to

ensure network connectivity. The client-based firewalls were configured to allow

RTP data to pass through the network from one client to the next. Additionally,

the physical network infrastructure was tested using the ping command against

each system’s IP address.

1. Voice-Call Asterisk Testing

So that the test VoIP network could function in the desired way, a simple

scheme was developed to configure each candidate Asterisk system. This

scheme consists of a number of configuration files, which create the logical

configuration that makes up the actual phone extensions. For basic voice calls,

three configuration files were necessary: modules.conf, extensions.conf, and

sip.conf. These files will be explained in the next subsection.

a. Configuration Files

In order for Asterisk to “know” how to react to various types of

requests (e.g., a SIP INVITE message), it must contain properly formatted

configuration files. Each candidate Asterisk system we tested required a number

of these configuration files. First, modules.conf is needed as a technicality.

While removing the Asterisk modules that are extraneous to the current study, it

was determined that the functionality of pbx_config was not automatically

enabled, even though the module was embedded into the executable during the

build process. This module, pbx_config, must be loaded because it helps

Asterisk to parse text files. To ensure availability of this functionality,

modules.conf loads pbx_config using the autoload directive (see Figure 8) which

loads the contents of the /usr/lib/asterisk/modules directory and loads the

pbx_config module.

Figure 8. Voice-Call and Voice Mail Asterisk’s modules.conf

Asterisk’s dialplan is contained in the extensions.conf file. For an

overview of the role of the dialplan in Asterisk, see Chapter IV. For testing

purposes, a very basic dialplan (see Figure 9) was developed to test the

necessary functionality and to keep unnecessary complexity to a minimum. In

our dialplan, we define a “context” called phone_test_dialplan. Within this

context there are two possible destination extensions, with two ways to reach

each. The “exten =>” syntax points to each of the extensions that will be reached

as this context is entered. The first argument after this defines how the phone

will be reached, either by dialing 1000 or entering alice3. Finally, the Dial()

function is invoked. Together these directives state that when extension 1000 is

registered from the phone_test_dialplan context, extension 1000 on the SIP

channel will attempt to be contacted.

3 SIP supports the ability to make a call using either a numbered extension (1000) or a name

(alice); the ability to call using a name was provided for illustrative purposes.

 45

Figure 9. Voice-Call Asterisk’s extensions.conf file

Since the dialplan indicates that SIP channels are being accessed

(see next paragraph), the users that correspond to the extensions on this

channel need to be set up in sip.conf (see Figure 10). In this file, we created a

generic template context entitled “sets.” The template context is later referenced

by the individual extensions using the (sets) syntax. It is as though the whole

block was entered for each extension created. The type “friend” allows each

user to both send and receive calls from the Asterisk server [33]. The value for

“context” refers to the dialplan context into which the SIP user should enter by

default when using this channel. In our example, it is the same for both users.

The host variable “dynamic” signifies that the host’s IP address is dynamically

configured on the network. The “disallow” and “allow” lines relate to the codecs.

First, all codecs are disallowed and then GSM is the sole audio codec enabled.

Finally, the variable secret defines the user’s password for access to the channel.

In our example, each user has a unique password. These entries relate to Alice

and Bob, respectively, as can be confirmed by the configuration of their

extensions in Figure 9.

 46

Figure 10. Voice-Call Asterisk’s sip.conf file

b. Description of Tests

All of the tests proceeded using this configuration for the Voice-Call

Asterisk (see Appendices A and C for details). All of the tests were performed

after first invoking Asterisk from the command line using the “-vvvvvc” switch4.

For test A1, the softphone attempts to register with Asterisk.

Although the user enters the extension being registered and her password

(corresponding to the password from the sip.conf file) into the SIP configuration

section of the softphone, the actual registration is transparent to the user.

Because of this, the command line interface (CLI) command sip show peers was

issued to see if the given user was indeed registered (see Figure 11).

Additionally, a message indicating that a registration has been made is

displayed. However, the amount of information shown is limited and only

identifies the registered user’s extension and IP address. Test A1 completed

successfully.

4 The Asterisk command line switch “-v” signifies the program’s level of verbosity, or the

amount of feedback it displays to the screen. Successive “v” characters will increase the
verbosity level of the starting Asterisk process. The increased verbosity in Asterisk’s feedback is
helpful for providing information about various tests.

 47

Figure 11. CLI sip show peers output

Next, Alice called Bob and his softphone, although registered, was

not answered. This test cannot be exhaustive since the phone can only ring a

finite number of times. However, the line continued to ring until the caller hung

up since there was nothing to handle the incoming call. This test was then

repeated in the opposite direction such that Bob called Alice. For both directions,

test A2 completed with expected results.

Next, Alice called Bob and the softphone on the receiving end was

answered. The voice could be heard and detected from each softphone, hence,

test A3 passed. Again, this test was performed successfully in the opposite

direction, with Bob calling Alice.

Finally, the exception test was performed to verify that calls to

undefined extensions cannot be made. This test tried a handful of various

undefined extensions. The test results were confirmed both at the client and the

command line interface. The behavior observed from the client-side is as

follows: If the number was invalid, shortly after the call was sent, it would be hung

up, without ringing. Confirmation was provided at the command line in the form

of a message that stated the call could not be completed because the given

extension does not exist (see Figure 12). This error is generated for all numbers

except the subset of numbers associated with valid extensions. For example,

although extension 100 is not a valid extension the output is slightly different (see

Figure 13). Since 100 is a prefix of Alice’s extension (1000) Asterisk is unable to

disambiguate this as an undefined extension or a user getting ready to dial

extension 1000. The same behavior is observed for extensions 1 and 10.

 48

Figure 12. Error associated with dialing extension “544”

Figure 13. Error associated with dialing extension “100”

2. Voice Mail Asterisk testing

Tests of Asterisk’s voice mail system differ from those performed in voice-

call testing. The overall process was the same as the Voice-Call Asterisk testing,

but some of the configuration files were different and additional tests were

performed. In addition to the configuration files used for the voice-call tests, a

voicemail.conf file had to be configured. Some minor changes to the

configurations of the extensions.conf and sip.conf files were also needed. The

next subsection describes the configuration files and the changes from those

used for Voice-Call Asterisk.

a. Configuration files

In the extensions.conf file, the change needed for voice mail testing

is an additional line for each possible user and a subtle change to the arguments

of the Dial() function. The argument added to the Dial() function for each of the

extensions represents the number of seconds that the call will be attempted. As

illustrated in Figure 13, in our configuration Asterisk will ring the extensions for

ten seconds. If the call is not answered within this time, the dialplan proceeds to

the next line. The “exten => 1000”, is the same as the previous line. The n

represents the next step of the dialplan to perform; this notation helps avoid

renumbering when adding steps to the dialplan (in our example, n represents 2).

Next, the VoiceMail() function takes two arguments. The first argument,

 49

1000@default, indicates the target mailbox (mailbox 1000 in “default” context of

the voicemail.conf file). With this argument, the VoiceMail() function knows

where to store the collected message. The second argument can be either “u” or

“b” and signifies to the VoiceMail() function whether to play the unavailable or

busy message for the user [33]. When this line is reached, Asterisk answers the

call and allows the caller to save a message for the unanswered extension.

Another addition to this configuration file is a new extension (indicated as

extension 700 in Figure 14). Although it has the same format as other

extensions, it does not result in dialing a channel extension, but instead results in

the invocation of the VoiceMailMain() function. Through the invocation of this

function, a user is prompted to login and is able to manage personal voice mail.

Figure 14. Voice Mail Asterisk’s extensions.conf file

Settings for the voice mail system include a number of items in the

general context that define a number of variables and settings. First,

“format=gsm” indicates that incoming voice mail messages should be saved in

the GSM format. This is necessary, based on the requirement that this audio

format is to be used for sound files. The next four settings come from the default

voice mail settings shipped with Asterisk’s sample configuration files. As

described in the comments of the file, “skipms=3000,” configures the system to
 50

skip ahead or back 3000 milliseconds when a message is being fast-forwarded

or rewound. The variable “maxsilence” is used to determine how many seconds

of silence are detected by Asterisk (i.e., the caller is no longer speaking) before a

recording is ceased. It is set to 10 seconds. Next, the default value for the

threshold of silence is set at 128, a value based on the algorithm used by

Asterisk to determine silence. The threshold of silence becomes more sensitive

with lower values. The last variable is the number of incorrect login attempts,

which is set at “maxlogins=3.” Inside the “default” context, we create the mailbox

1000 using the notation “1000 =>” with the mailbox password (4321) as the first

argument (see Figure 15). The second argument is simply the user’s name. In

the sip.conf file, we allow a user to access mailbox 1000 by adding the line

“mailbox=1000” under that user’s configuration data (see Figure 16).

Figure 15. Voice Mail Asterisk’s voicemail.conf file

 51

Figure 16. Voice Mail Asterisk’s sip.conf file

With the aforementioned configuration, two extensions were

created, each with a mailbox. One was created for Alice and one for Bob.

Another extension was created for the voice mail system. This allowed users to

dial into the system and retrieve and manage their messages. Tests proceeded

in an environment based on this configuration.

b. Description of tests

Test B1 works in precisely the same manner as test A1. The

Asterisk server was again started in the same manner as the first set of

experiments, by using the “-vvvvvc” switch to have sufficient feedback. After a

user configures her SIP user agent, assuming the network is functioning

correctly, the softphone can register with the Asterisk server. The SIP command

sip show peers issued (see Figure 17) to the Asterisk command line interface

was used to list registered clients. This test completed successfully, verifying

that both Alice’s and Bob’s softphones were successfully registered at their

respective extensions. Likewise, test B2 completed in a manner similar to A3

with calls being placed to each user. Test B3 completed with undefined

 52

 53

ssfully traversing the

network, and unexpected extensions could not be reached.

extensions being called, in the same way test A4 was executed. Based on these

results, it was determined that, with the configuration changes made to enable

voice mail, SIP was working properly, RTP data was succe

Figure 17. CLI command sip show peers

email/default/1000/INBOX/,

which contain

inal

candidate Voice Mail Asterisk system met the requirements from Chapter IV.

The remaining tests check the functionality of the voice mail system.

Test B4 is similar to test A2, in that the user does not answer the ringing line.

However, after the predetermined time (i.e., 10 seconds) the dialplan directs the

voice mail system to answer the call and allows the caller to record a message.

After a message is left, the corresponding message file can be found in a standard

directory. The /var/spool/asterisk/voicemail/[cntxt]/[ext]/INBOX/ directory is the

default for saved voice mail. This location can be found when “[cntxt]” is replaced by

the corresponding context from the voicemail.conf file and “[ext]” is replaced by the

recipient’s extension. As an example, Alice’s mailbox, based on the presented

configuration files, is the directory /var/spool/asterisk/voic

s Alice’s newly received voice messages.

Test B5 tests a user’s ability to call into the voice mail system and

retrieve and manage voice mail messages. After being prompted for a mailbox

and password, the user was able to manage personal voice mail. The only

functions examined were the ability to playback and delete messages (see

Appendix C). With all of the tests complete, it was concluded that our f

 54

D. ANALYSIS AND RECOMMENDATIONS

1. Analysis of Minimal Asterisk

Based on the information gathered, the desired functionality for the simple

SIP-based VoIP implementation was attained. In our final Voice-Call Asterisk

system, users are able to make calls to one another using the SIP protocol. In

our Voice Mail Asterisk system, users have the additional ability to send voice

mail messages to, or receive messages from, other users. These messages are

stored and managed in mailboxes, accessible to the user when she dials a

special extension in the system and provides the correct credentials.

While the functionality meeting our requirements was verified to be

available in our systems, it is not immediately clear what additional functionality

may also be available within the systems. During the testing, when the Asterisk

server was started and examined, it appeared that some features were available

and threads were active that did not correspond with those modules explicitly

selected during the installation. Although some Asterisk functionality appears to

be present and running in systems with no modules loaded, we speculate that

this functionality is internal to Asterisk and cannot be removed without source

code modifications.

2. Recommendations

Having completed this analysis and identification of modules meeting the

required core capabilities, Asterisk should be more fully dissected. This could

help identify potential functionality that is not necessary and could be removed by

modifying Asterisk’s source code. The number of extensions that can be

configured should be tested. Network traffic that can be supported with a single

Asterisk server on the VoIP network should also be examined. Such an analysis

could provide insight into an upper bound of concurrent conversations over the

VoIP network. Additionally, it may be beneficial to conduct more thorough

 55

exception testing. This could provide more assurance that there are not arbitrary

extensions that exhibit undesired effects or enable hidden functionality.

E. SUMMARY

After successful completion of all tests, the possibility of providing a

minimized set of Asterisk VoIP functions for porting to a MLS environment is

realized. Although many useful features have not been examined, the core

functionality of a VoIP implementation using SIP and RTP, as identified in the

requirements, has been identified. The modules necessary for simple voice and

voice mail communication provide a starting point for any future investigation

whose ultimate goal is to support an Asterisk-based VoIP implementation in

MYSEA.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

VI. FUTURE WORK AND CONCLUSION

A. INTRODUCTION

With the determination that it is possible to minimize the functionality of

Asterisk and build a minimal working PBX, the field lies open for future work.

This chapter discusses some ideas for continuing to work with Asterisk as a

candidate for achieving VoIP as a service within MYSEA. We then provide some

brief concluding remarks, summarizing our research effort.

B. FUTURE WORK

1. Real-time Voice Communication within MLS Context

Some work needs to be done to port the Voice-Call and Voice Mail

Asterisk systems to run in MYSEA. Through this research, the modules

necessary for Asterisk to meet core requirements for our concept of operation

were identified. Having identified these key modules, the technical work to port

Asterisk components to operate in MYSEA may begin, with a well-designed,

initial focus.

The recreation of voice call and voice mail capability within MYSEA would

also require implementation of a VoIP infrastructure that takes mitigations of

known security issues into account. One portion of these security issues is the

potential of misconfigured or erroneous Asterisk configuration files. Creating a

secure set of Asterisk configuration files that scales with the number of MYSEA

users would be nontrivial.

2. Voice Communications Originating Outside the MLS Network

Another area of work that can be explored is the possibility of receiving

calls from standard telephone lines originating outside of the MYSEA

architecture. This would require enabling extra Asterisk functionality compared

 58

to the systems we consider in this work, since the drivers and hardware that

interact with standard phone lines would need to be accessible to Asterisk. This

is a considerably more difficult task, but the potential benefits of connecting

Asterisk to the PSTN make it a natural object of future study.

3. Voice Communications between MLS Enclaves

Once Asterisk is ported to run within MYSEA, research should be done to

determine how two MYSEA networks could share their voice communication.

Perhaps each enclave would have an Asterisk server inside its network perimeter

that connects each classification level to the MYSEA network. Each server

would be able to receive calls at its classification level from remote MLS

networks that have VoIP capabilities. With further research and development, it

could even become a nearly “plug and play” feature to help simplify voice

intercommunication with other MYSEA enclaves.

C. CONCLUSION

The goal of this research was to determine a set of requirements

associated with VoIP services that includes voice mail. An instance of Asterisk

was produced that exhibits functionality meeting these requirements. Based on a

natural division of our requirements (voice calls and voice calls with voice mail

support), it was determined that two minimal Asterisk systems should be created:

one meeting our voice call requirement and another that expands these,

satisfying our voice mail requirement. Candidate systems were then tested and

found to provide the required functionality. The Asterisk modules required to

create these system were identified. Those modules required by our minimal

systems are described in Chapter IV. This goal was established with the future

vision to port Asterisk to run within MYSEA. Overall, our goal was accomplished

,and the groundwork was laid to aid with the future use of Asterisk within the

MYSEA architecture.

APPENDIX A: INSTALLATION PROCEDURES

This appendix focuses on installing a minimal version of Asterisk. This

installation is based on Asterisk 1.6.1.0 running on Fedora 10. These

procedures assume a basic knowledge of Linux command-line administration

including networking, traversing the file system, and using text editors.

Figure 18. Test Network Topology

A. PREPARING FEDORA 10 FOR THE ASTERISK SERVER

This is to prepare Fedora 10 for an installation of Minimal Asterisk. After

the file system has been formatted, the user will be presented with the option to

select packages or to use default packages. Select the radio button “Customize

Now” to be able to select the desired packages. These directions will work with

at least these broad categories in addition to several specific packages:

 Applications—Editors (vim)—Select the editor most comfortable for

the tester

 Base System—Base

 59

 60

Once installed, the following packages are needed to be able to compile

Asterisk:

 gcc (yum install gcc—installs the following: glibc-headers, kernel-

headers, glibc-devel, glibc, gcc, glibc-common),

 c++ support (yum install gcc-c++—installs the following: gcc-c++,

libstdc++-devel)

 ncurses-devel (yum install ncurses-devel)—fixes "configure: error:

*** termcap support not found"

B. INSTALLING MINIMAL ASTERISK WITH VOICE CALL CAPABILITY

This section assumes the steps from the section “Preparing Fedora 10”

have been followed”.

 Download Asterisk 1.6.1.0 from

http://downloads.asterisk.org/pub/telephony/asterisk/releases/asteri

sk-1.6.1.0.tar.gz (This can be done from another system and

imported using an external storage medium such as CD, DVD, or

USB drive) use wget or if you have installed the server with a

graphical user interface you can browse to it using a web browser.

From this point on run as root

 Save or copy the file to /usr/src (command: cp asterisk-

1.6.1.0.tar.gz /usr/src)

 Extract the archive data within /usr/src (command: tar xfvz

asterisk-1.6.1.0.tar.gz). This command will create a directory called

asterisk-1.6.1.0

 Move into the created directory (command: cd asterisk-1.6.1.0)

 61

From here on, run the commands in this directory /usr/src/asterisk-1.6.1.0

 ./configure

 make

 make menuselect

 menuselect options will be presented, go through and deselect ALL

items from all modules.

 Select only the following items within menuselect:

o Applications: app_dial.c

o Channel Drivers: chan_local.c

o Channel Drivers: chan_sip.c

o PBX: pbx_config.c

o Module embedding: APPS

o Module embedding: CHANNELS

o Module embedding: PBX

 Now select “Save & Exit”

 Compile and create the asterisk executable (command: make

install)

 Confirm that Asterisk is installed by running the following

commands

o which asterisk—Result should be “/usr/sbin/asterisk”

o asterisk -V—Result should be “Asterisk 1.6.1.0”

 In order to run, three configuration files need to be saved. These

files create two extensions, one for Alice and one for Bob. It will

allow them to call one another.

 62

 Work from within the /etc/asterisk directory. (command: cd

/etc/asterisk)

 Using Appendix B, create the three configuration files needed for

the direct call sample. Use the following commands to create the

files:

o touch extensions.conf

o touch modules.conf

o touch sip.conf

 Now, using a preferred text editor, add the lines from Appendix B to

the corresponding file. At a minimum, only the uncommented lines

are necessary to get Asterisk working. The following is an example

of editing these files using the vi text editor.

o vi extensions.conf

o i (enters insert mode)

o Type or paste the text of the file.

o Hit the ESC key. This causes vi to run in the command

mode, no text can be inserted. The following keystrokes will

save changes and exit: “:wq”.

 Follow the previous four steps for each configuration file, replacing

the name of the configuration file when starting the vi editor.

 Ensure that the software based firewall is disabled (command:

service iptables stop) (To disable the firewall from startup issue this

command: chkconfig - -level 345 iptables off)

 63

 Set the server’s IP address (command: ifconfig eth0 192.168.123.1

netmask 255.255.255.0). For the ifconfig command, the network

interface may be different from eth0, depending on various linux

configurations, ensure that the correct interface’s IP address is set

(Configuration dependent).

 To start Asterisk, from the command line, invoke the command

asterisk -vvvvvc. This will connect with the command line interface

to the Asterisk process that starts. Each v represents a level of

verbosity which, in this case, is set to level 5.

C. INSTALLING MINIMAL ASTERISK WITH VOICE MAIL CAPABILITY

 This section assumes the steps from the section “Preparing Fedora

10” have been followed.

 Download Asterisk 1.6.1.0 from

http://downloads.asterisk.org/pub/telephony/asterisk/releases/asteri

sk-1.6.1.0.tar.gz - (This can be done from another system and

imported using an external storage medium such as CD, DVD, or

USB drive) use wget or if you have a gui you can browse to it using

a web browser. (From this point on run as root) Save it to /usr/src

 For voice mail, prerecorded media files are needed. These can be

downloaded from:

http://downloads.asterisk.org/pub/telephony/sounds/asterisk-core-

sounds-en-gsm-current.tar.gz - These will be moved later in the

directions

 Extract the archive data within /usr/src using: tar xfvz asterisk-

1.6.1.0.tar.gz, this will create a directory called asterisk-1.6.1.0

 cd asterisk-1.6.1.0

 From here on, run the commands in this directory /usr/src/asterisk-

1.6.1.0

 64

 ./configure

 make

 make menuselect

 menuselect options will be presented, go through and deselect ALL

items from all modules.

 Select only the following items within menuselect:

o Applications: app_dial.c

o Applications: app_voicemail.c

o Channel Drivers: chan_local.c

o Channel Drivers: chan_sip.c

o Codec Translators: codec_gsm.c

o Format Interpreters: format_gsm.c

o PBX: pbx_config.c

o Resource Modules: res_smdi.c

o Module embedding: APPS

o Module embedding: CHANNELS

o Module embedding: CODECS

o Module embedding: FORMATS

o Module embedding: PBX

o Module embedding: RES

 Select “Save & Exit”

 Compile and create the asterisk executable (command: make

install).

 65

 Confirm that Asterisk is installed by running the following

commands

o which asterisk—Result should be “/usr/sbin/asterisk”

o asterisk-V—Result should be “Asterisk 1.6.1.0”

 In order to run, four configuration files need to be created.

 Work from within the /etc/asterisk directory. (command: cd

/etc/asterisk)

 Using Appendix B, create the four configuration files needed for

Voice Mail Asterisk. Use the following commands to create the

files:

o touch extensions.conf

o touch modules.conf

o touch sip.conf

o touch voicemail.conf

 Now, using a preferred text editor, add the lines from Appendix B to

the corresponding file. At a minimum, only the uncommented lines

are necessary to get Asterisk working. The following is an example

of editing these files using the vi text editor.

o vi extensions.conf

o i (enters insert mode)

o Type or paste the text of the file.

o Hit the ESC key. This causes vi to run in the command

mode, no text can be inserted. The following keystrokes will

save changes and exit: “:wq”.

 Follow the previous four steps for each configuration file, replacing

the name of the configuration file when starting the vi editor.

 66

 Change directories into /var/lib/asterisk/sounds/en (command cd

/var/lib/asterisk/sounds/en). Create it if it does not exist (command:

mkdir -p /var/lib/asterisk/sounds/en).

 Extract the archive of sounds into the current working directory

(command: pwd should return the following directory

/var/lib/asterisk/sounds/en) (command: tar xfvz asterisk-core-

sounds-en-gsm-current.tar.gz). The voice mail application looks for

the prerecorded menu selections within this folder.

 Ensure that the software based firewall is disabled (command:

service iptables stop) (To disable the firewall from startup issue this

command: chkconfig --level 345 iptables off)

 Set the server’s IP address (command: ifconfig eth0 192.168.123.1

netmask 255.255.255.0). For the ifconfig command, the network

interface may be different from eth0, depending on various linux

configurations, ensure that the correct interface’s IP address is set

(Configuration dependent).

 To start Asterisk, from the command line, invoke the command

asterisk -vvvvvc. This will connect with the command line interface

to the Asterisk process that starts. Each v represents a level of

verbosity, this is set to level 5.

D. INSTALLATION OF CLIENT COMPUTERS

The tests undertaken herein used two Fedora 10 clients. Unlike the

Asterisk server, these were tested as normal workstations. The following

describes the procedures to setup these computers for use as clients with Ekiga,

the softphone application used for testing. Both clients were used separately to

connect to the Asterisk servers. For example, when the Voice-Call Asterisk was

not used, the server was shut down and the voice mail server was started. They

both have the same IP address so needed to be used one at a time.

 67

 Complete a default install of Fedora 10 using the install media (CD

or DVD). No additional packages or libraries are needed as the

default install includes Ekiga 3.0.1.

 After reboot, create a user with normal privileges (e.g., Alice or

Bob).

 Login as the newly created user

1. Disable iptables and configure the network

 Open a terminal and su to the root account (command: su -)

 Run the command service iptables stop, to turn off the software

based firewall

 Set the client’s IP address (command to be issued on Alice’s

station: ifconfig eth0 192.168.123.2 netmask 255.255.255.0)

(command to be issued on Bob’s station: ifconfig eth0

192.168.123.3 netmask 255.255.255.0). For the ifconfig command,

the network interface may be different from eth0, depending on

various Linux configurations, ensure that the correct interface’s IP

address is set (Configuration dependent).

 Test that Alice and Bob can ping each other and the server. Test

that the server can ping Alice and Bob’s computers. (command:

ping corresponding IP address).

2. Run Ekiga and configure the client

 Before starting the clients, they need to have a server to which to

connect. For each test, start the corresponding server (i.e. direct

call or voice mail) by issuing the following command

o asterisk -vvvvvc

 68

 Click on Applications > Internet > IP Telephony, VoIP and Video

Conferencing (Ekiga’s icon, as of this writing, is yellowish circle with

a phone receiver and a sound wave on it.

 When Ekiga starts up for the first time, it presents the user with a

Configuration Assistant. The Configuration Assistant can either be

canceled or to prevent it from starting up each time Ekiga starts,

quickly go through the guide with the following actions.

o On screen 1 of 8, select the Forward button.

o Screen 2, enter the full name (ex. Alice User).

o Screen 3, select the checkbox at the bottom of the screen

stating, “I do not want to sign up for the ekiga.net free

service.”

o Screen 4, select the checkbox at the bottom of the screen

stating, “I do not want to sign up for the Ekiga Call Out

service.”

o Screen 5, select LAN for the connection type.

o Screen 6, be sure all audio settings are set to Default.

o Screen 7, select forward.

o Screen 8, select Apply.

 Configure Ekiga to use the same codec as the Asterisk installation

(GSM). Select the Edit menu and Preferences. On the left-hand

side, find Audio. If the audio section is not expanded click the

triangle next to it to expand the section. Select codecs from under

audio. Uncheck all of the codec options except gsm. Note: gsm

and ms-gsm are not the same. Be sure that gsm is selected and

not ms-gsm.

 69

 Once Ekiga starts, register by clicking on the Edit menu and

selecting Accounts.

 In the accounts window, select the Accounts menu and Add a SIP

account. Use the following information, as specified in the

configuration files, to register the users.

o Alice’s settings are as follows

Name: Alice

Registrar: 192.168.123.1

User: 1000

Authentication user: 1000

Password: guessthis

Timeout: Leave at default setting

o Bob’s settings are as follows

Name: Bob

Registrar: 192.168.123.1

User: 1001

Authentication user: 1001

Password: mypassword

Timeout: Leave at default setting

 Click OK

 Click close on the Accounts window

 If the client is properly set up, a message similar to following should

appear at the Asterisk command line interface:

Registered SIP ‘1000’ at 192.168.123.2 port 5060

 70

Saved useragent “Ekiga/3.0.2” for peer 1000

(This example is based on registering extension 1000 with an Ekiga

softphone)

 71

APPENDIX B: CONFIGURATION FILES

This appendix contains the different configuration files used to create the

test environments for the Voice-Call Asterisk as well as Voice Mail Asterisk. In

the corresponding installation, these files need to be saved in the /etc/asterisk

directory. Note: Within the configuration files of Asterisk, a semi-colon (;) begins

a comment. As seen below, the comments contain valuable information.

A. VOICE-CALL ASTERISK FILES

extensions.conf

;;;
;
; Filename: /etc/asterisk/extensions.conf
; Related files: /etc/asterisk/sip.conf
; Author: Jeff Wiley
; Date: 26 June 2009
;
; Purpose: This is a test dialplan to ensure that voice calls
; can be made. This file assumes only two extensions,
; Alice and Bob. They will be defined as necessary
; in the "phone_test_dialplan" context.
;
; This file also assumes that SIP has been set up
; correctly. For more information, see the corres-
; ponding sip.conf file.
;
;;;
;
; Information:
;
; Alice's extension is: 1000
; Bob's extension is: 1001
; All other extensions: Not defined and therefore nothing
; will happen. The Asterisk CLI will give
; an error similar to the following:
; ERROR:
; == Using SIP RTP CoS mark 5
; Call from '1000' to extension '554' rejected because
; extension not found.
;
; NOTE:
; Due to ambiguity, any extension dialed that matches
; a portion of the defined extensions will be
; "completed" and not issue the above error. But no
; call is actually placed.
; Examples:
; Extensions dialed: 1, 10, 100
;
;;;

[global]

 72

[general]

[phone_test_dialplan]
exten => 1000,1,Dial(SIP/1000)
exten => alice,1,Dial(SIP/1000)
exten => 1001,1,Dial(SIP/1001)
exten => bob,1,Dial(SIP/1001)

modules.conf

;;;
;
; Filename: /etc/asterisk/modules.conf
; Author: Jeff Wiley
; Date: 29 June 2009
;
; Purpose: Load available modules. Although the documentation
; says this loads modules from the
; /usr/lib/asterisk/modules directory, it has been
; noted that even when there are no modules in this
; directory, asterisk will not work unless the
; modules used in asterisk are loaded, like this one,
; individually, or automatically, as the ones selected
; during the make menuselect process.
;
;;;

[modules]
 autoload=yes

sip.conf

;;;
;
; Filename: /etc/asterisk/sip.conf
; Related files: /etc/asterisk/extensions.conf
; Author: Jeff Wiley
; Date: 11 July 2009
;
; Purpose: This file defines the necessary elements for
; Asterisk to act like a SIP server. This files
; creates two possible extensions that can be
; registered namely, 1000 and 1001. Both of these
; use the [sets] section and the variable
; choices placed therein.
;
;;;
;
; Description of selections:
;
; type=friends
; means that the registered users can both send
; and receive calls
; context=phone_test_dialplan
; corresponds to the context from the extensions
; file
; host=dynamic
; means the user can register from any IP address
; disallow=all
; disables all of the codecs from being used on
; this channel
; allow=gsm
; as has been configured in the installation,
; this further enforces the use of the GSM codec

 73

;
; The syntax used for the specific users:
; [1000](sets)
; Means to use the items defined in [sets] within
; the given user.
;
; Within the two users 1000 and 1001, the selections
; are as follows:
;
; secret=guessthis
; this is the cleartext password, there are ways
; to make this more secure, this is just for
; ease of use
; mailbox=1000
; this is the node that receives a message
; waiting indicator (MWI) when voice mail is
; received.
; This is not necessary for the simple voice
; call minimized asterisk.
;
;;;

[general]

[sets](!)
type=friend
context=phone_test_dialplan
host=dynamic
disallow=all
allow=gsm

[1000](sets)
secret=guessthis

[1001](sets)
secret=mypassword

B. VOICE MAIL ASTERISK FILES

extensions.conf

;;;
;
; Filename: /etc/asterisk/extensions.conf
; Related files: /etc/asterisk/sip.conf
; /etc/asterisk/voicemail.conf
; Author: Jeff Wiley
; Date: 11 July 2009
;
; Purpose: This is a test dialplan to ensure that voice calls
; can be made and if unanswered the caller will be sent
; to the voicemail system. This file assumes only two
; extensions, Alice and Bob, other than the voicemail
; system. They will be defined as necessary in the
; "voicemail_test_dialplan" context.
;
; This file also assumes that SIP has been set up
; correctly. For more information, see the corres-
; ponding sip.conf file.
;
;;;
;
; Alice's extension is: 1000

 74

; Bob's extension is: 1001
; Voice mail System is: 700
; All other extensions: Not defined and therefore nothing
; will happen. The Asterisk CLI will
; give an error similar to the
; following:
; ERROR:
; == Using SIP RTP CoS mark 5
; Call from '1000' to extension '554' rejected because
; extension not found.
;
; NOTE:
; Due to ambiguity, any extension dialed that matches
; a portion of the defined extensions will be
; "completed" and not issue the above error. But no
; call is actually placed.
; Examples:
; Extensions dialed: 1, 10, 100
;
;;;

[global]

[general]

[voicemail_test_dialplan]
exten => 1000,1,Dial(SIP/1000,10)
; Dont forget the 2nd argument, otherwise no VM
exten => 1000,n,VoiceMail(1000@default,u)
exten => alice,1,Dial(SIP/1000,10)
exten => alice,n,VoiceMail(1000@default,u)

exten => 1001,1,Dial(SIP/1001,10)
exten => 1001,n,VoiceMail(1001@default,u)
exten => bob,1,Dial(SIP/1001,10)
exten => bob,n,VoiceMail(1001@default,u)

; This line allows a user to access voice mail
; when they have dialed this extension.
exten => 700,1,VoiceMailMain()

modules.conf

;;;
;
; Filename: /etc/asterisk/modules.conf
; Author: Jeff Wiley
; Date: 11 July 2009
;
; Purpose: Load available modules. Although the documentation
; says this loads modules from the
; /usr/lib/asterisk/modules directory, it has been
; noted that even when there are no modules in this
; directory, asterisk will not work unless the modules
; used in asterisk are loaded, like this one,
; completely, or individually, as the ones selected
; during the make menuselect process.
;
;;;

[modules]
 autoload=yes

 75

sip.conf

;;;
;
; Filename: /etc/asterisk/sip.conf
; Related files: /etc/asterisk/extensions.conf
; /etc/asterisk/voicemail.conf
; Author: Jeff Wiley
; Date: 11 July 2009
;
; Purpose: This file defines the necessary elements for
; Asterisk to act like a SIP server. This files
; creates two possible extensions that can be
; registered namely, 1000 and 1001. Both of these
; use the [sets] section and the variable choices
; placed therein.
;
;;;
;
; Description of selections:
;
; type=friends
; means that the registered users can both send
; and receive calls
; context=voicemail_test_dialplan
; corresponds to the context from the extensions
; file
; host=dynamic
; means the user can register from any IP address
; disallow=all
; disables all of the codecs from being used on
; this channel
; allow=gsm
; as has been configured in the installation,
; this further enforces the use of the GSM codec
;
; The syntax used for the specific users:
; [1000](sets)
; Means to use the items defined in [sets] within
; the given user.
;
; Within the two users 1000 and 1001, the selections
; are as follows:
;
; secret=guessthis
; this is the cleartext password, there are ways
; to make this more secure, this is just for
; ease of use
; mailbox=1000
; this is the node that receives a message
; waiting indicator (MWI) when voice
; mail is received
;
;;;

[general]

[sets](!)
type=friend
context=voicemail_test_dialplan
host=dynamic
disallow=all
allow=gsm

 76

[1000](sets)
secret=guessthis
mailbox=1000

[1001](sets)
secret=mypassword
mailbox=1001

voicemail.conf

;;;
;
; Filename: /etc/asterisk/voicemail.conf
; Related files: /etc/asterisk/extensions.conf
; /etc/asterisk/sip.conf
; Author: Jeff Wiley
; Date: 11 July 2009
;
; Purpose: This file defines the necessary elements for
; Asterisk's voice mail capabilities. It is to be
; noted that several of the notes and information
; in this file comes from the test file provided
; by Asterisk.
;
;;;
;
; Description of selections:
;
; Descriptions are found in line with the configuration
; selections or on the line above them. These come from
; defaults provided with the test voicemail.conf file. The
; exception is the very last portion, which simply define
; the voice mailboxes, configure a plaintext password and
; as text name for the mailbox. Descriptions are provided
; in the entire test voicemail.conf file and some limited
; documentation further down in this file.
;
;;;
;
;;;;This message is part of the original test voicemail.conf file
;
; Voice mail Configuration
;
; NOTE: Asterisk has to edit this file to change a
; user's password. This does not currently work with
; the "#include <file>" directive for Asterisk configuration
; files, nor when using realtime static configuration.
; Do not use them with this configuration file.
;
;;;;;;;End original test content

[general]
; Formats for writing Voice mail.
format=gsm

;;;;This message is part of the original test voicemail.conf file
;
; WARNING:
; If you change the list of formats that you record voice mail in
; when you have mailboxes that contain messages, you _MUST_
; absolutely manually go through those mailboxes
; and convert/delete/add the message files so that

 77

; they appear to have been stored using your new format list.
; If you don't do this, very unpleasant things may happen to
; your users while they are retrieving and manipulating
; their voice mail.
;
; In other words: don't change the format list on a production
; system unless you are _VERY_ sure that you know what you
; are doing and are prepared for the consequences.
;
;;;;;;;End original test content

; How many milliseconds to skip forward/back when rew/ff
; in message playback
skipms=3000

; How many seconds of silence before we end the recording
maxsilence=10

; Silence threshold (what we consider silence: the lower,
; the more sensitive)
silencethreshold=128

; Max number of failed login attempts
maxlogins=3

;;;;This message is part of the original test voicemail.conf file
;
; Each mailbox is listed in the form <mailbox>=
; <password>,<name>,<email>,<pager_email>,<options>
; if the e-mail is specified, a message will be sent when a
; message is
; received, to the given mailbox. If pager is specified, a
; message will be sent there as well. If the password is
; prefixed by '-', then it is considered to be unchangeable.
;
;;;;;;;End original test content

[default]
1000 => 4321,Alice Test
1001 => 4321,Bob Test

 78

APPENDIX C: TEST PROCEDURES

A. VOICE CALL TESTING PROCEDURES

Registration

 From the Asterisk command line interface, unregister both

extensions. (command: sip unregister 1000 and sip unregister

1001)

 Be sure both extensions are no longer registered (command: sip

show peers). This will show the extensions but both should say

“(Unspecified)” under the Host heading.

 Reregister Alice and Bob. In Ekiga, select the Edit menu and

Accounts. Uncheck and recheck the checkbox next to the account.

A message will also appear on the Asterisk CLI indicating that a

SIP registration was completed verifying the extension.

 Once both clients have been reregistered, on the Asterisk CLI, see

that both extensions are again registered (command: sip show

peers). To verify that the registration process was successful, the

“Host” heading will have an IP address for both extensions.

User to user call with no answer

 Make a call from Alice to Bob. In the location bar, ensure Bob’s

extension is entered correctly. The location bar should have the

following: sip:1001@192.168.123.1. To place the call, press the

green phone icon next to the location bar.

 Do not answer the call. Verify that Bob’s phone indicates that an

incoming call is available. Although the phone cannot ring

indefinitely, allow the phone to ring in order to verify that SIP is

working to initiate a connection.

 79

 Repeat with a call from Bob to Alice. In the location bar, ensure

Alice’s extension is entered correctly. The location bar should have

the following: sip:1000@192.168.123.1.

 The test is complete when a call has gone from each user and has

been indicated on the receiving end.

User to user call

 Make a call from Alice to Bob. In the location bar, ensure Bob’s

extension is entered correctly. The location bar should have the

following: sip:1001@192.168.123.1.

 Answer the call to verify that RTP is sending the call data. Talk into

the microphone and listen to the other client’s output.

 Repeat with a call from Bob to Alice. In the location bar, ensure

Alice’s extension is entered correctly. The location bar should have

the following: sip:1000@192.168.123.1.

 The test is complete when a call has gone from each user and has

been answered on the receiving end.

Dial undefined extension

 Place a call using an invalid extension. The location bar should

have something similar the following: sip:411@192.168.123.1. To

place the call, press the green phone next to the location bar.

 These calls will not complete. On the Asterisk CLI, a message will

indicate the following. Note: Due to ambiguity, if any number

leading up to an existing extension is dialed, the error will not

appear. This is because if 1, 10, or 100 is dialed, Asterisk is unable

to know if the user is going to complete the rest of the extension.

Using number such as these only gives the first line of the following

message. Otherwise Asterisk will time out without attempting to

call an extension.

 80

== Using SIP RTP CoS mark 5

Call from '1000' to extension '411' rejected because

extension not found.

 This is not an exhaustive test. The test is successful when calls to

unregistered extensions are not able to complete.

B. VOICE MAIL BUILD TESTING PROCEDURES

Registration

 From the Asterisk command line interface, unregister both

extensions. (command: sip unregister 1000 and sip unregister

1001)

 Be sure both extensions are no longer registered (command: sip

show peers) This shows the extensions but both should say

“(Unspecified)” under the Host heading.

 Reregister Alice and Bob. In Ekiga, select the Edit menu and

Accounts. Uncheck and recheck the checkbox next to the account.

A message will also appear on the Asterisk CLI indicating that a

SIP registration was completed verifying the extension.

 Once both clients have been reregistered, on the Asterisk CLI, see

that both extensions are again registered (command: sip show

peers). To verify that the registration process was successful, the

“Host” heading will have an IP address for both extensions.

User to user call

 Make a call from Alice to Bob. In the location bar, ensure Bob’s

extension is entered correctly. The location bar should have the

following: sip:1001@192.168.123.1. To place the call, press the

green phone icon next to the location bar.

 Answer the call to verify that RTP is sending the call data.

 81

 Repeat with a call from Bob to Alice. In the location bar, ensure

Alice’s extension is entered correctly. The location bar should have

the following: sip:1000@192.168.123.1.

 The test is complete when a call has gone from each user and has

been answered on the receiving end.

Dial undefined extension

 Place a call using an invalid extension. The location bar should

have something similar the following: sip:411@192.168.123.1.

 These calls will not complete. On the Asterisk CLI, a message will

indicate the following:

== Using SIP RTP CoS mark 5

Call from '1000' to extension '411' rejected because

extension not found.

 This is not an exhaustive test. The test is successful when calls to

unregistered extensions are not able to complete.

Make a call to leave a voice mail message

 Make a call from Alice to Bob. In the location bar, ensure Bob’s

extension is entered correctly. The location bar should have the

following: sip:1001@192.168.123.1.

 Do not answer the call. After the specified amount of time (10

seconds) the Voice mail system will answer.

 Leave a message.

 After the message has been left, a message waiting indicator is

sent by Asterisk. Ekiga will also play a sound but to further verify

that a message has been left, click on the Edit menu and select

Accounts. Next to the account name there should be a display

indicating that a message is waiting (e.g. 1/0).

 82

 Repeat with a call from Bob to Alice. In the location bar, ensure

Alice’s extension is entered correctly. The location bar should have

the following: sip:1000@192.168.123.1.

 The test is complete when a call for each user has been handled by

the voice mail system and a message has been saved.

Retrieve voice mail

 Dial into the voice mail system. The location bar should have the

following: sip:700@192.168.123.1.

 In order to send the numbers click the Dialpad tab in Ekiga. The

extension and password, as well as menu selections, are entered in

this manner.

 Follow the audio instructions once the voice mail system has

answered to listen to the new message. Enter the following for

extensions and passwords to access the corresponding mailbox.

o Alice’s settings are as follows

Extension: 1000

Password: 4321

o Bob’s settings are as follows

Extension: 1001

Password: 4321

 This test is successful when the message for each user has been

retrieved.

 83

THIS PAGE INTENTIONALLY LEFT BLANK

 84

LIST OF REFERENCES

[1] L. Tse, “Feasibility study of VoIP integration into the MYSEA
environment,” M.S. thesis, Naval Postgraduate School, Monterey,
California, September 2005.

[2] J. Rosenberg et al., “SIP: session initiation protocol,” RFC 3261, Internet
Engineering Task Force, June 2002. Available: http://www.rfc-
editor.org/rfc/rfc3261.txt (accessed September 15, 2009).

[3] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, “RTP: a
transport protocol for real-time application,” RFC 3550, Internet
Engineering Task Force, July 2003. Available: http://www.rfc-
editor.org/rfc/rfc3550.txt (accessed September 2, 2009).

[4] Asterisk: The Open Source PBX & Telephony Platform, 2009 Available:
http://www.asterisk.org/ (accessed September 15, 2009).

[5] Digium®, The Asterisk Company, 2009 Available: http://www.digium.com
(accessed August 15, 2009).

[6] J. Malone, “Open source PBX is 18% of North America market,” No Jitter,
Jan 28, 2009. Available:
http://www.nojitter.com/showArticle.jhtml?articleID=212903167 (accessed
August 15, 2009).

[7] “Asterisk features,” Voip-Info.org: A reference guide to all things VOIP,
2008. [Online]. Available: http://www.voip-
info.org/wiki/view/Asterisk+Features (accessed August 16, 2009).

[8] “Features,” Asterisk The Open Source PBX & Telephony Platform, 2009.
[Online]. Available: http://www.asterisk.org/features (accessed August 15,
2009).

[9] F. E. Gonçalves, Configuration guide for Asterisk PBX, 2nd ed., V. Office
Networks Ltd., 2006.

[10] M. Spencer, “Distributed universal number discovery (DUNDi),” Internet
Draft, October 2004. Available: http://www.dundi.com/dundi.txt (accessed
September 15, 2009).

 85

[11] “Telecommunications and Internet Protocol Harmonization Over Networks
(TIPHON) Release 4; Open Settlement Protocol (OSP) for inter-domain
pricing, authorization and usage exchange,” The European
Telecommunications Standards Institute (ETSI), Sophia Antipolis, France,
Tech. Specification, ETSI TS 101 321 (v4.1.1), November 2003. Available:
http://portal.etsi.org/docbox/EC_Files/EC_Files/ts_10202403v040101p.pdf
(accessed September 15, 2009).

[12] T. Nguyen, T. Levin and C. Irvine, “MYSEA testbed,” In Proceedings from
the Sixth Annual IEEE SMC Information Assurance Workshop (IAW'05),
2005, pp. 438–439.

[13] D. E. Bell, L. LaPadula, “Secure computer system: unified exposition and
Multics interpretation” Tech. Rep. ED-TR-75-306, MITRE Corp., Hanscom
AFB, MA 1975.

[14] K. J. Biba, “Integrity considerations for secure computer systems,” Tech.
Rep. ED-TR-76-372, MITRE Corp., 1977.

[15] J. F. Horn, “IPSec-based dynamic security services for the MYSEA
environment,” M.S. thesis, Naval Postgraduate School, Monterey,
California, June 2005.

[16] C. E. Irvine, D. J. Shifflett, P. C. Clark, T. E. Levin and G. W. Dinolt,
“MYSEA security architecture,” Naval Postgraduate School, Monterey,
California, Tech. Report, NPS-CS-02-006, May 2002.

[17] C. E. Irvine et al., “Overview of a high assurance architecture for
distributed multilevel security,” in Proceedings of the 2004 IEEE Systems,
Man and Cybernetics Information Assurance Workshop, West Point, NY,
June 2004.

[18] Australian Associated Press, “Small business gets $120,000 phone bill
after hackers attack VoIP phone,” news.com.au, January 20, 2009.
Available: http://www.news.com.au/technology/story/0,28348,24939188-
5014239,00.html (accessed August 3, 2009).

[19] H. Dwivedi, Hacking VOIP, San Francisco: No Starch Press, 2009.

[20] D. R. Kuhn, T. J. Walsh, and S. Fries, “Security considerations for voice
over IP systems,” NIST SP 800-58, US National Institute of Standards and
Technology, December 2003.

[21] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,” in
Advances in Cryptology—CRYPTO 2003, pp. 617–630, 2003.

 86

[22] S. Whalen, “An introduction to ARP spoofing,” White Paper, version 1.82,
April 2001. Available:
http://packetstorm.linuxsecurity.org/papers/protocols/intro_to_arp_spoofin
g.pdf (accessed July 31, 2009).

[23] S. Hanley, “DNS overview with a discussion of DNS spoofing,” November
2000. [Online]. Last accessed 07/2009, Available:
http://www.piclist.com/images/org/sans/www/http/infosecFAQ/DNS/DNS.h
tm (accessed July 31, 2009).

[24] M. Spencer, “The Asterisk(R) open source PBX,” README for Asterisk
1.6.1.0, 2008. Available:
http://svn.digium.com/svn/asterisk/tags/1.6.1.0/README (accessed
September 15, 2009).

[25] Asterisk Development Team, “Security,” Asterisk Reference Information
Version 1.6.1.0, pp. 10–11, 2009. Available:
http://svn.digium.com/svn/asterisk/tags/1.6.1.0/doc/tex/security.tex
(accessed August 4, 2009).

[26] “Asterisk security advisory,” 2009. [Online]. Available:
http://www.asterisk.org/security (accessed July 8, 2009).

[27] J. Todd, “Seven steps to better SIP security with asterisk,” Inside the
Asterisk Blog, March 2009. [Online]. Available:
http://blogs.digium.com/2009/03/28/sip-security/ (accessed September 15,
2009).

[28] W. Mundy, “Avoiding the $100,000 phone bill: a primer on Asterisk
security,” Nerd Vittles, 2009. [Online]. Available:
http://nerdvittles.com/?p=580 (accessed September 15, 2009).

[29] “SIP TCP and TLS support,” Asterisk developer’s documentation, 2009.
[Online]. Available: http://www.asterisk.org/doxygen/trunk/sip_tcp_tls.html
(accessed July 29, 2009).

[30] R. Bryant, “Testing of SIP TCP/TLS support,” asterisk-dev mailing list, July
2007. [Online]. Available: http://lists.digium.com/pipermail/asterisk-
dev/2007-July/028454.html (accessed July 29, 2009).

[31] “0004903: [patch] SIP over TCP project,” Asterisk.org Issue Tracker,
2005. [Online]. Available: https://issues.asterisk.org/view.php?id=4903
(accessed September 15, 2009.)

[32] "0005413: [branch] Secure RTP (SRTP)," Asterisk.org Issue Tracker,
2005. [Online]. Available: https://issues.asterisk.org/view.php?id=5413
(accessed August 7, 2009).

 87

[33] J. Van Meggelen, J. Smith and L. Madsen, Asterisk: the future of
telephony, 2nd ed. Sebastopol, California: O’Reilly, 2007.

[34] Asterisk® Architecture Image (n.d.), Digium, Inc. [Online]. Available:
http://www.digium.com/images/graphics/asteriskarch.gif (accessed August
27, 2009).

[35] “Software PBX performance on Intel multi-core platforms - a study of
Asterisk*,” White Paper, 318862-001US, Intel Corporation, January 2008.
Available: http://download.intel.com/design/intarch/papers/318862.pdf
(accessed August 26, 2009).

[36] M. Spencer, 2009, Asterisk’s Developer Documentation. [Online].
Available: http://www.asterisk.org/doxygen/trunk/ (accessed September
21, 2009).

[37] Ekiga,“Downloads,” 2009, [Online]. Available: http://www.ekiga.org
(accessed September 16, 2009).

 88

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, California

4. Dr. Mark Gondree
Naval Postgraduate School
Monterey, California

5. Thuy D. Nguyen
Naval Postgraduate School
Monterey, California

6. Jeffrey A. Wiley, Jr.
SFS students: Civilian, Naval Postgraduate School
Monterey, Caifornia

	I. INTRODUCTION
	A. MOTIVATION
	B. PURPOSE OF CURRENT STUDY
	C. ORGANIZATION OF PAPER

	II. BACKGROUND
	A. VOIP
	1. Concept of Operation
	a. General VoIP
	b. Voice Mail

	2. Call Setup Protocol
	a. Session Initiation Protocol

	3. Call Media and Data Transfer Protocols
	a. Real-time Transfer Protocol

	4. VoIP Using SIP/RTP

	B. ASTERISK
	C. THE MONTEREY SECURITY ARCHITECTURE
	D. SUMMARY

	III. THREAT ANALYSIS
	A. INTRODUCTION
	B. CONCEPT OF OPERATION
	1. Voice Mail in MYSEA

	C. THREAT ANALYSIS
	1. Threats in VoIP
	2. Threats in SIP
	3. Threats in RTP
	4. Threats in Asterisk

	D. MITIGATIONS
	E. SUMMARY

	IV. ARCHITECTURE, REQUIREMENTS, AND SPECIFICATION SELECTION
	A. GOALS
	B. ASTERISK ARCHITECTURE
	1. Back-to-back User Agent
	2. Thread Architecture
	3. Software Architecture
	4. Asterisk Concepts
	5. Codec Background
	6. Asterisk Threads

	C. REQUIREMENTS
	1. System Requirements
	2. Asterisk Requirements

	D. MODULE SELECTION
	1. Asterisk Module Relevance

	E. SUMMARY

	V. EXPERIMENTATION
	A. INTRODUCTION
	B. EXPERIMENTATION
	1. Module Selection
	2. Build Process

	C. TESTING
	1. Voice-Call Asterisk Testing
	a. Configuration Files
	b. Description of Tests

	2. Voice Mail Asterisk testing
	a. Configuration files
	b. Description of tests

	D. ANALYSIS AND RECOMMENDATIONS
	1. Analysis of Minimal Asterisk
	2. Recommendations

	E. SUMMARY

	VI. FUTURE WORK AND CONCLUSION
	A. INTRODUCTION
	B. FUTURE WORK
	1. Real-time Voice Communication within MLS Context
	2. Voice Communications Originating Outside the MLS Network
	3. Voice Communications between MLS Enclaves

	C. CONCLUSION

	APPENDIX A: INSTALLATION PROCEDURES
	APPENDIX B: CONFIGURATION FILES
	APPENDIX C: TEST PROCEDURES
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

