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ABSTRACT 

This study evaluates the intraseasonal variability associated with summer precipitation over South America 
in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate 
Change (IPCC) Fourth Assessment Report (AR4). Eight years of each model's twentieth-century climate 
simulation are analyzed. Two dominant intraseasonal bands associated with summer precipitation over South 
America are focused on: the 40- and the 22-day band. The results show that in the southern summer 
(November-April), most of the models underestimate seasonal mean precipitation over central-east Brazil, 
northeast Brazil, and the South Atlantic convergence zone (SACZ), while the Atlantic intertropical con- 
vergence zone (ITCZ) is shifted southward of its observed position. Most of the models capture both the 
40- and 22-day band around Uruguay, but with less frequent active episodes than observed. The models also 
tend to underestimate the total intraseasonal (10-90 day), the 40-, and the 22-day band variances. For the 
40-day band, 10 of the 14 models simulate to some extent the 3-cell pattern around South America, and 
6 models reproduce its teleconnection with precipitation in the south-central Pacific, but only 1 model sim- 
ulates the teleconnection with the MJO in the equatorial Pacific, and only 3 models capture its northward 
propagation from 50° to 32°S. For the 7 models with three-dimensional data available, only 1 model repro- 
duces well the deep baroclinic vertical structure of the 40-day band. For the 22-day band, only 6 of the 
14 models capture its northward propagation from the SACZ to the Atlantic ITCZ. It is found that models 
with some form of moisture convective trigger tend to produce large variances for the intraseasonal bands. 

1. Introduction and the subtropical plains of South America (Nogues- 
Paegle and Mo 1997) Further studies show that this 

The climate of tropical South America is characterized 
by a pronounced summer monsoon, which is often re- 
ferred to as the South American monsoon system (SAMS; 
Kousky 1988; Horel et al. 1989; Lenters and Cook 1995; 
Zhou and Lau 1998; see reviews by Nogues-Paegle et al. 
2002; Vera et al. 2006a). The summer precipitation over 
South America has strong intraseasonal variability with 
the leading pattern of deep convection showing a seesaw 
between the South Atlantic convergence zone (SACZ) 

seesaw pattern is part of a much larger Rossby wave 
train structure that include alternating centers of negative 
and positive streamfunction, geopotential height, and 
temperature anomalies in the southern portion of the 
continent, and farther upstream in the southern Pacific 
(Liebmann et al. 1999,2004; Paegle et al. 2000; Jones and 
Carvalho 2002; Diaz and Aceituno 2003; Carvalho et al. 
2004). Using singular spectrum analysis, Paegle et al. 
(2000) found that this seesaw pattern is dominated by two 
frequency bands: a band with a period of about 36-40 
days (hereafter the 40-day band) and a band with a period 
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tropics while the 22-day band is connected to a tropical 
mode at the corresponding frequency band. When the 
SACZ is enhanced, these two bands become meridionally 
aligned locally and such episodes are characterized by a 
wave train propagating northward from southern South 
America toward the tropics. These intraseasonal bands 
are responsible for alternating wet and dry episodes over 
the SAMS region. Few studies, however, have evaluated 
the simulations of the intraseasonal variability of the 
summer precipitation over South America by general 
circulation models (GCMs). Misra (2005) examined the 
simulation by one atmospheric GCM and found the in- 
traseasonal variability to be inadequately represented. 
Furthermore, downscaling the GCM results to a regional 
model did not improve the variability. 

Recently, in preparation for the Intergovernmental 
Panel on Climate Change (IPCC) Fourth Assessment 
Report (AR4), more than a dozen international climate 
modeling centers conducted a comprehensive set of long- 
term simulations for both the twentieth-century's climate 
and different climate change scenarios in the twenty-first 
century, which constitutes the third phase of the World 
Climate Research Programme (WCRP) Coupled Model 
Intercomparison Project (CMIP3; Meehl et al. 2007). 
This is an unprecedented, comprehensive coordinated set 
of global coupled climate experiments for the twentieth 
and twnty-first century. Before conducting the extended 
simulations, many of the modeling centers applied an 
overhaul to their physical schemes to incorporate state- 
of-the-art research results. For example, almost all 
modeling centers have implemented prognostic cloud 
microphysics schemes in their models, some have added 
a moisture trigger to their deep convection schemes, and 
some now take into account convective momentum 
transport. Moreover, many modeling centers increased 
their models' horizontal and vertical resolutions and 
some conducted experiments with different resolutions. 

The purpose of this study is to evaluate the intra- 
seasonal variability of precipitation associated with the 
summer precipitation over South America in 14 IPCC 
AR4 coupled GCMs, with emphasis on the 40- and the 
22-day bands. While there has been some analysis of 
seasonal means of the IPCC runs in this region (e.g., 
Vera et al. 2006b), intraseasonal variability has not been 
studied. The models and validation datasets used in this 
study are described in section 2. The diagnostic methods 
and results are described in section 3. A summary and 
discussion are given in section 4. 

2. Models and validation datasets 

This analysis is based on 8 years of the climate of the 
twentieth century (20C3M) simulations from 14 coupled 

GCMs. Table 1 shows the model names and acronyms, 
their horizontal and vertical resolutions, and brief de- 
scriptions of their deep convection schemes. For each 
model we use 8 yr of daily mean surface precipitation. 
Three-dimensional data are available for 7 of the 14 
models, for which we analyzed upper-air winds, tem- 
perature, and specific humidity. 

The model simulations are validated using the Global 
Precipitation Climatology Project (GPCP) version 2 
precipitation (Huffman et al. 2001). We use 8 yr (1997- 
2004) of daily data with a horizontal resolution of 
1° X 1°. We also use 8 yr (1997-2004) of daily National 
Centers for Environmental Prediction-National Center 
for Atmospheric Research (NCEP-NCAR) reanalysis 
data (Reanalysis I; Kalnay et al. 1996), for which we 
analyzed upper-air winds, temperature, and specific 
humidity. 

Total intraseasonal (periods of 10-90 days) anomalies 
were obtained by applying a 365-point 10-90-day Lanczos 
filter (Duchan 1979). Because the Lanczos filter is non- 
recursive, 182 days of data were lost at each end of the 
time series (364 days in total). The dominant intra- 
seasonal bands are determined using wavelet spectrum 
because they are active mainly during the southern 
summer. Wavelet spectrum is a powerful tool for an- 
alyzing multiscale, nonstationary processes, and can 
simultaneously determine both the dominant bands of 
variability and how those bands vary in time (e.g., Mak 
1995; Torrence and Compo 1998). We utilize the wavelet 
analysis program developed by Torrence and Compo 
(1998) and use the Morlet wavelet as the mother wavelet. 
The 40-day band is defined as precipitation variability in 
the period range of 30-60 days, and was obtained by 
applying a 365-point 30-60-day Lanczos filter. Similarly, 
the 22-day band is defined as precipitation variability in 
the period range of 20-30 days, again using a 365-point 
Lanczos filter. We also tested the Murakami (1979) filter 
with similar results. 

3. Results 

a. Southern summer (November-April) seasonal 
mean precipitation 

Previous observational studies indicate that the intra- 
seasonal variance of precipitation is highly correlated 
with time-mean precipitation (e.g., Wheeler and Kiladis 
1999). That is, areas with abundant mean precipitation 
tend to be characterized by large intraseasonal variabil- 
ity. Therefore, we first look at the horizontal distribution 
of southern summer (November-April) seasonal mean 
precipitation [Fig. 1; see also Vera et al. (2006b) for an 
evaluation of 3-month season climatologies of the IPCC 
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TABLE 1. List of models that participate in this study. 

IPCC ID (label in Grid Deep convection Downdrafts* Closure/ 
Modeling groups figures) type/resolution/model top scheme/modification SC/UC/Meso trigger 

NOAA/GFDL GFDL-CM2.0 Grid point Moorthi and Suarez N/N/N CAPE/threshold 
(GFDL2.0) 144/90/L24 3mb (1992)/Tokioka 

et al. (1988) 
NOAA/GFDL GFDL-CM2.1 Grid point Moorthi and Suarez N/N/N CAPE/threshold 

(GFDL2.1) 144/90/L24 3mb (1992)/Tokioka 
et al. (1988) 

NCAR CCSM3 (CCSM3) Spectral T85/L26 2.2 mb Zhang and McFarlane 
(1995) 

Y/N/N CAPE 

NCAR PCM (PCM) Spectral T42/L26 2.2 mb Zhang and McFarlane 
(1995) 

Y/N/N CAPE 

NASA/GISS GISS-AOM 
(GISS-AOM) 

Grid point 90/60/L12 Russell etal. (1995) N/N/N CAPE 

NASA/GISS GISS-ER (GISS-ER) Grid point Del Genio and Yao Y/N/N Cloud base 
72/46/L20 0.1 mb (1993) buoyancy 

Center for Climate MIROC3.2(hires) Spectral T106/L56 Pan and Randall Y/N/N CAPE/relative 
System Research, (MIROC-hires) (1998)/Emori humidity 
National Institute etal. (2001) 
for Environmental 
Studies, and Frontier 
Research Center 
for Global Change 

Same as above MIROC3.2(medres) Spectral T42/L20 30 km Pan and Randall Y/N/N CAPE/relative 
(MIROC-medres) (1998)/Emori 

etal. (2001) 
humidity 

MRI MRI CGCM2.3.2 
(MRI) 

Spectral T42/L30 0.4 mb Pan and Randall 
(1998) 

Y/N/N CAPE 

Canadian Centre for CGCM3.1-T47 Spectral T47*L32 1 mb Zhang & McFarlane Y/N/N CAPE 
Climate Modeling (CGCM) (1995) 
and Analysis 

MPI ECHAM5/MPI-OM Spectral T63/L31 10 mb Tiedtke (1989)/ Y/N/N CAPE/moisture 
(MPI) Nordeng(1994) convergence 

IPSL IPSL-CM4 (IPSL) Grid point 96/72/L19 Emanuel(1991) Y/Y/N CAPE 
Meteo-France/CNRM CNRM-CM3 

(CNRM) 
Spectral T63/L45 

0.05 mb 
Bougeault (1985) N/N/N Kuo 

CSIRO Atmospheric CSIRO Mk3.0 Spectral T63/L18 4 mb Gregory and Y/N/N Cloud base 
Research (CSIRO) Rowntree (1990) buoyancy 

* For downdrafts, SC means saturated convective downdrafts, UC means unsaturated convective downdrafts, and Meso means mesoscale 
downdrafts; indicated by yes (Y) or no (N). 

runs]. The observed large-scale precipitation (Fig. la) 
pattern is one of intense precipitation over the Amazon 
basin, an eastern Pacific intertropical convergence zone 
(ITCZ), an Atlantic ITCZ, plus a band of enhanced 
precipitation that extends to the southeast from the 
maximum in the Amazon, known as the SACZ (e.g., 
Kodama 1992). 

Most of the models underestimate precipitation over 
the Amazon basin. Only a few models produce magni- 
tude close to that observed (i.e., the Model for Inter- 
disciplinary Research on Climate 3.2, high-resolution 
version [MIROC3.2(hires)] and the Parallel Climate 
Model (PCM)). The maximum is shifted to the east in 
three models [i.e., the Geophysical Fluid Dynamics 
Laboratory model version 2.0 (GFDL2.0), the Goddard 

Institute for Space Studies Atmosphere-Ocean Model 
(GISS-AOM), and the Goddard Institute for Space 
Studies Model E-R (GISS-ER)]. There are local max- 
ima over the Andes Mountains in eight models {i.e., 
PCM, GISS-AOM, the Model for Interdisciplinary 
Research on Climate 3.2, medium-resolution version 
[MIROC3.2(medres)], MIROC3.2(hires), the Meteo- 
rological Research Institute Coupled General Circula- 
tion Model, version 2.3.2a (MRI CGCM), LTnstitut 
Pierre-Simon Laplace (IPSL), Centre National de Re- 
cherches Meteorologiques (CNRM)] that do not exist 
in GPCP. However, it is important to note that some 
other precipitation analyses for South America depict a 
precipitation maximum along the tropical Andes (e.g., 
Hoffman 1975). The eastern Pacific ITCZ is shifted south 
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FIG 1. Southern summer (November-April) seasonal mean precipitation for observation and 14 IPCCAR4 models. 
The first contour is 4 mm day"' and the contour interval is 2 mm day-1. 
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of the equator in five models [i.e., the Community Cli- 
mate System Model, version 3 (CCSM3), PCM, GISS- 
ER, IPSL, Commonwealth Scientific and Industrial 
Research Organisation (CSIRO)] and there is a double- 
ITCZ pattern in the eastern Pacific in six models [i.e., 
GFDL2.0, GFDL2.1, GISS-AOM, MIROC3.2(medres), 
MIROC3.2(hires), CNRM; see also Lin 2007]. The At- 
lantic ITCZ is too far south in almost all models, and two 
models (i.e., GFDL2.0 and GFDL2.1) show a double- 
ITCZ pattern in the tropical Atlantic. Finally, simulated 
precipitation in the SACZ is almost always too weak, and 
in the seven models that do contain an SACZ signature it 
is shifted northward with respect to observations [i.e., 
GFDL2.0, GFDL2.1, PCM, MIROC3.2(hires), MRI, the 
Max Planck Institute (MPI), and CNRM]. 

As will be shown shortly, the largest intraseasonal 
variability associated with summer precipitation over 
South America is concentrated in a meridional belt be- 
tween 30° and 60°W (roughly the eastern continent and 
the western Atlantic Ocean). Therefore, we conduct a 
more quantitative evaluation of the seasonal mean 
precipitation averaged over these longitudes (Fig. 2). 
Observations reveal two local maxima: one at 2°S cor- 
responding to the Amazon precipitation and Atlantic 
ITCZ, and a secondary peak at 30°S corresponding to 
the SACZ. Almost all of the models show only one 
maximum. In total 11 models have their maximum 
shifted southward compared to observed, to 10°S [i.e., 
GFDL2.0, CCSM3, GISS-AOM, MIROC3.2(hires), 
MRI, CGCM, MPI, IPSL, CSIRO] or 15°S (i.e., PCM 
and CNRM), which is associated with overly weak 
Amazon precipitation, and/or the southward shift of 
Amazon precipitation/Atlantic ITCZ in those models. 
All models underestimate the precipitation at 30°S, which 
is often associated with a too weak SACZ extension into 
the Atlantic. For the region between 10° and 25°S, 9 of the 
14 models produce quite reasonable precipitation [i.e., 
GFDL2.0, CCSM3, GISS-AOM, MIROC3.2(medres), 
MIROC3.2(hires), MRI, CGCM, MPI, IPSL, CSIRO], 
while two models overestimate precipitation (i.e., PCM 
and CNRM) and three models underestimate it (i.e., 
GFDL2.1, GISS-ER, and IPSL). 

b. Total intraseasonal (10-90 day) variance 

Figure 3 shows the horizontal distribution of the 
standard deviation of total intraseasonal (10-90 day) 
precipitation anomaly during the November-April sea- 
son. In observations (Fig. 3a), the intraseasonal variance 
does not completely follow that of seasonal mean pre- 
cipitation (Fig. la), but is concentrated from approxi- 
mately 10°N-40°S between 30° and 60°W. There are three 
local maxima: over the Amazon River mouth, over the 
Atlantic extension of the SACZ, and over southeast 
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FIG. 2. Meridional profile of southern summer (November- 
April) seasonal mean precipitation averaged between 30° and 60°W 
for the observations and the 14 models. 

Brazil/Uruguay. These are consistent with the results 
of Liebmann et al. (1999). The mismatch between the 
seasonal mean precipitation and total intraseasonal 
variance suggests that the intraseasonal variability is 
more than simply noise around the seasonal mean, but is 
caused by mechanisms that vary from those related to 
seasonal mean precipitation. Therefore, it is of interest 
as to whether if the models are able to reproduce this 
mismatch. The model variances show two characteris- 
tics. First, in 8 of the 14 models the distribution of in- 
traseasonal variance does not completely follow that of 
the seasonal mean precipitation [i.e., GFDL2.0, GFDL2.1, 
MIROC3.2(hires), MRI, CGCM, MPI, IPSL, and CSIRO]. 
In three models the intraseasonal variance follows the 
mean precipitation [i.e., PCM, MIROC3.2(medres), and 
CNRM], and in three models the intraseasonal variance 
is too small (i.e., CCSM3, GISS-AOM, and GISS-ER). 
Second, the models tend to produce their maximum 
variance over their SACZ, but fail to produce the maxima 
over the Amazon River mouth or Uruguay. 

To provide a more quantitative evaluation of the 
model simulations, Fig. 4 shows the meridional profile of 
total intraseasonal (10-90 day) variance of precipitation 
averaged between 30° and 60°W. The observed variance 
shows three peaks at 2°, 17°, and 32°S. All models un- 
derestimate the variance around 2° and 32°S. Only a few 
of the models produce any sort of a peak at all in those 
regions. For the region between 10° and 25°S, six models 
simulate nearly realistic or overly large variance [i.e., 
MIROC3.2(medres), MIROC3.2(hires), MPI, CNRM, 
CSIRO, and GFDL2.0]. The other eight models un- 
derestimate variance, although six of the eight display 
reasonable seasonal mean precipitation in this region 
(Fig. 2). Interestingly, the six models simulating nearly 
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FIG. 4. Meridional profile of the total intraseasonal (10-90 day) 
variance of precipitation anomaly averaged between 30° and 60°W. 

realistic or overly large variance are the same models 
that contain large variances for the convectively coupled 
equatorial waves (Lin et al. 2006). A common charac- 
teristic of these models is that there is some form of 
moisture trigger of their convection scheme, suggesting 
that a moisture trigger for deep convection may improve 
the simulation of intraseasonal variability associated 
with summer precipitation over South America. 

c. The dominant intraseasonal bands 

Figure 5 shows the wavelet spectrum of precipita- 
tion averaged between 30°-35°S, 50°-60°W (around 
Uruguay) for observations and the 14 IPCC models. 
The observed spectrum (Fig. 5a) demonstrates two dom- 
inant intraseasonal bands, a 30-60-day band (the so-called 
40-day band) and a 20-30-day band (the so-called 22-day 
band). Most of the models capture both bands, although 
the model variances are generally smaller than the 
observed variances. The models also tend to produce 
fewer active episodes. Only two models (i.e., CGCM 
and CSIRO) produce frequent active episodes in both 
bands. It is important to note that many models have 
excessively large power between 60 and 100 days. This 
suggests that the summer precipitation in the models 
has larger persistence than is observed. Lin et al. (2006) 
found a similar problem associated with the tropical 
oceanic precipitation in the models, and hypothesized 
that it is caused by the erroneous representation of self- 
suppression processes in deep convection in the model's 
moisture physics. 

d. The 40-day band 

Next we focus on the 40-day band. Figure 6 shows the 
meridional profile of the 40-day band variance averaged 

between 30° and 60°W. The observed variance in the 
40-day band is similar to the total intraseasonal variance 
in that there are peaks at 2°, 17°, and 32°S. At 40 days, 
however, the maximum at 17°S is larger than that at 
32°S, while for the total intraseasonal variance (Fig. 4) 
the 17°S peak is relatively small, and is about the same as 
that at 32°S. All models underestimate the variance near 
2° and 32°S. For the region between 10° and 25°S, the 
six models producing realistic or excessive total intra- 
seasonal variance produce the 40-day band variance that 
is between the observed value and half the observed 
value, and the wavelet analysis (Fig. 5) suggests that 
their intraseasonal variance is concentrated more in the 
lower-frequency band. The other eight models produce 
the 40-day variance that is less than half of the observed 
value, although six of them display reasonable seasonal 
mean precipitation in this region (Fig. 2). Possible rea- 
sons of this will be discussed in section 4. It is important 
to note that although the models do not simulate the 
right intensity of variance, some are able to simulate the 
position of its peaks (e.g., GFDL2.0 and MPI). 

Figure 7 shows the lag correlation of 40-day bandpass- 
filtered precipitation at 30°S, 55°W with the 40-day 
precipitation averaged from 50° to 60°W. Shading de- 
notes the regions above the 95% confidence level. The 
observations (Fig. 7a), as expected, show a 40-day pe- 
riod oscillation at the latitude of the base grid point. 
Zonal anomalies of the opposite sign centered at about 
15°S slightly lead those at the base grid point, resulting in 
a dipole pattern. Although the choice of base grid point 
makes the anomalies appear strongest at 30° and 15°S, 
the figure shows that the dipole actually propagates 
northward, with the opposite-signed anomalies that 
are evident at the latitude of the base grid point, but 
20 days prior, moving northward to become the near- 
simultaneous antinode some 20° to the north. The ob- 
served northward propagation of the dipole is consistent 
with the results of Nogues-Paegle and Mo (1997) and 
Diaz and Aceituno (2003). 

Only 2 of the 14 models capture both the north- 
ward propagation and the dipole [i.e., GISS-AOM 
and MIROC3.2(hires)]. One model captures only the 
northward propagation (MPI), while six models cap- 
ture only the dipole [i.e., GFDL2.1, CCSM3, PCM, 
MIROC3.2(medres), MRI, and CGCM]. The other five 
models lack either of these features. It is important to 
note that the reason some models (e.g., GFDL2.0) do not 
show the dipole structure linking the subtropics to the 
tropics is because the tropical center in the model simu- 
lations is outside of the band 50°-60°W. For example, it 
will be shown (Fig. lib) that such a dipolar structure is 
present in GFDL2.0, even though it is not evident in 
Fig. 7b. 
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Next we examine the vertical structures of the models 
in the 40-day band. Figure 8 shows the lag correlation of 
temperature averaged between 20°-30°S and 50o-60°W 
versus the 40-day band precipitation anomaly at the 
same location for observation and the seven models with 
three-dimensional data available. Note that for four 
models the 3D data extends to only 200 mb. In obser- 
vations, the 40-day band displays a deep warm core 
between the surface and 200 mb and a cold core above 
250 mb during the convective phase. Six of the seven 
models show a significant warm temperature anomaly, 
but often with a large southward phase tilt with height. 

There is also a significant bias in the geopotential 
height structure in many models (Fig. 9). The observed 
geopotential height displays a deep baroclinic structure, 
with a positive anomaly extending from the tropopause 
to 750 mb and a negative anomaly from 750 mb to the 
surface during the convective phase (Fig. 9a). Only one 
model (i.e., GFDL2.0) reproduces the deep baroclinic 
structure. In the other six models the negative anomaly 
extends too high into the middle/upper troposphere, 
indicating a more barotropic structure. 

Figure 10 shows the vertical structure of divergence. 
The observed divergence displays a two-layer structure 
during the precipitating phase, with convergence from 
the surface to 450 mb, and divergence above 450 mb 
(Fig. 10a). All but one model (i.e., MPI) reproduce 
fairly well the two-layer structure, although in GFDL2.1 
(Fig. 10c) the convergence layer is too deep, extending 
from the surface to 350 mb. Previous studies (e.g., Paegle 
et al. 2000) show that precipitation variability in the 
30-60-day band observed at the region around 30°S, 
55°W is associated with the activity of Rossby wave 
trains propagating into the region from the South Pacific. 
Therefore, it seems that biases associated with tempera- 
ture, geopotential height, and divergence are related to 

modeling deficiencies in reproducing the features asso- 
ciated with the Rossby wave trains. 

Next we look at the teleconnection pattern associated 
with the 40-day band. Figure 11 shows the linear corre- 
lation of the 40-day band precipitation anomaly versus 
itself averaged between 25°-35°S and 30°-60°W. In ob- 
servations (Fig. 11a), there is a three-cell pattern around 
South America with a positive precipitation anomaly 
over Uruguay and negative anomalies over the SACZ 
and the South Pacific around 50°S, 280°E, which are all 
statistically significant above the 95% confidence level. 
This three-cell pattern has been found in previous ob- 
servational studies using OLR (Carvalho et al. 2004, 
see their Fig. 8c) and upper-air geopotential height, 
streamfunction, and winds (Liebmann et al. 1999, 2004; 
Diaz and Aceituno 2003; Carvalho et al. 2004). At the 
same time, there is a dipole over the tropical Pacific with 
a negative anomaly over the central Pacific and positive 
anomaly over the Maritime Continent/western Pacific. 
These are consistent with the results of Paegle et al. 
(2000, see their Fig. 6d), and they demonstrated that the 
dipole over tropical Pacific is associated with the MJO. 
There is also a positive anomaly over south central Pa- 
cific around 20°S, 200°E with a SPCZ developed farther 
east of its climatological position, which is consistent 
with previous work (e.g., Nogues-Paegle and Mo 1997). 
In total, 10 of the 14 models simulate to some extent 
the three-cell pattern around the South America [i.e., 
GFDL2.0, GFDL2.1, GISS-AOM, MIROC3.2(medres), 
MRI, CGCM, MPI, IPSL, CNRM, and CSIRO]. 
However, only one model (i.e., GFDL2.0) simulates the 
MJO dipole over the tropical Pacific. Six models [i.e., 
GFDL2.1, PCM, GISS-ER, MIROC3.2(hires), CGCM, 
MPI, and IPSL] produce statistically a significant posi- 
tive anomaly in the south-central Pacific around 20°S, 
200°E. 

To summarize, all models substantially underestimate 
the 40-day band variance over north Brazil and Uru- 
guay, while about half of the models simulate nearly 
realistic variance over the SACZ. In total, 10 of the 
14 models simulate to some extent the three-cell pattern 
around the South America, with 6 models reproducing 
its teleconnection with precipitation in the south-central 
Pacific. However, only one model simulates the tele- 
connection with the MJO in equatorial Pacific, and only 
three models capture its northward propagation from 
50° to 32°S. Of the seven models with three-dimensional 
data available, only one reproduces well the deep 
baroclinic vertical structure of the 40-day band. 

e. The 22-day band 

Figure 12 shows the meridional profile of the 22-day 
band precipitation variance averaged between 30° and 
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FIG. 12. As in Fig. 4, but for the variance of the 22-day band. 

60°W. The observed profile of the 22-day band vari- 
ance is different from those of the total intraseasonal 
(10-90 day) variance (Fig. 4) and the 40-day band vari- 
ance (Fig. 6), both of which display three local maxima 
with the primary maximum at 2CS. The 22-day band, on 
the other hand, shows only two maxima at 2°S and 32°S 
with the later having slightly larger magnitude. In total, 
12 of the 14 models underestimate the variance around 
2°S, and all models underestimate the variance around 
32°S. Between 10° and 25°S, six models simulate realistic 
or overly large variance [i.e., MIROC3.2(hires), MPI, 
CNRM, GFDL2.0, MIROC3.2(medres), and CSIRO]. 
Again, these are those models producing large variances 
for the convectively coupled equatorial waves (Lin et al. 
2006). 

Figure 13 shows the lag-correlation of the 22-day band 
precipitation anomaly averaged between 30° and 60°W 
with respect to the 22-day band precipitation anomaly at 
30°S, 55°W. In observations (Fig. 13a), the 22-day band 
propagates northward from 40°S (precipitation activity 
over southeastern subtropical South America) to the 
equator (Atlantic ITCZ), which is consistent with the 
results of Paegle et al. (2000, see their Fig. lOf). In total, 
6 of the 14 models simulate coherent northward propa- 
gation [i.e., GFDL2.1, GISS-AOM, MIROC3.2(medres), 
MIROC3.2(hires), MPI, and CSIRO], but the propa- 
gation often stops at 10°S, which is consistent with the 
southward shift of the Atlantic ITCZ in the models 
(Figs. 1 and 2). Seven models produce standing oscillation 
(i.e., GFDL2.0, CCSM3, PCM, MRI, CGCM, IPSL, and 
CNRM), and one model displays different propagation 
direction in different regions (i.e., GISS-ER). 

4. Summary and discussion 

This study evaluates the intraseasonal variability asso- 
ciated with the summer precipitation over South America 

in 14 IPCC AR4 coupled GCMs. The results show that 
in the southern summer (November-April), most of the 
models underestimate seasonal mean precipitation over 
central-east Brazil, northeast Brazil, and the SACZ. 
Most models produce and Atlantic SACZ to the south of 
that observed. Most of the models capture both the 
40- and 22-day bands around Uruguay, but with fewer 
active episodes than observed. The models also tend to 
underestimate the total intraseasonal (10-90 day) vari- 
ance, the 40-day band variance, and the 22-day band 
variance. In the 40-day band, 10 of the 14 models sim- 
ulate to some extent the three-cell pattern around South 
America, and six models reproduce its teleconnection 
with precipitation in the south-central Pacific, but only 
one model simulates the teleconnection with the MJO in 
equatorial Pacific, and only three capture its northward 
propagation from 50° to 32°S. Of the seven models with 
three-dimensional data available, only one reproduces 
well the deep baroclinic vertical structure of the 40-day 
band. For the 22-day band, only 6 of the 14 models 
capture its northward propagation from the SACZ to 
the Atlantic ITCZ. 

Factors hypothesized to be important for simulating 
subseasonal variability include air-sea interaction, land- 
atmosphere interaction, model resolution, and model 
physics. Regarding air-sea interaction, all models ana- 
lyzed in this study are coupled GCMs, but they still have 
significant difficulties in simulating the subseasonal vari- 
ability. However, previous studies have shown that the 
effects of coupling depend strongly on the background 
state (e.g., Inness et al. 2003; Turner et al. 2005). Without 
detailed experimentation using coupled and uncoupled 
versions of the same model with similar mean states, few 
firm conclusions can be drawn. Moreover, since most 
coupled models are only exchanging air-sea or air-land 
fluxes once every 24 h, more frequent coupling may be 
necessary. 

Land-atmosphere interaction may also play an im- 
portant role in simulating the intraseasonal variability in 
the monsoon regions (e.g., Webster 1983). In an obser- 
vational study, evidence was found that the 40-day band 
could be locally excited by interaction with the land 
surface states and fluxes in the Amazon rain forest. 
Future studies are needed to assess how well the IPCC 
models simulate the land-atmosphere interaction over 
the Amazon rain forest. 

Regarding model resolution, we have only one pair of 
similar atmospheric models but with different resolution: 
MIROC3.2(hires; T106) versus MIROC3.2(medres; T42). 
Higher model resolution is associated with weaker vari- 
ance of the 40-day band (Fig. 6), but stronger variances of 
the 22-day band (Fig. 12). It improves the propagation of 
the 40-day band (Fig. 7) but not the 22-day band (Fig. 13). 
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FIG. 13. Lag correlation of the 22-day band precipitation anomaly averaged between 50° and 60°W with respect to 
itself at 30°S, 55°W. Shading denotes the regions where lag correlation is above the 95% confidence level. 
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However, these results may be model dependent, since 
the resolution dependence is often related to the specific 
characteristics of model physics. Moreover, model res- 
olution also affects the representation of topography, 
such as the Andes Mountains, which may alter the 
Rossby wave trains that enter into South America from 
the South Pacific. Since all of our models are in a rela- 
tively low resolution (Table 1), with the highest resolu- 
tion (T106) being about 125 km, the poor representation 
of the Andes Mountains may contribute to the model 
limitations in correctly representing subseasonal vari- 
ability in South America. 

Regarding model physics, an interesting finding 
of this study is that the six models simulating large 
total intraseasonal, 40- and 22-day band variances 
[i.e., MIROC3.2(hires), MPI, CNRM, GFDL2.0, 
MIROC3.2(medres), and CSIRO] are just the models 
producing large variances for the convectively coupled 
equatorial waves in the tropics (Lin et al. 2006). A com- 
mon characteristic of these models is that there is some 
form of moisture trigger associated with their convection 
scheme. We have conducted a series of GCM sensitivity 
experiments to test the effects of moisture trigger on 
the simulated intraseasonal variability associated with 
summer precipitation over South America in the Seoul 
National University GCM. Three different convection 
schemes are used including the simplified Arakawa- 
Schubert (SAS) scheme, the Kuo (1974) scheme, and 
the moist convective adjustment (MCA) scheme, and a 
moisture convective trigger with variable strength is 
added to each scheme. The results show that adding a 
moisture trigger significantly enhance the variances of 
both the 40- and 22-day bands. The results will be re- 
ported in a separate study. 
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