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ABSTRACT

This thesis solves a common issue in search applications. Typically, the user does not know
exactly which terms are used in a document he is searching for. Several attempts have been
made to overcome this issue by augmenting the document model and/or the query. In this
thesis, a probabilistic topic model augments the document model. Probabilistic document
models are formally introduced and inference methods are derived. It is shown how these
models can be used for information retrieval tasks and how a search application can be im-
plemented. A prototype was implemented and the implementation is tested and evaluated
based on benchmark corpora. The evaluation provides empirical evidence that probabilistic
document models improve the retrieval performance significantly, and shows which prepro-
cessing steps should be made before applying the model.

v



THIS PAGE INTENTIONALLY LEFT BLANK

vi



Contents

1 Introduction 1
1.1 Background and Problem Description . . . . . . . . . . . . . . . . . 1
1.2 Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Recommended Literature . . . . . . . . . . . . . . . . . . . . . . 3

2 Document Modeling 5
2.1 Finite Mixture Models . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Infinite Mixture Models . . . . . . . . . . . . . . . . . . . . . . 13

3 Application to Search 23
3.1 Combining Estimates from Different Markov Chains . . . . . . . . . . . 23
3.2 A Keyword-based Language Model . . . . . . . . . . . . . . . . . . 24
3.3 Ranking Documents . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Steps Towards Implementation. . . . . . . . . . . . . . . . . . . . 26

4 Implementation 27
4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Building the Index . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Implementation of the Search and Ranking Algorithm . . . . . . . . . . 31
4.4 Maintaining the Index . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Evaluation 35
5.1 Document Modeling Experiments . . . . . . . . . . . . . . . . . . 35
5.2 Information Retrieval Experiments . . . . . . . . . . . . . . . . . . 38

6 Conclusions and Recommendations 47
6.1 Discussion of Experimental Results . . . . . . . . . . . . . . . . . . 47
6.2 Hidden Markov Models for Topic Detection . . . . . . . . . . . . . . 48
6.3 Empirical Priors for HDP . . . . . . . . . . . . . . . . . . . . . . 49

A Inference and Learning Algorithms 51
A.1 Inference for LDA . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2 Inference and learning for HDP . . . . . . . . . . . . . . . . . . . 56

B Implementation Examples 61

vii



B.1 A MEX Function to Compute the PMF for the Number of Mixture Components
in a CRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.2 Matlab Code to Train HDP Model . . . . . . . . . . . . . . . . . . 62
B.3 Java Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 67

Referenced Authors 71

Initial Distribution List 73

viii



List of Figures

2.1 The basic LDA model in plate notation . . . . . . . . . . . . . . . . . . . 8
2.2 The fully generative model in plate notation . . . . . . . . . . . . . . . . 11
2.3 The Dirichlet process mixture model in plate notation . . . . . . . . . . . 15
2.4 The HDP model in plate notation . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Approximation of P (T = t) by continuous distributions . . . . . . . . . 19

5.1 Optimal number of topics for the CRANFIELD data set . . . . . . . . . . 37
5.2 Typical likelihood behavior of a corpus D for a Gibbs sampler . . . . . . 38
5.3 Mean average precision versus the number of topics . . . . . . . . . . . . 43
5.4 Precision and recall for different values of λ . . . . . . . . . . . . . . . . 44

ix



THIS PAGE INTENTIONALLY LEFT BLANK

x



List of Tables

5.1 Sample topics in Wikipedia . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Comparison of LDA and VSM . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Corpus statistics and baselines . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Effects of removing rare types . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Effects of stemming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6 Effects of combining several Markov chains . . . . . . . . . . . . . . . . 42
5.7 Optimal number of topics per corpus . . . . . . . . . . . . . . . . . . . . 42
5.8 Comparison of a LDA-based model and a HDP-based model . . . . . . . 45
5.9 Improvements over the baseline . . . . . . . . . . . . . . . . . . . . . . 45

xi



THIS PAGE INTENTIONALLY LEFT BLANK

xii



Executive Summary

Problem Description and Proposed Solution
The Software Hardware Asset Reuse Enterprise (SHARE) “provides a capability for

discovering, accessing, sharing, managing, and sustaining reusable assets for the Navy Sur-
face Domain’s programs.” (Johnson and Blais, 2008). The purpose of this project is to avoid
costly parallel development of system components and subcomponents.

SHARE consists of two physically separated parts, an asset library and a card catalog.
The asset library collects combat systems software and supporting artifacts. Many of the doc-
uments in the asset library are therefore classified. The card catalog is a Web-based interface
with unclassified descriptions of the assets that allows asset search. Besides the search, it pro-
vides functions as account registry, asset submission assistance, and asset retrieval request.
For the scope of this thesis only the search feature is of interest.

Typical implementations of search applications are based on keywords, and count the
number of occurrences of query terms in the documents and rank documents accordingly.
A keyword-based implementation, however, requires the searcher to know the terminology
used in the document that should be returned by the application. It is conceivable that similar
components are used in different domains, in which different terminologies are used. This
issue can be overcome by semantic search methods.

This thesis focuses on a small facet of semantic document modeling: probabilistic
topic models. These models group word types in a collection of documents, and the groups
are referred to as topics. As in the case of sets in fuzzy logic, a word type can belong to more
than one of these groups. Therefore, for each word type a probability distribution over all
topics can be defined.

Similarly, each document can be described by a probability distribution over all topics.
For the search application, this allows the augmentation of a user query by terms that belong
to the respective topics.

In practice, a search application that is based only on the topic model produces a
feature space that is too coarse. The result is that almost all documents in a collection are
returned by the application. This issue can be overcome by using the topic model as an aug-
mentation of a keyword-based algorithm. Both methods combined can improve the retrieval
performance significantly.

Explored Models and Implementation
In this thesis, the focus is on two different Bayesian document models: Latent Dirich-

let Allocation (LDA), introduced by Blei et al. (2003), and Hierarchical Dirichlet Processes
(HDP), described by Teh et al. (2006).

LDA is a parametric Bayesian model that specifies a prior probability distribution
on the topics that are covered in a document. These topics form a latent feature set that

xiii



describes a document collection better that just the words in a dictionary. Using this model,
it is possible to use keywords from a query to infer the most likely topics associated with the
query. The next step in the search process is then to find documents that cover these topics.
As mentioned, LDA is a parametric model. The parameter is the dimensionality of the topic
space, or simply the number of topics that should be used in the model. In LDA, this number
cannot be inferred from the data directly.

This issue is overcome by HDP, a nonparametric Bayesian model. In HDP, the number
of topics is an outcome of the model and not an input parameter. HDP requires greater
computational effort than LDA, which mitigates the advantage of not having to specify the
number of topics in advance.

Both document models were implemented separately and combined with a simple
keyword-based model. Implementation for LDA is entirely written in Java, using publicly
available libraries. The model for HDP is written in Matlab and the results are imported into
a Java-based application.

In addition, a search engine that can use either one of the introduced models was cre-
ated. In order to compare results from different models and parameter settings, an evaluation
program was also written. The whole application collection is available as a Java library,
which allows the implementation and testing of search applications. Currently, all applica-
tions are command-line-based, but it is an easy task to add a graphical user interface or attach
the applications to a web server (e.g., Apache Jakarta Tomcat 1).

Experimental Results and Recommendations
In the experiments, publicly available benchmark collections that are also used in

the information retrieval literature were used. The results show significant improvements
over the baseline. In addition to the comparison of the probabilistic topic model effects, the
preprocessing steps necessary to prepare the documents before they can be processed in a
document model for information retrieval were examined.

The examined preprocessing steps are stemming and removing of rare types. Stem-
ming reduces words in a document to a common stem (e.g., “running” becomes “run”). Rare
types are words that are used less than five times throughout the collection. Since LDA and
HDP try to discover correlations between words, such rare types can reduce the quality of the
probabilistic topic model. In the experiments, a positive effect of stemming was shown em-
pirically. Removing rare types, however, slightly hurt the retrieval performance. The reason
is that the topic model augments a keyword-based model, which is improved by rare types,
because rare types make documents more distinguishable.

The experimental results suggest that probabilistic topic models should be imple-
mented in the SHARE search application or other search applications for specialized do-
mains. The implemented search application works fast enough to be used in online ad hoc
retrieval tasks.

1The Apache Software Foundation. Apache Tomcat. http://tomcat.apache.org/. Online, last
accessed 26 August 2009
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CHAPTER 1:
Introduction

1.1 Background and Problem Description
The results of this thesis are thought to be applicable to the Software Hardware Asset

Reuse Enterprise (SHARE) database, a database that contains requirements documents de-
scribing systems and components for Navy systems development. Having an effective and
efficient search application for the database can contribute to avoiding expensive and risky
double developments of components and subcomponents.

The SHARE database “provides a capability for discovering, accessing, sharing, man-
aging, and sustaining reusable assets for the Navy Surface Domain’s programs” (Johnson and
Blais, 2008). SHARE consists of two physically separated parts, an asset library and a card
catalog. The asset library collects combat systems software and supporting artifacts. Many
of the documents in the asset library are therefore classified. The card catalog is a Web-based
interface with unclassified descriptions of the assets that allows asset search. Besides search,
it provides such functions as account registry, asset submission assistance, and asset retrieval
request. For the scope of this thesis only the search feature is of interest.

Documents in the card catalog have two properties that suggest improved performance
of semantic search over keyword search. First, the documents are human-generated free
text. Second, the documents come from a specialized domain with non-standard terminology
(Martell et al., 2008).

1.2 Methodology
The final goal of this thesis was to implement a prototype of a search engine that

augments keyword search by a probabilistic topic model. Two probabilistic topic models are
evaluated in detail: Latent Dirichlet Allocation (LDA) and Hierarchical Dirichlet Processes
(HDP).

In Chapter 2, the respective document models are motivated and formalized. Methods
for inference and learning are introduced and derived from the model.

Chapter 3 shows how a document model can be used to augment a standard keyword
search and how documents can be ranked according to their relevance for a query.
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In Chapter 4, implementation issues are discussed and important points of the imple-
mentation are illuminated. Chapter 5 describes the conducted experiments and their results.
All experiments are run on standard benchmark corpora that are used frequently in informa-
tion retrieval. The corpora are CRANFIELD, CISI, MEDLINE, and TIME MAGAZINE1. All
these corpora include a collection of documents, a collection of queries, and query-document
relations. This allows the evaluation of the performance of the implemented prototype di-
rectly. The sample documents consist of abstracts and short articles, which makes them
comparable to the SHARE card library.

Finally, Chapter 6 discusses the results and points to some directions for future re-
search.

Sample code for inference and learning on selected models is provided in the Ap-
pendix A of this thesis. It is entirely written in R (R Development Core Team, 2008), which
makes it very readable and easy to follow. Appendix B contains selected algorithms and
implementations from the actual prototype.

1.3 Results
The experiments shown in Chapter 5 provide evidence that probabilistic topic models

can improve a keyword search significantly. Additionally, it is shown that stemming (reducing
word tokens to their respective stem) does not hurt information retrieval performance, while
it reduces the storage demands of the computed index.

Retrieval performance is corpus dependent. For CRANFIELD, the maximum mean
average precision achieved in experiments was 45%, while on CISI only 24% was achieved.
This confirms findings by other authors who conducted retrieval experiments on the same
data sets.

Furthermore, the implemented prototype is functional and can be used either stand-
alone or embedded in a modular search engine as developed by Hawkins (2009). An LDA-
based index can be computed very fast, in a couple of minutes, on a corpus with more than
1,000 abstracts. An HDP-based model requires more time for the same task. It does, however,
not require the supply of as many fine-tuned model parameters as LDA does and had slightly
better retrieval performance in the experiments.

1All corpora are retrieved from:
http://ir.dcs.gla.ac.uk/resources/test_collections/
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1.4 Terminology
This thesis uses the standard terminology of document modeling and information re-

trieval. The basic unit in both fields is the word. This term can have two meanings: first, it
can describe an entry in a dictionary or vocabulary. A vocabulary is an indexed list of words,
which, in cases of ambiguity, will also refered to as word types or simply types. Second, a
word can denote an observation in a document. In terms of implementation, an observation
is often referred to as a word token or simply token. In terms of document modeling, the
terms word and observation are used interchangeably, as are the terms word and (word) type.
Where the term word is used, the context removes possible ambiguities.

1.5 Recommended Literature
A general introduction into the field of natural language processing (NLP) is given by

Jurafsky and Martin (2008). The authors emphasize the advantages of statistical models over
entirely rule based approaches to NLP. It is recommended to additionally look at the errata
page and compare the models in the book with those in the original papers.

Bayesian Inference and empirical Bayesian methods are well described by Carlin and
Louis (1996). The authors introduce the concept of Bayesian modeling and inference on
a very general level before they show specific applications. Different inference methods, in-
cluding Markov Chain Monte Carlo methods (MCMC) such as Gibbs sampling, are described
and compared. On top of that, the book contains a high-level introduction to parametric and
nonparametric Bayesian mixture models (e.g., Dirichlet processes). A broader discussion of
MCMC is given by Gamerman (1997). The author introduces Bayesian inference methods
based on MCMC and shows several examples of how they are applied in practice.

Finite mixture models are studied in in a non-Bayesian way by McLachlan and Bas-
ford (1987). The authors describe the history and development of mixture models as well as
many practical applications. Mixtures of normal components are in the focus of this book.
Titterington et al. (1985) provide a statistical analysis of finite mixture models with compo-
nents from different parametric families and compare Bayesian and non-Bayesian inference
methods. Several tables provide an overview describing the cases in which a particular model
should be applied and which inference methods are suitable.

Latent Dirichlet Allocation (LDA) is formally introduced by Blei et al. (2003). The
authors give an overview of how LDA arises naturally as an extension of finite mixture models
and give methods for inference and parameter estimation applied to document modeling. This

3



basic model has been extended in different ways that will be discussed in Chapter 2.
Dirichlet processes were formulated by Ferguson (1973). These stochastic processes

represent a nonparametric Bayesian approach to stochastic modeling. The author proves sev-
eral properties of Dirichlet processes and also shows how these models can be applied to
known nonparametric problems. Antoniak (1974) shows how mixtures of Dirichlet processes
can be formalized and applied in practice. Dirichlet processes are the basis for hierarchical
Dirichlet processes, which are formally introduced by Teh et al. (2006). Section 2.2 shows
how these can be applied to document modeling. To get a broader understanding of Dirich-
let processes and other nonparametric Bayesian methods, the reader is referred to Ghosh
and Ramamoorthi (2003). For a deeper discussion of the related measure-theoretic issues,
(Billingsley, 1986) is recommended.

4



CHAPTER 2:
Document Modeling

Probabilistic topic models attempt to capture latent structure in documents. Each word
in a document is assumed to come from a hidden (latent) topic, and probabilistic topic models
assign each word to the proper topic. These latent topic assignments produce document
models that have a high likelihood to generate a given corpus. For the information retrieval
task, however, these document models need to prove that they indeed lead to better retrieval
performance. This will be discussed in Chapter 5.

In all research that is presented in this thesis, a topic is considered to be a multinomial
distribution over a vocabulary V . This allows the treatment of the problem of topic discovery
as a parameter estimation problem. The cognitive notion of a topic is not within the scope of
this thesis.

In the following, unless stated otherwise, we assume that words in a document have
the exchangeability property (Carlin and Louis, 1996). That is, the document “do not panic”
is produced with exactly the same probability as “not do panic” or “panic not do.” More
formally:

Definition 2.0.1. An infinite sequence of random variables X1, . . . , Xn, . . . is said to be ex-
changeable, if for all n > 1: P (X1, . . . , Xn) = P (Xπ(1), . . . , Xπ(n)), ∀π ∈ S(n) in which
S(n) is the group of permutations of 1, . . . , n.

Note. If X1, . . . , Xn, . . . are i.i.d, they are also exchangeable, while the converse is not true
in general.

A simplistic approach to document modeling is provided by Nigam et al. (2000), in
which every document is represented as a mixture of unigrams. That is, every document
covers exactly one topic, whereas different documents can share the same topic. This model
will not be discussed in further detail.

2.1 Finite Mixture Models
A mixture of unigrams model has the shortcoming that the probability of a word oc-

curring in a document is not well explained by a single parametric distribution. A mixture
model attempts to fit to the document a model that consists of a mixture of probability distri-
butions, which are conditioned on a latent variable space.
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A very early topic model was introduced by Deerwester et al. (1990) and called “La-
tent Semantic Indexing.” For topic discovery, Deerwester et al. use singular value decom-
position (SVD) on the word-document co-occurrence matrix. Although this model has been
applied successfully to information retrieval and language modeling tasks, it does not have
a statistical foundation and can therefore not be seen as a probabilistic topic model. For a
closer discussion of this model and its shortcomings, see Hofmann (1999).

In finite mixture models, each observation x is thought to be distributed with density
f(x|φ, θ) =

∑K
k=1 θkfk(x|φ

(k)) in which k is the index of a mixture component, φ(k) is its
parameter set, fk(·|φ(k)) its density function determining the distribution, and θ a vector of
mixing probabilities that determines the proportions of densities in the mixture density. This
requires θ to add up to unity,

∑K
k=1 θk = 1. θ is therefore the parameter of a multinomial

distribution (the mixing distribution) (Carlin and Louis, 1996). A general introduction to
mixture models is given by McLachlan and Basford (1987).

Unfortunately, it is not trivial to estimate the number of mixture components K in a
mixture model. In the case of creating topic models, too many components would result in
overfitting, whereas too few components would lead into few very general topics that cannot
be used for applications, such as search, in a reasonable way. Furthermore, the additional
variability introduced by adding a mixture component can also be achieved by increasing
the variance in one of the components. Griffiths and Steyvers (2004) suggest a greedy hill-
climbing algorithm to maximize P (corpus|K). This only works if the variability for each
component is known in advance or at least assumed. Furthermore, if the number of com-
ponents K is fixed in advance or parameters are shared among all components, this leads to
problems in computing the posterior and predictive distributions (Carlin and Louis, 1996).

2.1.1 Probabilistic Latent Semantic Analysis

For the special case of a finite mixture model, in which fk = f is the probability mass
function of a multinomial distribution, with parameters φ(z) and topic index z, this model
represents “Probabilistic Latent Semantic Indexing” (pLSI), a probabilistic topic model in-
troduced by Hofmann (1999).

The probability of an observation in pLSI is then

P (wi) =
T∑
j=1

P (wi|zi = j)P (zi = j),

in which zi denotes the topic of the ith word token (wi) and T the number of topics. The

6



model generating process in the pLSI model looks as follows:
• pick a document d from the corpus with probability P (d)

• draw a topic z from the distribution θ(d), the distribution over topics in document
d

• draw a word w from the distribution φ(z), the distribution over words given topic
z.

The joint probability model for words and documents is then P (w, d) = P (w|d)P (d) in
which P (w|d) =

∑T
j=1 P (w|zj)P (zj|d) =

∑T
j=1 φ

(zj)
w θ

(d)
zj , where zj is the latent variable

(Hofmann, 1999). However, pLSI does not specify how the mixture distributions θ(d) are
generated. Therefore, it cannot be seen as a generative model for new documents.

2.1.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is another variant of a finite mixture model and a
Bayesian extension of pLSI. LDA was first described by Blei et al. (2003) and is based on
pLSI.

The advantage of LDA versus pLSI is that it models how the mixing proportions θ(d)

for each document d are generated. The main idea is to treat these as random draws from a
Dirichlet distribution. That is, θ(d) ∼ Dirichlet(α1, . . . , αT ), in which αj is the concentration
parameter for the jth topic. In Bayesian statistic, the Dirichlet distribution represents the con-
jugate prior distribution for the multinomial distribution. The document generating process
changes therefore in the following way:

1. Choose number N to be the number of slots in the document. Each slot will be
filled with exactly one word.

2. Choose θ ∼ Dirichlet(α), the distribution over topics for document d.
3. For each slot,

(a) choose a topic zn ∼ Multinomial(θ(d)),
(b) choose a word wn by sampling from p(wn|zn), which is the znth column in

the matrix φ.
Figure 2.1 shows the model in plate notation (Blei et al., 2003). The parameters have the
following meanings:

• α is the parameter for the Dirichlet distribution used as a prior for the topic distri-
butions
• θ ∼ Dirichlet(α) is the probability distribution over topics for a given document

(also called a multinomial distribution)
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Figure 2.1: The basic LDA model in plate notation (after: Blei et al., 2003)

• M represents the number of documents in the corpus.
• N ∼ Poisson(ξ) is a random number representing the number of words in a given

document.
• z ∼ Multinomial(θ) represents the topic of a particular slot in the document.
• φ is the set of distributions over words, with one distribution for each topic.
• w is the word chosen for a particular slot in a particular document, determined by
z and φ.

Obviously, documents are not generated in this manner. Modeling the document generating
process this way, however, allows us the use of Bayesian inference methods to find groups of
words that form a topic.

Formalization of the LDA model

The density of a K-dimensional Dirichlet random variable θ with
∑K

k=1 θk = 1 and
for all k = 1, . . . , K : θk ≥ 0 is defined as:

f(θ|α) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
k (2.1)

in which αk > 0, ∀k = 1, . . . , K, and Γ(·) is the standard gamma function (Ferguson, 1973).
Assuming that the parameters α and φ from Figure 2.1 are known, the joint distribu-

tion of a topic mixture θ, a sequence of topic labels z, and a sequence of N words w is given
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by

f(θ, z,w|α,φ) = f(θ|α)
N∏
n=1

p(z|θ)p(wn|z,φ) = f(θ|α)
V∏
v=1

(p(z|θ)p(wv|z,φ))nwv ,

(2.2)
in which p(zn = i|θ) = θi and nwv is the number of times word wv appears in the document.
The parameter α is not written in bold letters, because we assume it to be constant, that is,
α1 = . . . = αT = α. Doing this leads to a symmetric Dirichlet distribution and an exchange-
able (see: Definition 2.0.1) stochastic process. The marginal distribution of a document is
then obtained by integrating over θ and summing over all z (Blei et al., 2003):

p(w|α,φ) =

∫
f(θ|α)

N∏
n=1

∑
z

p(z|θ)p(wn|z,φ)dθ (2.3)

=

∫
f(θ|α)

V∏
v=1

(∑
z

p(z|θ)p(wv|z,φ)

)nwv

dθ. (2.4)

This allows us to express the marginal distribution of a corpus D as the product over the
marginal distributions of all documents, since all θ(d) are independent draws from the same
Dirichlet prior:

p(D|α,φ) =
M∏
d=1

∫
f(θ|α)

Nd∏
n=1

∑
z

p(z|θ)p(wn|z,φ)dθ

=
M∏
d=1

∫
f(θ|α)

V∏
v=1

(∑
z

p(z|θ)p(wv|z,φ)

)nd,wv

dθ.

Inference

The goal is to compute the posterior distribution of the hidden variables θ and z given
a document and the model parameters (Blei et al., 2003):

p(θ, z|w, α,φ) =
p(θ, z,w|α,φ)

p(w|α,φ)

Blei et al. (2003) show that the computation of this distribution is intractable. Therefore they
use a method that is called variational inference to get around this issue. For our experiments,
we used a stochastic simulation method called Gibbs sampling, which is explained in Sec-
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tion 2.1.3. Thus, the variational inference method will not be explained in any detail. For
further discussion and an implementation in the LDA context, see Blei et al. (2003).

Another approach to inference in the LDA model is Expectation Propagation (Minka
and Lafferty, 2002). This algorithm approximates integrals over functions that factor into
simple terms with the general form

∫
p(θ)

∏N
i=1 tw(θ)nwdθ. Equation 2.4 satisfies this con-

dition with tw(θ) =
∑

z p(z|θ)p(w|z,φ). In order to apply Expectation Propagation, the
terms tw have to be approximated by terms with product form t̃w = sw

∏
z θ

βw,z
z . This expres-

sion resembles a Dirichlet distribution with parameters βw,z as Minka and Lafferty (2002)
point out. An approximation to the posterior in Equation 2.4 is therefore given by

q(θ) ∝ f(θ|α)
∏
w

t̃w(θ)nw = f(θ|γ),

in which γz = αz +
∑

w nwβw,z and f(·|·) denotes the Dirichlet density. The Expectation
Propagation algorithm then performs an iterative optimization of the auxiliary parameters to
compute the best approximation to the true posterior distribution function. A sample imple-
mentation of the algorithm using the R (R Development Core Team, 2008) environment is
provided in Appendix A.1.1.

2.1.3 LDA with Random Word Distribution

Griffiths and Steyvers (2004, 2006) introduce an extension of the basic LDA model,
which is also discussed by Blei et al. (2003). In this model, the distribution over words
specified by a topic is not known a priori but thought as random with a Dirichlet density.
Thus, they pursue a fuller Bayesian approach, which is also fully generative. Figure 2.2
shows the model in plate notation. Instead of having a multinomial distribution φ(z) for each
topic as a model parameter, this distribution is now a random variable following a symmetric
Dirichlet distribution with parameter β (Griffiths and Steyvers, 2006).

Formalization of the Extended Model

Under these assumptions and by setting β1 = . . . = βV = β, in which V is the size of
the vocabulary, and again α1 = . . . = αT = α, the updated joint density function is:

f(θ,φ(z),w, z|α, β) = f(θ|α)
N∏
n=1

p(zn|θ)p(wn|zn,φ(zn))f(φ(zn)|β).

10
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Figure 2.2: The fully generative model in plate notation (after: Griffiths and Steyvers, 2006)

Integrating out θ and φ separately yields

p(w|z, β) =
I∏
i=1

p(wi|zi, β) =
T∏
j=1

I∏
i=1

p(wi|zi = j, β)

=
T∏
j=1

∫
Φ

I∏
i=1

p(wi|zi = j, φ)f(φ|β)dφ

=
T∏
j=1

∫
Φ

I∏
i=1

φδ(zi=j)
wi

Γ(V β)

Γ(β)V

V∏
v=1

φβ−1
v dφ

=
T∏
j=1

∫
Φ

V∏
v=1

φ
n

(v)
j
v

Γ(V β)

Γ(β)V

V∏
v=1

φβ−1
v dφ

=

(
Γ(V β)

Γ(β)V

)T T∏
j=1

∫
Φ

V∏
v=1

φ
β−1+n

(v)
j

v dφ.

The expression inside the integral is proportional to a Dirichlet distribution with parameters

β−1+n
(v)
j . The normalizing constant is thus

Γ(n
(·)
j +V β)QV

v=1 Γ(n
(v)
j +β)

and therefore the final expression

can be simplified to

p(w|z, β) =

(
Γ(V β)

Γ(β)V

)T T∏
j=1

∏V
v=1 Γ(n

(v)
j + β)

Γ(n
(·)
j + V β)

,
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in which n(v)
j is the number of times topic j was assigned to word v and n(·)

j is the number of
times topic j was assigned in total. The total probability of a topic sequence z is then

p(z|α) =
D∏
d=1

∫
Θ

p(z(d)|θ, α)f(θ, α)dθ

=
D∏
d=1

∫
Θ

T∏
j=1

θ
n

(d)
j

j

Γ(Tα)

Γ(α)T

T∏
j=1

θα−1
j dθ

=

(
Γ(Tα)

Γ(α)T

)D D∏
d=1

∫
Θ

T∏
j=1

θ
α−1+n

(d)
j

j dθ

=

(
Γ(Tα)

Γ(α)T

)D D∏
d=1

∏
j Γ(n

(d)
j + α)

Γ(n
(d)
· + Tα)

,

in which n(d)
j is the number of times topic j was assigned to a word in document d and n(d)

· is
the number of words in document d (Griffiths and Steyvers, 2004).

Inference

The posterior probability of topics given a corpus is computed as

p(z|w, α, β) =
p(w, z|α, β)∑
z p(w, z|α, β)

, (2.5)

which is unfortunately intractable (Blei et al., 2003). As Griffiths and Steyvers (2004) show
experimentally, the best way to estimate p(z|w) is to use Gibbs sampling, a Markov Chain
Monte Carlo Method (MCMC). These methods are discussed in Gamerman (1997) and Carlin
and Louis (1996) and formally introduced by Geman and Geman (1990).

Gibbs sampling does not directly compute the posterior probability distribution but
returns samples from the true posterior distribution after convergence. From these samples
the actual distribution can then be estimated. After randomly assigning a topic to each word
in the corpus (resulting in a vector z(0)), the algorithm works as follows:

Draw z
(1)
1 ∼ p(z1 = j|z(0)

2 , . . . , z
(0)
I ),

draw z
(1)
2 ∼ p(z2 = j|z(1)

1 , z
(0)
3 , . . . , z

(0)
I ),

...

draw z
(1)
I ∼ p(zI = j|z(1)

1 , . . . , z
(1)
I−1),
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until convergence of the algorithm. The sampling distribution p has the following form (Grif-
fiths and Steyvers, 2004):

p(zi = j|z−i,w, α, β) ∝
n

(wi)
−i,j + β

n
(·)
−i,j + V β

n
(di)
−i,j + α

n
(di)
−i,· + Tα

, (2.6)

in which n(·)
−i,j is the number of times topic j was assigned to a word not including the current

assignment. Later, a derivation for this full conditional probability mass function is provided.
Appendix A.1.2 shows an implementation of a Gibbs sampling algorithm. It is very useful
for showing the concept of Gibbs sampling to a reader who knows to read R source code.
However, for practical purposes the execution is too slow.

The model parameters θ(d) and φ(z) can be obtained by the transformations

φ̂
(w)
j =

n
(w)
j + β

n
(·)
j + V β

and θ̂
(d)
j =

n
(d)
j + α

n
(d)
· + Tα

. (2.7)

This is Laplace smoothing (Zhai and Lafferty, 2004) on the samples. Since exchangeability
(see: Definition 2.0.1) not only applies to the observations in a document, but also to the
obtained topic distributions, model averaging cannot be applied and each estimate φ̂ and θ̂ is
unique for the sample.

2.2 Infinite Mixture Models
Using heuristics or greedy algorithms to estimate the number of mixture components

is unsatisfying, because it causes additional computational effort. It makes sense to treat
the number of components as a function of the number of observations. This leads to a
non-parametric view, in which the number of parameters grows with the data. The question
becomes whether the LDA model can be extended in a non-parametric way. This requires a
prior distribution different than the Dirichlet distribution, which is fixed in its dimensionality.
Furthermore, this prior distribution should not come from a parametric family, but be a ran-
dom measure on the space of all probability distributions on the word space. Additionally, it
should be possible to apply inference methods on the posterior distribution.

2.2.1 Dirichlet Processes

For the purposes of topic modeling, it is sufficient to obtain discrete distributions. A
model that provides the desired properties is the Dirichlet process. It was proposed by Fer-
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guson (1973). Measures drawn from a Dirichlet process are discrete with probability 1; the
process therefore defines a non-parametric prior distribution on the space of discrete distri-
butions. The Dirichlet process can be defined in several ways. For the purpose of document
modeling, three are of interest. First, the Dirichlet process arises as the model described by
a stick-breaking construction. Second, it can be defined as a distribution over partitions of a
measurable space by the Chinese Restaurant Process. And third, it turns out to be the limiting
distribution as the number of mixture components of a finite mixture model increases and
approaches infinity. All three views of the model are provided in Teh et al. (2006) and will
be restated now.

The stick-breaking construction is a metaphor that describes how a draw from a
Dirichlet process can be obtained. Let G0 denote an arbitrary, not necessarily discrete, ran-
dom measure and α0 > 0 a real number. Define independent sequences of i.i.d. random
variables (π′k)

∞
k=1 and (φk)

∞
k=1 such that π′k|α0, G0 ∼ Beta(1, α0) and φk|α0, G0 ∼ G0. Fur-

ther define πk = π′k
∏k−1

l=1 (1 − π′l). The sequence π = (πk)
∞
k=1 adds up to 1 with probability

1. It thus defines a random probability measure on the natural numbers. The random measure
G is then obtained as G =

∑∞
k=1 πkδφk

, in which δx is an atomic measure giving mass 1 to
the point x. It can be shown that G ∼ DP (G0, α0) (Teh et al., 2006).

The Chinese Restaurant Process (CRP), derived by Pitman (2006), represents another
view of the Dirichlet process. Imagine a restaurant with infinitely many tables. When the first
customer arrives, he will be assigned to the first table and choose the dish for that table from a
menu. In terms of the Dirichlet process, that means that a sample φ1 ∼ G0 is drawn from the
base distribution and assigned as the parameter for the first observation. The second customer
to arrive will sit at the first table with probability 1

1+α0
or take a new table with probability

α0

1+α0
. If he joins the first customer, he will have the same dish, meaning getting the same

parameter assigned. If he gets a new table, he will generate a new dish (φ2). In general,
the probability of sitting at an already populated table is p(θn = φi|θ1, . . . , θn−1) = ni

n−1+α0
,

the ratio of the number of customers sitting on that table and the number of customers in
the restaurant. The concentration parameter α0 influences how often a new table is chosen
and therefore serves as an innovation parameter. The “tables” form a partition of the sample
space and the described process is equivalent to a Dirichlet process with base measure G0

and concentration parameter α0. The discreteness of the Chinese Restaurant Process follows
from the countability of the tables.

The last view of the Dirichlet process discussed here is that of the infinite limit of a
finite mixture model. Consider the LDA model described earlier. If one increases the number
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of mixture components and defines the Dirichlet parameter as α = α0

K
then, as K →∞, LDA

approaches a Dirichlet process. This is shown in Teh et al. (2006).

2.2.2 Hierarchical Dirichlet Processes

For the task of document modeling, each document is thought to be generated by a
Dirichlet process. In this model, G0 is the base measure on the word simplex. For conve-
nience, this should be a Dirichlet distribution, resulting in a unimodal distribution over the
space of multinomial distributions over the vocabulary. This model is very similar to the LDA
model. The Dirichlet process G then represents the base measure.

Dirichlet Process Mixtures

~����
xi
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θi

����
G

����
G0

����
α0
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@
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Figure 2.3: The Dirichlet process mixture model in plate notation (after: Teh et al., 2006)

Dirichlet Process mixture models were introduced formally by Antoniak (1974). Fig-
ure 2.3 shows a Dirichlet Process mixture model in plate notation. G0 is the base measure,
e.g., a Dirichlet distribution with parameter λ, α0 the concentration parameter, and G the
Dirichlet process prior. θi ∼ G0 is then the multinomial distribution over words that belongs
to observation xi. Because of the discreteness of the Dirichlet process, it is very likely that
many observations are generated by the same multinomial distribution, which is interpreted
as belonging to the same topic. However, the Dirichlet process mixture only allows the gen-
eration of a single document. It now seems appealing to allow each document to be generated
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by a draw from the Dirichlet Process itself, that is, instead of having a single Dirichlet Pro-
cess prior G, one has G1, . . . , GM for the M documents in the corpus, which are independent
given G0.

Hierarchical Approach

Having a Dirichlet Process prior for each document under the Dirichlet Process mix-
ture model directly leads to a problem. SinceG0 is a continuous measure,Gi andGj for i 6= j

have no atoms in common with probability one (Teh et al., 2006). This means that topics are
generated at the document level and not shared among the documents as desired.

One solution to this issue is to force G0 to be a discrete measure, but that would be
too restrictive. On the other hand, it is a well known fact that a Dirichlet Process generates
discrete measures with probability one (Ferguson, 1973). Therefore, the proposed (Teh et al.,
2006) procedure is that G0 is generated by a Dirichlet Process itself. G0 is then a discrete
and nonparametric measure on the multinomial distributions over the word simplex and there
is positive probability for each topic (distributed according to G0) to appear in any of the
documents. The resulting model is presented in Figure 2.4. Teh et al. (2006) refer to this
setting as the Chinese Restaurant Franchise. The metaphor is as follows: There is a number
of restaurants; each has an infinite number of tables. All restaurants serve dishes from a
global menu. When the first customer arrives, he will occupy the first table and the first dish
is generated. Once it is generated, it will be on the global menu and therefore be available
in all restaurants. The second customer in the same restaurant joins the first with probability

1
1+α0

having the same dish or sits at a new table with probability α0

1+α0
. If he sits at a new

table, he will have the same dish as customer 1 with probability 1
1+γ

and a new dish will be
created with probability γ

1+γ
. In general, if a new table is occupied, it will have an already

existing dish assigned with probability proportional to the number of tables serving the same
dish and a new dish with probability proportional to the concentration parameter γ.

For the document modeling task, dishes are associated with topics, which are drawn
from the base measureH and shared among all documents. This nonparametric setting allows
for a potentially infinite number of topics; the actual number can be learned from the data
directly. Since the number of topics now is determined by a stochastic process, it makes
sense to derive a probability distribution.

This can be done in two steps. First, it is necessary to obtain a probability distribution
for the number of occupied tables (used topics) in a restaurant (document). Let K(n) denote
a Bernoulli random variable that takes the value of 1 if the nth word in a document generates
a new topic in the document, or, correspondingly, if the nth customer occupies a new table
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Figure 2.4: The HDP model in plate notation (after: Teh et al., 2006)

in the restaurant. That is, P (K(n) = 1) = α0

n−1+α0
. Let X(N) denote the number of topics

used in a document withN words. ThenX(N) =
∑N

n=1 K(n). Now derive an expression for
P (X(N) = k). For the caseN = 1 this is trivial. ForN = 2, the probability P (X(2) = 1) =

1 · 1
1+α0

and P (X(2) = 2) = 1 · α0

1+α0
. For N = 3, the expressions become a little bit more

complex: P (X(3) = 1) = 1 · 1
1+α0

· 2
2+α0

, P (X(3) = 2) = 3α0

(1+α0)(2+α0)
and P (X(3) = 3) =

1 · α0

1+α0
· α0

2+α0
=

α2
0

(1+α0)(2+α0)
. For arbitrary N and k, P (X(N) = k) = s(N, k)αk0

Γ(α0)
Γ(α0+N)

,
in which s(·, ·) denote the unsigned Stirling numbers of first kind (Teh et al., 2006). This
expression, however, cannot be computed for large N , because both, the Stirling numbers
and the evaluated Gamma function exceed machine precision. Therefore, a recursive formula
is preferred:

P (X(N) = k) =
1

N − 1 + α0

(α0P (X(N−1) = k−1)+(N−1)P (X(N−1) = k)) (2.8)
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In Equation 2.8, the relation to the Stirling numbers of the first kind can be seen easily using
the recurrence equation s(N, k) = s(N − 1, k − 1) + (N − 1)s(N − 1, k) with s(1, 1) = 1

for N, k > 0 and N ≥ k, otherwise s(N, k) = 0. This recurrence relation generates a
triangular matrix that looks very similar to the Pascal triangle. Appendix B.1 presents an
implementation of this algorithm for direct use in Matlab or Octave, which computes the
probability mass function efficiently.

Since K(n) is a Bernoulli random variable, E[K(n)] = α0

n−1+α0
and V [K(n)] =

α0(n−1)
(n−1+α0)2

(Billingsley, 1986). Because K(n), K(m), m 6= n are independent, the expected
value and variance for X(N) can then be computed easily:

µ = E[X(N)] = E

[
N∑
n=1

K(n)

]
=

N∑
n=1

E[K(n)] =
N∑
n=1

α0

n− 1 + α0

(2.9)

and

σ2 = V [X(N)] = V

[
N∑
n=1

K(n)

]
=

N∑
n=1

V [K(n)] =
N∑
n=1

α0(n− 1)

(n− 1 + α0)2
(2.10)

For large numbers of words per document and large concentration parameters, a nor-
mal approximation can be found via moment matching. This gives an approximate distri-
bution for the total number of tables in the Chinese Restaurant Franchise as the sum of oc-
cupied tables over all restaurants as the sum of M normal random variables. A better fit
that also works for smaller number of words and/or concentration parameters is provided by
the Gamma distribution. The parameters are estimated by moment matching as well, using
β = σ2

µ
and α = µ

β
. Figure 2.5 shows an example of the true distribution with overlayed

approximating continuous densities. It was obtained using a document size of 20 words and
α0 = 1, which is the setting for a long query or an abstract. One can see from the figure that
the gamma distribution provides a better fit than the normal distribution, because it captures
the skewness of the true distribution. The total number of draws from the base measure (total
number of occupied tables) in case of a Gamma approximation is the sum of M independent
Gamma random variables. This sum does not follow a Gamma distribution, but computation
of the probability density function is still tractable (Moschopoulos, 1985). If the total number
of occupied tables in the franchise is known, the distribution of the number of dishes (topics)
is easily computed by Equation 2.8. If the total number of used topics is unknown, the proba-
bility distribution cannot be obtained in an easy way. The normal or gamma approximations,
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Figure 2.5: Approximation of the true probability P (T = t) by continuous distributions

however, allow the expected value of the total number of topics in a corpus to be expressed
as a function of a sum of random variables, which is tractable.

Inference and Learning on Hierarchical Dirichlet Processes

Teh et al. (2006) suggest that a Gibbs sampling scheme (see Section 2.1.3) with di-
rect assignment performs best for inferring the posterior distribution in an HDP setup. This
suggestion is also supported by experimental results provided by Teh et al. (2008).

For the direct assignment sampling scheme, tables in a restaurant are only represented
asmjk, the number of tables in restaurant j serving dish k. In the document modeling context
that means the number of groups of words in document j sharing topic k. Further, let rv,k
denote the number of times the word with vocabulary index v was assigned to topic k. Let
h(·|λ) denote the prior density of the mixture components, in this case the density of a sym-
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metric Dirichlet distribution with parameter λ. The conditional density of a word xji in topic
k given all other assignments of topics to all words in the corpus and excluding the current
assignment can be derived as

f
−xji

k (xji) =

∫
φ

(k)
xji

∏
j′i′ 6=ji,zj′i′=k

φ
(k)
xj′i′h(φ(k)|λ)dφ(k)∫ ∏

j′i′ 6=ji,zj′i′=k
φ

(k)
xj′i′h(φ(k)|λ)dφ(k)

=

∫
φ

(k)
xji

∏V
v=1

(
φ

(k)
v

)r−ji
v,k Γ(V λ)

Γ(λ)V

∏V
v=1

(
φ

(k)
v

)λ−1

dφ(k)

∫ ∏V
v=1

(
φ

(k)
v

)r−ji
v,k Γ(V λ)

Γ(λ)V

∏V
v=1

(
φ

(k)
v

)λ−1

dφ(k)

=

QV
v=1 Γ(r−ji

v,k +δ(xji,v)+λ)

Γ(1+
PV

v=1(r−ji
v,k +λ))QV

v=1 Γ(r−ji
v,k +λ)

Γ(
PV

v=1(r−ji
v,k +λ))

=

∏V
v=1 Γ(r−jiv,k + δ(xji, v) + λ)(∑V

v=1(r−jiv,k + λ)
)∏V

v=1 Γ(r−jiv,k + λ)

=
r−jixji,k

+ λ∑V
v=1 r

−ji
v,k + V λ

,

which also resembles the first factor of the Gibbs update in Equation 2.6. For the case of
k = knew, the density just becomes f−jiknew(xji) = 1

V
. Let now βk denote the overall popularity

of topic k compared to all others. That is 0 ≤ βk ≤ 1 and
∑K

k=1 βk + βu = 1 in which u is
the index of the next unseen topic. It can be seen directly that βu will become smaller as the
number of observations grows. In order to sample β, all mjk have to be known. In a Gibbs
sampling environment, this is done by sampling. Antoniak (1974) derived a full conditional
probability mass function for mjk ignoring the assignment jk:

p(mjk = m|β) =
Γ(α0βk)

Γ(α0βk + nj·k)
s(nj·k,m)(α0βk)

m.

Here, s(·, ·) are the unsigned Stirling numbers of first kind and nj·k is the number of words
in document j sharing topic k or, following the metaphor, the number of customers in restau-
rant j having dish k. Again, a computationally more appealing recursive representation is
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provided:

p(mjk = m|β, nj·k) =
1

nj·k − 1 + α0βk
(α0βkp(mjk = m− 1|β, nj·k − 1)

+ (nj·k − 1)p(mjk = m|β, nj·k − 1)).

Teh et al. (2006) show that β ∼ Dirichlet(m·,1, . . . ,m·,K , γ) directly depends on the number
of groups across all documents that have topic k assigned. Referring to the restaurant fran-
chise metaphor this is the number of tables across all restaurants that serve dish k. Having all
the pieces together, the actual sampling for topics can be conducted. Each word xji is now
associated directly with a topic using an indicator variable zji. This indicator variable is then
estimated using a Gibbs sampling scheme with the following update:

p(zji = k|z−ji,m,β) ∝

(n−jij·k + α0βk)f
−xji

k (xji) if k previously used,

α0βuf
−xji

knew (xji) if k = knew
(2.11)

This concludes the inference task. An implementation in R is given in Appendix A.2.1. For
the learning task, a sampling scheme called auxiliary variable sampling is employed. Teh
et al. (2006) introduce binary variables sj and continuous variables wj ∈ [0, 1] for each
Dirichlet process (each document). Assuming that the concentration parameter α0 has a
gamma distribution with parameters a and b as prior leads to the following expression for
the posterior distribution:

q(α0|w, s) ∝ α
a−1+m··−

PJ
j=1 sj

0 e−α0(b−
PJ

j=1 logwj). (2.12)

This resembles a gamma distribution with parameters a+m··−
∑J

j=1 sj and b−
∑J

j=1 logwj .
Since wj and sj are conditionally independent, given α0, they can be sampled independently
with distributions

q(wj|α0) ∝ wα0
j (1− wj)nj··−1, (2.13)

which resembles a beta distribution with parameters α0 + 1 and nj··, and

q(sj|α0) ∝
(
nj··
α0

)sj

, (2.14)

which is proportional to the probability mass function of a Bernoulli random variable. The
hyperparameter γ can be obtained in the same way, using K instead of mj· and m·· instead of
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nj··. Given the last steps, it is an easy task to implement a system that models the documents
in a corpus and learns the parameters α0 and γ. That the gamma distribution is a natural
choice as a prior for α0 and γ has been shown by Blei and Jordan (2006). Appendix A.2.2
shows how the auxiliary sampling scheme can be implemented.
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CHAPTER 3:
Application to Search

This chapter shows how a document model can be used in information retrieval tasks.
It starts out by producing robust point estimates from probabilistic topic models. Then an
alternative, purely keyword-based, model is introduced and “mixed” with the topic model.
This mixture is driven by a mixing weight that determines how much influence the topic
model in the combined model has.

The keyword-based model is used because related research (Wei and Croft, 2006) sug-
gests that a probabilistic topic model itself is too coarse to obtain good information retrieval
performance. A topic model, however, adds another aspect to keyword search by not just
assessing whether a certain keyword is contained in the document but also evaluating the cor-
relation between words. Thus, a relevant document can be returned by the search application,
even if it does not share any terms with the query.

The chapter finishes by introducing how document relevance is determined and doc-
uments are ranked.

3.1 Combining Estimates from Different Markov Chains
If a Gibbs sampler (see Chapter 2) is used for inference, each individual run repre-

sents a Markov chain that, after convergence, produces a point estimate for the type-topic
distribution (φ) and the topic document distribution (θ). To get a more robust estimate for
the distributions, several runs of a Gibbs sampler with different random seeds should be com-
bined.

It is tempting to define θ̂ = 1
n

∑n
k=1 θ̂k, in which θ̂k is the point estimate from each

particular run of the Gibbs sampler. The point estimate φ̂ would be obtained similarly. This
is, however, not feasible because of the exchangeability of topics (see Definition 2.0.1). That
means, the order of topics is not predetermined in advance and there is no way of controlling
that order during the Gibbs sampling runs. The attempt to reorder the topics after the runs
imposes a matching problem, which is not trivially solved.

To use the computed distributions for search, it is sufficient to have a point estimate
for the probability of a word being contained in a document: p̂topic(w|d). In LDA- and HDP-
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based models, this probability is computed as

ptopic(w|d) =
T∑
z=1

p(w|z)p(z|d). (3.1)

Because of the commutativity of the addition, the order of the topics is not relevant at all.
To compute the actual matrix of multinomial distributions for the documents, Equation 3.1
represents a simple matrix multiplication for the point estimates of each particular Gibbs
sampler run.

The point estimate for the word document distributions (ζ̂) is therefore the combina-
tion of the matrix products from each run of the Gibbs sampler:

ζ̂ =
1

n

n∑
k=1

φ̂kθ̂k. (3.2)

3.2 A Keyword-based Language Model
In addition to the index generated by the probabilistic topic model, either LDA- or

HDP-based, it is necessary to compute a point estimate for the probability of a word being
contained in a document based on the documents directly. The method that is used for this is
called Bayesian Smoothing using Dirichlet Priors as described by Zhai and Lafferty (2004).
This model is also used in Wei and Croft (2006) and is computed as follows:

pDirichlet(w|d) =
c(w, d) + µ

∑
d′
c(w,d′)
|d′|

|d|+ µ
. (3.3)

Here, µ is the smoothing parameter, c(w, d) is a function that counts how often a token of
type w appears in document d, and |d| denotes the number of words in the document. The
method is called Dirichlet smoothing, because pDirichlet(w|d) is the maximum a posterior
(MAP) estimate of a Dirichlet-Multinomial model with prior parameter µ

∑
d′
c(w,d′)
|d′| and the

document d as evidence.

3.3 Ranking Documents
A search application evaluates the relevance of every document in the corpus and

then returns an ordered list of documents or pointers to documents. This process is called
ranking. This section introduces different methods that can be used to rank documents in a
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probabilistic topic model. For the implemented prototype, all methods were implemented.
Predictive likelihood, however, performs best by far.

3.3.1 Ranking Documents Based on Predictive Likelihood

The ranking of the documents in return to a user query is determined by the predictive
likelihood, which roughly can be seen as the probability that the query Q was generated by
the model of the document d. More formally:

p(Q|d) =
∏
q∈Q

p(q|d) =
∏
q∈Q

(λpDirichlet(q|d) + (1− λ)ptopic(q|d)) , (3.4)

in which λ determines the weighting between the keyword-based model and the topic-based
model. A document that has a high predictive likelihood will get assigned a high rank. At
this point it becomes apparent that all probabilities need to be strictly positive; otherwise the
product will be zero and even a very relevant document can end up with the lowest possible
ranking.

3.3.2 Ranking Based on Topic Distributions

For a query that is supplied by a user, the most likely topic distribution under the
probabilistic topic model can easily be determined. In case of an LDA model, Variational
methods (Blei et al., 2003), Expectation Propagation (Minka and Lafferty, 2002), or Gibbs
sampling are suitable. For the HDP-based model, Variational methods (Teh et al., 2008) or
Gibbs sampling (Teh et al., 2006) can be used. In either method, the result will be a multi-
nomial distribution over the topics, which looks very similar to the multinomial distribution
over topics that is inferred for each document in the corpus.

The ranking of the documents now can be determined based on the similarity of the
topic distribution of the query and the topic distribution of a document. In the experiments,
however, all similarity measures on the topic distribution (angle and divergence measures)
were outperformed by predictive likelihood.

Cosine Similarity

A multinomial distribution over topics can be interpreted as a vector in Euclidean
space, in which the number of different topics determines the number of dimensions. The
angle between the query vector and the document vector can be used as a similarity measure.
An angle of zero would mean the query and the document have exactly the same topics in the
same proportions, thus giving the document the highest possible rank, whereas an angle of
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90 degrees means that query and the document do not share any topics.
Instead of computing the angle, it makes sense to consider the cosine of the angle,

which maps orthogonal vectors to zero and vectors with the same direction to one. The
cosine similarity of a query q and a document d is then defined as:

sim(q, d) =
〈θq, θd〉
‖θq‖‖θd‖

,

in which 〈·, ·〉 denotes the cross product and ‖·‖ the Euclidean norm.

Kullback-Leibler Divergence

Since multinomial distributions over topics are probability measures, their distance for
a query Q and a document D can be determined using the Kullback-Leibler (KL) divergence.
It is defined as:

DKL (p(z|Q)‖p(z|D)) =
T∑
z=1

p(z|Q) log
p(z|Q)

p(z|D)

From the definition, it is obvious that neither p(z|Q) nor p(z|D) can be zero for any topic z.
Further, it is clear that DKL (p(z|Q)‖p(z|D)) ≥ 0 with equality if p(z|Q) = p(z|D). This
is different from the cosine similarity, in which the value is larger, if the vectors are more
similar. In KL divergence, large numbers express a high distance between the measures.

The definition of KL divergence shows that it is not a symmetric measure. To get
around this issue, the Jensen-Shannon (JS) divergence was defined as the arithmetic mean of
the two possible KL divergences:

DJS (p(z|Q)‖p(z|D)) =
1

2
(DKL (p(z|Q)‖p(z|D)) +DKL (p(z|D)‖p(z|Q))).

3.4 Steps Towards Implementation
Computing the keyword-based model and averaging topic models can easily be imple-

mented as matrix operations. Most general purpose languages provide efficient data structures
and algorithms for basic matrix algebra. Predictive likelihood is very efficient if the query is
represented by a sparse vector structure. The ranking then reduces to a few table lookups and
multiplications per document followed by a sorting algorithm on the relevance scores, which
is O(n log n). Similarly, cosine similarity and divergence measures have efficient implemen-
tations, although they did not perform well in the preliminary experiments.

Altogether this allows for practical implementations for online search and ad hoc
retrieval.
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CHAPTER 4:
Implementation

This chapter will illuminate some of the implementation steps that were necessary
for building a search engine based on probabilistic topic models. For the implementation,
MALLET (McCallum, 2002) was used. MALLET is an open source toolkit, written in Java.
It provides most of the functionality that is needed for document modeling, clustering, and
classification tasks.

Matrix computations are implemented using COLT, a matrix API for Java, built by
the CERN institute (Hoschek, 2004). It performs standard matrix operations like addition and
multiplication for large matrices with double precision numbers very efficiently. In addition,
it provides a very fast and memory-efficient implementation of sparse matrices, which are
used frequently in natural language processing tasks.

The prototype implementation is built into the framework of Hawkins’ (2009) search
application and can be used as a search module in this modular framework. Java is used as
the implementation language, allowing the use of well-developed APIs for text processing,
matrix algebra, and stochastic processes.

Examples in this chapter will mostly refer to the CRANFIELD benchmark corpus.
For a discussion of the improvements of the implemented prototype on other corpora see
Chapter 5.

The source code documentation provides a more detailed description of methods and
fields that are used by the application.

4.1 Preprocessing
It is important that queries and documents are preprocessed in the same way to ensure

that string comparison leads to correct results. That is, the vocabulary for a document in the
corpus has to be exactly the same as for a query.

In MALLET there is a special class, the Pipe-class, which fullfills the preprocessing
task. Pipe is an abstract class, which is extended by several classes, each of them carrying out
a particular preprocessing step. Every document is then “piped” through a list of these Pipe-
objects and the end result is a preprocessed document that can be used for index building.

The idea of using a pipe makes MALLET very flexible and attractive for text pro-
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cessing tasks. It allows us to arrange processing modules in a list and send the raw text
data through all necessary steps from creating a character sequence, then a token sequence,
remove stopwords and so on.

4.1.1 Tokenizing

The first step in preprocessing raw documents is to tokenize them. This step splits a
character sequence into a token sequence, typically on white spaces and special characters
like commas or periods. With MALLET, after reading the character stream, the sequence
is then processed through a pipe, in which a regular expression pattern is applied on the
character stream to remove special characters and digits.

4.1.2 Stemming

Stemming maps inflections of a word to a common stem. That is, “running,” “ran,”
and “run” are all mapped to “run.” One of the most common stemming algorithms is the
Porter Stemmer (Porter, 1980). A Porter stemmer applies a small number of rules of the form
“(condition) S1→ S2” on every token that meets the condition and has form S1 and changes
it to S2. Stems found by a Porter stemming algorithm do not necessarily agree with the
linguistic stem of a word. For example, “happy” will be stemmed to “happi,” which would
not be called a stem by a linguist. However, stemming reduces the number of distinct words
in a vocabulary, thus reducing noise. Unfortunately, this comes at the cost of introducing
additional ambiguities into the documents.

For a probabilistic topic model like LDA- or the HDP-based model, these additional
ambiguities result in stronger correlation between similar documents, thus improving the
recall in the information retrieval task. For the example of the CRANFIELD data set, a Porter
stemmer leaves 1838 types total. An additional advantage of applying a stemming algorithm
is the reduced storage requirement for the final index. Without stemming, the CRANFIELD
index requires 79 MBytes on the hard disk; stemming reduces its size to 53 MBytes.

For the experiments in this thesis, a Porter stemming algorithm was implemented as a
subclass of a MALLET pipe, such that it could be easily integrated as preprocessing step.

4.1.3 Stopword Removal

Stopword removal allows the omission of very frequent terms that are shared in al-
most all documents with high probability. These words (e.g., “and,” “the,” “a”) do not carry
meaning and are therefore not useful for information retrieval tasks. If they are left in the doc-
ument, they consume computation time and add noise to the model. Therefore, it is standard
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procedure to remove them in advance. The English stop word list that was used through-
out the experiments contains the 571 most common words in English documents. MALLET
provides a pipe implementation that removes stopwords as part of the preprocessing.

The CRANFIELD corpus consists of 7045 unique words; after removing stopwords,
6639 remain. This was measured without stemming first. For the actual implementation,
however, it is important to stem first and then apply stopword and rare type removal.

4.1.4 Removing Rare Types

Rare types impose a different issue. Since they show up in the corpus in only one
or two documents, it is practically impossible to compute the correlation with other words.
Additionally, removing rare types reduces the chance of having missspelled words in the
index after preprocessing.

Of the 6639 types that remain in the Cranfield corpus after stopword removal, 4112
are used fewer than 5 times throughout the corpus. Removing these leaves an index with 2527
types total. Having a smaller number of types results in a smaller index, which can be stored
in memory directly.

4.1.5 Building Termvectors

For the Expectation Propagation inference algorithm, each document and query needs
to be represented as a term vector. A term vector is a vector of length V , the size of the
vocabulary, whose entries are the number of tokens of typew in the document. MALLET uses
for this purpose an additional pipe, the “FeatureSequence2FeatureVector” class. However, for
Gibbs sampling, a term vector representation is not suitable; a term sequence has to be used
instead and this preprocessing step must be skipped.

4.2 Building the Index
For the purposes of this thesis, the index is just a matrix V × D in which V is the

number of types and D the number of documents in the corpus. Each column of this matrix
represents a multinomial distribution over types, which means that each document is repre-
sented as a vector on the V−1-simplex. In order to be able to use the predictive probability for
determining the relevancy of a document for a particular query, this matrix has to be dense,
that is, it cannot have any zero values.
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4.2.1 Building the LDA Index

MALLET implements a very robust and efficient version of an LDA document model,
which uses a parallel Gibbs sampling algorithm. This allows the use of several Markov chains
to estimate the true topic distribution for each document. For the search engine implementa-
tion, the number of chains is a parameter that can be supplied by the user.

After convergence, an estimate of the document topic distribution and the type topic
distribution is computed using Equation 2.7. Since topics are exchangeable, it is not possible
to average θ̂ or φ̂ from different samples or even different chains. However, the final proba-
bility distributions p̂(w|d) =

∑
z φ̂

(z)
w θ̂

(d)
z , the probability of a word occuring in a particular

document under the LDA model, can be averaged.
The implementation estimates p̂(w|d) for each Markov chain and averages these esti-

mates. This results in a V ×D matrix, which holds the aggregated probabilistic topic model
of the corpus.

4.2.2 Building the HDP Index

In order to estimate the topic distribution under an HDP-based model, the implemen-
tation by Teh et al. (2006) was used. The code runs in Matlab, and Octave was used as an
intermediate step to convert the binary Matlab format into a csv file, which then was imported
by a Java class.

The type-topic distribution estimate φ is then computed in exactly the same way as in
Equation 2.7. For the topic-document distribution, there is no equivalent to the hyperparame-
ter α in the LDA model. Therefore, smoothing was ignored. The final distribution, however,
cannot have any zero values because the type-topic distribution will not contain any zero val-
ues and every row in the topic document distribution will have at least one value greater than
zero.

As with the LDA model, the estimates from several chains are averaged to obtain a
more robust estimate of the probability distribution p̂(w|d).

4.2.3 Building the Smoothed Language Model

For the keyword-based search, it is necessary to implement a language model that is
based on word counts only. In order to use predictive probability for ranking documents,
this language model needs to be smoothed. The formula for estimating the language model,
Equation 3.3 is used.

Computing this probability distribution can be done in a single pass over the term
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vectors and results in a V × D matrix, in which every column represents the probability
distribution over word types for a particular document. It therefore has the same structure as
the probability distributions computed by the probabilistic topic models.

4.2.4 Building the Final Index

The final index then is simply the weighted average between a probabilistic topic
model and the smoothed language model:

p(w|d) = λpDirichlet(w|d) + (1− λ)pLDA/HDP (w|d), (4.1)

in which 0 ≤ λ ≤ 1 is the weighting parameter. This is implemented by a simple matrix
addition, which produces a dense matrix of size V ×D.

The index also stores the averaged matrices from the probabilistic topic model and the
smoothed language model. This allows changing the values for λ and µ later, after the index
has been built, and thus prevents having to retrain the whole model.

4.3 Implementation of the Search and Ranking Algorithm

4.3.1 Preprocessing the Query

The query is provided by the user of the search application as a simple string. It needs
to be tokenized, stopwords and rare types need to be removed, and the words need to be
stemmed, before the query is finally turned into a term vector.

For this task, a separate pipe, the “query pipe,” is used in the implementation. It is
important that the query pipe use exactly the same preprocessing steps as are used on docu-
ments. It is also necessary that the query pipe have the same word dictionary (in MALLET
called the alphabet) as the pipe for the documents had, because the terms in the term vector
need to have the same index. That is, if in the document corpus the term “experiment” has the
index 5, this needs to be true for the query as well. Otherwise the matrix lookup will return
the wrong result.

However, the original word set must not grow, if the query contains a word that is
not contained in the corpus. Therefore, the alphabet must not be supplied by reference to the
original object. In the implementation, the alphabet is cloned first and the reference of the
clone is passed to the query pipe.
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4.3.2 Computing the Ranking Score

After computing the combined index as a weighted average between the probabilistic
topic model and the smoothed language model and turning the user query into a term vector,
computing the ranking score is straightforward by applying Equation 3.4. However, multi-
plying a sequence of small probabilities can lead to numerical instabilities. Therefore, the
natural logarithm is used instead:

scoreQ(D) =
∑
w∈Q

c(w,Q) log p(w|D),

in which c(w,Q) counts how often the term w appears in the query Q. This count will
typically be one, since words are rarely repeated in a query. If, however, the query is a full
paragraph or a question, it might happen that terms are repeated. For the similarity measure,
this means that documents that share that particular word or that have many words that are
correlated with this word, will get a higher ranking. Repeating terms in the query thus has a
boosting effect for that particular term.

MALLET’s term vector implementation is very useful for this computation because
it is very memory efficient by storing only two arrays of integers. One holds the vocabulary
indices of all non-zero count terms, the other holds the actual counts.

After computing the scores for all documents, the documents are ordered accordingly
and returned to the user.

4.4 Maintaining the Index
This section describes how the special cases of adding and deleting documents are

dealt with. Both cases only allow for marginal changes on the corpus. If many documents
are added or removed over time, it is best to retrain the indexer. In case of the LDA-based
model, this takes only a few minutes, whereas for the HDP-based model this requires some
hours and is more involved.

4.4.1 Adding Documents

As with a query, the new document has to be preprocessed. After this step, a topic
distribution is inferred. For the LDA implementation, MALLET’s TopicInferencer is used.
For HDP, the document is treated as a test document versus the rest of the corpus. In both
cases, a Gibbs sampler generates the necessary topic distribution. This new distribution over
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topics is now multiplied by the already existing word-topic distribution, which results in a
vector of length V , the size of the vocabulary.

Additionally, the smoothed language model for the document is computed, again us-
ing the known base distribution. Finally, the two obtained vectors are averaged according to
the defined weighting scheme and the final result is attached to the index.

4.4.2 Removing Documents

Removing a document from the corpus is implemented in the easiest possible way.
First, the document is removed from the feature seqence list. Then the corresponding columns
in the topic model, language model, and combined index are removed. While this ensures that
the removed document is not accidently returned by the search application, it leaves the base
distributions from the probabilistic topic model and the smoothed language model untouched.
For a single document, this is not critical, because a single document does not have a huge
influence on the base distributions. If, however, many documents or a very big document are
removed, the index should be generated again with the new corpus.

4.5 Evaluation
This section describes how benchmark queries, for which the relevant documents are

known, are implemented in a way such that the retrieval performance of the prototype can be
computed. Additionally, it describes, which methods allow the computation of performance
measures.

4.5.1 Query Representation

Each query is wrapped into an instance of class “Query.” Every instance holds an
internal identifier and a data set identifier. This is necessary because the benchmark data sets
do not provide a consecutive numbering of the queries. The third field that is maintained in
the class is a single string value, which represents the actual query. Since the query object can
be used in any search module that fits in the search framework, this string is not preprocessed.

In order to allow performance assessment, each query holds a list of document iden-
tifiers, which contains all the documents that are labeled relevant to the query.

4.5.2 Query Set Representation

An instance of class “QuerySet” is a container for “Query” instances.
The class provides a static method that reads text files with queries and query-document

relevance pairs to generate the query set. As an instance method, “trimToSize()” shall be men-
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tioned here. It removes irrelevant queries from the query set. A query is called irrelevant if it
does not have relevant documents assigned to it.

4.5.3 Computing Performance Measures

The main class for computing performance measures is the “Evaluator” class. An
instance of this class is generated with an object of class “ModularSearchEngine”, a “Mod-
uleMixer” object (Hawkins, 2009), a “QuerySet” instance, and an integer indicating the max-
imim number of documents that the user wants to be retrieved.

An “Evaluator” instance provides methods to compute average precision for each
query (“computeAveragePrecision()”) and the mean average precision over all queries (“com-
puteMeanAveragePrecision()”). Additionally, it computes a confusion matrix for each of the
queries and at every possible number n, 1 ≤ n ≤ N , in which N is the maximum number of
documents retrieved.
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CHAPTER 5:
Evaluation

5.1 Document Modeling Experiments
This section describes exeriments that were used in the document modeling context.

It shows how topics emerge and can be interpreted and how hyperparameters and the number
of topics can be estimated to obtain a document model with high likelihood.

5.1.1 Topic Detection

Griffiths and Steyvers (2004) provided a Matlab toolbox that uses Gibbs sampling to
obtain samples from the posterior distribution of the latent topics. This toolbox was the basis
for first experiments on topic detection and parameter estimation. For a smaller corpus with
artificial data, the LDA Gibbs sampler was implemented in R (see Appendix A.1.2) and used
for small scale experiments which are not discussed.

The first experiments we ran on a stratified sample of 1,000 document from the
Wikipedia1 collection. Table 5.1 shows the 10 most likely words in five sample topics based
on a single Markov chain of the Gibbs sampler and 200 topics. The smoothing constant was
set to β = 0.01. The documents were preprocessed as described in Section 4.1 with the ex-
ception of stemming. For this experiment, it was important to get topics with readable words,
which is not possible if stemming is applied.

5.1.2 Estimating the Number of Mixture Components

Griffiths and Steyvers (2004) suggest a hill climbing method to estimate the number
of topics in a given corpus. This requires the hyperparameters α and β to be known and
fixed. The idea is to compute the posterior probability of a corpus given the number of topics,
P (w|T ). Unfortunately, this is intractable, since it requires the computation of P (w|T ) for
any conceivable topic distribution. The topic distribution itself is a draw from a continuous
Dirichlet distribution and therefore the number of possible topic distributions is uncountable.
Griffiths and Steyvers suggest running a Gibbs sampler on the model with different Markov
chains and estimating the resulting posterior probability P (w|z) from the samples of each

1Wikimedia Foundation Inc. Wikipedia: The Free Encyclopedia. http://download.wikimedia.
org/enwiki/latest/. Online, last accessed 28 April 2008
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Topic 2 Topic 3 Topic 13 Topic 28 Topic 51
ball treatment software god greek
play medical computer christian zeus
team acupuncture hardware chruch mythology
player disease video jesus gods
football pain disk christianity god
line studies computers believe son
offensive evidence memory book aeneas
defensive effects bit christ myth
pass found operating holy goddess
field patients screen faith temple

Table 5.1: Sample topics in Wikipedia

chain. These probabilities are then averaged by applying the harmonic mean: P̂ (w|T ) =
KPK

k=1
1

P (w|zk)

, in which K denotes the number of samples taken. The number of topics, that

maximizes P̂ (w|T ) will then be accepted. This procedure was applied in our research with 8
Markov chains and 10 samples for each chain, giving K = 80 on the Wikipedia corpus with
β = 0.01.

An alternative approach uses averages over the natural logarithm of the likelihood and
has better numerical stability. Figure 5.1 shows how this method works on the CRANFIELD
data set based on 10 samples per number of topics. The concavity of the likelihood function
becomes even more obvious with more samples taken per topic value. The gap between two
design points should be at least 10 because there is almost no difference in likelihood between
two models with a specified number of topics that only differs by one or two. For all practical
purposes, it is sufficient to determine the number of topics rounded to the closest multiple of
ten.

5.1.3 Number of Iterations for the Gibbs Sampling Algorithm

Determining the optimal number of iterations for burn-in and lag between samples for
a Gibbs sampler is not trivial and still an open field of research. Furthermore, it is a hard task
to determine if the Gibbs sampler converged to the target distribution (Brooks and Roberts,
1998). The major problem is that a Gibbs sampler may spend many iterations in a local
optimum before it finally converges to the right solution. Since it is a stochastic algorithm,
this number of iterations cannot be predicted precisely. Results to determine bounds on the
number of iterations exist for a few special cases, which do not include LDA- or HDP-based
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Figure 5.1: Optimal number of topics for the CRANFIELD data set. The solid line represents the likelihood
function, while the dashed lines represent the bounds of a 95%-confidence interval. For every number of topics,
10 independent Gibbs sampling runs were used. The optimal number of topics will be determined as 40, given a
smoothing parameter of β = 0.007.

models. Raftery and Lewis (1992) suggest that this number should be less than 5,000. In the
LDA and HDP literature, typical numbers are between 1,000 and 2,000.

Figure 5.2 shows the typical behavior of the corpus likelihood P (D) during a run of
a single Markov chain. At about 150 iterations, a local maximum can be observed, from
which the likelihood first drops, before it climbs to a pretty much stable value after 1,200
iterations. Figure 5.2 was produced by an HDP model based on the CRANFIELD data set.
The suggestion is to use at least 1,000 iterations as burn-in time and then at least 20 samples
with a lag of at least 100 iterations. These settings regularly produced good results in the
experiments, whether LDA-based or HDP-based.

37



0 500 1000 1500 2000 2500 3000
−7.4

−7.38

−7.36

−7.34

−7.32

−7.3

−7.28

−7.26

−7.24

−7.22

−7.2
x 10

5

Iteration

lo
g 

p(
D

)

Figure 5.2: Typical Likelihood behavior of a corpus D for a Gibbs sampler in the HDP setting

5.2 Information Retrieval Experiments
Table 5.2 shows how a probabilistic topic model can improve retrieval results. As an

example, query 153 from the CRANFIELD benchmark corpus is used and for each method
the top ten documents were considered. The table only contains relevant documents. The
document 1083 does not share keywords with the query and therefore it will not be returned
by any method that bases on keyword search alone. A probabilistic topic model alone how-
ever would return too many documents that are not relevant to the query. In Table 5.2, the
fourth column shows how a combination of both methods, keyword search and a probabilistic
topic model, can improve retrieval performance. Though this is just a single sample, it shows
in which way a probabilistic topic model and a keyword-based search augment each other.
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Query pure LDA pure VSM mix with λ = 0.8
153 1078 1081 1078

1082 1082 1081
1083 1085 1082
1085 1083

1085

Table 5.2: Comparison of pure LDA, pure VSM, and a combination of both with λ = 0.8 based on query 153 of
the CRANFIELD benchmark corpus.

5.2.1 Evaluation Metric

As the metric to compare the retrieval performances of different models and/or dif-
ferent parameter sets, the mean average precision (Robertson, 2008) is used. The average
precision for a single query is defined as

AP =
1

R

D∑
k=1

APn,

in which R is the number of total relevant documents and D denotes the total number of
documents in the corpus. The contribution of document dn to the average precision APn is
defined as

APn =
1

n

n∑
m=1

δm,n,

in which δm,n = 1, if the documents dn and dm are both relevant to the query and δm,n = 0

otherwise. The mean average precision is then the mean of the average precision values over
all queries.

Mean average precision was chosen because it is the metric used in related research
on the same benchmark data. A Java implementation of the algorithm is presented in Ap-
pendix B.3.1.

5.2.2 Baselines

For each benchmark corpus, a baseline was defined. This baseline comes from pub-
lished Information Retrieval papers (Roussinov and Fan, 2006) or, in case of the TIME MAG-
AZINE data set, from the best experiment that only uses keyword search and that applied
stemming, stop word and rare type removal before training the index. Table 5.3 shows the
corpus statistics and the used baselines.
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Corpus Number of Number of Mean average
documents relevant queries precision baseline

CISI 1460 76 0.200
CRANFIELD 1398 225 0.392
MEDLINE 1033 30 0.518
TIME MAGAZINE 423 83 0.526

Table 5.3: Corpus statistics and baselines for the information retrieval experiments.

5.2.3 Effects of Removing Rare Types

Removing types that occure infrequently hurts the average precision in the retrieval
task. Table 5.4 shows the differences in retrieval performance with rare type removal and
without. While the retrieval performance with rare types is slightly higher, the storage re-
quirements for the index grow drastically.

An analysis on the aggregated values for mean average precision leads to overlapping
confidence intervals and therefore no statistical significance. If the analysis is conducted on
the difference in average precision for each query, the result changes. The fourth column
in Table 5.4 shows the p-values computed by a Wilcoxon signed rank test based on the dif-
ferences in average precision per query. The alternative hypothesis is that with rare types
in the corpus, the average precision is greater than without. A Wilcoxon signed rank test
conducted on all queries regardless of the corpus results in a p-value of 0.005, which shows
significance even at the one percent level. Of course, this result cannot be extrapolated to an
unseen corpus.

Experiments for the values in Table 5.4 are generated with smoothing factor µ = 700,
10 Markov chains, 345 topics, 800 iterations for the Gibbs sampler and 8 parallel threads
for the topic model estimation. The prior parameter for LDA was fixed at β = 0.01 and the
mixing proportion was λ = 0.7.

Corpus with rare types without rare types p-value storage difference
CISI 22.80% 22.05 % <0.01 71 MBytes
CRANFIELD 44.02% 42.30% 0.03867 42 MBytes
MEDLINE 59.28% 59.91% 0.5803 108 MBytes
TIME MAGAZINE 59.28% 54.82% 0.037 90 MBytes

Table 5.4: Effects of removing rare types applied to the different corpora. The metric is mean average precision.
The p-value is computed per corpus based on direct comparison of the query results
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5.2.4 Influence of Stemming

The influence of stemming was studied on an LDA based model mixed with the
smoothed language model at a weighting coefficient of λ = 0.7. The prior parameter on
the type topic distribution was β = 0.01 and the smoothing constant µ = 700. It was trained
with K = 345 topics and 10 Markov chains. Table 5.5 shows the results in mean average
precision and storage reduction for the index after applying stemming. The analysis is the
same as described in Section 5.2.3.

For CISI, CRANFIELD, and MEDLINE, the test shows significant performance in-
crease at the 10 percent level, but not at the five percent level. For TIME MAGAZINE, the
test does not show significance. Applied to the set of all queries, the Wilcoxon signed rank
test returns a p-value of 0.002, which shows significance at the one percent level. Again, it is
likely that this result does not apply to an unseen corpus.

Corpus with Stemming without Stemming p-value Storage Reduction
CISI 22.05% 20.03 % <0.01 17 MBytes
CRANFIELD 43.29% 42.30% 0.075 26 MBytes
MEDLINE 59.91% 58.14% 0.057 10 MBytes
TIME MAGAZINE 54.82% 52.53% 0.222 12 MBytes

Table 5.5: Effects of stemming applied to the different corpora. The metric is mean average precision.

5.2.5 Influence of the Number of Markov Chains

The number of independent Gibbs sampler runs heavily influences the quality of the
probabilistic topic model whether it is LDA- or HDP-based. Since every run results in a
point estimate generated by a stochastic process, it makes sense to obtain several independent
estimates and produce a more robust estimate for the model distributions.

For all corpora, there is a significant increase in retrieval performance if the index
combines the estimates from several Markov chains rather than a single chain. All models
were trained with β = 0.006, a value that consistently lead to good results on all corpora, and
700 topics. The smoothed language model was not used for this test, which means that the
weighting parameter in Equation 4.1 was set to λ = 0.

Thus, in general, the more Markov chains are evaluated, the closer the estimate ap-
proaches the correct distribution, which improves the retrieval performance. This comes at
the cost of computational effort. In our experiments, 10 Markov chains was always a reason-
able number that also agrees with related research (Wei and Croft, 2006).
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Corpus 1 chain 3 chains 10 chains p-value 1 - 10
CISI 14.47% 16.93% 18.25% <0.01
CRANFIELD 34.84% 37.97% 41.19 <0.01
MEDLINE 51.02% 51.20% 54.97 0.021
TIME MAGAZINE 48.10% 49.75% 53.99% <0.01

Table 5.6: Effects of combining several Markov chains. The metric is mean average precision on a pure LDA
model. The p-value is the comparison between results from one and ten chains.

5.2.6 Influence of the Number of Topics for LDA

As Griffiths and Steyvers (2004) show, the number of mixture components or topics
has siginificant influence on the perplexity of a document model. It is therefore natural to
assume that the same result holds for the task of information retrieval. Too small a number of
topics would result in a few very general topics and the model became a smoothed language
model, whereas too large a number of topics leads to a mixture of unigrams model that does
not share topics among documents. Thus the assumption is that there is a specific number of
topics that maximizes the retrieval performance.

In the experiments, this assumption could not be rejected. Related research (Az-
zopardi et al., 2003), however, shows that the best document model for a corpus is not neces-
sarily the best information retrieval model. This can be seen directly by comparing the plot in
Figure 5.1 with Figure 5.3. The document model for the CRANFIELD data set maximizes its
likelihood at 40 topics, whereas the information retrieval model performs best at 1050 topics.

Corpus number of topics mean average precision
CISI 700 17.48%
CRANFIELD 1050 42.43%
MEDLINE 500 56.32%
TIME MAGAZINE 900 58.85%

Table 5.7: Optimal number of topics per corpus and achieved mean average precision. The smoothing parameter
for all corpora is β = 0.007

Table 5.7 shows the optimal number of topics for the four benchmarck corpora ac-
cording to the best retrieval result obtained with this setting. This number was determined
by a greedy heuristic on a restricted domain (300 to 1000 topics) submitted to a high per-
formance cluster, which allowed to estimate several hundreds of parameter combinations at
once. All models were trained with 10 independent Gibbs sampling estimates.
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Figure 5.3 shows the typical behavior of the mean average precision as a function
of the number of topics. The figure is based on the CRANFIELD dataset with β = 0.007,
10 Markov chains and λ = 0. It cannot be rejected from the plot that the function is con-
cave. In all experiments, hillclimbing over the number of topics gave good results in retrieval
performance.

400 600 800 1000 1200

0.
39

0.
40

0.
41

0.
42

0.
43

Number of Topics

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

Figure 5.3: The mean average precision versus the number of topics on the CRANFIELD dataset based on 10
samples for each design point. Other parameters were β = 0.007, λ = 0, and 10 independent Gibbs sampling
runs. The concavity of the function cannot be rejected from this plot. The optimal number of topics for the
CRANFIELD data set is determined as 1050.

5.2.7 Influence of the Weighting between the Topic Model and the
Language Model

Figure 5.4 shows how the weighting between the probabilistic topic model and the
smoothed language model influences retrieval performance. Recall is the proportion of rele-
vant documents that were returned by the application. Precision is the ratio of the number of
relevant documents and the total number of returned documents. Ideally, a precision-recall
plot starts almost horizontally at recall zero and precision close to one and stays that way
until it drops to precision zero at recall one. In practice, this is rarely the case considering the
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random nature of documents and queries.
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Figure 5.4: Precision and recall for different values of λ on the CRANFIELD dataset.

Clearly, the choice of λ influences the retrieval performance. Values between λ = 0.7

and λ = 0.8 worked best for all corpora in all experiments. The plot in Figure 5.4 also shows
how the keyword-based search is augmented by the probabilistic topic model: both of the
search methods perform worse than their combination.

5.2.8 Difference between LDA and HDP

Table 5.8 shows results of a direct comparison of an LDA- and an HDP-based model
with weigthing parameter λ = 0. For both models, a symmetric Dirichlet distribution with
smoothing constant β = 0.007 was used for the prior base distribution. The preprocessing
for both models and all corpora were the same. The computation of the p-value in Table 5.8
was done by a Wilcoxon signed rank test based on paired observations for each query. The
second and third column show the respective mean average precision.

The results show significant improvement for HDP over LDA on the CISI and the
MEDLINE dataset. For CRANFIELD and TIME MAGAZINE, there is not enough evidence
to favor the alternative hypothesis that HDP performs better than LDA. If all queries are
compared pairwise ignoring the corpus factor, the resulting p-value is 0.076, which leads
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to rejection of the null hypothesis at the 10 percent level of significance, but not at the five
percent level.

Corpus pure LDA pure HDP p-value
CISI 18.25% 19.62% 0.025
CRANFIELD 41.19% 41.47% 0.307
MEDLINE 54.97% 59.10% 0.016
TIME MAGAZINE 53.99% 53.20% 0.591

Table 5.8: Comparison of a pure LDA-based model versus a pure HDP-based model with smoothing constant
β = 0.007. P-value is based on a Wilcoxon signed rank test with alternative hypothesis that LDA performs worse
than HDP.

5.2.9 Improvements over the Baseline

Finally, it is interesting to determine if the prototype leads to improvements over the
baseline. The results are presented in Table 5.9. For all corpora, improvements in information
retrieval were achieved based on mean average precision. These improvements range between
three percent for CISI up to more than 10 percent for MEDLINE.

For the baseline values, it is not possible to state the statistical significance based on
per query comparison, because this is not available in the literature. The only statistical tests
that are valid in this case are a sign test and a Wilcoxon signed rank test based on the aggre-
gated values. Both tests result in a p-value of 1

16
= 0.0625. Here, the null hypothesis is that a

probabilistic topic model does not lead to significantly different retrieval performance, while
the alternative hypothesis is that a probabilistic topic improves retrieval performance. With
a p-value of 0.06, the null hypothesis can be rejected in favor of the alternative hypothesis at
the 10 percent level of significance, but not at the five percent level.

Corpus Baseline LDA-based HDP-based
CISI 20.0% 23.28% 23.10%
CRANFIELD 39.2% 44.55% 45.41%
MEDLINE 51.8% 61.57% 62.34%
TIME MAGAZINE 52.6% 58.76% 55.88%

Table 5.9: Improvements over the baseline for all corpora. Shown is the result of the respective best parameter
configuration.
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CHAPTER 6:
Conclusions and Recommendations

This chapter discusses the experiment results from Chapter 5 and possible implica-
tions for the SHARE corpus. Further, it will give recommendations for future research on
information retrieval based on probabilistic topic models.

6.1 Discussion of Experimental Results
Chapter 5 shows that probabilistic topic models can lead to significant improvements

in information retrieval. A probabilistic topic model, however, cannot be used as a single
model for information retrieval purposes successfully. In general, such a model will have a
feature space that is too coarse to effectively discriminate documents given a user query. The
smoothed language model, which is entirely keyword-based, can be trained independently of
the probabilistic topic model.

It is desirable to have an efficient implementation for topic detection based on HDP,
ideally as part of the MALLET (McCallum, 2002) package. The current detour of using
Octave, Matlab, and Java to produce a trained document model for information retrieval is
not efficiently usable for a standalone prototype.

6.1.1 Evaluation for SHARE

All experiments were done on abstracts from special domains. These are comparable
with descriptions in SHARE’s card library, which will be available for search to the user.
These experiments, however, cannot replace experiments on the target corpus.

Once a sufficient number of documents from the SHARE corpus is available, it is
therefore recommended to produce benchmark queries to adjust parameter settings. In addi-
tion, a final implementation of the search engine should collect user feedback and submitted
queries to grow the number of benchmark queries. This allows the adjustment of model
parameters during the whole life cycle of the application.

6.1.2 Preprocessing

Stemming leads to significant improvement in retrieval performance and storage re-
quirements. Therefore, it is recommended that stemming be applied to the documents in
SHARE as well.
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Removing rare types has been shown as possibly disadvantegeous for information
retrieval. Although the statistical significance has been shown for three of four corpora, the
practical significance needs to be assessed separately. Removing rare types has, however, the
advantage of reducing storage and computation time, and should therefore be considered.

6.1.3 Parameter Settings

For the prior parameter setting, β = 0.007 is recommended. This value performed
well for all sample corpora. The burn-in time for LDA should be 1,000 iterations or more; a
lag of 100 iterations between samples from each chain and at least 10 samples are necessary
for a robust point estimate from a single chain. Ten independent Gibbs sampler runs result
in consistently good results in information retrieval. The number of topics is hard to predict
for an unseen corpus. A number between 500 and 900 can be expected to perform well, but
user feedback should be used to adjust that. In general, the number of topics can be expected
to become larger as the number of word tokens in the corpus grows. Typically that means
that the number of documents has to grow in this case as well. There is, however, no way
of estimating this number in advance or as a function of the corpus size. For the HDP-based
model, the number of topics does not need to be specified as it is computed by the inference
algorithm.

For the keyword-based model, a smoothing constant of µ = 1100 showed best results
on all corpora except the TIME MAGAZINE corpus. For TIME MAGAZINE, µ = 1000

performed slightly better.
In all cases, the weighting of λ = 0.7 between the keyword-based and the topic-based

model performed best. This result holds regardless if the topic model is LDA- or HDP-based.

6.2 Hidden Markov Models for Topic Detection
So far, all research presented in this thesis had the underlying assumption that ob-

servations are exchangeable (see Section 2.0.1). Though the evaluated models performed
significantly better in the information retrieval task compared to the baseline, the question
remains if further improvement is possible by also acknowledging the word order, which is
not random in reality.

A refinement of LDA in that direction was presented by Griffiths et al. (2005). In this
research, the authors defined a model in which each word is tagged not only by a topic index,
but also by a syntactic class index (e.g., noun, verb, adjective). The document generating pro-
cess therefore gets an additional step: after determining the topic for word i, its syntactic state
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is defined and then the word is drawn from a multinomial distribution that is conditioned not
only on the topic, but also on the syntactic state. The sequence of these syntax labels is de-
termined by a Hidden Markov Model (HMM), defining an order on the words in a document.
The authors show that document models based on that model result in higher likelihood for
a corpus than plain LDA. The question is now whether a document model that incorporates
syntactic structure can improve information retrieval performance.

Hidden Topic Markov Models (HTMM), introduced by Gruber et al. (2007), represent
another attempt to relax LDA’s modeling assumptions. Instead of seeing a document as a bag
of words, the authors treat it as a bag of sentences. Topic changes are allowed only at the
beginning of a sentence and all words inside the sentence share the same topic. Assuming
that words inside the same sentence are generated by the same topic is very intuitive. The
experimental results presented in Gruber et al. (2007) show a higher corpus likelihood than
LDA.

Another possible direction for improving topic models based on HMM is derived from
HDP. Using HDP, it is possible to define an HMM in a nonparametric way. That is, the state
space grows with the number of observations as the number of mixture components does
in the HDP model presented in Section 2.2. A topic model based on such an HMM would
combine the advantages of a nonparametric model and a model that does not rely on a bag of
words assumption. The HDP-HMM is derived in Teh et al. (2006) and an inference algorithm
is described.

All three presented refinements should be considered in future research, because they
can possibly lead to document models that improve information retrieval performance. A
query, however, needs its own model in a word-order-based information retrieval system. This
follows because a user, who submits a query to the application, is typically not concerned
about the ordering of the keywords, nor does he provide a complete sentence from which
syntactic states can be inferred.

6.3 Empirical Priors for HDP
So far, all refinements of the document models considered changes of the model. As

noted in Section 2.2, HDP can have any probability measure as the base measure. Rather than
using a symmetric Dirichlet distribution as base measure, the distribution should be learned
from the data directly.

As a step in this direction, a simple experiment was conducted using an asymmetric
Dirichlet distribtuion as prior. For the distribution parameter, the smoothed language model
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was used (see Chapter 4). The experimental results showed improvement in retrieval per-
formance over the symmetric distribution. These results are not presented here, because an
asymmetric base measure does not necessarily lead to an exchangeable process (Hansen and
Pitman, 1998) and the inference scheme in Section 2.2.2 is not guaranteed to converge to the
right distribution.

McAuliffe et al. (2006) present an algorithm to compute an empirical base measure
using Gibbs sampling scheme kernel methods. In their example, the authors use a kernel
based on the normal distribution. For document modeling, the kernel should be based on the
Dirichlet distribution or a Polya Tree (Ghosh and Ramamoorthi, 2003). Kernels based on the
Dirichlet distribution have been used by Hinneburg et al. (2007) and Draeger et al. (2009).
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APPENDIX A:
Inference and Learning Algorithms

A.1 Inference for LDA

A.1.1 Expectation Propagation algorithm in R

exp_propagation_LDA

<- function(document, alpha, pwa, numIter=100){

# Initialize variables

W <- length(document)

T <- length(alpha)

gamma_ <- alpha

beta_ <- matrix(rep(0,W*T),nrow=W)

beta_new <- beta_

s <- rep(1,W)

s_new <- s

# Repeat until convergence

for (i in 1:numIter){

# Loop through all words

for (w in 1:W){

# Start with deletion

gamma_w <- gamma_ - beta_[w,]

# if one of the gamma_w’s is negative, skip this word

if (sum(gamma_w<0)==0 & document[w]>0){

#

# Moment matching

dp_pwa_gamma <- pwa[w,]%*%gamma_w

sum_gamma <- sum(gamma_w)
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zw <- dp_pwa_gamma/sum_gamma

prefactor <- 1/zw * gamma_w/sum_gamma

m <- prefactor *(pwa[w,]+ dp_pwa_gamma)

/(1+sum_gamma)

m2 <- prefactor *(gamma_w +1)/(1+ sum_gamma)

*(2*pwa[w,]+ dp_pwa_gamma)

/(2+sum_gamma)

gamma_prime <- (m-m2)/(m2-mˆ2)*m

#

# update

# Define the step size

mu <- 1/document[w]

# update variables tentatively

beta_new[w,]<-mu*(gamma_prime - gamma_w)

+(1-mu)*beta_[w,]

s_new[w]<-zw*gamma(sum(gamma_prime))

/prod(gamma(gamma_prime))

*prod(gamma(gamma_w))

/gamma(sum_gamma)

#

# inclusion

gamma_new <- gamma_+document[w]

*(beta_new[w,]-beta_[w,])

if (sum(gamma_new<0)==0){

gamma_<- gamma_new

beta_[w,] <- beta_new[w,]

s[w]<-s_new[w]

}

}

}

}

return (list(gamma=gamma_,beta=beta_,s=s))

}
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A.1.2 Gibbs Sampler for LDA in R

function(WS,DS,T,NN,ALPHA,BETA,Z=NA){

#

# WS is a vector of observations

# DS has the same length as WS and specifies the document,

# observation i came from

# NN is the number of iterations

# ALPHA is the prior parameter for the topic distribution

# BETA is the prior parameter for the word distribution

# given a topic

#

# e1071 provides useful function for discrete distributions

require (e1071)

#

# Create the return values

#

WP<-matrix(0,nrow=max(WS),ncol=T)

DP<-matrix(0,nrow=max(DS),ncol=T)

ztot<-matrix(0,nrow=T,ncol=1)

#

# Create local and temp variables

#

topic<-0

wbeta <- max(WS)*BETA

#

# Initialize the states

#

if (is.na(Z)){

Z<-matrix(0,nrow=length(WS),ncol=1)

for(i in 1:length(WS)){

wi <-WS[i]

di <-DS[i]

topic<-rdiscrete(1,rep(1/T,each=T),1:T)
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Z[i]<-topic

WP[wi,topic]<-WP[wi,topic]+1

DP[di,topic]<-DP[di,topic]+1

ztot[topic]<-ztot[topic]+1

}

}

else { # Start from previously saved state

for (i in 1:length(WS)){

wi <-WS[i]

di <-DS[i]

topic<-Z[i]

WP[wi,topic]<-WP[wi,topic]+1

DP[di,topic]<-DP[di,topic]+1

ztot[topic]<-ztot[topic]+1

}

}

#

# Finally, start sampling

#

for (iter in 1:NN){

# permutate the order of observations

order<-sample(1:length(WS))

for (ii in 1:length(WS)){

i<-order[ii]

wi <-WS[i]

di <-DS[i]

topic <-Z[i]

ztot[topic]<-ztot[topic]-1

WP[wi,topic]<-WP[wi,topic]-1

DP[di,topic]<-DP[di,topic]-1

# Compute probabilities p(w_i|z)

probs<-(WP[wi,]+BETA)/(ztot+wbeta)*(DP[di,]+ALPHA)

# Sample from this discrete distribution

topic <- rdiscrete(1,probs,1:T)
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#Update the topic counts

Z[i]<-topic

WP[wi,topic]<-WP[wi,topic]+1

DP[di,topic]<-DP[di,topic]+1

ztot[topic]<-ztot[topic]+1

}

}

return (list(WP=WP,DP=DP,Z=Z,ZTOT=ztot))

}
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A.2 Inference and learning for HDP

A.2.1 Gibbs Sampling for HDP

function (hdp, alpha0, gamma, lambda, numiter, vocab)

{

# parameters

# hdp is a list of numeric vector with word indices

# alpha0 is the concentration parameter for each DP

# gamma is the concentration parameter for the HDP

# numiter is the number of iterations

# vocab is the vocabulary

# create some local and intermediate variables

V<-length(vocab)

#use internal representation as Griffiths & Steyvers (2006)

WS<-numeric()

DS<-numeric()

for (i in 1:length(hdp)){

WS <- c(WS, hdp[[i]])

DS<-c(DS,rep(i,length(hdp[[i]])))

}

K<-1 # number of assigned clusters

beta <- rdirichlet(1,c(length(hdp),gamma))

# create the output matrices (these have to grow ...)

# wt vocab x topic, dt document x topic

wt <- matrix(0, V, 1) # one class at first

dt <- matrix(0, length(hdp),1)

# Initialize the relevant vectors

zvec<-rep (1,length(WS)) # First try, assign all to one

# mvec holds the number of tables for each
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# restaurant serving dish k

mvec <- matrix(rep(0,length(hdp)),length(hdp),K)

for (l in 1:numiter){

if (l %% 10 ==0)

print (paste("iteration",l, sep=": "))

# slot is a temp variable that iterates

# over all observations

slot <- 1

# now the Gibbs updates

for (j in 1:length(hdp)){

for (i in 1:length(hdp[[j]])){

pzji <- numeric(K+1)

# Take out the current observation

wt[WS[slot],zvec[slot]]

<- max(0,wt[WS[slot], zvec[slot]] -1)

dt[j,zvec[slot]] <- max(0, dt[j,zvec[slot]] -1)

# always sample for one more topic

for (k in 1:(K+1)) {

if (k < K+1){

# number of customers in restaurant j

# having dish k

njk <- dt[j,k]

pzji[k] <- (njk+alpha0*beta[k])

*(wt[WS[slot],k]+lambda)

/(sum(wt[,k])+V*lambda)

}

else {

# if k=k_new

pzji[k] <- alpha0*beta[k]/V

}

}
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zvec[slot]<-sample(x=1:(K+1),size=1, prob=pzji)

# here we have to increase the number of classes

if (zvec[slot]>K){

K <- K+1

wt<-matrix(wt,V,K)

wt[,K]<-rep(0,V)

dt<-matrix(dt,length(hdp),K)

dt[,K]<-rep(0, length(hdp))

mvec <- matrix(mvec,length(hdp), K)

mvec[,K] <- rep(0,length(hdp))

}

# Now, put everything back in order

wt[WS[slot], zvec[slot]]

<- wt[WS[slot], zvec[slot]] +1

dt[DS[slot], zvec[slot]]

<- dt[DS[slot], zvec[slot]] +1

# sample the number of tables

for (k in 1:K)

mvec[j,k]<-sample_tables

(alpha0, beta[k],dt[j,k])

# sample beta

beta<- rdirichlet(1,c(apply(mvec,2,sum),gamma))

# Delete empty classes

wtGzero <- apply (wt, 2, sum)>0

wt<-matrix(wt[,wtGzero],V)

dt<-matrix(dt[,wtGzero], length(hdp))

mvec<-matrix(mvec[,wtGzero], length(hdp))

K<-sum(wtGzero)

# fix the z vector

for (i in 1:length(wtGzero)){

# this was an empty class before
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if (!wtGzero[i])

zvec[zvec>i]<-zvec[zvec>i]-1

}

slot <- slot+1

}

}

}

dimnames(wt)[1]<-list(words=vocab)

return (list(WT=wt, DT=dt, Z=zvec))

}

A.2.2 Auxiliary Variable Sampling

function (prior, numTables, numDraws, numIter) {

# a and b are the parameters for the gamma prior

a<- prior[1]

b<- prior[2]

# J is the number of restaurants

J <- length(numDraws)

# Initialize auxiliary variables

s <- sample(c(0,1),size=J, replace=TRUE)

w <- runif(J)

# Declare the concentration parameter

alpha0 <- 0

for (i in 1:numIter){

#First, sample alpha0

alpha0 <- rgamma(1,a+numTables-sum(s),

scale=b-sum(log(w)))

# then resample s

p <- numDraws/alpha0/(numDraws/alpha0 +1)

s <- apply(as.matrix(p),1, function(x) rbinom(1,1,x))

# Finally, resample w
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w <- apply (as.matrix (numDraws), 1,

function(x) rbeta(1, alpha0+1, x))

}

return (list(alpha0=alpha0, s=s, w=w))

}
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APPENDIX B:
Implementation Examples

B.1 A MEX Function to Compute the PMF for the Number
of Mixture Components in a CRP

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "mex.h"

void mixpmf(double *p, int n, double g){

int i,j;

double *pp, *tmp;

pp=mxCalloc(n,sizeof(double));

p[0]=1;

for (i=2; i<n; i++){

pp[0]=(i-1)*p[0]/(i-1+g);

for (j=1; j<i; j++) pp[j]=((i-1)*p[j]+g*p[j-1])/(i-1+g);

tmp=p;

p=pp;

pp=tmp;

}

}

void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[]){

double g, *p;

int n;

n=(int)(mxGetScalar(prhs[0]));
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g=(double)(mxGetScalar(prhs[1]));

plhs[0]=mxCreateDoubleMatrix(1,n,mxREAL);

p=mxGetPr(plhs[0]);

mixpmf(p,n,g);

}

B.2 Matlab Code to Train HDP Model
% create the prior distribution parameters

pML = zeros(vocabSize,1);

numTokens=0;

numDoc =size (restaurants,2);

for (i=1:numDoc)

numTokens=numTokens+size(restaurants{i},2);

end

for (i=1:numDoc)

for (j=1:size(restaurants{i},2))

pML(restaurants{i}(j)) = pML(restaurants{i}(j)) +1;

end

end

hh=pML/numTokens*200;

% create the matrix for the sum of the models

pTotal = zeros(vocabSize,size(restaurants,2));

% create the prior parameters on the hyperparameters

% (\gamma˜Gamma(1,0.1)

% and \alpha_0˜Gamma(1,1))

alphaa=[ 1 1];
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alphab=[ .1 1];

% train the different Markov chains

for (c=1:10)

% train the model

[hdp, sample, lik, predlik] = hdp2Multinomial_run(

hh,alphaa, alphab,200,

restaurants, restaurants,1000,

20, 100, 1, 1, 15, 1, 1);

% obtain the topics as smoothed

% distributions over words

p_w_z=hdp.base.classqq(:,1:hdp.base.numclass);

for (i = 1:hdp.base.numclass)

p_w_z(:,i)=(p_w_z(:,i)+hh)

./(sum(p_w_z(:,i))+sum(hh));

end

% obtain the documents as distributions over topics

p_z_d=zeros(hdp.base.numclass,size(restaurants,2));

for (i = 2:(size(restaurants,2)+1))

p_z_d(:,i-1)=hdp.dp{i}.classnd(1:hdp.base.numclass);

end

% normalize column wise

p_z_d=p_z_d*diag(1./sum(p_z_d,1));

% generate the final model

p_w_d=p_w_z*p_z_d;

fprintf(’RUN %d finished\n’,c)

pTotal = pTotal + p_w_d;

end

% compute the average

p_w_d = pTotal/10;
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B.3 Java Methods

B.3.1 Average Precision Computation

/**

* @return the average precision for the

* retrieval task based on the

* benchmark corpus.

*/

public double[] computeAveragePrecision() {

int numQ = queries.size();

double[] aP = new double[numQ];

for (int i = 0; i < numQ; i++) {

double pN = 0;

// each Query object "knows" its

// relevant documents

ArrayList<Integer> relDocs =

queries.get(i).getRelevantDocs();

int numRel = relDocs.size();

int numFound = 0;

// qres is an ordered list of documents

SearchResults qRes = results.get(i);

int lastRelRank = 1;

int r = 1;

double sumPn = 0;

for (DocScore d : qRes) {

if (relDocs.contains(d.id())) {

numFound++;

pN = (pN * lastRelRank + 1) / r;

sumPn += pN;

lastRelRank = r;

}

// if all relevant documents are found, stop

if (numFound == numRel)

64



break;

n++;

}

aP[i] = sumPn / numRel;

}

// return the mean average precision

return aP;

}

B.3.2 Computation of Mean Average Precision

public double computeMeanAveragePrecision() {

double[] aP = computeAveragePrecision();

double mAP = 0;

for (int i = 0; i < aP.length; i++)

mAP += aP[i];

return mAP / aP.length;

}
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