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efficiencies far lower than the optimum efficiencies predicted by theory. 

This dissertation explains how a closed-form optimization of induced power with finite-state 

models is expanded to successfully reproduce the results for the optimization of induced 

power given by classical theories for axial flow and for a rotor in forward flight.  Results for 

induced power change in forward flight and for different conditions will help the 

determination of what produces the efficiency in real rotors to be inferior to the predicted 

values by theoretical calculations. 

Mainly three factors contribute to the decreased efficiency for real rotors: a finite number of 

blades, the effect of lift tilt and the lift distribution.  The ultimate goals of the present 

research effort are to: 1) develop a complete and comprehensive inflow model, and 2) 

determine which of these contribute to the drastic increase in induced power. 
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Chapter 1 

 
Introduction 
 

     The rotor of a helicopter can be modeled in different ways.  For actuator-disk theories, 

there is a lift or thrust vector perpendicular to the plane of the rotor, pointing in the 

direction of lift.  In more advanced theories, the lift is taken perpendicular to the vortex 

sheet that trails each blade.  Simple physics state that the reaction to this thrust is an induced 

velocity in the opposite direction.  The induced velocity has a kinetic energy that must be 

provided by the rotor.  This energy produces the induced power loss of a rotor.  The study 

of induced power on a helicopter rotor has been developed from a variety of perspectives 

along the years.  Induced power can never be eliminated, but it can be minimized.  An 

optimum propeller has minimum induced power.   

 

     The study of induced power on a helicopter can be divided in two main flight regimes: 

axial flow and skewed flow.  The first regime corresponds to the case for which the flow 

coming into the rotor is perpendicular to the rotor plane.  A sketch of the flow and rotor can 

be seen in Figure 1.2.  For axial flow the skew angle, χ, is zero.  This happens when the 

helicopter is in hover or ascending vertically through the air.  When the helicopter flies 



 

   
 

2

forward the flow coming into the rotor is no longer perpendicular; and thus the skew angle 

is non-zero and a skewed flow analysis is required.  

 

     For minimum induced power purposes, hover and forward flight are the both important 

cases to consider.  If the induced power can be reduced in hover the helicopter would need 

less power in order to lift from the ground, resulting in additional power that could be used 

to lift more payload or increase the range of the helicopter.  Reducing the induced power in 

forward flight contributes considerably to an increase in cruise speed and a further increase 

in range.  

 

     For both axial and skewed flows, we can model the rotor in one of two ways: as an 

actuator disk, or including a tilt on the lift.  An actuator disk is a way to model the rotor as a 

circular region of zero thickness that can withstand changes in pressure across it.  The main 

assumption with an actuator disk is that the lift vector is perpendicular to the disk.  A real 

rotor has some tilt on the lift vector, so the rotor can also be modeled to account for this 

condition.  If the lift is tilted, the wake velocity must be divided into two components 

(normal and tangential to the disk) because the tilt creates a swirl velocity.  Some changes to 

existing theories need to be made to account for the tilt. 

 

     Finally, the number of blades considered in the study will contribute to changes in the 

behavior.  Theories must be developed for an infinite number of blades (rotor as a disk) and 

for a finite number of blades (more realistic).  It is of importance to include varying numbers 
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of blades to be able to show and understand how varying the number of blades affects the 

induced power. 

 

     Table 1.1 shows the division of the main cases that will be studied.  Basically we have 

axial or skewed flow, depending on if the rotor is flying through air vertically or on forward 

flight motion.  The rotor in each case can be modeled either as an actuator disk with 

perpendicular lift vector or a tilt on the vector can be included.  Lastly, we can consider a 

finite or an infinite number of blades. 

 

     Previous theories predict the optimum inflow for each of the cases in axial flow.  These 

theories will serve as references to determine the accuracy of the present model and better 

understand the changes in induced power for the different cases described previously.  Once 

the model is verified, results can be developed for skewed flow (or forward flight) for 

different configurations with the security that the approach can be applied for such 

conditions. 

Table 1.1: Cases studied using finite state methods 
 

 

FLOW 

ACTUATOR DISK TILTED LIFT 

Infinite Q Finite Q Infinite Q Finite Q 

AXIAL  Momentum Theory Prandtl Solution Betz Distribution Goldstein Distribution 

SKEWED  Momentum Theory Finite-state  Finite-state Finite-state (theory only) 

 

     Several alternative approaches can be used to model the downwash in the plane of a 

rotor.  Techniques such as CFD and free-wake models can be applied successfully for 
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different applications but do not provide best results for real-time simulations due to the 

complexity of the computations.  On the other hand, finite-state models provide good 

results for preliminary design and can be used in real-time simulations.  Over the past 25 

years, finite-state inflow equations have been developed to describe the flow.  The inflow is 

expanded in terms of shape functions, resulting in a matrix set of ordinary differential 

equations that describe the flow.  (See Refs. [1]-[9]).  The development of these models has 

now culminated with the most general form of the equations, with previous versions being 

special cases of the general one.  

 

     Although the rotor blade may be moving at transonic speeds near the tip, the rotor wake 

is generally determined by incompressible potential flow theory.  The solution of the 

incompressible potential flow equations (and of their derivative, the vorticity transport 

equations) has generally been deemed sufficient to define the wake geometry and induced 

flow of rotors.  Thus, most models are based on these equations, including finite-state 

models.  However, previous finite-state applications do not compute the flow bellow the 

plane of the rotor disk. 

 

 

     One purpose of this dissertation is to outline the features of a general set of inflow 

equations, including their derivation and special cases that will give all three components of 

velocity everywhere in the flow field including within the wake.  Thus, this dissertation can 

form the basis for any version of the model for anyone interested in using it.  The present 

dissertation also provides insights into the limitations and accuracy both of the most general 
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case and of the special cases.  The general model will then be reduced to some of the special 

cases and applied to obtain the induced power for an optimum propeller. 

 

1.1 Previous Work 

 

     Many attempts have been made with the purpose of modeling and understanding the 

behavior of a helicopter induced flow in order to reduce the negative impact on the 

performance of the rotor.  Previous research approaches vary in complexity, but basically 

differ from each other depending on the characteristics of the induced flow distribution 

assumed for the creation of the theories.  Previously developed research will be reviewed 

chronologically, dividing it in what is known as classical work and more recent 

developments. 

 

1.1.1 Classical Work on Optimally Efficient Propellers 

 

     In 1929, Glauert [15] defined the minimum induced power required for an actuator disk 

to create thrust by simple work-energy principles.  This simple Glauert momentum theory 

can be used to compute the minimum possible induced power for a given flight condition.  

In addition, he included the geometry of the flow in the blade coordinate that can be used to 

obtain a relationship between induced power and induced velocity.   
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     Originally, momentum theory [16], [17] was developed to describe a mathematical model 

of an ideal propeller or helicopter rotor.  It utilizes the basic fluid mechanics conservation 

laws to predict the behavior of the flowfield of a rotor, modeled as an infinitely thin disk.  

The simplest version of the rotor as a disk assumes a constant velocity.  Therefore, the 

induced velocity field is considered to be uniform.  The theory provides a relationship 

between power, the radius of the rotor and the induced velocity.  This theoretical model can 

be applied for optimum induced power considerations for the case of axial flow for an 

actuator disk with an infinite number of blades.  The results provide only an approximation, 

and do not produce results that can be used to design the rotor blades, since the use of a 

disk considers no loss of thrust at the blade tips, and the vortices and losses of each blade 

are therefore not accounted for.  Due to the limitations of he uniform momentum theory, a 

different approach to the same problem was proposed and is known as blade-element, 

momentum theory.   

 

     Blade-element theory [16], [17] assumes that each element of the rotor is independent of 

the other elements in terms of lift and induced flow.  The total thrust and the torque of the 

rotor are obtained by integration of loads along the span.  Because the blade tip does not 

depend on its location, a correction factor must be introduced.  Betz and Prandtl [18] used 

combined momentum and blade-element theory to obtain an approximation to include the 

effect of tip losses.  Tip losses are thrust losses due to the fact that the edge of vortex sheet 

has special edge effects.  Prandtl included a correction to account for a finite number of 

blades, thus enabling the development of results for an actuator disk in axial flow and a finite 

number of blades. 
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     The optimum induced flow distribution for an actuator disk with an infinite number of 

blades is uniform flow.  However, when the lift vector is taken as perpendicular to the 

vortex sheets (rather than perpendicular to the disk), the ideal power is no longer obtained 

by uniform flow.  Betz determined that the minimum power is obtained when the induced 

flow at the individual blades is such that the vortex sheets remain along helical paths.  For an 

infinite number of blades, it follows that the pressure field must follow this same shape. 

 

     The effect of a finite number of blades incurs an additional loss in wake energy due to the 

individual vortex sheets from each blade.  In 1929, Goldstein [19] worked out the exact 

effect for optimized rotors.  Prandtl developed a correction factor that agrees very well with 

Goldstein’s exact solution for moderate climb rates.   

 

1.1.2    Classical Work on Inflow Theories 

 

     In 1981, Pitt and Peters [1] developed a set of differential equations to obtain the 

dynamic inflow derivatives for a helicopter rotor with an unsteady loading and induced flow 

distribution.  The theory relates rotor loads and the transient response of the rotor induced 

flow field.  The dynamic inflow theory was developed to obtain induced inflow solutions 

that are more realistic than those of momentum theory and which provide an expression of 

the induced velocity distribution for a helicopter rotor.  The Pitt-Peters model uses three 

terms to describe the inflow distribution.  The model is in use in a wide variety of companies 

and institutions that use it for stability and handling quality applications.  There are however 
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some limitations to the theory, as it gives only a very low-order approximation to the 

induced flow field of a helicopter rotor.   

 

     He and Peters [4], [5], [6] further developed the theory to obtain a generalized dynamic 

wake model that included higher-order terms.  The unsteady induced-flow theory can be 

applied in stability, vibration, control and aeroelastic studies.  The theory is based on an 

acceleration potential for an actuator disk.  The Pitt-Peters model included only the zeroeth 

and first harmonics with one radial shape function for each harmonic. The He theory 

expands this to include a higher number of harmonics and of radial shape functions for each 

harmonic.  The pressure and the induced flow are expressed in a polynomial distribution 

(proportional to Legendre functions) radially and in terms of a Fourier series azimuthally.  

By the use of higher harmonics, the flow can be studied in detail for other applications 

instead of being limited to obtaining the average flow in only for thrust, pitch moment and 

roll moment, which was the case with the Pitt-Peters model.  However, there are some 

limitations to the use of the generalized dynamic wake model proposed by He and Peters.  

One of the limitations is that the model does not account for tilt on the lift vector.  It is an 

actuator disk theory.  Also, the flow in the He model is not defined in all three directions or 

everywhere in the rotor flow field, therefore more work needed to be done to be able to 

analyze situations were the flow has to be defined everywhere and the use of all components 

in needed. 

 

     Morillo and Peters [7] redefined a new dynamic inflow model to overcome the limitations 

of the Peters-He model.   The equations that define the flow are re-derived from first 
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principles to compute the whole flow field with all of the components for the volume above 

the rotor disk.  The model uses continuity and momentum equations (partial differential 

equations) in three dimensions around the actuator disk to model the flow.  The 

conservation equations are then transformed to a set of ordinary differential equations in 

state-space form by the application of Galerkin method.  The set of ordinary differential 

equations gives a relation between the velocity coefficients and the pressure coefficients 

(similar to the one for the Peters-He model) but includes an expansion in the influence 

coefficient and damping matrices that allowed for the three components of velocity (axial, 

radial and azimuthal) to be determined everywhere on the upper hemisphere of the disk.  

Because of the fact that the method has the same matrix structure than the one for the Pitt-

Peters and Peters-He models, the addition of the improved features would be easily applied 

to codes that already utilize these previous versions of the dynamic wake model.  However, 

this theory is not able to define the velocity field below the plane of the rotor disk.  See 

Figure 3.2. 

 

     Makinen and Peters [10], [11] expanded the Peters-He as well as the Morillo-Peters model 

to account for lift tilt by the introduction of a swirl correction.  Different swirl corrections 

were analyzed and used to perform comparisons with the results provided by Goldstein.  

Makinen was able to obtain accurate results for a finite number of blades by the addition of 

the extra kinetic energy.  The comparison of the velocity field and the circulation around the 

propeller blades was goof over most of the blade span.  He’s model provides the necessary 

fidelity to be able to obtain the induced power for a helicopter rotor modeled as an actuator 
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disk, and the addition provided by Makinen allows to extend the theory for the tilted lift case 

of a rotor with a finite number of blades. 

 

     Different inflow theories have been developed, Rosen [24] proposed an approximate 

actuator disk model of a rotor in hover or axial flow based on potential flow equations.  The 

model is derived from the same fundamental equations as the ones used in the Refs. [1] and 

[4] model, and in fact his theory shows the solution for the Pitt-Peters model as a special 

case.  The assumptions made enable the model to include wake distortion effects in addition 

to the original dynamic-inflow model, but as the models shown in references [1] through [8], 

the solution is only applicable to actuator disk cases. 

 

1.1.3    Motivation of Optimization Work  

 

     Harris [20] examined a large set of data for rotor power coefficient versus advance ratio.  

Figure 1.1 shows the thrust for a helicopter in forward flight. If the profile and parasite 

power are subtracted from the total helicopter power (the two higher-ordinate curves), one 

is left with the net induced power of a helicopter.   These results show that, for moderate 

advance ratios, the difference between the measured rotor induced power and the theoretical 

prediction for minimum induced power proposed by Glauert are considerably large.  This 

discrepancy implies that lifting rotors in forward flight have efficiencies far lower than the 

optimum efficiencies predicted by theory.   
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Figure 1.1: Harris’ power coefficient with advance ratio plot for a helicopter. 
 

     Following Harris’ results, Ormiston [21], [22] performed extensive runs with RCAS 

(Rotorcraft Comprehensive Analysis System) to try to determine why the actual results were 

differing from the ideal results.  In these studies, the profile drag of the airfoil was assumed 

to be zero so that the induced power could be separated out.  The results of those studies 

similarly showed a large difference between ideal induced power and the actual induced 

power of rotorcraft, the actual being several times larger than ideal. 

 

     In the hopes of expanding on the understanding of optimum rotors, other research 

efforts have used other methods to determine why there is a considerable difference 

between the theoretical predicted minimum induced power and the real results obtained 

from different sources.  The use of computer codes such as EHPIC/HERO (Evaluation 
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Helicopter Performance using Influence Coefficients/ Helicopter Rotor Optimization), 

which provides optimization techniques for the design of rotor blades, or the software 

CHARM (Comprehensive Hierarchical Aeromechanics Rotorcraft Model) [23] —that 

models aerodynamics and dynamic of rotorcraft in general flight conditions— have been 

applied to obtain induced power for a variety of flight conditions.  All results show the same 

apparent shortfall. 

 

1.2 Optimization Problem Statement 

 

     Work-Energy principles indicate that the induced power PI generated for a lifting rotor 

(i.e., the power that does not perform useful work) can be found by computing the shaft 

power and then subtracting the work done on the vehicle 

 

   PI  = PS – TV – HU                                                    (2.1) 

 

where T is the thrust perpendicular to the disk, V is the rotor velocity in the T direction, H is 

the rotor force in the inplane direction, and U is the rotor velocity in the H direction (See 

Figure 1.2).  By necessity, the magnitude of this power must equal the power that is 

expended into the kinetic energy of the induced flow.  It follows that simple, Glauert 

momentum theory can be used to compute the minimum possible induced power for a 

given flight condition.   
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     Several potential sources of decreased efficiency can be identified in terms of the physics 

of an actual rotor as compared to an ideal actuator disk.  First, an ideal disk produces thrust 

perpendicular to the disk whereas a true rotor produces a tilted thrust vector that results in 

swirl velocity.  Therefore, there is lost energy.  Second, an ideal rotor has an infinite number 

of blades whereas a true rotor has a finite number.  The fact that there are vortex sheets 

coming off the individual blades implies an upwash outside of the slipstream that further 

translates into lost energy.  Third, an ideal disk can generate an arbitrary lift distribution over 

the span and azimuth.  An actual blade, on the other hand, can only produce lift under the 

constraints of both allowable blade pitch changes and of the limits on airfoil lift coefficients 

at high angles of attack.  One goal of the present research effort is to determine which of 

these contribute to the drastic increase in induced power and, consequently, what changes in 

rotor hardware (if any) might address the issue. 

 
Figure 1.2: Basic illustrative problem for a rotor [22].           
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1.3 Present Approach 

 

     Finite-state inflow models have been suggested as a theoretical basis whereby to study the 

reasons for this efficiency deficit.  In this dissertation, a finite-state inflow model is utilized 

to formulate the optimum circulation and inflow distribution for rotors in axial flow.  The 

results show that a formal optimization with finite-state models can be done in closed form 

and that such an optimization recovers the classical uniform-flow condition (for an actuator 

disk with an infinite number of blades), the Prandtl solution (for an actuator disk with a 

finite number of blades), the Betz distribution (for a lifting rotor with an infinite number of 

blades) and the Goldstein solution (for a lifting rotor with a finite number of blades).  Thus, 

it should be possible to use finite-state models to investigate optimum rotor performance in 

forward flight.  

 

     In classical momentum theory, the optimum performance of an actuator disk is well 

known to be a uniform pressure distribution with a resulting uniform inflow.  However, 

propellers and rotors are not actuator disks.  In particular, the lift vector for rotors is 

perpendicular to the vortex sheets, not to the disk.  As a consequence, the optimum 

distribution for pressure and inflow for a true rotor is the Betz distribution rather than 

uniform.  Furthermore, real rotors have a finite number of blades which further modifies the 

optimum distribution to be that of Prandtl for an actuator disk and that of Goldstein for a 

rotor with a finite number of blades. 
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     Interestingly, finite-state inflow models offer a natural framework in which to study 

optimum inflow distributions because – in these models – both inflow and thrust are 

expanded in a series of orthogonal functions that make the optimization problem a closed-

form, classic case of minimizing a quadratic cost function with linear constraint.  In addition, 

recent improvements to dynamic wake models allow for both the tilt of the thrust vector 

and the resultant swirl velocity.  This allows finite-state methodologies to be rigorous in the 

context of optimization of induced power. 

 

     In this dissertation, we show how a closed-form optimization of induced power with 

finite-state models reproduces the momentum result for an actuator disk, the Prandtl result 

for a disk with a finite number of blades, the Betz result for an ideal rotor, and the Goldstein 

result for a rotor with finite number of blades.  This success gives reason to believe that the 

methodology can be used in the future for applications to optimization in forward flight. 

 

     One goal of this research is to derive the theoretical background to obtain results for an 

optimum propeller.  The model will provide the necessary solutions to be used in real 

applications by the addition of the resulting expressions to the general code already in use 

for many applications.  Results are shown to validate the theory and show the induced power 

for the cases where theory was never previously developed.   The optimization provides a 

general solution of the pressure coefficients for a general rotor blade configuration.  

However, it can be applied for specific cases (specific blades or configurations) with changes 

to the constraints and parameters of the optimization.   



 

   
 

16

 

Chapter 2 

 
Complete Inflow Theory Formulation 
 

     Finite-state inflow theories have been used in order to define the wake geometry and the 

induced flow of rotors.  The Pitt-Peters model and the higher order Peters-He model 

represent the downwash in the plane of the rotor being expanded in terms of a set of radial 

an azimuthal functions that describe the flow. The inflow is therefore described by a finite 

set of state equations that are driven by the loading on the rotor blades.   

 

     Up to this point, previous developments have been able to achieve the full description of 

the wake in all ranges of flight regime – for all skew angles including axial and edgewise 

conditions –, for all three components of the flow – axial, radial and azimuthal –, and in all 

regions around an actuator disk except for the lower hemisphere.  Figure 2.1 shows the 

different areas around the actuator disk, where regions B and C lay on the lower hemisphere.  

The purpose of this chapter is to provide a set of ordinary differential equations in matrix 

form that describe the flow for all ranges, including all three components, and for all regions.  

This formulation will give the most general form of the equations, with previous versions 

being special cases of the general one.  It is thus, a complete, nonlinear induced flow theory 

for rotors in incompressible flow. 
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Figure 2.1: Regions on, off and around an Actuator Disk 
 

2.1 Potential Flow Equations 

 

     Conservation of mass and momentum (partial differential equations) in three dimensions 

around an actuator disk can be reduced to the nonlinear, potential flow equations for 

incompressible flow, Ref. [25]. 

  0V 
 

                                                                 (2.1) 

   V p
V V

t 
 

   



 

                                                    (2.2) 

     In past studies, these have been treated in various nondimensional schemes.  Here, for 

clarity, we keep everything dimensional. 

 

C B 

A
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     In the following derivation, we will first linearize about a steady free-stream velocity.  

Later, we will come back and consider how some limited nonlinearities can be introduced 

into the equations.  The coordinate system in Figure 2.2 shows the rotor disk with x in the 

nominally forward direction, y into the paper (the advancing side of the rotor), and z positive 

down.   

 

 
Figure 2.2: Coordinate system 

 

     The steady free-stream is considered to be of magnitude V and directed opposite to a 

unit vector  that is skewed with respect to the negative-z axis by an angle , positive 

towards the x axis.  Thus, we have for the free-stream velocity, 

  V V v  
 

                                                          (2.3) 

  ˆ ˆ ˆsin( ) cos( )i j                                                       (2.4) 
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where ˆˆ ˆ, , i j k  are unit vectors in the x, y, and z directions, respectively.  When these 

definitions are put into the momentum equations and linearized, the resultant equations 

become: 

    0v 
 

                                                              (2.5) 

 
v v p

V
t  

  
  

 

 
                                                  (2.6) 

The boundary condition is that all components of  must be zero far upstream. 

 

2.2 Pressure Potentials 

 

     The next step in the derivation is to expand the pressure of the linearized equations in 

terms of potential functions.  Discontinuities in pressure (or in its derivatives) can only occur 

on the disk.  Therefore, we utilize the solution to Laplace’s equations in ellipsoidal 

coordinates, defined on Appendix B, to represent the pressures in the flow field.  This then 

allows the introduction of time-varying pressure drops or mass sources at arbitrary locations 

on the rotor disk.  The solutions that we include are those that die out at infinity.  They are; 

       , , cosmc m m
n n nP Q i m                                             (2.7) 

       , , sinms m m
n n nP Q i m                                              (2.8) 

where , , and  are the ellipsoidal coordinates defined in Appendix A and m takes the 

values {0, 1, 2, 3, 4, … }and n takes on the values {m, m+1, m+2, m+3, …}. 
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     It is interesting to see how these potential functions behave across the z=0 plane (where 

 jumps from positive to negative).  In the plane of the rotor disk but off of the rotor disk, 

we have =0.  Therefore, the functions with m+n odd (which are odd functions in ) are 

zero on that plane; and the functions with m+n even (which are even functions in ) have a 

zero normal derivative on that plane.  On the upper surface of the disk, we have 0<<1; 

and, on the lower surface, we have -1<<0.    Thus,  jumps across the disk.  Therefore, the 

m=n odd potentials have a jump across the disk (simulating a pressure jump); and m+n even 

functions have a jump in normal derivative (simulating a mass source). 

The pressure may now be expanded in terms of these potentials. 

   
0

mc mc ms ms
n n n n

m n m

P  


 

 

                                               (2.9) 

where the ’s are nondimensional so that  will have the units of m2/sec2.  Note that, for 

m+n odd, the pressure will be discontinuous across the disk since  m
nP   is odd in that case.  

Similarly, for m+n even, the normal gradient of pressure will have a discontinuity across the 

disk.  Thus, m+n odd corresponds to lift on the disk, and m+n even corresponds to a mass 

source on the disk.  It follows that the following relationships connect the ’s to either the 

pressure drop or the injected mass on the plane of the disk: 

   
0

0 1, 3,...

2 mc mc ms ms
lower upper n n n n

m n m m

P P P


  
 


   

                            (2.10) 

   
0

0 2, 4 ,...

2
lower upper mc mc ms ms

n n n n
m n m m

P P
m v

V V 

  
 


    

  
         

 
         (2.11) 

where P is the net pressure in the upward direction across the disk (negative z), and m   is 

the net mass per unit area being injected into the flow field per unit time at the disk 
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(implying a positive z velocity below the disk and negative z velocity above the disk.  Note 

that only m+n odd will contribute to P, and only m+n even will contribute to m  .  Since 

the potential functions are a complete set of orthogonal functions on the disk for either m+n 

odd or m+n even, knowledge of the pressure drop and mass injection at the disk at any point 

in time completely determines the ’s at that instant in time. 

 

2.3 Velocity Potentials 

 

     The first velocity potentials that we define will be called the prime potentials, Ψ.  These 

are defined as the integrals along a streamline of the pressure potentials, 

  



 

    
m

m n
n d

R
                                                         (2.12) 

where the rotor radius R is added to keep the velocity potentials nondimensional. The above 

relationship holds both for the cosine terms (mc) and for the sine terms (ms).  The flow 

velocities are then represented by an expansion summation in the gradient of these velocity 

potentials. 

   
0

m mc m ms
n n n n

m n m

v R a b
 

 

   
 

                                        (2.13) 

Note that, since the  are nondimensional, since the R is added for scaling; and, since the 

Laplacean operator has units of one over length, the m
na and m

nb  will have units of velocity, 

m/sec. 
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It is straightforward to show that these expansion gradients,  , are exactly the velocity 

due to each individual pressure potential  in the static case.   

  
v P

V
 
 






                                                         (2.14) 

Substitute Equation (2.9) and (2.13) into Equation (2.6).  This leads to: 

   


  
   


     

         
  

0 0 1, 3,...

m mc m ms mc mc ms ms
n n n n n n n n

m n m m n m m

V a b d          (2.15) 

Then, based in the definition in Equation (2.12), 

  ;  b
mc ms

m mn n
n na

V V

 

 

                                                    (2.16) 

Thus, this particular choice of velocity potential will give exact results at zero frequency even 

for truncated matrices. 

 

     The above definition of velocity potentials involves three areas of the flow field that will 

be important to identify.  First, there is the area above the plane of the rotor disk (>0, z<0, 

0<<1).  This is the upper hemisphere where one need only be concerned with positive 

values of .  A second area is the flow within the wake (i.e., the flow below the plane of the 

rotor disk along streamlines that pass through the rotor disk, region C in Figure 2.1).  This 

area defines a skewed cylinder that encompasses the rotor wake.  When one follows such a 

streamline into the wake,  is discontinuous across the rotor disk resulting in discontinuities 

either in the potential functions or in their derivatives.  This invalidates the assumptions of 

Equatons. (2.12-2.13) since the Laplacean operator cannot be brought out from under the 

integral sign.  Strictly speaking, the flow is not potential flow within the wake, giving issues 
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in finding the induced flow there.  The third area of the flow to be defined is the flow below 

the plane of the rotor––but along streamlines that do not intersect the rotor disk.  The 

velocity potentials are valid in that area, which is a region governed by potential flow (i.e., 

region B in Figure 2.1). 

 

     Unfortunately, there is presently no known, closed-form expression for these velocity 

potentials in Equation (2.12) at arbitrary wake skew angles.  Thus, in the above formulation, 

some preprocessing must be done to compute the gradients of  at points in the flow field 

for which the velocity is desired.  In order to overcome this limitation, another set of 

velocity potentials is defined, the derived potentials, ̂ .  They reduce to the prime potentials 

 for the special case in which =0.  In order to find these functions, one must find 

potential functions such that 

  
ˆ ˆm m

mn n
n

d d
R R

dz d
 

                                                   (2.17) 

Reference [6] was able to find these functions in the following form: 

  1 1
ˆ m m m m m

n n n n n                                                       (2.18) 

where 
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and 
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                                                (2.20) 

which are valid for the upper-half plane (z<0) with the exception of the case m=n.  For that 

case,  is infinite and Q(i) and P() are undefined for the subscript less than the superscript 

(n<m). 

 

     Reference [9] completed the formulation for these special cases so that now all of these 

derived potential functions are known for all superscripts and subscripts.  For the case m=n 

but not equal to zero, the derived potentials become: 

       1 1 1 1
ˆ cosmc m m m m m m

n n m m n m mP Q i P Q i m                             (2.21)

        1 1 1 1
ˆ sinms m m m m m m

n n m m n m mP Q i P Q i m                              (2.22) 

where 1
m

mP   and 1
m
mQ   are defined as 
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  
 1 /22

1

1

m
m mQ i


 


                                              (2.24) 

For the special case m=n=0, the velocity potential is: 

 0 1 2
0 max

2 1 2 1 2ˆ 1 tan ln 1 ln 1 ln     0Z    
    

  
          

  
    (2.25) 
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where Zmax is a large number representing the radius to which the  integral is taken.  In 

reality, the integral is infinite when taken to infinity.  However, it is only the gradients of the 

potential functions that are required —not the potential functions themselves— and one can 

always add a constant to a potential function.  Therefore, the above definition is tractable for 

practical solutions.  For the derived velocity potentials below the plane, one can consider 

that the velocity potentials with m+n odd must be symmetric with respect to z=0; while 

functions with m+n even must be asymmetric to that plane, Equation (2.18).  That defines 

the potentials in the lower hemisphere outside of the wake, region B.  As with the prime 

potentials, potentials within the wake will require special attention and will be considered 

later in this chapter. 

 

     Since the velocity potentials all satisfy Laplace’s equation, it follows that the velocities, 

themselves, will satisfy continuity, Equation (2.1).  This leaves only the momentum equation 

as the governing equation for the velocity expansion coefficients.  Therefore, the problem of 

obtaining a finite-state wake model is reduced to the problem of representing the 

momentum equations in finite-state form. 

 

2.4 Galerkin Approach 

 

     The next step in the derivation is to use the Galerkin approach (described on Appendix 

C) to transform the momentum equation into a set of ordinary differential equations for the 

expansion coefficients.  To this end, the pressure expansions, Equation (2.9), and the prime 
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velocity potential expansions, Equation (2.13) are substituted into Equation (2.6).  The test 

functions are taken to be the gradient of the pressure potentials.  These test functions are 

dotted with the momentum equation and integrated over the upper hemisphere (above the 

plane of the rotor disk) to obtain equations of motion.  (This avoids the problems 

mentioned earlier about discontinuities across the rotor disk and in the wake.)  It should also 

be noted that, since the upper hemisphere is chosen, there are no velocity boundary 

conditions across vortex sheets, due to the fact that discontinuities only occur in the wake, 

which is below the plane of the disk.  Thus, either the prime potentials or the derived 

potentials are appropriate for a Galerkin approach.  As a result of integrating over the upper 

hemisphere, however, the velocity solution will only be valid in the upper hemisphere.  

Later, the velocity field below the rotor plane will be discussed. 

     After the proper expansions are substituted into the momentum equation, the divergence 

theorem can be used to transform the Galerkin equations into a set of ordinary differential 

equations for the components of the velocity potential.  The cosine and sine functions 

completely separate into two uncoupled sets.  For the cosine elements, the Galerkin 

procedure gives: 

 
 

 , , , , , ,

, , , , , ,

m
c c c c c cm mn

n no o o e o o o e o o o eo o o
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m n ee o e e e o e e e o e en
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







  
                                                                                     

 

   m
n e

  
 
  

(2.26) 

where the matrices are expressed in terms of integrals on the plane of the rotor. 
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0 0
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n j n

s s

L d ds d ds
z z

 
                                

                         (2.27) 

 
rc mc
jc mc rc n

n j

s s

D ds ds
z z

                  
                                (2.28) 

      

     A similar set can be written for the sine components.  Note that the equations have been 

partitioned into subscripts “o” for terms with m+n odd and “e” for terms with m+n even.  

For cosine terms, m=0,1,2,3 . . . and for sine terms, m=1,2,3…  In either case, n=m, m+2, 

m+4 or m+1, m=3, m+5 depending on whether the subscript of the partition is “e” or “o.” 

 

     The alternative forms in Equations (2.27-2.28) (along with identities for the Legendre 

functions) allow the matrices to be reduced to integrals on the rotor disk which can be 

expressed in closed form.  Thus, the [D] matrix can be expressed as below for either cosine 

or sine; 

  

1
        

;     

  ;   

rm
jn jn rmm

n

D
K

j r odd n m odd

j r even n m even

 

   
   

                                                 (2.29) 
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                 ;   
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j n j nH H
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

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 

  

   
   

                               (2.30) 

 

and the L    matrix can be expressed as: 
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  0 0cm m m
jn jnL X    
                                                                 (2.31) 

  ( 1)
c m r m rrm l rm

jn jnL X X          
                                      (2.32) 

    ( 1)
s m r m rrm l rm

jn jnL X X          
                                      (2.33) 

where 

   tan /2 ,  min( , )X l r m                                           (2.34) 
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                                           (2.35)
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     It should be noted that, because of the logarithmic term in the m=n=0 element, the 

integral for  is formally infinite for the case m = r = n = j = 0.  However, following the lead 

of Ref. [4], we express the infinity as a finite series that only approaches infinity as the 

number of terms in the expansion approaches infinity, but that is finite for the case of a 

truncated approximation.  This allows a solution with a finite number of terms that provides 

formal convergence to the exact answer, 

  00
00 2

1

4 1 1

2

N

n n 

    
 

                                                        (2.40) 

where N is the largest subscript appearing in the equations. 

 

     Thus, the above equations give a closed-form representation of the dynamic equations 

for the velocity potential expansions in terms of prime potentials.  Therefore, Equation 

(2.26) and its sine counterpart are a complete set of equations for rotor induced flow. 

 

2.5 Equations in Terms of  Derived Potentials  

 

     The next step is to make a change of variable from a series in terms of the prime 

potentials, Equation (2.12), to a series in terms of derived potentials, Equation (2.18).  The 

change of variable is effected through a Galerkin procedure that relates the two sets of basis 

functions over the upper hemisphere.  In particular, the total velocity potential is written in 

the two bases as below. 
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                1 1ˆ
T Tm mc m m m m m

n n n n n n na a                                  (2.41) 

Then, the equations are dotted with the gradient of each potential function and integrated 

over the upper hemisphere, as with the momentum equations.  The result is a transform 

between the two bases. 

     
        1

ˆm c c m
n na L M a                                                        (2.42) 

where 

  


 
            


0

rc
jc c mc
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s

M L ds
dz

                                       (2.43) 

A similar transform exists between b and b̂  that involves sL    and sM   .  Note that, in 

axial flow, the transformation is identity since the two potential functions cM    and L    

are identical in that case. 

 

     With the appropriate change of variable, the equation of motion in terms of the new 

variables is: 

     1
ˆ ˆc m c c c m c mc

n n nR M a V D L M a D 
 


                      

                   (2.44) 

The version in Equation (2.44) allows a closed-form expression for all components of the 

velocity field in the entire upper hemisphere. 

 

     Interestingly, when the terms with m+n even are truncated from Equation (2.44)––and 

when one limits oneself only to the normal component of flow at the disk––one recovers 

one of the two alternated forms of the He model of Ref. 4, namely the form with the z-
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velocities expanded in the  m
nP  .  The other form of the He equations––the one with 

velocity expanded in terms of    1 m
nP   ––is easily recovered by a change of variable.  

Similarly, the Pitt model of Ref. 1 is recoverable from the second form of the He model 

when it is truncated to only three states.  Thus, the general form of Equation (2.44) explicitly 

includes all previous models. 

 

     Although the derived potentials have the advantage of being in closed form everywhere 

in the flow field, convergence with the derived potentials is slower at the lower frequencies 

than is convergence with the prime potentials, Ref. [4].  On the other hand, the convergence 

of velocities with the prime potentials is slower at the higher frequencies than is convergence 

with derived potentials.  For this cause, it seems reasonable to formulate results in terms of a 

blending of the two types of potentials, as described below. 

 

     Once the equations are solved (in either basis), Equation (2.42) shows how the resultant 

states can be transformed into either basis for use in obtaining the flow field.  We now 

define    and  ̂  as the blending vectors for the   and ̂ bases. 

        ˆ ˆ
TT

v     
 

                                            (2.45) 

where the total inflow must always add up to the original solution, 

       1
ˆc cL M a 


                                                      (2.46)

         
 

                
1 1

ˆ ˆc c c cM L M L a a                              (2.47) 
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and where Equation (2.42) has been used for the transform.  The blending of the two bases 

is based on the relative amount of unsteady flow in the dynamic response.  Thus, for low-

frequency motion, it is desired to have primarily the  basis; whereas for high-frequency 

components, it is desired to have more of the ̂  basis. It follows that a logical manner to 

accomplish this blending is to base the relative proportion of   and ̂  on the relative 

magnitude of the acceleration and velocity terms in the dynamic equations. 

 

     To this end, the acceleration component of flow field is defined as follows: 

         1 1c c cR
u D L a a

V V




 

                                            (2.48) 

Although the above is only written for the cosine component, one can easily extend this 

definition to include a vector of both sine and cosine terms. 

Under this definition, the magnitude of the blended vectors can be rationally defined as: 

     
2

2 2

a
a

a u
 


                                                    (2.49) 

      
2

1

2 2
ˆ c cu

M L a
a u




       
                                        (2.50) 

One can see that, when the frequency goes to zero, acceleration term u=0; and the vector 

   a  while the vector  ˆ 0   giving a solution in terms of prime potentials.  On the 

other hand, at high frequencies, for which a  is small, the above formulation gives   0   

making the velocity expressed entirely in terms of  ̂ which implies a velocity field in terms 

of derived potentials.  For free vibrations —in which  = 0— {u} and {a} are equal such 
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that the velocity field consequently is equally split between prime potentials and derived 

potentials. 

 

     An implicit assumption in the above is that the entire flow field is at a single frequency.  

In order to accommodate cases with mixed frequencies (such as a steady lift upon which is 

superimposed a 4/rev blade-passage input), we can make a simple modification to Equations 

(2.49-2.50).  In particular, we can treat the blending factors (on the left of each equation) as 

diagonal matrices such that each diagonal term (and each component of flow) can have its 

own blending based on its own component of acceleration.  For example, each harmonic 

partition (i.e., superscript, m) could have a factor based on the Euclidean length of that 

particular m-partition: 

  
   

       

Tm m

m

T Tm m m m

a a
f

a a u u

 
 

                                              (2.51) 

This allows the zero-harmonic flow to be partitioned differently from (for example) the 

four-harmonic flow. 

 

2.6 Effect of Lift Tilt 

     Makinen (Ref. 10) showed that the inflow model can indeed include the effect of tilt on 

the lift provided that a correction is applied for the swirl kinetic energy.  Thus, the added 

energy is added to the mass matrix; and the resultant induced flow is assumed parallel to the 

tilted lift vectors.  
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     To be precise, for the He model the apparent mass matrix m
nK    (diagonal), must be 

replaced to include the effect of the wake swirl.  There are different swirl corrections that 

can be applied, but from Ref. 10 the following correction gives the best results in axial flow. 

   
2

2
 is substituted by: 

m
He m m m m

n n nj nK K I m I A K
Q

                         
     (2.52) 

where κ =2.2, Q is the number of blades, λ is the total inflow, and m
jnA    is the 

transformation matrix.  It should be noted that for an actuator disk (no lift tilt), κ is set to 

zero. 

To generalize Makinen’s result to forward flight, λ is replaced by the average tangent of the 

wake skew angle. 







2
2

23
1

2

                                                            (2.53) 

Thus, the generalized form for the He model mass matrix for any harmonic m is given by 

   
2 2

2

2 2

 is substituted by:
3

1
2

m
He m m m m

n n nj nK K I m I A K
Q

 





 
 

                       

      (2.54) 

This result can also be generalized to the complete model (in Ref. 7) for either the prime or 

derived potentials.  For the derived potentials, the modified mass matrix is found by 

replacing the upper left partition of the matrix  D  by the inverse of Eq. (2.54). 
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2.7 Velocity in Lower Hemisphere 

 

     The development on previous sections is a Galerkin method that gives convergence on 

velocity in the upper hemisphere only.  The next issue is how to extend that convergence to 

the lower hemisphere.  To begin that development, it is useful to consider the case of axial 

flow, for which closed-form solutions can be found for the z-component of velocity.  For 

purposes here, it is sufficient to write the closed-form solution to Equation (2.6) in axial flow 

for a step response in pressure on either side of the disk.  The pressure consequently 

becomes: 

 ( , ) ( ) ( )P z t P z u t                                                               (2.58) 

The resultant, closed-form solution for the z-component of velocity is given by: 

 
outside wake:                       V ( , ) ( V ) ( )

inside wake:            V ( , ) 2 (0 ) ( V ) ( )

z

z

v z t P z t P z

v z t P P z t P z




 


 

  

   
                         (2.59) 

where the region inside of the wake is defined by 1r   and 0 z V t  .  Note that the 

above solution satisfies the momentum equation, the initial conditions, and the velocity jump 

across the disk. 

  V (0 ) (0 ) (0 ) (0 )z zv v P P    
                                            (2.60) 

The first term P(z) is the particular solution to the applied pressure field, and the second 

term P(z-V∞t) is the homogeneous solution that satisfies the initial conditions.  One can 

think of the first term as the velocity due to the pressure drop at the disk and the second 

term as the velocity due to the shed vorticity (like a start-up vortex) that is being convected 

downstream.  This solution satisfies the differential equation and initial conditions, but it 
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does not satisfy the continuity condition across the disk (or across the start-up region).  

Thus, in the wake, the extra term 2P(0+) —the pressure on the downstream side of the 

disk—must be added to enforce this condition.  Thus, the flow inside of the wake is no 

longer a potential flow.  Interestingly, for pressure drops across the disk, since P(z) is 

discontinuous across the disk, this extra term must be added to enforce continuity.  For mass 

sources at the disk, for which pressure is continuous, the identical term must be added to 

enforce the velocity drop due to the extra flow, Equation (2.60).  Thus, the same added term 

holds for all pressure inputs —lift or mass sources. 

 

     For example, for a step input in pressure drop (and after a sufficient amount of time), 

comparison of the “outside wake” and “inside wake” solutions shows that the velocity is 

continuous cross the disk and is given from the relationship V (0 ) (0 )v P P  
     .  This 

velocity then expands downstream to 2P(0+) as the pressure drops, a well-known property of 

rotor wakes due to the Bernoulli equation.  Further downstream, as one approaches the 

start-up system (z = V∞t), the velocity diminishes back down to P(0+); and then (outside of 

the wake) it further diminishes down to zero in the far field.  It is the added term in the 

“inside wake” solution that allows for this correct description.  This concept is easily 

extended to the general case through the use of a convolution integral involving the step 

response.  Thus, for a general pressure input P(z,t), the difference between the “outside 

wake” and “inside wake” z-velocity fields is: 

      

 V V 2 (0 , / V )z zinside outside
v v P t z  

                                     (2.61) 
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One can see that the added term is proportional to the downstream pressure that was on the 

disk at a past time (delayed by how long it took the wake to travel from the rotor to that 

particular z location). 

 

     From the above development, one can formulate an approximation to the velocity field 

below the plane of the rotor.  For points outside of the wake, Equation (2.59) shows that the 

velocity is basically the analytic continuation of the velocity field above the disk.  Thus, one 

can simply continue the potential functions into the lower hemisphere and find that velocity 

field there.  Admittedly, the velocity expansion in the lower plane will converge more slowly 

than in the upper hemisphere with the convergence deteriorating as one approaches the 

downstream end of the wake.  However, the velocity is decaying in that region so that errors 

are minimized.  For velocities within the wake, one can take the extended lower hemisphere 

solution and add the term in Equation (2.61) in order to obtain an approximation for within 

the wake.  One again, it is emphasized that this is only an approximation in that it neglects 

the shed “end wakes” for each oscillation.  For example, for a time-varying, square-wave 

pressure, the above procedure will give the correct square-wave behavior in the wake only at 

low frequency. However, as frequency increases, and as the shape of the velocity wave 

begins to warp with respect to a square wave, the above procedure will be slow to converge 

on that warping. 

 

     To put the above in more concrete terms, for a rotor with lift concentrated at a finite 

number of concentrated blades, the inflow between the vortex sheets should be modeled 
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fairly accurately by the above; but the discontinuity at the vortex sheets will be slow to 

converge.  Although this is not a perfect solution, it seems to be a practical solution.     

 

     Furthermore, the above approach is probably the best that can be done with closed-form 

velocity potentials and a Galerkin method.  For skewed flow, the velocity below the plane of 

the disk is treated in entirely the same way with the accompanying approximations.  Of 

course, in the limit as wake skew angle approaches 90º, the methodology breaks down as the 

wake goes to zero thickness and does not die out (even in the upper hemisphere).  However, 

it should be pointed out that, even for that case, the flow on the disk still converges.  It is 

only off-disk flow that cannot converge for 90º skew angle, Refs. [4-8].  It should be noted, 

however, that this approach does give the exact result for the flow at all wake skew angles 

(even 90º) for the case of steady flow in the wake.  Thus, it is perfectly suited to issues of 

wake interactions with lifting surfaces. 

 

     In essence, the above development shows that one would require more states to model 

the flow in the wake than one would need to model the flow outside of the wake.  This 

conclusion follows from the fact that, in a state-space approach, a pure time delay must be 

treated by extra states; and the above development involves a time delay in the wake.  

Therefore, for future work in this area, attention would need to be given to the 

incorporation of additional vortex states within the wake. 
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2.8 Nonlinearities 

 

     The above development is for flows that are linearized about V∞.  Although this 

assumption is quite good in cruise conditions, it breaks down in the limit of a helicopter in 

hover.  At the hover condition, V∞ goes to 0; and the equations become singular.  From the 

very inception of dynamic wake models, this was recognized.  Fortunately, there is a fairly 

simple way to make the equations nonlinear in such a way that they agree exactly with 

momentum theory for the hover condition and then transition to the linearized case of Ref. 

[1].  To begin this development, it is useful to replace the V∞ term with the total average 

flow at the rotor. 

  22 2sin cosT zV V V v                                         (2.62) 

     However, this definition is not sufficient to create a model that will exactly linearize to 

the correct equation.  For the correct linearization, one must consider the perturbation of 

the complete nonlinear equations which involves perturbation of the parameter defined as 

the mass-flow parameter, V. 

    2 2sin cos cos 2z z

z T
z T

V V v V vd
V v V

dv V

      
                 (2.63) 

The mass flow parameter allows the creation of a set of nonlinear equations that will agree 

with momentum theory in hover and also linearize to the correct equations derived above.  

In particular, one defines a diagonal, [V] matrix, 



 

   
 

40

   

...

TV

V

VV

V

 
 
 
 
 
 
  

                                              (2.64) 

and then modifies Equation (2.26) or Equation (2.44) by replacing the scalar V∞  with the 

insertion of the [V] matrix just to the right of the [D] matrix on the left-hand side of the 

equations. 

          R L a D V a D 


                                               (2.65)

             1ˆ ˆR M a D V L M a D 
                                     (2.66) 

     The above equations are nonlinear about the elliptical pressure distribution 0
1  and thus 

must use only the average inflow due to that lift in determining the v  to go into the VT and 

V parameters. 

      1

1

02
ˆ

03
...

T

v L M a


 
 
   
 
  

                                               (2.61) 

     The result is that the equations linearize to the equivalent of the original linear equations 

but with V∞ of those equations replaced by V at all instances.  This then reduces to the Pitt 

model of Ref. [1] when only three states are taken. 

As a bi-product, one can see that (due to continuity) the nonlinear version implies a 

contracting of the rotor wake downstream as the induced velocity increases.  This can readily 

be handled by redefining the “wake” region has having a smaller radius than the rotor.  In 

particular, if one computes the average velocity at any circular cross-section of the wake (the 
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cut made parallel to the z-plane) and then calls that average velocity  v  , then we can write 

the equivalent radius as: 

  
2

(0)
   

( )
eqR v V

R v V




  
   

                                                    (2.62) 

where  will be negative in the wake.  This will ensure continuity.  The flow outside of this 

new wake definition will remain the out-of-wake solution 

  

     The above is a nonlinear model for velocity that follows Refs. [1-4] in how the 

nonlinearities due to hover are treated in the velocity field.  However, none of those 

references discusses how the nonlinear pressure field differs from the linearized one.  The 

difference is clearly seen for the lifting case in hover for which the linear theory predicts 

equal and opposite pressures on either side of the disc —giving a total pressure increase of 

   2 0 2 0P P   .  Momentum theory, on the other hand, shows that the positive 

pressure below the disk is ¾ of the total pressure rise while the negative pressure above the 

disk is ¼ of the total.  The reconciliation of this anomaly is easily found by substitution of 

the nonlinear velocity field into Bernoulli’s equation.  With this procedure, the nonlinear 

pressure in the flow field can be written in terms of the linearized pressures (written in terms 

of ) as follows. 

0 1
Outside of wake:                        

2

PP
v v v V 

 

                                        (2.69) 

0

0

2 (0 ) 1
Inside of wake:                 

2

PP P
v v v V  

  

                                   (2.70) 
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where P0 is the total atmospheric pressure in the far field, V∞ is the free-stream velocity, 

 0P   is the pressure (above atmospheric) applied below the disk (whether from lift 

differential or mass sources at rotor), v is the nonlinear induced velocity from the nonlinear 

inflow theory described above, and v  is the component of v along the negative  direction 

(the free-stream direction of V∞).  For the perturbation (i.e., linearized) model, if follows 

that: 

Outside of wake:                       
P

v v v V

 

   


                                                (2.71) 

2 (0 )
Inside of wake:              

P P
v v v V 

  

   


                                               (2.72) 

where P  is the perturbation pressure, v is the perturbation induced velocity, and v is the 

perturbation velocity in the free-stream direction, and v  is the steady induced flow about 

which the equations are being perturbed.  This, then, completes a non-linear model and a 

perturbation nonlinear model of the inflow theory. 

 

2.9 Results from previous models 

 

     Many results from this unified approach are available (Refs. 1-14) including comparisons 

with experimental data and with other theories.  The results present velocity components in 

the plane of the rotor disk for the linear equations with simple harmonic pressure or mass-

source inputs.  In all results, ten odd functions and ten even functions are used in the 

Galerkin computations.  For the case of frequency response, there is an exact numerical 
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solution based on a convolution integral along streamlines from far upstream to the point at 

which induced flow is desired.  Thus, the comparisons to follow are validation that the 

potential functions and the Galerkin-based equations are correct. 

 

     A complete dynamic wake model has been derived from a Galerkin procedure applied to 

the potential flow equations.  The resultant velocity potentials give converged solutions both 

above the disk, on the disk, below the disk and in the wake.  Previous inflow models such as 

momentum theory, Pitt model, and the He model are contained as special cases. 
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Chapter 3 

 
Development of  the Solution Approach 
 

     In an attempt to understand how the tilt, the number of blades and the geometry of the 

blades in a real rotor affect the induced power the present research will expand He’s 

generalized dynamic wake model to study minimum induced power for a rotor under a 

variety of conditions.  The scope of such a study is so broad that the use of large, 

comprehensive codes is prohibitive for these purposes.  On the other hand, finite-state wake 

models are ideally suited for such task.  These models expand both the pressure field and the 

velocity field in orthogonal expansion functions. Therefore, the computation of induced 

power (the dot product of thrust and induced flow) simplifies nicely into a quadratic cost 

function that allows classical optimization to be used for the minimum power under a variety 

of constraints.  Thus, it is anticipated that such an approach can yield insight into this issue.  

As a preliminary step in such an endeavor, this present dissertation looks at the induced 

power of a non-ideal lifting rotor in axial flow to verify that dynamic wake models can 

indeed compute the proper induced power.   

 

     Since theory and experiment agree with simple momentum approaches for power in axial 

flow, such conditions provide the ideal test bed to verify that this optimization approach is 
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viable.  The remaining of the research efforts will then concentrate on results for induced 

power in forward flight, using the formulation already derived and included on this 

dissertation. 

 

3.1 Induced Power Derivation from He-Peters 

 

     He [4] developed an unsteady induced-flow theory to be used in stability, vibration, 

control, and aeroelastic studies.  The theory is based on an acceleration potential for an 

actuator disk.  The induced flow, w, is expressed in a polynomial distribution (proportional 

to Legendre functions) radially and in terms of a Fourier series azimuthally.  The way the 

induced flow is set up allows for all harmonics and describes the induced flow for any radial 

position. 

 

     The theory provides the pressures on the rotor disk as a Fourier expansion.  As more 

harmonics are added, that pressure converges to the lift concentrations on the blade and to 

zero lift off the blade.  One of the issues to be addressed in this present work is whether or 

not such an approach can give adequate convergence to induced power.  The form of this 

pressure expansion is as follows:   

        
 

   

      2 2

0 1, 3,...

, , , ( ) ( ) ( )cos( ) sin( )m m m m
n n n n

m n m m

t R P Q i C t m D m    (3.1) 

The pressure at the rotor disk is obtained by the difference between the pressure above and 

the pressure below the disk.   
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      
 

   

      2 2

0 1, 3,...

( , , ) ( ) ( )cos( ) ( )sin( )m mc ms
n n n

m n m m

P r t R P t m t m       (3.2) 

The power, Q, can be expressed as: 

   
A

Q P w xdxd                                                     (3.3)    

The Peters-He model also sets out the velocity field normal to the rotor disk in terms of the 

same Legendre Functions and variables, as given below. 

     
 

   

     
0 1, 3,...

( , , ) ( ) ( )cos( ) ( )sin( )m m m
n n n

m n m m

w r t R r t m t m          (3.4)                         

                          
   1m m

n nr P 



                  

                                 (3.5) 

where t t  , and  m
n r are a complete set of functions that arise from the solution to 

Laplace’s equation in ellipsoidal coordinates. 

The form of the functions is: 

   
( )/2

, 2,...

( 1) ( 1)!!
2 1

( )!!( )!!( 1)!!

q m
m m q
n n

q m m

n
r n H r

q m q m n q




 

 
 

                (3.6) 

where 
( 1)!!( 1)!!

( )!!( )!!
m
n

n m n m
H

n m n m

   


 
       

substitution of the induced flow and the pressure at the disk yields: 

  

  


      



       

      
  

  
2 13 5

0 0
, ,

1
cos( ) sin( )

cos( ) sin( )

r r r
j j j

m n r j

m mc ms
n n n

Q R P r r

P m m d d

            (3.7) 
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 

13 5 0 0 0 0

0

13 5

0
,

2 c
j j n n

n j

m m m mc m m m ms
j j n n j j n n

m n j

Q R P d

R P P d

      

        

 
   

 

        

 


                   (3.8) 

The functions m
nP are Legendre Functions of the first kind, and  is related to the radial 

position be 21r   . 

      

     The equations that relate the pressure coefficients in the pressure expansion  ,mc ms
n n   to 

the velocity coefficients  ,r r
j j   are derived from the momentum equation of potential 

flow. 

            

1 1
{ } { } { }

2
m m c m mc
n n n nK V L  

 
                                         

  (3.9)
              

1 1
{ } { } { }

2
m m s m ms
n n n nK V L  

 
         

                                (3.10) 

where 
2

2 2

( )
( ) ,  

d
V

dt

   
 

  
 


, λ is the total inflow, μ is the advance ratio, V is the 

flow parameter, and m
nK is diagonal; 

2m m
n nK H


 .  The L    cosine and sine matrices are 

given in closed form in terms of the wake skew angle, χ . 

 

            

2

2

2

2 (2 1)(2 1)( 1)

( )( 2) ( ) 1

n j r

mr
jn m r

n j

n j

j n j n j nH H

 

 
 

      
         for r + m even       

           
( )

(2 1)(2 1)2

mr
jn m r

n j

sign r m

n jH H

 
 

 
                    for r + m odd, j=n±1                           
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           0mr
jn                                                                for r + m odd, j≠n±1 

(3.11) 

 

0 0

( 1)

( 1)

cm m m
jn jn

c m r m rrm l rm
jn jn

s m r m rrm l rm
jn jn

L X

L X X

L X X

 

 

    

         

         







                                        (3.12) 

 

where l = min(r,m), X = tan|χ/2|.  The forcing functions, m
n , are given in terms of the 

blade loading, Lq.  These are related to the pressure and the optimization of the induced 

power will yield an optimal pressure distribution for a given thrust coefficient.            
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Q
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n n
q

Q
qmc m

n n q
q

Q
qms m

n n q
q

L
r dr

R

L
r dr m

R

L
r dr m

R

 
 

  
 

  
 







 
   

 
   

 
   

 

 

 

                         (3.13) 

 

     For the Peters-He model in its actuator-disk form, we have a skewed wake as shown in 

Figure 3.1 below. 
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Figure 3.1: Normalized velocity components. 

 

The power Q can be found from Equation (3.3) to be: 

    
A

Q P w v xdxd  

Notice that the power does not depend on the velocity component u.  The pressure at the 

disk (as shown in Equation (3.2)) is: 

 

2 2

0 1, 3,...

( , , ) ( ) ( )cos( ) ( )sin( )m mc ms
n n n

m n m m

P r t R P t m t m      
 

   

      
 

     
 

     The advance ratio is a non-dimensional parameter used for a rotor in forward flight that 

is the ratio of the axial component of the incoming velocity and the rotational velocity of the 

rotor, shown in Equation (3.14) and sketched in Figure 3.1.  Some other significant 

parameters are defined for convenience.     

Advance ratio  
U

R
 



                                                                  (3.14) 

Climb rate  
V

R
 


                                                                        (3.15) 
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Non-dimensional radial position 
x

r
R

                                           (3.16) 

Non-dimensional inflow  
w

R
 


                                                  (3.17) 

Note that rdr = -νdν, and λ and μ are constant. 

 

     The inflow is given by Equation (3.4).  Introducing the definitions for pressure change, v 

from the climb rate, and the induced velocity we obtain the expression for the power where 

the climb rate, λ, is a constant.  The normalized Legendre function is 0
1 3P   by definition.  

Introduction of it into the expression for the power yields Equation (3.18).  By the use of 

the simple relationship between power and power coefficient, we obtain the following, 

     


      
 

 
   

 
              

 



13 5 0 0 0 0

0

13 5

0
,

1
2

1 1

c
j j n n

n j

m m m mc m m m ms
j j n n j j n n

m n j

Q R P P d

R P P P P d

            (3.18) 

        
     

             
  0 0 0 0

1 13 5
3,5,... 1,2,3,... 1, 3,...

2 2
3

c c m mc m ms
P n n j j j j

n m j m m

Q
C

R
  (3.19) 

and 


        


    

2 1

0 0
,

1
cos ( ) cos( ) sin( )m mc ms

T n n n
m n

C P m m d d          (3.20) 

 

     A simple check using m = 0 only, and n = 1 only, provides the common expression that 

shows the Peters-He model agrees with the induced power from Momentum Theory.  The 

lift and pressure coefficients for this special case are shown in Equations (3.21) through 

(3.23). 
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    0
1

1

3
                                                                           (3.21) 

    0
1

3

2
c

TC                                                                          (3.22) 

   2 3

23
P T TC C C                                                       (3.23) 

Equations (3.19) and (3.20) provide the framework for a classical, quadratic optimization of 

power subject to constant thrust. 

 

3.2 Induced Power Theorem 

 

     A Rotor Induced-Power Theorem is used to verify the approach of this work. Let a rotor, 

Figure 3.2, be moving along an arbitrary, straight path through still air with a velocity W.  Let 

χ be the angle between the flight path and a vertical to the rotor.   

 
Figure 3.2: Inflow velocity components for a moving rotor. 
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     It follows that the inplane component of air velocity as seen by the rotor is U = Wsinχ 

and the normal component is V = Wcosχ. 

 

     Let the rotor loading perpendicular to rotor plane be called T and the rotor load in plane 

be called H, each with a positive sense in the direction of the flight path (i.e., opposite to V 

and U).  Let the blades in the rotor disk be rotating counter-clockwise at angular velocity Ω, 

when looking down on the rotor, and let ψ be the azimuth angle of a blade as measured from 

aft, ψ = Ωt.  Let a generic point on the blade be a radial distance x from the center of 

rotation as shown on Figure 3.3. 

 

 
Figure 3.3: Rotor blade generic position and rotating angle. 

 

     Let φ be the inflow angle as seen in the local blade system, Figures 3.3 and 3.4.  In that 

system, let dL be the incremental local lift per unit length (perpendicular to the total inflow), 
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let dD be the incremental local induced drag per unit length, and let dT be the incremental 

thrust.  Let w be the induced flow, opposite to L, Figure 3.4. 

 
Figure 3.4: Geometry of the forces on the blade. 

 

                                        cosdT dL                                                          (3.24) 

                                       sindD dL                                                          (3.25) 

                                          sindH dD                                                        (3.26) 

 

     Figure 3.5, taken from the work of Glauert [15], shows the geometry of the flow in the 

blade coordinate system.  The relative flow due to rotor motion alone is Ωx +Usin() in the 

rotor plane and V perpendicular to that plane.  The induced flow w must be parallel to the 

lift, so it is added vectorally at the angle φ as shown.  The resultant total inflow (due to rotor 

motion and due to induced flow) must be perpendicular to the local incremental lift, due to 

circulation considerations.  Therefore, w can be considered perpendicular to the total flow 

vector.  The resultant relationship gives rise to the geometry in the figure and to the 

following identities: 
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cos cos
tan

sin sin sin

w
V

w V

x w U x U

 
  




 
                                           (3.27) 

 

          
 

cos
sin tan cos

sin

V w

x U

  



 

 
                                               (3.28)                         

The above can be used to transform the induced power equations. 

                              I SP P TV HU                                                          (2.1) 

        sin cos sin sinIP L x L V L U                                         (3.29)                         

( sin )sin cosIP L x U LV                                              (3.30) 

(where the differentials are omitted for clarity).   

 

But 
cos

sin
sin

V w

x U






 

.  Therefore 

                                         cos cosIP LV L LV Lw                                (3.31) 

 

 
Figure 3.5: Geometry of the flow. 
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The induced power is, then:              

   IP Lw                        (work done by L on w)  (3.32)     

                  

     Thus, the incremental induced power can be found from the integral of the dot product 

of the local lift and local induced flow, which is the work done on the flow field.  The above 

theorem is, strictly-speaking, exactly true only for axial flow because of the assumption that 

local lift is parallel to local induced flow.  On the other hand, that assumption is less and less 

important as one transitions away from hover.  Furthermore, it is exactly true that the work 

done on the flow field will equal the induced power.  Therefore, Equation (3.32) seems a 

valid approach to computing the induced power from a dynamic wake model. 

 

3.3 General Optimization 

        

     A general classical quadratic optimization problem is stated as follows: 

Minimize     T
x A x subject to    T

c x q  (given).  Use of Lagrange’s multiplier to 

include the constraint leads to the cost function: 

        1

2
T T

J x A x c x 
                                           

(3.33) 

where Λ is the Lagrange multiplier. Optimizing, we obtain that for the change of the 

functional to be zero  

     1
0

2
T TJ x A A x c          

                                  (3.34) 
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          
1

1
[ ] [ ]

2
Tx A A c


     

                                        (3.35) 

Notice that the matrix to be inverted is the symmetric part of [A]. 

      

     The Lagrange multiplier must be chosen such that: 

  
       

1

2
T T

q

c A A c
 

  

                                        (3.36) 

 

     The above derivation provides a general guide for classical quadratic optimizations, such 

as the one that is performed for the present research.  The Lagrange multiplier will be 

chosen as specified by equation (3.36) for our special case of an optimum rotor. 

 

3.4 General Figure of Merit Definition 

             

     Figure of merit is a measure of rotor efficiency.  It is defined as the ratio of minimum or 

ideal power required to hover to the actual power required.  It compares actual rotor 

performance with the performance of an ideal rotor. 

minimum possible power required to hover
. .

actual power required to hover
F M   
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     Note that the ideal figure of merit, or the figure of merit for an ideal rotor, should equal 

unity.  The closer the figure of merit is to unity for a given rotor, the more efficient the rotor 

is. 

     

     In this thesis, we extend this definition of the figure of merit to climb and to forward 

flight by the definition 


minimum induced power at any flight condition

. .
actual induced power at that flight condition

F M  
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Chapter 4 

 
Results 
 

     The classical results for the cases of axial flow, plus the case of an actuator disk with an 

infinite number of blades in skewed flow are given in this section.  The finite-state method 

used in this research needs to be verified.  For the purpose of verification, solutions are 

obtained from classical assumptions and procedures to be compared to the results obtained 

by the current approach. 

 

4.1 Classical Theories: Axial and Skewed Flows 

 

4.1.1 Momentum Theory 

           

     Momentum theory utilizes the basic fluid mechanics conservation laws (Ref. 25) to 

predict the behavior of a rotor, modeled as an actuator disk.  Conservation of mass, 

momentum and energy equations yield results for optimum induced velocity and pressure 

distributions for an actuator disk in hover or climbing and a given thrust [16]. 
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     Consider an actuator disk of area A, with a thrust, T, moving vertically with a velocity V 

as shown in Figure 4.1.  Consider a well defined slipstream that goes from an area of A1, far 

upstream, to an area A2 far downstream of the actuator disk  Across the disk, the velocity 

increases to (V + v) due to the change in pressure at the location of the disk.  Downstream, 

the velocity is the addition of the incoming and induced velocities, (V + w).  Applying 

conservation of momentum, we obtain that the power is: 

 P p V v dA                                                         (4.1) 

where Δp is the pressure difference across the rotor. 

      

     Applying Bernoulli’s equation upstream and downstream of the actuator disk along 

streamlines, the expression for the pressure difference across the rotor is: 

    21
2

2
p Vw w                                                     (4.2) 

where ρ is the density. 

Therefore the power, P becomes: 

  2
2

1
2

2
P Vw w V v dA                                          (4.3) 

 

Applying conservation equations, we obtain the thrust to be: 

   2T V w wdA                                                   (4.4) 
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     The objective is to obtain the minimum power distribution (equation (4.3)) for a given 

thrust (Equation (4.4)).  Basically, this is an optimization problem for a functional, P, subject 

to a constraint, T.  We would like to obtain the induced velocity distribution w(r) that 

minimizes the power.  Euler’s equation below can be used to find the distribution w(r). 

     

     

2

2

1
2

2

1
                                 2 0

2

Vw w V v V w w
r

d
Vw w V v V w w

dt r

  

  

         
           

    (4.5) 

where λ here is the Lagrange multiplier. 

 

 
Figure 4.1: Flow model for an actuator disk in axial flow. 

 

Since the expressions are independent of r, it follows that the solution for the minimization 

problem is that w be constant.  The optimum induced velocity distribution is therefore a 

constant or uniform distribution.  If this value is introduced into Equation (4.2), the 

A1 

A 

T 
V 

V+v 

V+w 

A2 
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resulting pressure distribution that produces minimum induced power is found to be a 

constant or uniform distribution also. 

 

     From momentum theory for uniform induced flow the thrust and power coefficients are 

defined as: 

 2TC                                                      (4.6) 

   2
2P TC C                                             (4.7) 

 

In Equations (4.6) and (4.7), we normalize the velocities and power on CT   as follows 

    P 3/2

2
, , C

2 2
P

TT T

C

CC C
                              (4.8) 

 

Since Equations (4.6) and (4.7) are the equations for uniform (which is minimum power), we 

can solve for the minimum possible PC  (total power) and PC  (induced power) 

      
 

2

1
2 2PC                                                    (4.9) 

          
 

2

1
2 2PI PC C                                         (4.10) 

It is helpful to rewrite Equation (4.10) by multiplying numerator and denominator 

by
2

1
2 2

     
 

.  This gives an alternate form of the minimum induced power 

 


       
   

1
2

1
2 2PIC                                          (4.11) 
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For axial flow    0 , the minimum PIC  is 1.0.  This is why the figure of merit in hover 

can be defined as 


  
1

 actualPC .  Note that in climb, the minimum induced power is less than 

unity and approaches 1  for   1.  Thus, the figure of merit in axial flow is 

 actualPI PC C when PIC  is from Equation (4.11). 

 

     Comparison of momentum theory results with finite state methods can be performed by 

the use of optimum pressure and induced velocity profiles.  Therefore, the plot for this 

minimum induced power will not be shown.  However, it is important to see the expression 

for it as it provides a baseline against which to measure efficiency, and we can obtain 

valuable information such as the tendency of the efficiency with respect to the climb, the 

shape of the curve, etc.. 

 

     A similar approach is followed to obtain the optimum induced velocity profile and the 

optimum pressure distribution for skewed flow.  As in hover, the induced power or power 

loss can be analyzed from the induced velocity.  The difference is that, while in forward 

flight, the edgewise velocity component of the incoming flow has to be accounted for in the 

calculations.  The induced velocity is assumed to be a constant in hover.   

Momentum theory shows that the optimum pressure distribution for an actuator disk with 

an infinite number of blades in skewed flow is a constant, whereas the inflow velocity 

distribution is no longer a constant. 
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4.1.2 Prandtl’s Approximation 

 

     In 1919, Betz and Prandtl [18] combined momentum and blade-element theory to obtain 

a correction factor, k that must be added to the absolute performance calculations for a 

rotor to account for tip losses.  The tip losses occur due to the reduction in the thrust near 

the blade tips when a system with a finite number of blades is considered. 

 

     The effect of a finite number of blades is to give a further loss in wake energy due to the 

individual vortex sheets from each blade.  Goldstein worked out the exact effect for 

optimized rotors.  Prandtl’s approximate correction factor, [16], [17], [18],  agrees very well 

with Goldstein for moderate climb rates.  Because of this tip loss, for a given thrust, there is 

more induced flow than predicted by momentum theory.  Using these principles an 

approximation to the theoretical figure of merit for an actuator disk or a lifting rotor for a 

finite number of blades can be obtained using Prandtl formulation.  The Prandtl k factor is 

applied as follows. 

    2 2dL rdr V v v k    

where 

12 (1 )
cos exp

2

Q r
k

 
         

                                      (4.12) 

From the above expression it is seen that near the root (r →0) the correction factor is close 

to the unity, and it decreases as the radial position moves along the blade towards the tip.  

This formula will be used in the results to follow. 
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Prandtl’s result can be used to obtain an approximate expression for the figure of merit for 

the case of an actuator disk (lift perpendicular to the rotor), in axial flow and for the case of 

finite number of blades as follows. 

 
1

Prandtl 0
. . 2F M krdr                                                 (4.13) 

Later in this thesis, we will utilize Eq. (4.13) and compare with other case. 

4.1.3 Betz Distribution 

 

     When the lift vector is tilted perpendicular to the vortex sheets, the ideal power is no 

longer attainable.  Thus, uniform flow is no longer the optimum condition.  Betz [18] 

determined that the minimum power is obtained when the induced flow at the individual 

blades is such that the vortex sheet remains along a helical path.  Thus, the optimum inflow 

distribution is proportional to cosφ, Figure 3.5.  For an infinite number of blades, it follows 

that the pressure field must follow this same shape.  Thus, let the optimum pressure at the 

rotor be: 

2 2
cos

2 2

V V r
P

r



 

  


                                     (4.14) 

where Λ is a Lagrange multiplier.  Then the induced velocity, w is:     

2 2

1

2 4

r
w P

V r 


  


                                            (4.15) 

 

     The thrust coefficient is :  

 


     
  

31 1 1

2 20 0 0
2 cos cotT

r
C P rdr V rdr V dr

r    
                    (4.16) 
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Division of both sides by CT, introduction of the normalized values 
/ 2TC


  and  

2T

V
V

C
 , and with  /y r  we obtain an expression that can be integrated to obtain a 

close form expression for the figure of merit of the Betz distribution. 

                                                            






/1

0 2

3
2

12
1 dy

y
yV

                                  (4.17) 

Integration on Equation (4.17) gives the value of the normalized Lagrange multiplier to be: 

2
2

4 1
1

1 ln 1V 


 
   
 

                                      (4.18) 

     

     To obtain the induced power coefficient, we must consider the power. 

2 31 1

2 20 0
2

4P

V r
C Pwrdr dr

r 


  
                                  (4.19) 

Then, the normalized power coefficient is: 

 3/2
2 /2I

P
P

T

C
C

C
 , which provides the final expression for the normalized induced power. 

2
2

1 1
14 1 ln 1

IPC
V 




 

   
 

                                       (4.20) 

For axial flow, 
2 1

1
2 4 PI

V
C

          . 

The result of this closed-form solution yields the expression for the ideal figure of merit for 

a lifting rotor with an infinite number of blades.  Rearranging the previous equations, one 

obtains: 
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2
2

1
. . 1 ln 1BetzF M 


    
 

                                     (4.21) 

 

     It is interesting that Betz never provided a solution for the figure of merit of his 

distribution, but provided all the necessary theoretical background to obtain this closed-form 

expression for the efficiency. 

 

     One can combine the Betz distribution with the Prandtl tip-loss correction to obtain an 

approximate figure of merit for tilted lift and tip losses. 

 
1 2

Prandtl 0
. . 2 cosF M k rdr                                              (4.22) 

This expression must be determined numerically. 

 

4.1.4 Goldstein’s Distribution 

 
     Prandtl gives an approximate solution for the effect of blade number on the Betz 

optimum distribution.  The accuracy of this approximation is better as the number of blades 

increases and as the ratio of the tip speed to the advancing velocity becomes larger (inverse 

of the advance ratio).  Goldstein solved for the exact optimum circulation distribution using 

Betz’s velocity distribution for an optimally efficient propeller.  He was able to obtain the 

exact solution, and that in fact it was very close to the approximate solution provided by 

Prandtl. 
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     Figure 4.2 shows the results of the two methods for two and four-bladed propellers.  It 

gives the circulation distributions for different velocity-normalized radial positions obtained 

by Prandtl and Goldstein.  Prandtl’s solution is the dotted line and Goldstein’s is the solid 

curve.  The circulation is higher for a larger number of blades. 

 

 
Figure 4.2: Prantl and Goldstein circulation distributions for a 2 and a 4-bladed propeller.   

Tip-speed ratio of 5. 
 

 

4.2 Finite-State Methods: Axial Flow 

 

     Results obtained using finite-state methods cannot be shown without the use of 

previously introduced concepts and techniques applied to the case of a lightly-loaded rotor 

that is the subject of this research.  First of all, the general optimization must be applied to 

obtain the pressure coefficients that provide an optimum efficient propeller.  Some general 
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concepts have been introduced, but especially important is to find an expression for the 

figure of merit (or efficiency) that we can apply to all of the cases in axial flow.  This general 

expression will change according to the assumptions for each of the four cases studied in 

axial flow (actuator disk and tilted lift with a finite or an infinite number of blades). 

 

     The results will demonstrate agreement with classical theories so the finite-state 

methodology can be verified.  For this reason, each of the four cases discussed in the 

previous sections will be studied independently and compared.  The finite-state model will 

be compared to: 1) optimum pressure and inflow distributions given by momentum theory 

(for an actuator disk with an infinite number of blades), 2) figure of merit and induced 

power coefficients given by Betz’s distribution (for tilted lift and an infinite number of 

blades), 3) figure of merit and induced power coefficient results given by Prandtl’s 

approximation (for an actuator disk with a finite number of blades), and 4) circulation 

distribution given by the Prandtl approximation to Goldstein (for the case of tilted lift with a 

finite number of blades). 

 

4.2.1 Optimization 

 

     Given the general quadratic optimization on Section 3.3 we may now apply this approach 

to the case for minimum induced power that we are presently discussing.  For an actuator 

disk, with infinite number of blades that is lightly loaded, we will minimize CP for a giver CT. 
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         
0

0 0

1,3,5,... 1,2,... 1, 3,...

2
2

T

c m mc n
P n n n n m

n m n m m n

C


    
    

 
    

 
                         (4.23) 

subject to a given CT. 

      2
Tm m

T n nC C                                                      (4.24) 

 

     Physically, the coefficients m
nC  are a Legendre-function representation of cos   which 

is the loss of thrust due to the tilt of the lift vector.  The proof that they are in fact a fit is 

further discussed on Appendix F.  They are defined as: 

 

 
2 10 0

0 0

1
cos

2n nC P d d


    


                                      (4.25) 

 
2 1

0 0

1
cos cos( )mc m

n nC P d m d


     


                             (4.26) 

 
2 1

0 0

1
cos sin( )ms m

n nC P d m d


     


                             (4.27) 

where 

 2 2

sin
cos

sin

r

r

 
  




 
                                      (4.28) 

for a lightly-loaded rotor. 

 

     Then, the relationship between the coefficients and the function cosφ (cosine of the tilt 

angle) becomes: 

       
nm

ms
n

mc
n

m
n

n
nn mCmCPPC

,

00 )sin()cos(cos   
              

(4.29) 
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     Notice that, for axial flow, the advance ratio (μ) is zero.  For an ideal actuator disk, the 

non-dimensional climb rate (λ) is arbitrarily small, whereas for tilted lift it will have a finite 

value. 

 

     From He’s inflow Equations (3.9) and (3.10) for an infinite number of blades, this is a 

steady system.  Furthermore, all the coefficients associated with the sine component are 

zero, that is, m
n  and ms

n are zero. Rearranging the equation with this in mind, it can be 

solved in matrix form for the induced velocity coefficients, as expressed by: 

     1 1

2
c m mc

n nV L  


                                                     (4.30) 

     1

2
m mr r
n nj jL

V
    

                                                   (4.31) 

 
02 1

2
mr rn
nj jm

n

L
V





       

                                                (4.32) 

   1

2

Tr mr r
P j nj jC L

V
                                                  (4.33) 

 

     Let the matrix L with the m = 0 row partition multiplied by two will be called L .  Then, 

the minimum induced power problem can be formulated as the optimization of a functional 

J, shown below, subject to the constraint expressed by equation (4.24).  The optimization is 

carried out in to yield the optimum value for the pressure coefficients.   

          
1 1 1

2 2

Tm mr r
n nj j TJ L C

V
                                        (4.34) 
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subject to the condition 

      2
Tm m

n n TC C                                                   (4.35)   

This leads to 

                 
1 1

0
2

T Tm mr r m m
n nj j n nL C

V
                           (4.36) 

                       
1 1 1 1

0
2 2

T T Tm mr r m mr r m m
n nj j n nj j n nL L C

V V
            (4.37) 

   1 1 1

2 2

T
rm rm m m
nj nj n nL L C

V
           

                                (4.38) 

     
1

11 1

2 2

T
m rm rm m m
n nj nj n s noptimal

V L L C V L C
                  

                 (4.39) 

where   is chosen to match the desired CT in Equation (4.35). 

 

     Equation (4.39) is the solution for this optimization problem, which will yield the 

minimum induced power for a lightly loaded actuator disk with infinite number of blades.  

In these equations Λ is the Lagrange multiplier, that is chosen to give:  0
1 3 2 TC  . 

 

4.2.2 Figure of Merit 

 

     The general solution for the pressure coefficients given in Section 4.2.1 can be applied to 

different cases.  It is the purpose of this section to show results for axial flow, but these 

coefficients can be also used to obtain pressure, circulation and inflow velocity for a variety 
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of flows, including edgewise flow (χ = 90º).  For axial flow, χ = 0º, the elements in L  are 

zero except when r = m.   

 

     For an infinite number of blades, the equations of motion reduce to 

   1 1

2
m m
n nV L  


                                                     (4.40) 

The pressure and induced velocity coefficients can then be obtained and introduced into the 

equation for the power and thrust coefficients. 

   1
2m m

n nV L 


                                                       (4.41) 

   1

2
m m
n nL

V
                                                         (4.42) 

The power coefficient becomes 

   
0 02 2

T
Tm mn n

P n nm m
n n

C
 

 
 

   
    
   

                                          (4.43) 

 

     For this optimization, we find the power subject to a thrust constrained, expressed in 

Equation (4.44). 

    2
Tm m

T n nC C                                                     (4.44) 

 

     Introducing the induced velocity coefficients in Equation (4.45) into the equation for the 

power (Equation (4.43)) provides the power to minimize. 

 
02 1

2
mn
nm

n

L
V





       

                                               (4.45) 
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       1 1

2 2

T Tm m m m
P n n n s nC L L

V V
                                 (4.46) 

 

     For minimum power, without the tilt on the lift, the optimum pressure and influence 

coefficients are  0 0
1 11 3  and 3 2 TC C  . 

 

     The functional for the optimization becomes 

       1

2

T Tm m m m
n s n n nJ L C

V
                                        (4.47) 

 

     Performing the optimization (dJ = 0) the distribution that provides optimum power is 

   
1

m m
n s nV L C


                                                  (4.48) 

 

     For the case of no tilt,    1
0
1

11
3 2 1 3T sC V L


     .  The first value of the 

influence coefficient matrix obtained using the closed-form expressions in Appendix D is 

  2/3
11
sL  and   4/3

1

11 


sL . 

The power coefficient and the Lagrange multiplier are 

   
1

2
Tm m

T n s nC V C L C


                                          (4.49) 

   
1

2T

Tm m
n s n

C V

C L C
 

 
 

                                           (4.50) 
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Introducing Eqs. (4.49) and (4.50) into the equation for the power coefficient yields the 

optimum power coefficient in Equation (4.51). 

   
   

   

1
221 1

2 2
21

1

2 2 2

Tm m
n s nTm m T

P n s s s n
Tm m

n s n

C L CV C
C V C L L L C

V V V
C L C



 



 
                      

   

 (4.51) 

Multiplying, the final form of the optimum power coefficient is 

   
12 1

8

Tm mT
P n s n

C
C C L C

V

      
                                      (4.52) 

 

     Applying the same concepts to the case of axial flow with no tilt on the lift, where 

   1/ 3 0 0 ...
T

m
nC  the minimum power coefficient is obtained. 


      

12 21

 min
11

1 1

8 23 3
T T

P s

C C
C L

V V
                                        (4.53) 

Introducing these power coefficients into the definition of figure of merit demonstrates the 

steps taken to come to the final expression used throughout this dissertation. 

     m
ns

Tm
n

P

P CLC
C

C
FM

1
min 4


                                        (4.54) 

 

4.2.3 Infinite Number of Blades 

 

     For the case of an actuator disk, Equation (4.28) reduces to the unity (λ = 0) and the 

coefficients in equations (4.25) through (4.27) reduce to: 
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10 2
1 0

1
3

3
C d    

and all the others become: 

0m
nC   

Therefore, the vector  m
nC  is the vector {1 3  0 0 … 0}T with as many elements as the 

number of terms that correspond to the harmonics studied in the problem  

 

     Momentum theory predicts that the minimum induced power for an actuator disk in axial 

flow will be achieved by constant pressure and constant inflow distributions.  Results using 

the finite-state method show agreement with these predictions.  Figures 4.3 and 4.4 show the 

constant profile for the pressure and the inflow respectively with a reduced amount of terms 

in the Fourier series.  According to blade-element theory, the lift distribution corresponding 

to this pressure and velocity should be linear.  Finite-state methods agree with the predicted 

results, as it is shown in Figure 4.5. 

 

     Figures 4.6 through 4.17 show the pressure and induced velocity distributions for all 

azimuthal locations on the rotor for increasing values of climb and a thrust coefficient of 1.0.  

The pressure and induced velocity for axial flow and the case for no tilt (υ=0) are constant 

for all angles around the rotor, as predicted from classical theories.  For this case only (of no 

climb) the rotor is in hover, therefore the assumption that it is lightly-loaded no longer 

holds.  Both pressure and velocity are directly related, therefore it is predicted that they 

behave similarly for increasing values of the tilt.  It is seen that an adverse inflow region 

appears at the center of the rotor and that this region augments with increasing tilt.  As the 
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pressure and inflow drop the figure of merit decreases (i.e., the efficiency).  This decreased 

efficiency will be studied more in detail when discussing the forward flight results. 

 

     One way to make sure that the theory in fact provides results that were expected, apart 

from the fact that for the simplest case both pressure and inflow are constant, is to see how 

the curvature of the distributions at the center of the rotor behaves.  As the depressed region 

at the root increases, previous theories predict that the pressure and inflow should increase, 

close to the root, as 21  .  Plots for any individual azimuthal location and a given tilt 

show that these results follow the predicted shape (See Refs. [19] and [10]). 

 

     Of importance is to notice, in all of these figures, that the air is coming into the rotor at 

an angle.  The rotor advancing side is where rcosψ = -1. Therefore the aft, where ψ = 0 

corresponds with rcosψ = 1.  There is a symmetry for axial flow, but this symmetry will no 

longer hold for skewed flow and therefore the direction to which the rotor is advancing will 

become important. 
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Figure 4.3: Pressure profile that provides minimum induced power for an actuator disk in axial flow 
with an infinite number of blades. 

 

 

 

 

 

 

 



 

   
 

78

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

V
el

oc
ity

 
Figure 4.4: Velocity profile that provides minimum induced power for an actuator disk in axial flow 

with an infinite number of blades. 
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Figure 4.5: Lift distribution for optimum flow for an actuator disk with an infinite number of blades. 
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Figure 4.6: Pressure Distribution, χ = 0, υ = 0.0, FM=1.0.  
 

 

 
 

Figure 4.7: Pressure Distribution, χ = 0, υ = 0.2, FM=0.87.  
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Figure 4.8: Pressure Distribution, χ = 0, υ = 0.4, FM=0.69. 
 

 

 
 

Figure 4.9: Pressure Distribution, χ = 0, υ = 0.6, FM=0.52. 
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Figure 4.10: Pressure Distribution, χ = 0, υ = 0.8, FM=0.40. 
 

 

 
Figure 4.11: Pressure Distribution, χ = 0, υ = 1.0, FM=0.31.  
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Figure 4.12: Induced Velocity Distribution, χ = 0, υ = 0.0, FM=1.0. 
 
 
 

 
 

Figure 4.13: Induced Velocity Distribution, χ = 0, υ = 0.2, FM=0.81. 
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Figure 4.14: Induced Velocity Distribution, χ = 0, υ = 0.4, FM=0.69. 

 
 
 

 
 

Figure 4.15: Induced Velocity Distribution, χ = 0, υ = 0.6, FM=0.52. 
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Figure 4.16: Induced Velocity Distribution, χ = 0, υ = 0.8, FM=0.40. 

 
 
 

 
 

Figure 4.17: Induced Velocity Distribution, χ = 0, υ = 1.0, FM=0.31. 
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     Since the above shows that a formal optimization with the dynamic wake model gives the 

Glauert result for minimum power, it seems that it would be useful to consider some closed-

form results under the Glauert hypothesis.  From momentum theory one can show that  

2( )TC                                                     (4.55) 

22( ) ( )P TC C                                               (4.56) 

 

Because we optimize for a given CT, it is very convenient to normalize all velocities on 

induced flow in hover.  Thus, / / 2TC  , / / 2TC  ,     .  It follows that 

the proper normalization of induced power is 

3/2

2 P
P

T

C
C

C
                                                       (4.57) 

The result is a normalized set of inflow equations.  The thrust equation becomes: 

 1                                                          (4.58) 

which can be solved for normalized or flow due to a normalized climb rate.  That value can 

then be used to determine the normalized induced power for an ideal actuator-disk rotor. 

11/22

1
2 4IP PC C
 


  

      
   

                                     (4.59) 

The ideal induced power ranges from a normalized value of unity in hover  0   and then 

decreases with climb rate as 1/ .  This is the Glauert result.  We will use this ideal value to 

compare minimum power settings for various rotors.  We will define a generalized figure of 

merit which is the ideal power, equation (4.33), divided by the actual induced power. 
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     The question remains if the use of finite-state methods will suffice to obtain the Betz 

distribution for a lifting rotor with an infinite number of blades.  To verify this, the figure of 

merit is found by finite-state methods using the formulation described in the optimization 

section.   These coefficients represent the general solution.  To customize them to the 

present special case, some modifications were performed.  Since the present cases are for 

axial flow, the matrix L 
  ─ defined by equation (3.12) ─ simplifies to a diagonal in terms 

of mm
jn .  It should be noted that these matrices are identical to m

jnA    in Ref. 4.  The closed 

form expression for the matrix can be seen in Appendix D.  For an infinite number of 

blades in axial flow, 0m
nC   except when m = 0 so that only 0

jnA  enters the optimization.  

0
nC  comes from the following integral over the wake skew angle, 

 
2 10 0

0 0

1
cos

2n nC P d d


    


    

where 
2 2

cos
r

r






 and rdr=-νdν.  With these influence coefficients the thrust and 

power coefficients become: 

   0

1,3,5,...

2 c
T n n

n

C C 


                                           (4.60) 

0 0

1,3,5,...

2 c
P T n n

n

C C  


                                        (4.61) 

For this optimization, again the power coefficient is minimized for constant thrust, and the 

functional J becomes: 

   
   0 0 0 0

1,3,5,... 1,3,5,...

1

2

Tc c c
T n nj j n n

n n

J C A C
V

   
 

     
                   

(4.62)
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where Λ  is the Lagrange multiplier.  Performing the optimization (δJ = 0), the optimal 

pressure coefficients for this particular case are: 

     
10 0

j nj noptimal
A C V


                                              (4.63) 

Introducing the above changes to the general optimization formulation, the figure of merit 

using finite-state methods is: 

   
10. . 2

T

finite state n nj nF M C A C


                                     (4.64) 

 

     Figure 4.18 shows the comparison for the figure of merit from the finite-state method as 

compared to the Betz formula.  It is seen that the finite-state method agrees satisfactorily 

with Betz result.  The difference between them can be reduced by addition of more terms to 

0
njA    and  nC .  However, the present approximation, which uses twenty terms is thought 

to be close enough so that the dynamic inflow model is verified.   

What is most important about Figure 4.18 is the large drop in figure of merit with climb rate, 

even for an optimized rotor.  The drop is due purely to the effects of tilted lift and swirl 

velocity.  It may well be that the deficiency in rotor efficiency in forward flight is due to a 

similar phenomenon. 

 

     Figure 4.19 gives figure of merit as a function of climb rate η rather than λ.  Since λ is 

determined by the total flow through the rotor, the Figure of Merit thus becomes a 

function both of climb rate η and thrust coefficient CT.  For larger climb rate, the effect of 

CT is diminished.  
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     Figure 4.20 presents the induced power coefficient as a function of climb rate for a range 

of CT values 
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Figure 4.18:  Figure of merit comparison of the finite-state optimization to Betz distribution. 
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Figure 4.19:  Figure of merit versus climb rate for different thrust coefficients (infinite number of 

blades). 
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Figure 4.20: Induced power coefficient (helicopter convention) versus climb rate (infinite number of 

blades) 
 

 

 

 

 

 



 

   
 

92

 

 

     An important characteristic seen in Figure 4.20 is a “bucket” in the induced power for 

each thrust coefficient at a given climb rate.  This is due to the fact that ideal power 

decreases with η whereas the figure of merit also decreases with η.  Thus, there is an 

optimum climb rate.  The lowest curve is for CT = 0 and is equal to 1/λbar.  This ideal 

minimum power monotonically decreases with  , so the “bucket” is not present, and the 

induced power coefficient does not increase for high climb rates.   

 

4.2.4 Finite Number of Blades 

 

     Because the Prandtl correction as applied to the Betz distribution agrees so closely with 

Goldstein, that it makes sense to do some calculations with the Prandtl factor to determine 

the magnitude of the effect of number of blades on figure of merit.  Thus, equation (4.12) 

can be used for the figure of merit computations. 

 

     Figure 4.21 shows the effect of tip loss (as determined from Prandtl’s k-factor) on figure 

of merit.  The top curve, for the case φ = 0, is the effect for an actuator disk with a finite 

number of blades for a four-bladed, lightly loaded rotor.  The middle two, coincident curves 

are the figure of merit for a rotor with tilted lift but infinite number of blades.  The lowest 

curve is for tilted lift and finite number of blades (i.e., the Goldstein solution).  One can see 

that blade number is also an important factor in the loss of ideal induced power. 
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Figure 4.21:  Effect of tip loss on figure of merit, lightly-loaded rotor. 
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     We now wish to see if the finite-state methodology can give the correct optimum 

distribution and figure of merit as Goldstein (i.e., as the Prandtl-corrected Betz).  Makinen 

showed that the inflow model can indeed match Goldstein provided that a correction is 

applied for the swirl kinetic energy.  Thus, the added energy is added to the mass matrix; and 

the resultant induced flow is assumed parallel to the tilted lift vectors.  

 

     To be precise, the apparent mass matrix m
nK   (diagonal), must be replaced to include the 

effect of the wake swirl.  There are different swirl corrections that can be applied, but from 

Ref. 10 the following correction gives the best results. 

    
2

2 m
m m m m
n n nj nK K I m I A K

Q

                          
         (4.65) 

where κ =2.2, Q is the number of blades, and λ is the total inflow.  It should be noted that 

for an actuator disk (no lift tilt), κ is set to zero. 

 

     Performing the optimization for this case, and using finite-state methods, the figure of 

merit is obtained.  The vector  m
nC remains the same as for an infinite number of blades.  

There is no change in the values because physically these coefficients are a fit of the function 

cos  , and for an actuator disk cos 1  .   

   1
. . 2

Tm m
finite state n nF M C L C



                                     (4.66) 

 

     Once the theory has been verified, some useful plots of induced power for different 

numbers of blades at various climb rates can be obtained, as it is shown in Figure 4.22.  The 
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importance of this graph is that the effect of finite number of blades on the induced power 

can be noticed.  It is seen that induced power increases for a decreasing number of blades.  

It is an expected result, as the ideal induced power exists for an infinite number of blades 

(for Prandtl is k = 1).  The profile of the curves is similar to the one observed for infinite 

numbers of blades at different thrust coefficients.  The “bucket” effect is present here also, 

and the general profile is maintained.  Thus, the effect of these differences for finite number 

of blades affecting the induced power is as less critical as the increase in induced power due 

to lift tilt. 
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Figure 4.22:  Induced power coefficient comparison for various numbers of blades (CT =0.02). 
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     Finite-State methods should agree with the theory developed by Goldstein [19] for every 

flight condition in axial flow.  There is no closed-form solution or expression that Goldstein 

developed for the theoretical figure of merit for a lifting rotor with a finite number of blades.  

However, Makinen [10],[11] was successful in the further development and application of 

the finite-state method to obtain circulation for a given induced velocity.  These circulation 

results are in agreement with Goldstein’s circulation for an optimal propeller, as it is shown 

in Figures 4.23 and 4.24.  The fact that the application of finite-state methods provides an 

accurate optimal circulation results in the confidence that the calculations of figure of merit 

for this special case will also be accurate. 

 

     Figures 4.23 and 4.24 show the circulation at any radial position of the blade using 

Prandtl’s approximation, Goldstein’s optimal circulation, and Makinen’s results with the 

swirl velocity corrections made to the apparent mass matrix in equation (4.48).  Figure 4.23 is 

for a μ0 = 5 (λ = 0.20) and Figure 4.24 is for μ0 = 20 (λ = 0.05).  It is noticed that Prandt and 

Goldstein’s circulations give results that are very close to each other.  Since there is such 

close agreement in both approaches, and there is a figure of merit expression for Prandt’s 

approximation, the finite-state approach could be comparable to Prandtl’s approximation.  It 

is not surprising that the quadratic optimization with the dynamic wake model gives the 

correct figure of merit due to both lift tilt and finite number of blades.  Figures 4.23 and 4.24 

(from Ref. 8) show that the dynamic wake model (with swirl correction) gives the correct 

inboard (swirl) and outboard (tip loss) velocities. 
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Figure 4.23:  Circulation at any blade radial location for Prandtl, Goldstein, and using Finite-State 
methods. Plot obtained from [10],[11]. 
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Figure 4.24:  Circulation at any blade radial location for Prandtl, Goldstein, and using Finite-State 
methods. Plot obtained from [10],[11]. 
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4.3 Finite-State Methods: Skewed Flow 

 

     Since the method has been validated, the theory can be applied to the same cases for 

skewed flow.  Most of the approach for skewed flow is similar to that for axial flow.   

 

4.3.1. Infinite Number of Blades 

 

     The case for an actuator disk with an infinite number of blades will be revisited.  

However some changes will be done for forward flight.  For this case, momentum theory 

predicts that the optimum induced power is obtained for a constant pressure distribution 

(similarly as to what happened for axial flow) but the induced velocity profile will no longer 

be constant.  For an actuator disk with an infinite number of blades, we have already applied 

the finite-state model and verified that it gives the Glauert solution of uniform pressure.  

However, to go on to the other cases, all harmonics (and their periodic coupling) will need 

to be included.   

 

     The rest of the special cases, for an actuator disk with a finite number of blades and for 

the two cases for a lifting rotor, will provide results never obtained before.  The results will 

hopefully provide the conclusion as to why the experimental minimum induced power for a 

helicopter is orders of magnitude greater to what theory predicts should be.  These results 

could allow determining what changes, if any, should be introduced in the rotor to reduce 

the minimum induced power.   
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     The formulation for the figure of merit in forward flight will remain similar to the general 

figure of merit shown by equation (4.54): 

   
1

. . 2
Tm m

finite state n nF M C L C



     

However, the coefficients and the L-matrix will be different than the ones obtained 

previously, and also different for each of the four cases. 

The main difference for skewed flow is that when calculating the cosine of the inflow angle 

the advance ratio, μ, must be considered.  Equation (4.28) again is: 

 2 2

sin
cos

sin

r

r

 
  




 
 

where r is the radial position along the blade and    is the angle at which the rotating blade 

is with respect to the aft position of the rotor.   

For skewed flow, the total inflow also changes.  The total inflow for axial flow was defined 

before as:  

2

1
2 2

          
   

and it was derived from momentum theory for a uniform induced flow distribution.  In 

forward flight, the total inflow becomes: 

                                                               (4.67) 

where the normalized inflow is the solution of equation (4.53) for given normalized climb 

rate and advance ratio. 

2 21 ( )                                                 (4.68) 
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These changes will affect the optimum coefficients, but the L-matrix will also be altered 

because the skew angle is no longer zero, and so there are more harmonics than the m = 0 

for axial flow.  The expression for this matrix will be obtained using He’s formulation (Eqs. 

(3.9) and (3.10)). 

 

     Different cases have been considered for a rotor with low lift and with the tilt angle 

defined above.  Table 4.1 shows all of the cases, including the axial flow cases shown in 

Section 4.2.3 (Figures 4.6 through 4.17).  The Table provides, for each case the value of the 

skew angle used, the advance ratio, the total inflow and, based on these parameters, the type 

of case that the results show.  None of the cases considers the swirl correction, because it is 

small in forward flight.  Axial flow solutions (Section 4.2.3) are cases 1 through 7.  Case 

number 1 is for no tilt and cases 2 through 7 are for a climbing actuator disk but a disk that 

is not traveling forward (i.e., no advance ratio).  Cases 7 through 28 are for various 

conditions in forward flight.  Of special attention are cases 8, 15 and 22 that show pure 

skewed flow, with no tilt or advance.  Cases 23 through 28 show skewed flow advancing 

without climb. 

 

     For cases with low lift, the mass flow parameter, V becomes υ.  The theory developed 

enables anyone to obtain results for a case with lift just by introducing the modified values 

that affect the mass flow parameter and the total inflow, λ.  The equations used to obtain the 

values of advance ratio and total inflow for all of the cases in Table 4.1 are shown in 

Equations (4.69) through (4.72). 
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 2

2 2
V

   

 

 



                                                   (4.69) 

90                                                                (4.70) 

 cos                                                              (4.71) 

 sin                                                           (4.72) 

where ν = 0 for low-lift cases, χ is the skew angle and υ is the total inflow. 

 

     The cases on Table 4.1 are applied to figure of merit calculations and to obtain pressure 

and induced velocity distributions for all of the points around the rotor. 

 

     Figure 4.25 shows the figure of merit for all skew angles.  Figure 4.26 shows the figure of 

merit change with increasing climb and advance ratio. 

 

 

 

 

 

 

 

 

 

 

 



 

   
 

104

 

 

 

 

Table 4.1: Cases for FM, Pressure and Inflow Figures. 

CASE:    (DE
G) 

   TYPE: 

1 0.0 0 0.0000 0.0000  
 
 

Actuator disk, axial flow, 
No tilt 

2 0.1 0 0.0000 0.1000 
3 0.2 0 0.0000 0.2000 
4 0.4 0 0.0000 0.4000 
5 0.6 0 0.0000 0.6000 
6 0.8 0 0.0000 0.8000 
7 1.0 0 0.0000 1.0000 
8 0.0 30 0.0000 0.0000 Actuator disk, skewed flow 

No tilt, no advance 
9 0.1 30 0.0500 0.0866  

 
Actuator disk, skewed flow 

10 0.2 30 0.1000 0.1732 
11 0.4 30 0.2000 0.3464 
12 0.6 30 0.3000 0.5196 
13 0.8 30 0.4000 0.6928 
14 1.0 30 0.5000 0.8660 
15 0.0 60 0.0000 0.0000 Actuator disk, skewed flow 

No tilt, no advance 
16 0.1 60 0.0866 0.0500  

 
Actuator disk, skewed flow 

17 0.2 60 0.1732 0.1000 
18 0.4 60 0.3464 0.2000 
19 0.6 60 0.5196 0.3000 
20 0.8 60 0.6928 0.4000 
21 1.0 60 0.8660 0.5000 
22 0.0 90 0.0000 0.0000 Actuator disk, skewed flow. No tilt, no 

advance 
23 0.1 90 0.1000 0.0000  

 
Actuator disk, skewed flow 

No tilt 

24 0.2 90 0.2000 0.0000 
25 0.4 90 0.4000 0.0000 
26 0.6 90 0.6000 0.0000 
27 0.8 90 0.8000 0.0000 
28 1.0 90 1.0000 0.0000 
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Figure 4.25:  Figure of Merit change with Skew Angle. 20 harmonics. 
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Figure 4.26:  Figure of Merit change with Total Inflow. 20 harmonics. 

 
Figure 4.27:  Figure of Merit change with Skew Angle. 1 harmonic. 

 

 
 

Figure 4.28:  Figure of Merit change with Total Inflow. 1 harmonics. 
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Figure 4.29:  Figure of Merit change with Skew Angle. 20 harmonics, constrained inflow states 

 

 
 

Figure 4.30:  Figure of Merit change with Total Inflow. 20 harmonics, constrained inflow states 
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     Figure 4.26 shows the figure of merit change for different skew angles.  For the case of 

edgewise flow (χ=90º), the figure of merit does not change with υ because there is no tilt, λ.  

To understand what is happening with this curve, we can see the definition of the cosine of 

tilt angle, cosφ in Equation (4.28).  For any advance ratio, if λ=0, cosφ equals 1.  Therefore, 

the influence coefficient vectors for all of these cases are the same, which make the figure of 

merit equal for all cases.  Physically, the fact that the figure of merit does not change for 

edgewise flow is predictable since all of the incoming flow is oriented on the same plane of 

the rotor, so there are no losses on the perpendicular direction. 

The tendency for the figure of merit for the rest of the skew angles in Figure 4.26 is given by 

a combination of tilt and advance.  For the case of axial flow (χ=0º), the loss of efficiency is 

the greatest.  For axial flow, the advance ratio is zero, therefore all of the reduction in figure 

of merit is due to tilt.   

 

     Several test points are taken and compared to previous results and validate the method to 

obtain the curves in Figure 4.26.  Figure 4.21 is used to check for the case of axial flow 

(lowest-ordinate curve in Figure 4.26).  Figure 4.21 provides the figure of merit change with 

total inflow for different cases.  The curves for Betz and Finite-state methods for infinite 

number of blades are used to check the curve for χ=0º of Figure 4.26.  For υ=1, λ=1. For 

example, the value of figure of merit for this point in Figure 4.26 is 0.3.  On the curve for 

Betz’s figure of merit in Figure 4.21, for a λ=1, the value is also 0.3.  This result proves that 
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the curves for Figure 4.26 are accurate and depict the change in figure of merit for different 

conditions. 

 

     Figures 4.27 and 4.28 show the same as the above but for the case of one harmonic.  The 

number of terms is drastically reduced from 231 to 3 (due to the harmonics and the 

corresponding inflow states).  A table to determine the inflow states for any umber of 

harmonics is shown in Appendix E.  To understand the effect of introducing a larger 

number of harmonics, we take the rotor and divide it radially and azimuthally into sections.  

The more harmonics, the more azimuthal stations and the more inflow states, the more 

radial partitions.  Because of the reduced number of partitions, it is not surprising that the 

accuracy of the calculations is greatly reduced.  Hence the reduction of the figure of merit 

reading for all of the cases.  Figures 4.27 and 4.28 demonstrate the importance of the use of 

more harmonics and their corresponding inflow states in the calculations.  A similar 

conclusion was drawn for the case of axial flow prior to making the necessary calculations 

for forward flight.  The determination of the appropriate number of harmonics is discussed 

more in detail on Appendix E.  If only one harmonic is considered, the optimization would 

be performed taking into account that only one characteristic can be varied.  For example, if 

only collective pitch could be controlled, then once the optimization is performed, the 

efficiency values on Figures 4.27 and 4.28 would be the result of this only variation.  It is 

seen that the figure of merit decreases considerably if only one characteristic could be varied.  

 

     Finally, Figures 4.29 and 4.30 are calculated to check the impact on figure of merit when 

the inflow states are constrained.  For these cases the number of harmonics is chosen to give 
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accurate results, but the number of inflow states is constrained.  Physically, the pressure 

distribution (through the pressure coefficients, 'sm
n ) is constrained to only allow non-zero 

values for the zeroth and the first harmonic (m=0 and m=1 for sine and cosine only).  The 

impact on figure of merit is not perceptible, which means that we could disregard the rest of 

the partitions as they do not contribute on figure of merit.  However, the repercussion on 

pressure and induced flow would be greater, since some of the areas where the distributions 

have abrupt changes would not be depicted as accurately.   

 

 

     Figures 4.31 through 4.52 show the pressure and velocity distributions for all of the cases 

in Table 4.1 that correspond to skewed flow.  Note that the pressure distribution in Figure 

4.55 and the induced velocity distribution shown in Figure 4.56 correspond to edgewise flow 

for all values of tilt and advance.  For the induced velocity plots, the shape for all will be the 

same, but the magnitude will change proportional to υ.  When the skew angle is 90º, then 

 = 0.  Going back to the equation for the cosine of the tilt angle, if the climb is zero, then 

cos 1  , independently of the advance ratio  .  Therefore, the pressure and velocity 

distributions do not change. 

 

     It has already been explained how the inflow and pressure distributions change for axial 

flow.  In general, for increasing tilt and advance, the distributions at the root of the rotor 

decreases with increasing tilt.  A similar pattern appears for all of the cases in forward flight 

but with a main difference.  In forward flight, as υ increases, and the skew angle is increased, 
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the depression at the root shifts to the reversed-flow region and becomes downwash 

(negative).   

 

     Figure 4.27 shows the pressure distribution around the rotor.  As predicted by 

momentum theory, this optimal distribution occurs when the pressure is constant.  As 

mentioned before, no previous classical theories could predict how the induced velocity 

would behave for skewed flow.  Figure 4.33 shows that the induced velocity has a gradient 

when in forward flight conditions.  The rotor forward position is for cos 1r    , where the 

inflow distribution is smaller and it steadily increases towards the aft rotor position. 

 

 

     Since the general pattern for different skew angles is similar, let us discuss the cases for 

χ=60º.  This case is chosen because the figure of merit has a value half-way between the 

ideal of 1 and the minimum for axial flow (χ=0º).  Starting with the simplest case shown in 

Figure 4.39, the rotor presents a constant pressure distribution and a sloped inflow 

distribution, as discussed above.  When the combination of tilt and advance increases a 

region of downwash appears at the center of the rotor.  The downwash keeps increasing and 

shifting sideways.  This shift is mainly due to the fact that for skewed flow, the sine terms of 

the equations are present and contribute to the shape of the pressure and inflow 

distributions.  The sine part of the definition for both pressure and induced velocity is now 

present, and it changes sign for ψ>180º, where the rotor changes from advancing to 

retreating side and the reverse flow region occurs. 
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Similar conclusions can be drawn for the cases where χ=30º or any other skew angle ranging 

between these values.  The main differences are the point at which the downwash appears 

and the magnitude of this downwash.    

 

      Figures 4.51 and 4.52 show the pressure and induced velocity distributions for edgewise 

flow (χ=90º) and all values of tilt and advance ratios.  For edgewise flow, these distributions 

do not change, as was discussed previously.  Of importance is to notice that, in particular, 

the profile of the inflow has a slope (similar to what happened for all other skewed flow 

cases).  It is also important to notice the appearance of spikes or peaks at (areas of increased 

inflow) at ψ=90º and ψ=270º.  For pure edgewise flow, all the incoming flow is at the plane 

of the rotor.  This means that no flow will develop on the perpendicular plane.  It is, in some 

ways, similar to what happens to a fixed-wing, and the points where the peaks occur are 

really tip vortices due to the fact that the rotor does not have an infinite length. (Recall that 

the flow is coming from ψ=180º).  

 

     Figures 4.53 through 4.58 show specific views for all of the cases in the previous figures 

(including the ones for axial flow shown in Section 4.2.3).  Figures 4.53 and 4.56 show the 

top view of the rotor area.  These are important to show because in the previous figures the 

downwash appears to be located in the center of the rotor, while in fact it is shifting towards 

the reversed-flow region as the climb and advance increase (increasing υ).  For an 

explanation for the reversed-flow region see Appendix F.  Figures 4.54 and 4.57 show side 

views for the pressure and induced velocity distributions for the same cases.  The flow is 

coming into the rotor at cos 1r    , and cos 1r    is the aft of the rotor.  The asymmetry 
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is depicted in these figures, showing a downwash on the retreating side.  This asymmetry is 

also present on the aft view shown in Figures 4.55 and 4.58, were the downwash is clearly 

present on the left-hand portion of the rotor. 

 

 
Figure 4.31:  Pressure Distribution, χ = 30, υ = 0.0, FM=1.0. 
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Figure 4.32:  Pressure Distribution, χ = 30, υ = 0.2, FM=0.89. 
 

 
 

Figure 4.33:  Pressure Distribution, χ = 30, υ = 0.4, FM=0.72. 
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Figure 4.34:  Pressure Distribution, χ = 30, υ = 0.6, FM=0.56. 
 

 
 

Figure 4.35:  Pressure Distribution, χ = 30, υ = 0.8, FM=0.44. 
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Figure 4.36:  Pressure Distribution, χ = 30, υ = 1.0, FM=0.36. 
 

 
 

Figure 4.37: Induced Velocity Distribution, χ = 30, υ = 0.0, FM=1.0. 
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Figure 4.38: Induced Velocity Distribution, χ = 30, υ = 0.2, FM=0.89. 

 
 

Figure 4.39: Induced Velocity Distribution, χ = 30, υ = 0.4, FM=0.72. 
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Figure 4.40: Induced Velocity Distribution, χ = 30, υ = 0.6, FM=0.56. 

 
 

Figure 4.41: Induced Velocity Distribution, χ = 30, υ = 0.8, FM=0.44. 
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Figure 4.42: Induced Velocity Distribution, χ = 30, υ = 1.0, FM=0.36. 
 

 
 

Figure 4.43:  Pressure Distribution, χ = 60, υ = 0.0, FM=1.0. 
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Figure 4.44:  Pressure Distribution, χ = 60, υ = 0.2, FM=0.94. 
 

 
Figure 4.45:  Pressure Distribution, χ = 60, υ = 0.4, FM=0.84. 
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Figure 4.46:  Pressure Distribution, χ = 60, υ = 0.6, FM=0.72. 

 
 

Figure 4.47:  Pressure Distribution, χ = 60, υ = 0.8, FM=0.62. 
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Figure 4.48:  Pressure Distribution, χ = 60, υ = 1.0, FM=0.54. 
 

 
Figure 4.49: Induced Velocity Distribution, χ = 60, υ = 0.0, FM=1.0. 
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Figure 4.50: Induced Velocity Distribution, χ = 60, υ = 0.2, FM=0.94. 

 
 

Figure 4.51: Induced Velocity Distribution, χ = 60, υ = 0.4, FM=0.84. 
 
 
 



 

   
 

124

 

 
 

Figure 4.52: Induced Velocity Distribution, χ = 60, υ = 0.6, FM=0.72. 

 
 

Figure 4.53: Induced Velocity Distribution, χ = 60, υ = 0.8, FM=0.62. 
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Figure 4.54: Induced Velocity Distribution, χ = 60, υ = 1.0, FM=0.54. 
 

 
 

Figure 4.55:  Pressure Distribution, χ = 90, all values of υ, FM=1.0. 
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Figure 4.56: Induced Velocity Distribution, χ = 90, all values of υ, FM=1.0. 
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Figure 4.57:  XY-plane View of Pressure Distribution, χ = 60, various υ.  
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Figure 4.58:  XZ-plane View of Pressure Distribution, χ = 60, various υ.  
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Figure 4.59:  YZ-plane View of Pressure Distribution, χ = 60, various υ.  
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Figure 4.60:  XY-plane View of Induced Velocity Distribution, χ = 60, various υ.  
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Figure 4.61:  XZ-plane View of Induced Velocity Distribution, χ = 60, various υ.  
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Figure 4.62:  YZ-plane View of Induced Velocity Distribution, χ = 60, various υ.  
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     With the results in forward flight, the study of minimum induced power will be complete 

for any flight condition. 

 

4.3.2. Finite Number of Blades 

 

     The theoretical development of the cases for a finite number of blades in skewed flow 

will be shown in this section.  Theory for the cases of an actuator disk and tilted lift with a 

finite number of blades in forward flight can be derived using a modified system shown in 

the set of differential equations (3.9) and (3.10) described in Section 3.1. 

1 1
{ } { } { }

2
mc m c m mc
n n n nK V L  

 
                                                (4.73) 

1 1
{ } { } { }

2
ms m s m ms
n n n nK V L  

 
                                                (4.74) 

 

     The influence coefficient matrices, ,c sL L        are the matrices defined by Equation 

(3.12) where the row partitions where m ≠ 0 have been divided by two.  The multiplication 

enables the computation to become simpler due to the fact that the matrices can then be 

divided into symmetric and asymmetric parts.  Both symmetric and asymmetric parts of the 

matrices are used.  Note that the symmetric part provides only r+m even terms only, and the 

asymmetric part gives the r+m odd for 1j n   terms only. 
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     mc
nK    and ms

nK    are the apparent mass matrices also provided in Section 3.1 where 

again, the row partitions for m ≠ 0 have been divided by two, and so on for the rest of the 

terms in Equations (4.73) and (4.74). 

So far, this formulation is valid for a system with an infinite or a finite number of blades in 

both axial and skewed flow conditions and for an actuator disk, or for the case where the tilt 

on the lift is considered.  The changes made for each of the cases has been discussed in 

previous sections.  Certain variations will be included for this particular case of skewed flow 

and a finite number of blades. 

 

     First of all, in previous cases where an infinite number of blades was considered, the 

system described by Equations (4.73) and (4.74) was reduced to a steady case.  For the case 

of finite number of blades, this is no longer a steady system.  Moreover, for previous cases in 

axial flow, the sine-related equations all reduced to zero, but that is no longer the case, since 

both cosine and sine contribute for the case of skewed flow and finite number of blades.   

Because of the time dependence of the system, the pressure coefficients,     and mc ms
n n  , 

become unsteady.  As a direct consequence of the unsteadiness of the pressure, the induced 

velocity coefficients,     and m m
n n  , also become unsteady.   Equations (4.75) and (4.76) 

show the unsteady pressure and inflow coefficient expressions. 

 

        
        

0
,2 ,3 ,...

0
,2 ,3 ,...

cos sin

cos sin

mc mc mc mc
n n n ncp sp

p Q Q Q

ms ms ms ms
n n n ncp sp

p Q Q Q

pt pt

pt pt

   

   





  

  




                   (4.75) 
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The solution for the set of differential equations is given by the induced velocity coefficients 

as 

        
        

0
,2 ,3 ,...

0
,2 ,3 ,...

cos sin

cos sin

m m m m
n n n ncp sp

p Q Q Q

m m m m
n n n ncp sp

p Q Q Q

pt pt

pt pt

   

   





  

  




                (4.76) 

where Q is the number of blades, m is the spatial harmonic number of distributions, p is the 

time-wise harmonic of unsteadiness,   are cosine of space,   terms are sine of space, cp 

are cosine of time and sp are sine of time. 

 

     The solution for the space variables in time can be obtained from the general form the 

set of differential equations by the use of harmonic balance.  The expressions are shown in 

Equations (4.77) and (4.78). 

 
 

 
 

1 1

1 1

1

2

mc mc mc cm mc
n n nn ncp cp

m mc
c mc mc mcn nsp spn n n

p
D D K L

V
p

L K D D
V

 

 

 

 

                           
                       

         (4.77) 

where 
2

1

2
mc c mc c mc
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D L K L K
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
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 
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         (4.78) 

where 
2

1

2
mc c mc c mc
n n n

p
D L K L K

V


                    . 
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If instead of an actuator disk, the case considered includes the tilt on the lift, then the 

apparent mass matrices  and mc ms
n nK K        must be replaced by the corresponding ones 

using the swirl correction specified in Section 2.6. 

 

     The optimization for this case would be to find the pressure coefficients, 

     
0

, andm m m
n n ncp sp
   for both cosine and sine that will provide the Goldstein circulation 

distribution shown in Figures (4.17) and (4.18) and translate these to obtain the figure of 

merit.  The pressure coefficients can be obtained from the optimum circulation distribution 

given by reference [10] that uses a generalized dynamic wake model with a correction for the 

swirl.  Since it has been proven that finite-state methods are able to provide the Goldstein 

distribution, the same theory can be used for forward flight with the changes needed to 

accommodate for the skewed flow conditions. 

 

4.4 Special Case of Hover 

 

     The previous results show that Finite-State methods can be used to compute induced 

power for a rotor in climb.   It has been shown that a formal optimization with finite-state 

models was successfully performed in closed form and that such an optimization recovers 

the form of solution for all of the classical theories for a lifting rotor under lightly-loaded 

conditions. That is, it agrees with the Prandtl solution for an actuator disk with a finite 
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number of blades, with the Betz distribution for a lifting rotor with an infinite number of 

blades, and with the Goldstein solution for a lifting rotor with a finite number of blades.   

     According to Betz, the optimum induced flow distribution is one that maintains a 

constant helix screw angle,  .  The induced optimum flow and circulation are nearly 

identical to what can be obtained from momentum theory and the Prandtl tip correction 

term, k.  The theory of Betz also applies to the case of hover.  The power and thrust can be 

determined from the lift and drag perpendicular and parallel to the vortex sheet, and can be 

expressed in terms of the lift and drag coefficients respectively.  For the optimum rotor, one 

should find the optimum circulation that will result in the maximum lift-to-drag ratio.  If the 

effect of drag in the vertical direction is neglected, then one can formulate some simple, 

closed-form results for the lift, power, and thrust in hover of an optimum rotor.  

 

4.4.1.   Closed-Form Results in Hover 

 

     First of all is to define the geometry of the problem.  According to Betz, the optimum 

induced flow distribution is one that maintains a constant helix screw angle, .  Thus, for 

optimum performance: 

0w = w cos                                                             (4.79) 

 22 2
0

Ωx
cos  =

Ω x + V+w
                                                 (4.80) 

 
0

22 2
0

V+w
sin

Ω x + V+w
                                                    (4.81) 
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 
0

22 2
0

w Ωx
w = 

Ω x + V+w
                                                    (4.82) 

 

where w0 is a nominal value chosen to obtain a given thrust for a given rotor radius and 

rotational speed  The induced flow normal to the disk wN and the swirl induced flow wS are 

given by: 

 

2 2
2 0

N 0 22 2
0

w Ω x
w w cos  = 

Ω x + V+w
                                         (4.83) 

 
 

0 0
S 0 22 2

0

w V+w
w w cos sin  = 

Ω x + V+w

x
 


                                        (4.84) 

Induced Flow computation 

    Due to the Betz geometry of similar triangles (and the fact that w is always perpendicular 

to the vortex sheet, the following are alternative representations to the relationships in 

Equations (4.80) and (4.81) of cosine and sine of the sheet angle. 

   
0

22 2
0 0

cos
sin

cos sin cos

V w

x w V w


  




   
                              (4.85) 

   
0

22 2
0 0

cos sin
cos

cos sin cos

x w

x w V w

 
  

 


   
                              (4.86) 

In some situations, the above are more convenient. 

The induced flow and circulation can be determined from momentum theory, the lift, and 

the Prandtl tip correction term, k.  

      20
0 0

w cos sin
QL=Q 4πkxρw cos V+w cos

cos

x    


  
  
 

           (4.87) 

Equation (4.87) implies that, 
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    20
0

4 w cos
V+w cos

kx
L

Q

                                         (4.88) 

2 2
0 0

0

4 w cos V+w cos

w cos sin

kx
L

Q x

   
 

 
 

                                 (4.89) 

After substitution of the geometrical formulas for cos andsin , one obtains 

     
   

2 2 2 2
0 0

22 2 22 2
0 0

4 w V+w

V+w V+w

k x x
L

Q x x

   
  

    
                     (4.90) 

 
   

2 2 2 2
0 0

2 2 22 2
00

4 w V+w

V V+wV+w

k x x
L

Q xx

  
  

   
                        (4.91) 

 

For lightly-loaded rotors (i.e., w0<<V), the above formulas revert to the Goldstein 

relationships. 

  04 Vw cosk x
L

Q

  



                                             (4.92) 

2
04 Vw cosk

L
Q

 



                                                 (4.93) 

For the case of hover, V=0, the relationships become: 

 

 
2 3 2 4 4
0 0

3/22 2 2
0

4 k ( x)w cos 4 k w
L =  =  

w

x

Q Q x

     


   
                       (4.94) 

2 2 2
0

2 2 2
0

4 k w
L =  

w

x

Q x

  


  
                                                (4.95) 

These, then, form the basis of an efficient propeller design. 
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Power and Thrust 

     The power and thrust can be determined from the lift and drag perpendicular to and 

parallel to the vortex sheet.  The lift and drag on each blade can be expressed in terms of the 

lift coefficient and drag coefficient.  

   22 2
0 0cos sin cos

2 L

c
L x w V w C

        
 

                        (4.96) 

   22 2
0 0cos sin cos

2 D

c
D x w V w C

        
 

                       (4.97) 

The thrust and power arise from the geometry of the vortex angle. 

 

 cos sinT Q L D                                           (4.98) 

  sin cosP Q x L D                                      (4.99) 

 

We assume that the angle of attack at each radial station has been chosen to give the best 

CL/CD and that the chord has then been chosen to give the ideal inflow. 

0

2 2
0r







                                                   (4.100) 

where r is the radial position. 

      

First, the integral of the thrust results in a relationship between CT and inflow ratio, 0. 

 
2

2 2 2 0
0 0 2 2

0 0

1
2 1 2 ln 1

1
TC B

 
 

  
         

                             (4.101) 

where     
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0

2
0

2 ln(2)
1

1
B

Q




 


                                            (4.102) 

 

From the above, one can find (for any given CT) the appropriate 0 for that desired thrust.  

Note that we have included the tip-loss correction in terms of 0. 

Similarly, the total power coefficient (including profile power) can be done in closed form 

based on the equation for the power, which shows that the profile power must be cotL

D

C

C
  

times the induced power.  Thus, we have (after integration in closed form) for hover: 

 

 
2 2 4

3 2 2 2 3 30 0 0
0 0 0 02 22

0 0 00

2 10 151 2 1
2 1 2 ln 1 15 arctan

3 11
D

P
L

C
C B B

C

     
  

       
                 

(4.103) 

 

Note that, because this is an optimum rotor, 0 is controlled by chord.  Thus, as 0 goes to 

zero, the chord and profile power also go to zero.  The figure of merit can be obtained from 

the above equations as 
3/2

2
T

P

C

C
.  For induced power only, this reduces to:  

1/2
2

2 0
0 2 2

0 0

1
Hover F.M. = B 1-2 ln 1

1


 

  
      

                        (4.104) 

This is very close to (but not identical to) the climb figure of merit. 

2 2
2

1
Climb F.M. = B 1- ln 1


      

                                    (4.105) 

where the tip loss factor, B, is expressed in terms of the non-dimensional climb rate, λ. 
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     Equations for CT and CP imply an optimum chord (i.e., optimum solidity) for maximum 

Figure of Merit.  For small 0, the profile power dominates; and Figure of Merit goes to 

zero.  For large 0, the log term causes the Figure of Merit to decay as 1/0
2.  Thus, there is 

an optimum thrust, 0, chord, and solidity for any lift-to-drag ratio. 

As stated previously, for the optimum rotor, one should find the combination of angle of 

attack or blowing that will result in the maximum CL/CD.  The expression for optimum drag-

to-lift ratio is: 

2
3 30
0 0

0

2 2
0 0

0

1
2 ln 2 4 ln 2

3

2 1
1 6 ln 6

D

L

QC

C

  


 


  
   

  
  

   
   

                                    (4.106) 

The use of this expression for a particular airfoil will yield a maximum drag-to-lift ratio.  

 

4.4.2.   Example Calculation 

 

      Results were obtained for an optimum propeller in hover.  The results are shown for the 

case of infinite number of blades and for a propeller with four blades.  Of importance is the 

plot of figure of merit variation with thrust coefficient shown.  The figure of merit decreases 

for higher thrust coefficient, and the effect of finite number of blades can be seen in Figure 

4.59.   
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Figure 4.59: Figure of merit variation with thrust coefficient in hover  
(no induced drag). 

 

Figure 4.59 shows the case where the effect of CD has been neglected.  Figure 4.60 shows the 

same graph for a specific NACA 0012 airfoil with a lift-to-drag ratio of 22, for which the 

effect of the drag coefficient is considered.  It is seen that there is an optimum value for the 

thrust. 

 



 

   
 

144

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CT

F
ig

ur
e 

of
 M

er
it

NACA 0012 airfoil;  L/D = 22

Q = inf

Q = 4

 
Figure 4.60: Figure of merit variation with thrust coefficient for a NACA 0012 airfoil. 

      

 

     The optimum Figure of Merit for different drag-to-lift ratios is shown in Figure 4.61. 

 

     As it has been shown, different quantities can be plotted to determine different aspects of 

the optimum rotor, such as the optimal inflow ratio for different drag-to-lift ratios.  

Moreover, if a specific airfoil configuration is provided, results can be shown for the specific 

case in climb and in hover conditions. 
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Figure 4.61: Optimum figure of merit change with drag-to-lift ratio effect. 

      

 

The above shows how to design an optimum rotor (including the effects of lift tilt, tip loss 

and profile power) with a special case in closed form for hover.  The best possible figure of 

merit is far bellow 1.0 but is still larger than is being obtained today. 

 

     Betz geometry was used to obtain power and thrust for a helicopter rotor and applied to 

the special case of hover.  The result is a closed-form of the figure of merit that can be used 

to determine how the performance is affected by different conditions (finite number of 

blades, lift-to-drag ratio, etc.).   
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Chapter 5 
  
Summary, Conclusions and Future Work 
 

5.1 Summary and Conclusions 

 

     This dissertation shows various configurations can be studied for induced power 

calculations using Finite-state methods.  The development of the solution is based on the 

need to achieve optimum induced power, therefore the optimization is set up to achieve this.  

However, the way in which the optimization is performed allows for different optimizations 

to be studied.  Optimum pressure coefficients are obtained for the minimum induced power 

distribution.  However, this could be changed to optimize for different situations.  For 

example, if the need to optimize arises for a particular blade shape with concrete dimensions, 

the vector containing the influence coefficients can be modified to include the particular 

characteristics of the blade.  Once the theory has been derived, many other cases can be 

studied using the same concepts.  In a similar manner, the process can also be altered for 

conditions other than that the thrust must remain a constant, providing different results. 

 

     The results show enough information in axial flow for a finite number of blades to help 

in the determination of how exactly a finite number of blades affects the increase of induced 
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power.  For this reason, study of the cases in forward flight (skewed flow) for a finite 

number of blades is unnecessary at this point.  The theory has been developed for this 

particular case, but no results have been computed.  In the future, some results for figure of 

merit or induced power coefficient calculations could be shown for the sake of 

completeness. 

 

     A complete inflow theory is developed to describe the flow in all regions around the 

rotor.  Previous cases for regions above and on the rotor disk become particular solutions of 

this general formulation.  The theory is then applied for the case of a quadratic optimization 

of power for a constant thrust.  The optimization enables for the figure of merit, or 

efficiency of the rotor, to be found.  The figure of merit is shown to be considerably less 

than the ideal (unity) for various cases, by the calculation of optimum pressure and induced 

velocity distributions at various skew angles, increasing tilt and advance ratio.  The solutions 

validate the theory for axial flow when compared to classical results.  In addition, it provides 

a formulation to use for ideal and real lightly-loaded rotors in forward flight.  It is found that 

the figure of merit decreases with advance and tilt due to the downwash on inflow present 

primarily on and around the reversed-flow region.  

 

     The solution for the optimal pressure coefficients is performed and the values, along with 

the graphical representation of pressure and induced velocity distributions show that the 

solution is trimmed forward to aft on the rotor but that it is not trimmed sideways. 
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5.2 Future Work 

5.2.1 Theory 

 

     Once the theory has been developed, many applications can be derived from the 

complete formulation.  The most direct line of work that could be developed from the 

theory is to apply it to obtain results to see how the formulation can be validated for the 

region below the disk.  Also with the complete formulation, many more applications can be 

analyzed.  The complete theory can be implemented into computer programs and applied 

for rotor-body interactions, ground effect, noise reduction, etc. 

Another direct application of the current theory would be to apply the complete inflow 

theory to in forward flight for a finite number of blades and see how the number of blades 

affect induced power and efficiency in forward flight. 

 

     Different computer-based optimizations could be used and introduced into a CFD 

(Computational Fluid Dynamics) environment to obtain results for various configurations.  

CFD provides a more accurate de description of the flow, but it is time consuming and 

cannot be implemented for real-time simulations.  There are many other computer 

applications and comprehensive codes, such as RCAS and CAMRAD (I and II), simulation 

codes such as FLIGHTLAB, etc., that would benefit from the incorporation of the provided 

theory to apply to rotors with specific characteristics. 
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     The theory could also be included into comprehensive codes to apply to real rotors and 

blades and see how the figure of merit and, most importantly, the induced power are 

affected and what changes would be needed to improve the efficiency of blade 

configurations used currently.  

 

 

5.2.2 Optimization 

 

     Future work in optimization could apply the methodology to various constraints that 

improved structural hardware.  That work could then determine how much figure of merit 

be improved by various devices. 

Also on optimization, the optimal pressure coefficients could be constrained to obtain the 

trimmed solution. 
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Appendix A 

 
Ellipsoidal Coordinate System 
 

     The ellipsoidal coordinate system (ν, η,  ) is used in the dynamic wake model because it 

is convenient to express the boundary conditions for the problem in this system.  

Additionally, a solution by the use of separation of variables for the Laplace equation takes 

the form of Legendre’s associated differential equation.  The solution to the separated 

equations is easily recognized and applied.  

 

     The ellipsoidal coordinate system is defined as 

2 21 1 cosx                                                        (A.1) 

2 21 1 siny                                                           (A.2) 

z                                                                                  (A.3) 

where 

1 1                                                                     (A.4) 

 0                                                                      (A.5) 

0 2                                                                   (A.6) 

 

     Figure A.1 shows the coordinate system viewed in the xz plane with the outline of 

contours for some ν and η values. 
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Figure A.1: Ellipsoidal Coordinate System, xz-plane view. 

 

     Examples of the contours of three dimensional plots for given values of η and ν are 

shown on Figures A.2 and A.3.  Figure A.2 shows the contour for a fixed η of 0.4.  Figure 

A.3 is the contour on a three dimensional plot for a ν of 0.8. 
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Figure A.2: Ellipsoidal Coordinate System Contour, 0.4,  all , all     
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Figure A.2: Ellipsoidal Coordinate System Contour, 0.4 for 0, -0.4 for 0,  all ,  all z z        
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Appendix B  
 
Normalized Associated Legendre 
Functions 
 

     Laplace’s equation is 

2 0                                                                 (B.1) 

Expressed in the ellipsoidal coordinate system (ν, η,  ) becomes 

     
  

2 2

2 2

2 2
1 1 0

1 1

 
 

      

                           
           (B.2) 

 

     Equation (B.3) shows the separation of variables used to solve the partial differential 

equation of Equation (B.2) 

       1 2 3, ,                                              (B.3) 

 

     Substituting Equation (B.3) into (B.2) and separating the variables 

   
2

2 1
12

1 1 0
1

d d m
n n

d d


  
              

                        (B.4) 

   
2

2 2
22

1 1 0
1

d d m
n n

d d


  
  

           
                        (B.5) 

3
23

3 0
d

m
d


                          (B.6) 

where m and n are separation constants. 
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     Equations (B.4) and (B.5) are forms of the associated Legendre differential equations, and 

the associated Legendre functions of the first and second kind are solutions for Equations 

(B.4) and (B.5) respectively. 

 

     The associated Legendre function of the first kind is 

     
   

2 22

0

2 2 !
1 ( 1)

2 ! ! 2 !

mm K
m k n k

n m n
k

n kd
P

d k n k n k
  







  

                       (B.7) 

 

     The normalized associated Legendre function of the first kind defined by Equation (B.8) 

is used throughout this dissertation because it provides a complete set of functions that can 

be used to expand the pressure and induced flow velocity distributions radially. 

     
1

m
mm n

n m
n

P
P





                                                       (B.8) 

where 
 
 

!1

2 1 !
m
n

n m

n n m





 
. 

 

     The normalized associated Legendre function of the second kind,  m
nQ i , is explained 

more in detail in Ref. 2 and 3.  Equation (B.9) shows the relationship between the associated 

and the normalized associated functions.   

 

   
 0

m
m n
n

Q i
Q i

Q i


                                                            (B.9) 
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Appendix C 
 
General Galerkin Method 
 

     The Galerkin method, also known as the method of weighted residuals, is an 

approximate method to find the solution of a differential equation.   

Given a differential equation, L(u)=f, on a domain D, with initial and boundary conditions, 

one can find an approximate solution, ua, that will be dependent on x and t and has an 

expression: 

   
1

( , )
N

a j j
j

u x t a t x



                                                     (C.1) 

where the j ’s are the shape functions, which are a complete set of predetermined functions 

that have to be chosen.  They are also called trial functions and must be a linearly 

independent set of functions and must satisfy the boundary conditions and the initial 

conditions if any are present.  The goal is then to determine the parameters aj.  

 

     The approximate solution is then introduced into the differential equation.  Because the 

solution is not exact, there is an error in the approximation that has to be found.  The error 

is called a residual and can be seen in Equation (C.2).  It is important to reduce the residual, 

for this, the error is minimized by multiplying the residual by some test functions, wk, and 

then it is integrated over the domain, D.  

 aR L u f                                                               (C.2) 
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 k a k

D D

w L u dD w f dD                                                     (C.3) 

 

     The type of test, or also called weighting, functions depends on the approximation that is 

needed.  There are different types of approximations that depend on what is satisfied.  For 

all of the cases, the weighting functions are set to be equal to the shape functions. 

( ) ( )k kw x x                                                              (C.4) 

Substituting Equation (C.1) into (C.3) yields an expression that provides the aj coefficients. 

 
1

N

k j j k
j D D

w L dD a w fdD


 
 

 
                                             (C.5) 

where N is the fewest number of members needed for a complete set of functions. 
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Appendix D 
 
Transformation Matrices in Closed Form 
 

     The closed form expressions for the transformation matrices were obtained by Ref. 7.  

The definition of the transformation matrix r
jnB    comes from the solution for the induced 

flow expansion coefficients in the general set of differential equations that define the 

combined He theory (Eqs. 3.9 and 3.10).  The definition for the transformation matrix is 

given in general form by: 

   
1

0

r r r
jn j nB P r d                                                   (D.1) 

let  1r r
n nP 


   and a closed form expression for the matrix is: 

   
  

12 2

2

, 2,...

2 1
1 2 1 2 1

1

r jn j r
jr r r

jn jn qr
q r rn

H q
B B n j H

H n q n q

  

 


    

              (D.2) 

 

     The formula often used is the one for a special case of the inverse, since the expression 

for r
jnB requires more work. 

 
    

2

21

2

2 2 1 2 11

2 1

n j r

r r
jn jn r r

n j

n j
A B

H H n j n j n j

 

  
          

                  (D.3) 

and r
jnA  is identical to r

jnA  for the special case  r r
j jP    

Note that 
1

A B


        only when n and j go to infinity. 
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Appendix E 
 
Table Method 
 

     In order to compute the induced flow using the generalized dynamic wake model in 

Reference 2, one must define the number of harmonics chosen to expand the induced 

velocity.  The number of harmonics is chosen based on the highest dynamic frequency of 

interest for any given case.  This number provides the highest power or r shown in Table 

E.1.  The truncation for the number of radial shapes is given also in this table, and depends 

on the highest power of r  for the problem.  

 

HIGHEST 

POWER OF 

r  

M TOTAL 

INFLOW 

STATES 

0 1 2 3 4 5 

0 1      1 

1 1 1     3 

2 2 1 1    6 

3 2 2 1 1   10 

4 3 2 2 1 1  15 

5 3 3 2 2 1 1 21 

Table E.1: Choice of the Number of Spatial Modes (n+m=odd) 
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     For example, if the highest power of r  is 3, then we will have three harmonics (mmax = 

3).  The zero harmonic (m=0), will have two inflow states, the first harmonic (m=1) will have 

2 terms but four inflow states (two for the cosine terms and two for the sine terms), the 

second harmonic (m=2) will have 1 term that corresponds to two inflow states, and so on.  

The total number of inflow states for this example will be 10. 

A more detailed explanation on the choice of number of inflow states to be used for a study 

is given in References [2] and [3]. 

 

     In order to determine the number of inflow states needed to obtain accurate results for 

the present research, the figure of merit for different number of harmonics was obtained.  

Table E.2 and Figures E.1 and E.2 show the values of figure of merit for the simplest case.  

That is, an actuator disk (no tilt) with an infinite number of blades in axial flow (χ = 0º).  The 

ideal figure of merit is 1.0.  However this number is only achieved as the number of terms 

approaches infinity. 

 

     Table E.2 shows that the value of figure of merit for a case with ten harmonics (highest 

power of r ) is sufficiently close to the ideal.  Therefore, it can be assumed that the use of 

ten harmonics will achieve accurate results.  Twenty harmonics provides a better figure of 

merit result, but the increase in computational time might not be worth the degree of 

additional accuracy.  The number of harmonics used in this research is twenty.  This 

statement contradicts the previous assumption of accuracy to be enough with ten harmonics, 

but since this is the first attempt to obtain results for skewed flow using finite-state methods, 

results were obtained with the greatest accuracy possible.  However, in future calculations 
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the number of harmonics could be reduced to ten with no perceivable impact on the 

outcome results.  

 

 

 

 

 

 

 

HIGUEST POWER OF 

r  

FIGURE OF MERIT 

0 0.8889 

1 0.8889 

3 0.9600 

6 0.9877 

10 0.9941 

20 0.9981 

Table E.2: Figure of Merit for various Number of Harmonics 
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Figure E.1: Figure of Merit for Different Number of Harmonics. 
 



 

   
 

163

 

 

 

 

 

 

 

 

 
 
 

0 2 4 6 8 10 12 14 16 18 20
0.8

0.85

0.9

0.95

1

1.05

Number of harmonics

F
ig

ur
e 

of
 M

er
it

 
Figure E.2: Close-up of Figure of Merit versus the Number of Harmonics. 
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Appendix F 
 
Influence Coefficients as a Fit of Cosφ 
 

     The influence coefficient vector,  m
nC , are a Legendre-function representation of cos  

which is the loss of thrust due to the tilt of the lift vector.  Once more, they are defined as: 

 

 
2 10 0

0 0

1
cos

2n nC P d d


    


                                      (F.1) 

 
2 1

0 0

1
cos cos( )mc m

n nC P d m d


     


                             (F.2) 

 
2 1

0 0

1
cos sin( )ms m

n nC P d m d


     


                             (F.3) 

where 

 2 2

sin
cos

sin

r

r

 
  




 
                                      (F.4) 

for a lightly-loaded rotor. 

Then, the relationship between the coefficients and the function cosφ (cosine of the tilt 

angle) becomes: 

     0 0

,

1 1
cos 2 cos( ) sin( )m mc ms

n n n n n
n m n

C P P C m C m    
 

       
            

(F.5) 
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     This should be true for all skew angles, climb and advance conditions, and azimuthal 

locations on the rotor.  To prove that this is actually the case, the distributions are plotted 

and compared.  Figure F.1 shows the distribution for a random case using the expression for 

the cosine of the tilt in Equation (F.4).  Figure F.2 shows the same distribution for a random 

case but using the right-hand side of Equation (F.5)  (i.e., influence coefficient and Legendre 

functions expansion).  Both of them have the same basic shape and dimensional values.  

However, the use of the coefficients does not quite match the close-form distribution, as it is 

shown in Figure F.3.   

 

 
 

Figure F.1:  ν cosφ Distribution to be fitted by Legendre-function representation. 
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Figure F.2:  Legendre-function Representation of  νcosφ. 
 

     Figure F.3 shows different views for both a) cosφ formula and b) Legendre-function 

representation.  The top (or XY) view shows agreement, but differences are more 

perceptible when the side views are considered.  Figures F.3a.3 and F.3b.3 in particular, 

show the tendency of the Legendre-function representation (F.3b.3) to mimic the cosφ 

distribution (F.3a.3).  The main difference is the fact that Figure (F.3a.3) has a singularity for 

r=0, whereas its Legendre-function counterpart does not.  The Legendre-function 

representation is trying to introduce the singularity, but the number of terms used for the 

influence coefficient vector definition is not enough to obtain the effect.  Twenty harmonics 

(231 inflow stated by the table method in Appendix E) were used, which has been proven 

sufficient to obtain induced power and figure of merit calculations along this dissertation.  

Therefore, although the Legendre-function representation shows slight disagreement with 
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what would be thrust lost due to the swirl velocity induced by the tilt on the lift for these 

many terms, an addition of a large amount of terms would be necessary to attain a closer fit 

but would not provide considerable increased accuracy for neither figure of merit nor 

induced power calculations.  The provided results are for a skew angle, χ, of 60º and υ=0.6, 

which results on a tilt, λ, of 0.3 and an advance ratio, μ, of 0.5196.  Other cases where 

analyzed and the same conclusions could be drawn.   

 

     Finally, Figures F.4 through F.6 show excerpts from Figures F.1 and F.2 for specific 

azimuthal locations (specific ψ angle) around the rotor.  The figures shown correspond to 

ψ=10º and 190º for Figure F.4, ψ=60º and 240º for Figure F.5, and ψ=120º and 300º for 

Figure F.6.  The solid lines represent the cosine of the tilt equation and the dotted lines are 

the Legendre-function fit representation for all radial positions.  Figure F.7 is a sketch of the 

rotor viewed from above.  To understand what is happening and why the fit for some of 

these distributions differs from the close-form of cosφ we find the location of Figures F.4, 

F.5 and F.6 on Figure F.7.  Figure F.4 corresponds to the distribution on the crossing solid 

line on Figure F.7 approximately.  The differences are mostly present on the vicinity of root 

of the rotor (r=0) since there is a discontinuity present.  The rest of the points across the 

rotor are adequately satisfied by the Legendre-function representation.  Figure F.5 

corresponds to the distribution on the crossing dashed line on Figure F.7 approximately.  

Differences are greater in this figure because the distribution crosses the area of reversed 

flow.   
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     The reversed-flow area is a region on the rotor where the flow is reversed.  This means 

that the total velocity of the flow is negative (that is, the flow has a tendency to move on the 

opposite direction).  The area of reversed flow is created by the direction of the resulting 

total velocity (UT) at a given point.  The incoming velocity seen by the blades in the rotor 

(Usinψ) is added to the velocity of the individual blades (Ωx). For 180º<ψ<360º the incoming 

value of the flow velocity is negative.  Therefore, if Usinψ > Ωx for a given location x 

( 0 1x  ), the direction of the total velocity is negative (reversed flow).       To see where 

these locations are in the rotor-frame 

 

     Figure F.6 corresponds to the distribution on the crossing dotted line on Figure F.7 

approximately.  This location passes through the complete reversed-flow region.  This is the 

reason why the fit shows the most discrepancies. 
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Figure F.3: Top and side views for: a) cosφ Formula and b) Influence Legendre-function 
representation of cosφ.   
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Figure F.4: Cos(φ) fit for μ=0.5196, λ=0.3, ψ=10 and 190º. 
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Figure F.5: Cos(φ) fit for μ=0.5196, λ=0.3, ψ=60 and 240º. 
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Figure F.6: Cos(φ) fit for μ=0.5196, λ=0.3, ψ=120 and 300º. 
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Figure F.7:  Top view of Rotor.  Advancing side is for 0<ψ<180º. 
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