

AFRL-RY-WP-TR-2009-1033

REINCARNATION OF STREAMING APPLICATIONS

Saman Amarsinghe, Robert Miller, and Michael Ernst

Massachusetts Institute of Technology

OCTOBER 2009
Final Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Defense Advanced Research Projects Agency
(DARPA) and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RY-WP-TR-2009-1033 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// //Signature//

ALFRED J. SCARPELLI BRADLEY J. PAUL, Chief
Project Engineer Chief, Advanced Sensor Components Branch
Advanced Sensor Components Branch Aerospace Components & Subsystems
Aerospace Components & Subsystems Technology Division
 Technology Division Sensors Directorate

//Signature//

TODD A. KASTLE
Chief, Aerospace Components & Subsystems
 Technology Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
October 2009 Final 27 September 2007 – 31 December 2008

4. TITLE AND SUBTITLE
REINCARNATION OF STREAMING APPLICATIONS

5a. CONTRACT NUMBER
5b. GRANT NUMBER

FA8650-07-C-7737
5c. PROGRAM ELEMENT NUMBER

62303E
6. AUTHOR(S)

Saman Amarsinghe, Robert Miller, and Michael Ernst
5d. PROJECT NUMBER

ARPS
5e. TASK NUMBER

ND
5f. WORK UNIT NUMBER

 ARPSNDBQ
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307

 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
 AGENCY ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force

Defense Advanced Research Projects Agency/
 Information Processing Techniques Office
 (DARPA/IPTO)
3701 N. Fairfax Drive
Arlington, VA 22203-1714

AFRL/RYDI
11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)
AFRL-RY-WP-TR-2009-1033

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
PAO Case Number: DARPA 14405; Clearance Date: 28 Oct 2009. This report contains color.

14. ABSTRACT
We study the technology innovations required to radically improve the process of understanding and parallelizing
performance-critical legacy application code. We demonstrate the usefulness and feasibility of such a system, dubbed
Program Reincarnation, using a simple prototype. A Program Reincarnation tool will assist the programmer in replacing
the program's code (the body) while preserving the original specification (the soul).

15. SUBJECT TERMS

Legacy Application Code, Program Reincarnation, Parallelization, Multicores, Streaming Applications

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 158

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Alfred J. Scarpelli
19b. TELEPHONE NUMBER (Include Area Code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

iii

Table of Contents

Section Page

List of Figures .. v
List of Tables ... v
Acknowledgements ... vi
1.Executive Summary .. 1
2.Introduction ... 2
3.Methods, Assumptions, and Procedures ... 5
 3.1 Study of Technology Needs and Innovations ... 5
 3.2 Assisted Application Reincarnation Tool (AART) ... 5
 3.3 Binary Interpretation and Instrumentation ... 5
 3.4 Inference Engine ... 6
 3.5 Streaming Representation ... 6
 3.6 Block Diagram and Specification .. 7
 3.7 Automatic Parallelization.. 7
 3.8 Application Study ... 7
 3.9 Workshop on Software Forensic Environments ... 8
 3.10 Prototypes ... 9
4.Result and Discussions ... 10
5.Conclusion .. 11
6. Recommendations ... 12
7.References ... 13
List of Acronyms, Abbreviations, and Symbols .. 14
Appendix A Final Slides from Software Forensic Environment Workshop 15

iv

List of Figures

Figure Page

1. Design Flow for Program Reincarnation ... 4
2. Visualized Communication Pattern of MPEG-2 and MP3 .. 7

List of Tables

Table Page

1. Characteristics of the Parallel Stream Graphs and Performance Results on a 4-Core
Machine.. 8
2. List of Software Forensic Environment Workshop Attendees .. 8

v

 Acknowledgements

We would like to thank our DARPA program manager Dr. William Harrod for identifying
the importance of Program Reincarnation, supporting this work and providing numerous
insights and guidance during many discussions. AFRL contract management team, led by
Alfred Scarpelli, provided ample guidance during the process. Al was especially helpful in
reviewing the final report. Thirty industry experts participated in the Software Forensics
workshop held at MIT. Their insights and ideas greatly help guide this work and is a major
fraction of this report.

1

1 Executive Summary

As the computing industry matures, it carries with it the immense burden of maintaining the
flexibility and performance of decades’ worth of legacy code. Legacy programs often have little
in common with today's development practices; they were written in different language dialects
and targeted a different class of computer architectures. As recent trends demand that modern
software be written with explicit parallelism to harness the power of multicore architectures, it is
becoming largely intractable to manually upgrade a legacy application to modern performance
standards.

We study the technology innovations required to radically improve the process of understanding
and parallelizing performance-critical legacy application code. We demonstrate the usefulness
and feasibility of such a system, dubbed “Program Reincarnation”, using a simple prototype. A
Program Reincarnation tool will assist the programmer in replacing the program's code (“the
body”) while preserving the original specification (“the soul”). Our technique originally focused
on streaming applications such as multimedia, graphics, and signal processing; we employ a
combination of static and dynamic program analysis to extract the simple, high-level block
diagram from the optimized and obfuscated legacy code. Our comprehensive approach is broadly
applicable to program understanding, documentation, refactoring, and automatic parallelization.

2

2 Introduction

Over the last few decades, programmers have written a staggering amount of code. These
billions of lines of code have profoundly impacted the human race. Today, programs are
everywhere – in computers, cell phone, cars, cameras and cash registers. While computer
hardware and technology is going through an incredibly rapid growth period, in many areas
computer code seems to enjoy a longevity mainly associated with a mature field. It is not
uncommon to actively use computer programs written two decades ago. Furthermore, most new
software includes a large amount of program code written long ago. For example, the Microsoft
Windows vulnerability MS-03-011 affected Windows 95 to Windows 2003, suggesting that the
code written before 1995 was still in use in a program produced 8 years later. In contrast, it is
hard to even find a working computer older than seven years, let alone a modern computer built
with parts designed two years ago.

This reliance on old code, written using old languages, outdated methods, and targeting now-
defunct machines, is creating a massive obstacle to the rapid growth of computers. Most of these
legacy programs cannot take full advantage of the exponential performance growth rate of
modern processors. Some of the performance-critical legacy programs, ones that were highly
optimized for the architecture of the day, will experience slowdowns and compatibility issues on
newer processors. Legacy code has had an even larger negative impact in computer architecture.
As legacy applications are extremely important, commercial microprocessors have been
“wasting” the transistor budgets offered by Moore’s Law to improve the performance of legacy
programs at any cost, even if the performance gains are only marginal. Monolithic superscalar
processors are a good example of this trend.

Recently, processor vendors have started to break this trend by moving to multicore
architectures. Multicore architectures provide much better peak performance per die area, but
require programs to be explicitly parallel. This trend, while providing much higher performance
to modern programs, puts legacy applications at a disadvantage as they will no longer get
performance improvements from new generations of processors.

In order to take advantage of modern multicore processors, one must rewrite these legacy
binaries using modern languages and techniques. Apart from performance, there are many other
benefits of updating a legacy code base. Most of these programs are written in older languages
without the benefit of many powerful language features. Furthermore, during the last decade we
have made huge strides in software engineering. Rewriting a legacy code base using these
techniques can make them more efficient, malleable, portable, secure, and fault tolerant.

However, rewriting a legacy program is a daunting task. While the application may be in wide
use, it is very difficult and time consuming to reverse engineer the exact algorithm implemented
and any special cases handled by the application. The original programmers are no longer
available in many cases. Information that helped the original programmer such as specification
and requirement documents, simulations, mathematical proofs, tests etc. may have been lost. In
some cases, even the source code may not be available. Even if the source is available, the tool
chain and the libraries have often diverged over the years, making it impossible to build the
application from source.

Today, recreating the specification of a legacy application is more error prone and takes longer
than the coding task itself. We demonstrate how to drastically reduce the cost of recreating a

3

program. A Program Reincarnation system provides a tool chain to help the programmer replace
the program code (‘the body’) while adhering to the original program’s specification (‘the soul’).
This tool chain takes advantage of the availability of the source code and a working program to
help guide the programmer through the reincarnation process. The DoD modernization effort can
hugely benefit from this capability by reducing the software porting cost associated with most
hardware upgrades.

Streaming applications amplify the difficulties of the current recreation process while also
providing tantalizing possibilities for drastic reduction of programmer effort. Most streaming
applications are performance critical. Thus, programmers were forced to hand optimize them for
the architecture of the day, making it virtually impossible to understand the underlying
algorithm. Furthermore, streaming algorithms do not naturally fit in to old programming models,
requiring complicated scheduling and buffer management that further obfuscate the original
algorithm. Most of the streaming algorithms were originally developed in prototyping
environments such as Matlab. Unavailability of these intermediate representations that helped the
original programmer further complicates the extraction of the underlying algorithm. However,
most of the streaming algorithms correspond to simple block diagrams with minimal control
flow. There are very few special cases in streaming algorithms. Thus, once the underlying
algorithm is discovered, it leads to a simple and relatively straightforward representation.

The overall design flow in a comprehensive system for program reincarnation is given in Figure
1. The prototype implementation studied here includes the minimal subset necessary to
demonstrate end-to-end flow. The design flow is controlled by the Assisted Application
Reincarnation Tool. First, the execution profile of the instrumented binary as well as static
analysis of the source code is fed to an inference engine. This engine builds an application
knowledge base with the annotated streaming representation of the program. This knowledge
base is used for many tasks. The streaming block diagram and the derived specifications are
presented to the programmer. In addition, the programmer is provided with hints on refactoring
and domain specific transformations of the program. When possible, the system will attempt to
automatically parallelize the application. Appropriate tests are generated to help discover the
program invariants as well as check the compliance of the reincarnated application.

4

Figure 1. Design Flow for Program Reincarnation

5

3 Methods, Assumptions, and Procedures

In this section, we identify and investigate the technologies needed for a program reincarnation
tool.

3.1 Study of Technology Needs and Innovations

We investigated methods that use sophisticated static analysis of source code, however, we
found that information from static analysis is not sufficient. This is mainly due to the complexity
of C program and obfuscation by hand optimizations performed by the users. We could not find
any existing compiler that was able to extract useful high level information from the complex C
programs in our benchmark set.

We have investigated the structure and capabilities of using an application knowledge base. We
identified the application information required for program reincarnation and identified an
application knowledge base format.

We also studied the technology innovations needed for test generation to support program
reincarnation. For example, dynamically detected invariants reveal the properties of the
program's execution over the test suite. Such information can be used in feedback-directed
random testing generation. In addition, the inferred invariants can also be used as a type of
coverage metric such as for test selection and prioritization; more coverage yields a better test
suite. These test generation and evaluation techniques enhance the soundness of dynamic
analysis and help programmers have better understanding of the legacy code for program
reincarnation.

We also studied program refactoring opportunities.

3.2 Assisted Application Reincarnation Tool (AART)

AART is the nerve center of program reincarnation. We demonstrated the feasibility of AART
by showing that our simple annotations can easily be added by the programmer. We created a
process for extracting coarse grained stream data flow from existing C programs to parallelize
these programs by taking advantage of streaming parallelism. We also developed a “global view”
of the program behavior that can be extracted from existing programs.

3.3 Binary Interpretation and Instrumentation

The binary interpretation and instrumentation is critical for gathering the invariant information.
We study the extensions required for current binary instrumentation tools such as DynamoRIO,
PIN and Valgrind. We developed the binary interpretation and instrumentation tool using the
Valgrind system. This analysis tool can gather the necessary profile information and extract the
data dependence patterns from legacy applications. Our tool interprets every program instruction
and recognizes which partition it belongs to. We maintain a table that, for each memory location,
holds the identity of the program partition that last wrote to that location. On encountering a
store instruction, the partition writing to the location is recorded. Likewise, on every load

6

instruction, a table lookup is performed to determine the partition that produced the value being
consumed. Every unique producer-consumer relationship is recorded in a list and outputted at the
end of the program, along with the stream graph and communication macros.

3.4 Inference Engine

We believe that many shortcomings of static program analysis and automatic parallelization can
be mitigated by observing the computations performed by the application at runtime, and
performing machine learning to generalize its observations. The outputs of the generalizations
can be the basis of a program specification given to AART. We have built a simple inference
engine to determine the pipeline and data parallel sections. It is possible to build a more powerful
inference engine using the Daikon system, which is the state-of-art artificial intelligence based
system that can dynamically detect likely high-level program invariants. Those program
invariants are useful in program understanding and used to infer communication patterns, which
are critical to (semi)automatic parallelization and program reincarnation.

3.5 Streaming Representation

In the prototype system we use a simple streaming intermediate representation, loosely based on
the MIT StreamIt compiler. While our primary focus was on streaming applications, we also
studied the source code of five open-source Java projects. We analyzed qualitatively and
quantitatively the change patterns that developers have used in order to retrofit concurrency. We
found out that retrofitting concurrency is not a one time event, but it is a continuous process. The
first motivation for retrofitting concurrency is often to increase the responsiveness, and then later
the throughput of an application. As the application matures and makes more use of concurrency,
the predominant changes fall into fixing concurrency errors, fine-tuning, and improving the
scalability. Given the importance and the length of such transformations, tool developers should
consider (semi)automation for each stage in the concurrency lifecycle in order to improve
programmer productivity.

Many application domains have a rich set of domain specific idioms, program representation
standards and program transformation opportunities. For the domain of streaming applications,
the steady-state communication pattern is regular and stable, even if the program is written in a
language such as C that resists static analysis. We employ a dynamic analysis to trace the
communication pattern between program partitions, which is used to construct a stream graph for
the application as well as detailed list of producer-consumer instruction pairs, both of which aid
program understanding and help track down any problematic dependences.

3.6 Block Diagram and Specification

We have built a tool that can display the parallel regions and the communication pattern in a
programmer friendly block diagram representation. Examples of stream graphs for MPEG-2 and
MP3 appear in Figure 2. The stream graph presents a coherent high-level block diagram of the
application to the programmer.

7

Figure 2. Visualizations Generated by the AART That Shows the
Communication Pattern of MPEG-2 and MP3

3.7 Automatic Parallelization

Automatic parallelization is a critical component in this process. If automatic parallelization is
successful, it will drastically reduce the work required by the programmer. However, decades of
intense research have not achieved fully automatic parallelization. The tool we built performs a
partial automatic parallelization. Using the streaming representation, the program is decomposed
into distinct execution threads and mapped to a multicore architecture. The prototype employs
lightweight programmer annotations, directed by the tool, to achieve a semi-automatic mapping.

3.8 Application Study

We have shown that our tool can extract parallelism out of six real life legacy programs. Three
of these are traditional stream programs (MPEG-2 decoding, MP3 decoding, GMTI radar
processing), and three are SPEC benchmarks (parser, bzip2, hmmer). The characteristics of the
generated parallel stream graphs and performance results on a four-core machine are shown in
Table 1. Our analysis extracts a useful block diagram for each application, and the parallelized

8

versions offer a 2.78x mean speedup on a 4-core machine. Speedups range from 2.03x (MPEG-
2) to 3.89x (hmmer).

Table 1. Characteristics of the Parallel Stream Graphs and

Performance Results on a Four-core Machine

Data-parallel width refers to the number of ways any data-parallel stage was replicated.

3.9 Workshop on Software Forensic Environments

We held a workshop to discuss the software forensic environment – legacy code reuse,
abstraction and representation, portability, and parallelization – concepts at MIT on February
27th 2008. The workshop was attended by the following people:

Table 2. February 27, 2008 Workshop Attendees

Saman Amarasinghe MIT Ras Bodik Berkeley

Bill Harrod DARPA Regina Barzilay MIT

Jon Hiller STA Vivek Sarkar Rice

Robert Miller MIT Ralph Weischedel BBN

Dawson Engler Stanford George Heineman WPI

David Padua UIUC Bill Thies MIT Student

Guang Gao Delaware Vikram Chandrasekhar MIT Student

Una‐may O'reilly MIT Jason Ansel MIT Student

Doug Post HPC Marek Olszewski MIT Student

Rick Pancoast Lockheed Michael Gordon MIT Student

Craig Rasmussen LANL Danny Dig MIT

Cornell Wright LANL Milissa Benincasa BRSC

Bob Chambers Northrop Michael Van De Vanter SUN

Alfred Scarpelli AFRL Daniel J. Quinlan LLNL

James Anderson Lincoln

Doug Post, Craig Rasmussen, Cornell Wright, and Bob Chambers described the legacy code
problems their respective institutes have faced in the past. After a description of ideas from the
software forensics environment study (the Reincarnation of Streaming Applications study) three
breakout groups worked on a problem description that a potential software forensics environment
research effort would attempt to solve; a technology roadmap to support software forensics

Benchmark Pipeline Depth Data-Parallel
Widths

Speedup

GMTI 9 --- 3.03x
MPEG-2 7 --- 2.03x

MP3 6 2,2 2.48x
197.parser 3 4 2.95x
256.bzip2 3,2 7 2.66x

456.hmmer 2 4 3.89x
GeoMean 2.78x

9

environment research and associated innovation and development; and software forensics
environment milestones that could be the basis for research and development and used to
evaluate technical progress. After further discussion this information was refined and a final set
of slides was prepared by the groups (See Appendix A). The workshop highlighted the
importance of the legacy code issues and why we think we will be able to solve this problem.

3.10 Prototypes

We have build a simple prototype that can instrument an existing C program, extract data
movement by executing the program, analyze the data movement to extract the streaming data
patterns, report these patterns to the user using a graphical interface, add annotations to
parallelize the stream components and finally parallelize the program.

10

4 Result and Discussions

In order to demonstrate the feasibility of understanding and extracting the underlying parallelism
from legacy code, we implemented an end-to-end system that takes existing legacy C programs
and, with minimal programmer help, extracts the parallelism. We focused on streaming
applications such as video, audio, and digital signal processing, which are often described in
documentation by a block diagram with a fixed flow of data.

To exploit pipeline parallelism using our system, the programmer annotates the natural
boundaries of pipeline partitions, and then our system records all communication across those
boundaries during a training run. This communication trace is converted to a stream graph that
shows the high-level structure of the algorithm as well as a list of producer/consumer statements
that can be used to trace down problematic dependences. If the programmer is satisfied with the
parallelism in the graph, he recompiles the annotated program against a set of macros that are
emitted by our analysis tool. These macros serve to fork each partition into its own process and
to communicate the recorded locations using pipes between processes.

We have applied our methodology to six case studies: MPEG-2 decoding, MP3 decoding, GMTI
radar processing, and three SPEC benchmarks. Our tool was effective at parallelizing the
programs, providing a mean speedup of 2.78x on a four-core architecture. Despite the potential
unsoundness of the tool, our transformations correctly decoded ten popular videos from
YouTube, ten audio tracks from MP3.com, and the complete test inputs for GMTI and SPEC
benchmarks.

11

5. Conclusion

To summarize, this work makes the following contributions:

- We have shown that for the class of streaming applications, pipeline parallelism is very stable.
Communication observed at the start of execution is often preserved throughout the program
lifetime, as well as other executions. While the code can be complicated, the underline
communication pattern is simple and is amenable to extraction.

- We have defined a simple API for indicating potential pipeline parallelism in the program.
Comparable to threads for task parallelism or OpenMP for data parallelism, this API serves as a
fundamental abstraction for pipeline parallelism.

- We developed a dynamic analysis tool for tracking producer/consumer relationships between
coarse-grained program partitions. The tool outputs a stream graph of the application, which
validates or refutes the parallelism suggested by the programmer. It also provides a detailed
statement-level trace and a set of macros for automatic parallelization.

- We applied our methodology to six case studies, encompassing MPEG-2 decoding, MP3
decoding, GMTI radar processing, and three SPEC benchmarks. We extracted meaningful stream
graphs of each application, and achieve a 2.78x mean speedup on a four-core architecture.

12

6. Recommendations

It is clear that legacy program code is an extremely important issue for US competitiveness and
national security. The conclusion of the software forensic environment workshop is that the
advent of multicore and other technologies will make the legacy problem even more acute as
applications will be forced to restructure because of these technologies. Thus, finding a solution
to the legacy problem is of great national importance.

We observed that, today, we are closer to finding a viable technological solution for this
problem. However any viable solution will have to combine aspects of multiple emerging
technologies in different areas such as program understanding, analyses and compilation,
program verification and testing, and human interfaces. This will require a substantial effort and
will need to bring together researchers from these separate communities.

13

7. References

A Practical Approach to Exploiting Coarse-Grained Pipeline Parallelism in C Programs.
William Thies, Vikram Chandrasekhar, Saman Amarasinghe. International Symposium on
Microarchitecture. Chicago, IL. December, 2007.

“The Daikon system for dynamic detection of likely invariants” Michael D. Ernst, Jeff H.
Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz, and Chen
Xiao.
Science of Computer Programming, vol. 69, no. 1--3, December, 2007, pp. 35-45.

“How do programs become more concurrent? A story of program transformations” by Danny
Dig, John Marrero, and Michael D. Ernst. MIT Computer Science and Artificial Intelligence
Laboratory technical report MIT-CSAIL-TR-2008-053, (Cambridge, MA), September 5, 2008.

“Refactoring sequential Java code for concurrency via concurrent libraries” by Danny Dig,
John Marrero, and Michael D. Ernst. MIT Computer Science and Artificial Intelligence
Laboratory technical report MIT-CSAIL-TR-2008-057, (Cambridge, MA), September 30,
2008.

“Feedback-directed random test generation” by Carlos Pacheco, Shuvendu K. Lahiri,
Michael D. Ernst, and Thomas Ball. In ICSE'07, Proceedings of the 29th International
Conference on Software Engineering, (Minneapolis, MN, USA), May 23-25, 2007, pp. 75-
84.

14

List of Acronyms, Abbreviations, and Symbols

Acronym Description
AART Assisted Application Reincarnation Tool
DoD Department of Defense
MPEG-2 MPEG-2 video decoder, M(oving) P(icture) E(xperts) G(roup) - 2 is a
 standard for coding of moving pictures and associated audio information
MP3 MP3 audio decoder, MP3 (MPEG-1 Audio Layer 3) is a digital audio
 encoding format
GMTI Ground Moving Target Indicator
bzip2 Compression and decompression algorithm
hmmer Calibrating HMMs for biosequence analysis
HMM Hidden Markov Model
SPEC Standard Performance Evaluation Corporation

Appendix A Final Slides from Software Forensic Environment Workshop

SFE Workshop
8:00 – 8:30 Breakfast

8:30 10:05 Description of the Legacy problem from the DOD/DOE user community8:30 – 10:05 Description of the Legacy problem from the DOD/DOE user community

8:30 – 9:00 Doug Post, HPC

9:00 – 9:30 Craig Rasmussen and Cornell Wright, LANL

9 30 9 55 B b Ch b N th G9:30 – 9:55 Bob Chambers, Northrop Grumman

9:55 – 10:05 Rick Pancoast, Lockheed Martin

10:05 - 10:15 Break

10:15 - 11:00 SFE: current thinking and plan of action (Bill & Saman)

11:00 - noon Breakout working groups

Problem Description (D407)

Technology Roadmap (this room)

Milestones and Evaluation (D451)

noon - 1:00 Lunch

1:00 - 2:00 Breakout working groups continued

2:00 - 3:30 Feedback from the working groups

3:30 - 3:45 break

3:45 - 4:45 General discussion

4:45 - 5:00 Wrap-up
15

SFE: Software ForensicsSFE: Software Forensics
Environment

16

Legacy Code
• 310 billion lines of legacy code in industry today

60 80% of typical IT budget spent re engineering legacy code– 60-80% of typical IT budget spent re-engineering legacy code
– (Source: Gartner Group)

E bi bl f th D D• Even a bigger problem for the DoD
– Lifetime of systems are much longer in DoD

Mi i iti l d hi hl ti i d f th i i l– Mission critical code were highly optimized for the original
machine

N d t b i t d t lti hi• Now code must be migrated to multicore machines
– Current best practice: manual translation

17

SFE: Software Forensics Environment
• Solve the problem of modernizing the legacy code base

C t ithi DARPA IPTO t h d th• Create a program within DARPA IPTO to spearhead the
innovation of necessary technology

Th i id f th• The main idea of the program
– Invent the technologies needed to transform a legacy program into a

“modernized replica”
• The modernized replica behave identically to the original program

• Goals of the program
– The cost of transformation is greatly reduced (by 100x to 1000x)
– Errors and deviations of the transformed program is reduced (eliminated?)

The modernized replica can be trivially mapped in to multiple current– The modernized replica can be trivially mapped in to multiple current
architectures

– Modernized replica can take advantage of multicore and other forms of
ll li i d hit tparallelism in modern architectures.

– Modernized replica is easy to understand and manage
18

SFE Outline

Original Program
(+(source +

executable)

Modernized
Replica

Program
Specification &
Documentation

“Mostly” AutomatedSFE
Transformation

Process

Executable Executable
(X86-multicore) (cell)

19

SFE Transformation Process
• Start with the existing program

– Assumes that we haveAssumes that we have
• Compilable/buildable source
• Working executable + test suite

• Produce a Modernized Replica

• Holistic process involving tools and programmersp g p g
– Each team proposes a process
– The process can involve

• Static program analysis and model checking
• Dynamic analysis and testing
• Tools to assist the programmer (HCI)Tools to assist the programmer (HCI)
• Learning
• Automated and assisted program transformation
• Programmer education and training

20

Program Reincarnation:

O i i l

A Holistic Approach
• Dynamic analysis

– Managed program execution Legacy

.exeOriginal
Compiler

Original
Binary

Domain
Knowledge

Managed program execution
– Program invariant inference
– Application knowledge database

• Assisted parallelization

Legacy
Program

Source File

.c

Automatic
Parallelization

Binary interpreter
Instrumenter and
Binary interpreter

Managed
Program
Execution

Knowledge
Database

Domain

• Assisted parallelization
– GUI tool

• Correctness in reincarnated
Test Generation Static

Analysis
Program Invariant
Inference Engine

.log Application
Knowledge

(program Known Idiom

Knowledge
Extraction

– Test Generation
– Divergence Analysis

• Static analysis
A t ti ll li ti representation & representation &

invariants)

Known Idiom
Identification

&
Domain

Hint
Generation

.log Test GenerationDivergence
Analysis

R f t i

– Automatic parallelization
– info for program understanding

• Learn about the domain

Compiler & Reincarnatexe
Assisted

Application

Managed
Program
Execution

Refactoring
Identification

– Flag domain specific issues
– Generate domain-specific hints

• Bring programs to modern age
Compiler &

Instrumenter ed .c
.exe Application

Reincarnation
Tool

Block Diagram
Representation

– Block diagram
– Refactoring identification

21

Modernized Replica
• Functionally equivalent to the original program

– Original program as the specification

• Convertible to an executable form
– Preferably an automated path to multiple platforms

• Will provide the following benefits
– Ability to easily create an executable for multiple modern computer systems
– Ability to extract performance from modern computer systemsAbility to extract performance from modern computer systems

• multi-processor, multicore and/or SIMD parallelism
• new memory systems

Restructured to make it adhere to modern software engineering practices– Restructured to make it adhere to modern software engineering practices
– Exposes the high level structure and provide better documentation to make it more

programmer-comprehensible
Simplify maintenance and provide the capability to expand the program– Simplify maintenance and provide the capability to expand the program.

• SFE Support many choices (each teams propose one)
– Examples: StreamIt, Mathlab, etc.Examples: StreamIt, Mathlab, etc.

22

Breakout Sessions
• Small working groups (6 to 12)

I h i t• In each group appoint
– A Moderator
– A ScribeA Scribe

• In the first session
– Try to define what should be done in the programTry to define what should be done in the program
– Bring questions and discussion points on

cross-cutting issues to lunch

• Working lunch
– Discuss some of these issues (1 slide summary by each scribe)

• In the second session
– Get into the detailed description (specification)

• In the general discussion session
– Each group gets 20 minutes to present23

I Problem Description
• A clear and crisp description of the legacy problem

• What should be the scope of SFE?What should be the scope of SFE?

• Should SFE be confined to a single:
– Class of programs and/or Input language
– IDE
– Language of the modern replica

• Domain of the legacy code• Domain of the legacy code
– FORTRAN, C, MPI, or chosen by the proposer?
– Signal processing, simulations or chosen by the propser?
– Should we select a set of benchmarks?

• Programs with both a legacy version and a hand modernized version?

• Types Modernized ReplicaTypes Modernized Replica
– Leave it for the teams to propose a format?

• Mathlab, C with libraries, StreamIt etc.

• Room D407
24

II Technology Roadmap
• What technologies should be part of SFE?

• For each technologyFor each technology
– Why is it not done today?
– What can be reasonably achieved during the program?

How can that drastically improve the SFE process?– How can that drastically improve the SFE process?

• Examples
– Use unsound techniques, give “mostly sound” suggestions to the userq , g y gg
– Use the working program as a prototype

• static and dynamic techniques to generate a “specification”
• Help test the modernize replica for the compliance with the working program• Help test the modernize replica for the compliance with the working program

– Use natural language processing type techniques to identify similar/interesting
parts in a large code base
Use learning to identify repetitive and frequent tasks and provide hints to the user– Use learning to identify repetitive and frequent tasks and provide hints to the user

• This Room (Star)

25

III Milestones and Evaluation
• Reduced cost (by 100x to 1000x)

– If the process is fully automated trivial
P i l di ?– Programmer involvement user studies?

• Can we find a set of applications with original legacy version and a version modernized
using current practices that can be used as the base case?

• Reduction of errors and deviations
– What is a good measurement?

• Modernized replica trivially map in to multiple modern architecturesp y p p
– “trivially map”: Automated tools, no programmer intervention
– “multiple modern architectures”: at least one distributed memory multicore (cell or Tile64) and

one shared memory multicore (core 2 duo or niagara)

• Modernized replica is efficient and effective
– Show speedups against the original program on that architecture
– Show scalability from one core to max number of cores availabley

• Modernize replica can be easy to understood and managed
– How to measure quality of the specifications created?
– How to measure malleability and extendibility of original vs modernized replica?How to measure malleability and extendibility of original vs. modernized replica?

• Room D451
26

Breakout Session Assignments
I Problem Description (D407)
II Technology Roadmap (this room)
III Milestones and Evaluation (D451)

AM PM AM PM
Saman Amarasinghe roam roam Vivek Sarkar M&E TR

()

g
Bill Harrod roam roam Ralph Weischedel TR TR
Jon Hiller M&E M&E George Heineman TR TR
Robert Miller M&E M&E Bill Thies PD TRRobert Miller M&E M&E Bill Thies PD TR
Dawson Engler TR TR Vikram M&E TR
David Padua PD PD Jason Ansel TR PD
Guang Gao PD TR Marek Olszewski TR M&EGuang Gao PD TR Marek Olszewski TR M&E
Una‐may O'reilly TR TR Michael Gordon M&E TR
Doug Post PD M&E Danny Dig TR PD
Rick Pancoast PD PD Milissa Benincasa PD PDRick Pancoast PD PD Milissa Benincasa PD PD
Craig Rasmussen PD PD Michael Van De Vanter M&E TR
Cornell Wright TR M&E Daniel J. Quinlan TR TR
Bob Chambers M&E M&E Al Scarpelli PD PDBob Chambers M&E M&E Al Scarpelli PD PD
James Anderson TR M&E Regina Barzilay TR
Ras Bodik TR TR 27

SFE Problem Description

28

What is the Problem?

• Billions of dollars are currently invested in
operational systems
−National Security and Economic Interests exist to sustain y

the operational capabilities of these systems
−Software lifetime for these systems is 20+ years

• The lifetime of hardware installations for current
DOE S t i 18 36 thDOE Systems is 18 – 36 months
− The legacy software applications must run on the next

generation architecture as well as previous versions

• Currently DOE legacy software is ported to the • Currently DOE legacy software is ported to the
next generation architecture by hand
− This is expensive and a time intensive process

Estimated current cost per line of code to rewrite the code is p
$100.00, average lines of code for a single DOE application is a
half a million. Therefore the cost for one application is 50
million dollars.

MANUAL PROCESS IS ERROR PRONE!

2MB - 5/2/2007
29

What is the Objective?

• Maintain and extend DOE flagship
applications in support of National Security
i t t d E i titiinterests and Economic competitiveness

−Need the capability of transforming these applications to
run on new hardware architectures

−Need tools/techniques to:

Reduce errors in porting/transforming the application
Reduce application development costs
Improve application code maintainabilityp o e app cat o code a ta ab ty

−Keep acceptable performance

3MB - 5/2/2007
30

Program Approach

• Define high-level program abstraction
which will allow the transformation of
legacy applicationslegacy applications

• Develop semi-automated mechanisms to
transform legacy applications into the
modern replicamodern replica

• Define and create analysis tools to aid
humans to understand and preserve the
knowledge contained in the legacy
application

• Develop tools to ensure program Develop tools to ensure program
correctness throughout the
transformation process

• Develop tools to assist in the maintenance • Develop tools to assist in the maintenance
of transformed programs

4MB - 5/2/2007
31

SFESFE
WorkshopWorkshop

IC Conversion Issues into the new ODOE
Environment

Robert Chambers
Business Development Enterprise Architect

Copyright 2008 Northrop Grumman Corporation0 2/21/2008

Business Development Enterprise Architect
Mission Systems
Northrop Grumman Corporation

32

Overview

IC Transformation Overview
Overview of current processing paradigm

Explain current architecture
Director of National Intelligence (DNI) Framework
New Driving requirements
E l i R l iEvolution vs. Revolution

How to convert monolithic stove pipe APIs into
component services that leverage the newcomponent services that leverage the new
technologies

Discussion

Copyright 2008 Northrop Grumman Corporation1 2/21/2008
33

IC Transformation Overview

The intelligence community (IC) is in the process of
revolutionizing its computing infrastructures to exploit
i ti i i t di h i

g p g p
innovations in emerging system paradigms, such as service-
oriented and event-driven architectures.

This development permits consolidation and integration of
diverse systems to dramatically increase intelligence asset y y g
value and enable new levels of autonomic cross-intelligence
collaboration and system intelligence.

The goal is to produce intelligent autonomic systems that
are virtual, event driven, and secure in a globallyare virtual, event driven, and secure in a globally
distributed environment.

The unique challenges in servicing the future IC are
Continual High-bandwidth data ingest rates with low latency
ti i i ttiming requirements
Complex-event processing (CEP)
Knowledge management and retention
I t lli l t lid ti d t tiIntelligence analyst process consolidation and automation
Intelligent network development
Fielding intelligent secure networks

Copyright 2008 Northrop Grumman Corporation2 2/21/2008
34

Extending the SOA model out to 2020
adds the following new capabilities:g p

A development environment that is fully service-oriented with
complete registry integration and governed via integrated

kfl t
p g y g g g

workflow management.
Security that is included from service concept to service
retirement as an integral part of the SOA.

Security becomes a set of services within the SOASecurity becomes a set of services within the SOA.
An autonomic on-demand operating environment that is self-
aware and self-managing.

It load-balances and optimizes the infrastructure to meet p
service contracts and quality-of-service agreements on the fly.

High-performance grid computing with high-speed,
externalized, shared-memory buses between computing nodes
with high redundancy and failover.with high redundancy and failover.
An intelligent network with intelligent application-aware
routers that route global messaging traffic for optimal
performance.
S i th t d i ll fi th l t tServices that can dynamically configure themselves to meet
objectives as in grammar-oriented architectures.

Copyright 2008 Northrop Grumman Corporation3 2/21/2008
35

Current IC Architectural OverviewCurrent IC Architectural Overview

“The Stovepipe Paradigm”

Copyright 2008 Northrop Grumman Corporation4 2/21/2008
36

Current IC Processing Paradigmg g
Hundreds of Megabytes/Sec to Gigabytes/Sec
continually (24X7X365)
M P t b t f StMany Petabytes of Storage

SAN and NAS
Structured (Database)Structured (Database)
Unstructured (Flat files with Metadata)

Product timeliness in the minutes
Very I/O Intensive algorithmic monolithic processing

Extensive use of SMP Virtual Memory
Super Computers packed full of CPUs to get
enough memory to build the Virtual Memory
Memory managed through project developedMemory managed through project developed
mechanisms

Hundreds of Systems
Milli f li f d (F t C C JAVA)

Copyright 2008 Northrop Grumman Corporation5 2/21/2008

Millions of lines of code (Fortran, C, C++, JAVA)
37

Example Current Processp

New Determine

IC

Systems
Engineering

Program
Management

New
Work

Determine
Scope

Block

Operational
Problems

List of possible
work packages

Money
Schedule
Priorities Scope

Definition

p g

IPT

People
Resources

Software
Development

IPT

IPTCM
Baseline

…
People

Integration
&Operations

Block

Problem Reports OOA, OOP, UT

Copyright 2008 Northrop Grumman Corporation6 2/21/2008

Test
p

Block

38

Processing Example
(Adding a New Branch to the object requires “Everyone” to change!)(g j q y g)

Obj K l d T

Stage 1 Processing Stage 2 Processing Stage n
Processing

Object Knowledge Tree

Shared
Memory
Segment Available

Memory

OS
Memory

Memory

OS
Memory
Usage

Available
Compute
Capability

Compute
Usage

Usage

p y

Deflate Inflate
… Deflate

Copyright 2008 Northrop Grumman Corporation7 2/21/2008

Compressed Object Tree
Raw Data Ingest

39

New Driving requirementsg q
The IC Stove Pipe architecture resulted for a number of reasons

Security
FundingFunding
Mission Unique Requirements
Etc…

The result has manifested into Processing Centers that have noThe result has manifested into Processing Centers that have no
floor space, have Power & Cooling issues, and staggering TCO to
maintain an ever increasing variety of ageing hardware equipment
and software licenses.
With decreasing congressional funding less and less money isWith decreasing congressional funding, less and less money is
being allocated to keep up with emerging threat technologies.
The IC has no choice but to modernize.
The Federal Enterprise Architecture (FEA) and the Director of p ()
National Intelligence (DNI) are the governing bodies for the
facilitation of this change

http://www.whitehouse.gov/omb/egov/a-2-EAModelsNEW2.html
http://www dni gov/

Copyright 2008 Northrop Grumman Corporation8 2/21/2008

http://www.dni.gov/

40

Evolution vs. RevolutionEvolution vs. Revolution

The Chicken or the Egg!

Partner
Grid Domain
and Servers Partner

Firewalls

and Servers

Copyright 2008 Northrop Grumman Corporation9 2/21/2008
41

How Do We Get There?
How Do We Manage It?g

Copyright 2008 Northrop Grumman Corporation10 2/21/2008
42

Multi-Int Core Reference Architecture
For Official Use Only

Vi
ew

er

New Application
Views

Web
Portal

GOTS/COTS/OTS
Client Views Web-Based ViewsWeb-Based Views

Visualization User AuthenticationCollaboration
GOTS

Processors

DM
Z

WAN
JWICS

SIPRNET
Natl IMINT

Pr
oc

es
sTask IntegrationWorkflow & Messaging Services

Exploitation WorkflowCollection Workflow
Adapters

rib
ut

ed
ee

ni
ng

ti-
IN

T
oi

ta
tio

n

B
Se

rv
ice

sio
n

em
en

t

ta
tio

n
em

en
t

ul
ti-

IN
T

ali
za

tio
n

l T
as

kin
g

rib
ut

ed
 P

lan
ni

ng

y T
ar

ge
t

Se
rv

ice

 S
er

vic
es

lic
at

io
n

er
vic

e

vic
es

fra
st

ru
ct

ur
e

MTIX/
JSWS

DE

Video

Natl IMINT

VPCPredator

U 2

MTI
U-2

JSTARS

Application Framework Backplane

Service
Integration

Di
st

Sc
re

Mu
l

Ex
pl

o

TC
TF

/IP
B

Mi
ss

Ma
na

ge

Ex
pl

oi
t

Ma
na

geMu Vi
su

Ex
te

rn
al

Di
st

r
Se

ns
or

So
ftc

op
y

Fo
ld

er
 S

Fu
sio

n

Ne
w

Ap
pl

Ne
w

Se

Se
cu

rit
y S

er
v

m
un

ica
tio

n
In

f

S&WSIGINT

NT

U-2

U-2

RJ

GH

to
ryData Access Data Services

D D D D Srv Srv Srv Srv Srv
Data IntegrationCIP

Mngr

CIP

et
ec

tio
n

Co
m

m

IM
IN

Re
po

sit

Maps
MIDB

IMINT,
MASINT New Data

Stores

Temp
Store

Mngr

MTI,
Video
St

Meta Data
C t l

Multi
Viz Store

In
tru

sio
n D

e

Copyright 2008 Northrop Grumman Corporation11 2/21/2008

Stores Stores Stores
DPC Stores CatalogViz Store

43

Summaryy

Copyright 2008 Northrop Grumman Corporation12 2/21/2008
44

The IC has World Class Processing Problemsg

The 2020 IC SOA described here is much more than today’s
notion of a service-oriented architecture.notion of a service oriented architecture.
The 2020 SOA vision:

Is a service-oriented, event-driven, virtualized, grid computing
fabric that is knowledgeable and self-awarefabric that is knowledgeable and self aware
Manages the many complexities of advanced computing
infrastructures automatically with minimal human intervention
Is self-optimizing and self-adjusting to meet the ever-Is self optimizing and self adjusting to meet the ever
changing needs of the IC enterprise
Can be easily expanded and adjusted by humans to
encompass new mission needs

This revolutionary way of doing business in the IC, will be
procured and implemented over the next few years.

Once operational, the IC SOA/grid/EDA will continue to
l t h l i l d i d l d ievolve as new technologies are plugged in and played in

support of the evolving intelligence environment.

Copyright 2008 Northrop Grumman Corporation13 2/21/2008
45

Discussion & Questions

Copyright 2008 Northrop Grumman Corporation14 2/21/2008
46

BackupBackup

Copyright 2008 Northrop Grumman Corporation15 2/21/2008
47

Multi-Stage Transformation is Requiredg q

1. Build the Revolutionary Infrastructure
2 W P i h i S i2. Wrap Legacy Processing so that it runs as Service

Based on the new infrastructure
3. Decompose Legacy Processing into functional 3 eco pose egacy ocess g to u ct o a

elements
Abstract functional elements into encapsulated
services available for reuseservices available for reuse
Model encapsulated services into late binding
compound services and generate BPEL
Build Workflow Plans to perform an end-to-end
thread
Test and ValidateTest and Validate

4. De-Commission Wrapped Legacy API
5. New processing becomes operational

Copyright 2008 Northrop Grumman Corporation16 2/21/2008
48

Technology Needs

Copyright 2008 Northrop Grumman Corporation17 2/21/2008
49

ON DEMAND OPERATING ENVIRONMENT

Portal
This is really hard
to do and is key to y

future success!

V
M S
O

V
M

V
M

V
M

V
M V

S
hared M

Shared Memory

M
 Im

age 1

O
A

 Im
age

M
 Im

age 2

M
 Im

age 3

M
 Im

age 4

M
 Im

age n

G
rid M

an

P
rovision

V
M

w
are M

S
ecurity

W
orkflo

M
em

ory M

M
on

Q
ue

P
ub/

High Speed ESB

Grid Framework

Services

nager

ning

M
gr.

y ow

M
gt.

nitor

ery

S
U

B

Network ManagementResource Management Data Management

Enterprise Service Bus

Copyright 2008 Northrop Grumman Corporation18 2/21/2008

General Purpose Processors Storage Area Networks LAN/WAN

50

Event-Driven Applicationspp

Event processing and
analysis are critical to theanalysis are critical to the
formulation of sound
intelligence.
The IC’s job is to predict

d t tiand prevent negative
complex events such as
those of 9/11.

Two emerging fieldsTwo emerging fields
EDA and CEP will be
an integral part of the
IC’s 2020 SOA.

EDA applications can be sorted
into four categories: the first
three are aimed at engineering
better intelligence systems;better intelligence systems;
the fourth, CEP, is aimed at
expanding insight:

Copyright 2008 Northrop Grumman Corporation19 2/21/2008
51

Simple Eventsp

Simple EDA, where application programs explicitly
d d i di tl t d fsend and receive messages directly to and from

each other
For example through message-orientedFor example, through message oriented
middleware or Web services.

This is the publish and subscribe model.

Knowledge &
Information

Intelligence
Inputs Event

Publish Stores

Knowledge &

Subscribe

SOA ESBs are good at this!

Knowledge &
Information

Stores

Copyright 2008 Northrop Grumman Corporation20 2/21/2008
52

Integration Brokerg

EDA mediated by integration brokers, which
t f d t i l ttransform and route simple-event messages
according to logical rules. This can be viewed as
rule-based event processing.

Intelligence
I t Event

Publish Knowledge &
InformationBroker EventInputs Event Information

Stores
Broker

S&F S i

Event

Transform and
Rout on Contents

Subscribe

Commercial Java
Messaging Services
implementations

S&F Service
Provider

implementations
are good at doing
this… Rules UDOP

Copyright 2008 Northrop Grumman Corporation21 2/21/2008
53

Event-enabled processesp

EDA directed by business-process-management
(BPM) i hi h d t th d t d fl(BPM) engines, which conduct the end-to-end flow
of a multi-step process using BPM-oriented events.

Intelligence
I t Event

Publish
Knowledge &
InformationEvent

Business
Process

There are a limited

Inputs Event Information
Stores

Event

Manage Process

Process
ManagementSubscribe

number of
commercial
products available

Service
Providerproducts available

First form of
autonomic processing

Copyright 2008 Northrop Grumman Corporation22 2/21/2008

Rules UDOP

54

Complex-event processing
This is really hard
to do and is key to

future success!p p g
CEP applications, where a sophisticated event
manager or network of event-processing agents
logically evaluates multiple events from one or morelogically evaluates multiple events from one or more
event streams to provide better insight for sense-
and-respond applications and business-activity
monitoring. g
This type of monitoring is used for signal analysis,
security vigilance, and related functions. The
processing can occur in any intelligent device (e.g.,

id ti d i t lli t t k
p g y g (g ,
grid computing nodes or intelligent network
devices).

i bli h

Business
Activity

M it i

Complex
EventEventIntelligence

Inputs Event
Publish MonitoringEvent

Filter, Aggregate

Event-
Processing

Agent
Complex Event-

Subscribe

We are having
to build as
custom applications Rules

Event Processing
Agent

Copyright 2008 Northrop Grumman Corporation23 2/21/2008

Need standards based
Autonomic capabilities

55

SFE: Software Forensics Environment A
DoD Systems Integrator Perspective

SFE W k hSFE Workshop

Prepared for the SFE Workshop and DARPA IPTO at MIT

Presented by: Rick Pancoast

856-722-2354

rick.pancoast@lmco.com

Lockheed Martin MS2 - Moorestown, NJ

28 February 2008

56

Legacy DoD Code

• Legacy DoD Code Exists in Many Languages, Some
Obscure

• Today, C and C++ are common
• Legacy: Ada, Jovial, CMS-2, FORTRAN, etc.

• TADSTAND C (Tactical Digital Standard, ~ 1990)
Mandated all DoD Code be Written in Ada (HOL) or
Assembly Language (including CMS-2 [UYKs])y g g (g [])

• This is why it is the way it is
• Needed SECDEF dispensation to deviate from the TADSTAND

• With the DoD Push for COTS and Open Architecture
(OA), there has Been a 180˚ Turnabout

• TADSTANDS are no longer invoked

Rick Pancoast
Page 2

g

But the “Mess” is Out ThereBut the “Mess” is Out There

57

DoD Code Conversion Has Been Done

• DoD Has Used Code Conversion Software, and Hand Conversion
• Johns Hopkins APL CMS-2 to Ada Used Experimentally in late 80’s
• Command & Control: CMS-2 to C++ (Open C&D); Hand Ada to C++
• Weapons: Ada to Java (hand conversion)

• Commercial Code Conversion is also Rampant:• Commercial Code Conversion is also Rampant:
• Java to Visual C# [Microsoft Java Language Conversion Assistant 2.0]
• C to C++ [Free Software Foundation]
• C to VHDL is Popular p
• Datatek (Business partner with IBM and Sun)

Provides “Language Conversion Services”
• TSRI, Many Others . . .

• No One is Really Addressing the Multicore Issue
• Application Software needs to be Mapped Efficiently to Multiple Processors

C d C i H B U d b D DC d C i H B U d b D D

Rick Pancoast
Page 3

Code Conversion Has Been Used by DoD -
And it Does Work . . . But . . .

Code Conversion Has Been Used by DoD -
And it Does Work . . . But . . .

58

DoD Code Conversion and Validation

• Code Conversion is Probably the Easy Part
• Code Can be Quickly Checked for Proper FunctionalityCode Can be Quickly Checked for Proper Functionality

• The Tough Part is Verifying and Validating the Converted
Code - to the Same Pedigree as the Original Codeg g

• A Significant Portion of Development Cost is Validation and Verification
• Regression Testing Can be Very Costly (Error Branches, etc.)
• Automated Regression Testing (as Part of the Conversion Process) Would g g ()

be Extremely Valuable

• SFE Can Provide a Valuable Tool for DoD
• Code Conversion (with Multicore - Multiprocessor Target Architecture)
• Converted Code Verification and Validation
• Regression Testing

Rick Pancoast
Page 4

Sample DoD Code Can Be Used for VerificationSample DoD Code Can Be Used for Verification

59

Why Is DoD Concerned with
Embedded Software?

Courtesy of Dr.
Jeremy Kepner,

$3.0
Software
Hardware

f
Source: “HPEC Market Study” March 2001

Estimated DoD expenditures

MIT Lincoln Lab

$2.0 for embedded signal and
image processing hardware
and software ($B)

$0 0

$1.0

$0.0

FY98
FY99
FY00
FY01
FY02
FY03
FY04
FY05

COTS i iti ti h hift d th b d f “ i t d i ”• COTS acquisition practices have shifted the burden from “point design”

hardware to “point design” software

• Software costs for embedded systems could be reduced by one-third with

Rick Pancoast
Page 5

y y

improved programming models, methodologies, and standards
MIT Lincoln Laboratory

60

To Port Or Not To Port ThereTo Port Or Not To Port ThereTo Port Or Not To Port. There
Is No Question*.

To Port Or Not To Port. There
Is No Question*.

Douglass Post – DoD High Performance
Computing Modernization ProgramComputing Modernization Program

Robert Gold – DoD Defense Research and
Engineering

MIT Computer Science Dept./DARPA Workshop on Code Porting/Reuse

10/6/20091

p p / p g/

Feb 28, 2008, MIT Computer Science Dept., Cambridge, MA

*Apologies to W. Shakespeare
61

55,000 processors
330 TFlops-2008
560 TFlops-2009

10/6/20092
62

Exponential Growth In Supercomputer Speed And
Power Is Making It A “Disruptive” Technology.

1015

)

Enable paradigm shift
• Potential to change the

1013

FL
O

P
s/

s)way problems are
addressed and solved

• Make reliable

109

1011

r P
ow

er
 (Make reliable

predictions, about the
future*
Superior engineering &

107

10
C

om
pu

te• Superior engineering &
manufacturing

• Enable research to

105
1960 1970 1980 1990 2000 2010

Year

make new discoveries
• A vastly more powerful

solving methodology!

10/6/20093

Year

Computer power comes at the expense of complexity!

solving methodology!

*Apologies to Yogi Berra
63

The future is exa-flops/s (1018 Flops)
Computing Power

for the world's fastest computer
(Floating Point Operations/s) Extrapolation to 2020

106

108

P/
s)

(1-10 GFlops/core)
2000: 7.2 TFLOPs/s

5000 cores

A Brave New World

100

104

ce
 (G

FL
O

P~5000 cores
2010: 2x103 TFLOPs/s

105-6 cores

0 01

1

er
fo

rm
an

c

2020: 106 TFLOPs/s
108-10 cores

H d
0.0001

0.01P
eHow do we program

for 108-10 cores?
Especially if the

10/6/20094

10-6

1940 1950 1960 1970 1980 1990 2000 2010 2020

Year

p y
cores are different?

64

The DoD replaces its supercomputers every
four years!

HPCMP Modernizes DoD computing with $50M annual purchases.
Peak Equiv.

Number HABU No. of GFLOPS of
f R ti A il f 1 024of Rating Avail of 1,024-

Actual per 1,024 Memory PEs Actual PE
PEs PEs (GB) PEs HABU

ERDC SGI Origin 3900 1,024 3.08 1,024 1,008 1,434 3.08
Cray XT3 (Upgrade) 8,320 11.54 16,640 8,192 43,264 93.76
Cray Hood 8,848 10.39 17,696 8,608 40,701 89.76

IBM R tt P4 2 944 6 55 5 968 2 832 20 019 18 83

MSRC Systems

NAVO IBM Regatta P4 2,944 6.55 5,968 2,832 20,019 18.83
IBM Cluster 1600 P5 2,976 12.31 5,952 2,816 20,237 35.78
IBM Cluster 1600 P5 1,504 13.66 3,008 1,408 10,227 20.06
IBM Regatta P4 1,408 2.10 1,408 1,328 7,322 2.89
IBM Regatta P4 512 6.55 736 464 3,482 3.28

ARL SGI Altix Cluster (D) 256 8.68 256 256 1,536 2.17
IBM Opteron Cluster 2,372 4.73 3,456 2,304 10,437 10.96
Linux Networx Xeon Cluster

2,100 5.80 4,096 2,048 12,852 11.89
Linux Networx Woodcrest Cluster

4,286 16.07 8,572 4,160 51,432 67.26
Linux Networx Dempsey Cluster

3,360 10.86 6,720 3,336 21,504 35.63, , , ,
Linux Networx Cluster 256 5.21 256 256 1,567 1.30

ASC IBM Regatta P4 (D) 32 2.55 32 32 166 0.08
SGI Origin 3900 2,048 3.08 2,048 2,032 2,867 6.16
SGI Origin 3900 (D) 128 1.90 128 128 179 0.24
HP Opteron Cluster 2,048 6.71 4,096 2,048 10,650 13.42
SGI Altix Cluster 2,048 6.84 2,048 2,000 12,288 13.68

10/6/20095

SGI Altix Cluster 2,048 6.84 2,048 2,000 12,288 13.68
SGI Altix 4700 (Density) 256 12.02 1,024 250 1,638 3.00
SGI Altix 4700 (8192 2GB Density,
1024 4GB Memory) 9,216 12.02 22,528 9,000 58,982 108.14

54,506 332,784 541.4MSRC Totals 12/2007
65

LLNL and LANL have had a new supercomputers roughly every 3
years since 1943 & a new programming paradigm every 10-15 years

Joe Requa Doug Post

1013

1015

ASCI Blue (LANL LLNL)

ASCI (proposed)

ASCI (proposed)

Machines number
UNIVAC/650 1
IBM 701(Fixed) 1
IBM 702(2-Drums) 1
IBM 709 1
LARC 1
STRETCH 7030 1

1960 1970 1980 1990 20001953
Post and Cook, 2000 Joe Requa, Doug Post

1011

Intel Delta, CM-200, ...

CRAY T3D, CM-5

PS
)

ASCI Red (SNL)

ASCI Blue (LANL, LLNL) IBM 7094 2
CDC 3600 1
CDC 6600 3
CDC 7600 5
CDC Star 2
Cray 1 5
Cray XMP 3
Cray YMP 2
Meiko CS-2 1

LANL

107

109

Projection
Published
in 1983 CDC 6600

CDC 7600
CRAY 1

CRAY X-MP

CRAY Y-MP

CM-1Early commercial
parallel computers

Intel Gamma, CM-2, ...

O
N

S
PE

R
 S

EC
O

N
D

 (O
P

Cray J-90 3
DEC 8400 5/300 1
DEC 84005/440 1
DEC Tera Cluster 1
DEC Compass Cluster 1
DEC Forest Cluster 1
Compaq TeraCluster TC 1
Compaq SC Cluster 1
IBM SP ID 1

LLNL

105 Serial

Vector

Parallel

IBM 7030

IBM 704

MANIAC

O
PE

R
AT

IO IBM SP ID 1
IMB ASCI SKY 1
IBM ASCI Blue 1
IBM ASCI White 1
SGI Origin2000 3
Sun Sunbert 1
Assembly language
Fortran
C
C++

Languages

101

103
SEAC

Electro-Mechanical
Accounting Machine

C++
batch
Octupus/LTSS/CTSS
UNIX
Serial
Pipeline
Vector
Parallel
small, slow, drums

Operating Systems

Processing

10/6/20096

1940 1950 1960 1970 1980 1990 2000 2010
YEAR

50-100 kwords
small core, large core
larger, faster
shared memory
distributed memory
clusters of shared memory

Paradigm shifts

Memory Structure
—James Mercer-Smith

66

How do we get to the Brave New World?
Brand new codes or improvements of existing codes?

Developing new codes is challenging!
R i l (10 t 30 f i l) lti di i li lti0 Requires large (10 to 30 professionals), multi-disciplinary, multi-
institutional teams

0 Takes 5 to 10 years
0 Requires extensive verification and validation
0 Requires a transition path to the user community
0 How many people would use Windows if almost everyone elseHow many people would use Windows if almost everyone else

used Mac OS or LINUX or UNIX…?
For engineering codes, the practical approach is to port/upgrade
existing tools and develop new ones where necessaryg p y
There’s no practical alternative to porting
0 Independent software vendors are porting very slowly

10/6/20097

0 “Reuse” is essential, a different use of “reuse”
0 Reuse the code, not individual components in other apps

67

Three Challenges
Performance, Programming and Prediction

1. Performance Challenge - Computers power increasing through
growing complexity

M i ll li i l i & h (CELL FPGA0 Massive parallelization, multi-core & heterogeneous (CELL, FPGA,
GPU…) processors, complex memory hierarchies…..

2. Programming Challenge -Programming for Complex Computersg g g g g p p
0 Rapid code development of codes with good performance

3. Prediction Challenge —Developing predictive codes with complex
i tifi d lscientific models

0 Develop accurate predictive codes
Verification

Programming Prediction

Validation
Code Project Management

Train wreck coming between the last two H bb d OR i 1902

10/6/20098

Train wreck coming between the last two
Better software development and production tools are desperately
needed for us to take full advantage of computers

Hubbard, OR in 1902

68

Computational Engineering Requires
a Village!

We need a complete problem solving
capability:capability:

Computers
CodesCodes
V&V
Users
Sponsors

10/6/20099

Sponsors

69

Developing a Large, Multi-scale, Multi-effect Code Takes
a Large Team a Long Time

2003

~20

10/6/200910
70

Not the WaterFall Model!The process is complex!

Test Store

Initial
Analysis

Optimize
ComponentComputational

Science

1. Requirements
2 Design

Customer
input

Detailed
Goals

Debug
Component

Test
Component

Execute
Runs

Results Optimize
runs

Workflow

2. Design
3. Code
4. Test
5 RunDefine

Set global
Requirements Identify

algorithms

Select
Programming

Write
Component

Component

Setup
Problems

Schedule
Runs

5. Run

Formulate
questions

Develop
Approach

Develop
Code

V&V Analyze
Results

Production
Runs

Decide;
Hypothesize

Goals

Id tif

Programming
Model

Identify
Customers

Define
General

Approach

Detailed
Design

R it

Define
tests

Verification
Tests

Complete
Run

Analyze
Run

Make
Decisions

Document
Decisions

Recruit
Team

Computing
environment

Regression
Tests

Validation
E t

Identify
Models

Identify
Next Run

Identify
Uncertainties

Upgrade existing code

10/6/20091111 10/6/2009

Validation
Tests

Expts.

Formulate
questions

Develop
Approach

Identify
Next Step

pg g
or develop new code

―D. E. Post, R. P. Kendall, Large-Scale Computational Scientific and Engineering Project Development and Production Workflows, CTWatch (2006), vol.2-4B,pp68-76.
71

Code Project Schedule For Six Large-scale Physics Codes
The Process has large risks!*

Program
Planning
And Start

Program Milestones Set

New Code Projects
Launched

1st 2nd 3rd

M
ileston

Milestones

Project S

1996 1997 1998 1999 2000 20011992 — 1995

Egret Code Project

ne Succes

Successe

2004

Jabiru Code Project

Egret Code Project sses

es —
20

Falcon Code Project

Kite Code Project

M
issed

04

j

Finch Code Project

 M
ileston

Project W
C

eased

10/6/200912

Gull Code Project

nes

Project Start

W
ork

*Computational Science Demands A New Paradigm,
D. E. Post, L. G. Votta, Physics Today, 2005, 58 (1):
P.35-41

72

Computational Engineering Code Developer’s
World – Six Major Challenges and Risks

Complex Large, multi-

Many strongly coupled effects and
massively parallel computers

Zillions of complex

Complex
Computer

Complex
Science and
Mathematics

C l

Large, multi
disciplinary, multi-
institutional teams

Zillions of complex
processors linked
with complicated

and slow networks
+ Little help for

tt @ l it d

Computer
Architectures

And Inadequate
Tools Code

Complex
Organizations

+ Little help for
dealing with this

complexity

votta@alum.mit.edu
Development

Science &
User Driven

Requirements

Lengthy
Problem

Setup
Problem setup (e.g.
mesh generation)

Rudimentary
V&V

Methods

RequirementsSetup

Laws of nature &
user needs win

mesh generation)
takes too long for

rapid design
development

10/6/200913

Methods every time

Immature methods and few
validation experiments

73

What are the characteristics of the DoD Big
Codes (and DOE big codes)Codes (and DOE big codes)

Surveyed DoD codes to verify characterizations of CSE codes.
Identify general characteristics

Questionnaire asked for:
Contact information
Code purpose
Team size, number of users
Domain Science area and sponsor
Code size (slocs)
0 Total and for each language

Code history
0 How long did the code take to develop and how old is it now?)

Pl tfPlatforms
Degree of parallelism
Computer time usage
Memory requirements

10/6/200914

Memory requirements
Algorithms

74

Surveyed the top 40 DoD codes (ordered by time requested), 15 responses.

Application Code Hours

CTH 93,435,421

HYCOM 89,005,100

GAUSSIAN 49,256,850

Application Code Hours

DMOL 5,200,100

ICEM 4,950,000

CFD++ 5,719,000

ALLEGRA 32,815,000

ICEPIC 26,500,000

CAML 21,000,000

ANSYS 17,898,520

VASP 18 437 500

ADCIRC 4,100,750

MATLAB 4,578,430

NCOM 5,080,000

Loci-Chem 5,500,000

GAMESS 5 142 250VASP 18,437,500

Xflow 15,165,000

ZAPOTEC 12,125,857

XPATCH 23,462,500

MUVES 10,974,120

GAMESS 5,142,250

STRIPE 4,700,000

USM3D 4,210,000

FLUENT 3,955,610

GASP 4,691,000, ,

MOM 18,540,000

OVERFLOW 8,835,500

COBALT 14,165,750

Various 8,125,000

, ,

Our DNS code (DNSBLB) 2,420,000

ParaDis 4,000,000

FLAPW 4,050,000

AMBER 4,466,000, ,

ETA 11,700,000

CPMD 5,975,000

ALE3D 5,864,500

PRONTO 5,169,100

POP 3,800,000

MS-GC 3,500,000

TURBO 3,600,600

Freericks Solver 2,600,000

10/6/200915
75

Characteristics Aren’t Surprising.

Team size
FTEs

users Total
sloc(k)

SLOC
Fortran 77

SLOC
Fortran SLOC C SLOC

other

(k) 90, 95 (k) (k) C++ (k)

Mean 38 5,038 820 24% 34% 17% 13% 13%

Median 6 27 275

Even now, codes are developed by teams
Most codes have more users than just the development
team
Codes are big
58% of the codes are written in Fortran.
New languages with higher levels of abstraction are
attractive but they will have to be compatible and inter-

10/6/200916

attractive, but they will have to be compatible and inter-
operable with Fortran with MPI.

76

Further Data Isn’t Surprising Either.

Total
j t

age
total

number of Largest
Typical

minimum
Typical

Maximum

Is memory
a

limitation?

Memory
processor

GBytes
project

age
production

version
different
platforms

g
Degree of
Parallelism

of
processors

of
processors

y
/proc

Mean
19.8 15.1 6.9

1000 to
3000 225 292

Sometimes 0.75-4

Median
17.5 15.5 7.0

1000 to
3000 128 128

• Most codes are at least 15 years old
• Most codes run on at least 7 different platforms
• Most codes can run on ~1000 processors, but don’t
• Most users want at least 1 GByte / processor of

memory

10/6/200917

memory.

77

5 detailed case studies of CSE codes make
similar observations.similar observations.

Falcon Hawk Condor Eagle

Application Domain Product Performance Manufacturing Product Performance Signal ProcessingApplication Domain Product Performance Manufacturing Product Performance Signal Processing

Project Duration ~10 years (since 1995) ~6 years (since 1999) ~20 years (since 1985) ~3 years

Number of Releases 9 Production 1 7 1
Earliest Predecessor 1970s early 1990s 1969 ?

Staffing 15 FTEs 3 FTEs 3-5 FTEs 3FTEs

Customers <50 10s 100s Demonstration code

Nonimal Code Size ~405,000 ~134,000 ~200,000 <100,000

Primary Languages F77 (24%), C (12%) C++ (67%), C (18%) Fortran 77 (85%) C++, Matlab

Other Languages F90,Python,Perl,ksh/
csh/sh

Python, Fortran 90 Fortran 90, C, Slang Java Libraries(~70%)

Target Hardware Parallel Supecomputers Parallel Supercomputers PCs to Parallel Embedded AppTarget Hardware Parallel Supecomputers Parallel Supercomputers
Supercomputers

Embedded App

Status Production Production ready Production Demonstration code

Sponsors DOE DoD DoD DoD

10/6/200918
78

Software Development Tools were identified.

Falcon Hawk Condor Eagle Nene
Code Development
Environment
Compilers F77, F90, C C++,C, Fortran,Java F77, F90 C++, Matlab,Java F77,C

Scripts
Perl,Python,ksh,csh,sh,

SCHEME,Gmake Python None
csh,perl,make,

cmake,ANT C Shell

Debuggers
TotalView,

SourceForge Valgrind, gbd TotalView, gbd TotalView, gbd, DBX print+FTNCHK
Pixie,DCPI,Speedshop,

Performance Monitoring Prof Speedshop, PAPI None Mercury TATL NetPIPE
Domain Decomposition Metis
Execution Environment
Element Generation CAD ProE In-house tools N/A Data basis sets

Visualization
ICE,VTK, Paraview,

Tecplot
CEI Ensight,

Paraview Matlab Local productsua at o ecp ot a a e at ab oca p oduct

Data Analysis
XDMF (supports

Paraview) Matlab Local Product
Code Development Process
Tools

Configuration Management CVS CVS CVS
Perforce,

Subversion ManualConfiguration Management CVS CVS CVS Subversion Manual
Bug Tracking Custon(~Bugzilla) None no formal system no formal system

Code Documentation Web-based Doxygen MS Word In-code comments
User documentation;
in-code comments

Support Libraries
PETc,

10/6/200919

Computational Mathematics VSS,PSPASES,CG In-House tools FFTs BLAS

Parallel Programming Libraries MPI MPI MPI
MPI, PVL

(~POOMA) MPI, TCP/IP

79

Many Barriers and Challenges

V&V
Changing computer architectures
Parallel Scaling and Parallel Programming a a e Sca g a d a a e og a g
Models
Complexity of Domain Science (strongly-Complexity of Domain Science (strongly
coupled Multi-physics, multi-scale…)
Cautious user communityCautious user community
0Answers, not performance is not their

ultimate goal

10/6/200920

g
0The better is the enemy of the good!

80

Recommendations

Porting will be essential in the futureg
Not just for HPC but for all computer programs
venturing into tomorrow’s multi-core heterogeneous
worldworld
Tools should facilitate porting, most useful tools:

Reduce complexity0Reduce complexity
0Hide complexity of computer in portable libraries
0Simplify Verification0Simplify Verification
0Preserve ability to link to many languages

Also useful to improve Software Engineering

10/6/200921

Also useful to improve Software Engineering
0Documentation, modularity, interface standards,

interoperability, scalability
81

Software reuse in acquisition systems

Contractor-initiated reuse
0Reuse from prior developments or investments

Product line approach to developing pp p g
components – Fighter A/C radar for example

0Reuse from outside sources
Signal processing libraries (VSIPL)
Purchased environments

OS Middl hi t lkit» OS, Middleware, graphics toolkits
Open Source

10/6/200922
82

Software reuse in acquisition systems
(cont’d)(cont d)

Government-sponsored reusep
0GFI from previous developments

Made available by Gov’t Purpose Rightsy p g
0Contracted collaborative environments

Central code repository specific to an
acquisition or domain
Controlled by central CM agent

0GFI from purchase
Government purchased license made available
to offerors and developers

10/6/200923

to offerors and developers
» Tactical Component Network

83

Issues

Assurance
0 Is the reused code free from malware and vulnerabilities?

Performance
0 How do we know what the code really does?
0 How does its use affect system properties?

Who is responsible? How much testing?0Who is responsible? How much testing?

Efficiency
0 Realized % reuse from previous developments rarely meets p p y

initial estimates!!

Intellectual property
C th t t d t h l i i th d ?

10/6/200924

0 Can we reuse the patented technologies in the code?
0 Can we derive other works?

84

Back up SlidesBack-up Slides

10/6/200925
85

Most projects are at least 15 years old (and had
predecessors).predecessors).

6
Code Project Age (July, 2006)

4

5 Total project age

2

3

C
ou

nt

0

1

0
5 10 15 20 25 30 35 40 45

Project age (years)

• Almost all the codes that will run on platforms delivered

10/6/200926

Almost all the codes that will run on platforms delivered
within the next 5 years exist now.

86

Median code size is ~ 300,000 slocs.

107
Code size (single lines of code, sloc)

8-Total SLOC

106
LO

C

105

8-
To

ta
l S

L

104

1000
1 5 10 20 30 50 70 80 90 95 99

Percent

M t d ill t k 5 t d l 1

10/6/200927

• Most codes will take 5 years or more to develop1.
1D. E. Post and R. P. Kendall, International Journal of High Performance Computing Applications, 18(2004), pp. 399-416

87

Median team size is 6 FTEs.

Development team size (FTEs)

Size of Development Team/User group

100
/U

se
r g

ro
up

10

pm
en

t T
ea

m
/

e
of

 D
ev

el
op

1
1 5 10 20 30 50 70 80 90 95 99

Si
z

Percent

10/6/200928

• Teamwork will be essential for new codes, especially for
petaflop computing.

88

Median code runs on 7 different platforms.

Number of different platforms the code runs on

10a total number of different platforms

16
Number of different platforms the code runs on

10a total number of different platforms

4

5
Number of different platforms the code runs on

12

14

16

nt
 p

la
tfo

rm
s

2

3

C
ou

nt

8

10

m
be

r o
f d

iff
er

en
1

2

4

6

to
ta

l n
um

0
2 4 6 8 10 12 14 16

Range

• Code portability is a key, if not dominant, priority for

2
1 5 10 20 30 50 70 80 90 95 99

Percent

10/6/200929

Code portability is a key, if not dominant, priority for
code developers.

89

Median code has ~ 25 users.

105
Number of active users

6-# of Users

1000

104

6-# of Users

er
s

100

1000

6-

of
 U

se

1

10

1
1 5 10 2030 50 7080 90 95 99

Percent

• User support and acceptance will be essential for success

10/6/200930

• User support and acceptance will be essential for success
• Support for code maintenance will be essential!

90

Median code is fairly parallel.

9
Maximum Degree of parallelism

11-Largest Degree of Parallelism

7

8

9

ar
al

le
lis

m8. > 30,000 processors
7. 10,001 to 30,000 processors
6. 3,001 to 10,000 processors

4

5

6

t D
eg

re
e

of
 P5. 1,001 to 3000 processors

4. 300 to 1,000 processors
3. 101 to 300 processors

2

3

4

11
-L

ar
ge

st2. 11 to 100 processors
1. Less than 10 processors

1
1 5 10 20 30 50 70 80 90 95 99

Percent

• We have to scale from 100-3,000 processors to

10/6/200931

We have to scale from 100 3,000 processors to
50,000-200,000 processors in two years to achieve
petaflop performance.

91

“Routine” processor count is much less
than peakthan peak.

1200
"Typical" processor count

800

1000 Typical # of processors
ce

ss
or

s

400

600

ic
al

 #
 o

f p
ro

c

0

200

Ty
pi

0
1 5 10 2030 50 7080 90 95 99

Percent

• We have to scale from 30-200 processors to 20,000-

10/6/200932

We have to scale from 30 200 processors to 20,000
200,000 processors in two years to achieve petaflop
performance.

92

58% of the codes are predominantly written
in Fortran.

Team size
FTEs

users Total
sloc(k)

SLOC
Fortran 77

SLOC
Fortran SLOC C SLOC

other

(k) 90, 95 (k) (k) C++ (k)

Mean 38 5,038 820 24% 34% 17% 13% 13%

Median 6 27 275

New languages with higher levels of abstraction areNew languages with higher levels of abstraction are
attractive, but they will have to be compatible and
inter-operable with Fortran with MPI.

10/6/200933
93

Most runs don’t use a lot of processors.

Is memory a
limitation?

Memory
processor

Total
project

age

age
production

version

total number
of different
platforms

Largest
Degree of
Parallelism

Typical
minimum #

of processors

Typical
Maximum #

of processors

GBytes
/proc

Mean
19 8 15 1 6 9

1000 to
3000 225 292

Sometimes 0.75-4
19.8 15.1 6.9 3000 225 292

Median

17.5 15.5 7.0
1000 to

3000 128 128

• Most users want at least 1 GByte / processor of memory.

10/6/200934
94

HPCMP TI-05 Application Benchmark Codes perform differently on
different platforms.different platforms.

Aero – Aeroelasticity CFD code y
(Fortran, serial vector, 15,000 lines of code)
AVUS (Cobalt-60) – Turbulent flow CFD code

(Fortran, MPI, 19,000 lines of code)
GAMESS – Quantum chemistry code

(Fortran, MPI, 330,000 lines of code)
HYCOM – Ocean circulation modeling code

(Fortran, MPI, 31,000 lines of code)
OOCore – Out-of-core solver

(F t MPI 39 000 li f d)(Fortran, MPI, 39,000 lines of code)
CTH – Shock physics code (SNL)

(~43% Fortran/~57% C, MPI, 436,000 lines of code)
WRF – Multi-Agency mesoscale atmospheric modeling code

(Fortran and C MPI 100 000 lines of code)(Fortran and C, MPI, 100,000 lines of code)
Overflow-2 – CFD code originally developed by NASA

(Fortran 90, MPI, 83,000 lines of code)

10/6/200935
95

Performance depends on the computer and on the
code.

• Normalized Performance = 1 on the NAVO IBM SP3 (HABU) platform with 1024 processors
(375 MHz Power3 CPUs) assuming that each system has 1024 processors.

S b t ti l i ti f d

RFCTH2 Lg

Code Performance (by machine)

Cray X1
IBM P3

Substantial variation of codes
for a single computer.

SGI Altix

Code performance (grouped by machine)

• GAMESS had the most variation among platforms.

OOCore Lg

Overflow2 Std

Overflow2 Lg

RFCTH2 Std
g IBM P3

IBM P4
IBM P4+
HP SC40
HP SC45
SGI O3800

SGI O3900

Xeon Cluster (3.06)

Xeon Cluster (3.4)

SGI Altix

AERO Std
AERO Std
WRF Std
Avus Std
Avus Lg
Gamess Std
GAMESS Lg

HYCOM Std

HYCOM Lg

OOCore Std
OOCore Lg SGI O3900

Xeon Cluster
Xeon Cluster
SGI Altix
IBM Opteron

IBM P4+

HP SC40

HP SC45

SGI O3800
GAMESS Lg
HYCOM Std
HYCOM Lg
OOCore Std
OOCore Lg
Overflow2 Std
Overflow2 Lg
RFCTH2 Std

WRF Std

Avus Lg

GAMESS Std

GAMESS Lg

Cray X1

IBM P3

IBM P4
RFCTH2 Lg

10/6/200936

0 2 4 6 8 10
Code Performance by machine

0 2 4 6 8 10

Relative code performance
―SC 2005 panel Tour de HPCylces

96

Performance range of codes is largePerformance range of codes is large.

Range of performance among machines for each code

6

7

8
Range of performance among machines for each code

h
co

de

4

5

6

an
ce

 fo
r e

ac
h

2

3

e
of

 p
er

fo
rm

a

0

1

 S
td

s
Lg

S
S

St
d

S
S

Lg

M
 S

td

O
M

 L
g

re
 S

td

or
e

Lg

w
2

St
d

ow
2

Lg

H
2

St
d

H
2

Lg

ra
ng

e

10/6/200937

W
R

F

Av
us

G
AM

ES

G
AM

E
S

H
Y

C
O

M

H
Y

C
O

O
O

C
or

O
O

C
o

O
ve

rfl
ow

O
ve

rfl
o

R
FC

TH

R
FC

THA

97

General conclusions

Performance depends on application and on the p pp
computer
0 No computer works best for all applications
0 A suite of applications requires a suite of computer types

Tuning for a platform can pay off in a big way

Shared memory is really good for some codes

10/6/200938
98

We made 9 observations based on
detailed case studiesdetailed case studies.

We made 9 observations from the five detailed case
t di (F l H k C d E l N)studies (Falcon, Hawk, Condor, Eagle, Nene).
0These observations and conclusions were

consistent with our prior less detailed case studiesconsistent with our prior, less detailed case studies.

These 9 observations help identify the issues to focus
on for petaflop applications.on for petaflop applications.

10/6/200939
99

Nine Cross-Study Observations
1. Once selected, the primary languages (typically Fortran) adopted by existing code
teams do not change.
2. The use of higher level languages (e.g. Matlab) has not been widely adopted by
existing code teams except for "bread-boarding" or algorithm development.
3. Code developers in existing code teams like the flexibility of UNIX command line
environments.
4. Third party (externally developed) software and software development tools are
viewed as a major risk factor by existing code teams.
5. The project goal is scientific discovery or engineering design. "Speed to solution"
and "execution time" are not highly ranked goals for our existing code teams unless
they directly impact the science. y y p
6. All but one of the existing code teams we have studied have adopted an "agile"
development approach.
7. For the most part, the developers of existing codes are scientists and engineers,
not computer scientists or professional programmers.not computer scientists or professional programmers.
8. Most of the effort has been expended in the "implementation" workflow step.
9. The success of all of the existing codes we have studied has depended most on
keeping their customers (not always their sponsors) happy.

10/6/200940
100

Summary of Code Attributes

Code Attributes

100000

1000000
number of languages
core team size
nonimal age

760,000
<80,000

405,000
134,000 ~200,000

1000

10000

100000 lines of source code

nonimal age
lines of source code10

100 25 years
3 years

10 years
20 years

6 years

3 104

17

3
3

Eagle Hawk
Falcon Condor

Nene

number of languages

core team size

nonimal age
1

Project Name

Attribute
9

2

4
4

10/6/200941
101

Codes primarily use one or two programming languages, but
utilize many others for special purposes.

Falcon Hawk Condor Eagle NeneFalcon Hawk Condor Eagle Nene
Application Domain Product Performance Manufacturing Product Performance Signal Processing Process Modeling

Project Duration
~10 years (since

1995) ~6 years (since 1999)
~20 years (since

1985) ~3 years
~25 years (since

1982)
Number of Releases 9 Production 1 7 1 ?
Earliest Predecessor 1970s early 1990s 1969 ? 1977-78

~10FTEs+100s of
Staffing 15 FTEs 3 FTEs 3-5 FTEs 3FTEs ~10FTEs+100s of

contributors
Customers <50 10s 100s Demonstration code ~100,000
Nonimal Code Size ~405,000 ~134,000 ~200,000 <100,000 750,000
Primary Languages F77 (24%), C (12%) C++ (67%), C (18%) Fortran 77 (85%) C++, Matlab Fortran 77 (95%)

Oth L
F90,Python,Perl,ksh/c

h/ h P th F t 90 F t 90 C Sl J Lib i (70%) C (1%)Other Languages sh/sh Python, Fortran 90 Fortran 90, C, Slang Java Libraries(~70%) C (1%)

Target Hardware
Parallel

Supecomputers
Parallel

Supercomputers
PCs to Parallel

Supercomputers Embedded App
PCs to Parallel

Supercomputers
Status Production Production ready Production Demonstration code Production
Sponsors DOE DoD DoD DoD DoD, DOE, NSF

10/6/200942
102

We found sparse use of Software Metrics.

Metric Falcon Hawk Condor Eagle
Lines of code x x x x
Function points x
Stories, project velocity
Cyclomatic complexity
Data coupling
Comment lines
LocalityLocality
Concurrency
Defect rates
Time-to-fix defects x
Number of debug runs/unit time
Test Coverage x x x
Frequency that regression testing
uncovers problems x
Code performance x x x x
Degree of performance optimization x xDegree of performance optimization x x
Parallel scaling x x x
Number of users x x
Number of production runs/unit time
Computer time for code
d l t/ it ti

10/6/200943

development/unit time
Computer time for production/unit time x

103

Cross-Study Observations

Observation #1:
0 Once selected, the primary languages (typically F77) adopted by

existing code teams do not change.
Any new language will have to be compatible with existing
languages and will, at best, be introduced only incrementally.
Migration to a new version of the language (e.g. F77 to F90)
often occurs, but seldom to a different language (e.g. F77 to
C)

Early users of a petaflop machine will require stable Fortran, CEarly users of a petaflop machine will require stable Fortran, C
and C++ implementations with MPI libraries on the new hardware

10/6/200944
104

Use of Higher-Level Languages

Falcon Hawk Condor Eagle Nene
Application Domain Product Performance Manufacturing Product Performance Signal Processing Process Modeling

Project Duration ~10 years (since
1995)

~6 years (since 1999) ~20 years (since
1985)

~3 years ~25 years (since
1982)

Number of Releases 9 Production 1 7 1 ?Number of Releases 9 Production 1 7 1 ?
Earliest Predecessor 1970s early 1990s 1969 ? 1977-78

Staffing 15 FTEs 3 FTEs 3-5 FTEs 3FTEs ~10FTEs+100s of
contributors

Customers <50 10s 100s Demonstration code ~100,000
Nonimal Code Size ~405,000 ~134,000 ~200,000 <100,000 750,000
P i L F (24%) C (12%) C (6 %) C (18%) F (8 %) C M l b F (9 %)Primary Languages F77 (24%), C (12%) C++ (67%), C (18%) Fortran 77 (85%) C++, Matlab Fortran 77 (95%)

Other Languages F90,Python,Perl,ksh/
csh/sh Python, Fortran 90 Fortran 90, C, Slang Java

Libraries(~70%) C (1%)

Target Hardware Parallel
Supecomputers

Parallel
Supercomputers

PCs to Parallel
Supercomputers

Embedded App PCs to Parallel
Supercomputers

Status Production Production ready Production Demonstration code Production
Sponsors DOE DoD DoD DoD DoD, DOE, NSF

10/6/200945
105

Cross-Study Observations

Observation #2:
The se of higher le el lang ages (e g Matlab) has not been0 The use of higher level languages (e.g. Matlab) has not been
widely adopted by existing code teams.

0 Higher level languages are utilized by some teams for
“bread-boarding” and algorithm development followed bybread-boarding and algorithm development followed by
implementation in a lower level, but higher performance
language

“I’d rather be closer to machine language than more abstract.I d rather be closer to machine language than more abstract.
I know even when I give very simple instructions to a
compiler, it does not necessarily give me machine code that
corresponds to that set of instructions…”

quote from Condor Technical Team Leader

10/6/200946
106

Cross-Study Observations

Observation #3:

—Code developers like the predictability, flexibility
and universality of UNIX command line
environmentsenvironments.

One of the reasons that IDE tools are not used is
that “they try to impose a particular style ofthat they try to impose a particular style of
development on me and I am forced into a
particular mold.”

quote from Eagle team leader
0Any new IDE will need to meet these

requirements

10/6/200947

requirements

107

Risk Aversion to the use of 3rd Party Tools

Falcon Hawk Condor Eagle Nene
Code Development
EnvironmentEnvironment
Compilers F77, F90, C C++,C, Fortran,Java F77, F90 C++, Matlab,Java F77,C

Scripts Perl,Python,ksh,csh,sh,
SCHEME,Gmake Python None csh,perl,make,

cmake,ANT
C Shell

Debuggers TotalView,
SourceForge Valgrind, gbd TotalView, gbd TotalView, gbd, DBX print+FTNCHK

P f M it i Pixie,DCPI,Speedshop, S d h PAPI N M TATL N tPIPEPerformance Monitoring Pixie,DCPI,Speedshop,
Prof Speedshop, PAPI None Mercury TATL NetPIPE

Domain Decomposition Metis
Execution Environment
Element Generation CAD ProE In-house tools N/A Gaussian basis sets

Visualization ICE,VTK, Paraview,
Tecplot

CEI Ensight,
Paraview

Matlab MACMOPLT
XDMF (tData Analysis XDMF (supports

Paraview)
Matlab MACMOPLT

Code Development Process
Tools
Configuration Management CVS CVS CVS Perforce, Subversion Manual
Bug Tracking Custon(~Bugzilla) None no formal system no formal system

Code Documentation Web-based Doxygen MS Word In-code comments User documentation;
in-code comments

Support Libraries

Computational Mathematics PETc,
VSS,PSPASES,CG

In-House tools FFTs BLAS

Parallel Programming Libraries MPI MPI MPI MPI PVL (~POOMA) MPI TCP/IP

10/6/200948

Parallel Programming Libraries MPI MPI MPI MPI, PVL (POOMA) MPI, TCP/IP

108

Performance Monitoring, Profile and Analysis Tools

AIMS (NASA AIMS) Paradyn (Univ. Wisconsin)

Paraver ((CEPBA Barcelona)DCPI (DEC/Compaq/HP)
DEEP
Dimenas (CEPBA Barcelona)
Dynamic Probe Class Library (IBM)

Paraver ((CEPBA Barcelona)

PDT (Univ. Oregon)

PE Benchmarker Toolset (IBM)

Performance Toolkit (IBM)

f/ /t f/ fDynamic Probe Class Library (IBM)
DynaProf (Univ. of Tennessee)
FALCON (Georgia Tech)
HPC Toolkit (Rice Univ.)

prof/gprog/tprof/pgprof

Quantity (Rational/IBM)

Speedshop (SGI)

Tau (Univ. of Oregon)

Th dM
()

HPM Toolkit (IBM)
Jumpshot (Argonne-DOE)
Monitor

ThreadMon

Timescan (Etnus)

TRAPPER

WARTS

MPIMAP (LLNL)
mpiP(ORNL/LLNL)
Pable/SvPablo(Univ Illinois/Univ. North
Carolina)

Vampir(Pallas, now Intel)

Xprofiler (IBM)

10/6/200949

)
PAPI Libraries (Univ. Tennessee)

109

Debugging/Visualization Tools

Debugging
0 TotalView (Etnus)

Gdb (gnu)

Visualization
0 CEI Ensight

Gnuplot0 Gdb (gnu)
0 DXB
0 Ladebug

0 Gnuplot
0 IDL
0 Kaleidagraph

0 Great Circle (geodesic) 0 Paraview

10/6/200950
110

Cross-Study Observations

Observation #4:

0 Third party (externally developed) software and software
development tools are viewed as a major risk factor by
existing code teamsexisting code teams.

The greatest concerns are for parallel debuggers, problem
set-up tools, linkers and loaders with ability to link many
languages, performance analysis tools, run schedulers,
visualization and data analysis tools, testing tools,
smoother upgrades to operating systemssmoother upgrades to operating systems

10/6/200951
111

Development Objectives

Development Objectives

2

3

Falcon
H k

Parallel Scalability

Execution Time N

0

1
Importance Hawk

Condor
Eagle
Nene

Execution Time

Portability

Speed to Solution

Code Reuse

Reducing Complexity Hawk

Condor

Eagle

Nene

C d

10/6/200952

Maintainability Falcon

Objective

Code

112

Cross-Study Observations

Observation #5:
The principal goal of o r de elopment teams has been0 The principal goal of our development teams has been
scientific discovery or engineering design.

0 “Speed to solution” and “execution time” are not the most
highly ranked goals for our existing code teams (excepthighly ranked goals for our existing code teams (except
where it impacts the science).

The highest ranked common goals expressed by our case
study participants are: codes that work, provide accurate and
credible results and are portablecredible results and are portable.

10/6/200953
113

Cross-Study Observations

Observation #6:
0 All but one of the existing codes studied by our team have

adopted an “agile” approach to code development without p g pp p
formal software engineering

Hawk, Condor, Eagle and Nene have “agile” teams which
emphasized individuals and practices over processes andemphasized individuals and practices over processes and
tools; Falcon was more formal, but no project had formal
CMM Level 2 certification

10/6/200954
114

Staffing Profiles

St ff P fil F l H k C d E l NStaff Profile Falcon Hawk Condor Eagle Nene
Scientists/Engineers 14 2 3 3 9
Computer Scientists 3 1 0 0 1
Total 17 3 3 3 10

10/6/200955
115

Cross-Study Observations

Observation #7:
0For the most part, the developers of existing codes

i ti t d i t ft iare scientists and engineers, not software engineers
or professional programmers.
0Many developers of scientific codes are also the

primary users of those codes.primary users of those codes.

They tend to be suspicious of rigid software
engineering methodologies, preferring the “agile”engineering methodologies, preferring the agile
approach. Even teams with long histories of
collaboration do not acknowledge a need to go
beyond CMM Level 2—they emphasize good practices
rather than good processesrather than good processes

10/6/200956
116

Workflows

General Phases for all Life-Cycles (after Sodhi)

Code Analysis & Design Implementation Testing Maintenance
Falcon 25%-35% 25%-35% 15%-30% 10%-30%
Hawk 25% 40% 20% 15%

Condor 15% 55% 15% 15%Condor 15% 55% 15% 15%
Eagle 25% 55% 15% 15%
Nene 35% 45% 15% 5%

DurationDuration

15

20

25

30

D ti

0

5

10

15

Falcon Hawk Condor Eagle Nene

Duration

10/6/200957
117

Cross-Study Observations

Observation #8:
0 Over the lifetimes of the existing codes studied to date, most

of the effort has been expended in the implementationof the effort has been expended in the implementation
workflow step.

0 Includes implementation during a long production phase
0 A successful computational science and engineering code is

undergoing continual development in response to new user
requirements

10/6/200958
118

Customer satisfaction, not marketing, determines
the success of the code.

Observation # 9:Observation # 9:
—The success or failure of a code depends on whether

the code team can keep its customers satisfied.p
Code teams that helped their customers succeed in their

analysis, predictions or research were successful. The
code teams that didn’t found that their codes weren’tcode teams that didn’t, found that their codes weren’t
used and were eventually abandoned.

10/6/200959
119

Preliminary Observations from the Nene
On-Site Interview

Largest project yet (25 years old, ~20,000 downloads, ~100,000
users, 100s of contributors)
0 Over 5100 citations for primary code reference0 Over 5100 citations for primary code reference

Huge group of satisfied users!!!
0 Best example yet for the dominance of pragmatic practices

over processes in scientific code developmentp p
0 Almost no role for formal software engineering
0 Similar to Open Source Model

Users download code from website and modify it to solve y
problems
Upgrades negotiated with central team
Funding agencies (all the major federal agencies that fund

i) id t f d i i tscience) provide support for domain science, not
explicitly for code development

10/6/200960
120

Development Objectives

Falcon Hawk Condor Eagle Nene
Parallel Scalability Medium High Medium Medium High
Execution Time Medium Medium Medium Medium MediumExecution Time Medium Medium Medium Medium Medium
Portability High High High High High
Speed to Solution High Medium Medium Medium Medium
Code Reuse Medium High† Medium High MediumCode Reuse Medium High Medium High Medium
Reducing Complexity Medium Medium High High High
Maintainability High Low‡ High Low High
† For new code For new code
‡ Survey response; the code is highly maintainable, but this was not an explicit design goal

*Medium implies that reuse is occasional
high implies that reuse is a project imperative

10/6/200961

high implies that reuse is a project imperative

121

Development Objectives

Development Objectives

2

3

Falcon

Parallel Scalability
0

1

2
Importance

Falcon
Hawk
Condor
Eagle
NeneParallel Scalability

Execution Time

Portability

Speed to Solution

Code Reuse
Condor

Eagle

Nene

Nene

10/6/200962

Code Reuse

Reducing Complexity

Maintainability Falcon

Hawk

Objective

Code

122

Nene Software Development
PracticesPractices

Practice Description Degree Followed
Produce, analyze and verify Distributed management

Requirements Development customer, project and
"product" requirements

Distributed management
reduces the need and impact

Requirements Management
Manage requirements and
identify inconsistencies with same as above
plan

Project Planning Establish and maintain a plan
that defines project activities

same as above

Project Monitoring & Control Provide an understanding of
th j t'

No formal plan or deadlinesProject Monitoring & Control
the project's progress

No formal plan or deadlines

Configuration Management
Establish and maintain
integrity of work products
using config. mgt and control

Yes, tight control over
program library

Obj ti l l ti
Process and Product Quality
Assurance

Objectively evaluating
adherence to process
descriptions and resolving
non-compliance

Tight control over contributed
capabilities

N di t ib t d t t it

10/6/200963

Organizational Process
Definition

Follow an organization-wide
process

No, distributed mgt sets its
own processes; well-defined
process within core team

123

Practices (Continued)Practices (Continued)

Practice Description Degree Followed

Organizational Training

Develop the skills and
knowledge of staff so that
they can perform their roles
effectively

An important output of this
project is the training of
graduate students

y

Risk Management
Identify potential problems
before they occur and
mitigating them

Long track record of
successfully managing risks

Software artifacts C d i i d b PI
Peer Reviews

Software artifacts
(requirements, design, code)
reviewed by peers to improve
quality

Code is reviewed by PI
before submission and
inclusion into library

Quickly determine the scope

Planning Game

Quickly determine the scope
of the next release with
business priorities and
technical estimates

Not relevant

No delivery occurs when

10/6/200964

Frequent Deliveries/Small
Releases

Frequent releses of the
highest priority items

No, delivery occurs when
code is ready. Timing is
driven by academic calendar

124

Practices (Continued)()

Practice Description Degree Followed

Simple Design
Design only what is being
developed, little planning
for future

Yes, very decentralized
planning done by 100's
of contributors

Restructuring to remove

Refactoring

Restructuring to remove
duplication, improve
communication, simplify
or add flexibility

Some, especially in areas
of active development

Pair Programming

Two programmers work
side-by-side at one

t ll b ti

Some, usually only in the
feature integration phase,
where Pis and students g g

computer, collaborating
on coding

work together and in
some cases side-by-side

10/6/200965
125

Practices (Continued)

Practice Description Degree Followed

Tacit Knowledge

Project knowledge is
maintained in
participant's heads

th th d t

Yes, a great deal is
published, but tacit
knowledge is
i t trather than documents important

Collective Ownership
Anyone can change
any code anywhere at No
any time

On-site Customer
Include a real, live
user on the

Yes, even the core
team members are

development team users

Test-Driven
Development

Module or method test
are written before or
d i di

Sometimes

10/6/200966

p during coding

126

We found sparse use of Software Metrics.

Falcon Hawk Condor Eagle Nene
Lines of code x x x x x
Function points x
Stories, project velocity
Cyclomatic complexity
Data coupling
Comment lines x
Locality xy
Concurrancy
Defect rates
Time-to-fix defects x
Number of debug runs/unit time
Test Coverage x x
Frequency that regression testingFrequency that regression testing
uncovers problems
Code performance x x x x x
Degree of performance optimization x
Parallel scaling x x x x
Number of users x x x
N b f d i / i iNumber of production runs/unit time
Computer time for code
development/unit time
Computer time for production/unit time x

10/6/200967
127

All of the projects made use of
Testing.g

Case Study Falcon Hawk Condor Eagle Nene
Fraction of Code Tested ~30%* 51-75% 51-75% >75% >75%
Conformance between scalar and
parallel n/a < 2% no formal bounds <10-9 Units
Conformance with experimental tests <32% no formal bounds no formal bounds
Verification
● Compare to exact answer yes yes yes
● Monitor conserved quantities yes yes yes
● Preservation of symetries yes yes yes
● Compare with existing codes yes yes yes yes
● Controlled experiments yes yes yes
Regression Tests yes no yes yes

*Regression Tests

10/6/200968
128

Workflows

Code Analysis & Design Implementation Testing Maintenance
General Phases for all Life-Cycles (after
Sodhi)y g p g

Falcon 25%-35% 25%-35% 15%-30% 10%-30%
Hawk 25% 40% 20% 15%

Condor 15% 55% 15% 15%
Eagle 25% 55% 15% 15%
Nene 35% 45% 15% 5%

10/6/200969
129

Reengineering of Legacy ApplicationsReengineering of Legacy Applications

Technology Roadmap Workgroupgy p g p

130

Technology Space

1. Program Understanding
2 Modern Replica2. Modern Replica
3. Testing and Verification
4. Human Interfaces
5. Cost/Productivity Assessment

2

131

Program Understanding: Technology
Roadmap

Techniques to identify the abstractions (extraction of abstractions)
Identifying known algorithms within applications

Identifying data-structuresIdentifying data structures
Dependence analysis signatures

Static and dynamic analysis
Identification of invariants
Dynamic dependence analysisDynamic dependence analysis
Performance optimization

Learning (Pattern Recognition)
Natural language processing of comments and language construct names

Case based reasoningCase based reasoning
Building the Modern Replica

Refactoring
Unsound transformations (adapted by programmer or learning algorithm)

Program visualizationProgram visualization
Discovery
Data structure based visualization

3

132

Modern Replica: Technology RoadMap

Exciting technologies
What can be achieved using themWhat can be achieved using them
How it can be achieved in 18 months

However, we found we were
“just suggesting we solve many open problems in computer
science”

4

133

Modern Replica: Goal
Technologies to remove machine-specific elements of code

Certain types of loop unrolling
Exploiting pipeline parallelism, for example
Data parallelization
Pick your best technique

F li tFor replicas, one must:
Retain information for optimization

Can (re-)generate optimized code
Must disallow generated executablesMust disallow generated executables

Optimization tweaks must be first-class

5

134

Replica Construction

Different languages have different strengths
Parallelism, etc…
Let the property of interest be your guid

Model from which to verify propertiesy p p
Determinate behavior

Same behavior on exact same input
Easy to reproduce defects, a help to debugging

Seek provable properties from the replica
Models of parallelism

CSP or DataFlow or ???

6

135

Replica
Challenges in avoid legacy pitfall with the Replica itself

Will the Replica be the legacy code in +10yrs?
Replica must be easy to analyze
General representation of parallelism

What could have been done differently when legacy code was y g y
first written.

Early optimization
Hopes for automatic parallelism were unfounded. What are we p p
assuming?

7

136

Testing and Verification: Problem
Statement

Focused problem: establish that reengineered
implementation is equivalent to legacy versionimplementation is equivalent to legacy version

Subproblem: establish that modern replica is equivalent to
legacy version

Equivalence w r t behavior on test casesEquivalence w.r.t. behavior on test cases
“Don’t care” cases e.g., allow modern version to have
fewer bugs than legacy versiong g y
Safety net e.g., insert assertions in modern version
when assumptions are made w.r.t. error handling

8

137

Testing & Verification: Technology
Roadmap

Symbolic execution
Test “equivalence” of two versions of same functionTest equivalence of two versions of same function
Overcome path coverage challenge by use of test cases
Test for kth degree similarity

V ifi ti f ti i lVerification of semantic equivalence
Use verifier to check equivalence of constraints from two
different executions

Definition of “don’t care” cases
Use test cases to limit behaviors of interest
Add assertions to modern replicaAdd assertions to modern replica

Loops -- overcoming major challenge in verification
Use dynamic analysis to distinguish between loops with few

9

vs. large # iterations

138

Human Interfaces: DARPA-hard
problems

1) Observation: three kinds of expertise are needed to
both develop and port quality HPC code: (i) domainboth develop and port quality HPC code: (i) domain
knowledge, (ii) numerical methods, (iii) parallel
programming. Either you have one programmer who
knows them all or your experts must effectivelyknows them all or your experts must effectively
communicate. [Yes, there is an expertise gap in HPC
programming.]

Problem statement: Develop technology and/or
social methods that reduce the need for this breadthsocial methods that reduce the need for this breadth
of expertise or make the communication among
experts easier.

10

139

Human Interfaces: DARPA-hard
problems (contd)

2) Observation: Where do specifications/abstractions
come from? Programmers are often aware whatcome from? Programmers are often aware what
these abstractions are, but it is tedious or not
economical to write them down, because they need to
be formally stated Example: who and how specifiesbe formally stated. Example: who and how specifies
that a library routine sorts the input array?

Problem statement: Develop tools to help
programmers infer specifications of modules in their
code. Develop incentives that encouragecode. Develop incentives that encourage
programmers to use these tools.

11

140

Human Interfaces: DARPA-hard
problems (contd)

3) Observation: We believe that porting HPC code is
expensive is in part because code transformations areexpensive is in part because code transformations are
repetitive and performed manually.

Problem statement: Develop methods thatProblem statement: Develop methods that
automate these transformations. These methods
must be easily programmable by the programmer.
For example, they can be programmed by
demonstration.

12

141

Cost/Productivity Assessment:
Technology Roadmap

Use of performance profiles to identify software
components that need less vs. more attention from acomponents that need less vs. more attention from a
performance viewpoint
Ethnographic studies to identify easy vs. hard steps in

lmanual process

13

142

Technology Space

1. Program Understanding
2 Modern Replica2. Modern Replica
3. Testing and Verification
4. Human Interfaces
5. Cost/Productivity Assessment

14

143

III Milestones and Evaluation
• Reduced cost (by 100x to 1000x)

– If the process is fully automated trivial
P i l di ?– Programmer involvement user studies?

• Can we find a set of applications with original legacy version and a version modernized
using current practices that can be used as the base case?

• Reduction of errors and deviations
– What is a good measurement?

• Modernized replica trivially map in to multiple modern architecturesp y p p
– “trivially map”: Automated tools, no programmer intervention
– “multiple modern architectures”: at least one distributed memory multicore (cell or Tile64) and

one shared memory multicore (core 2 duo or niagara)

• Modernized replica is efficient and effective
– Show speedups against the original program on that architecture
– Show scalability from one core to max number of cores availabley

• Modernize replica can be easy to understood and managed
– How to measure quality of the specifications created?
– How to measure malleability and extendibility of original vs modernized replica?How to measure malleability and extendibility of original vs. modernized replica?

• Room D451
144

Metrics
• Performance

Speedup on several architectures– Speedup on several architectures
– Minimal performance level for acceptance; not used for

comparing teamsp g

• Productivity
Measured in programmer time not SLOC produced– Measured in programmer time, not SLOC produced

– Primary metric for comparison of teams
– Depends on expertise of programmersDepends on expertise of programmers

• Maintainability
C d i f d i d li– Code size of modernized replica

• Flexibility
– Replica easily targeted to new architectures with new

capabilities 145

Phase 1 Benefits Measurement
• A referee team establishes the rules of the game

– Example:Example:
• a benchmark program (possibly several, since proposers may use

different source languages); ~10k SLOC?
multiple target architectures• multiple target architectures

• scalability improvement: 2x faster than unchanged legacy code on
target arch

• maintainability improvement: 2x smaller SLOC than legacy code
• proposers have a week to train a small team of programmers (grad

students?, independently hired) on their toolstudents?, independently hired) on their tool
• programmers have a month to do the port to the modern replica
• measure time to do the port

– Metrics for other DoD projects are available
• Reuse their procedures?

O ll l 2 d ti i ti l ti t• Overall goal: 2x reduction in programmer time relative to
best-practices hand porting

146

Phases and Milestones
• Phase 1 (first 18 months)

– Deliverable: prototype process and toolsDeliverable: prototype process and tools
– Measurement: 1-month comparison trial
– Goal: 2x improvement in speedup, porting time, code size
– Critical design review
– Cut down proposing teams

Ph 2 (t 18 th)• Phase 2 (next 18 months)
– Goal: 10x aggregate improvement (scalability, portability, size)
– Flexibility: how much time to take advantage of a completely newFlexibility: how much time to take advantage of a completely new

architecture?
– Larger codes: 6-month comparison trial using 50k SLOC?

Cutting down teams to one representation (selected for handoff to a– Cutting down teams to one representation (selected for handoff to a
standardization process?)

147

• Proposer picks:
the modern replica representation– the modern replica representation

• it should probably already exist, because Phase 1 isn’t
long enough to develop itg g p

• Referee picks:• Referee picks:

148

