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Abstract …….. 

Two experiments examined the use of heuristic and analytic decision strategies in a simulated 
threat assessment task.  Subjects learned to classify targets as friend or foe on the bases of 
uncertain cues (i.e., characteristics that were probabilistically associated with classification of a 
target  as  friend  or  foe).  Subjects  were  then  asked  to  classify  targets  that  contrasted 
predictions of several decision rules, including a simple heuristic called Take-the-Best-for-
Classification (TTB-C) that uses a single cue to classify targets and the Bayesian classification 
strategy that is based on formal statistic models.  Results of Experiment 1 indicated that the mode 
of presentation (text versus picture) did not affect the tendency of subjects to use either decision 
strategy.  Results of Experiment 2 indicated that exposure time of pictorial stimuli also did not 
affect the proportions of subjects employing TTB-C versus the Bayesian strategy.  However, an 
unexpected but very large effect of the target set was observed in the second experiment.  This 
effect may indicate that the interaction of the perceptual salience of cues with the diagnosticity of 
those cues is a predictor of strategy use.  Future research will examine this possibility. 

Résumé …..... 

On a examiné, dans le cadre de deux expériences, l’utilisation de stratégies de décision 
heuristique et analytique dans l’évaluation d’une menace simulée. Les sujets ont appris à classer 
les cibles comme étant amies ou ennemies sur la base de repères incertains (notamment, sur des 
caractéristiques probabilistes associées à la classification d’une cible amie ou ennemie). On a 
ensuite demandé aux sujets de classer les cibles qui mettaient en contraste les prédictions de 
plusieurs règles de décision, incluant la simple approche heuristique « ne garder que le meilleur 
en vue de la classification » (TTB-C), qui utilise un seul indice pour classifier des cibles, et la 
stratégie de classification bayesienne qui repose sur des modèles de statistiques officielles. Les 
résultats de l’expérience numéro 1 indiquent que le mode de présentation (un texte par rapport à 
une image) n’a pas poussé les sujets à utiliser une stratégie de décision plutôt que l’autre. Les 
résultats de l’expérience numéro 2 indiquent que le temps d’exposition à une stimulation par 
l’image n’a pas eu d’incidence non plus sur les sujets qui ont utilisé l’approche TTB-C par 
rapport à la stratégie bayesienne. Toutefois, une conséquence inattendue, mais très importante de 
l’ensemble des cibles a été observée dans la deuxième expérience. Cette conséquence peut 
indiquer que l’interaction entre l’évidence perceptuelle des repères et la diagnosticité de ces 
repères  est  un  prédicteur  de  la  stratégie  utilisée.  D’autres  recherches  permettront 
d’examiner cette possibilité.  
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Executive summary  

Decision rules for pictorial threat classification   
David J. Bryant; DRDC Toronto TR 2009-126; Defence R&D Canada – Toronto; 
July 2009. 

Threat assessment is a basic military task in which one attempts to rapidly and accurately identify 
friendly, enemy and neutral forces.  To better understand how humans make threat assessment 
judgments, we performed two experiments in which we manipulated the diagnosticity of available 
cues to contrast different theoretical models of human judgment.   

Previous research [4] has examined four decision procedures that can served as models of human 
judgment in a threat classification task.  The Take-the-Best-for-Classification heuristic (TTB-C) 
is based on the premise that the single most valid cue can be used to make accurate threat 
classification judgments in a task environment in which that cue is highly predictive.  Also 
considered were two variants of the additive rule, the Weighted Additive (WADD) and 
Unweighted Additive (ADD) rules.  These calculate sums of cue values and select the alternative 
with the highest score.  Finally, the Bayesian strategy makes probabilistic inference by applying 
Bayes' theorem to compute the conditional probabilities of friend and foe classifications for a 
target given the particular pattern of cue values present.  

The aim of the current research was to examine factors that might predict when decision makers 
will employ heuristics versus a Bayesian decision strategy.  The way information is presented in a 
decision making task often has a significant impact on the way people perform that task.  For 
example, a pictorial format may facilitate use of compensatory additive or Bayesian decision 
procedures because the visual system has mechanisms to rapidly sum cues or compute 
probabilities.  In addition, pictorial presentation may facilitate automatic (as opposed to 
deliberate) processing, suggesting that Bayesian computation is not necessarily cognitively 
demanding.  In contrast, Glöckner and Betsch [41] have suggested that heuristics, such as TTB-C, 
are associated with deliberate processing and should be strongly affected by conditions that 
increase task demands or reduce available cognitive resources.   

The purpose of Experiment 1 was to compare the performance of subjects who learned to classify 
contacts using textual versus pictorial cues.  If, as Glöckner & Betsch [41] suggest, simultaneous 
availability of all cues is necessary to employ an automatic cue-integration procedure, subjects 
should be more likely to employ a Bayesian strategy when viewing pictures than when cues are 
provided textually.  Text must be read sequentially, which would favour the use of a deliberate 
strategy, such as TTB-C.  The aim of the Experiment 2 was to determine whether rapid 
presentation of pictorial stimuli affects the propensity of subjects to use a Bayesian decision 
strategy.  If the Bayesian strategy depends on the recruitment of automatic perceptual 
mechanisms, it may be more evident in situations in which the deliberate use of an heuristic is 
made difficult.   

Substantial proportions of subjects in Experiment 1 employed the TTB-C, ADD, and Bayesian 
rules in this experiment, and there was no significant difference between the text and pictorial 
conditions in the proportions of subjects employing the Bayesian and TTB-C rules.  Results of 
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Experiment 2 indicated that exposure time to pictorial stimuli did not affect the proportions of 
subjects employing heuristic versus compensatory decision rules.  Both heuristic and Bayesian 
rules are a viable strategy for both textual and pictorial stimuli.  However, an unexpected but very 
large effect of the target set was observed.  This suggests that the configuration of cues plays an 
important role in subjects’ choice of a decision procedure.  In one set, the uniform was the most 
predictive cue and it also seemed to be the most perceptually salient.  In the second set, the 
helmet was most predictive but this cue was not considered to be as salient as the uniform.  It may 
be that when a perceptually salient cue, or a cue with a pre-existing association to the 
classification task, is also the most diagnostic, subjects are able to quickly notice its relation to 
classification and use a simple rule such as TTB-C.  In contrast, when a non-salient cue is most 
predictive, subjects do not have one cue that immediately stands out as a key predictor and so 
they tend to look at all cues, which suggests a compensatory and analytic decision rule. 

 



 
 

DRDC Toronto TR 2009-126 v 
 
 

 
 

Sommaire ..... 

Decision rules for pictorial threat classification   
David J. Bryant; DRDC Toronto TR 2009-126; R & D pour la défense Canada – 
Toronto; Juillet 2009. 

L’évaluation des menaces est une tâche militaire fondamentale où l’on tente de reconnaître, 
rapidement et avec précision, des forces amies, ennemies et neutres. Afin de mieux comprendre 
comment l’être humain s’y prend pour poser des jugements par suite de l’évaluation de menaces, 
nous  avons  mené  deux  expériences  dans  le  cadre  desquelles  nous  avons  manipulé  la 
diagnosticité des repères disponibles pour mettre en contraste différents modèles théoriques du 
jugement humain.   

Des travaux de recherche antérieurs [4] ont permis d’examiner quatre processus décisionnels 
pouvant servir de modèles de jugement humain à l’intérieur d’une tâche de classification de 
menaces. L’approche heuristique consistant à « ne garder que le meilleur en vue de la 
classification » (TTB-C) repose sur l’hypothèse qu’un seul repère, hautement valide, peut servir à 
poser des jugements précis en matière de classification des menaces, dans un environnement 
opérationnel où ce repère est hautement prédictif. Deux versions de règle cumulative ont 
également été prises en considération :  la règle pondérée cumulative (WADD) et la règle non 
pondérée cumulative (ADD). Ces règles calculent la somme de la valeur des repères et 
sélectionnent le mécanisme ayant le pointage le plus élevé. Enfin, la stratégie bayesienne réalise 
une inférence probabiliste en appliquant le théorème de Baye pour calculer les probabilités 
conditionnelles des classifications amies et ennemies d’une cible, compte tenu de la configuration 
particulière de la valeur des repères.     

La présente recherche visait à examiner les facteurs pouvant prédire quand des décideurs allaient 
utiliser l’approche heuristique par rapport à une stratégie de décision bayesienne. La façon dont 
l’information est présentée dans une tâche de prise de décision a souvent des incidences 
importantes sur la façon d’exécuter cette tâche. À titre d’exemple, une présentation par images 
peut faciliter l’utilisation de procédures cumulatives compensatoires ou de décision bayesienne 
parce que le système visuel possède des mécanismes qui permettent d’additionner rapidement des 
repères ou de calculer des probabilités. De plus, la présentation par images peut faciliter le 
traitement automatique (par opposition à délibéré), suggérant que le calcul bayesien n’est pas 
nécessairement exigeant au plan cognitif. À l’opposé, Glöckner et Betsch [41] ont suggéré que les 
heuristiques, comme la règle TTB-C, sont associées à un traitement délibéré et qu’elles peuvent 
être fortement touchées par des conditions qui augmentent les exigences liées aux tâches ou 
réduisent les ressources cognitives disponibles.   

L’expérience numéro 1 visait à comparer le rendement des sujets qui avaient appris à classifier les 
contacts à l’aide de repères textuels par rapport à des repères pictographiques. Si, comme le 
suggèrent Glöckner & Betsch [41], la disponibilité simultanée de tous les repères est nécessaire 
pour utiliser une procédure automatique d’intégration des repères, les sujets auront davantage 
tendance à utiliser une stratégie bayesienne lorsqu’ils voient des images que lorsque les repères 
apparaissent sous forme de textes. Un texte doit être lu par séquence, ce qui favorise l’utilisation 
d’une stratégie délibérée, comme la règle TTB-C. L’expérience numéro 2 visait à déterminer si la 
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présentation rapide d’une stimulation par l’image touche la propension des sujets à utiliser une 
stratégie de décision bayesienne. Si la stratégie bayesienne repose sur le recrutement de 
mécanismes perceptuels automatiques, elle peut s’avérer plus profitable dans des situations où 
l’utilisation délibérée d’une approche heuristique est difficile.    

Un nombre important de sujets de l’expérience numéro 1 ont utilisé les règles TTB-C, ADD et 
bayesienne. Il n’y a pas eu de différence marquée entre les conditions textuelles et 
pictographiques dans le nombre de sujets qui ont utilisé les règles bayesienne et TTB-C. Les 
résultats de l’expérience numéro 2 indiquent que le temps d’exposition à une stimulation par 
l’image n’a pas eu d’incidence sur les sujets qui ont utilisé l’approche heuristique par rapport aux 
règles de décision compensatoire. Tant la règle heuristique que bayesienne constitue une stratégie 
viable pour la stimulation textuelle et pictographique. Toutefois, une conséquence inattendue, 
mais très importante de l’ensemble des cibles a été observée. Celle-ci suggère que la 
configuration des repères joue un rôle important dans le choix des sujets d’une procédure 
décisionnelle. Dans un ensemble, l’uniforme était le repère le plus prédictif et semblait également 
être le plus évident au plan perceptuel. Dans le deuxième ensemble, le casque était le repère le 
plus prédictif, mais pas aussi évident que l’uniforme. Il peut arriver que, lorsqu’un repère évident 
au plan conceptuel ou un repère ayant un lien préexistant avec une tâche de classification est 
également celui qui présente le diagnostique le plus probant, des sujets soient capables de 
remarquer  rapidement  sa  relation  avec  la  classification  et  utiliser  une  simple  règle  comme 
la  règle  TTB-C.  À  l’opposé,  lorsqu’un  repère  non  évident  s’avère  hautement  prédictif,  les 
sujets  n’arrivent  pas  à  voir  un  repère  se  démarquer  immédiatement  comme  prédicteur  clé. 
Ils  ont  alors  tendance  à  regarder  tous  les  repères,  ce  qui  suggère  une  règle  de  décision 
analytique et compensatoire. 
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1 Introduction 

1.1 Background 

Threat assessment is a basic military task in which one attempts to rapidly and accurately 
identify friendly, enemy and neutral forces.  This task is performed in a wide range of 
operational environments, where the forces being assessed can be vehicles and platforms, 
such as aircraft, or individual persons, such as uniformed soldiers, guerrilla fighters, and 
civilians.  In most operational settings, numerous data sources are available and can be 
considered to identify targets correctly.  These data can include outputs of sensors (e.g., radar, 
electronic emission detection systems, Interrogate-Friend-or-Foe or IFF interrogation 
systems) or environmental data perceived directly by individuals. 

Formally, threat assessment can be viewed as categorization based on uncertain cues.  An 
operator or soldier must categorize one or more entities in the environment as friend, foe, or 
neutral using available perceptual cues and sensor information.  This can be a difficult task 
when no cue provides certain classification.  Uncertainty results from flawed human 
perception and ambiguous sensor data, as well as inherent uncertainty as to which 
characteristics are important, or diagnostic, to the identity of targets [1] [2].  This is especially 
true in asymmetric environments in which the enemy uses diverse equipment and attempts to 
blend into civilian populations, as well as in coalition operations in which allies may use 
different, unfamiliar equipment.  Operating afield in unfamiliar nations can leave soldiers with 
limited knowledge of the kinds of information needed to distinguish neutral from potentially 
hostile factions. 

To understand how humans make threat assessment judgments, we performed two 
experiments examining the cognitive processes people employ to classify targets as friend or 
foe.  In these experiments, we manipulated the diagnosticity of available cues in order to 
contrast different classes of theoretical models of human judgment.  Following on previous 
research [3] [4], the experiments assessed the analytic and heuristic processes employed by 
participants to categorize entities on the basis of probabilistic cues.   

1.2 Analytic versus heuristic decision processes 

A major question in decision research concerns the value of heuristics in relation to analytic 
procedures [5].  Whereas an heuristic is a simple decision procedure that offers the potential 
to quickly and easily resolve a specific decision, an analytic procedure promises an optimal 
solution at the cost of extensive computation and time.  Both approaches have received 
empirical support and both can be successful approaches to decision making, and this 
precludes a simple conclusion that one is an inherently better approach than the other.  
Nevertheless, when considering a specific decision making task, one approach may be better 
when assessed in terms of not just accuracy but also in terms of the economical use of 
cognitive resources. 



  
 

2 DRDC Toronto TR 2009-126 
 
 
 

1.2.1 Analytic processes 

The analytic approach is based on the premise that human decision making can be modeled in 
terms of formal processes predicted by normative theories of probability and logic.  These 
theories have been popular in the development of support for military decision makers, 
perhaps because there is often an assumption that good decision making follows a rational 
approach in which decisions are based on expected outcomes and there is an attempt to select 
a course of action that will yield the optimal outcome. 

Normative theories explain human judgment in terms of explicitly computable processes to 
take in information, code it symbolically, manipulate these symbolic representations, and 
generate some output.  Analytic decision procedures based on these theories require some 
kind of formal comparison among decision alternatives using deliberate, procedural rules that 
quantify those alternatives.  Numerous specific procedures for comparing alternatives are 
known, most of which can be computationally modeled.  Many, for example, are based on 
Bayesian  statistics  and  evaluate  options  in  terms  of  base  rates  for  different  hypotheses 
and probabilities of the accuracy of different observations [6].  Other analytic strategies 
include subjective expected utility analysis, single feature difference, and elimination by 
aspects (see [7]). 

To make a judgment, an analytic procedure generally specifies a number of dimensions along 
which to compare alternatives.  Typically, these computations are based on compensatory 
algorithms in which all dimensions are weighted [8].  A popular general form is the linear 
compensatory model, which involves the computation of an overall score for each decision 
alternative based on the sum of relevant dimension values for each alternative, weighted by 
each dimension’s importance [9].  Because the score of each alternative is based on all known 
dimensions, effects of large and small dimension values can compensate one another in 
determining the overall desirability of the alternative [10]. 

Analytic decision procedures are popular because they are designed to yield the optimal 
choice.  The downside of such procedures, however, is that they must identify and compare all 
potential decision alternatives along all relevant dimensions.  This means that analytic 
decision making entails extensive computations, even for fairly simple problems [11].  A 
comprehensive search for data to allow all comparisons is generally extremely time 
consuming, if not impossible, in real-world problems, given limitations of human knowledge 
and cognitive capacity.  Moreover, it may not be possible to construct a complete 
representation of the problem space, including goals, the potential outcome values, and the 
probabilities of certain actions producing certain outcomes [12].   

1.2.2 Heuristic processes 

Although analytic models judge what is rational in terms of formal rules of logic and 
probability, the inherent limitations of human cognition have forced researchers to consider 
approaches that can be termed “bounded rationality” [13][14].  These approaches are based on 
the recognition that decision making mechanisms must work within the limits of time, 
knowledge, and computational power imposed by the situation and the decision maker 
him/herself [12][15][16].  Although there is a wide range of specific procedures that fall under 
the general definition of bounded rationality, the use of heuristics is assumed to be key to 
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implementing successful but cognitively plausible decision models.  Heuristics are informal, 
intuitive strategies that specify simple steps, which are often based on pre-existing knowledge 
of probabilistic data, and are designed to work under a few general assumptions [17] [18]. 

The notion of ecological rationality leads to a focus in modeling decision making on the 
interaction of decision making mechanisms with environmental consequences.  In line with 
this focus, Gigerenzer and the Adaptive Behavior and Cognition (ABC) Group [19] have 
developed the fast-and-frugal heuristic approach which seeks to develop models of cognition 
that are simultaneously plausible on psychological and ecological grounds, as well as being 
computationally specific (see [20]).  Thus, fast-and-frugal heuristics are computationally 
simple procedures for making judgments with limited information that have been shown to be 
accurate and efficient solutions to certain judgment tasks [19][21].  The Take the Best (TTB) 
heuristic, for example, performs two-alternative choice tasks by determining the single cue 
dimension that both discriminates options and is believed to have the highest validity based on 
previous experience or learning (i.e., the cue is believed to offer the greatest conditional 
probability of indicating the correct choice given the cue’s presence) [14][22].1  In simulation 
studies with a variety of data sets drawn from psychology, economics, and other fields, TTB 
performs a choice task as accurately as more computationally intensive linear regression 
models [14][22].  In addition to achieving comparable accuracy, the TTB consistently exhibits 
a clear advantage over linear procedures in terms of frugality, consulting, on average, fewer 
cues and performing fewer computations than linear procedures. 

A variety of studies have shown fast-and-frugal heuristics to be accurate and efficient 
solutions to certain judgment tasks.  In simulation studies, TTB performs a choice task, such 
as choosing the larger of two cities, roughly as accurately as more computationally intensive 
linear regression models [14], a finding that has been replicated with 19 other data sets drawn 
from psychology, economics, and other fields and involving comparison along a variety of 
dimensions [22].  In addition to achieving comparable accuracy, TTB consistently exhibits a 
clear advantage over linear procedures in terms of frugality, consulting, on average, fewer 
cues and performing fewer computations than linear procedures.  A non-compensatory 
heuristic such as TTB generally performs well when the task environment is itself structured 
such that the validity of cues falls off dramatically in a non-compensatory fashion [23]. 

Fast-and-frugal heuristics such as TTB can also provide plausible models of human decision 
making in tasks in which subjects are required to use probabilistically predictive cues to select 
an alternative (e.g., [24][25][26][27]).  In these studies, only a subset (albeit a majority in 
some cases) of subjects can be classified as using TTB.  Even under favourable conditions, 
subjects have frequently been observed to deviate from the principles of fast-and-frugal 
heuristics.  Newell and Shanks [27], for example, found that the order in which subjects 
search for cues, in particular, often deviates substantially from what would be expected if 
decision makers were employing a fast-and-frugal heuristic (see also [26]).  Often, a 
significant proportion of subjects seem to use more complex, compensatory procedures in 

                                                      
1  It is often assumed in studies of fast and frugal heuristics that a person’s internal representation of cue 
validities accurately reflects the ordering of cues according to their predictiveness [19], but this is not 
necessarily the case.  The assumption that subjects in the experiments reported here acquired accurate 
cue validity knowledge is bolstered by the finding of Bryant [3] that subjects were able to report the 
relative validity of cues for stimuli similar given extensive threat classification training. 
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these experiments.  As will be discussed in more detail, the propensity of subjects to employ 
TTB is affected by a range of factors, such as costs imposed on obtaining cues.  Thus, it 
remains an open question as to the extent to which fast-and-frugal heuristics represent a 
general framework in which to understand human judgment. 

1.3 Decision procedures for threat assessment 

Given concerns that threat assessment is vulnerable to problems of information overload and 
uncertainty [1], the fast-and-frugal heuristic approach provides a potentially useful framework 
in which to study time- and information-stressed decision making.  Fast-and-frugal heuristics 
may be a natural means to manage a heavy information load, in appropriate task 
environments.  This appears to be true specifically for threat assessment, where surveys of 
experienced  operators  have  indicated  that  operators  do  not  consider  or  weigh  all 
available data equally and that they employ decision making procedures that differ from those 
previously assumed [28]. 

To explore the potential of fast-and-frugal heuristics to model human threat assessment, 
Bryant [4] developed a simulated air threat assessment task in which to compare predictions 
of different decision models.  In three experiments, subjects learned to classify simulated 
aircraft using four probabilistic cues, then classified test sets designed to contrast predictions 
of several compensatory and non-compensatory heuristics.  Various “contacts” (simulated 
aircraft) were presented on a simulated radar screen for subjects to classify as either friend or 
foe based on the values of four cues.  Each cue value had a specific probability of being 
associated with friend and foe contacts, with these probabilities determining the cue’s validity 
in classifying contacts. 

To apply the fast-and-frugal heuristic approach to threat assessment, Bryant [3] [4] devised 
decision procedures specifically for the threat classification task.  The following sections 
describe these in detail. 

1.3.1 The Take-the-Best-for-Classification (TTB-C) heuristic 

A variant of TTB, called Take-the-Best-for-Classification heuristic (TTB-C), was devised to 
perform the threat classification task.2  Illustrated in Figure 1, TTB-C is based on the premise 
that the single most valid cue can be used to make accurate threat classification judgments in a 
task environment in which that cue is highly predictive.  Unlike TTB, which chooses between 
two objects along a single dimension, TTB-C places a single object into one of two 
categories.  Thus, TTB-C is simpler in some respects than TTB but it takes from TTB the 
basic search concept of locating the single best cue to make its decision.   

Given an as-yet-unclassified contact, TTB-C begins by searching for the single most valid cue 
to serve as the basis for classification.  In the experiment described in this report, all cues 

                                                      
2 TTB-C is also derivable from the Lexicographic heuristic for two-alternative choice, which specifies 
the order in which cues are inspected according to a particular system (e.g., alphabetic, numeric).  TTB-
C is a specific instance of a Lexicographic heuristic in which relative cue validity serves as the system 
of cue search (see p. 82 in [19]). 
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associated with contacts will be available, so the most valid cue should be inspected.  When 
the most valid available cue is located, the heuristic assesses which threat class has the greater 
probability of being true given the value of that cue and makes that threat class the output of 
the heuristic.  The heuristic will be applied here to an experimental task in which subjects 
make a simplified two-category choice (friend or foe) but the heuristic could apply to threat 
classification with a larger set of threat classes.  With the contact classified, the heuristic 
terminates.  Should no valid cue be found, the heuristic can only guess. 

TTB-C, as illustrated here, assumes that there exist one or more cues that have some non-
random association to the threat class of contacts and that all, or some subset, of these cues 
can be inspected by the decision maker.  Moreover, the decision maker must have acquired, 
through experience or training, knowledge of the relative validities of these cues.  These, of 
course, are not minor assumptions but there is sufficient evidence that people can learn cue 
validities, even if their learning is imperfect [29] [30]. 

 
Figure 1: The Take-the-Best-for-Classification (TTB-C) Heuristic 
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1.3.2 Compensatory rules 

Just as TTB-C is an adaptation of the TTB heuristic to the single-choice classification 
problem, other two-alternative choice decision strategies can be adapted.  Among the decision 
strategies that have been examined are Franklin’s Rule and Dawes’ Rule.  Franklin’s rule is a 
procedure by which a decision maker calculates the sum of cue values weighted by the 
corresponding cue validities for each alternative and selects the alternative with the highest 
score [31].  Dawes’ rule is similar and calculates the sum of unweighted cue values and 
selects the alternative with the highest score.  Because both Franklin’s and Dawes’ Rules add 
bits of evidence for an alternative, they can be termed Additive Rules (for the sake of clarity, 
these rules will be referred to as the Weighted Additive and Unweighted Additive rules).  
Both employ all available cues although they do not compute probabilities to reach a decision. 

 
Figure 2: Weighted Version of the Additive Rule for Classification 

Versions of the Additive Rules were formulated for the threat classification task.  Unlike their 
progenitors, they do not compare cue values for two alternatives but rather examine each cue 



 
 

DRDC Toronto TR 2009-126 7 
 
 

 
 

value and assign evidence toward either friend or foe classification, depending on the 
associations of cue values to threat class.  A running sum is maintained and, after all available 
cues have been inspected, used to place the contact in the friend or foe category.  Figure 2 
contains an illustration of Weighted Additive (WADD) Rule, which weights cues by their 
validity, adapted for threat classification.  A classification version of the Unweighted Additive 
Rule (ADD) is performed just as illustrated in Figure 2 but without the weighting step 
following  the  selection  of  a  cue.  These  rules  use  more  information  than  TTB-C  but 
are more generally useful because their accuracy is not limited to cases where a single cue is 
highly predictive. 

1.3.3 Bayesian procedures 

Another way to make a judgment on the basis of probabilistic cues is by means of a “naïve” 
Bayesian classifier.  A naïve Bayes classifier is a system for making probabilistic inference by 
applying Bayes' theorem with a strong assumption of independence among cues (i.e., the 
probability with which one cue is associated to a classification outcome is completely 
unrelated to all other cues).  That is, it assumes that the presence of any particular cue is 
unrelated to the presence of any other cue.  In this procedure, a class of object is represented 
by a base rate (overall probability of an instance of that class occurring) and set of conditional 
probabilities that specify relationships of attributes to that class.  Despite their simplifying 
assumption, naïve Bayes classifiers often work very well in complex real-world situations.  
Depending on the precise nature of the probability model, naïve Bayes classifiers can be 
trained very efficiently in a supervised learning setting.  Thus, it is an appropriate model for 
learning the friend/foe classification used in Bryant [4].   
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Figure 3: A Bayesian Network representation of the task used by Bryant [4] 

A Bayesian classifier can be instantiated by a number of different algorithms that calculate 
conditional probabilities.  It can also be instantiated in a Bayesian network (or a belief 
network), which is a probabilistic graphical model that represents a set of variables and their 
probabilistic independencies.  Thus, a Bayesian network can represent the probabilistic 
relationships between threat class (friend or foe) and predictive cues.  Given a set of cues, the 
network can be used to compute the probabilities of the target being a friend or a foe. 

A Bayesian network for the friend/foe task is shown in Figure 3.  The top node represents the 
classification of a target as a friend ( F ).  The case of a foe would be represented by the 
negation of friend ( F ).  Four nodes representing characteristics of the target, or cues (C1-4), 
are connected to it according to their probabilistic association to the class of the target.  Thus, 
each line linking a cue to the classification node is labeled by the conditional probability of 
the cue occurring given the classification of friend.  Considering all cues as a set, the 
classification node represents the conditional probability of that class being true given the 
presence of the four linked cues.  This is given by the formula (1): 
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Where: 

)|(1)|( FCPFCP jj −= , j = 1 to 4. 

The Bayesian strategy was assumed to compute the conditional probabilities of friend and foe 
classifications  given  the  particular  pattern  of  cue  values  for  a  contact  and  select  the 
alternative with the higher probability of being the correct classification.  This is formally 
equivalent to the “profile memorization method,” which memorizes which option has the 
greater conditional probability of being correct for each cue configuration [19]. Martignon 
and Hoffrage [23] have described this method as the optimal Bayesian method for fitting 
known data. 

1.3.4 Results of Bryant (2007) [4] 

Bryant [4] examined the use of various decision procedures in three experiments, in which 
subjects learned to classify simulated aircraft using four probabilistic cues then classified test 
sets designed to contrast predictions of several compensatory and non-compensatory 
heuristics.  Overall, results indicated that about half of the subjects who exhibited a 
classifiable, non-random strategy appeared to use a non-compensatory fast-and-frugal 
heuristic, but the other half used less frugal compensatory decision rules.  Interestingly, the 
relative proportions of subjects exhibiting responses consistent with the fast-and-frugal 
heuristic versus other decision rules was largely unaffected by manipulations of time pressure 
and perceived cue uncertainty. 

In a third experiment, Bryant [4] employed a severe time pressure manipulation that allowed 
subjects only four seconds in which to respond.  This time limit made it extremely difficult to 
inspect all cues and was predicted to strongly favour the use of TTB-C because that decision 
rule only requires a single cue.  The extreme time pressure condition was contrasted with a 
control condition that afforded sufficient time to examine all cues.  Overall, a significant 
difference in the pattern of assigned decision strategies was observed between the high time 
pressure and control conditions.  When time was severely limited, the majority of subjects 
employed either TTB-C or a guessing strategy, presumably because these strategies do not 
require time-consuming inspection of multiple cues.  When time was relatively ample, 
subjects generally preferred strategies that made use of all available cues, either WADD or the 
Bayesian procedure.  This finding indicated that a fairly extreme manipulation of time 
pressure is required to produce a marked shift in subjects’ preferences for strategy.   
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2 Research question 

Research has determined that people may employ simple heuristics to perform cue-based 
tasks in some cases but employ a Bayesian strategy in other cases (e.g., [27]).  Thus, a 
question arises as to what factors might predict when decision makers will employ heuristics 
versus a Bayesian strategy.  Several factors have been found to affect whether subjects 
employ fast-and-frugal heuristics in experiments.  The underlying information structure of the 
task, for example, is a key factor.  A heuristic such as TTB is well-suited to a non-
compensatory environment but less suited to a compensatory environment.  That is, when 
there are a few highly predictive cues available, TTB can perform very well but when no such 
cues  are  available  TTB  is  a  poor  strategy.  Bröder  [24]  found  that  subjects  were  more 
likely to employ TTB when the task involved cues that were designed to create a non-
compensatory environment with one highly weighted cue, rather than when cues created a 
compensatory environment.   

Another factor influencing the use of heuristics is the cost, either in terms of monetary 
resources or cognitive effort, involved in searching for and obtaining cue information.  Bröder 
[24] found 40% of subjects used TTB when the cost of cue information was relatively low and 
60% when the cost was relatively high.  Newell and Shanks [27] have also replicated the 
finding that a greater proportion of subjects employ TTB when cue costs are relatively higher.   

Although some factors have been found to affect the likelihood of adopting a fast-and-frugal 
heuristic, other factors have been unexpectedly ineffective in changing subjects’ decision 
strategies.  Manipulations of time pressure have failed to substantially increase use of fast-
and-frugal heuristics in all but the most extreme cases [4][24].  Similarly, manipulation of the 
experimental instructions [4], degree of knowledge of underlying cue validities [27], and 
number of cues [26] have failed to affect subjects’ selection of decision strategy.  Even 
simplifying the task environment and emphasizing the non-compensatory structure of a task 
does not dramatically increase the proportion of subjects using TTB [26]. 

2.1 Representational format 

The way information is presented in a decision making task often has a significant impact on 
the way people perform that task (e.g., [32]).  This is true for tasks involving reasoning about 
probabilities.  Gigerenzer and Hoffrage [33], for example, found that people were better able 
to understand and use Bayesian conditional probabilities when problems were phrased in 
terms of absolute frequencies as opposed to abstract probabilities.  It is likely that 
representational format affects the type of decision process one uses.  Certainly, changes in 
format can affect the ease with which cues can be searched, which in turn affects the 
usefulness of compensatory procedures [34].   

Bröder and Schiffer [25] have suggested that heuristics are sequential and thus best suited to 
situations in which information is received or processed in a sequential fashion – for example, 
through text.  When pictorial stimuli are available, however, data are available simultaneously 
and can be processed in parallel.  According to Bröder and Schiffer [25], heuristics are not 
suited to pictorial stimuli and, instead, people can more easily employ feature matching or 
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other perceptual, parallel process.  To examine this possibility, Bröder and Schiffer [25] 
compared peoples’ use of different strategies in a four-cue judgment task similar to that of 
Bryant [4] in which materials were presented either textually or in pictures.  They observed 
greater use of a fast-and-frugal heuristic for textual items and greater use of a compensatory 
weighted additive rule for the pictorial items.  This result supports the notion that people can 
use more complex, compensatory procedures when the presentation format allows parallel 
processing of data.  It must be noted, however, that Bröder and Schiffer [25] also reported 
results in which no differences in strategy use were observed between textual and pictorial 
stimuli.  They hypothesize that pictorial stimuli must comprise holistic images, not just 
separate pictures of features, to allow compensatory processing. 

Pictorial format may facilitate use of compensatory or Bayesian decision procedures because 
the visual system has mechanisms to rapidly compute probabilities.  Such mechanisms allow 
the visual system to infer what is in the environment with the imperfect sensory data it 
receives.  Although the human visual system is a complex pattern recognition system, the 
images received by the eye are generally ambiguous because they are two-dimensional 
projections of a three-dimensional world.  Thus, similar objects can create very different 
images, whereas very different objects can give rise to similar images [35].  Despite this 
ambiguity, however, the visual system does an excellent job of segregating and identifying 
discrete objects in the environment.  Thus, Bayesian Perception Theory provides a model of 
visual perception based on a statistical analysis of sensory data [36]. 

The basic premise of Bayesian Perception Theory is that the visual system interprets sensory 
data to infer the most probable state of the world [35].  Essentially, the visual system 
computes the conditional probability of an hypothesized state of the world being true given 
the observed visual image on the basis of the priori probability of that state of the world (base 
rate), the posterior probability of the pattern of sensory data being encountered, and the 
probability of the sensory pattern being produced by the hypothesized state [37].  In this 
theory, visual perception depends on the integration of sensory cues according to a formal 
inference algorithm that adheres to Bayes’ Theorem of conditional probabilities [38].   

Substantial evidence supports the idea of Bayesian perception theory.  Peoples’ perceptual 
judgments have been found to be close to predictions of an “ideal” observer who infers 
objects based on Bayesian theory [35].  This approach, for example, has been successful in 
modeling depth perception, boundary detection, and grouping of elements belonging to the 
same surface.   

Bayesian perception theory explains how people perceive objects in the environment, not how 
they identify or classify them [39].  Nevertheless, the integration of cues in classification 
judgment is analogous to the integration of sensory cues in visual perception.  It is possible 
that people could recruit the Bayesian integration function used in perception to integrate 
probabilistic identity cues for classification.   

2.2 Automatic versus deliberate classification 

One might ask how it would be possible to recruit a Bayesian visual system to perform a 
classification task.  After all, we have previously assumed that Bayesian computation is 
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cognitively demanding, which forms the rationale for predicting the use of heuristics when 
conditions limit time or otherwise restrict a person’s ability to employ a demanding strategy.  
The answer lies in the distinction between deliberate and automatic processes. 

Automaticity is often defined by three main criteria: insensitivity to intentional control, 
insensitivity to cognitive capacity limits, and absence of awareness [40].  With respect to this 
definition, an automatic process is one that a person performs without conscious control or 
awareness and which does not compete for limited cognitive resources.  In contrast, a 
deliberate process is one in which processing is under conscious control, that the person has 
significant insight into (i.e., the person can describe how the process works), and is generally 
effortful and limited [41]. 

Ashby and colleagues [42] [43] [44] have argued that people possess two distinct systems for 
categorization.  Specifically, they propose that people have access to both an explicit system 
that is deliberate and suited to learning rule-based class distinctions and an implicit system 
that is automatic and suited to learning how to integrate probabilistic cues to form categories.  
Evidence for this deliberate-automatic distinction comes from studies that have demonstrated 
that learning of rule-based classification schemes is strongly affected by cognitive load [45], 
task demands [46], and interfering tasks that compete for limited cognitive resources [42][47], 
whereas learning classification schemes based on integration of cues is largely unaffected by 
these factors.   

Glöckner and Betsch [41] have suggested that heuristics, such as TTB-C, are associated with 
deliberate processing.  As such, use of heuristics is strongly affected by conditions that 
increase task demands or reduce available cognitive resources.  They argue, however, that 
people can access automatic processes to make classification judgments.  In three 
experiments, Glöckner and Betsch [41] found that subjects could employ the WADD strategy 
to perform a cue-based decision task as long as information search was not restricted.  
Moreover, subjects’ response times were very fast, suggesting that performance was based on 
automatic processing. 

In bringing together the two independent lines of research on Bayesian perception and dual-
systems of classification, it may be possible to better understand why some people employ 
heuristic decision rules in the threat assessment task whereas others employ a Bayesian 
procedure.  This is consistent with Gigerenzer’s concept of the “Adaptive Toolbox” in which 
people can choose an appropriate heuristic to suit a given problem [19].  According to the 
dual-system view, heuristics would be associated with deliberate rule-based processing.  That 
is, to employ a heuristic such as TTB-C, one must consciously select a particular cue as the 
most valid and classify targets according to a simple rule.  In contrast, the Bayesian procedure 
would be associated with automatic cue-integration.  Subjects would not have to deliberately 
attempt to compute conditional probabilities but, rather, rely on automatic processes to 
integrate all available cues according to an algorithm that is consistent with Bayes’ Theorem.  
Thus, different subjects could reveal different strategies depending on which classification 
system served as the basis for performance. 

The threat assessment task used by Bryant [4] is technically an information integration task 
because optimal performance depends on integration of all four cues.  Thus, it might be 
expected that subjects would employ an automatic classification system, yielding judgments 
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consistent with a Bayesian decision rule.  Given the specific cue validities associated with 
cues, however, the maximal level of performance achievable with a heuristic such as TTB-C 
was almost the same as that of the Bayesian strategy.  Thus, the task could be treated as a 
rule-based classification task with little discernable loss in accuracy.  This allows subjects the 
option of approaching the task as either a rule-based or information-integration decision. 
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3 Overview of the experiments 

The purpose of the experiments reported herein was to test the hypothesis that pictorial stimuli 
are more likely to elicit a Bayesian decision strategy from subjects than textual stimuli, which 
were primarily used in previous experiments [3][4].  This hypothesis is premised on the 
assumption that pictorial stimuli allow a simultaneous as opposed to a sequential scan of 
predictive cues.  Bayesian Perception Theory suggests that cues can be automatically 
processed to compute the conditional probabilities of an item being a friend or foe, which can 
serve as the basis of classification judgments. 

In the experiments reported herein, participants learned to classify targets as friend or foe and 
then were tested on the task.  In the first experiment, contacts were pictures of stylized 
aircraft, whereas in the second experiment they were more realistic illustrations of dismounted 
infantrymen.  In both cases, the test sets of contacts were designed to contrast predictions of 
several heuristics, including the TTB-C and Additive Rules developed specifically for the 
threat classification task, with a Bayesian strategy based on computation of the conditional 
probabilities of friend or foe classification given the particular pattern of cues.   

The purpose of Experiment 1 was to compare the performance of subjects who learn to 
classify contacts using textual cues (i.e., cues indicated by verbal labels) versus those who 
learn to classify contacts using pictorial cues (i.e., cues indicated by diagrams that visually 
depict the cues).  If, as Glöckner & Betsch [41] suggest, simultaneous availability of all cues 
is necessary to employ an automatic cue-integration procedure, then subjects should be more 
likely to employ a Bayesian strategy when viewing pictures than when cues are provided 
textually.  Text must be read sequentially, which would favour the use of a deliberate strategy, 
such as TTB-C. 

The aim of the Experiment 2 was to determine whether rapid presentation of pictorial stimuli 
affects the propensity of subjects to use a Bayesian decision strategy.  If the Bayesian strategy 
depends on the recruitment of automatic perceptual mechanisms, it may be more evident in 
situations in which the deliberate use of an heuristic is made difficult.  This prediction runs 
counter to previous hypotheses that use of a fast-and-frugal heuristic is encouraged by time 
constraints.  The results of Glöckner and Betsch [41], however, suggest that this is the case 
only when information search is limited in such a way as to force a sequential strategy.  Thus, 
Bryant [4] found that an extreme time limit resulted in greater use of TTB-C when subjects 
had to deliberately inspect each cue individually.  In Experiment 2, pictorial stimuli will be 
presented very rapidly so that subjects will not be able to respond while viewing stimuli.  
Instead, after a stimulus has disappeared, they will have to rely on their immediate memory of 
the item to make a decision.  This should encourage subjects to process stimuli perceptually, 
perhaps favouring an automatic Bayesian decision procedure. 

Both experiments employ the method used by Bryant [4] to infer what decision procedure 
each subject employs.  Because different classification procedures predicted different 
responses to the test items, it was possible to create a test set of items that elicited different 
predicted responses from the decision procedures under consideration.  By assessing which 
procedure produced predictions most closely matching a subject’s actual responses, it is 
possible to infer that the subject used a particular decision procedure.   
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4 Experiment 1 

Subjects’ responses to test items will be analysed by comparing their judgments to predictions 
of the competing decision procedures (heuristic and Bayesian) to identify what strategy each 
subject employs, and assess the consistency with which that strategy is employed.  
Contrasting results of the textual and pictorial cue conditions will allow us to determine 
whether subjects in these conditions exhibit different patterns of strategy use.  In particular, 
we will learn whether subjects who make judgments with pictorial cues are more likely to use 
a Bayesian strategy, which would indicate a greater degree of information combination than 
heuristic use. 

4.1 Method 

4.1.1 Subjects 

Subjects were 48 male and female volunteers who were employees of Defence Research and 
Development Canada - Toronto (DRDC Toronto), students conducting research at DRDC 
Toronto, or individuals recruited from local universities.  All subjects were aged 18 and older, 
had  normal  or  corrected-to-normal  vision,  and  were  unfamiliar  with  the  specific 
hypotheses and stimulus configurations of the experiments.  All received stress pay 
remuneration for participating.   

This study, approved by the DRDC Human Research Ethics Committee (HREC), was 
conducted in conformity with the Tri-Council Policy Statement: Ethical Conduct for Research 
Involving Humans. 

4.1.2 Materials 

The experiment was conducted with Pentium Personal Computers (PCs) using the E-Prime 
experiment authoring software.  The software presented instructions and stimuli, collected 
subject responses, and recorded data.   

In the experiment, subjects learned to classify potentially hostile aircraft (contacts) as friend 
or foe.  Each contact’s identity was determined by the combination of four characteristics 
(cues) – the shape of the aircraft’s nose (cone or round), the shape of the wind (swept or 
delta), the type of tail (flexed or raised), and the shape of the cockpit (oval or extended).  Each 
contact’s cue values will be generated according to a probability matrix (i.e., each cue value 
will have a specified probability of being associated with each class of contact, hostile and 
non-hostile).  The contacts were presented in either pictorial or text format.  The pictorial 
contacts, as illustrated in Figure 4, were simple line drawings.  The text contacts consisted of 
a table that indicated the values of the four cues for that aircraft. 
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Figure 4: Examples of pictorial stimuli 

Subjects performed two conditions, one involving textual presentation of stimuli and the other 
pictorial presentation.  Consequently, two sets of 300 contacts (150 friend and 150 foe) were 
created for the training sessions and two sets of 100 contacts (50 friend and 50 foe) were 
created for the test sessions.  The sets were counter-balanced across presentation conditions. 

4.1.3 Design 

Three variables were manipulated in this experiment.  The first, varied within subjects, was 
the Cue Validity of each cue used to describe contacts in the training stimuli sets.  To vary 
Cue Validity, each possible value of a cue (values 1 and 2) was probabilistically associated to 
friend and foe classifications such that each cue differed in diagnosticity.  Thus, for one cue 
each possible value was paired with the friend or foe classification 90% of the time, for 
another cue 80% of the time and so on.  Table 1 indicates the proportions of friend and foe 
contacts possessing each cue value for the four cues in the two training sets.  A contact was 
created by, first, designating it a friend or foe, then assigning values to each of the four cues 
according to the probabilities in Table 1.  For example, in Set 1 a friend would be assigned a 
value for cockpit (cue 1) of either “bubble” (10% chance) or “extended” (90% chance), a 
value for nose (cue 2) of either “cone” (40% chance) or “round” (60% chance) and so on.  A 
foe in Set 1 would be assigned values for the same four cues but the probabilities for each 
value were reversed.  Contacts in Set 2 were created in the same manner but probability 
values associated with each cue were different (see Table 1). 

The second variable manipulated was the Contact Type in the test stimuli.  Each test set was 
made up of patterns that offered contrasting predictions of the three contending classification 
strategies discussed previously; namely TTB-C, the Bayesian strategy, WADD and ADD.  
Eight cue patterns were identified for which at least one strategy offered a differing response 
than predicted by the other strategies.  From these contacts, we created six Contact Types (A, 
B, C, D, E, and F) that distinguished the predicted accuracy of the possible strategies.  The 
different item types are indicated in Table 2 with the predicted response of each decision 
strategy.  Note that each cue pattern listed in Table 2 falls into a different Contact Type 
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depending on whether that pattern is associated with a friend or foe.  Type A and B items 
elicit opposing predictions from TTB-C and the Bayesian strategy.  Where TTB-C would 
predict that these patterns indicate a friend, the Bayesian strategy would predict they indicate 
a foe, and vice versa.  Type C and D patterns elicit the same predictions from TTB-C and the 
Bayesian strategy but force both the Weighted and Unweighted Additive rules (WADD and 
ADD) to guess because equal numbers of cues suggest friend and foe classifications.  Types E 
and F contacts distinguish the Weighted and Unweighted forms of the Additive strategies.  
Computation of target classifications by the TTB-C, Bayesian, WADD, and ADD strategies is 
illustrated in Annex A. 

Table 1: Relative Frequencies of Cue Values for Friend and Foe Contacts 

SET 1 

Cue 1 
(Cockpit) 

Cue 2 
(Nose) 

Cue 3 
(Wing) 

Cue 4 
(Tail) 

 

Value 1  
(extended) 

Value 2 
(Bubble) 

Value 1 
(Round)  

Value 2  
(Cone) 

Value 1 
(Swept) 

Value 
2(Delta) 

Value 1 
(Flexed) 

Value 2 
(Raised) 

Friend 90% 10% 60% 40% 30% 70% 20% 80% 

Foe 10% 90% 40% 60% 70% 30% 80% 20% 

SET 2 

Cue 1 
(Nose) 

Cue 2 
(Tail) 

Cue 3 
(Cockpit) 

Cue 4 
(Wing) 

 

Value 1 
(Round)  

Value 2  
(Cone) 

Value 1 
(Flexed) 

Value 2 
(Raised) 

Value 1  
(extended) 

Value 2 
(Bubble) 

Value 1 
(Swept) 

Value 2 
(Delta) 

Friend 90% 10% 60% 40% 30% 70% 20% 80% 

Foe 10% 90% 40% 60% 70% 30% 80% 20% 

 

In the test set, each of the critical patterns was paired an equal number of times with friend 
and foe contacts.  We predicted the levels of accuracy predicted by the hypothesized decision 
procedures for each Contact Type, shown in Table 3.  

The third variable, varied within subjects, was the Presentation Format in which contact 
characteristics were presented to subjects in the training and test phases.  In the Text cue 
condition, cues were presented textually; that is, subjects saw a chart listing the particular 
characteristics for each selected contact.  In the Pictorial cue condition, cues for each contact 
were provided in pictorial form; that is, subjects saw a drawing of the contact that shows its 
particular characteristics. 

Because subjects performed the experimental task in both a Text and Pictorial condition, two 
contacts sets were created using the same cue labels but with different underlying cue validity 
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structures.  The two sets were fully counterbalanced with the two presentation conditions and 
the order in which they were performed. 

 

Table 2: Predicted Responses to Contact Types by Hypothesized Strategies 

 Predicted Response of Strategy Contact Types 

Cue Pattern TTB-C Bayesian WADD ADD Foe Friend 

1,2,1,1 Friend Foe Foe Foe B A 

2,1,2,2 Foe Friend Friend Friend A B 

1,1,1,1 Friend Friend Guess Guess D C 

2,2,2,2 Foe Foe Guess Guess C D 

1,1,2,2 Friend Friend Friend Guess F E 

1,2,1,2 Friend Friend Friend Guess F E 

2,1,2,1 Foe Foe Foe Guess E F 

2,2,1,1 Foe Foe Foe Guess E F 

Note: Cue pattern indicates the value (as 1 or 2) for each cue in order of cues listed in Table 1 

4.1.4 Procedure 

The experiment was divided into two sessions for the Pictorial and Text conditions, each with 
a training and test phase.  In the training phase, subjects viewed 300 contacts, of which 150 
were friends and 150 foes.  Given the structure of cue information, some patterns were more 
likely to occur than others through a random generation of contacts and the training set 
contained a number of each pattern proportional to its expected frequency.  The contacts were 
presented sequentially and a contact did not appear until the subject had made a response to 
the previous contact.  For each contact, the subject made a classification judgment, indicating 
that the contact was either hostile or not hostile by pressing a labeled key on the computer 
keyboard.  No other options were presented and subjects had to make a decision for each 
stimulus.  After  making  his/her  response,  the  subject  was  shown  a  message  indicating 
whether the response was correct or not (accuracy feedback).  Subjects received no initial 
information  concerning  the  predictiveness  of  cues  and  all  learning  was  accomplished 
through trial-and-error. 
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Table 3 Predicted Accuracy Levels by Contact Type 

 Contact Type* 
Heuristic A B C D E F 

TTB-C 0% 100% 0% 100% 0% 100% 
Bayesian 100% 0% 0% 100% 0% 100% 
WADD 100% 0% Guess Guess 0% 100% 
ADD 100% 0% Guess Guess Guess Guess 

 

Following the training phase, subjects were allowed a short break and then performed the test 
phase.  The test phase followed the same procedure as the training phase with a few important 
differences.  First, subjects received no feedback on the accuracy of their judgments.  Second, 
subjects were given a 16 second time limit in which to make their judgment.  If the subject did 
not respond within that time, the contact disappeared and a null response was recorded.  
Third, subjects were presented with only 100 contacts (10 each of type A, B, C, D, E, and F, 
and 40 randomly selected from all other patterns).  Subjects always received test contacts in 
the same format (Pictorial or Text) as they had received during the training session. 

4.2 Results 

4.2.1 Training session 

The contacts presented during the training session were divided into six blocks of 50 contacts 
each, based on the order of presentation (i.e., the first 50 contacts, the next 50, etc.).  
Accuracy scores (the percentage of contacts correctly classified as friend or foe) were 
calculated for each block for each subject to create mean accuracy scores, which are shown 
broken down by Presentation Format in Figure 5.   
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Figure 5: Classification Accuracy by Block in the Training Session 

A two-way, within-subjects Analysis of Variance (ANOVA) revealed a significant effect of 
Training Block [F(5,235) = 31.36, MSe = 0.006, p < .01] but no significant main effect of 
Presentation Format [F(1,47) < .001, MSe = 0.03, n.s.], indicating that it was neither more nor 
less difficult to learn cue associations for text than pictorial contacts.  There was also no 
significant interaction effect between the two factors [F(5,235) = 0.65, MSe = 0.006, n.s.].   

Overall, subjects learned to classify contacts to a high degree of accuracy, which indicates 
learning of individual cue validities.  Subjects’ mean performance in the final block, however, 
was significantly less than the optimal levels predicted by TTB-C (90.0%), Bayesian (90.2%), 
and WADD (90.2%) ADD (84.8%) strategies.  A t-test indicated that the combined Block 6 
performance (.80) was significantly lower than the lowest predicted optimal (84.8%) 
[t(48)=3.65, p<.01]. 

4.2.2 Classification strategy 

The test set was made up entirely of patterns that offered contrasting predictions of the 
contending classification strategies (see Table 2).  Type A and B items, for example, elicit 
opposing predictions from TTB-C and the Bayesian strategy.  Type C and D patterns elicit the 
same  predictions  from  TTB-C  and  the  Bayesian  strategy  but  force  the  WADD  and 
ADD rules to guess because equal numbers of cues, with equal combined weights, suggest 
friend and foe classifications.   

In previous research [4], strategy use was assessed for each subject by comparing each 
subject’s proportion of correct responses for each pattern type (A, B, C, D, E, and F) to the 
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predicted accuracy levels indicated by the various strategies.  Across the six item types, it was 
possible in most cases to identify the strategy with which the subject’s pattern of accuracies 
was most consistent.  For this experiment, we adopted a method developed by Bröder and 
Schiffer [25][48] that performs essentially the same procedure but adds a more sophisticated 
method of evaluating the precise likelihood that a decision strategy produced a subject’s 
pattern of responses. 

Bröder and Schiffer’s [25][48] Maximum Likelihood Method (MLM) chooses the best fitting 
model from TTB-C, Bayesian, WADD, ADD, and guessing based on the likelihood that a 
subject’s responses were generated by each strategy.  The MLM (also called Bayesian 
Classification Method) is explained in more detail in Annex B, which indicates the equations 
by which MLM computes, for each strategy, the conditional probability of the subject’s 
responses being produced by that strategy.  The power of MLM to discriminate between 
strategies depends on the numbers of discriminating items that do not yield guessing 
responses from one or more decision strategy.  Thus, the test items were designed to contain 
those cue patterns that elicited contrasting predictions from the decision strategies. 

Table 4: Number of Subjects Classified as Using Hypothesized Decision Strategies 

 Decision Heuristic 

Presentation 
Format 

 
TTB-C 

 
Bayesian 

 
ADD 

 
WADD 

 
Unclassifiable 

By Presentation Format 

Text 17 15 13 2 1 

Picture 23 12 9 2 2 

By Target Set 

Set 1 22 11 11 3 1 

Set 2 18 16 11 1 2 

N = 48 for each presentation format & target set 

Table 4 presents the number of subjects classified as using a given decision strategy.  As can 
be seen, the proportions of subjects using each of the decision strategies were very similar in 
the Text and Picture conditions and a Pearson Chi-Square test revealed no significant 
difference between the two conditions [χ2 =2.29, df = 5, n.s.].  In contrast to findings of 
Bryant [4], a large number of subjects were classified as using a Bayesian strategy in both 
presentation conditions.  Bryant [4] had observed very few instances of Bayesian strategy use.  
More in line with those previous findings, large numbers of subjects employed TTB-C and the 
Unweighted Additive Rules.  Only a few were classified as using the Weighted Additive and 
no subject was classified as using a guessing strategy. 

The two target sets comprised different associations of cues with friend/foe classification.  
That is, although the same four cues were used in both sets, these cues were associated with 
different classifications and/or had different cue validities in the two sets.  To assess the effect 
of the cue configuration of a target set, we collapsed strategy use across presentation format 
and separated it according to the target set.  The numbers of subjects classified as using a 
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given strategy for each target set are shown in Table 4.  The target set did not have a 
significant effect on subjects’ choice of decision strategy [χ2 =2.66, df = 5, n.s.]. 

Table 5: Use of Decision Strategies in First and Second Conditions 

 Decision Heuristic 

Condition 
Sequence 

 
TTB-C 

 
Bayesian 

 
ADD 

 
WADD 

 
Unclassifiable 

First 20 12 12 3 1 

Second 20 15 10 1 2 

N = 48 for each presentation format 

We looked at the consistency with which subjects used a particular strategy across the two 
Presentation Formats.  Table 5 shows the number of subjects classified as using each of the 
decision strategies in the first and second sessions of the experiment (i.e. collapsed across 
Presentation Format).  A total of 19 of the 48 subjects (40%) employed the same strategy in 
the Text and Picture conditions, meaning that most subjects (60%) did not employ the same 
strategy in the Text and Picture conditions.  To assess whether the selection of a strategy in 
the second condition was affected by the strategy employed in the first, we analysed the 
probability of choosing the TTB-C strategy (coded as 1) versus a compensatory strategy 
(coded as 2) through a logistic regression.3  The strategy used in the first condition and the 
presentation format in the second condition were considered as predictors.4  Neither the 
strategy  used  in  the  first  condition  [t(42)  =  1.08,  n.s.]  nor  the  presentation  format 
[t(42)  =  1.70,  n.s.]  emerged  as  significant  predictors  of  the  strategy  used  in  the  
second condition. 

4.2.3 Response time 

Response times were measured from the time at which the test item appeared on the screen to 
the time at which the subject pressed either the friend or foe key on the computer keyboard.  
Although no predictions concerning response times were drawn from the decision strategies 
under consideration, mean response times were computed for subjects.  Generally, subjects 
took a fair amount of time, on the order of 6 to 8 seconds, to indicate their decisions. 

Because reaction times were not distributed normally, they were transformed by their natural 
log prior to analysis.  Although a two-factor within-subjects ANOVA revealed no significant 
effect of Presentation Format [F(1,47) = 0.58, MSe = 0.87, n.s.], there were significant effects 
of  Item  Type  [F(5,235)  =  4.78,  MSe  =  0.036,  p<.01] and  the  interaction  of  factors 
[F(5,235) = 5.92, MSe = 0.029, p<.01].  These effects seem to reflect the fact that mean 
response times were somewhat larger for item types C and D in the pictorial but not text 
presentation condition.  Indeed, mean response times were approximately equal across all 

                                                      
3 Data of three subjects were excluded because they produced unclassifiable results in at least one 
session. 
4 The presentation formats in the first and second sessions were linked and so only one need be coded 
in the regression analysis. 
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item types for text presentation.  Although differences in mean response times across Item 
Type have been observed in previous experiments, there has been no consistency in which 
items elicit faster responses.  

4.3 Discussion 

Substantial proportions of subjects employed the TTB-C, ADD, and Bayesian rules in this 
experiment.  The use of the Bayesian rule by so many subjects in the text condition was 
surprising given that only a few subjects were classified as Bayesian users in Bryant [4].  This 
finding may reflect the impact of differences in the experimental methodology employed in 
the current experiments or differences in the subject samples.  This result suggests that use of 
the Bayesian rule is a viable strategy for both textual and pictorial stimuli.  It had been 
predicted that pictorial presentation would favour the use of the Bayesian rule relative to 
textual presentation but this was not the case.  There was no significant difference between the 
two conditions in the proportions of subjects employing the Bayesian and TTB-C rules.  
Simply presenting targets as pictures is not sufficient to make the Bayesian rule more 
appealing to subjects relative to textual presentation. 

Pictorial presentation of contacts was intended to allow subjects to perceive all cues 
simultaneously and thus be able to use perceptual mechanisms to integrate them.  Because the 
pictures remained on the screen until he or she responded, the subject could sequentially scan 
the picture to identify cues.  To control for this possible search strategy, the next experiment 
contained a condition in which pictorial stimuli were presented for only a short duration then 
disappear before subjects can respond.  This manipulation is intended to force subjects to rely 
on immediate memory for the items, which may favour an automatic Bayesian decision 
process if it is based on perceptual processing. 
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5 Experiment 2 

In previous research [4], subsets of subjects were observed to employ both the analytic 
Bayesian  procedure  as  well  as  heuristic  procedures  of  varying  degrees  of  complexity 
(i.e., Additive Rules, TTB-C).  At a group level, however, the only factor to be observed to 
affect the relative proportions of subjects adopting a given decision procedure was time 
pressure at the time of test.  Even then, a fairly extreme manipulation of time pressure was 
required to shift a larger proportion of subjects to employ the fast-and-frugal TTB-C heuristic 
as opposed to compensatory procedures.  Thus, it was perhaps not so surprising that the 
manipulation of presentation format in the previous experiment did not yield any differences 
in the proportions of subjects using the various decision procedures. 

The aim of Experiment 2 was to determine whether rapid presentation of pictorial stimuli 
affects the propensity of subjects to use a Bayesian decision strategy.  It was expected that 
very rapid presentation will require subjects to perceptually encode pictorial stimuli and then 
analyse their perceptual memory of it.  This manipulation was intended to promote the use of 
an automatic Bayesian decision procedure.  Pictures, unlike texts, do not force subjects to 
engage in sequential search of cues.  Thus, restricting viewing time was not expected to lead 
to more subjects adopting TTB-C. 

In this experiment, the friend-foe classification task was reframed in terms of Combat 
Identification (CID) by dismounted infantry soldiers.  CID is the capability to rapidly and 
accurately identify friendly, enemy and neutral forces, manage and control the battlespace, 
optimally employ weapons and forces, and minimize the risk of fratricide (the inappropriate 
engagement and potential wounding or killing of a friendly soldier or unit).  Thus, CID is very 
similar to the air threat assessment task used in Experiment 1 and a formally equivalent task 
was developed for the second experiment. 

5.1 Method 

5.1.1 Subjects 

Subjects were 48 male and female volunteers who were employees of DRDC Toronto, 
students conducting research at DRDC Toronto, or individuals recruited from local 
universities.  All subjects were aged 18 and older, had normal or corrected-to-normal vision, 
and were unfamiliar with the specific hypotheses and stimulus configurations of the 
experiments.  All received stress pay remuneration for participating.   

This study, approved by the DRDC HREC, was conducted in conformity with the Tri-Council 
Policy Statement: Ethical Conduct for Research Involving Humans. 
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5.1.2 Materials 

The experiment was conducted with Pentium PCs using the E-Prime experiment authoring 
software.  The software presented instructions and stimuli, collected subject responses, and 
recorded data.   

In the experiment, subjects learned to classify potentially hostile soldiers (contacts) as friend 
or foe.  The contacts were presented in pictorial format, as illustrated in Figure 6.   

   
Figure 6: Examples of stimuli 

Each contact’s identity was determined by the combination of four characteristics (cues) – the 
pattern and colour of the contact’s uniform (Canadian Distinctive Pattern (CADPAT) or olive 
green), the presence of a face covering (black mask or no mask), the type of rifle held (C7 or 
AK-47), and the colour of the helmet (CADPAT or dark green).  Each contact’s cue values 
were generated according to a probability matrix (i.e., each cue value will have a specified 
probability of being associated with each class of contact, hostile and non-hostile).  Unlike the 
completely fictional stimuli used in Experiment 1, some characteristics of the soldier stimuli 
(CADPAT uniform, C7 and AK-47 rifles) were likely known to at least some subjects.  These 
subjects would have had pre-existing associations of these characteristics to friend and foe 
classifications (i.e., CADPAT with friend, AK-47 with foe) that could complicate learning.  
Previous experiments [3] [4], however, have shown that 300 training trials leads to very high 
classification performance levels and subjects should be able to acquire accurate 
representations of underlying cue validities despite any pre-existing associations.  
Nevertheless, this issue remains pertinent to future research. 

Subjects performed two conditions, a long and a short presentation time.  Consequently, two 
sets of 300 contacts (150 friend and 150 foe) were created for the training sessions and two 
sets of 100 contacts (50 friend and 50 foe) were created for the test sessions.  The sets were 
counter-balanced across presentation conditions. 



  
 

26 DRDC Toronto TR 2009-126 
 
 
 

5.1.3 Design 

Three variables were manipulated in this experiment.  The first, varied within subjects, was 
the Cue Validity of each cue used to describe contacts in the training stimuli sets.  To vary 
Cue Validity, each possible value of a cue (values 1 and 2) was probabilistically associated to 
friend and foe classifications such that each cue differed in diagnosticity.  Thus, for one cue 
each possible value was paired with the friend or foe classification 90% of the time, for 
another cue 80% of the time and so on.  Table 6 indicates the proportions of friend and foe 
contacts possessing each cue value for the four cues in the two training sets.  A contact was 
created by, first, designating it a friend or foe, then assigning values to each of the four cues 
according to the probabilities in Table 6.  For example, in Set 1 a friend would be assigned a 
value for uniform (cue 1) of either “CADPAT” (90% chance) or “Olive” (10% chance), a 
value for helmet (cue 2) of either “Canadian” (60% chance) or “Dark Green” (40% chance) 
and so on.  A foe in Set 1 would be assigned values for the same four cues but the 
probabilities for each value were reversed.  Contacts in Set 2 were created in the same manner 
but probability values associated with each cue were different (see Table 6). 

Table 6: Relative Frequencies of Cue Values for Friend and Foe Contacts 

SET 1 

Cue 1 
(Uniform) 

Cue 2 
(Helmet) 

Cue 3 
(Rifle) 

Cue 4 
(Face Cover) 

 

Value 1  
(CADPAT) 

Value 2 
(Olive) 

Value 1 
(Can.)  

Value 2  
(Dark gr.) 

Value 1 
(C7) 

Value 2  
(AK-47) 

Value 1 
(None) 

Value 2 
(Covered) 

Friend 90% 10% 60% 40% 30% 70% 20% 80% 

Foe 10% 90% 40% 60% 70% 30% 80% 20% 

SET 2 

Cue 1 
(Helmet) 

Cue 2 
(Uniform) 

Cue 3 
(Face Cover) 

Cue 4 
(Rifle) 

 

Value 1 
(Can.)  

Value 1 
(Can.)  

Value 1  
(CADPAT) 

Value 2 
(Olive) 

Value 1 
(None) 

Value 2 
(Covered) 

Value 1 
(C7) 

Value 2  
(AK-47) 

Friend 90% 10% 60% 40% 30% 70% 20% 80% 

Foe 10% 90% 40% 60% 70% 30% 80% 20% 

 

The second variable manipulated was Contact Type (for test stimuli).  Each test set was made 
up of patterns that offered contrasting predictions for the three contending classification 
strategies discussed previously; namely TTB-C, the Bayesian strategy, and the Weighted and 
Unweighted Additive Rules.  Eight cue patterns were identified for which at least one strategy 
offered a different response than the others.  From these contacts, we created six Contact 
Types (A, B, C, D, E, and F) that distinguished the predicted accuracy of the possible 
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strategies.  The different item types are indicated in Table 7 with the predicted response of 
each decision strategy.  Note that each cue pattern listed in Table 7 falls into a different 
Contact Type depending on whether that pattern is associated to a friend or foe.  Type A and 
B items elicit opposing predictions from TTB-C and the Bayesian strategy.  Where TTB-C 
would predict that these patterns indicate a friend, the Bayesian strategy would predict they 
indicate a foe, and vice versa.  Type C and D patterns elicit the same predictions from TTB-C 
and the Bayesian strategy but force the Unweighted Additive Rule to guess because equal 
numbers of cues suggest friend and foe classifications.  Types E and F contacts distinguish the 
Weighted and Unweighted forms of the Additive strategies.   

In the test set, each of the critical patterns was paired an equal number of times with friend 
and foe contacts.  We predicted the levels of accuracy predicted by the hypothesized decision 
procedures for each Contact Type, shown in Table 8.   

Table 7: Predicted Responses to Contact Types by Hypothesized Strategies 

 Predicted Response of Strategy Contact Types 

Cue Pattern TTB-C Bayesian WADD ADD Foe Friend 

1,2,1,1 Foe Friend Friend Friend B A 

2,1,2,2 Friend Foe Foe Foe A B 

1,1,1,1 Foe Foe Guess Guess D C 

2,2,2,2 Friend Friend Guess Guess C D 

1,2,2,1 & 1,2,1,2 Friend Friend Friend Guess F E 

2,1,2,1 & 2,1,1,2 Foe Foe Foe Guess E F 

Note: Cue pattern indicates the value (as 1 or 2) for each cue in order of cues listed in Table 6 

The third variable, varied within subjects, was the Exposure Time during which the picture of 
a contact was visible on the computer screen during the test phase.  In the Control condition, 
contacts were presented for up to 16 seconds, during which subjects could indicate their 
response.  The Control condition replicates the procedure used in previous studies [4] and 
provided ample time to subjects to inspect a contact.  In the Brief Exposure condition, 
contacts were presented for 500 msec, followed by a visual mask for 500 msec.  Subjects 
could enter their response only after the contact and mask had been presented. 
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Table 8: Predicted Accuracy Levels by Contact Type 

 Contact Type 

Heuristic A B C D E F 

TTB-C 100% 0% 100% 0% 100% 0% 

Bayesian 0% 100% 100% 0% 100% 0% 

WADD 0% 100% Guess* Guess* 100% 0% 

ADD 0% 100% Guess* Guess* Guess* Guess* 

* It is assumed a guessing strategy would yield 50% accuracy 

5.1.4 Procedure 

The experiment was divided into two sessions for the Control and Brief Exposure conditions, 
each with a training and test phase.  In the training phase of both conditions, subjects viewed 
300 contacts, of which 150 were friends and 150 foes.  Given the structure of cue information, 
some patterns were more likely to occur than others through a random generation of contacts 
and the training set contained a number of each pattern proportional to its expected frequency.  
The contacts were presented sequentially and a contact did not appear until the subject had 
made a response to the previous contact.  For each contact, the subject made a classification 
judgment, indicating that the contact was either hostile or not hostile by pressing a labeled key 
on the computer keyboard.  No other option was presented and subjects had to make a 
decision for each stimulus.  After his/her response, the subject was given accuracy feedback 
on their classification judgment.  Subjects received no initial information concerning the 
predictiveness of cues and all learning was accomplished through trial-and-error. 

Following the training phase, subjects were allowed a short break and then performed the test 
phase.  The test phase followed the same procedure as the training phase with a few important 
differences.  First, subjects received no feedback on the accuracy of their judgments.  Second, 
subjects were presented with only 100 contacts (10 each of type A, B, C, D, E, and F, and 40 
randomly selected from all other patterns).  Finally, in the Brief Exposure condition, subjects 
saw a contact for 500 msec, followed by a coloured visual mask (random dot pattern), then 
made their judgment.  In this and the Control condition, subjects were required to respond to 
all contacts.  If, however, a subject had not responded within 16 seconds, a null response was 
recorded and the next contact presented.   

5.2 Results 

5.2.1 Training session 

The contacts presented during the training session were divided into six blocks of 50 contacts 
each, based on the order of presentation (i.e., the first 50 contacts, the next 50, etc.).  
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Accuracy scores (the percentage of contacts correctly classified as friend or foe) were 
calculated for each block for each subject to create mean accuracy scores, which are shown 
broken down by Exposure Time Condition in Figure 7.  Overall, subjects’ mean accuracy in 
the final block was somewhat lower than that seen in previous experiments [4] and 
significantly less than the optimal levels of performance predicted by any of the decision 
models under consideration.   

A   within-subject   ANOVA   revealed   a   significant   effect   of   Training   Block  
[F(5,230) = 12.61, MSe = .008, p < .01] but no significant main effect of Presentation Time 
[F(1,46) = 0.006 MSe = .06, n.s.], which is expected because the training sessions were 
exactly the same in both cases.  There was likewise no significant interaction effect between 
the two factors [F(5,230) = 0.24, MSe < .001, n.s.].  The training set used was examined as a 
categorical factor to determine whether one set might be easier to learn to classify, and, 
although    the    main    effect    of    training    set    was    not    statistically    significant   
[F(1,46) = 0.96 MSe = .09, n.s.], this factor did interact with Training Block [F(5,230) = 2.27, 
MSe < .008, p < .05].  The interaction reflects the finding that, when learning Set 1, subjects 
exhibited somewhat higher levels of accuracy in the early blocks (1-4) than that seen when 
learning Set 2.  Subject’s accuracy scores for the two sets were essentially equal on the final 
two blocks.  This suggests that training Set 1 may have been easier to learn initially but that 
any advantage disappeared with extended practice. 

A second ANOVA was performed on subjects’ mean response times to contacts across 
blocks.  This  analysis  revealed  a  significant  effect  of  Training  Block  [F(5,230) = 12.61, 
MSe = .008, p < .01] as subjects tended to respond faster over the course of the training 
session.  No  other  factor  or  interaction  significantly  affected  response  times  in  the 
training session.  
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Figure 7: Classification Accuracy by Block in the Training Session 

As in the first experiment, subjects’ mean performance in the final block, however, was 
significantly less than the optimal levels predicted by TTB-C (90.0%), Bayesian (90.5%), 
WADD  (89.0%),  and  ADD  (85.0%)  strategies.  A  t-test  indicated  that  the  combined 
Block  6  performance  (.75)  was  significantly  lower  than  the  lowest  predicted  optimal 
(.85) [t(48)=6.00, p<.01]. 

5.2.2 Classification strategy 

As in the first experiment, the test set was made entirely of patterns that offered contrasting 
predictions of the contending classification strategies (see Table 7).  The MLM was again 
used to classify the decision strategy employed by each subject based on his or her sequence 
of responses to test items. 

Table 9 presents the number of subjects classified as using a given decision strategy.  As can 
be seen, the proportions of subjects using each of the decision strategies were very similar in 
the control and Brief Exposure conditions and a Pearson Chi-Square test revealed no 
significant difference between the two conditions [χ2 =2.91, df = 5, n.s.].  In contrast to 
findings of Bryant [4], a large number of subjects were classified as using a Bayesian strategy 
in both conditions.  More in line with those previous findings, large numbers of subjects 
employed TTB-C and the ADD rule.  Only a few were classified as using WADD and no 
subject was classified as using a guessing strategy. 
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Table 9: Number of Subjects Classified as Using Hypothesized Decision Strategies 

 Decision Heuristic 

Presentation 
Time 

 
TTB-C 

 
Bayesian 

 
ADD 

 
WADD 

 
Unclassifiable 

By Presentation Format 

Control 19 16 6 0 7 

Brief Exposure 21 18 5 1 3 

By Target Set 

Set 1 35 4 4 1 4 

Set 2 5 30 7 0 6 

N = 48 for each presentation format & target set 

The two target sets comprised different associations of cues with friend/foe classification.  
That is, although the same four cues were used in both sets, these cues were associated with 
different classifications and/or had different cue validities in the two sets.  To assess the effect 
of the cue configuration of a target set, we collapsed strategy use across Exposure Time and 
separated it according to the target set.  The numbers of subjects classified as using a given 
strategy for each target set are shown in Table 9.  As can be seen, there is a striking difference 
in the numbers of subjects classified as using TTB-C versus the Bayesian strategy in Set 1 and 
Set 2 [χ2 = 44.60, df = 5, p<.01].   

5.2.3 Response time 

Response times were measured from the time at which the test item appeared on the screen to 
the time at which the subject pressed either the friend or foe key on the computer keyboard.  
Although no predictions concerning response times were drawn from the decision strategies 
under consideration, mean response times were computed for subjects.  Generally, subjects 
required little time to make their responses, on the order of 1.2 to 1.4 seconds in the control 
condition and 650 to 800 msec in the Brief Exposure condition, to indicate their decisions. 

Because reaction times were not distributed normally, they were transformed by their natural 
log prior to analysis.  A mixed-design ANOVA revealed a significant effect of Exposure Time 
[F(1,46) = 41.35, MSe = 1.11, p < .01] and subjects were significantly faster to respond in the 
Brief Exposure than control condition.  Subjects were not forced to respond faster in the Brief 
Exposure condition as they were allowed 16 seconds, just as in the control condition, after the 
test item had been briefly presented.  The ANOVA also revealed a significant effect of Item 
Type [F(5,230) = 5.49, MSe = 0.05, p<.01], which reflected the fact that mean response times 
were somewhat faster for item types C and D in both the Brief Exposure and control 
conditions.  Note that this result stands in contrast to the result observed in Experiment 1 in 
which items C and D tended to elicit slower responses.  Variations in response time likely 
reflect random variation rather than a systematic effect.  No other factors or interactions 
significantly affected response times. 
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5.3 Discussion 

Rapid presentation of targets did not increase the proportion of subjects employing the 
Bayesian decision rule.  Thus, it appears that static pictorial presentation itself does not 
promote the use of that or any other decision procedure, although this does not rule out the 
possibility that dynamic visual stimuli may elicit a preferred decision strategy.  The absence 
of an effect of exposure time means that people can use both analytic and simple heuristic 
decision procedures equally as well when item appears very briefly as when they have 
essentially unlimited viewing time.  Only extreme time pressure on cue search, such as 
employed in Bryant [4], seems to affect the relative use of a simple heuristic. 

An unexpected but very large effect of the target set was observed in this experiment.  This 
suggests that the configuration of cues plays an important role in subjects’ choice of a 
decision procedure.  In Set 1, the uniform was the most predictive cue and it also seemed to be 
the most salient.  Some subjects spontaneously offered that they looked at this first and later 
informal surveys of researchers at DRDC Toronto also suggested that the uniform is seen as 
visually salient and an assumed a priori predictor of friend/foe.  In Set 2, the helmet was most 
predictive and this cue was not considered to be as salient as the uniform.  It may be that when 
a salient cue, or a cue with a pre-existing association to the classification task, is the most 
predictive, subjects are able to quickly notice its relation to classification and use TTB-C.  In 
other words the salient, high validity cue suggests TTB-C as a decision rule.  In contrast, 
when a non-salient cue is most predictive, subjects do not have one cue that immediately 
stands out as a key predictor and so they look at all cues to identify targets.  This suggests a 
compensatory and analytic decision rule, either because subjects explicitly weigh all cues or 
because they acquire richer instances of contacts in memory, which supports a recognition-
based decision rule that conforms to Bayesian predictions. 

This explanation is consistent with some previous research on category learning.  Various 
models of categorization (e.g., [49] [50]) have proposed that cue validity is the prime 
determinant of a cue’s use in category learning.  Nevertheless, some of these models admit 
that a cue’s salience, either perceptual or conceptual (i.e., meaningfully/causally related to 
category membership), can play a role in the processes of learning categories and retrieving 
category information from memory [51].  Thus, the classic view of category learning is that 
the learner seeks cues that are most diagnostic and incorporates these in a representation of 
the category but may also select cues to category membership based on non-diagnostic 
characteristics (see Martin & Caramazza [52] for a review).  Indeed, it has been found that 
completely irrelevant (i.e., non-diagnostic) cues can affect aspects of category performance 
such as judgments of category membership, ratings of category typicality, and the degree to 
which a person makes use of relevant cues [53] [54]. 

Martin and Caramazza [52] suggested in 1980 that people begin category learning by 
identifying features or cues that can be used to distinguish category members and non-
members.  Moreover, they argued that this process comprises a sequential search of cues, 
which a single cue at a time being evaluated for its usefulness.  In their view, perceptually 
salient cues are most likely to be noticed early in the learning process and subsequently 
incorporated in the representation of the category.  Thus, salient and predictive cues are more 
likely to be incorporated than predictive but non-salient cues, and even non-predictive cues 
may become associated with the category because they stood out early in the learning process.  
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In a series of experiments on perceptual category learning, Martin and Caramazza observed 
that the perceptual salience of cues did affect subjects’ learning of categories even when 
salience was not aligned with cue validity.  In particular, the salience of cues affected the 
order in which those cues were sampled. 

The salience of a cue could also be determined by non-perceptual characteristics, such as pre-
existing conceptual relationships between cues and specific categories [52].  In addition to 
being, perhaps, the most perceptually salient cue, the uniform may also have had a meaningful 
relationship to classification of a target as friend or foe.  Subjects likely found it easier to learn 
and accept that the CADPAT uniform reliably signalled that a stimulus was a friend.  The 
issue of conceptual salience will be explored in future research. 

From this, it appears that the interaction of cue validity and cue salience should determine 
classification.  When first encountering objects to be classified, such as the stimuli used in the 
experiments reported here, subjects may focus on one feature at a time to examine and 
evaluate as a category predictor.  Subjects would be biased toward selecting salient cues first.  
In light of the target set effect seen in Experiment 2, it seems that if the first cue selected is 
highly predictive, most subjects recognize an heuristic such as TTB-C as a reasonable 
decision strategy.  In contrast, when the first cue is not highly predictive, and the subject 
continues evaluating subsequent cues, he/she acquires knowledge of all cue validities and 
employs a Bayesian decision strategy. 
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6 Conclusion 

The experiments reported here provide evidence that people can employ both a fast-and-frugal 
heuristic approach and a more complex Bayesian strategy to classify targets as friend or foe.  
Both provided accurate solutions to the experimental task, so it was hypothesized that the 
nature of the representational format might govern the decision procedure employed by 
subjects.  Specifically, a Bayesian strategy was considered easier to employ when targets were 
depicted pictorially because all cues would be available for simultaneous processing, perhaps 
recruiting automatic perceptual process [41].  Textual presentation, in contrast, was expected 
to require sequential processing and be more consistent with the deliberate employment of a 
fast-and-frugal heuristic.  The absence of any difference in strategy use between pictorial and 
textual presentation conditions in Experiment 1 is inconsistent with this hypothesis. 

In an effort to replicate the results of Experiment 1, a speeded presentation technique was 
employed in Experiment 2 to make use of a deliberate strategy more difficult [41].  Contacts 
in the test phase were presented for only 500 msec each to dramatically limit subjects’ time to 
inspect cues and thus make use of a deliberate heuristic difficult.  It was hypothesized that this 
manipulation would favour the use of an automatic Bayesian strategy if it did, in fact, rely on 
the recruitment of automatic perceptual mechanisms.  Contrary to this hypothesis, however, 
rapid presentation of test items did not affect subjects’ propensity to employ either the 
Bayesian or TTB-C strategies. 

Although the original hypothesis that subjects would be more likely to employ a Bayesian 
strategy for pictorial stimuli was not supported by the results, it was found that the target sets 
in Experiment 2 yielded a very large difference in decision behaviour.  This finding raises the 
possibility that the salience of visual cues plays a role in determining decision strategy 
selection by subjects.  Based on the relative salience of cues in the test sets, it may be that 
highly salient cues that are also highly predictive tend to lead subjects to employ an heuristic 
strategy such as TTB-C.  In contrast, when the most predictive cues are not salient, subjects 
may be more likely to employ a Bayesian strategy.  Subsequent research will examine the role 
of cue salience in threat assessment judgments. 
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Annex A 

This Annex presents sample calculations of decision strategy predictions to illustrate how 
each decision strategy made judgments and how the six Contact Types (A, B, C, D, E, F) used 
in the test sets elicited different predictions from the various strategies. 

Probabilistic structure of the training and test contacts 

Contacts in Experiment 1 were created according to the probability matrix reproduced in 
Table A1, which indicates the proportions of friend and foe contacts possessing each cue 
value (1 or 2) for the four cues in the two training sets. 

Table A1: Relative Frequencies of Cue Values for Friend and Foe Contacts 

SET 1 

Cue 1 
(Cockpit) 

Cue 2 
(Nose) 

Cue 3 
(Wing) 

Cue 4 
(Tail) 

 

Value 1  
(extended) 

Value 2 
(Bubble) 

Value 1 
(Round)  

Value 2  
(Cone) 

Value 1 
(Swept) 

Value 
2(Delta) 

Value 1 
(Flexed) 

Value 2 
(Raised) 

Friend 90% 10% 60% 40% 30% 70% 20% 80% 

Foe 10% 90% 40% 60% 70% 30% 80% 20% 

SET 2 

Cue 1 
(Nose) 

Cue 2 
(Tail) 

Cue 3 
(Cockpit) 

Cue 4 
(Wing) 

 

Value 1 
(Round)  

Value 2  
(Cone) 

Value 1 
(Flexed) 

Value 2 
(Raised) 

Value 1  
(extended) 

Value 2 
(Bubble) 

Value 1 
(Swept) 

Value 2 
(Delta) 

Friend 90% 10% 60% 40% 30% 70% 20% 80% 

Foe 10% 90% 40% 60% 70% 30% 80% 20% 

 

Each test set was made up of patterns that offered contrasting predictions of the three 
contending classification strategies discussed previously; namely TTB-C, the Bayesian 
strategy, WADD, and ADD.  Eight cue patterns were identified for which at least one strategy 
offered a differing response than predicted by the other strategies.  From these contacts, we 
created six Contact Types (A, B, C, D, E, and F) that distinguished the predicted accuracy of 
the possible strategies.  The different item types are indicated in Table A2 with the predicted 
response of each decision strategy.  Note that each cue pattern listed in Table 2 falls into a 
different Contact Type depending on whether that pattern is associated to a friend or foe.  
Type A and B items elicit opposing predictions from TTB-C and the Bayesian strategy.  
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Where TTB-C would predict that these patterns indicate a friend, the Bayesian strategy would 
predict they indicate a foe, and vice versa.  Type C and D patterns elicit the same predictions 
from TTB-C and the Bayesian strategy but force the Unweighted Additive Rule to guess 
because equal numbers of cues suggest friend and foe classifications.  Types E and F contacts 
distinguish the Weighted and Unweighted forms of the Additive strategies.   

Table A2: Predicted Responses to Contact Types by Hypothesized Strategies 

 Predicted Response of Strategy Contact Types 

Cue Pattern TTB-C Bayesian WADD ADD Foe Friend 

1,2,1,1 Friend Foe Foe Foe B A 

2,1,2,2 Foe Friend Friend Friend A B 

1,1,1,1 Friend Friend Guess Guess D C 

2,2,2,2 Foe Foe Guess Guess C D 

1,1,2,2 Friend Friend Friend Guess F E 

1,2,1,2 Friend Friend Friend Guess F E 

2,1,2,1 Foe Foe Foe Guess E F 

2,2,1,1 Foe Foe Foe Guess E F 

Note: Cue pattern indicates the value (as 1 or 2) for each cue in order of cues listed in Table 1 

Example classification computations 

This section illustrates how TTB-C, the Bayesian strategy, WADD and ADD compute 
classifications for a given target cue pattern.  For this purpose, we refer to a Set 1 contact (see 
Table A1) composed of the following characteristics: 

• Cue 1 (Cockpit) = Value 1 (Extended) 

• Cue 2 (Nose) = Value 2 (Cone) 

• Cue 3 (Wing) = Value 1 (Swept) 

• Cue 4 (Tail) = Value 1 (Flexed) 

This contact is represented as 1,2,1,1 in Table A2 and is a Type A item. 

TTB-C 

Figure A1 below illustrates TTB-C in the form of a flowchart.  Given that all cues are 
available and that a cue value of 1 for Cue 1 is most strongly associated with a classification 
of Friend (see Table A1), we can compute the predicted response of TTB-C to cue pattern 
1,2,2,2 in the following manner:   
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Step 1: Search for most valid cue = Cockpit  

Step 2: Inspect cue value = Extended (1)  

Step 3: Assign classification (based on cue value’s 
association to Friend or Foe) 

= Friend  

Thus, TTB-C predicts that the target is a Friend. 

 

 

Figure A1: The Take-the-Best-for-Classification Strategy 

Bayesian network 

A Bayesian network for the friend/foe task is shown in Figure 3.  The top node represents the 
classification of a target as a friend ( F ).  The case of a foe would be represented by the 
negation of friend ( F ).  Four nodes representing characteristics of the target, or cues (C1-4), 
are connected to it according to their probabilistic association to the class of the target.  Thus, 
each line linking a cue to the classification node is labeled by the conditional probability of 
the cue occurring given the classification of friend.  Considering all cues as a set, the 
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classification node represents the conditional probability of that class being true given the 
presence of the four linked cues.  This is given by the formula (A1): 

[ ])|()|()|()|()|()|()|()|(
)|()|()|()|()|(

43214321

4321
4321

FCPFCPFCPFCPFCPFCPFCPFCP
FCPFCPFCPFCPCCCCFP

•••+•••
•••

=∩∩∩  

(A1) 

Where: 

)|(1)|( FCPFCP jj −= , j = 1 to 4. 

The Bayesian strategy was assumed to compute the conditional probabilities of friend and foe 
classifications given the particular pattern of cue values for a contact and select the alternative 
with the higher probability of being the correct classification.   

 

Figure A2: Bayesian Network for Friend-Foe Classification 

Based on Equation A1, we can compute the conditional probabilities of the target being a 
Friend or Foe given that the cue pattern is 1,2,2,2 in the following manner: 

Given: 

90.)|1( 1 == FCP  10.)|1( 1 == FCP  

40.)|2( 2 == FCP  60.)|2( 2 == FCP  

30.)|2( 3 == FCP  70.)|2( 3 == FCP  

20.)|2( 4 == FCP  80.)|2( 4 == FCP  
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[ ])|1()|1()|2()|1()|1()|1()|2()|1(
)|1()|1()|2()|1()1,1,2,1|(

43214321

4321

FCPFCPFCPFCPFCPFCPFCPFCP
FCPFCPFCPFCPFP

=•=•=•=+=•=•=•=
=•=•=•=

=

39.
]80.70.60.10[.]20.30.40.90[.

20.30.40.90.)1,1,2,1|( =
•••+•••

•••
=FP  

and 

[ ])|1()|1()|2()|1()|1()|1()|2()|1(
)|1()|1()|2()|1()1,1,2,1|(

43214321

4321

FCPFCPFCPFCPFCPFCPFCPFCP
FCPFCPFCPFCPFP

=•=•=•=+=•=•=•=
=•=•=•=

=

61.
]80.70.60.10[.]20.30.40.90[.

80.70.60.10.)1,1,2,1|( =
•••+•••

•••
=FP  

Thus, 

)1,1,2,1|()1,1,2,1|( FPFP >  

Therefore, the Bayesian network predicts that the target is a Foe. 

ADD and WADD 

The Additive Rules examine each cue value and assign evidence toward either friend or foe 
classification, depending on the associations of cue values to threat class.  A running sum is 
maintained and, after all available cues have been inspected, used to place the contact in the 
friend or foe category.  Figure A3 contains an illustration of the Weighted Additive Rule 
(WADD), which weights cues by their validity, adapted for threat classification.  A 
classification version of the Unweighted Additive Rule (ADD) is performed just as illustrated 
in Figure A3 but without the weighting step following the selection of a cue.   

Table A3 presents the computation of evidence for a classification of friend or foe for the cue 
pattern 1,2,1,1.  Both WADD and ADD sum greater evidence for a classification of foe based 
on the associations, weighted and unweighted, of cue values to the respective classes. 

Table A3: Summation of Cue Evidence for Cue Pattern 1,2,1,1 by the WADD and ADD 
Strategies 

Evidence Summation  

WADD ADD 

 
Cue 

Cue 
Value 

Cue Value 
Association 

 
Weight 

 
Friend 

 
Foe 

 
Friend 

 
Foe 

1 1 Friend .9 .9 0 1 0 

2 2 Foe .6 0 .6 0 1 

3 1 Foe .7 0 .7 0 1 

4 1 Foe .8 0 .8 0 1 

Total .9 2.1 1 3  

Classification Foe Foe 
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Figure A3: The Weighted and Unweighted Additive Rules for Classification 
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Annex B: The Maximum Likelihood Method (MLM) for 
Bayesian classification 

The Maximum Likelihood Method (MLM), sometimes also termed the Bayesian 
Classification Method (BCM) method, was developed by Bröder and Schiffer [25] [48] as a 
means to assess which of a potential set of decision strategies was most likely employed by a 
subject in a multiple cue-based decision task.  In short, the method they developed determines 
the conditional probability that a subject’s sequence of responses for multiple decisions would 
occur given the use of a specified decision strategy.  By determining this probability for a set 
of strategies, one is able to identify the most likely strategy to have produced the subject’s 
observed responses. 

The MLM is applied to a decision task in which items belonged to one of two possible types 
(friend or foe) and were described by values along four binary cues.  The validity of each cue 
as a predictor of item type is a variable.  For the purpose of illustrating the MLM, consider the 
cues presented in Table B1 along with the validity of each as a predictor of friend or foe.  

Table B1: Relative Frequencies of Cue Values for Friend and Foe Contacts 

SET 1 

Cue 1 
(Cockpit) 

Cue 2 
(Nose) 

Cue 3 
(Wing) 

Cue 4 
(Tail) 

 

Value 3  
(extended) 

Value 1 
(Bubble) 

Value 3 
(Round)  

Value 1  
(Cone) 

Value 3 
(Swept) 

Value 1 
(Delta) 

Value 3 
(Flexed) 

Value 1 
(Raised) 

Friend 90% 10% 60% 40% 30% 70% 20% 80% 

Foe 10% 90% 40% 60% 70% 30% 80% 20% 

SET 2 

Cue 1 
(Nose) 

Cue 2 
(Tail) 

Cue 3 
(Cockpit) 

Cue 4 
(Wing) 

 

Value 3 
(Round)  

Value 1  
(Cone) 

Value 3 
(Flexed) 

Value 1 
(Raised) 

Value 3  
(extended) 

Value 1 
(Bubble) 

Value 3 
(Swept) 

Value 1 
(Delta) 

Friend 90% 10% 60% 40% 30% 70% 20% 80% 

Foe 10% 90% 40% 60% 70% 30% 80% 20% 

 

Given four binary cues, there are 16 possible cue configurations that can be associated with 
friend or foe.  All decision strategies under consideration make the same predictions for some 
of these configurations.  That is, there are cue configurations for which each strategy will 
predict friend or foe.  There are, however, a subset of items that elicit different predictions 



  
 

46 DRDC Toronto TR 2009-126 
 
 
 

from at least two strategies.  Bröder and Schiffer’s MLM makes use of these items.  In 
particular, there are three critical item types j (j = 1, 2, or 3) for the purpose of assessing 
decision strategy, which are listed in Table B2.  Type 1 items elicit a prediction from the 
TTB-C strategy that is different from all others (types 1a and 1b simply reflect different cue 
configurations in which TTB-C makes a prediction opposite from the other strategies).  Type 
2 items elicit the same predictions from TTB-C and a Bayesian strategy but cannot be solved 
by either the Weighted or Unweighted Additive Rules, which can only guess.  Type 3 items 
elicit the same predictions from TTB-C, the Bayesian strategy, and the Weighted Additive 
Rule but elicit guessing from the Unweighted Additive Rule. 

Table B2: Examples of Different Types of Items Used to Assess Decision Strategies 

 Item Type 

 1 2 3 

Attribute/ 
Strategy 

1a 1b 2a 2b 3a 3b 

Cockpit Extended Bubble Extended Bubble Extended Bubble 

Nose Cone Round Round Cone Cone Round 

Wing Swept Delta Swept Delta Swept Delta 

Tail Flexed Raised Flexed Raised Raised Flexed 

Prediction of Strategies 

TTB-C Friend Foe Friend Foe Friend Foe 

Bayesian Foe Friend Friend Foe Friend Foe 

Unweighted 
Additive 

Foe Friend Guess Guess Guess Guess 

Weighted Prose Foe Friend Guess Guess Friend Foe 

 

The method determines the decision procedure that has the greatest likelihood of producing 
the data based on the predictions of the candidate set of procedures under consideration.  In 
the experiments described in this report, those procedures are TTB-C, Bayesian, WADD, 
ADD, and Guessing.  The method makes the assumption that subjects generate responses to 
test items  according  to  one  of  these  procedures  is.  It  also  assumes  that  subjects  have  a 
certain probability, ε, of making an error and generating a response not predicted by the 
procedure being used. 
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The likelihood of a subject’s observed data vector (i.e. sequence of responses to test items) is 
calculated by the following formula (B1): 
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(B1) 

Where, 

nj = number of items of each type j presented in an experiment, 

njk = number of choices in item type j that were predicted by strategy k, 

nεjk = number of choices in item type j not predicted by strategy k, such that nεjk+ njk = 1, 

εk = error probability of choosing the option not conforming to strategy k. 

Thus, equation A1 gives the likelihood ),,|,( jkjkjk nknnL εε  that the observed data vector n 

is equal to ),( ε
jkjk nn , given strategy k, and unknown error probability εk.  The unknown error 

term can be estimated by fitting the corresponding joint multinomial model to the frequency 
data [55], or by applying the formula given in Equation B2: 
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(B2) 

The following adjustments are applied to these formulae.  When k = WADD, the index j in 
Equation B2 only runs from 1 to 2 because a person using WADD must guess for item type 2 
and εk = 0.5 in Equation A1 for the case k = WADD and j = 2.  When k = ADD, the index j in 
Equation A2 only runs from 1 to 1 because a person using ADD must guess for item types 2 
and 3 and εk = 0.5 in Equation A1 for the cases k = ADD and j = 2 and k = ADD and j = 3.  
For k = Guessing, no parameter estimation is necessary and all error probabilities are set to 0.5 
in Equation A1. 

To classify a subject’s decision strategy, a likelihood ratio (Equation B1) is computed for 
every  strategy  and  the  vector  classified  as  being  produced  by  the  particular  strategy  if 
the  likelihood  ration  in  favour  of  this  strategy  is  larger  than  1.  Otherwise,  the  vector 
remains unclassified. 

The power of MLM to discriminate between strategies depends on the numbers of 
discriminating items that do not yield guessing responses from one or more decision strategy.  
Thus, discriminating the WADD and ADD strategies may be more difficult than 
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discriminating the TTB-C and Bayesian strategies.  Because the Guessing model has no free 
parameter, the other models will fit better than the random model in almost all cases. 
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