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Gait-Based Human Recognition by Classification
of Cyclostationary Processes on Nonlinear

Shape Manifolds
David KAZISKA and Anuj SRIVASTAVA

We study the problem of analyzing and classifying human gait by modeling it as a stochastic process on a shape space. We consider gait
as a evolution of human silhouettes as seen in video sequences, and focus on their shapes. More specifically, we define a shape space of
planar, closed curves and model a human gait as a stochastic process on this space. Due to the periodic nature of human walk, this process
is naturally constrained to be cyclostationary, that is, its mean path is assumed to be cyclic. We compare two subjects using a metric that
quantifies differences between average gait cycles of each subject. This computation uses several tools from differential geometry of the
shape space, including computation of geodesics, estimation of means of observed shapes, interpolation between observed shapes, and
temporal registration of two gait cycles. Finally, we apply a nearest-neighbor classifier, using the gait metric, to perform human recognition,
and present results from an experiment involving 26 subjects.

KEY WORDS: Biometrics; Gait recognition; Shape analysis; Shape classification; Statistics on shape manifolds.

1. INTRODUCTION

In this work we study the problem of analyzing videos of
humans with a goal of recognizing them by analyzing their
gait. In the field of biometrics, there is a strong need to recog-
nize subjects from a distance, especially in noncooperative en-
vironments. In this situation images of faces, fingerprints, or
irises may not be available; a common solution is to use the
style of walking, called gait, to recognize people. Human gait
is valuable as a biometric because it can be observed from a
distance and requires no physical contact. Gait recognition has
been a problem of interest since the seminal work of Niyogi
and Adelson (1994), where the authors took advantage of the
periodic nature of gait and expressed an individual’s gait as
a combination of a canonical walk and individual variation.
In the subsequent literature, the approaches have been divided
into shape-based and motion-based approaches. In the shape-
based approaches, researchers use landmark representations or
binary images of the subjects at various points in the gait cycle
(Liu, Malave, and Sarkar 2004a). Representations of gait us-
ing a mean shape on a (landmark-based) shape manifold have
been used (Wang, Ning, Hu, and Tan 2002; Liu et al. 2004b),
but without exploiting the gait’s periodic nature. Motion-based
methods often use parametric representations of certain bodily
movements to represent gait. Some motion-based models com-
bine parametric representations of arm and leg swing, stride
length and cadence and combine this information with sta-
tic data, such as height (Cuntoor, Kale, and Chellappa 2003;
BenAbdelkader, Cutler, and Davis 2002, 2004; Foster, Nixon,
and Prugel-Bennett 2003). Kale, Rajagopala, Cuntoor, Krueger,
and Chellappa (2004) constructed a hidden Markov model that
combines the shape- and motion-based methods to some extent.

Our study of gait recognition uses a shape-based approach
based on discriminating shapes of silhouettes of humans dur-
ing walking. It is an extension of a traditional statistical shape
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analysis, in which single, individual shapes are compared, to a
comparison of sequences of shapes. Shape analysis traces its
origins to the work of D. G. Kendall (1984) who used a rep-
resentation of shape by an indexed set of landmarks (salient
points on objects) in the plane. Book-length treatments of this
approach include those of Small (1996) and Dryden and Mardia
(1998). Landmark-based representations have been successful
in many applications, especially in physician-assisted medical
image analysis where landmarks are readily available, and have
led to seminal advances in statistical analysis of shapes (Dryden
and Mardia 1998; Kent and Mardia 2001; Holboth, Kent, and
Dryden 2002). Asymptotic theory for this approach has been
well developed by, among others, Bhattacharya and Patrange-
naru (2002, 2003). Recently, it has been extended to make it
view-independent by constructing a manifold of shapes that are
within a projective transformation of one another (Mardia and
Patrangenaru 2005), a thorough development of parametric dis-
tributions on high-dimensional landmark shape spaces was pro-
vided by Dryden (2005). The study of stochastic processes on
shape manifolds traces back to work on diffusion on shape and
Brownian motion on shape manifold by D. G. Kendall (1977,
1984, 1991), W. S. Kendall (1988, 1990), and Le (1991, 1994).

Our approach to shape analysis essentially follows the frame-
work of Klassen, Srivastava, Mio, and Joshi (2004) and Mio
and Srivastava (2004). The basic idea is to find a set of all rel-
evant closed curves, quotient out all shape-preserving transfor-
mations from this set, and use the resulting quotient space for
statistical shape analysis. Those authors constructed shape man-
ifolds of parameterized curves, with individual parameterized
curves represented by their angle functions and speed functions,
to represent and analyze shapes. Similar constructions were
also used by Younes (1998, 1999). Michor and Mumford (2004)
studied the problem of comparing shapes of closed curves under
various metrics. Using the representation and metrics described
by Klassen et al. (2004), Srivastava, Joshi, Mio, and Liu (2005)
presented techniques for clustering, learning, and testing pla-
nar shapes. The work of Klassen et al. (2004) was restricted
to arc-length parameterization of curves; Mio and Srivastava
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(2004) extended this by relaxing to permit variable-speed para-
meterization, thus introducing a representation that allows both
bending and stretching of shapes to match them with one an-
other. The analysis resulting from this approach seems more
natural because interesting features, such as corners, are better
preserved while constructing statistics in this approach. Statis-
tical shape models on this manifold have been studied by Sri-
vastava, Jain, Joshi, and Kaziska (2006).

Tools used in shape analysis often come from differential
geometry and statistics. To help the reader with some relevant
concepts from differential geometry, we present a short intro-
duction in Appendix A. We define important quantities, such
as geodesics, exponential maps, group actions, and Karcher
means, all in a general setting. In Section 2 we construct the
specific shape manifold of interest (i.e., the shape space of elas-
tic curves), and in Section 3 we particularize tools from differ-
ential geometry to this shape manifold. In Section 4 we present
our framework for gait recognition, in which we explore the
concept of cyclostationary processes on the shape manifold.
We define cyclostationary processes and develop a method for
their classification. We also present important ingredients of our
framework, including automatic detection of gait cycles, reg-
istration of gait sequences, computation of a mean gait cycle,
and matching using geodesic distances. In Section 5 we illus-
trate our experimental setup using a infrared (nighttime) video
camera and present some classification results. We successfully
matched 17 of 26 individuals for a set of gait sequences that we
extracted from the infrared video.

2. SHAPE SPACE OF ELASTIC CURVES

Our approach to gait recognition is based on modeling the
evolution of human silhouettes as a stochastic process on a
shape space. This space, comprising shapes of all simple closed
curves in R

2, is a nonlinear space, and tools from differen-
tial geometry are needed to perform calculus on this space. To
help the reader understand geometric terminology (especially
a reader not familiar with differential geometry), we provide a
short introduction of relevant ideas from differential geometry
in Appendix A.

The particular shape manifold that we use in our application
is the space of elastic curves introduced by Mio and Srivastava
(2004). This space is an extension of the space constructed by
Klassen et al. (2004) who used the direction functions to rep-
resent individual shapes associated with planar, simple closed
curves. To develop this representation, start by denoting each
curve with a differentiable function α : R → R

2, which gives
parameterized coordinates. That is to say at a time s, the vector
α(s) ∈ R

2 gives the Cartesian coordinates of the curve. We fur-
ther restrict our attention to curves that are periodic with period
2π (because periodicity makes curves closed). A closed curve
α is called a simple closed curve if it does not intersect itself.
Our representation of curves is in terms of a pair of functions
(φ, θ), φ, θ : [0,2π ] �→ R, such that at any point s ∈ [0,2π ],
we have α′(s) = exp(φ(s)) exp(jθ(s)), where j = √−1. eφ(s)

is the instantaneous speed of α at s, and thus φ is called the
log-speed function. The θ(s) is the angle formed by the vector
α′(s) with the positive x-axis, and, thus, θ is called the direction
function of the curve α. For an arc-length parameterized curve,
φ is identically 0 but generally is a nonzero function.

Consider the space C of all closed curves of length 2π and
average direction π in R

2 given by

C =
{
(φ, θ)

∣∣∣
∫ 2π

0
eφ(s)ejθ(s) ds = 0,

∫ 2π

0
eφ(s) ds = 2π,

1

2π

∫ 2π

0
θ(s)eφ(s) ds = π

}
.

C is called the preshape space. Note that the variability gener-
ated by shape-preserving transformations (e.g., rotation, trans-
lation, and scale), are already removed in this representation. In
other words, if a curve α is rotated, translated, or scaled, then
its representation in C remains unchanged. But, the variabil-
ity resulting from different placements of origin on the closed
curve α and different reparameterizations of [0,2π ] remain. In
other words, if we place s = 0 at different points along the
curve, or simply reparameterize the interval [0,2π ], then we
will get a new pair (φ̃, θ̃ ) ∈ C, but the shape of the underlying
α will remain unchanged. We identify all elements of C that
have the same shape using algebraic equivalence as follows.
The variability resulting from different placements of origin can
be modeled as a group action of S

1, the unit circle, on C, and
that reparameterization results from the group action of D, the
set of all automorphisms {γ : [0,2π ] �→ [0,2π ]}, on C. For a
definition of a group action on manifolds, refer to Appendix A.
The action of S

1 on C is given by the following: For a s0 ∈ S
1,

the curve (φ(s), θ(s)) becomes

s0 · (φ(s), θ(s)) ≡ (
φ(s − s0), θ(s − s0)

)
.

An automorphism γ changes the representation of a curve ac-
cording to

(φ, θ) ◦ γ = (φ ◦ γ + logγ ′, θ ◦ γ ).

All of the curves generated by changing the origin or repara-
meterizing the same curve are considered to be of the same
shape. Therefore, the shape space is defined to be a quotient
space S = C/(S1 × D). In S , each point represents a distinct
shape, and S becomes the space in which statistical analysis of
shapes is to be performed. In the next section we particularize
tools from differential geometry to this shape space S for use
in our application on gait recognition.

3. TOOLS FOR ANALYSIS ON SHAPE SPACE S

Our representation of a human gait consists of a temporal se-
quence of simple, closed curves, which are the silhouettes of
individuals in video sequences. Focusing on the shapes of these
silhouettes, we consider them to be points on the shape space S .
Our method of gait recognition exploits the differential geom-
etry of S various ways, including interpolating gait sequences,
registering gait sequences, computing a mean gait cycle, and
performing nearest-neighbor matching for gait recognition. In
all of these tasks, our understanding of the differential geom-
etry of S plays a central role. We note that the our preshape
space C is a complete Riemannian manifold and, consequently,
between any two points of this space, a geodesic can be de-
fined and computed. Furthermore, because the shape space S is
a quotient space of C, geodesics in S are computed as shortest
geodesics connecting equivalence classes in C.
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Figure 1. Ten iterations of the shooting method for computing geodesics. In each iteration, the shooting direction is corrected to get closer to
the target point.

3.1 Geodesic Paths on Shape Space

An efficient technique for quantifying shape differences is to
compute geodesic paths in S connecting shapes, and then use
their lengths to quantify shape differences. Because S is a quo-
tient space of C, the geodesic length between any two shapes in
S is given by

ds((φ1, θ1), (φ2, θ2)) = min
s0∈S1,γ∈D

dc

(
(φ1, θ1), s0 · (φ2, θ2) ◦ γ

)
.

Here dc and ds are the distances between points on C and S .
This equation states that we fix one shape (φ1, θ1) and seek the
reparameterization of the other shape (φ2, θ2) that minimizes
the geodesic distance from (φ1, θ1) in C. The minimization over
s0 can be easily performed using an exhaustive search over S

1,
but the search for optimal γ deserves a closer look. We seek a
reparameterization function γ ∈ D of (φ2, θ2) such that it min-
imizes the matching cost

H(γ ) =
∫ 2π

0

(
λ
∥∥(φ1(s), θ1(s)) − (φ2(s), θ2(s)) ◦ γ

∥∥2

+ (1 − λ)|γ ′(s)|2)ds,

0 < γ < 1, and for a fixed λ > 0. The minimization is per-
formed using the dynamic programming algorithm, which is
briefly outlined in Appendix B. Figure 2 shows some examples
of this matching. Note that in the figure, the matching process
works well whether the legs are apart or together, hands are
visible or not visible, and so on. This estimation of γ is also
called the registration of one curve to another. This registra-
tion of curves is similar in concept to the registration of gait
sequences that we introduce in the next section, although the
two cases differ in the actual quantities being registered.

Once the two curves are registered, they can be treated as
elements of C, and the computation of a geodesic is based on
a shooting method described in Appendix A. To illustrate the
resulting geodesics, Figure 3 shows three examples of geo-
desic paths between shapes of human silhouettes. In each row,
the shapes denote equally spaced points along a geodesic con-
necting the starting and ending shapes. For any two shapes
(φ1, θ1) and (φ2, θ2), the length of geodesic path between them
forms a natural tool for comparing them and is denoted by
ds((φ1, θ1), (φ2, θ2)). Also, we use the function �(t) to denote

Figure 2. Shape matching. Each pair shows a γ that minimizes the matching cost between the two shapes; the lines show the corresponding
points between the two curves.
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Figure 3. Examples of geodesic paths between human shapes in S . In each row, the first and the last shapes are given, and the intermediate
shapes depict points along geodesics connecting these given shapes.

the geodesic path, so that �(0) = (φ1, θ1) and �(1) = (φ2, θ2).
Here �̇(0), the initial velocity vector along this path, is useful
in computing mean shapes.

3.2 Piecewise-Geodesic Interpolations Between Shapes

Our framework considers the underlying gait sequence as a
stochastic process on S . In practice, one has only a finite, dis-
crete set of observations along a sample path when the human
walk is captured using a video camera. For the purpose of align-
ing (or registering) different sequences, as described later, it
will be useful to fill in between the observed shapes to result
in dense time samples. We use a piecewise-geodesic interpo-
lation to fill in between the observed shapes. In other words,
we connect each successive pair of observed shapes with geo-
desic paths on S , and in this way we can obtain an arbitrarily
dense time sampling. Interpolation is an important tool in our
framework because it allows us to analyze a gait process at arbi-
trary time resolutions. To compare two gait sequences, we use
a metric, given in (3), that requires samples of sequences at si-
multaneous, discrete points in time. When the time points do
not correspond to the times at which shapes are observed, we
will need to interpolate on S to estimate the silhouette at those
times. To guard against bias that can be introduced in this inter-
polation, we performed a limited amount of interpolation. We

performed only the amount of interpolation needed to standard-
ize the number of silhouettes in a gait cycle.

Suppose that we wish to interpolate between two con-
secutive observed silhouettes having representations (φi, θi)

and (φi+1, θi+1). Using the shooting method for computing
geodesics, we compute a geodesic between the two points.
The resulting geodesic � from (φi, θi) will reach the target
shape (φi+1, θi+1) in unit time, �(0) = (φi, θi) and �(1) =
(φi+1, θi+1). We can then evaluate �(t) for any t ∈ (0,1) to
continuously interpolate between the two observed shapes.

To demonstrate this idea experimentally, we present an ex-
ample in Figure 4. We start with a gait sequence consisting of
six silhouettes, which represents a half-cycle of gait for this
individual. To illustrate geodesic interpolation, we first drop
the third shape in this sequence and use the second and fourth
shapes to estimate it using interpolation. The first contour in
the second row is this interpolated shape. Note its closeness
to the actual observed third shape in the original sequence. The
same experiment is repeated for the fourth shape; it is estimated
by interpolating between the third and fifth shapes. The esti-
mated shape in shown as the second shape in the second row.
Because alternate techniques in the literature involve binary im-
ages, we performed an interpolation on the binary images pro-
duced from the second and fourth silhouettes; the resulting in-

Figure 4. Illustration of gait cycles. The sequence from legs together to right leg forward to legs together is the first half-cycle. The sequence
from legs together to left leg forward to legs together is the second half-cycle.
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Figure 5. Detection of gait cycles. On the left is an ordered se-
quence of silhouettes. On the right is a plot of the geodesic distance
from the first shape to each subsequent shape. The peaks at shapes 5,
12, 18, and 25 correspond to the beginnings and ends of cycles.

terpolated gray-scale image, is shown in the third row of Fig-
ure 4. Similarly, we interpolated between the third and fifth sil-
houettes and compared both methods with the observed fourth
silhouette.

3.3 Computation of Mean Shapes

In the proposed statistical framework for gait representation
and analysis, another important ingredient is computation of
the statistical mean of observed shapes. In other words, given
a finite collection of points on S , we would like to define and
compute a quantity that represents the central tendency of that
dataset. For this purpose, we use the notion of a Karcher mean,
which is essentially the centroid of the sampled data points on
S using the geodesic distance ds . This quantity has also been
called the Frechet mean or the intrinsic mean in the litera-
ture. Given a set of sample shapes (φ1, θ1), . . . , (φn, θn) ∈ S ,
the sample Karcher variance is a function of (φ, θ) ∈ S and
is given by V (φ, θ) = ∑n

k=1 ds((φ, θ), (φk, θk))
2. The Karcher

mean set of (φ1, θ1), . . . , (φn, θn) ∈ S is the set of minimiz-
ers of V (θ). Several authors, including Klassen et al. (2004),
have used an iterative algorithm for computation of the sample
Karcher mean.

4. HUMAN IDENTIFICATION USING GAIT ANALYSIS

In this section we present a statistical framework for per-
forming gait analysis and its use in human recognition. Human
gait is modeled as a stochastic process on the shape space S .
With this formulation, we are representing silhouettes of peo-
ple walking using simple closed curves. We recognize that there
can be times when armswing or leg movements prevent a sil-
houette from being a simple closed curve. We did not observe
such cases in practice, but in this framework we would repre-
sent this situation by the simple closed curve obtained from the
outermost contour.

Because human walk is quite naturally a periodic process, we
restrict ourselves to a cyclostationary process, defined next.

Definition 1 (Cylostationary). A stochastic process is called
cyclostationary with a period τ if the joint probability distribu-
tion of the random variables X(t1),X(t2), . . . ,X(tn) is same as
that of X(t1 + τ),X(t2 + τ), . . . ,X(tn + τ), for all t1, t2, . . . , tn
and for all n. In particular, the random quantities X(t) and
X(t + τ) have the same probability distribution.

Figure 6. Observed gait cycles for two different people. The cor-
respondence problem determines which shapes in the first and second
sequences are to be compared.

Previous applications of cyclostationary processes have in-
cluded the fields of signal processing and meteorological sci-
ence. These applications have mostly involved low-dimensional
signals in Euclidean spaces. To the best of our knowledge,
ours is the first use of the cyclostationary structure on infinite-
dimensional, nonlinear manifolds.

We model the shape process generated by temporal evolution
of human silhouettes as a cyclostationary process on S . For any
cyclostationary process, the notion of a cycle is central to its
analysis. For a gait process, we consider a full cycle as the pe-
riod starting from when legs and hands are all together to the
time of return to a similar state, as shown in Figure 7. The top
row of Figure 7 shows the first half-cycle where the left foot
goes forward and the right foot catches up, and the bottom row
shows the second half-cycle where the right foot moves first. In
our illustrations in this section and for our classification results
in the next section, we use half-cycles. We assume that gait se-
quence associated with a person is a cyclostationary process on
S . The duration of a cycle corresponds to the period τ of the
process. Like any cyclostationary process, it suffices to study a
gait sequence within the period [0, τ ]. As a result of the cyclo-
stationary nature of gait, in our notation we generally consider
the time t to be modulo τ , so that t ∈ [0, τ ). Given two stochas-
tic processes, our main goal is to quantify differences between
them. Let X(t) and Y(t) be two gait processes on the shape
space S , with periods τx and τy . We seek a metric dp(X,Y )

with certain desired properties. There are two possibilities for
such a metric: mean of squared distances and squared difference
between average paths.

Mean of Squared Distances. The first idea is to compute
the expected value of the squared distance between the sample
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Figure 7. Demonstration of interpolation between points in S . The first row shows the original gait sequence of six shapes. The second row
shows results of interpolation on the shape space for the third and fourth shapes. The interpolated shapes are drawn directly below the original
third and fourth shapes for comparison. In the third row we interpolate the corresponding binary images, producing the gray-scale images that
correspond to the same shapes.

paths of X and Y ,

dp(X,Y )

= min
κ∈[0,τy ],g E

[(∫ τx

0
ds

(
X(t), Y (κ + g(t))

)2
dt

)]1/2

, (1)

where E denotes the expected value, ds(·, ·) denotes the geo-
desic length metric defined on S , g denotes a smooth mapping
between [0, τx] and [0, τy], and κ denotes a possible relative
time shift between the two observed gait sequences. The map-
ping g is needed to register shapes along the two sequences
before comparison.

Squared Distance Between Average Paths. The second idea
is to use squared distance between the mean cycles,

dp(X,Y ) = min
κ∈[0,τy ],g

(∫ τx

0
ds

(
E[X(t)],

E
[
Y(κ + g(t))

])2
dt

)1/2

, (2)

where expectations E[X(t)] and E[Y(t)] are computed on the
shape space S .

We note that these functionals may not be symmetric; how-
ever, in either case a true metric can be constructed using
d(X,Y ) + d(Y,X). Although both distances are relevant, the
latter is more efficient from a computational standpoint. The
first definition requires computing distances between several
random realizations of gait cycles of X and Y . In other words,
we need to compute distances between all training and test cy-
cles associated with X and Y . In contrast, the second definition
requires computing an average gait cycle each for X and Y ,
then computing a distance between the average cycles. In the
context of human recognition using a distance-based classifier,
X denotes the gait process of a known person (training data)
and Y denotes that of an unknown person (test data). Therefore,
once the average gait cycle for the known person is computed
during training, it can be simply stored for future classification
purposes. It can be viewed as a template gait cycle for this per-
son; this is similar to the idea of deformable template theory for
classification.

Consequently, we choose the second metric and use its dis-
crete form,

dp(X,Y ) = min
κ∈[0,τy ],g

(
τx∑

t=1

d
(
X(t),Y (κ + g(t))

)2

)1/2

, (3)

where X and Y are sample Karcher means of the processes X

and Y . With a slight abuse of notation, we continue to use τx

and τy as lengths of gait cycles in the discrete case as well.
Now g : {1,2, . . . , τx} �→ {1,2, . . . , τy} is a mapping that regis-
ters points across the two sequences. Estimation of κ and g is
discussed in the next two sections.

4.1 Automatic Detection of Cycles

The first issue in computing the distance given in (3) is the
extraction of gait cycles for each person. We typically have
large sequences of human silhouettes generated from videos,
and we need to extract a few gait cycles for analysis. Because
the process is repetitive, the geometry of the shape space pro-
vides a method for automatically detecting cycles, because sim-
ilar shapes should occur at the same point in the cycle. In our
application to human gait, we noticed that the silhouettes with
the arms and legs together are far away, in terms of geodesic dis-
tance, from the points at which the limbs are extended. To iden-
tify the beginnings and ends of cycles in a sequence of observed
shapes, we begin with a silhouette with the limbs extended, then
compute the geodesic distances from that first shape to all of
the following shapes. Because the shapes with arms and legs
together are far from shapes with limbs extended, then the dis-
tance that we compute shows peaks at the shapes with the limbs
together. We detect the beginnings and ends of cycles by look-
ing for these peaks. An example of this is shown in Figure 8.

This automated detection of cycles obviates the need for min-
imizing over κ in (3). The resulting metric is now

d∗
p(X,Y ) = min

g

(
τx∑

t=1

d
(
X(t),Y (g(t))

)2

)1/2

. (4)
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Figure 8. Example of interpolation by linear time scaling. The first row shows a sequence of eight silhouettes taken from a video clip. The
second row shows the interpolation and the uniform resampling of this sequence to result in a sequence of length six.

4.2 Registration of Gait Cycles

Once we have a method for automatically extracting cycles,
the next important problem in comparison and recognition of
processes is the registration of points along two processes. To
formalize, let τx and τy be the periods of two processes, X and
Y , and let g : [0, τx] �→ [0, τy] be a map that is invertible, with
both g and g−1 having piecewise continuous derivatives. Our
goal is to find g’s that minimize energy functions such as those
given in (1)–(4). In a discrete implementation, the registration
of any two discrete cycles amounts to solving the equation

ĝ = argmin
g

τx∑
t=1

d
(
X(t), Y (g(t))

)2
.

To explain this problem further in the context of human gait
cycles, given samples of shapes along two observed walks, we
need to determine which shapes to compare. Even though the
shapes form an ordered sequence, there may be a time scal-
ing, time warping, and/or time shifting between the two se-
quences. Figure 9 shows examples of observed gait cycles for
two people. One cycle contains 10 shapes, and the other con-
tains 8 shapes. To compare these two sequences, we need to
determine which shape in the second sequence corresponds to
a given shape in the first sequence. The shape that we need may
be an observed shape from the second sequence or may be a
shape occurring between two shapes from the first sequence.
In the latter case, we may need to interpolate to estimate the
shape that we need. Thus two issues necessitate the registration
of processes:

Figure 9. Example of registration by DTW. The first row shows a
sequence of 10 silhouettes from a training sequence. The second row,
shows a test sequence that we wish to register. The third ??? row shows
the sequence after registration and the function φ, found by dynamic
programming, used in the registration.

• Registration of two mean cycles to compare them. In com-
puting the metric in (4), we compare two mean cycles at
points in time. It may occur that process speeds within the
cycles vary between the mean sequences that we compare.
If so, then registering the mean cycles may provide a more
accurate match.

• Registration of processes to compute a mean cycle. Reg-
istration of observed processes is necessary to compute a
mean cycle for a particular observed process. The cycles
that we observe in an observed process may have differ-
ent lengths if the process changes speed. If the process
changes speed within a cycle, then we may wish to cor-
rect for the speed change. For both of these purposes, we
must register the observed sequences within the sequence
before estimating the mean cycle.

We achieve registration using one of two techniques: linear time
scaling or time warping using dynamic programming.

Linear Time Scaling. The simplest idea is to consider g

simply as a linear time scaling, g(t) = βt , where β > 0 is a
scalar. When the endpoints of the two cycles are known, β is
simply the ratio τy/τx . The underlying assumption here is that
speeds of two processes X and Y are constant during their ob-
served cycles, and we can match them by simply rescaling time-
wise. We illustrate this idea with an example in Figure 5. Con-
sider that a half-cycle, Y , shown in the top row, has come from
an observed sequence, and we wish to register this sequence in
time to another half-cycle of length 6 X (not shown). We ob-
tained the silhouettes in the top row at eight uniformly spaced
points in time, which we denote by t = 0–7. Using β = 5/7,
we can register the first half-cycle to the second half-cycle,
but we need silhouettes at the six uniformly spaced points,
t = 0, 7

5 , 14
5 , 21

5 , 28
5 ,7, for process Y . To estimate the shapes oc-

curring at noninteger units of time, we use piecewise geodesic
interpolation on Y ; for example, to get a point at time t = 7

5 ,
we travel for time .4 along the geodesic path from the shape at
t = 1 to the shape at t = 2. The remaining shapes in the second
row of Figure 5 are computed similarly.

Time Warping Using Dynamic Programming. In cases
where speeds of processes vary within their cycles, the dynamic
time warping (DTW) approach (Bellman 2003) provides an al-
ternative to linear interpolation that may provide a more accu-
rate match. Given processes X and Y on intervals [0, τX] and
[0, τY ], seeks a diffeomorphism, g : [0, τX] → [0, τY ], such that
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Figure 10. Computation of a mean cycle. The first three consist of gait cycles registered using linear interpolation. The mean cycle is in the
fourth set. Each shape in the fourth row is the Karcher mean of the three corresponding shapes.

the metric in (5) is minimized. Rather than a linear form of the
function g, we generalize to a function that can have the effect
of speeding up or slowing down an observed cycle, as neces-
sary. We may need to do this before computing a mean cycle
if the subject changes speeds during a cycle. This technique
also may improve our ability two match two observed mean
cycles. Using techniques described earlier, it is often possible
to directly detect the start and end of a shape gait cycle in a
given sequence. Therefore, once the cycles have been detected,
the need to estimate κ is obviated, and we can directly estimate
g using dynamic programming. Several authors have used this
DTW idea in different contexts. This solves for

ĝ = argmin
g

τx∑
t=1

d
(
X(t), Y (g(t))

)2
dt. (5)

Figure 6 illustrates DTW showing one half-cycle from two dif-
ferent gait sequences X and Y for which we wish to register the
second sequence to the first. We show the registered sequence
and note that it provides a visually better match in time for the
first sequence, and we plot the function g that we used to per-
form the registration.

4.3 Computation of Mean Gait Cycles

To use (4) for comparing and classification of processes, we
need to estimate the Karcher mean shape, E[X(t)], for rele-
vant times in a cycle. Assuming that we have observed multiple
observations cycle of each process, the first task is to register
the shapes across cycles, as described earlier, and then compute
the means of the corresponding shapes in S . The mean shape
E[X(t)] is defined as the sample Karcher mean shape at time t

and computed as explained in Section 3.3. Figure 10 shows an
example of a calculated mean gait cycle.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup

As an application of gait analysis, we used a night-vision or
infrared, (IR) video camera to observe human gait. In addition

to collecting data in noncooperating environments, and from a
distance, an IR camera provides the added benefit of working
in dark. This is especially well suited to surveillance and ur-
ban battlefield scenarios, where a major portion of imaging is
done using IR sensors. Figure 11 shows an example of video
sequence obtained using an IR camera. The task of extracting
human silhouettes from video sequences was semiautomated;
that is, it required some human intervention in addition to auto-
mated programs. We do not describe this process of silhouette
extraction and assume that the data are available as sequences
of silhouettes for each human subject. Our experimental results
are based on a collection of IR video clips of 26 student and
faculty volunteers from Florida State University. We collected
at least two clips of each person and formed disjoint training
and tests. We performed a gait-matching experiment following
these steps:

• For each of training and test sequence, we extracted three
half-cycles, performed registration using linear time scal-
ing, and then computed an average gait cycle.

• For each test sequence, we computed the metric in (3) for
each training sequence and sought the nearest match.

We observed anecdotally that the silhouettes in individuals’
gaits were different depending on which leg was leading, usu-
ally due to different armswings. As a result, the half-cycles that
we used were from a single side for each individual.

5.2 Classification Results

The classification results are summarized in Table 1. Un-
der the nearest-neighbor (NN) criterion, we obtain a successful
match for 17 of the 26 test sequences. For three-NN classifiers,
where the correct class in the training set must be among the
three neighbors of the test cycle, the success rate was 21 out of
26. An example of a correct match is shown in the top row of
Figure 12, whereas an incorrect match is shown in the bottom
row.

We implemented a few current approaches to compare them
with our results. First, we implemented a simple method, called

Figure 11. A small portion of a sample IR video sequence taken at 30 frames/second.
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Table 1. Recognition performance

i 1 2 3 4 5 6 7 8 9 10

Our approach 17 20 21 21 21 22 22 23 24 24
Mean-shape approach 13 14 16 19 19 20 20 20 20 22
Landmark-based approach 10 11 14 17 19 19 20 20 21 22

NOTE: For each test cycle, we see whether the correct class is in the first i classes, ranked
according to the metric in (3). This table shows the number of test cycles out of 26 for
which that is the case, plotted against i.

the mean-shape approach. Some works in the literature sug-
gest that gait recognition can be achieved using merely a mean
shape of the cycle, rather than the full cycle (as in Liu et al.
2004b and Wang et al. 2002). For each person in the training
set, these methods compute a single mean shape. Then, for a
test sequence, a single mean shape is computed, and the best
match in the training set is sought. Surprisingly, decent per-
formance has been reported with this simplified method. With
a slight variation, we computed two means for each gait se-
quence rather than a single mean. We computed a mean for
each person when the arms and legs were together and a second
mean of the silhouettes when the arms and legs were extended.
Figure 13 shows a mean sequence of length 6 as used in the
previous method, along with the two means for the same per-
son that we computed for the present method. Table 1 summa-
rizes results from this approach under the mean shape method.
Finally, we also computed recognition performance using the
landmark-based shape analysis of boundary curves. Although
the general approach here is same as our method, the choices
of shape space S , geodesic lengths d(·, ·), Karcher means, and
so on are different (Dryden and Mardia 1998). In this compu-
tation, we represent each silhouette by 100 uniformly spaced
pseudolandmarks. Recognition results based on this method are
also reported in Table 1.

6. SUMMARY

In this work we have presented a novel framework for gait
recognition, considering gait as a cyclostationary process on a
shape space of simple closed curves. Geometric tools allowed
us to perform interpolation between shapes, registration of gait
cycles, averaging of gait cycles, and comparisons of gait cy-
cles for human recognition. By comparing mean cycles rather
than the cycles themselves, we suppressed intraclass variability
and improved the classification performance. We have demon-
strated the classification technique on a set of 26 individuals.

APPENDIX A: DIFFERENTIAL
GEOMETRY: BACKGROUND

In this section we provide a short introduction to ideas from differ-
ential geometry that are relevant to our approach. (For more detailed
discussion, see, e.g., Spivak 1979; do Carmo 1976; Lang 1999.)

A manifold M is a set that, among other properties, has the impor-
tant property of being locally Euclidean; that is, for any point p ∈ M ,
there exists a one-to-one mapping between a neighborhood of p and an
open subset of a Euclidean space. For any point p ∈ M , consider the
collection of all parameterized curves, c : (−ε, ε) → M , with c(0) = p.
Then TpM is the collection of all vectors c′(0), and it is a vector space
even when M is not a vector space. If we can define an inner product
on TpM that varies smoothly with p, then M is called a Riemannian
manifold, with that inner product as its Riemannian metric. A group G

is said to act on M if there exists a mapping G × M �→ M , denoted by
g ◦ M , that satisfies the following properties:

• We have e ◦ p = p for all p ∈ M , where e is identity element
of G.

• If g1, g2 ∈ G, then g1 ◦ (g2 ◦ p) = (g1 · g2) ◦ p for all p ∈ M .
Here g1 · g2 denotes the group operation in G.

A distance measure on a Riemannian manifold M is indispensable
for comparing elements of M . Because distances on M are realized as
lengths of geodesics, we start by introducing geodesics. A geodesic on
a Riemannian manifold is a path that is locally length-minimizing. For
two points p,q ∈ M , we let c : [0,1] → M be a differentiable curve on
M connecting p and q , that is, c(0) = p and c(1) = q . If we let c′(t)
be the derivative of c, then the length of the curve c from p to q is

L1
0(c) =

∫ 1

0
‖c′(t)‖g dt,

where ‖ · ‖g is the norm induced by the Riemannian metric on M . The
distance between any two points p and q is then

(p, q) = min
c

{L1
0(c) : c(0) = p, c(1) = q}.

The curves c for which this minimum is achieved are geodesics of the
manifold M . Generally, geodesics on a M are constant-speed curves on
M , but this class of curves may contain curves that are not minimizing.
For example, on the manifold S

2 = {x ∈ R
3 :‖x‖ = 1}, arcs of great

circles are geodesics, but a great-circle arc is minimizing only if its
length is π or less. We often denote �(p,v, t) to be the point obtained
by starting at p and traveling for a time t along a geodesic path in the
direction of v ∈ TpM .

On simpler manifolds, such as a sphere, analytical expressions for
geodesics are readily available. However, on other manifolds, includ-
ing our shape space S , analytical derivation of a geodesic is intractable,
and we must use a computational technique. One possibility is a shoot-
ing method, a numerical technique for computing geodesics on com-
plicated nonlinear manifolds. Given two points p1,p2 ∈ M , the goal
is to compute a geodesic path between p1 and p2. This objective is

Figure 12. Examples of a correct match and an incorrect match.
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Figure 13. An example of the training sequence used in mean-shape–based classification. On the left is a mean cycle of six shapes used in
method 1. On the right are the two mean shapes used in the mean-shape approach.

achieved by calculating a vector v ∈ Tp1M such that �(p1, v,1) = p2.
In the shooting method, we begin with an initial approximation of v,
then use a gradient method to minimize the miss distance between suc-
cessive estimates of �(p1, v,1) and the target point p2. The shooting
method for this minimization provides a sequence of approximations
to the path that we seek. Figure 1 gives an example of implementation
of the shooting method on an ellipsoid, showing successive approxi-
mations to the path between two points.

A method by which we can go back and forth between M and TpM

is the exponential map. This is formally defined as follows.

Definition 2 (Exponential map). Let M be a manifold and let p ∈ M

and v ∈ TpM . Let c : [0,1] → M be the unique parameterized geo-
desic with c(0) = p and c′(0) = v. The exponential map of v at p is
expp(v) = c(1).

Definition 3 (Inverse exponential map). Let M be a manifold and
let p,q ∈ M . We let c : [0,1] → M be a minimizing geodesic with
c(0) = p and c(1) = q . The inverse exponential map of q at TpM is
any vector v such that expp(v) = q.

We also need the ability to compute a sample mean shape on our
shape space. On a manifold, the sample mean shape is taken to be the
sample Karcher mean defined as follows.

Definition 4 (Karcher mean). Suppose that Y1, . . . , Ym is a set of
points on M . Then the sample Karcher mean set is the set of minimiz-
ers of the function

F(q) = 1

m

m∑
i=1

d(q,Yk)
2, q ∈ M.

We say that the sample Karcher mean exists if the minimizer is unique.

The Karcher mean is sometimes called the intrinsic mean, because
it uses an intrinsic metric on a manifold as opposed to an extrinsic
mean computed by embedding a manifold in an ambient Euclidean
space. There exist iterative techniques for finding the Karcher mean
that use the gradient of F to update the estimate until convergence. A
commonly used method updates the mean μ as

μ → expμ(v), where v = 1

n

m∑
i=1

exp−1
μ (Yi).

APPENDIX B: DYNAMIC PROGRAMMING

Dynamic programming is an important tool in the registration of
curves and sequences, and it can help solve the following general prob-
lem. For two given functions f : [0, a] �→ R and h : [0, b] �→ R, find a
function g : [0, a] �→ [0, b] that minimizes the functional,∫ a

0

(
f (x) − h(g(x))

)2
dx.

In addition, g is assumed to be differentiable and to have a positive
derivative at each point. An overview of the DP algorithm is as follows.

We divide the region [0, a] × [0, b] into a grid with N × N nodes. Ex-
plicitly, the node (i, j) in the grid represents the point ( i

N−1a,
j

N−1a).
We obtain a piecewise-linear approximation to g on [0, a] and con-
struct a g that passes through nodes on the grid.

For any node in the grid, define the cost H(i, j) at node (i, j) to be
the minimum cost of reaching (i, j) on a strictly increasing path from
(0,0), and set H(0,0) = 0. Now our problem is to find a path that
achieves H(N − 1,N − 1). To minimize the cost, H(i, j), of reaching
(i, j), we first denote N(i,j) to be the set of nodes that are permissible
predecessors to the node (i, j). Elements of N(i,j) are selected to en-
sure that the slope of a candidate path g is positive at each point and
are close to (i, j).

For (k, l) ∈ N(i,j), the cost of traveling to (i, j) through a path
that contains (k, l) is the minimum cost of traveling to (k, l), plus
the cost of traveling from (k, l) to (i, j) along a linear path. Let-
ting E((i, j), (k, l)) denote the cost of traveling to (i, j) through a
path that contains (k, l), this says that E((i, j), (k, l)) = H(k, l) +
L((k, l), (i, j)), where L((k, l), (i, j)) is the cost of traveling from
(k, l) to (i, j) in a straight line connecting those two points. Now the
cost of reaching node (i, j) is H(k̂, l̂), where

(k̂, l̂) = argmin
(k,l)∈N(i,j)

E((k, l), (i, j)).

We find ĝ by computing H(n − 1, n − 1) in an iterative manner. In
doing so, we obtain nodes (u1, v1), . . . , (uk, vk) = (N − 1,N − 1),
representing the critical path.

[Received May 2006. Revised January 2007.]
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