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The United States Environmental Protection Agency (EPA)
will have regulations in effect no later than 2010 requiring sulfur
content to be no greater than 15 parts per million (ppm) for
on-road, off-road, and marine diesel fuel applications.1 Hy-
drotreatment2 will remove sulfur, but it also removes other polar
compounds that impart fuel lubricity. The rapid and accurate
discrimination of ultra-low sulfur diesel (ULSD) fuels is then
important for both regulation compliance and lubricity assess-
ment. While near-infrared (NIR) spectroscopy has not yet been
able to accurately predict the sulfur content of fuels,3,4 partial
least-squares (PLS)5 models can be constructed to predict ULSD
identity indirectly through the other chemical changes caused
by hydrotreatment6,7 that do, in fact, affect NIR instrument
responses, albeit only subtly (see the Supporting Information).
Therefore, it is possible to develop relatively low-cost portable
NIR field instrumentation for the rapid identification of fuels
that have undergone hydrotreatment, which, by virtue of the
inevitably low resulting sulfur content, are ULSD fuels.

Data were collected from a set of 391 worldwide diesel fuel
samples, consisting of 251 Naval distillate (NATO F-76), 129
marine gas oil (MGO), and 11 ULSD fuels from various North
American sources. The non-ULSD fuels had measured sulfur
contents ranging from 200 to over 9000 ppm, and the ULSD
fuels contained 10 ppm or less sulfur. NIR absorbance spectra
were collected from 1000-1600 nm with a fiber optic reflec-
tance probe coupled to a custom Bruker Optics NIR spectrom-
eter, which employed a thermoelectrically cooled 512 element
GaAs detector array. Spectra were acquired using custom
software written in compiled LabVIEW 8.5 (National Instru-

ments Corporation, Austin, TX). Signal preprocessing and
chemometric analyses were performed with in-house algorithms
using MATLAB 2008a (The MathWorks, Inc., Natick, MA),
using chemometric functionality provided by PLS Toolbox 4.2.1
(Eigenvector Research, Inc., Manson, WA).

NIR absorbance spectra from the 512 element detector arrays
were baseline-corrected and adjusted with a wavelength calibra-
tion to 600 points to provide a 1 nm resolution from 1000 to
1600 nm. The spectra were normalized to unit length and mean-
centered prior to PLS model construction. PLS discriminant8

models were constructed in MATLAB by correlating the NIR
data with a calibration vector of values equal to either -1 (in
the case of non-ULSD samples) or 1 (in the case of ULSD
samples). This approach produced a qualitative model separating
one class of sample (ULSD samples, class 1) from another (all
of the other samples, class -1).

A PLS model was constructed on the basis of the first 10
latent variables (LVs) or underlying linear factors derived from
the training data. This number of LVs was determined automati-
cally using the F-test statistic4 with an 85% confidence interval,
in a manner similar to that previously used in this laboratory to
produce fuel property models.9 Model efficacy was confirmed
via leave-one-out cross-validation,10 which recreates the model
without each sample in turn and predicts the classification of
each sample without the benefit of its presence in the training
data. Predictions made in this manner better demonstrate how
the model will function with new incoming samples that are
not part of the original calibration set used to construct the
model. This model accurately separated the training data into
the ULSD (1) and non-ULSD (-1) classes as shown by the
boundary at 0 in Figure 1.

The model loadings (or LVs, as described previously) can
reveal which variables in the data set have the greatest modeling
significance. This is shown graphically in Figure 2, where the
NIR calibration spectra were averaged and the portions of
the spectrum that are most important to the ULSD modeling
are set apart. In this figure, important regions correspond to those
areas in which the sums of the absolute values of the model
loadings were 50% or more of the maximum value. An
additional spectral comparison can be found in the Supporting
Information.
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The 10 LV PLS discriminant model constructed here ef-
fectively discriminates between ULSD and non-ULSD fuels with
the original training data, as shown by the cross-validation
results in Figure 1. The cross-validation also indicates that the

model is capable of classifying new incoming diesel fuel
samples correctly. It is possible with large model sizes (i.e.,
larger numbers of LVs) that resultant PLS models are only as
effective as they appear to be with calibration data and that
unknown future samples will not be interpreted correctly because
of the specificity of the model for the calibration data, a situation
known as overfitting. The cross-validation as performed here
is evidence against overfitting, but a 10 LV model interpreting
11 ULSD samples may still be approaching the practical limit.
However, when two additional ULSD samples not part of the
training set are introduced to the model (Figure 1), they are
still correctly classified as being greater than zero. This indicates
that, despite the model size, overfitting was not occurring and
this modeling approach would continue to be effective as a
means for practical ULSD detection. A further evaluation of
the use of 10 LVs for ULSD modeling as applied to smaller
amounts of non-ULSD training data can also be found in the
Supporting Information.

From the aggregate results, it has been shown that ULSD
fuels can be indirectly identified from general fuel populations
by taking advantage of the spectral artifacts produced by the
hydrotreatment used to refine ULSD fuel from standard diesel.
This identification relies on the construction of a PLS discrimi-
nant model that effectively separates ULSD and non-ULSD fuels
into two distinct classes. The initial discrimination is entirely
effective, and it is anticipated that additional ULSD training
fuel samples will increase the robustness of this model toward
discriminating between ULSD and high-sulfur diesel fuels. This
research is presented here to rapidly disseminate the information
to interested parties to keep pace with the 2010 implementation
of EPA regulations.
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Supporting Information Available: NIR spectra of the high-
sulfur diesel and ULSD fuels plotted against each other to illustrate
their similarities as well as the number of non-ULSD calibration
fuels sequentially reduced to provide additional uncalibrated
validation data and thus to illustrate the number of non-ULSD fuel
samples that are necessary to obtain a useful discriminant model.
This material is available free of charge via the Internet at
http://pubs.acs.org.

EF8007739

Figure 1. Cross-validated results of the 10 LV model, showing clear
discrimination between the ULSD fuels (O) and F-76 and MGO fuels
(×). Two additional ULSD fuels not included in the calibration data
(0) were also introduced to the model for validation purposes.

Figure 2. Average NIR calibration spectra showing portions of the
spectrum most relevant to ULSD modeling.
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Ultra-Low Sulfur Diesel (ULSD) and Non-ULSD Spectra Plotted Together 

 Figure 1-SI shows the NIR spectra of ULSD and non-ULSD samples plotted concurrently 

to better show the lack of simple difference between the two sample populations visually. This 

presents evidence (in addition to that found in the main Communication’s Figure 2) indicating 

that the use of a multivariate analysis technique such as partial least squares (PLS) is a necessary 

analysis step due to the multivariate nature of the spectroscopic changes produced by the 

hydrotreatment associated with ULSD production. 

 

Non-ULSD Sample Evaluation 

 In the Communication, it was shown that ULSD model overfitting is unlikely due to the 

fact that two ULSDs not included in the calibration data were predicted correctly when 

introduced to the 10-latent variable (LV) partial least squares (PLS) model. In order to fully 

evaluate the use of 10 LVs, however, it is also prudent to determine if a 10 LV model can be 

reproduced using a smaller number of non-ULSD calibration samples than the 384 samples used 

in the main Communication. In effect, this would determine the rough ratio of non-ULSD and 

ULSD required for an effective model to be constructed. 

 Figure 2-SI shows the cross-validated results obtained by sequentially removing 

increasingly larger portions of the non-ULSD training data. The percentage shown in the Figure 
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dictates how much of the data was eliminated by random selection (it should be made explicit 

that the removed samples were reintroduced as validation data to ascertain full model utility). 

These removal and subsequent evaluation operations were carried out at each percentage through 

five replicates to minimize random selection errors. What can be seen is that up to 60% of the 

non-ULSD data can be removed while still preserving the analytic utility of the 10 LV model. 

Also, although false positives (i.e. non-ULSDs not detected as such) begin to appear when 65% 

of the data is removed, the number of false positives doesn’t become 1% of the total non-ULSD 

sample population (i.e. about 4 samples out of the original 380 samples) until about 85% of the 

original non-ULSD samples are removed from the training data. It should also be noted that, 

during the course of this sequential non-ULSD evaluation and all repetitions, no false negative 

results (i.e. ULSDs not detected as such) were obtained from either the 11 ULSD samples 

included in the training data or the two additional ULSD fuels used for model confirmation in the 

main Communication. Although this shows that model utility can in fact be preserved with much 

less data than was actually used in the main Communication, the larger amount of training data is 

used to maintain a prediction model that will remain robust during the analysis of the most 

diverse populations of fuel samples. 
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Figure 1-SI. Concurrent plot of ULSD (black) and non-ULSD (green) sample populations. 
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Figure 2-SI. Plot of the number of false positive results obtained from eliminating a certain 

percentage of the training data (randomly selected, five replicates) used to construct the main 

Communication’s 10 LV model. Note that false positives only begin to appear when 35% of the 

original data remains. 
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