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ABSTRACT 

LIDAR (LIght Detection And Ranging) is used to remotely measure the three-

dimensional shapes and arrangements of objects with high efficiency and accuracy by 

making precise measurements of time-of-flight of pulses of light.  Discrete return LIDAR 

systems provide a discrete series of elevation points corresponding to reflections from 

objects in the scene.  Full-waveform LIDAR systems measure the intensity of light 

returned to the sensor continuously over a period of time.  Relatively little research has 

been done on full-waveform LIDAR signals.  This thesis presents a Monte Carlo model 

of laser propagation through a tree which allows simulation of full-waveform LIDAR 

signatures.  The model incorporates a LIDAR system and a “natural” scene, including an 

atmosphere, tree and ground surface.  Test cases are presented which enlighten various 

aspects of the model, and give insight into full-waveform LIDAR data collection and 

analysis.  Changes in the scene such as varying ground reflectance, sloped versus flat 

ground, and comparisons of “leaf-on” and “leaf-off” conditions are analyzed.  Changes in 

the LIDAR system are also studied, such as changing laser wavelength, shape and length 

of transmitted pulses, sensing geometry, etc.  Results of the simulations and analysis of 

the effects of physical changes in the scene and sensor are presented. 
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I. INTRODUCTION 

A LIDAR sensor measures the time-of-flight for light to travel from the sensor, to 

an object, and back.  This time-of-flight information directly correlates to distance.  

When a laser interacts with a complex object, such as a tree, some of the laser energy will 

be reflected from the very top of the object, some of the light will be reflected from the 

branches within the canopy, and some of the light will reach the ground and be reflected 

back through the canopy to the sensor.  A LIDAR waveform is a continuous 

measurement of the amount of laser energy returned over time, and provides information 

about the 3-D structure of objects. 

The model presented in this thesis allows simulation of a LIDAR waveform.  The 

purpose of developing this simulation capability is to provide a way of studying the 

factors that influence the shape of a LIDAR waveform, and to assist in the development 

of LIDAR waveform processing algorithms.  The model consists of a simulated LIDAR 

system and a “natural” scene, including an atmosphere, a tree with leaves, and a ground 

surface. 

The simulated LIDAR system has variable transmission and receiver parameters, 

including an initial pulse energy, shape and length, minimum detection energy, angular 

beam spread, sensor aperture size, sensor flying height and location, timing accuracy, and 

laser wavelength. The atmosphere is dependent upon altitude, and is modeled according 

to the Beer-Lambert law (Measures, 1992).  A simulated tree is included in the scene, and 

consists of two components:  the physical shape and arrangement of branches, twigs and 

leaves, and the reflectance properties of these materials.  The shape of the tree is modeled 

based on a method called Lindenmayer-systems, or L-systems for short, which were 

developed by Aristid Lindenmayer in 1968 to study the geometric growth patterns of 

plants (Prusinkiewicz, 2004). 

Within the tree, a bud location is recorded for each leaf, and a defined shape 

around the bud is defined as containing leaves.  The bark and leaf models are combined 

as a probability map, with each location assigned a likelihood of being bark, leaf, or air.  
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Leaf reflectance, transmission, and absorption values are determined according to the 

PROSPECT leaf reflectance model of Jacquemoud and Baret (Jacquemoud, 1990). Tree 

bark and the ground surface radiometric values are assigned based on spectra taken from 

the publicly-available U.S. Geological Survey (USGS) vegetation library.  

The propagation of LIDAR is modeled using a Monte Carlo approach.  The 

LIDAR pulse is divided into multiple small bins, simulating the photons that make up the 

laser pulse.  The energy within each bin is propagated through the model, with material 

interactions being determined probabilistically, and according to the radiometric 

properties of the material.  The distribution of energy is recorded, whether the photons 

are returned to the sensor, absorbed by materials in the scene, or reflected off into space.  

The time taken for energy to return to the sensor is recorded, and a simulated waveform 

is created.  This process is repeated multiple times.  The amount of energy returned to the 

sensor for each model iteration is tracked, and averaged after completion of all runs. 

A very brief history of the development of LIDAR is presented in the Background 

section, along with basic principles of LIDAR data collection.  Equations used to 

determine theoretical relationships between transmitted and received energy levels are 

included to illustrate the complex relationship between transmitted and returned LIDAR 

energy.  A short survey of the different methods for collecting LIDAR, and a sampling of 

methods for modeling vegetation are also presented. 

The Results and Analysis section of the thesis includes details on each of the 

model elements, the operation of the model, and the simulation results.  Multiple case 

studies are presented to show the operation of the model, and its sensitivity to varying 

parameters. 
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II. BACKGROUND 

In 1958, A. L. Schawlow and C. H. Townes published the paper “Infrared and 

Optical Masers” in the journal Physical Review.  This paper explained the theory of 

producing “extremely monochromatic and coherent” light, which is now known as a laser 

(Schawlow, 1958).  This publication sparked a race to build the instrument.  In 1960, the 

first solid-state laser was built by the American physicist Theodore Maiman (Maiman, 

1960).  Development of the gas laser followed in 1961 (Javan, 1961), and the 

semiconductor laser in 1962 (Hall, 1962). 

The use of the laser as a precision measurement tool was recognized immediately. 

NASA scientists were using laser-ranging technology to take precise measurements of 

satellites orbiting the Earth by 1964 (Abbot et al., 1973).  By 1965, airborne platforms 

were being used to measure terrain profiles.  By 1969, laser range observations to the 

moon accurate to within tens of centimeters were being taken at the McDonald 

Observatory, Fort Davis, Texas, using reflector arrays installed by Apollo astronauts on 

the moon (Abbot et al., 1973). 

The first airborne LIDAR systems were profiling systems, which collect only a 

single transect of terrain profile at once.  Scanning airborne systems, which collect a wide 

swath of terrain information at once, depend on accurate GPS and Inertial Navigation 

Systems (INS) geo-referencing capabilities.  Scanning systems became viable with the 

deployment of the GPS constellation in the mid-1990s (Shan, 2009).  Space-borne 

systems are currently limited to profiling due to the difficulties of collecting LIDAR 

information from space (Shan, 2009). 

The applications of LIDAR data are innumerable. The amount of information 

available, and the accuracy of the data, are unprecedented.  LIDAR data provides 

information not only about the overall heights of objects, but also information about the 

3-dimensional distribution of branches, leaves, and the ground underneath as light filters 

through vegetation to the ground, and back to the sensor. 
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A. PROBLEM STATEMENT 

The motivation for the development of the models presented in this thesis lies in 

the desire to understand how light transmitted from a LIDAR system interacts with 

objects and reflects back to the detector, and the sensitivity of the measurement to 

physical changes in the scene, differing sensor parameters, and sensing geometry.  

Understanding the influences on the signal recorded by a LIDAR system will allow 

further information to be extracted from the data. 

The first step is to create a model of the system, including the geometric and 

radiometric properties of the tree, ground surface, and atmosphere.  The model must 

include the LIDAR system transmission and receiving system properties.  Finally, the 

interaction of light with each of the elements of the model must be understood, so that the 

propagation of light through the tree can be modeled on a step-by-step basis.  Because the 

interaction of light with a tree is very complex in nature, it lends itself to a Monte Carlo 

simulation, where the results of each single interaction are random, and the overall result 

is an aggregate of many repeated iterations. 

A living tree is a complex biological system.  There are many methods for 

modeling vegetation, with varying degrees of biological realism and visual appeal.  In 

this thesis, two methods are explored.  The first is a biologically-realistic model based on 

methods outlined by de Reffye et al. (1988).  The second is an algorithmic curve drawing 

process developed to study the geometric growth patterns of plants by Aristid 

Lindenmayer (Prusinkiewicz, 2004).  These models provide the geometric framework for 

the tree model.  In modeling the radiometric properties of the tree, the reflectance values 

of the bark and ground materials are assigned based on published spectral signatures.  

The PROSPECT leaf reflectance model of Jacquemoud and Baret (1990) was 

incorporated to model the reflectance, transmittance, and absorbance of the leaves. 
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B. LIDAR SYSTEM BASIC PRINCIPLES 

A LIDAR system measures the time-of-flight between the firing of a laser pulse 

and the return of reflected energy from the scene.  This time-of-flight information is 

processed into a series of points, which correspond to physical locations in space.  

Information about the intensity of the reflection is usually also recorded, but at present 

rarely used in analysis.   

There are both pulsed and continuous wave LIDAR systems.  A pulsed LIDAR 

system transmits short pulses of light, and measures the time-of-flight of each pulse to 

determine distances to objects.  A continuous wave system transmits an uninterrupted 

beam of laser radiation, which has two frequencies—a carrier frequency and a 

modulation frequency.  The carrier frequency of the transmitted laser radiation is 

modulated by means of the modulation frequency, and this allows very precise 

measurement of the phase difference between the transmitted and returned waves.  

Continuous wave systems are mostly used for land-based terrestrial scanning and 

surveying purposes, while almost all airborne systems are pulsed systems. 

For a pulsed system, the travel time, t, of a pulse of light is measured quite 

precisely using the known speed of light, c, and the basic formula R 
tc

2
, where R is the 

range to an object, and t the time taken for the pulse of light to travel to and from the 

LIDAR sensor. 

Discrete return LIDAR systems measure a series of discrete pulse return events.  

Full-waveform systems digitize the returned signal over pre-determined time frame, into 

a set number of samples.  Usually, the full-waveform signal is then processed into a 

series of discrete returns.  The advantage of full-waveform data over discrete return data 

is the higher point density achievable with full-waveform systems.  More details on these 

two types of systems are presented in Section D – Strategies for Collecting LIDAR Data. 
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C. LIDAR EQUATIONS 

The formula found most often in the literature is one that relates the power 

transmitted PT to the power received PR after reflectance.  Baltsavias (1999b) provides a 

step-by-step derivation of the following equation:   

Pr  
2Ar

R2
PT , 

where  , the reflectivity of the target, is the percentage of light reflected from the object, 

  is the atmospheric transmission factor, R is the range from sensor to target, and Ar  is 

the area of the laser footprint on the ground.  The target is assumed to fully fill the area of 

laser illumination. 

While this idealized equation contains many assumptions and simplifications, it 

nonetheless shows the basic relationship between transmitted and received power.  There 

are many factors which affect the energy returned to the LIDAR sensor. 

As a practical example, the Velodyne HDL-64E has a peak transmission power of 

PT = 60 Watts and a maximum range of 120 meters (Velodyne, 2007).  Using typical 

values, let the atmospheric factor   = 0.8 and the target reflectance = 0.7.  For a 

receiver area 10 cm2 (0.01 m2) in size,  

Pr  0.7
(0.82 )(0.01m2 )

 (120m)2
60W  5.94 106W  

The amount of power received at the sensor is very much smaller than the amount 

of power transmitted. 

The relationship between laser pulse power, Ppeak (W), and energy per pulse, E 

(J), is given by 

E  Ppeakt p , 

where tp is the pulse duration in nano-seconds (Baltsavias, 1999b). 
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Continuing with the example of the Velodyne HDL-64E laser, with a peak power 

of 60 W and pulse duration of 5 ns, the transmitted energy per pulse is 

E  60W * 5 109 s  3107 J  

The received energy per pulse is 

Er  5.94 106W * 5 109 s  2.97 1014 J . 

This can be expressed as a number of photons received per pulse Nr , using the 

following equation: 

Nr  
Er

h
, 

where the Plank constant h = 6.62610-34 J s , v is the laser frequency, and hv is then the 

energy per photon (Baltsavias, 1999b). 

The Velodyne HDL-64E operates a laser at 905 nm wavelength (Velodyne, 

2007).  Assume a detector quantum efficiency of 0.3, and received energy 

Er  2.971014 J .  The frequency of a laser is related to the wavelength via  

v 
c


,  

where c is the speed of light, v is the frequency, and   is the wavelength.  For a laser 

operating at 905 nm, the frequency v = 
2.998 108 m / s

905 109 m
 = 3.3131014 Hz.  Therefore, 

the number of photons received per pulse should be approximately: 

 Nr  0.3
2.97 1014 J

6.626 1034 Js * 3.3131014 s1
 135,308 photons. 
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D. STRATEGIES FOR COLLECTING LIDAR DATA 

The following section gives a brief introduction to some of the ways in which 

LIDAR data is collected.  The paper by Mallet, “Full-waveform topographic lidar: State-

of-the-art,” contains a good overview of current systems, with particular emphasis on 

full-waveform systems (Mallet, 2009). 

1. Discrete Return Systems  

Discrete return LIDAR is the most traditional LIDAR system.  In a discrete return 

system, a high-energy laser pulse is emitted, and the time at which energy is returned to 

the sensor is measured.  The detection device is triggered by means of a threshold.  When 

enough energy is entering the detection system, the detector is turned on.  The threshold 

is set high enough to ignore the effects of background light, such as sunshine.  The 

detector is switched off when the level of reflected light falls below the threshold value.  

Multiple returns, typically 4–5 at most, can be detected in this way.  Since the energy 

must fall below the threshold level in order to reset the detector, returns from objects in 

the scene that are located close together may not be distinguishable. 

The travel time of a pulse of light emitted from a LIDAR system is t 
2R

c
, where 

R is the ranging distance of the system, and c is the speed of light.  The maximum pulse 

frequency, assuming no transmit/receive overlap, is therefore 1/t =
c

2R
.  The range 

resolution is R 
1

2
ct  (Baltsavias, 1999b).  For a typical LIDAR system with a pulse 

width of 10 ns, which equates to a distance of about 3 m, the range resolution is 

nominally 1.5 m.  

While somewhat out of date, Baltsavias (1999a) presents a very complete survey 

of LIDAR providers, along with specification of the then-current systems.  This paper is a 

good source of background information.  Probably the largest change in a decade has 

been an increase in the pulse repetition frequency—systems with PRFs up to 250 kHz are 

now being sold. 



 9

2. Full-waveform Systems 

In a full-waveform system, the recorder is triggered according to a threshold.  A 

predefined maximum number of measurements are made after this threshold is crossed.  

For the current Optech ALTM systems, 440 samples per pulse can be recorded, which 

corresponds to a vertical distribution of at most 66 m (Mallet, 2009). 

The entire full-waveform signal is recorded, but in most cases the data is post-

processed by finding peaks within the waveform signal.  These peaks correspond to 

object reflections, and are used to generate a 3D point cloud. 

 

Figure 1.   Inputs and outputs to the RiAnalyze 560 software from Riegl Laser 
Management Systems (From Riegl, 2007) 

Figure 1 shows the input and output for Riegl Laser Measurement Systems’ 

RiAnalyze 560 software.  The LIDAR pulse is digitized as the energy returns to the 

system at a predefined sampling frequency.  The peaks of the digitized waveform are 

found using a waveform analysis algorithm.  The RiAnalyze software implements three 

different waveform analysis algorithms, but details on the specifics of the algorithm are 

not provided (Riegl, 2007).  Mallet (2009) provides an overview of the types of  
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“waveform modeling” or “waveform fitting” algorithms.  Typically, the output from 

waveform analysis algorithms includes a range, intensity (amplitude of peak), and width 

for each waveform peak. 

The advantage of waveform LIDAR data over discrete return LIDAR is that a 

denser 3-D point cloud can be achieved.  Unfortunately, according to Mallet (2009), this 

denser point cloud does not allow fine material classification, even when information 

about the shape of the modeled waveform is included.  Examples of typical waveforms 

returned from the Shuttle Laser Altimeter II system are shown in Figure 2.  Coarse 

classifications from large footprint full-waveform LIDAR are possible; an example is the 

ICESAT system (70 m diameter footprint), which can provide waveforms classified as 

land, ice sheet, sea ice or ocean (Mallet, 2009).   

The Shuttle Laser Altimeter II (SLA-02) was flown on STS-85, which launched 

on August 7, and landed on August 18, 1997.  The SLA-02 system had a 100 m footprint 

on the ground.  With such a large footprint, the system is optimized for landscape level 

mapping.  In Figure 2, some typical waveforms are shown, along with the material 

classification. 



 11

 

Figure 2.   A graphic from NASA which shows “A sampler of 6 representative echoes, 
including rough Mediterrannean water, rugged desert, and various forms of 

vegetated landscapes” from the SLA-02 instrument (From NASA, 1997) 
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Relatively little research has been done on using the waveform directly, but 

Mallet (2009) provided a list of some current research efforts which focus on elements 

which could effect the shape of waveforms, including distance to sensor and emission 

angle, surface roughness, target geometry, target reflectivity, and atmospheric effects. 

Some typical specifications of full-waveform LIDAR systems taken from Mallet 

(2009) are shown in Figure 3. 

 

Figure 3.   Full-waveform LIDAR systems main technical specifications (From Mallet, 
2009) 



 13

3. Photon-counting Systems 

Photon-counting systems rely on a multitude of low-intensity pulses, emitted 

either simultaneously, or at a very high frequency of repetition.  This is different from 

traditional LIDAR systems, which emit a series of high-intensity pulses at a lower pulse 

repetition frequency. 

A theoretical system described by Degnan (2002) and a system designed by 

Massachusetts Institute of Technology, Lincoln Laboratory (MIT/LL) use photon-

counting focal planes, which record multiple observations simultaneously (Marino, 

2009).  The MIT/LL system emits a set of pulses at once using a “flash” system that does 

not require any moving parts.  Degnan’s system emits a high-frequency train of pulses. 

The main advantage of a photon-counting LIDAR system is that much less power 

is needed for the laser, both in transmission and detection.  A single photon return can be 

detected.  This allows the pulse repetition frequency (PRF) of the system to be increased 

greatly, which means a system can realistically be designed that has low power 

requirements, but still allows large areas of coverage with high resolution (Degnan, 

2002). 

Another advantage of a photon-counting system is the inherent accuracy of the 

system.  A traditional LIDAR with a high-intensity pulse depends on recording the 

returned waveform over time, and then detecting a series of peaks in the signal that 

correspond to returns from objects.  There will be ambiguity in the measurement of the 

location of this peak.  Mallet (2009) cites several studies that show that this measurement 

is critically dependent on the algorithm used.  There will also be ambiguity due to the 

larger spatial coverage of the laser footprint.  The waveform is made up of all of the 

photons returning from within the laser footprint, which can contain multiple different 

materials.  With a photon-counting system, the measurement is more like a point-to-point 

measurement, with each photon being measured one at a time. 

The disadvantage, or main difficulty, of a photon-counting system is that it 

becomes harder to distinguish the returned signal from the background noise of solar 

illumination.  This difficulty can be overcome using range-gating methods, in which a 



 14

prediction about the time-of-flight of a LIDAR pulse is made based on the flying height 

of the sensor and time taken for preceding pulses.  Returns occurring outside the expected 

time-range are ignored.  Figure 4 is an illustration of the range-gating concept taken from 

Degnan (2002). 

 

Figure 4.   Illustration of range-gating concept (From Degnan, 2002) 

The image caption in Degnan (2002) is as follows: 

Principles behind a correlation range receiver. The range gate is divided 
into equal duration range bins, and several consecutive laser fires are 
combined to form a frame. The 2-D area bounded by the range bin and 
frame dividing lines is a cell. Multiple frames form a superframe. Photon 
counts are accumulated within each cell and, if the total count K exceeds 
the frame threshold Kopt, the cell is identified as signal; otherwise it is 
tentatively identified as noise. A valid trajectory is one in which the signal 
cell is not displaced by more than one range bin in consecutive frames. 
Applying this criteria in algorithms which look forward and backward in 
time and an N of M criteria can help recover lost or missing data in near 
real time. (p. 508) 
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For examples of this type of system, see results of an experimental NASA 

program presented in Degnan (2002) or the paper by Harding et al. (2007), which 

presented a prototype photon-counting LIDAR system called the Swath Imaging Multi-

polarization Photon-counting LIDAR (SIMPL). 

Parameters for a photon-counting LIDAR as proposed by Degnan (2002) are 

shown in Figure 5. 

 

Figure 5.   Specifications used in design of a proposed photon-counting LIDAR system 
for use in mapping the Martian surface (From Degnan, 2002) 

4. Synthetic Aperture LIDAR 

Synthetic Aperture LIDAR is still very much an experimental technology, but 

builds on a long history of development of Synthetic Aperture RADAR (SAR).  The 

principle of Synthetic Aperture LIDAR is the same as SAR, but uses much shorter optical  
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wavelengths.  This allows for the creation of a more detailed image, and a shorter 

collection time. Lucke and Rickard (2002) present the theoretical background of a 

Synthetic Aperture LIDAR system. 

Recent research efforts have been sponsored to develop this technology.  DARPA 

(Defense Advanced Research Projects Agency) sponsors the SALTI (Synthetic Aperture 

Ladar for Tactical Imaging) program, which seeks to foster this technology.  According 

to a 2006 news release, airborne synthetic aperture LIDAR images were acquired by both 

Raytheon and Northrup Grumman experimental systems (DARPA, 2006).  A February 

2008 Broad Agency Announcement calls for proposals to “develop and demonstrate a 

Synthetic Aperture Laser RADAR (LADAR) sensor capable of long range, high 

resolution synthetic aperture imaging from a Contractor operated aircraft to demonstrate 

performance and validate readiness for transition to an operational customer” (DARPA, 

2007). 

E. STRATEGIES FOR MODELING VEGETATION 

Many options exist for modeling vegetation with varying degrees of biological 

realism and visual appeal; two methods are presented here. 

1. De Reffye Model 

The de Reffye model is a probabilistic method that captures the continuous 

growth of a plant.  To understand the algorithm, a brief introduction to biological 

terminology is required.  The following set of figures introduces the biological 

terminology (de Reffye, 1988). 



 17

 

Figure 6.   Introduction of biological terminology (From de Reffye, 1998, p. 152) 

The apical bud is at the tip of the stem, and is the location where growth may 

occur.  The axillary buds are locations where leaves may grow.  The internode represents 

the length of stem between axillary buds. 

 

Figure 7.   The order of axes (From de Reffye, 1998, p. 152) 

The order of the axis is important biologically (and algorithmically) because it 

determines the behavior of the plant.  The length of growth units and the thicknesses of 

branches tend to decrease with higher-order axes.  
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De Reffye’s algorithm also allows incorporation of different leaf arrangements, 

branch arrangements, and branching angles, with the expression of each being 

determined probabilistically.  While the probabilistic nature of the algorithm creates 

physically realistic tree models, it makes the algorithm difficult to use for the purposes of 

this thesis, in which the shape of the tree must be controlled carefully to determine the 

effect of minor geometric changes on the simulated LIDAR waveforms. 

 

Figure 8.   “Phyllotaxy: (I) spiraled, (II) dystic” (From de Reffye, 1998, p. 152) 

 

Figure 9.   “Ramification (I) continuous, (II) rhythmic” (From de Reffye (1998, p. 152) 

Pseudocode for the plant growth algorithm adapted from the original de Reffye 

paper is given in Computer Graphics Principles and Practice by Foley, van Dam, Feiner, 

and Hughes (Foley, 1990, p. 1031). 
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for each clock time do 
  for each bud that is still alive do 

begin 
 determine from order, age, etc., what happens to bud; 
 if bud does not die then 
  if bud does not sleep then 
    begin 
     create an internode 
     (with geometric information about its position,  
     direction, etc.); 
     create an apical bud; 
     for each possible bud at old bud location do 
      if ramification then create axillary buds 
     end 

end 

De Reffye’s model is a stochastic algorithm.  A bud is assigned a probability of 

growing, dying, or “resting,” based on the age of the tree overall, the age of the branch 

where the bud occurs, and the order of the branch.  All facets of the growth of the plant, 

including the locations of leaves, the angle of branches, locations of cones or flowers, 

etc., can be controlled in a similar fashion by assigning probabilities of occurrence.  The 

options are unlimited, and the models created using this method are very realistic 

looking.  A few examples from de Reffye’s paper are included in Figure 10. 

 
 

Figure 10.   Fir tree, pine tree, and pruned tree (with traumatic reiterations) (From de 
Reffye, 1998, p. 156) 
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For the purposes of this thesis, de Reffye’s algorithm was not ideal because of the 

probabilistic nature of the model tree generation.  Each application of the algorithm 

creates a unique tree.  While this is physically realistic, the purpose of this thesis is to 

study the influences affecting full-waveform LIDAR signatures.  This requires the ability 

to control and change the shape of the tree, which becomes very difficult to do using de 

Reffye’s algorithm.  The L-system method proved to be more appropriate for this 

purpose. 

2. L-systems 

In 1956, Noam Chomsky wrote a paper titled “Three models for the description of 

Language” (Chomsky, 1956), in which he applied the “concept of rewriting to describe 

the syntactic features of natural languages” (Prusinkiewicz, 2004).  This led to a 

widespread interest in methods for “generating, recognizing and transforming formal 

languages” (Prusinkiewicz, 2004). 

In 1968, Aristid Lindenmayer developed the Lindenmayer-systems, or L-systems 

for short, to study the geometric growth patterns of plants (Prusinkiewicz, 2004).  The L-

system concept was initially designed to study the development of simple multi-cellular 

organisms, and was later expanded by other researchers to include the interpretive 

rendering of pictures (such as plants and trees) (Prusinkiewicz, 2004).  

The L-system method is at its core a “string-rewriting mechanism,” in which parts 

of a simple string are replaced using a set of rewriting rules known as “productions.”  The 

string is interpreted as a blueprint or schematic of the organism being modeled. 
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Prusinkiewicz (2004) gives the following formal definition of a “deterministic 0L-

system”: 

Let V denote an L-system alphabet, V* the set of all words over V, and V+ 
the set of all non-empty words over V. 

A 0L-system is an ordered triplet G = {V, , P}, where V is the alphabet 
of the system,  V+ is a nonempty word called the axiom and P  VxV+ 
is a finite set of productions.  If a pair (a, ) is a production, we write a  
.  The letter ‘a’ and the word  are called the predecessor and the 
successor of this production respectively.  It is assumed that for any letter 
a V, there is at least one word  V* such that a  .  If no production 
is explicitly specified for a given predecessor a V, the identity 
production a  a is assumed to belong to the set of productions P.  A 0L-
system is deterministic IFF for each a V there is exactly one  V* 
such that a   (p. 4).  

The simplest of the L-systems is referred to as a “D0L-system”; the D for 

“deterministic,” and the “0L” for 0-context, or context free.  A system that is context free 

is one in which the production rules apply regardless of the context of the symbol in the 

string.  A deterministic system refers to a system in which only one outcome is possible 

given the starting state and production rules (Prusinkiewicz, 2004). 

De Reffye’s algorithm is a grammar-based model, with each bud being treated as 

an “axiom.”  The major difference between de Reffye’s model and L-systems is that the 

de Reffye method is not deterministic. 

The following example from The Algorithmic Beauty of Plants (Prusinkiewicz, 

2004) introduces the L-System concept.  Let V = {a, b},  = b, and P = {a  ab, b  a}.  

In the first step, the axiom “b” is replaced by “a” according to the production rule “b  

a.”  In the second step, “a” is replaced with “ab” according to the production rule “a  

ab.”  In the following step, “a” is replaced by “ab,” and at the same time, “b” is replaced 

by “a.”  The production rules being applied in parallel, rather than in sequence, is the 

primary characteristic that distinguishes L-systems from Chomsky grammars 

(Prusinkiewicz, 2004). 
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Figure 11.   Example of an L-System string generation (From Prusinkiewicz (2004, p. 4) 

The L-System model consists of two parts—the first being creation of the string 

using the grammar rules, and the second being translation of the string into a graphical 

representation or picture.  This translation is accomplished by means of a “turtle,” which 

interprets the strings developed by an L-system. 

A turtle is a way of defining the graphical interpretation of each symbol in the L-

system string.  The state of the turtle is defined by an ordered triplet (x, y, ), where “x” 

and “y” refer to the location of the turtle, and “” refers to the heading.  Each symbol in 

the alphabet V can be associated with graphical objects, having a length, color, 

dimension, etc. 

For example, again from The Algorithmic Beauty of Plants, the following figure 

shows the graphical representation of an L-system with V = {F, +, −},  = F, and 

production rules P = {F  FFF-FF-F-F+F+FF-F-FFF, +  +, −  −} (Prusinkiewicz, 

2004).  The turtle interpretation of the string symbols F, +, and − is represented on the 

left.  On the right is the graphical interpretation of first iteration of the L-system. 
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Figure 12.   Turtle interpretation of L-system grammar (From Prusinkiewicz, 2004, p. 7) 

In this case, the symbols are interpreted as follows: 

F — draw a line of length d in direction of heading 

+ — turn clockwise 90 degrees 

− — turn counterclockwise 90 degrees 
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Gosper curve as defined by M. Gardner in “Mathematical games—in which ‘monster’ 
curves force redefinition of the word ‘curve’.” Scientific American, 
235(6):124–134, December 1976 as referenced by Prusinkiewicz in the Algorithmic 
Beauty of Plants; rendered using the authors code for generating L-system trees. 

   
The “0” production statement turtle 
interpretation, where 
0  0 + 1 + + 1 - 0 − − 0 0 − 1 + 

The “1” production statement turtle 
interpretation, where 
1  − 0 + 1 1 + + 1 + 0 − − 0 − 1 

Figure 13.   Gosper curve 

The L-System used to create the Gosper curve shown in Figure 13 is defined as V 

= {1, 0, +, −},  = 0,  = 60, and P = {0  0 + 1 + + 1 − 0 − − 0 0 − 1 +, 1  − 0 + 1 1 

+ + 1 + 0 − − 0 – 1,  +  +, and −  −}. 

The “+” is interpreted by the turtle as a change in heading of  = 60 degrees 

counter-clockwise, and the “-” symbol is an equal turn in the clockwise direction. 
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Further examples of the beautiful and complex shapes created using L-systems 

can be found in (Prusinkiewicz, 2004).  Other applications of L-systems with turtle 

interpretation include “realistic modeling of herbaceous plants, description of kolam 

patterns (an art form from Southern India), synthesis of musical scores and automatic 

generation of spacefilling curves” (Prusinkiewicz, 2004).  This thesis will focus on using 

L-systems to create models of trees. 

To create trees, there must be a mechanism for creating branches.  This is 

accomplished by means of brackets, “[ ]”.  In the L-system, the brackets are treated as 

constants, so each symbol maps to itself; i.e., {[  [ , ]  ]}  P.  In the turtle 

interpretation process, when a “[” is encountered, the current state of the turtle (location 

and heading) must be recorded, so that when the “]” symbol is encountered, the branch 

will be completed, and the turtle can return to that state.  The example illustrated in 

Figure 14 will help to clarify this point. 

    
Generation 1 Generation 2 Generation 3 Generation 4 

Figure 14.   Four generations of an L-system tree.  The L-System is defined as: V = {1, 
0, [, ]},  = 0,  = 40, P = {0  1[0]1, 1  11, [  [ , ]  ]} 

In the turtle interpretation of this tree, either 0 or 1 generates a straight segment of 

length d.  The left-bracket, “[” tells the turtle to start a branch.  When a new branch is 

created, the location and heading of the turtle is noted.  The bracket symbol also serves to 

identify the angle at which the branch will be created.  The left-bracket symbol “[” starts 

a branch that is  degrees counter-clockwise from the current branch, and the right-

bracket symbol “]” signifies the end of the branch.  A second set of symbols, “(” and “),” 

can be used to create branches that turn the turtle in the clockwise direction.  
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The L-system tree shown in Figure 14 is created as follows: 

Step 0:  0 The axiom to start the tree string is 0. 

Step 1:  1[0]1 The 0 is replaced by 1[0]1. 

Step 2:  11[1[0]1]11 Each 1 is replaced by 11, each 0 is replaced by 1[0]1, and 

brackets are treated as identities. 

Step 3:  1111[11[1[0]1]11]1111 

Step 4:  11111111 [1111[11[1[0]1]11]1111]11111111 

The IDL code used to create the L-system tree, and render the graphics in the 

figure above, is included in Appendix C. 

In the example above, all of the branches point to the left.  A second set of 

symbols, namely “(” and “)”, can be used to create branches to the right.  The turtle 

interprets “[” and “]” as branches with a counterclockwise change in heading direction, 

while “(” and “)” are interpreted as branches created with a clockwise change in heading 

direction.   

An example of the complicated shapes achievable with this method is shown in 

Figure 15.  This example is included as a neat illustration of the capabilities of the L-

system concept. 
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Gen. 1 Gen. 2 Gen. 3 Gen 4. Gen 5. Gen. 6 Generation 7 Generation 8 

 

Generation 9 Generation 10 Generation 11 

 
Generation 12 
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Generation 13 

Figure 15.   Shape generated using the L-System defined as V = {1, 0, [, ]},  = 0,  = 
30, P = { 0  [ 1 ( ( 1 ) ) ] ( 1 ( 1 0 ) [ [ 0 ] ] ), 1  [ 1 ], [  [, ]  ] } 

Using the same IDL code, but with a new L-system generation, the shape of a tree 

is generated as shown in Figure 16. 
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Generation 1 Generation 2 Generation 3 

 
Generation 4 Generation 5 

Figure 16.   Five generations of tree growth using the L-system model defined as  V = 
{1, 0, [, ]},  = 0,  = 40, P = { 0  1 [ 0 ] 1 ( 0 ) 0, 1  11, [  [, ]  ] } 

In the example shown in Figure 17, each branch segment is assigned a width 

based on the age of the branch.  The branching angle and length of segments can also be 

adjusted with age to represent a biologically realistic shape. 
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Figure 17.   L-system tree with width associated with branch segments 

   
Generation 1 Generation 2 Generation 3 

  
Generation 4 Generation 5 



 31

These examples demonstrate some of the capabilities of modeling using L-

systems.  The deterministic L-systems are fairly easy to create and understand, and, 

because they are deterministic, the results are repeatable. 

3. PROSPECT Leaf Reflectance Model 

The PROSPECT leaf reflectance model was designed by Jacquemoud and Baret 

(1990) and is in widespread use throughout the remote sensing community.  The model 

accurately simulates the reflectance and transmittance of plant leaves over the spectrum 

from 400 to 2500 nm.  Several versions of the software have been developed and 

validated (publicly available at http://teledetection.ipgp.jussieu.fr/opticleaf/models.htm).  

An IDL version of the program, Version 2.01, of the PROSPECT model was modified by 

the author; the GUI interfaces were removed to allow incorporation in the LIDAR 

simulation program.  The IDL code for the modified PROSPECT model is included in 

Appendix B. 

From http://teledetection.ipgp.jussieu.fr/opticleaf/models.htm, “Version 2.01 of 

the model has five input parameters:  leaf structure parameter (N), chlorophylls a+b 

concentration (Cab in µg/cm2), equivalent water thickness (Cw in cm), protein content 

(Cp in g/cm2), and cellulose + lignin content (Cc in g/cm2).  IDL code (20 March 2001, 

Author: Glenn J. Newnham).” 

An example of the reflectance and transmittance spectra as simulated by the 

PROSPECT model is given in Figure 18. 
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Figure 18.   PROSPECT leaf reflectance model output.  (N = 3.4, Cab = 20.0, Cw = 
0.002, Cp = 0.001, Cc  = 0.001, deg = 20) 

The publicly-available USGS vegetation library contains spectra for dry grass, 

lawn grass, and maple leaf.  Visually, the reflectance spectrum from the PROSPECT 

model is very similar to the USGS spectra.  

 

Figure 19.   USGS Vegetation Spectra as included in the ENVI 4.5 software 

The effect of the various input parameters is demonstrated in the following series 

of Figures 20 through 25. 
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Figure 20.   PROSPECT model output.  (Cab = varying from 0 to 100, N = 3.4, Cw = 
0.002, Cp = 0.001, Cc  = 0.001, deg = 20) 

The amount of chlorophyll affects the portion of the spectrum from 400 to 700 nm. 

 

Figure 21.   PROSPECT model output.  (N = varying from 1 to 5, Cab = 20, Cw = 
0.002, Cp = 0.001, Cc  = 0.001, deg = 20) 

Varying the leaf thickness has the greatest overall impact on the leaf reflectance, 

as compared to the other PROSPECT model parameters. 
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Figure 22.   PROSPECT model output.  (deg varying from 0 to 90, N = 3.4, Cab = 20, 
Cw = 0.002, Cp = 0.001, Cc  = 0.001) 

While the leaf angle does not have a very significant impact on the reflectance 

and transmittance of the leaves, this parameter is important within the LIDAR simulation 

as it impacts the direction of reflection. 

 

Figure 23.   PROSPECT model output.  (Cc varying from 0.0 to 0.1, N = 3.4, Cab = 20, 
Cw = 0.002, Cp = 0.001, deg = 20) 
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Figure 24.   PROSPECT model output.  (Cp varying from 0.0 to 0.1, N = 3.4, Cab = 20, 
Cw = 0.002, Cc = 0.001, deg = 20) 

 

Figure 25.   PROSPECT model output.  (Cw varying from 0.0 to 0.05, N = 3.4, Cab = 
20, Cp = 0.001, Cc  = 0.001, deg = 20) 
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III. RESULTS AND ANALYSIS 

A. THE MODEL PARAMETERS 

Each of the models is coded in the Interactive Data Language (IDL) from ITT 

Visual Information Solutions. 

The following section contains the default settings used to test the models.  Each 

of these settings can be adjusted to simulate different collection parameters. 

  

Figure 26.   L-Sytem tree model output 
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1. L-system Tree Model Parameters 

L-System Tree Model Settings 

Number of generations 5 

Branch angle ‘’ 50º 

Original segment length, width 8 units, 30 units 

Percent decrease length, width (per step) 2%, 4% 

Axiom “” 0 

Production rules “P” 0 ->  1 [ 0 ] 1 ( 0 ) 0 

1 ->  1 1 

[], () -> [], () 

Leaf clump radius 2 units 

Table 1.   Parameters and settings used to create the L-System tree 

The “units” of measurement are given a physical meaning when the overall height 

of the tree is defined within the LIDAR simulation program. 

The L-System code generates a series of files, which are used as inputs to the 

LIDAR propagation model. 
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L-System Tree Model Outputs 

Air.dat Probability of air at each pixel location 

Bark.dat Probability of bark at each pixel location 

Leaf.dat Probability of leaves at each pixel location 

(Generation #).gif Image file showing the tree at generation n 

Cos_map.dat Cosine of angle of branch, measured 

counter-clockwise from horizontal 

Bud_xcoord.dat, bud_ycoord.dat x and y pixel locations of buds – where 

leaves may grow 

L_system_string.txt Definition of the L-System, and string 

created by the model 

Table 2.   Output files from the L-System tree program 

2. LIDAR Propagation Model Parameters 

The following settings were used as default values for LIDAR simulation test 

cases.   

Tree Parameters 

Tree height – base of trunk to tree top 15 m 

Tree trunk width at base 0.89 m 

Smallest branches modeled 0.03 m 

Leaf clump diameter 0.06 m 

Table 3.   Physical units of L-System tree dimensions used in the LIDAR propagation 
model 
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Radiometric Properties 

Atmosphere 15 km visibility – clear 

Bark transmittance, reflectance, absorbance 532 nm – 0%, 10%, 90% 

1064 nm – 0%, 35%, 65% 

1550 nm – 0%, 45%, 55% 

Leaf transmittance, reflectance, absorbance 532 nm – 8%, 36%, 56% 

1064 nm – 30%, 36%, 5% 

1550 nm – 27%, 57%, 16% 

Ground (green grass)  

transmittance, reflectance, absorbance 

532 nm – 0%, 7%, 93% 

1064 nm – 0%, 40%, 60% 

1550 nm – 0%, 23%, 67% 

Table 4.   Radiometric properties of materials in the LIDAR propagation model 

LIDAR System Parameters 

Flying altitude above ground 1000 m 

Pulse width 6 ns 

Beam divergence 0.3 mrad 

Aperture of receiving optics 0.2 m 

Laser pointing angle (degrees from nadir) 0º 

Table 5.   LIDAR system parameters and settings used in the LIDAR propagation model 
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The outputs from the LIDAR propagation model are as follows: 

LIDAR Propagation Model Outputs 

Initial_pulse.txt Energy per bin of transmitted LIDAR pulse 

Sampled_initial_pulse.txt Transmitted LIDAR pulse resampled at the 

specified LIDAR system sampling rate 

All_pulses.txt List of energy and time-of-flight for each 

LIDAR pulse element  

Waveform.txt Simulated waveform; energy vs. time-of-

flight – average response of all runs 

Sampled_wf.txt Simulated waveform resampled at the 

specified LIDAR system sampling rate 

Metadata.txt Text file containing all the parameter 

settings 

Hit_map.gif Image file showing the path traced by each 

LIDAR pulse element throughout the 

workspace 

Table 6.   Output files from the LIDAR propagation model 
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3. PROSPECT v2.01 Leaf Reflectance Model Parameters 

PROSPECT v2.01 Parameters 

Leaf equivalent thickness (n) 3.4 

Chlorophyll a+b (cab) 20.0 

Water (cw) 0.002 

Protein (cp) 0.001 

Structural biochemicals (cc) 0.001 

Leaf angle (deg) 0º 

Table 7.   Parameters and settings used to simulate the leaf reflectance spectra using 
PROSPECT v2.01 

PROSPECT v2.01 Outputs 

PROSPECT_output.csv Comma Separated Values file containing 

PROSPECT parameter settings, and leaf 

reflectance and transmittance values vs. 

wavelength 

Table 8.   Output file from the PROSPECT v2.01 leaf reflectance model 

B. THE MODEL OPERATION 

The L-System tree is defined and rendered, and the output files are created, 

including a map of bark and leaf locations and a map of branch angles.  These files are 

used as inputs to the LIDAR simulation program. 

The LIDAR simulation uses the information in the tree files to define the 

geometric layout of the model space.  The height of the tree is a user-defined quantity, 

and this value is used to determine the physical dimensions of model space.  For  
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example, the simulated tree used in the simulations (shown in Figure 26) is 504 pixels tall.  

The user-defined height of the tree is 15 m, and so each pixel corresponds to 2.976 cm. 

The radiometric properties of the ground and bark are user-defined values, while 

the PROSPECT model is called to determine the radiometric properties of the leaves.  

The PROSPECT model depends on physical properties of the leaf, as explained in 

Section A, 3. “PROSPECT v2.01 Leaf Reflectance Model.”  The atmospheric absorption 

for each location in the image space is calculated according to Beer’s Law. 

The probability of each of the materials in the scene can be adjusted.  For 

example, if a pixel contains a leaf, and the probability of the leaf map is set to 50%, there 

is a 50% chance that the pixel will be treated as a leaf, and a 50% chance that the pixel 

will be treated as air.  

To create the simulated waveform, multiple LIDAR pulses are propagated 

through the system, and the average response is output as the simulated waveform.  Each 

LIDAR pulse is defined as having a certain length, energy level, and beam divergence.  

The pulse is divided into multiple small bins, with each bin being treated as a separate 

pulse having an initial energy, location, and propagation direction determined by its 

location in the overall LIDAR pulse.  The initial start time is also adjusted based on the 

bin location; for a 6 ns pulse, the initial bin pulse will be transmitted at time 0, while the 

last bin will be transmitted just prior to 6 ns. 
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Figure 27.   An example of a transmitted LIDAR pulse, showing multiple small bins 
dividing the initial pulse.  Each bin is treated as a separate pulse having an 

energy equal to its area. 

Each pulse bin is propagated with a user-defined step size.  At each step, the 

location of the LIDAR pulse is tracked, and the material interaction is determined 

probabilistically according to the material probability maps, and reflectance properties.  

When the pulse interacts with material having an absorbance greater than 0, the energy of 

the pulse is reduced by that amount.  The remaining energy is allowed to continue 

propagating.  If the energy is transmitted, the angle of propagation is not changed.  If the 

energy is reflected, the angle of propagation is updated.  The reflection can be either 

Lambertian or specular.  If the reflection is Lambertian, every angle of reflection between 

0 and  radians from the material surface is equally likely, so a random angle of 

reflection is chosen.  In the specular case, the reflection is assumed to be a mirrored 

reflection from the plane of the material being impacted.  Figure 28 contains an 

illustration of the different types of scattering interactions. 
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Figure 28.   Illustration of the interactions of light via transmission, or specular or 
Lambertian scattering from a leaf surface 

In Figure 28,   is the angle of the leaf surface, measured counterclockwise from 

the horizontal plane.  The angle of incoming LIDAR radiation,  , is also measured 

counterclockwise from the horizontal plane.  The axis normal to the leaf surface is 

2
  

radians counterclockwise from the horizontal plane, and is the axis about which energy is 

reflected.  The angle between the incoming LIDAR radiation and the normal axis is 

 

2
    = 


2
  .  Therefore, the angle of reflection is 


2





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Each pulse bin of energy is tracked until the energy is returned to the sensor, 

scattered out of the workspace and lost, or absorbed by materials within the scene.  Some 

of the pulse bins may have an initial energy level below the detection level of the LIDAR 

system—this energy is considered lost.  There is also an option to set a maximum number 

of allowed scattering events; if a pulse interacts more times than allowed, the energy is 

considered lost.  If the energy is returned to the sensor, the time of return and the amount 

of energy is recorded.  This process is repeated for each pulse bin.  Returns occurring at 

exactly the same time are averaged, and a waveform is created for each pulse.  This 

process is repeated for multiple pulses, and the waveform from each pulse is averaged to 

create the simulated waveform.  The waveform is resampled so that the total energy 

contained in the waveform matches the amount of energy returned to the sensor. 

C. THE SIMULATED COLLECTION 

Based on the speed of light being 299,792,458 m/s, a LIDAR pulse transmitted 

from a sensor 1000 m above the ground will take approximately 6671 ns to traverse from 

the sensor, to the ground, and back.  Likewise, for a tree top 15 m above ground, the 

LIDAR pulse will take 6571 ns to reach the top of the tree and be reflected back to the 

sensor.  Figure 29 shows the simulated tree, and expected time-of-flight values for a 

LIDAR system located 1000 m above ground level. 
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Figure 29.   The simulated tree, with approximate heights and pulse time-of-flight values 
for a LIDAR sensor located 1000 m above the ground 
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D. THE SIMULATED LIDAR WAVEFORMS 

In all of the test cases, the transmitted LIDAR pulse was defined as having the 

Gaussian shape as shown below.  The probability distribution function for a Gaussian or 

normal distribution is defined as 
1

 2
exp 

(x  )2

2 2







, 

where the variance  = 14 and the mean   = 0. 

 

Figure 30.   Gaussian curve shape used to model the transmitted LIDAR pulse 

The total energy and length of the pulse are variable within the simulation.  The 

length of the pulse is varied by interpolating the Gaussian curve shape into as many 

points as are needed.  For example, if the model has a time step resolution of 0.5 ns, and 

the transmitted pulse is assumed to be 6 ns long, and the initial energy is assumed to be 

100%, the initial LIDAR pulse will be as shown in Figure 31. 
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Figure 31.   Simulated transmitted LIDAR pulse with a pulse length of 6 ns, an initial 
energy of 100%, and a simulation temporal sampling of 0.3 ns per step 

1. Test Case 1–Interaction with a Ground Surface 

In this case, the LIDAR pulse was directed directly at the ground, with no 

obstructions between the sensor and the ground.  The reflectance of the ground was 

assumed to be 70%, and the absorbance was set at 30%.  The purpose of this test was to 

ensure the transmitted Gaussian pulse shape was returned without any modification, the 

correct amount of energy was returned to the system, and to check the timing of the 

system. 

Because the altitude of the sensor above the ground is set at 1000 m, the time 

taken for a pulse of light to travel from the sensor to the ground and back is 

approximately 6671 ns.  In each of the test cases, the height above ground of returned 

points is calculated assuming that the ground is detected at 6671 ns.  Pulses that take less 

than 6671 ns to travel back and forth must be returned from locations above ground.  

Likewise, pulses that take longer than 6671 ns appear to be below ground level.  No 

adjustment has been made for the length of the pulse, so energy returned from the trailing 

edge of the transmitted Gaussian pulse will appear to take longer than 6671 ns, because 

time-of-flight is measured from the time of transmission of the leading edge of the pulse. 
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Specular Surface Lambertian Surface 

Figure 32.   Interaction of first pulse of LIDAR energy, with the ground modeled as 
being a Lambertian surface and as a specular surface 

 

Figure 33.   The simulated waveform returned from a specular surface 

Of the total energy transmitted, with the ground being modeled as a specular 

surface, 68.46% of the energy is returned to the sensor, 1.54% is scattered out of the  
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workspace, and 30% of the energy is absorbed.  The 1.53% energy lost to scattering is 

due to the 0.3 mrad angular beam spread, and the fact that the receiving optics aperture is 

only 0.2 m in diameter. 

The first energy to return detected at the sensor occurs at approximately 6672 ns 

after transmission, while the first energy returns are expected at 6671 ns.  This difference 

is explained by the 1.53% energy that is lost due to scattering.  The model is designed 

such that the transmitted LIDAR pulse is dispersed over the required angular beam 

spread.  The initial and final bins of energy that are transmitted will have the greatest 

variance from the initial beam direction and, after a specular reflection, will end up 

furthest from the point of transmission. 

 

Figure 34.   Illustration of energy being scattered away from the sensor due to the 
angular beam spread of the LIDAR system 
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The transmitted LIDAR pulse in this example is 6 ns long, and the last energy is 

returned to the sensor just less than 6 ns after the initial energy.  The difference between 

the final return time and the expected value of 6677 ns can again be explained by the 

scattering of the final energy bins outside the diameter of the receiving optics of the 

sensor.  The peak of the transmitted LIDAR pulse occurs as expected at approximately 

6674 ns—3 ns after the expected start of returned waveform. 

 

Figure 35.   The simulated waveform from a Lambertian surface.  The total energy 
returned to the sensor is 0.15% of the transmitted energy 

When the ground is modeled as a Lambertian surface, light is scattered in all 

directions off the ground, regardless of angle of transmission.  Therefore, the initial pulse 

bins are not necessarily scattered away from the sensor, and the first energy returned to 

the sensor occurs at 6671 ns, as expected.  The last energy is recorded at 6677 ns. 

Of the total energy transmitted, only 0.15% of the energy is returned to the sensor, 

while 30% is absorbed by the ground, and 69.85% is scattered out of the space.  The 

overall Gaussian shape of the transmitted pulse is maintained, but the amount of energy 

returned is significantly decreased. 

A second test was performed with the LIDAR interacting with a sloped ground 

surface.  The slope of the ground is approximately 11º. 



 53

Specular Surface Lambertian Surface 

Figure 36.   Interaction of first pulse of LIDAR energy 

 

Figure 37.   The simulated waveforms from a sloped and flat Lambertian surface 

When the ground is modeled as a specular surface, all of the energy is reflected 

out of the space.  When the ground is modeled as a sloped Lambertian surface, the initial 

peak of the waveform occurs at the correct time (about 4 ns earlier than the peak from the 

flat surface due to the slope surface being above ground level—about 60 cm at the center 

of the slope). 
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The total energy returned to the sensor from a sloped Lambertian surface is 0.19% 

of the total initial energy transmitted, as compared to 0.15% of the energy from the flat 

Lambertian surface.  The curve of the waveform from the flat surface appears higher due 

to the return of fewer, higher intensity returns, but the total energy returned is actually 

lower from the flat Lambertian surface. 

The return of more energy from a sloped Lambertian surface than from a flat 

surface could be due to secondary reflections of energy.  Energy that is scattered off the 

sloped surface towards the flat ground interacts with the ground, and has a chance of 

being reflected back towards the sensor. 

The LIDAR footprint in this case is not large compared to the slope of the ground, 

and the angle of the slope is relatively small, so there is not any noticeable spread in time 

of the returned waveform.  It is expected that a larger footprint, or a more extreme slope, 

will be cause the returned waveform to be lengthened in time. 

2. Test Case 2–Varying Number of Iterations 

In this test, the effect of the number of model iterations was examined.  The 

graphs of the returned waveforms become smoother as the number of iterations is 

increased (see Figure 38).  The overall energy returned to the sensor stays approximately 

the same, but the number of distinct returns increases with more iterations (see Table 9). 

 
Number of Iterations 

Total Energy Returned to 
Sensor (%) 

Number of Distinct 
Times of Return 

100 0.094% 13 
200 0.115% 23 
300 0.149% 33 
400 0.0921 29 
500 0.113% 42 

Table 9.   Total energy returned to the sensor  and numbers of distinct returns after 
interatction with a flat Lambertian surface for a varying number of model 

iterations 
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50 Iterations 100 Iterations 

300 Iterations 500 Iterations 

Figure 38.   Simulated waveforms for LIDAR interacting with  a flat Lambertian surface 

The waveforms in Figure 38 were sampled to give a consistent step-size.  This 

sampling was only done in this test case, and was used to demonstrate the effect of 

varying the number of model iterations.  In other test cases, the returned waveform does 

not have a constant step-size; whenever a photon is returned to the sensor, the time-of-
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flight and amount of energy are recorded.  The number of iterations used in the other test 

cases was fixed at 500 iterations, unless otherwise noted. 

3. Test Case 3–Interaction of LIDAR with a Leaf 

The purpose of this test case was to demonstrate the interaction of LIDAR with a 

leaf.  A single pixel (2.98 cm) leaf “plate” was simulated approximately 89 cm above the 

bottom of the model space, with the sensor 1000 m above the bottom of the model space.  

In this first test, there is no ground surface.  The energy that is transmitted through the 

leaf continues out of the bottom of the workspace and is not returned to the sensor. 

The beam was not allowed to spread with transmission. 

The time-of-flight to and from the LIDAR sensor to the leaf plate should be 

approximately 
2 * (1000m  0.89m)

299, 792, 458m / s
 6665 109 s . 

Specular Leaf (No ground surface) Lambertian Leaf (No ground surface)  

Figure 39.   Interaction of first pulse of LIDAR energy with a simulated “leaf plate” 

In the first case, the leaf is modeled as a specular surface, with a reflectance of 

65.57%, transmittance of 29.83%, and absorbance of 4.6%.  When the simulation is run, 

of the total energy transmitted, 65.72% is returned to the sensor, 29.68% is lost, either by 
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being transmitted through the leaf or by being reflected back towards the sensor, but 

outside of the receiving optics aperture.  4.6% of the energy is absorbed. 

 

Figure 40.   Waveform from LIDAR energy returned to the sensor after interaction with 
a simulated specular surface “leaf plate” 

Similarly, the overall Gaussian shape of the transmitted LIDAR pulse is 

maintained when the surface is Lambertian, although the energy is returned to the sensor 

less consistently than in the specular case.  Ninety-two percent of the initial pulse energy 

is scattered out of the space, and only 0.1% is returned to the sensor.  The remaining 

7.9% of the energy is absorbed by the leaf.   

The amount of energy absorbed (7.9%) is higher than the modeled absorbance of 

the leaf (4.6%).  This could be due to the fact, when the surface is modeled as a 

Lambertian surface, reflections are allowed to occur in any direction off the leaf’s surface 

(between 0 and   radians as measured counter-clockwise from the plane of the leaf 

surface).  Some of the reflected energy will be reflected at 0 and   radians, and this 

energy then has a second chance of being absorbed.  The higher absorption is due to 

energy reflecting along the surface of the leaf, and being subsequently absorbed. 
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Figure 41.   Waveform from LIDAR energy returned to the sensor after interaction with 
a simulated Lambertian surface “leaf plate” 

This test case demonstrates that the model is correctly simulating the way LIDAR 

energy interacts with a leaf.  It is also of interest to determine how the ground underneath 

the leaf affects the returned waveform.   

To explore the effect of the ground underneath the leaf on the LIDAR waveform, 

a ground surface was added beneath the leaf plate.  The reflectance, transmittance, and 

absorbance values of the leaf remain the same as above (65.57%, 29.83%, and 4.6% 

respectively), while the ground surface is modeled with a reflectance of 70% and an 

absorbance of 30%.  Energy is not allowed to transmit through the ground.  Energy can 

transmit through the leaf, interact with the ground, and then be transmitted through the 

leaf again back towards the sensor. 

Four situations were modeled: 

1. Lambertian leaf over specular ground 

2. Lambertian leaf over Lambertian ground 

3. Specular leaf over specular ground 

4. Specular leaf over Lambertian ground 
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Lambertian Leaf Plate above a 
Specular Ground Surface 

Lambertian Leaf Plate above a 
Lambertian Ground Surface 

Specular Leaf Plate above a 
Specular Ground Surface 

Specular Leaf Plate above a 
Lambertian Ground Surface 

Figure 42.   Interaction of first pulse of LIDAR energy with a simulated “leaf plate” and 
ground surface 

The time-of-flight for a LIDAR pulse to interact with the leaf surface is 6665 ns, 

and 6671 ns for the ground.  In the calculations of “Height Above Ground,” no 

adjustment has been made for the length of the pulse.  As explained previously, time-of-
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flight is measured from the transmission of the leading edge of the Gaussian pulse, so 

energy returned from the trailing edge of the pulse will appear to be returned from below 

ground level, as the measured time will be longer than 6671 ns. 

In Figures 43 through 46, the first two peaks correspond to the return of energy 

from the leaf, and the return of energy from the ground. 

 

Figure 43.   Simulated waveform for a Lambertian leaf over specular ground surface 

 

Figure 44.   Simulated waveform for a Lambertian leaf over Lambertian ground surface 
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Figure 45.   Simulated waveform for a specular leaf over a specular ground surface 

In Figure 45, both the leaf surface and the ground surface are modeled as specular 

surfaces.  The first two peaks in the waveform occurring at 6668 ns and 6674 ns are the 

initial responses from the leaf and the ground surface.  The following diminishing peaks 

correspond to energy that is reflected once, twice, three times, etc., between the leaf and 

the ground before being returned to the sensor.  These multiple reflections give the 

appearance that energy is being returned from below ground level, whereas in fact the 

negative values are due to the excess time taken for the light to reflect back and forth 

between the leaf plate and the ground. 
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Figure 46.   Simulated waveform for a specular leaf over Lambertian ground surface 

Table 10 summarizes the amount of energy returned to the sensor in each 

simulation. 

Simulation Total Energy Returned 

Lambertian leaf only 0.1% 

Specular leaf only 65.72% 

Lambertian leaf over specular ground 6.25% 

Lambertian leaf over Lambertian ground 0.11% 

Specular leaf over specular ground 77.2% 

Specular leaf over Lambertian ground 65.6% 

Table 10.   Amount of energy returned to the sensor for cases of a leaf over ground 

The addition of a ground surface under the leaf can have a fairly significant 

impact if the ground is modeled as a specular surface (Note the increase in energy 

returned from 65.72% to 77.2% when a specular ground surface is added under a specular 
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leaf).  When the ground is modeled as a Lambertian surface, there is relatively little  

impact on the total energy received, but the shape of the waveform changes significantly 

as seen in Figures 43 through 46. 

In all cases, the first return is higher in energy than secondary returns. 

Significantly negative values for “Height Above Ground” are due to longer 

amounts of time taken for energy to bounce between the leaf plate and the ground. 

4. Test Case 4–Interaction with a Tree 

This test case was used to demonstrate how the simulated LIDAR interacts with 

the tree.  All materials were assumed to have Lambertian scattering properties.   

The likelihood of the bark map was reduced to 10%, and the probability of the 

leaf map was reduced to 3%.  These values were chosen after multiple simulations 

showed that these values would allow energy to interact with the ground.  In the author’s 

experience, LIDAR data collected over a tree will include returns from the ground 

surface, even in cases of dense canopy. 

When a LIDAR pulse encounters a pixel that contains a leaf, there is only a 3% of 

interaction with a leaf, and a 97% chance of interaction with air.  In the locations where 

the leaf and bark maps overlap, there will be a 3% chance of interaction with a leaf, a 

10% chance of interaction with bark, and a 87% chance of interaction with air. 
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Leaf On Leaf Off 

Figure 47.   Interaction of the first pulse of LIDAR energy with a tree 

Using Figure 29 as a reference, the returns from the branches should occur 

between 6615 and 6645 ns after pulse transmission.  As can be seen in the simulated 

waveforms in Figure 48, in the “leaf-on” situation, energy is only being returned from the 

leaves.  The probability of the leaf map was reduced to 3% to ensure energy could be 

detected after interaction with the ground, but combining the 3% leaf map with the 11% 

bark map means that the ground is not detected in the “leaf-on” case.  In the “leaf-off” 

case, energy is returned from the branches, and also from the ground. 
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Figure 48.   Simulated waveforms for a tree with and without leaves 

In both the leaf-on and leaf-off situations, there is an initial return occurring at 

approximately 6615 ns.  This corresponds to returns from the branches and leaves of the 

tree.  A second peak can be seen in the leaf-off waveform at approximately 6675 ns, 

which corresponds to the ground return.  There is significant scattering from the branches 

and leaves, as evidenced by the spread of returns from 6615 to 6660 ns.  Returns 

occurring after 6675 ns are due to laser energy reflecting from the ground, and being 

scattered within the tree canopy, and then back to the sensor. 

The total energy returned to the sensor in the “leaf on” case was 10.5% of the 

energy transmitted.  In the “leaf off” case, 0.1% of the transmitted energy was returned. 

In this test case, a wide peak corresponding to returns from the canopy was 

expected, rather than a series of very distinct points corresponding to the branch returns 

as shown in Figure 48 between 6615 and 6650 ns.  These waveforms were created after 

500 model iterations.  It is expected that these simulated waveforms would become 

smoother with many more model iterations, as the number of distinct returns increases 

with more iterations as discussed in “Test Case 2–Varying Number of Iterations.”  At the 

time of this writing, attempts were being made to run the simulation on high performance 

computing resources, but some recoding of the program will be required to realize the 

benefit of multiple processor availability. 
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5. Test Case 5–Single versus Multiple Scattering 

Each time a pulse of light interacts with a material in the scene, a scattering event 

is counted.  When a LIDAR pulse is simulated, the Gaussian pulse is divided into 

multiple small bins, and each bin is propagated separately as a LIDAR pulse.  Figure 49 

shows the number of interactions for each of 60 Gaussian bin elements for a LIDAR 

pulse interacting with a tree without leaves (Test Case 3).  The average number of 

interactions is 2.85.  When the tree has leaves, the average number of interactions 

increases to 3.28.  It should be noted that the number of interactions is also dependant on 

the probability maps of the materials in the scene.  As in Test Case 3, the probability of 

the bark map was reduced to 10%, and the leaf map was reduced to 3%. 

 

Figure 49.   The number of LIDAR/material interactions per Gaussian bin element 

6. Test Case 6–Varying Ground Reflectance Values 

The purpose of this test is to determine how the reflectivity of the ground 

underneath the tree affects the LIDAR waveform.  It is expected that more of a ground 

return will be seen when the ground is more reflective. 

In these test cases, the leaf map is again reduced to 3% probability, while the bark 

map is reduced to 10% probability.  The reflectance of the ground is varied from 10% to 

70%.  The transmittance of the ground is 0%, and so the absorbance varies from 90% to 
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30%.  The reflectance properties of the leaves of the tree are kept constant at 35% 

reflectance, 8% transmittance, and 56% absorbance. 

Just as in “Test Case 3–Interaction with a tree,” the returns from the branches 

should occur between 6615 and 6645 ns after pulse transmission.  Interaction with the 

ground should occur starting at 6671 ns. 

A plot of the PROSPECT leaf reflectance spectra with each laser wavelength overlaid is 

shown in Figure 50 to indicate the brightness of the leaves.  The reflectance of the ground is 

varied from 10% to 70%, and so will sometimes be brighter than the leaves.  The bark is modeled 

as having 10% reflectance at 532 nm, 35% at 1064 nm, and 45% at 1550 nm (see Table 4). 

 

Figure 50.   PROSPECT leaf reflectance spectra overlaid with lines indicating 532 nm, 
1064 nm and 1550 nm 

 

Figure 51.   Interaction of the first pulse bin of LIDAR energy 
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Laser operating at 532 nm 

 

Laser operating at 1064 nm 
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Laser operating at 1550 nm 

Figure 52.   Simulated waveforms for a LIDAR operating at 532, 1064, and 1550 nm.  
The reflectance of the ground is varied from 10% to 70% (and absorbance 

varies from 90% to 30%) 

Surprisingly, when the laser is operating at 532 and 1064 nm, the ground can be 

detected when the reflectance of the ground is low, but not when the ground is brighter 

(70% reflective). 

Again, these waveforms were not as smooth as expected.  These waveforms were 

created from 500 model iterations. 

7. Test Case 7–Varying Atmosphere 

According to Mallet and Bretar, atmospheric effects are negligible unless there is 

rain (Mallet, 2008).  For all of the test cases, the effects of the atmosphere in the 

immediate vicinity of the tree were ignored, but the total energy of the transmitted pulse 

was reduced according to the atmospheric absorption and the altitude of the sensor. 

To test the effects of the atmosphere, the LIDAR was modeled as interacting with 

a flat specular ground surface having a reflectance of 70%, and an absorbance of 30%.  
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As demonstrated in Test Case 1, this simulation returns energy as expected.  In this test 

case, the angular beam spread was set to 0 to avoid energy being lost due to scattering 

outside the receiving optics aperture. 

The amount of energy transmitted through the atmosphere diminishes 

exponentially with altitude. 

Eabs  E0  E0e
kz  

where Eabs  is the amount of energy absorbed in the atmosphere, E0  is the initial energy 

of the transmitted LIDAR pulse, k is the atmospheric absorption coefficient, and z is the 

distance traveled through the atmosphere. 

According to Measures, a clear atmosphere (15 miles visibility) has a k value of 

0.018*10-5 (Measures, 1992). 

 

Figure 53.   Plot of energy returned to the sensor after reflection from a 70% reflective 
specular surface under varying atmospheric conditions 

Adjusting the atmospheric absorption coefficient has very little effect until the 

atmospheric absorption coefficient k is increased by a factor of 1000. 
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8. Test Case 8–LIDAR Footprint Size 

Small footprint systems (0.3−2 m diameter) provide accurate measures of small 

objects within the laser footprint, but these systems may miss tree-tops, or, may hit tree-

tops but miss the ground.  The returns from large footprint systems (10–70 m diameter) 

will include information from all of the objects within the footprint, which could lead to 

confusion.  However, the large footprint system is more likely to hit both the tree-top and 

the ground within the same footprint. 

To simulate larger footprint sizes, the angular spread of the beam and the 

receiving optics aperture of the LIDAR system were increased.  The LIDAR was 

simulated directly overtop the tree. 

The top of the tree is 15 m tall, and the sensor is 1000 m above ground level, and 

so energy returned from the top of the tree should arrive after 6571 ns.  The ground 

should be detected starting at 6671 ns. 

Beam spread = 0.3 mrad, 
Beam diameter on ground = 0.3 m 

Total energy returned to sensor = 0.09% 
Average number of interactions = 3.67 
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Beam spread = 1.0 mrad, 
Beam diameter on ground = 1.0 m 

Total energy returned to sensor = 0.49% 
Average number of interactions = 3.47 

Beam spread = 5.0 mrad, 
Beam diameter on ground = 5.0 m 

Total energy returned to sensor = 3.87% 
Average number of interactions = 3.85 
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Beam spread = 10.0 mrad, 
Beam diameter on ground = 10.0 m 

Total energy returned to sensor = 7.18% 
Average number of interactions = 3.85 

Figure 54.   Interactions of first pulses of LIDAR energy and simulated waveforms for 
increasing LIDAR footprint sizes 

When the beam spread is 0.3 mrad, the footprint of the LIDAR is only 30 cm, and 

the LIDAR energy does not reach the ground.  When the LIDAR footprint is increased, 

the ground is detected.   

In the larger footprint simulations (5 m, 10 m), there is a significant amount of 

energy returned to the sensor after 6671 ns, and these returns appear as being returned 

from locations below ground level.  It is possible that this time-spread is caused by 

energy being bounced around the tree canopy before being returned to the sensor.  In the 

case of LIDAR interacting with a flat Lambertian ground surface, as in Test Case 1, the 

last energy returned to the sensor was detected at 6676 ns.  With the large footprint 

simulations, LIDAR energy is returning almost 100 ns after this.  Light travels 

approximately 30 m in 100 ns.  The average number of interactions in the 5 m and 10 m 

footprint simulations is 3.85, which is slightly higher than the average number of 

interactions in the small footprint simulations. 
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9. Test Case 9–Off-nadir Sensing Geometry 

This test case demonstrates the capability of the model to simulate off-nadir 

sensing geometries.  This is an important feature because almost always, LIDAR systems 

use some type of scanning, and so data is collected at off-nadir directions. 

  
Sensor pointing 4.9º off-nadir Sensor pointing 18.8º off-nadir 

Figure 55.   Interactions of first pulses of LIDAR energy for a LIDAR sensor pointing 
off-nadir 

Sensor pointing 4.9º off-nadir 



 75

Sensor pointing 18.8º off-nadir 

Figure 56.   Simulated waveforms for a LIDAR sensor pointing off-nadir 
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IV. CONCLUSIONS AND FUTURE WORK 

The model presented in this thesis seems to reliably predict full-waveform 

LIDAR signatures for the relatively simple situations explored so far.  It is expected that 

the waveforms from LIDAR interaction with a tree will be more realistically simulated 

by using many more model iterations.  The simulated waveforms need to be compared to 

real LIDAR waveforms.  Because of the relative simplicity and flexibility of the model, it 

can be used to determine the source of differences between the simulated and actual full-

waveform LIDAR data, and this information will be valuable as algorithms for the 

exploitation of full-waveform LIDAR data are developed. 

The model as presented here is a very simplistic representation of a complex 

situation.  Further realism could be achieved by expanding the model to 3 dimensions, 

and by incorporating a more physically realistic vegetation model. 
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APPENDIX A.  IDL CODE FOR LIDAR SIMULATION 

pro LIDAR_model 
;Take tree model as input 
;Propagate lidar pulse through the tree 
;Output lidar waveform 
 
;************************ 
;Input filenames - tree model 
;************************ 
   dir = '/Users/admin/Documents/' 
   datein = ' 9Sep' ;date of files to reuse 
   barkin = dir + 'bark_'+datein+'.dat' 
   leafin = dir + 'leaf_'+datein+'.dat' 
   airin = dir + 'air_'+datein+'.dat' 
   anglein = dir + 'angle_map_'+datein+'.dat' 
   xcoordin = dir + 'bud_xcoord_'+datein+'.dat' 
   ycoordin = dir + 'bud_ycoord_'+datein+'.dat' 
 
;************************    
;Output filenames 
;************************ 
  outdir = '/Users/admin/Documents/tree/ 
  temp = systime() 
  month = strmid(temp,4,3) 
  day = strmid(temp, 8,2) 
  date = strtrim(day)+month+'Lidar_model_output' 
  print, 'Date:', date 
  hit_map_file = outdir + 'hit_map_'+date+'.dat' 
  waveform_file = outdir + 'waveform_'+date+'.txt' 
  sampled_wf_file = outdir + 'sampled_wf_'+date+'.txt' 
  metadata_file = outdir + 'metadata_'+date+'.txt' 
  all_pulses_file = outdir + 'all_pulses_'+date+'.txt' 
  gaussian_file = outdir + 'initial_pulse_'+date+'.txt' 
  sampled_gaussian_file = outdir + 'sampled_initial_pulse_'+date+'.txt'   
 
;************************   
;Define workspace parameters 
;************************ 
;Work Space - must be same as or bigger than tree size 
  ;x = horizontal axis, oriented from L to R 
  ;y = vertical axis, oriented from bottom to top 
  x = 600 
  y = 600 
  tree_height_m = 15 
  ground = fltarr(x,y) & ground(*,*) = 0 ;pixels above bottom of workspace 
  ground_height = 0 
  ground_angle_map = fltarr(x,y) & ground_angle_map(*,*) = 0 ;ground is flat unless 
otherwise defined  
  visibility_km = 15 ;clear - p. 143 Measures 
  npulses = 500 ;number of separate pulses - response will be combined 
 
  show = 1 ;set to 1 to display hit-maps every nth_step pulse 
  nth_step = 10 
   
  mult_scatter = 1 ;set to 0 to restrict number of scatters allowed 
    max_scatters = 1 ;set number of scattering events allowed  
  bark_prob = 0.1 ;Probability that a pixel containing bark will be treated as bark 
  leaf_prob = 0.03 
  air_abs_prob = 0. 
  ground_scatter = 1 ;0 - Specular scattering; 1 - Lambertian scattering 
  leaf_scatter = 1 
  bark_scatter = 1 
 
;************************   
;Define LIDAR parameters 
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;************************ 
  init_energy = 100d ;Percent 
  min_detect_energy = .001   
  pulse_length_ns = 6d ;time-spread of initial lidar pulse 
  beam_spread_rad = 0.3/1000d  ;0.3 - 2.5 mrad - typical values for ALS 
  sensor_alt_m = 1000 ;sensor altitude in meters 
  aperture_diam_m = 0.2 
  ;Pulse initial location in pixels and angle 
  x_loc_orig = 200 
  y_loc_orig = y-1 
  angle_orig = 3*!pi/2. ;measured CCW from horizontal 
  wavelength_nm = 1064   
  sample_rate_GHz = 5. ;15GHz = 1cm ranging resolution, Toth p. 15   
 
;************************   
;Define PROSPECT leaf parameters 
;Jacquemoud - 1996 
;************************ 
n = 3.4  ;leaf equivalent thickness - lower n = higher transmittance - varies from 1 to 5  
cab = 20.0 ;chlorophyll a+b - varies from 0 to 100 
cw = 0.002 ;water - varies from 0 to 0.050 
cp = 0.001 ;protein - varies from 0 to 0.01 
cc = 0.001 ;structural biochemicals-hemicellolose, cellulose, lignin-varies from 0-0.01 
deg = 0    ;leaf angle - varies from 0 to 90 degrees CCW from horizontal 
 
;************************                                       
;Open and read tree input files 
;************************ 
  bark_map = fltarr(x,y) 
  leaf_map = fltarr(x,y) 
  xcoord = fltarr(x,y) 
  ycoord = fltarr(x,y) 
  angle_map = fltarr(x,y) 
  OPENR, 1, barkin & READU, 1, bark_map & CLOSE, 1 
  OPENR, 1, leafin & READU, 1, leaf_map & CLOSE, 1 
  OPENR, 1, xcoordin & READU, 1, xcoord & CLOSE, 1 
  OPENR, 1, ycoordin & READU, 1, ycoord & CLOSE, 1 
  OPENR, 1, anglein & READU, 1, angle_map & CLOSE, 1 
 
;************************   
;Determine step sizes 
;************************ 
  cm_per_pixel = double(tree_height_m)*100d/double(max(ycoord)) 
  c_cm_per_s = 2.9979246e+10 ;299 792 458 m / s 
  c_cm_per_ns = 29.979246  
  ;Make time_step_ns so that dist_step_pix = 1 
  time_step_ns = cm_per_pixel/c_cm_per_ns 
  dist_step_cm = time_step_ns*c_cm_per_ns 
  dist_step_pix = dist_step_cm/cm_per_pixel 
  model_sample_rate = 1./time_step_ns 
  aperture_diam_pix = aperture_diam_m*100.*(1./cm_per_pixel) 
  print, 'Time step (ns):', time_step_ns 
  print, 'Distance (cm) pulse will travel in one time step:', dist_step_cm 
  print, 'Distance (pixels) pulse will travel in one time step:', dist_step_pix 
  print, 'Centimeters per pixel:', cm_per_pixel 
  print, 'Sample rate of model (GHz):',model_sample_rate 
 
;************************   
;Determine atmospheric absorption above workspace - assuming uniform atmosphere 
; Beer-Lambert -> I/I(0) = e^-(kz) 
; k = attenuation coefficient 
;************************ 
workspace_ht_m = y*cm_per_pixel/100. 
k_m = 0.018*10^(-5d) ;m^-1 
z_m = sensor_alt_m - workspace_ht_m  
atm_abs = init_energy - init_energy*exp(-k_m*z_m)  
 
;************************   
;Define material interaction parameters - % 



 81

;************************ 
leaf_result = call_function('prospect2_nogui_fxn', n, cab, cw, cp, cc, deg, 
wavelength_nm) 
leaf_refl = leaf_result(0) & leaf_trans = 1.0-leaf_result(1) & leaf_abs = leaf_result(2) 
bark_trans = 0.17 & bark_abs = 0.13 & bark_refl = 0.6 
  k_pix = k_m/100.*cm_per_pixel 
;Create air absorbance map based on altitude 
air_abs = fltarr(x,y) 
FOR i=0, y-1 DO BEGIN 
  z_m = cm_per_pixel*(i+1)/100.  
  air_abs(*,y-i-1) = exp(-k_m*z_m) 
ENDFOR 
air_abs = air_abs*air_abs_prob 
air_trans = 1.-air_abs 
ground_refl = .7 & ground_abs = .3 & ground_trans = 0. 
 
;************************ 
;Determine footprint size on ground and at top of workspace 
;************************ 
beam_width_ground_cm = (2.*sensor_alt_m*tan(beam_spread_rad/2.))*100. 
beam_spread_top_cm = (2.*(sensor_alt_m-workspace_ht_m)*tan(beam_spread_rad/2.))*100. 
beam_spread_top_pix = beam_spread_top_cm/cm_per_pixel 
print, 'Beam width at top of workspace (cm):', beam_spread_top_cm 
 
;************************** 
;Create material probability maps 
;************************** 
  bark_map = bark_map*bark_prob 
  leaf_map = (1.-bark_map)*leaf_map*leaf_prob 
  air_map = 1. - (bark_map + leaf_map) 
  IF show EQ 1 THEN BEGIN 
    WINDOW, 0, xsize = x, ysize = y 
    temp_tree = fltarr(x,y,3) 
    TVSCL, bark_map/max(bark_map)+leaf_map/max(leaf_map) 
  ENDIF 
   
  ;Create 'hit_map' to show where and interaction occurs 
  hit_map = fltarr(x,y) 
  hit_map(*,*) = 0 
;************************ 
;Define pulse shape 
;Vary pulse energy according to a Gaussian distribution 
;************************ 
  mean = 0. 
  variance = 14. 
  gaussian = dblarr(100) 
  i = 0.  
  WHILE (i LT n_elements(gaussian)) DO BEGIN 
    gaussian(i) = (1./sqrt(variance*2.*!pi))* $ 

exp(-1.*((i-n_elements(gaussian)/2.)^2)/(2.*(variance^2))) 
    i = i+1 
  ENDWHILE 
  npulse_bins = fix(pulse_length_ns/time_step_ns) 
  gaussian = interpol(gaussian, npulse_bins) 
  gaussian = (gaussian/total(gaussian))*(init_energy-2.*atm_abs) 
  gauss_bin_width = n_elements(gaussian)/float(npulse_bins)  
  gauss_bin_width_ns = pulse_length_ns/npulse_bins ;should be 1 bin per time step 
  gauss_bin_width_pix = gauss_bin_width_ns*c_cm_per_ns*dist_step_pix 
 
  IF max(gaussian) LE min_detect_energy THEN stop 
     
;************************ 
;Propagate the pulse(s) 
;************************ 
pulse_return_tot = dblarr(2*npulses,npulse_bins) 
pulse_width_step = beam_spread_top_pix/npulse_bins 
beam_spread_step = beam_spread_rad/npulse_bins 
nflags_tot = dblarr(5, npulse_bins)  
     flag_key = ['flag 1: exceeding max scatters', $ 
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                 'flag 2: absorbed', $ 
                 'flag 3: lost in space', $ 
                 'flag 4: RTS', $ 
                 'flag 5: too low initially'] 
                   
nbounces_pulse = 0 
FOR p=0, npulses-1 DO BEGIN 
nflags = dblarr(5, npulse_bins) 
   
print, 'Pulse #',p+1, ' of', npulses 
  ;Create array to store waveform 
  pulse_return2 = dblarr(2,npulse_bins) & pulse_return2(*,*) = 0 
 
  ;Determine length of waveform 
  max_n_steps = 0 
   
  x_loc = x_loc_orig 
  y_loc = y_loc_orig 
 
  xloc_init = x_loc 
  yloc_init = y_loc 
  angle_init = angle_orig 
  bar = (indgen(npulse_bins)+1)*gauss_bin_width 
  total_energy=0 
 ;Find time taken for pulse to travel through atm 
  atm_travel_time = 2.*(sensor_alt_m-workspace_ht_m)*100./c_cm_per_ns   bin = 0.  
  returns = 0 
  nbounces = 0 
  WHILE (bin LT fix(npulse_bins)-1) DO BEGIN 
   
    ;Track number of bounces 
    bounce = 0 
    pulse_init_time_steps = bin*gauss_bin_width_ns ;number of steps 
 
  ;******* Vary spatial start location to allow random start within pulse_width_step area 
  temp = randomu(seed)-0.5 ;temp ranges between -0.5 and +0.5 
    x_loc = xloc_init - beam_spread_top_pix/2. + $  

pulse_width_step*bin + temp*pulse_width_step 
    angle = angle_init - beam_spread_rad/2 + beam_spread_step*bin + temp*beam_spread_step 
 
    y_loc = yloc_init 
    x_dir = cos(angle) 
    y_dir = sin(angle) ;-1 = pulse directed directly down towards ground 
 
    energy = total(gaussian(gauss_bin_width*bin:(bar(bin)-1))) 
    bin_energy = energy 
    total_energy = total_energy+energy 
    IF total_energy GT init_energy then stop 
    n_steps = 0 
    flag = 0 
    path = intarr(x,y) 
    n = 0l 
    rts = 0 ;Change to 1 if photon exits space and returns to sensor 
    nabs = 0l 
    WHILE (flag EQ 0) DO BEGIN 
      IF energy LE min_detect_energy THEN BEGIN 
        flag = 2 
        nflags(4,bin) = nflags(4,bin)+energy 
        xloc_new = x_loc & yloc_new = y_loc 
        GOTO, JUMP1 
      ENDIF 
      ;*************** 
      ;Move the photon 
      xloc_new = x_loc + dist_step_pix*x_dir 
      yloc_new = y_loc + dist_step_pix*y_dir 
       
      n = n+1 ;steps     
       
      IF (xloc_new GE fix(x) OR xloc_new LT 0 OR yloc_new GE fix(y)) THEN GOTO, JUMP1 
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      ;************************ 
      ;Impact with ground 
      ;************************ 
      ;find max height of ground at xloc_new 
      ground_height = max([max(where(ground(xloc_new, *) EQ 1)), 0]) 
      IF yloc_new LE ground_height THEN BEGIN 
        bounce = bounce+1 
        IF (mult_scatter EQ 0 AND bounce GE max_scatters) THEN BEGIN 
          flag = 1 
          nflags(0,bin) = nflags(0,bin)+energy 
          GOTO, JUMP1 
        ENDIF  
 
        ground_angle = ground_angle_map(xloc_new, ground_height) 
        abs = ground_abs 
        refl = ground_refl 
        trans = ground_trans 

;track amount absorbed, propagate remaining 
        nflags(1,bin) = nflags(1,bin)+energy*abs  
        energy = energy - energy*abs ;less percentage absorbed 
        IF energy LT min_detect_energy THEN BEGIN 
          flag = 2 ;energy absorbed 
          GOTO, JUMP1 
        ENDIF 
        ;Rest is reflected 
        IF ground_scatter EQ 0 THEN BEGIN ;specular reflection         
           yloc_new = ABS(yloc_new-ground_height) + ground_height 
           axis = ground_angle + !pi/2. ;axis to reflect about 
           ;angle at which pulse strikes - CW from axis 
           diff = !pi/2. - (ground_angle - angle)  
           angle = axis - diff 
        ENDIF ELSE BEGIN ;Lambertian scatter 
          yloc_new = ABS(yloc_new-ground_height) + ground_height 
          temp = randomu(seed)*2.-1 ;-1<temp<1 
          angle = acos(temp) + ground_angle 
        ENDELSE 
        ;Move the photon 
        x_dir = cos(angle) & y_dir = sin(angle) 
        xloc_new = x_loc + dist_step_pix*x_dir 
        yloc_new = y_loc + dist_step_pix*y_dir 
        n = n+1 ;steps    
      ENDIF 
  ;If outside bounds of tree, determine if photon will be counted as 'returned to sensor' 
      IF (xloc_new GE fix(x) OR xloc_new LT 0) THEN GOTO, JUMP1 
      ground_height = max([max(where(ground(xloc_new, *) EQ 1)), 0]) 
      IF (yloc_new GE fix(y) OR yloc_new LT ground_height) THEN GOTO, JUMP1 
 
      ;Trace photon path and create 'hit_map' 
      startx = min([x_loc, xloc_new]) & endx = max([x_loc, xloc_new]) 
      starty = min([y_loc, yloc_new]) & endy = max([y_loc, yloc_new]) 
        IF (fix(endx) - fix(startx)) GT 0 THEN BEGIN 
          m = (yloc_new - y_loc)/(xloc_new - x_loc) 
          b = y_loc - m*x_loc 
          FOR i = startx, endx DO BEGIN 
            hit_map(i,m*i+b) = 1 
          ENDFOR 
          IF (fix(yloc_new) - fix(y_loc)) GT 0 THEN BEGIN  
            FOR i = y_loc, yloc_new DO BEGIN 
              hit_map((i-b)/m,i) = 1 
            ENDFOR 
          ENDIF  
       ENDIF ELSE BEGIN 
         hit_map(x_loc, starty:endy)=1 
       ENDELSE 
 
      ;Update pulse location 
      x_loc = xloc_new & y_loc = yloc_new 
 
      ;Determine probability of material interaction 
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        ;measured at nearest integer pixel location 
      leaf_weight = leaf_map(x_loc, y_loc) 
      bark_weight = bark_map(x_loc, y_loc) 
      air_weight  = air_map(x_loc, y_loc) 
  
      ;Determine light pulse interaction 
      ;Randomly choose number between 0 and 1 
      temp = randomu(seed) 
      IF (temp LE leaf_weight) THEN impact = 0 ;leaf 
      IF (temp GT leaf_weight AND temp LE leaf_weight+bark_weight) THEN impact = 1 ;bark  
      IF (temp GT leaf_weight+bark_weight) THEN impact = 2 ;air 
      ;****************** 
      ;* Impact with leaf 
      ;****************** 
      IF (impact EQ 0) THEN BEGIN ;impact with leaf 
        bounce = bounce+1 
        IF (mult_scatter EQ 0 AND bounce GE max_scatters) THEN BEGIN 
          flag = 1 
          nflags(0,bin) = nflags(0,bin)+energy 
          GOTO, JUMP1 
        ENDIF  
 
        trans = leaf_trans   
        abs   = leaf_abs   
        refl  = leaf_refl 
         
        ;Track energy being absorbed... 
        nflags(1,bin) = nflags(1,bin)+energy*abs 
        ;Subtract photons being absorbed 
        energy = energy - energy*abs 
        IF energy LT min_detect_energy THEN BEGIN 
          nflags(1,bin) = nflags(1,bin)+energy 
          flag = 2 
          GOTO, JUMP1 
        ENDIF 
        ;Determine transmission or reflection of remaining energy 
        temp = randomu(seed)*(refl+trans) 
        IF (temp LE trans) THEN interact = 0 ;transmission - nothing changes 
        IF (temp GT trans) THEN interact = 2 ;reflection - change angle 
 
        IF (interact EQ 2) THEN BEGIN ;photon is reflected 
          leaf_angle = deg*(!pi/180.) ;angle CCW of leaf from horizontal 
          IF leaf_scatter EQ 0 THEN BEGIN ;Specular reflection 
            ;Reflect from plane of leaf - leaf_angle 
            axis = leaf_angle + !pi/2. ;axis to reflect about 
           ; angle at which pulse strikes - CW from axis 
            diff = !pi/2. - (leaf_angle - angle)  
            angle = axis - diff 
          ENDIF ELSE BEGIN ;Lambertian scattering from leaf surface plane 
            ;angle at which pulse strikes - CW from leaf surface 
            diff =  angle - leaf_angle  
            temp = randomu(seed)*2.-1  

;temp varies between -1 and +1., acos(temp) varies from 0 to !pi 
            IF (diff GT !pi and diff LT 2*!pi) THEN BEGIN ;incoming to top of leaf  
              angle = acos(temp) + leaf_angle ;should depend on incoming angle as well... 
            ENDIF ELSE BEGIN ;If underneath leaf, then reflect down... 
              angle = acos(temp) + leaf_angle + !pi 
            ENDELSE 
          ENDELSE 
        ENDIF   
        x_dir = cos(angle) & y_dir = sin(angle) 
      ENDIF ELSE BEGIN 
      ;****************** 
      ;* Impact with bark 
      ;****************** 
      IF (impact EQ 1) THEN BEGIN ;impact with bark 
        bounce = bounce+1 
        IF (mult_scatter EQ 0 AND bounce GE max_scatters) THEN BEGIN 
          flag = 1 
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          nflags(0,bin) = nflags(0,bin)+energy 
          GOTO, JUMP1 
        ENDIF  
        temp=randomu(seed) 
        trans = bark_trans   
        abs   = bark_abs   
        refl  = bark_refl 
         
        ;Track energy being absorbed 
        nflags(1,bin) = nflags(1,bin)+energy*abs 
        ;Subtract photons being absorbed 
        energy = energy - energy*abs 
        IF energy LT min_detect_energy THEN BEGIN 
          nflags(1,bin) = nflags(1,bin)+energy 
          flag = 2 
          GOTO, JUMP1 
        ENDIF 
        ;Determine transmission or reflection of remaining energy 
        temp = randomu(seed)*(refl+trans) 
        IF (temp LE trans) THEN interact = 0 ;transmission - nothing changes 
        IF (temp GT trans) THEN interact = 2 ;reflection - change angle 
        IF (interact EQ 2) THEN BEGIN ;photon is reflected 
          branch_angle = angle_map(x_loc, y_loc) ;angle CCW of branch from horizontal 
          IF bark_scatter EQ 0 THEN BEGIN ;Specular reflection 
            ;Reflect from plane of bark surface 
            axis = branch_angle + !pi/2. ;axis to reflect about 
            ; angle at which pulse strikes - CW from axis 
            diff = !pi/2. - (branch_angle - angle)  
            angle = axis - diff 
          ENDIF ELSE BEGIN 
            temp = randomu(seed)*2.-1 ;-1<temp<1 
            angle = acos(temp) + branch_angle   ;acos(temp) varies between 0 and !pi          
          ENDELSE 
        ENDIF   
        x_dir = cos(angle) & y_dir = sin(angle) 
      ENDIF ELSE BEGIN 
         
      ;****************** 
      ;* Interaction with air 
      ;****************** 
      IF (impact EQ 2) THEN BEGIN ;interaction with air 
        temp=randomu(seed) 
        abs = (1.-air_abs(x_loc, y_loc))*air_abs_prob 
        trans = 1.-abs     
      IF (temp LE trans) THEN interact = 0 ;transmission 
        IF (temp GT trans) THEN interact = 1 ;absorption 
 
        IF (interact EQ 0) THEN BEGIN ;photon is transmitted 
        ENDIF ELSE BEGIN 
        IF (interact EQ 1) THEN BEGIN ;photon is absorbed 
          nflags(1,bin) = nflags(1,bin)+energy*abs 
          energy = energy - energy*abs ; - photon_energy 
          IF energy LT min_detect_energy THEN BEGIN  
            nflags(1,bin) = nflags(1,bin) + energy 
            flag = 2 
            GOTO, JUMP1 
          ENDIF 
        ENDIF  
     ENDELSE 
        x_dir = cos(angle) & y_dir = sin(angle)  
      ENDIF 
      ENDELSE 
      ENDELSE 
      n_steps = n_steps+1 
      IF n_steps GT max_n_steps THEN max_n_steps = n_steps 
       
      IF (mult_scatter EQ 0 AND bounce GE max_scatters) THEN BEGIN 
        flag = 1 
        nflags(0,bin) = nflags(0,bin)+energy 
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        GOTO, JUMP1 
      ENDIF  
        
JUMP1: IF flag NE 1 AND flag NE 2 AND (xloc_new GE x OR xloc_new LE 0 OR yloc_new LT 
ground_height OR yloc_new GE y) THEN BEGIN 
           ;Photons lost in space 
           flag = 3 ;leave while loop - start new pulse 
           nflags(2,bin) = nflags(2,bin) + energy 
       ENDIF 
      IF flag EQ 3 AND (yloc_new GE y AND xloc_new LE x_loc_orig+aperture_diam_pix/2. $  

AND xloc_new GE x_loc_orig-aperture_diam_pix/2.) THEN BEGIN 
 ;Project photon through atm at current heading & check if still within aperture diameter 
        xloc_new = xloc_new + (sensor_alt_m - workspace_ht_m)/tan(angle) 
        IF (xloc_new LE x_loc_orig+aperture_diam_pix/2. AND $  

xloc_new GE x_loc_orig-aperture_diam_pix/2.) THEN BEGIN 
           
          rts = 1 ;count photon as 'returned to sensor' 
          flag = 4 
   ;subtract from total exiting workspace but not rts 
          nflags(2,bin) = nflags(2,bin)-energy  
          nflags(3,bin) = nflags(3,bin)+energy 
   ;Add atmospheric travel time 
          dist_traveled_time = n_steps * time_step_ns + atm_travel_time  
          pulse_return2(*,bin) = $  

      [dist_traveled_time+pulse_init_time_steps, nflags(3,bin)] 
        ENDIF 
      ENDIF 
    ENDWHILE ;flag NE 0 
 
     bin = bin+1. 
     ;Track number of bounces per pulse bin 
     nbounces = [nbounces, bounce] 
   ENDWHILE ;bin LT npulse_bins 
   nflags_tot = nflags_tot + nflags 
 
  ;Find percentages of points lost  
  flag1_pct = total(nflags_tot(0,*))/(total_energy*npulses) 
  flag2_pct = total(nflags_tot(1,*))/(total_energy*npulses) 
  flag3_pct = total(nflags_tot(2,*))/(total_energy*npulses) 
  flag4_pct = total(nflags_tot(3,*))/(total_energy*npulses) 
  flag5_pct = total(nflags_tot(4,*))/(total_energy*npulses) 
 
  ;Sort pulse_return2 according to time of RTS 
  pulse_return2 = $  
  [pulse_return2(0,sort(pulse_return2(0,*))), pulse_return2(1,sort(pulse_return2(0,*)))] 
  pulse_return_tot(2*p:2*p+1,*) = pulse_return2 
 
  IF show EQ 1 THEN BEGIN 
    IF p mod nth_step EQ 0 THEN BEGIN 
      tvscl, byte(((1-hit_map)+(1-bark_map)+(1-leaf_map))*100) 
    ENDIF 
  ENDIF 
     
  IF p EQ 0 THEN BEGIN 
    WRITE_GIF, outdir+'hit_map_GIF_1st_Pulse_'+date+'.gif', $   

byte((hit_map+bark_map+leaf_map+(1-ground))*150) 
  ENDIF 
  ;Find average number of bounces per bin for each pulse 
  nbounces_pulse = $  
      [nbounces_pulse, float(total(nbounces))/float(n_elements(nbounces-1.))] 
ENDFOR ;p pulse 
 
index = indgen(npulses)   
 
;Delete rows containing only zeros 
non_zero = where(total(pulse_return_tot,1) NE 0) 
avg_waveform = [0.,0.] 
sampled_wf = [0.,0.] 
sampled_init = [0.,0.] 
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IF non_zero(0) NE -1 THEN BEGIN 
iplot, linestyle=6, xtitle='Time (ns)', ytitle='Intensity', $  
     view_TITLE = 'Avg Return (blue), Sampled Waveform;'+string(sample_rate_GHz)+ $ 
     ' GHz (black)', tickfontsize = 12 
;Sum returns to sensor occuring at same times for all pulses 
  times = pulse_return_tot(2*index,*) 
  intens_values = pulse_return_tot(2*index+1,*) 
  temp_time = MIN(times(WHERE(times NE 0))) ;find min non-zero time 
  min_time = temp_time & max_time = max(times) 
  time_axis = dblarr(ceil((max_time - min_time)/time_step_ns+5000)) 
  intens_tot = time_axis & intens_tot(*) = 0 
  t=0 
  WHILE temp_time GT 0 DO BEGIN 
    same_time = WHERE(float(times) eq float(temp_time)) 
    IF same_time(0) NE -1 then begin 
      intens_tot(t) = total(intens_values(same_time))/(n_elements(same_time)) 
      times(same_time) = 0 
    ENDIF 
    time_axis(t) = temp_time 
    t=t+1 
    temp_time = -1  
    pq = where(times NE 0) 
    IF pq(0) NE -1 THEN temp_time = MIN(times(pq)) 
  ENDWHILE 
 
   ;*********************** 
   ;* Match waveform to total energy 
   ;*********************** 
   intens_tot = (intens_tot/total(intens_tot))*total_energy*flag4_pct 
   avg_waveform = transpose([[time_axis],[intens_tot]]) 
   ;Get rid of zeros in array 
   avg_waveform = avg_waveform(*,where(total(avg_waveform,1) NE 0)) 
   
  ;Plot waveform 
  iplot, avg_waveform(0,*), avg_waveform(1,*), color = [0,255,255], /overplot 
  ;********************************************** 
  ;Sample waveform & initial pulse at sample rate 
  ;********************************************** 
  max_nsteps = ceil((max_time-min_time)*sample_rate_GHz 
  sampled_wf = dblarr(2*nrates, max_nsteps) 
  max_nsteps_init = ceil(pulse_length_ns*sample_rate_GHz 
  sampled_init = dblarr(2*nrates, max_nsteps_init) 
 
  ;Resample so that each bin contains one time step time_step_ns 
  nsteps = ceil((max_time-min_time)*sample_rate_GHz) 
  rintens = congrid(reform(avg_waveform(1,*)), nsteps, $   
                       /center)*(n_elements(avg_waveform(1,*))/float(nsteps)) 
  rtime = congrid(reform(avg_waveform(0,*)), nsteps, /center) 
     
   sampled_wf(rate*2+1,0:nsteps-1) = rintens 
   sampled_wf(rate*2,0:nsteps-1) = rtime 
   iplot, rtime, rintens, /overplot 
     
    nsteps_init = ceil(pulse_length_ns*sample_rate_GHz) 
    rintens_init = congrid(gaussian, nsteps_init, $  
                        /center)*(n_elements(gaussian)/float(nsteps)) 
    rtime_init = interpol(indgen(pulse_length_ns)+1,nsteps_init) 
     
    sampled_init(rate*2+1,0:nsteps_init-1) = rintens_init 
    sampled_init(rate*2,0:nsteps_init-1) = rtime_init 
ENDIF 
print, '% pts excessively scattered, absorbed, lost in space, too low initially:' 
print, flag1_pct, flag2_pct, flag3_pct, flag5_pct 
print, '% pts returned to sensor:', flag4_pct 
print, 'Ground refl, ground abs:', ground_refl, ground_abs 
print, 'Leaf refl, trans, abs:', leaf_refl, leaf_trans, leaf_abs 
 
;********************************************** 
;Create output files 
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;********************************************** 
WRITE_GIF, outdir+'hit_map_GIF_'+date+'.gif', $  

byte(((1-hit_map)+(1-bark_map)+(1-leaf_map))*100) 
openw, 1, hit_map_file 
writeu, 1, hit_map/max(hit_map) + bark_map/max(bark_map) + leaf_map/max(leaf_map) 
close, 1 
 
openw, 1, waveform_file 
printf, 1, 'Energy, time (ns); created from',npulses,' pulses.' 
printf, 1, 'total energy:', total(avg_waveform(1,*)) 
printf, 1, avg_waveform 
close, 1 
 
openw, 1, sampled_wf_file 
printf, 1, 'Created from',npulses,' pulses, sampled at', sample_rate_GHz, ' GHz' 
printf, 1, 'Total energy:',total(sampled_wf(1,*)) 
printf, 1, 'Energy, time (ns)' 
printf, 1, sampled_wf 
close, 1 
 
openw, 1, all_pulses_file 
  non_zero = where(total(pulse_return_tot,1) NE 0) 
  pulse_return_tot_out = [0.,0.] 
  IF non_zero(0) NE -1 THEN BEGIN 
    pulse_return_tot_out = $  

pulse_return_tot(*,non_zero(0):non_zero(n_elements(non_zero)-1)) 
  ENDIF 
  writeu, 1, pulse_return_tot_out 
close, 1 
 
openw, 1, gaussian_file 
printf, 1, 'Energy per sample' 
printf, 1, 'total energy:', total(gaussian) 
printf, 1, transpose(gaussian) 
close, 1 
 
openw, 1, sampled_gaussian_file 
printf, 1, 'Energy per sample' 
printf, 1, 'Sample rate GHz:', sample_rate_GHz 
printf, 1, 'total energy:', total(gaussian) 
printf, 1, [sampled_init(0,*), sampled_init(1,*)] 
close, 1 
 
openw, 1, metadata_file 
printf, 1, 'Date of input files:  ', datein 
printf, 1, 'Date of output files:  ', date 
IF mult_scatter EQ 1 THEN printf, 1, 'Multiple scattering allowed' 
IF mult_scatter EQ 0 THEN BEGIN 
  printf, 1, 'Number of scattering events restricted' 
  printf, 1, 'Maximum number of scattering events allowed:', max_scatters 
ENDIF 
printf, 1, 'Lidar parameters:' 
printf, 1, '     Laser Wavelength (nm):', wavelength_nm 
printf, 1, '     Pulse length (ns):', pulse_length_ns 
printf, 1, '     Beam angular spread (rad):', beam_spread_rad 
printf, 1, '     Sensor altitude (m):’, sensor_alt_m 
printf, 1, '     Transmitted pulse energy:', init_energy 
printf, 1, '     Minimal detection energy:', min_detect_energy 
printf, 1, '     Initial pulse angle (degress cc from horizontal):', angle_orig*180/!pi 
printf, 1, '     Initial pulse location (x,y) pixels:', x_loc_orig,',',y_loc_orig 
printf, 1, '' 
printf, 1, '     Centimeters per pixel:', cm_per_pixel 
printf, 1, '     Time step (ns):', time_step_ns 
printf, 1, '     Speed of light c (cm/s):', c_cm_per_s 
printf, 1, '     Speed of light c (cm/ns):', c_cm_per_ns 
printf, 1, '     Distance traveled per step (cm):',  dist_step_cm 
printf, 1, '     Distance traveled per step (pixels):', dist_step_pix 
printf, 1, '     Beam diameter (cm) at top of workspace:', beam_spread_top_cm 
printf, 1, '     Beam diameter (cm) on ground:', beam_width_ground_cm 
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printf, 1, '' 
printf, 1, 'Tree height (m):', tree_height_m 
printf, 1, 'Workspace dimensions (pixels, (x,y)):', x,',',y 
printf, 1, 'Workspace dimensions (meters, (x,y)):', $  
         cm_per_pixel*x/100.,',', cm_per_pixel*y/100. 
printf, 1, '' 
printf, 1, 'Bark probability:', bark_prob 
printf, 1, 'Leaf probability:', leaf_prob 
printf, 1, 'Air probability:', air_abs_prob 
printf, 1, 'Number of pulses:', npulses 
printf, 1, '' 
printf, 1, 'Leaf reflectance, transmittance, absorbance:' 
printf, 1, leaf_refl,', ', leaf_trans,', ', leaf_abs 
printf, 1, 'Bark reflectance, transmittance, absorbance:' 
printf, 1, bark_refl,', ', bark_trans,', ', bark_abs 
printf, 1, 'Ground reflectance, transmittance, absorbance:' 
printf, 1, ground_refl, string(1-1), ground_abs 
printf, 1, '' 
printf, 1, 'Distribution of points by fate (% of total):' 
printf, 1, '  Points exceeding maximum number of scatters allowed:', flag1_pct 
printf, 1, '  Points having energy lower than min detection threshold:', flag2_pct 
printf, 1, '  Points exiting the workspace, but not returning to the sensor:', flag3_pct 
printf, 1, '  Points returning to the sensor:', flag4_pct 
printf, 1, '  Points below min detection threshold before propagation:', flag5_pct 
printf, 1, '' 
printf, 1, 'number of bounces' 
printf, 1, transpose(nbounces) 
close, 1 
 
print, 'FINISHED' 
END 
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APPENDIX B.  PROSPECT LEAF REFLECTANCE MODEL 

;******************************************************** 
function prospect2_noGUI_fxn, n, cab, cw, cp, cc, deg, wl 
;************************************************************ 
; IDL version of the Prospect Leaf Reflectance Model 
; 
; Jacquemoud S., Ustin S.L., Verdebout J., Schmuck G., Andreoli G., 
; Hosgood B. (1996), Estimating leaf biochemistry using the PROSPECT 
; leaf optical properties model, Remote Sens. Environ., 56:194-202 
; 
; Jacquemoud S., Baret F. (1990), PROSPECT: a model of leaf optical 
; properties spectra, Remote Sens. Environ., 34:75-91. 
; 
; Glenn Newnham 09.03.00 
; last updated 14.04.00 
; amp 30 Jul 09 
;  
scrap = strarr(1) 
data = dblarr(7,421) 
wave = dblarr(421) 
refra = dblarr(421) 
ke = dblarr(421) 
kab = dblarr(421) 
kw = dblarr(421) 
kp = dblarr(421) 
kc = dblarr(421) 
k = dblarr(421) 
tau = dblarr(421) 
tav1 = dblarr(421) 
tav2 = dblarr(421) 
 
refl = fltarr(421) 
tran = fltarr(421) 
ref_tran = fltarr(2,421) 
modelled = fltarr(3,421) 
 
measw=findgen(421)*5+400 
 
;read in wavelength, leaf refractive index and specific absorption coefficients 
valeur='/Users/admin/Documents/prospect_idl/valeur2.txt' 
openr, 1, valeur 
readf, 1, scrap 
readf, 1, data 
 wave=data(0,*) 
 refra=data(1,*) 
 ke=data(2,*) 
 kab=data(3,*) 
 kw=data(4,*) 
 kp=data(5,*) 
 kc=data(6,*) 
close, 1 
 
iplot, fltarr(421), fltarr(421), xtitle='Wavelength (nm)', $ 
  ytitle='Reflectance / 1-Transmittance', view_TITLE = 'Leaf Reflectance'; Varying 
Parameter:  ';+param ;, $ 
mfile = ''  
 
;compute the total leaf absorption coefficient from biochemical components 
 k=ke+(cab*kab+cw*kw+cp*kp+cc*kc)/n 
 
;compute the total leaf transmission coefficient for leaf internal material 
tau = call_function('leaf',k) 
 
;find the average interface transmittance for isotropic light 
alpha = 90*(!pi/180) 
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tav1 = call_function('avg',refra,alpha) 
 
;find the average interface transmittance for the solid angle incident on the leaf 
surface 
alpha = deg*(!pi/180) 
tav2 = call_function('avg',refra ,alpha) 
 
;compute the reflectance and transmittance for a single layer 
;Allen et al, 1969 
;Jacquemoud and Baret, 1990 
x1=1-tav1 
x2=tav1^2*tau^2*(refra^2-tav1) 
x3=tav1^2*tau*refra^2 
x4=refra^4-tau^2*(refra^2-tav1)^2 
x5=tav2/tav1 
x6=x5*(tav1-1)+1-tav2 
r=x1+x2/x4 
t=x3/x4 
ra=x5*r+x6 
ta=x5*t 
 
;compute the reflectance and transmittance for n leaf layers 
;Stokes, 1862 
delta=(t^2-r^2-1)^2-4*r^2 
alfa=(1+r^2-t^2+sqrt(delta))/(2*r) 
beta=(1+r^2-t^2-sqrt(delta))/(2*r) 
 
va=(1+r^2-t^2+sqrt(delta))/(2*r) 
vb=sqrt(beta*(alfa-r)/(alfa*(beta-r))) 
 
s1=ra*(va*vb^(n-1)-va^(-1)*vb^(-(n-1))) $ 
  +(ta*t-ra*r)*(vb^(n-1)-vb^(-(n-1))) 
s2=ta*(va-va^(-1)) 
s3=va*vb^(n-1)-va^(-1)*vb^(-(n-1)) $ 
  -r*(vb^(n-1)-vb^(-(n-1))) 
 
refl=s1/s3 
tran=s2/s3 
 
step = 10 
color = [255-(step+2)*20, 255-(step+1)*10, step+80] 
iplot, measw, refl, /overplot, COLOR = color 
iplot, measw, 1-tran, /overplot, COLOR = color 
 
trani = reform(1-tran) 
 
;Print values to a text file 
text_file = '/Users/admin/Documents/prospect_idl/PROSPECT_output_'+systime()+'.csv' 
openw, 1, text_file 
printf, 1, 'PROSPECT parameters:' 
printf, 1, '  n =',n 
printf, 1, '  cab =', cab 
printf, 1, '  cw =', cw 
printf, 1, '  cp = ', cp 
printf, 1, '  cc = ', cc 
printf, 1, '  deg = ', deg 
printf, 1, '' 
printf, 1, 'Wavelength, Reflectance (x'+string(n_elements(param_array))+'), Transmittance 
(x'+string(n_elements(param_array))+'),' 
FOR j=0, 420 DO BEGIN 
  refls = string(refl, format = '(f10.7)') 
  trans = string(trani, format = '(f10.7)') 
  printf, 1, string(measw(j))+','+refls(j)+','+trans(j)  
ENDFOR 
close, 1 
 
band = where(measw EQ wl) 
IF band(0) EQ -1 THEN BEGIN 
  ;interpolate 
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  band2 = n_elements(where(measw lt wl)) 
  band1 = n_elements(where(measw lt wl))-1 
  refl_wl = ((wl-measw(band1))/(measw(band2)-measw(band1)))*(refl(band2)-
refl(band1))+refl(band1) 
  trani_wl = ((wl-measw(band1))/(measw(band2)-measw(band1)))*(trani(band2)-
trani(band1))+trani(band1) 
ENDIF ELSE BEGIN 
  refl_wl = refl(band) 
  trani_wl = trani(band) 
ENDELSE 
refl_tran_abs = [refl_wl, trani_wl, 1.-(refl_wl+(1.-trani_wl))] 
 
return, refl_tran_abs 
end 
 
;***************************************************************************** 
function leaf, k 
; 
; Transmission coefficient for the leaf internal material 
; Allen et al, 1969, eq.14 
; 
; Uses the NAG Fortran routine s13aaf 
; 
; Glenn Newnham 09.03.00 
; last updated 14.04.00 
; 
i=0 
x=dblarr(421) 
y=dblarr(421) 
exint = dblarr(421) 
tau = dblarr(421) 
deg = 0.0 
alpha = 0.0 
 
;compute transmission coefficient tau (Allen et al. 1969, eq.14) 
 
for i=0,420 do begin 
 
case 1 of 
 
  (k(i) le 0): tau(i)= 1 
 
    (k(i) gt 0) and (k(i) le 4): begin 
    x=(0.5*k(i))-1 
 
    y=(((((((((((((((-3.60311230482612224d-13 $ 
    *x+3.46348526554087424d-12)*x-2.99627399604128973d-11) $ 
        *x+2.57747807106988589d-10)*x-2.09330568435488303d-9) $ 
        *x+1.59501329936987818d-8)*x-1.13717900285428895d-7) $ 
        *x+7.55292885309152956d-7)*x-4.64980751480619431d-6) $ 
        *x+2.63830365675408129d-5)*x-1.37089870978830576d-4) $ 
        *x+6.47686503728103400d-4)*x-2.76060141343627983d-3) $ 
        *x+1.05306034687449505d-2)*x-3.57191348753631956d-2) $ 
        *x+1.07774527938978692d-1)*x-2.96997075145080963d-1 
 
        y=(y*x+8.64664716763387311d-1)*x+7.42047691268006429d-1 
        exint=y-alog(k(i)) 
    tau(i) = (1.0-k(i))*exp(-k(i))+k(i)^2*exint 
    end 
 
  (k(i) gt 4) and (k(i) lt 85): begin 
    x=14.5/(k(i)+3.25)-1 
 
    y=(((((((((((((((-1.62806570868460749d-12 $ 
        *x-8.95400579318284288d-13)*x-4.08352702838151578d-12) $ 
        *x-1.45132988248537498d-11)*x-8.35086918940757852d-11) $ 
        *x-2.13638678953766289d-10)*x-1.10302431467069770d-9) $ 
        *x-3.67128915633455484d-9)*x-1.66980544304104726d-8) $ 
        *x-6.11774386401295125d-8)*x-2.70306163610271497d-7) $ 
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        *x-1.05565006992891261d-6)*x-4.72090467203711484d-6) $ 
        *x-1.95076375089955937d-5)*x-9.16450482931221453d-5) $ 
        *x-4.05892130452128677d-4)*x-2.14213055000334718d-3 
 
        y=((y*x-1.06374875116569657d-2)*x-8.50699154984571871d-2)*x $ 
        +9.23755307807784058d-1 
    exint=exp(-k(i))*y/k(i) 
    tau(i) = (1-k(i))*exp(-k(i))+k(i)^2*exint 
    end 
 
  (k ge 85): tau(i) = (1-k(i))*exp(-k(i)) 
 
endcase 
 
endfor 
 
return, tau 
 
end 
 
 
;************************************************************************************ 
function avg, refra, alpha 
; 
; Evaluate the average transmittance across an interface between two dielectrics 
; for any solid angle of incidence 
; 
; Stern, 1964 
; Allen, 1973 
; 
; Glenn Newnham 09.03.00 
; last updated 14.04.00 
; 
a=0.0 
b=0.0 
ds=0.0 
b0=dblarr(421) 
b1=dblarr(421) 
b2=dblarr(421) 
ts=dblarr(421)  ;parallel polarised transmittance 
tp1=dblarr(421) 
tp2=dblarr(421) 
tp3=dblarr(421) 
tp4=dblarr(421) 
tp5=dblarr(421) 
tp=dblarr(421)  ;perpendicular polarised transmittance 
tav=dblarr(421) ;total transmittance for the solid angle of incidence 
 
;compute the single interface average transmittance for the solid angle of incidence 
a=((refra+1)^2)/2 
b=-(((refra^2)-1)^2)/4 
ds=sin(alpha) 
 
case 1 of 
 
  (alpha eq 0): tav=4*refra/(refra+1)^2 
 
  (alpha ne 0): begin 
    if (alpha eq !pi/2) then begin 
      b1=0 
    endif else begin 
      b1=sqrt((ds^2-(refra^2+1)/2)^2+b) 
    endelse 
 
    b2=ds^2-(refra^2+1)/2 
    b0=b1-b2 
 
    ts=(b^2/(6*b0^3)+(b/b0)-(b0/2))-(b^2/(6*a^3))-(b/a)+(a/2) 
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    tp1=-2*(refra^2)*(b0-a)/(refra^2+1)^2 
    tp2=-2*(refra^2)*(refra^2+1)*alog(b0/a)/(refra^2-1)^2 
    tp3=refra^2*(1/b0-1/a)/2 
    tp4=(16*refra^4*(refra^4+1))*alog((2*(refra^2+1)*b0-(refra^2-1)^2)/(2*(refra^2+1) $ 
      *a-(refra^2-1)^2))/((refra^2+1)^3*(refra^2-1)^2) 
    tp5=16*refra^6*(1/(2*(refra^2+1)*b0-(refra^2-1)^2)-1/(2*(refra^2+1) $ 
      *a-(refra^2-1)^2))/(refra^2+1)^3 
    tp=tp1+tp2+tp3+tp4+tp5 
 
    tav=(ts+tp)/(2*ds^2) 
    end 
endcase 
 
return, tav 
 
end 
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APPENDIX C.  IDL CODE FOR L-SYSTEM TREE MODEL 

;L_system_tree 
;***************************************************** 
;* Define the L_system 
;* 
;* V = { 
;*  1, 0 = generates a straight segment of length d 
;*  3 = [ = start a branch at an angle counterlockwise 'branch_angle'  
;*          degrees from current heading 
;*  4 = ] = end a branch and return to base of branch 
;*  5 = ( = start a branch at an angle clockwise 'branch_angle'  
;*          degrees from current heading 
;*  6 = ) = end a branch and return to base of branch 
;*   } 
;* P = { 
;*  0 -> string1 
;*  1 -> string2 
;*  [ -> [, ] -> ], ( -> (, ) -> ) 
;*   } 
;*  
;*  'axiom_orig' = axiom to start the L-system generation 
;* 
;*  'branch_angle' = angle turtle will turn when a branch is started 
;* 
;*  'ngens' = number of generations to grow 
;* 
;*  'length_orig', 'thick_orig' = original dimensions of a growth unit 
;* 
;*  'decrease_orig_length','decrease_orig_thick' = percentage decrease of the  
;*      growth unit dimensions per growth unit 
;* 
;*  'xdim','ydim' = dimensions of the tree growth space 
;* 
;*  'xloc_orig','yloc_orig' = location in space where tree starts growing  
;***************************************************** 
axiom_orig = 0 ;gen1 
ngens = 5 ;number of generations 
 
;0 -> string1 
string1 = string([1,3,0,4,1,5,0,6,0]) 
 
;1 -> string2 
string2 = string([1,1]) 
   
  branch_angle = 50 ;degrees 
  thick_orig = 30 
  length_orig = 8 
  decrease_orig_length = 0.02 ;percentage 
  decrease_orig_thick = 0.04 
     
  xdim = 600 & ydim = 600 
  xloc_orig = 200 & yloc_orig = 0 
  leaf_rad = 2. ;7 = 3.5 ;radius of circular leaf clumps 
  flat = 0 ;flat leaves - change to '1' to activate selection 
  circle = 1 ;0 ;circular leaf clumps 
   
  output_file = '/Users/admin/Documents/L_system_string_' 
   
  temp = systime() 
  month = strmid(temp,4,3) 
  day = strmid(temp, 8,2) 
  date = strtrim(day)+month 
  pos1 = strpos(output_file,'/', /Reverse_search) 
  dir = strmid(output_file, 0, pos1+1) 
  output_file_temp = dir+output_file +date+ '.dat  
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  wait = 0 ;number of seconds to pause for viewing between generations 
;***************************************************** 
 
;***************************************************** 
;*  Write information to metadata file 
;***************************************************** 
  openw, 1, output_file+date+'.txt' 
  printf, 1, 'Axiom:  ', strtrim(axiom_orig,1) 
  printf, 1, 'Number of generations:  ', strtrim(ngens,1) 
  printf, 1, 'Branch angle:  ', strtrim(branch_angle,1) 
  printf, 1, 'Original segment length:  ', strtrim(length_orig,1) 
  printf, 1, 'Original segment width:  ',strtrim(thick_orig,1) 
  printf, 1, 'Percent decrease length:  ', strtrim(decrease_orig_length,1) 
  printf, 1, 'Percent decrease thickness:  ', strtrim(decrease_orig_thick,1) 
  printf, 1, 'Percent decrease = decrease * thickness (or length) * age' 
  printf, 1, '' 
  printf, 1, 'IDL strings:' 
  printf, 1, strtrim(string1,1) 
  printf, 1, strtrim(string2,1) 
  printf, 1, '' 
  temp = string(string1) 
  opens = where(temp EQ 3) 
  closes = where(temp EQ 4) 
  opensr = where(temp EQ 5) 
  closesr = where(temp EQ 6) 
  IF opens(0) NE -1 THEN temp(opens) = '[' 
  IF closes(0) NE -1 THEN temp(closes) = ']' 
  IF opensr(0) NE -1 THEN temp(opensr) = '(' 
  IF closesr(0) NE -1 THEN temp(closesr) = ')' 
  temp = strtrim(temp, 1) ;remove leading spaces 
  printf, 1, '0 -> ', temp 
  temp = string(string2) 
  opens = where(temp EQ 3) 
  closes = where(temp EQ 4) 
  opensr = where(temp EQ 5) 
  closesr = where(temp EQ 6) 
  IF opens(0) NE -1 THEN temp(opens) = '[' 
  IF closes(0) NE -1 THEN temp(closes) = ']' 
  IF opensr(0) NE -1 THEN temp(opensr) = '(' 
  IF closesr(0) NE -1 THEN temp(closesr) = ')' 
  temp = strtrim(temp, 1) ;remove leading spaces 
  printf, 1, '1 -> ', temp 
  printf, 1, '' 
 
;***************************************************** 
;* Generate L-System Tree 
;***************************************************** 
FOR k1=0, ngens-1 DO BEGIN 
  ngen = k1+1 
  axiom = axiom_orig 
 
tree = 0 
IF axiom EQ 0 THEN BEGIN ;string1 
  tree = string1 ;gen2 
  FOR n=2, ngen DO BEGIN ;iterate through remaining number of generations 
  new_tree = 0 
    FOR j=0, n_elements(tree)-1 DO BEGIN 
      axiom = tree(j) 
      IF axiom EQ 0 THEN BEGIN 
        new_tree = [new_tree,string1] 
      ENDIF ELSE BEGIN  
        IF axiom EQ 1 THEN BEGIN 
          new_tree = [new_tree, string2] 
        ENDIF 
        IF axiom EQ 3 OR axiom EQ 4 OR axiom EQ 5 OR axiom EQ 6 THEN BEGIN 
          new_tree = [new_tree, axiom] 
        ENDIF 
      ENDELSE 
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    ENDFOR 
    tree = new_tree(1:n_elements(new_tree)-1) 
  ENDFOR 
ENDIF ELSE BEGIN  
IF axiom EQ 1 THEN BEGIN ;string2 
  tree = string2 ;gen2 
  FOR n=2, ngen DO BEGIN ;iterate through remaining number of generations 
  new_tree = 0 
    FOR j=0, n_elements(tree)-1 DO BEGIN 
      axiom = tree(j) 
      IF axiom EQ 0 THEN BEGIN 
        new_tree = [new_tree,string1] 
      ENDIF ELSE BEGIN  
        IF axiom EQ 1 THEN BEGIN 
          new_tree = [new_tree, string2] 
        ENDIF 
        IF (axiom EQ 3) OR (axiom EQ 4) OR axiom EQ 5 OR axiom EQ 6 THEN BEGIN 
          new_tree = [new_tree, axiom] 
        ENDIF 
      ENDELSE 
    ENDFOR 
    tree = new_tree 
  ENDFOR 
ENDIF 
ENDELSE 
 
;***************************************************** 
;* Write information to metadata file 
;***************************************************** 
  printf, 1, '' 
  printf, 1, 'Tree, generation:  ', strtrim(k1) 
  temp = string(tree) 
  opens = where(temp EQ 3) 
  closes = where(temp EQ 4) 
  opensr = where(temp EQ 5) 
  closesr = where(temp EQ 6) 
  IF opens(0) NE -1 THEN temp(opens) = '[' 
  IF closes(0) NE -1 THEN temp(closes) = ']' 
  IF opensr(0) NE -1 THEN temp(opensr) = '(' 
  IF closesr(0) NE -1 THEN temp(closesr) = ')' 
  temp = strtrim(temp, 1) ;remove leading spaces 
  printf, 1, temp 
 
;***************************************************** 
;* Render the tree 
;***************************************************** 
  xloc = xloc_orig & yloc = yloc_orig 
  thick = thick_orig ;Final thickness after n generations 
  length = length_orig ;Final branch length 
   
  ;Decrease the starting thickness and length based on generation -  
  ;   to create more 'reasistic' looking growth patterns 
  ;  Final generation is unaffected 
  pct_thick = thick_orig^(1./(ngens-k1)) 
  thick = pct_thick 
  pct_length = length_orig^(1./(ngens-k1)) 
  length = pct_length 
  decrease_length = decrease_orig_length^(1./(ngens-k1)) 
  decrease_thick = decrease_orig_thick^(1./(ngens-k1)) 
  decrease_thick = decrease_orig_thick 
  decrease_length = decrease_orig_length 
 
;Create arrays to store information about the tree - to be exported to LIDAR modeling 
program 
x = fltarr(xdim,ydim)  
stem = x 
branch = x 
xcoord = x & ycoord = x 
angle_map = x 
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slope = x 
apial_node = x ;locations where leaves will occur 
leaves = x & leaves(*,*) = 0 
air = x 
 
xloc_new = xloc & yloc_new = yloc 
branch_start = fltarr(2,3000) 
branch_age = intarr(3000) 
branch_ang = fltarr(3000) 
branch_diam_order = fltarr(3000) 
branch_orig_ang = fltarr(3000) 
branch_orig_ang(0) = branch_angle*!pi/180. 
order = 0 
ang = branch_angle * (!pi/180.) 
temp_ang = !pi/2. 
length = length_orig 
branch_diam = 0 
leaf_loc = [0.,0.] 
thick_orig2 = thick 
age = 0 
FOR k=0, n_elements(tree)-1 DO BEGIN 
  new_decrease_length = decrease_length*age 
  new_decrease_thick = decrease_thick 
  length = max([length - length*order*new_decrease_length,1]) 
  thick = max([thick - new_decrease_thick, 1]) 
  IF tree(k) EQ 0 OR tree(k) EQ 1 THEN BEGIN 
    age = age+1 
    xloc_new = xloc + length*cos(temp_ang) 
    yloc_new = yloc + length*sin(temp_ang) 
    xcoord(xloc_new, yloc_new) = xloc_new 
    ycoord(xloc_new, yloc_new) = yloc_new 
    ; Create stem between buds 
    startx = min([xloc, xloc_new]) 
    endx = max([xloc, xloc_new]) 
    run = xloc_new - xloc 
    rise = yloc_new - yloc 
    starty = min([yloc, yloc_new]) 
    endy = max([yloc, yloc_new]) 
 
    IF (fix(endx) - fix(startx)) GT 0 THEN BEGIN ;run GT 0 
       m = rise/run  
       b = yloc - m*xloc 
       pct_decrease_thick = new_decrease_thick/length 
       FOR i = startx, endx DO BEGIN 
          stem(i,m*i+b) = 1 
          angle_map(i,m*i+b) = atan(rise/run) 
          current_thickness = thick - thick*pct_decrease_thick*(i+1-xloc)  
          branch_diam = max([current_thickness*abs(sin(angle_map(i,m*i+b))), 0.])  
           
          ;Fill in branch thickness in y-direction 
          FOR j = max([0,m*i+b-branch_diam/2.]), min([m*i+b+branch_diam/2.,ydim]) DO 
BEGIN 
            branch(i,j) = 1 
            angle_map(i,j) = atan(((j-yloc)*pct_decrease_thick+rise)/run) 
          ENDFOR 
       ENDFOR 
       IF (fix(yloc_new) - fix(yloc)) GT 0 THEN BEGIN ;run GT 0 AND rise GT 0 
         FOR i = yloc, yloc_new DO BEGIN 
            stem((i-b)/m,i) = 1 
            current_thickness = thick - thick*pct_decrease_thick*(i+1-yloc) 
            branch_diam = max([current_thickness*abs(cos(angle_map((i-b)/m,i))), 0.])  
            ;Fill in branch thickness in x-direction 
            FOR j = (i-b)/m-branch_diam/2., min([(i-b)/m+branch_diam/2.,xdim]) DO BEGIN 
              branch(j,i) = 1 
              angle_map(j,i) = atan(length/((j-xloc)*pct_decrease_thick+run));(rise+(i-
yloc))) 
            ENDFOR 
         ENDFOR 
       ENDIF ;end if run GT 0 AND rise GT 0 
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      ENDIF ELSE BEGIN IF length GT 0 THEN BEGIN ;end if run GT 0; begin if rise GT 0 
        stem(xloc, starty:endy)=1 
        pct_decrease_thick = new_decrease_thick/length ;amount to decrease thickness per 
growth length 
        FOR i=starty, endy DO BEGIN 
          current_thickness = thick - thick*pct_decrease_thick*(i+1-yloc) 
          branch_diam = max([current_thickness*abs(cos(angle_map(xloc,i))),0.]) 
          FOR j=xloc-branch_diam/2., xloc+branch_diam/2. DO BEGIN 
            branch(j,i) = 1 
            IF j EQ xloc THEN angle_map(j,i) = !pi/2. 
            IF j NE xloc THEN angle_map(j,i) = !pi/2.+atan((j-
xloc)*pct_decrease_thick/length) 
          ENDFOR 
        ENDFOR 
        ENDIF 
      ENDELSE 
      xloc = xloc_new & yloc = yloc_new 
      branch_age(order) = age 
  ENDIF ;tree(m) eq 0 or 1 
   
  IF (tree(k) EQ 3 OR tree(k) EQ 5) THEN BEGIN ;start a branch 
    age = 0 
    branch_diam_order(order) = branch_diam 
    n1 = 2 
    IF tree(k) EQ 5 then n1 = 1 ;Start a branch in Clockwise direction from current 
heading 
    branch_ang(order) = temp_ang 
    temp_ang = temp_ang + ang*((-1)^n1) 
    branch_start(*,order) = [xloc_new, yloc_new] 
    order = order+1 
    branch_age(order) = age 
  ENDIF 
   
  IF (tree(k) EQ 4 OR tree(k) EQ 6) THEN BEGIN ;end a branch 
    order = order-1 
    apial_node(xloc,yloc) = 1 
    leaf_loc = [[leaf_loc], [xloc, yloc]] 
    xloc = branch_start(0,order) & yloc = branch_start(1,order) ;return to base of branch 
    age = branch_age(order) 
    temp_ang = branch_ang(order) 
    branch_diam = branch_diam_order(order) 
  ENDIF 
length = length_orig 
thick = min([branch_diam,thick_orig2]) 
ENDFOR ;number of elements of tree 
 
   WINDOW, 1, xsize=xdim, ysize=ydim, xpos=xdim+10, ypos=100 
   TVSCL, branch 
 
;***************************************************** 
;* Add circular leaves to apial nodes 
;***************************************************** 
  ;trim leading zeros from leaf_loc 
  leaf_loc = leaf_loc(*,1:n_elements(leaf_loc(0,*))-1)   
IF circle eq 1 THEN BEGIN 
  FOR m = 0, n_elements(leaf_loc(0,*))-1 DO BEGIN 
    xm = leaf_loc(0,m) 
    ym = leaf_loc(1,m) 
    FOR n = max([0,xm-(leaf_rad)]), min([xm+(leaf_rad)-1,xdim-1]) DO BEGIN 
       FOR p = max([0,ym-(leaf_rad)]), min([ym+(leaf_rad)-1,ydim-1]) DO BEGIN 
          distance = sqrt((xm-n)^2 + (ym-p)^2) 
          IF distance LE leaf_rad THEN leaves(n,p)=1 
       ENDFOR 
     ENDFOR    
   ENDFOR 
ENDIF 
 
;***************************************************** 
;* Add flat leaves to apial nodes 
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;***************************************************** 
IF flat eq 1 THEN BEGIN 
  FOR m = 0, n_elements(leaf_loc(0,*))-1 DO BEGIN 
    xm = leaf_loc(0,m) 
    ym = leaf_loc(1,m) 
    FOR n = max([0,xm-(leaf_rad)]), min([xm+(leaf_rad)-1,xdim-1]) DO BEGIN 
       p =  ym 
       distance = sqrt((xm-n)^2 + (ym-p)^2) 
       IF distance LT leaf_rad THEN leaves(n,p)=1 
     ENDFOR  
   ENDFOR 
ENDIF 
 
;***************************************************** 
;* Create .gif image file of the tree 
;***************************************************** 
  pos = strpos(output_file, '.') 
  short = STRMID(output_file, 0, pos)  
  IF k1 LE 9 THEN output_file_gif = short + string(k1,"(I1)") + '.gif' $ 
  ELSE output_file_gif = short + string(k1,"(I2)") + '.gif' 
  IF k1 LE 9 THEN output_file_gif2 = short + string(k1,"(I1)") + '_thick.gif' $ 
  ELSE output_file_gif2 = short + string(k1,"(I2)") + '_thick.gif'   
   
  ;Invert the color scheme - make background white 
  temp_stem = byte(stem+1) 
  temp_stem(where(temp_stem EQ 2)) = 0 
  temp_branch = byte(branch+1) 
  temp_branch(where(temp_branch EQ 2)) = 0 
     
  write_gif, dir+output_file_gif, temp_stem*255b 
  write_gif, dir+output_file_gif2, temp_branch*255b 
   
;***************************************************** 
;* Display image of the tree on the screen 
;*****************************************************  
   WINDOW, 2, xsize=xdim, ysize=ydim, xpos=xdim+10, ypos=100 
   TVSCL, branch+leaves 
   wait, wait 
   
ENDFOR ;k = number of generations 
 
;***************************************************** 
;* Create output files of the tree for use with LIDAR simulation 
;***************************************************** 
  pos = strpos(output_file, '.') 
  short = STRMID(output_file, 0, pos) 
  temp = systime() 
  month = strmid(temp,4,3) 
  day = strmid(temp, 8,2) 
  date = strtrim(day)+month 
  pos1 = strpos(output_file,'/', /Reverse_search) 
  dir = strmid(output_file, 0, pos1+1) 
  output_file_air = dir +'air_'+date+ '.dat' 
  output_file_bark = dir+'bark_'+date+ '.dat' 
  output_file_leaf = dir +'leaf_'+date+ '.dat' 
  output_file_xcoord = dir +'bud_xcoord_'+date+ '.dat' 
  output_file_ycoord = dir +'bud_ycoord_'+date+ '.dat' 
  output_file_angle_map = dir +'angle_map_'+date+ '.dat' 
   
  openw, 2, output_file_air 
  air(where(leaves+branch EQ 0)) = 1 
  writeu, 2, air 
  close, 2 
 
  openw, 2, output_file_bark 
  writeu, 2, branch 
  close, 2 
   
  openw, 2, output_file_leaf 
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  writeu, 2, leaves 
  close, 2 
   
  openw, 2, output_file_xcoord 
  writeu, 2, xcoord 
  close, 2 
 
  openw, 2, output_file_ycoord 
  writeu, 2, ycoord 
  close, 2 
 
  openw, 2, output_file_angle_map 
  writeu, 2, angle_map 
  close, 2 
 
close, 1 
print, 'FINISHED' 

END 
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