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ABSTRACT 

An ensemble prediction system (EPS) generates flow-dependent estimates of 

uncertainty (i.e., random error due to analysis and model errors) associated with a 

numerical weather prediction model to provide information critical to optimal decision 

making.  Ambiguity, or uncertainty in the prediction of forecast uncertainty, arises due to 

EPS deficiencies, including finite sampling and inadequate representation of the sources 

of forecast uncertainty.  An EPS based on a low-order dynamical system was used to 

investigate the behavior of ambiguity, validate two practical estimation methods against a 

theoretical (impractical) technique, and apply ambiguity in decision making.  Ambiguity 

generally decreased with increasing lead time and was found to depend strongly on 

ensemble forecast variance and the variability of ensemble mean error.  The practical 

estimation techniques provided reasonably accurate ambiguity estimates, although they 

were too low at early lead times.  The theoretical ambiguity estimate added significant 

value when combining ambiguity with forecast uncertainty to provide a single normative 

decision input.  Additionally, value added to secondary user criteria (e.g., minimizing 

repeat false alarms), was explored using the practical estimations.  Repeat false alarms 

were significantly reduced while maintaining primary value by using ambiguity 

information to selectively reverse normative decisions to take protective action, which 

effectively redistributed negative outcomes. 
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I. INTRODUCTION 

The primary tool for weather forecasters today is the Numerical Weather 

Prediction (NWP) model, and ensembles are rapidly gaining momentum as the preferred 

application.  Ensemble forecasts provide an estimation of the uncertainty associated with 

NWP forecasts, but at this time the forecast is typically employed without consideration 

of the uncertainty associated with the ensemble’s prediction of uncertainty.  This research 

is focused on exploring methods to objectively quantify the uncertainty in an ensemble 

forecast and determine the value of knowing that information. 

Over many years, the mold has been cast for using NWP models for deterministic 

forecasting, i.e., using a single model forecast to convey the future state of the 

atmosphere.  Although great improvements have been made since the birth of NWP (e.g., 

increased computing power, better model physics, finer grid scales and improved 

numerical methods), the deterministic application of NWP still produces forecasts with a 

great deal of uncertainty (Leutbecher and Palmer 2007).  We can’t get around the fact 

that even small errors in the initial conditions grow to produce large forecast errors 

(Lorenz 1969).  Thus, deterministic NWP may not be the most effective approach.  

Improvement of the NWP model can provide only finite improvement in forecast quality 

(Brooks and Doswell 1993; Lorenz 1993).  Ensemble forecasting was introduced as a 

means of objectively characterizing the uncertainty in NWP forecasts.  It involves 

running multiple, parallel models (members), where each member has perturbations to 

the initial conditions and the model.  An ideal ensemble prediction system (EPS) includes 

perturbations in the initial conditions that capture all possible errors in the analysis, as 

well as model perturbations representing all possible model errors, which requires an 

infinite number of members. 

Ensemble forecast information has several applications, including predicting 

deterministic forecast skill (via the ensemble spread) and improving deterministic 

forecast skill (via the ensemble mean) (Eckel 2008).  The definitive application of 

ensemble forecasts is production of a forecast probability of occurrence for a specific 
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event (e.g. temperature < 0°C), which can have high value in the decision making process 

(Eckel 2008).  Numerous studies have shown the value of using probabilistic decision 

inputs over using deterministic or climatological information (e.g., Katz and Murphy 

1997; Richardson 2000; Palmer 2002; Zhu et al. 2002).  The problem that is largely 

overlooked at this time is the uncertainty associated with the ensemble forecast itself 

(Eckel and Allen 2009).  Uncertainty in the ensemble forecast is due to design and 

computational restrictions that preclude running an ideal EPS.  Today’s EPSs use finite 

number of ensemble members and inadequate representation of the uncertainty associated 

with the initial conditions and model design.  Thus, there is uncertainty in the estimation 

of forecast uncertainty, a phenomenon termed ambiguity.  Ambiguity has been 

considered in formal decision science for many years and is generally studied in the vein 

of understanding people’s attitudes towards ambiguity in the decision, or ambiguity 

aversion (Ellsberg 1961; Camerer and Weber 1992).  In these studies, the decision-

maker’s estimate of the uncertainty is typically subjective (Camerer and Weber 1992; 

Wallsten 1990).  Application of objectively estimated second-order uncertainty to 

optimize decisions was not attempted. 

The main objectives of this research are to: (1) understand the mechanisms behind 

the evolution of ambiguity associated with an ensemble forecast, (2) validate objective 

estimates of ambiguity associated with an EPS, and (3) explore methods of applying the 

ambiguity information in order to add value in decision making. 

This dissertation is organized into five chapters, including this Introduction.  The 

Background chapter (Chapter II) provides an overview of basic ensemble forecasting 

theory with a more in-depth look at sources of error in the EPS directly relating to 

ambiguity.  In addition, Chapter II reviews the methods used during this research to 

determine the value of the ambiguity information in decision making.  Chapter III 

provides the Methodology used to accomplish the three research objectives, including the 

NWP model and EPS design.  Results of the behavior, validation, and value studies are 

presented in Chapter IV.  Finally, conclusions and future research are addressed in 

Chapter V. 
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II. BACKGROUND 

A. ENSEMBLE FORECASTING 

Since the advent of Numerical Weather Prediction (NWP) with the first 

successful 24-hour forecasts by Charney and his group in 1949, the primary role of NWP 

has been to produce deterministic prognoses of the future state of the atmosphere (Lewis 

2005).  Over the following decades, the chaotic nature of the atmosphere has come to be 

understood by meteorologists, ushering in a new paradigm for atmospheric prediction.  

First conceived by Poincare in 1914 and later proven by Lorenz in his seminal paper in 

1963 (Eckel 2008; Lorenz 1963), chaos describes the behavior of nonlinear dynamical 

systems.  What appears to be randomness in the evolution of the deterministic system is 

actually the result of sensitive dependence to initial conditions (ICs).  Small errors in the 

ICs are evolved according to the system’s (deterministic) rules, and these errors grow 

nonlinearly with increasing forecast lead time.  Ultimately, the error grows so large that 

the forecast is no better than one conceived using past observational data (i.e. 

climatology).  At this point, the limit of predictability has been reached. 

Observations of the current state of the atmosphere cannot accurately represent 

the current conditions at all points and on all scales.  Thus, even if our NWP models were 

perfect, error in the ICs would render the forecasts useless after a short time.  As an 

added complication, our NWP modeling systems are not perfect in that they cannot 

represent atmospheric phenomena on all spatial or temporal scales, forcing modelers to 

approximate many subgrid scale, unresolved processes.  Thus even given perfect ICs, 

model deficiencies would again result in nonlinear error growth and limit predictability.   

Forecasts of the future states must be looked at as uncertain events where there 

exists some chance of occurrence (Eckel 2008).  The concept of ensemble forecasting 

(EF) was first introduced by Leith in 1974 (Leith 1974; Lewis 2005).  Leith proposed 

using multiple perturbed NWP runs to produce a limited sample of possible future states.  

By using the mean value of forecasts from approximately 10 different NWP runs, Leith 
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was able to show improvements in forecasts with lead times out to 10 days (Sivillo et al. 

1997).  While requiring large computational resources, EF was seen as a viable method to 

estimate forecast uncertainty. 

An EF is essentially a group of concurrent NWP forecasts, where each member of 

the ensemble is run using slightly different (perturbed) ICs and perturbations to the NWP 

model.  The purpose of the ensemble forecast is to simulate the error growth associated 

with errors in the analysis of the current state and deficiencies in the NWP model, and to 

produce a sample of likely forecast states (Eckel 2008).  Separating these two error 

sources in real-world ensemble prediction systems (EPS) may not be possible, as the 

first-guess used during the data assimilation (DA) process to produce the analysis for the 

next model run is typically a forecast state from the previous model run.  This forecast 

state (background) is then updated using observations to nudge it closer to the current 

observed state of the atmosphere, ultimately providing an analysis of the current state that 

is more precise than either the observations or the background. 

Anderson (1996), Eckel (2008), Toth and Kalnay (1993), and Traction and 

Kalnay (1993) describe the basic applications of EF data: 

 EF mean accuracy is better on average than deterministic NWP; 

 EF spread gives the confidence in a single deterministic NWP model run; 

 Solution clusters can aid in narrowing the most likely evolution; 

 Forecast probability of occurrence for some event can be calculated from 
the distribution of EF members. 

Forecast probability is the ultimate product of EF data, since it provides the forecast user 

with objective uncertainty information regarding the event in question.  The user can then 

complete a thorough risk analysis and optimize decision making. 

There are many sources of error in NWP within the two general types, analysis 

error and model error.  An ideal EPS will account for all sources of uncertainty associated 

with its modeling system.  Any EPS deficiencies (errors not accounted for) result in 

errors in the ensemble forecast probability density function (PDF).  If the ensemble 

forecast PDF is wrong, then measures of uncertainty in the forecast will be incorrect, 

including forecast probability.  Sources of error in the ensemble forecast PDF include 
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limited sampling and poor simulation of IC errors and model errors.  Model errors can be 

associated with the numerical techniques used in NWP as well as inaccuracies or 

uncertainty in subgrid scale, unresolved processes due to unrepresentative 

parameterizations or inadequate model resolution.  In general, error can be separated into 

two categories, systematic and stochastic.  Systematic error is bias or errors that 

consistently repeat.  Stochastic error describes the variance of error about systematic 

error.  Systematic and stochastic errors occur in all moments of the ensemble forecast 

PDF.     

The following sections describe current state-of-the-art techniques used by 

operational forecast centers to generate IC and/or model perturbations in an EPS, while 

focusing on the limitations of the techniques and thus their contributions to stochastic 

error and ultimately ambiguity.  Additionally, different sources of model error, horizontal 

resolution and the implications of limited sampling on ensemble forecasting are 

discussed. 

1. Accounting for Analysis Error—IC Perturbations 

Analysis error is any difference between the estimated and the true state of the 

system at initialization of the NWP model.  Analysis error may result from errors in the 

observations due to instrument limitations or the inability to observe at all spatial and 

temporal scales.  Additionally, analysis error may come about in data assimilation when 

an erred forecast state from a previous model run (i.e., the background) is combined with 

the observations.  Also, when the background and observation information are combined, 

error may be introduced through interpolation or variable transformation.  An analysis 

may be considered perfect (i.e., all grid point values accurately represent the average 

conditions within the grid box) and still be in error since it cannot represent sub-grid 

scale conditions or the numerical precision of actual atmospheric variable values.   

The model analysis is a hyperdimensional vector containing the values of all state 

variables, where the values describe the instantaneous state of the system in phase space 

(i.e., a region where all state variables are represented by a unique dimension) (Eckel 

2008).  A perturbation or change to any state variable results in a change of location of 
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the state in phase space, which may be described as a change in the direction of the 

hyperdimensional vector pointing to the instantaneous state from a fixed origin.  In 

ensemble forecasting, IC perturbations produce possible analysis states within the 

model’s attractor (i.e., the collection of all naturally occurring states of the model in 

phase space) that are consistent with the analysis error covariance and structured to 

simulate the fastest error growth based on the analyzed state of the system, for example, 

perturbing the location of a baroclinic zone.  Thus the goal is to produce perturbed ICs 

that are equally likely estimates of the true state that cover all scales of motion and lead 

to accurate simulation of error growth associated with the current flow (Eckel 2008). 

Properly representing the sources of uncertainty relevant to the current flow is an 

important aspect of EF.  Purely random ICs used with a finite member EPS will likely not 

adequately represent the analysis uncertainty, as error growth associated with many 

members will be too slow or even decrease early in the forecast (Magnusson et al. 2008).  

The generation of ICs for EF is intended to provide a range of analysis states that allow 

the EF solution to adequately disperse given the current uncertainty in the analyzed state.  

Given a perfect model, the n members’ states of the EF should encompass the true 

forecast state at some later lead time at a rate of  ( 1) / 1n n   (Eckel 2008).  Several 

varying techniques are currently in use at the major operational forecast centers, but these 

techniques can be divided into two categories (Leutbecher and Palmer 2008—hereafter 

LP08). 

The first category is described by LP08 as techniques designed to produce 

perturbed ICs using ensemble-based DA, such as the Ensemble Kalman Filter (EnKF) 

with perturbed observations.  In this method, employed by the Canadian Meteorological 

Service, multiple DA cycles are performed using observations perturbed by random noise 

simulating observational error (LP08).  EnKF produces an ensemble of analysis states 

that can be used as EF ICs, where the ensemble of perturbed analyses is created by 

optimally combining the perturbed observations with an ensemble of perturbed forecasts.  

Also, the mean of the EnKF member states may be used as the best-guess analysis from 

which to start a single NWP model run.  EnKF is discussed in more detail in Chapter 

III.A.3.  A limiting factor for the EnKF is estimation of background error covariance used 



 7

when updating the ensemble of perturbed forecasts.  An EnKF ensemble that is too small 

may result in spurious, unrealistic correlations between locations in the model domain 

giving a noisy estimate of the background error covariance (Hamill et al. 2001; Lorenc 

2003).  Also, small ensemble sizes may result in background error covariance estimates 

that are too small leading to non-optimal estimates of the Kalman gain (Hamill et al. 

2001; Lorenc 2003).  Covariance estimate errors may also be introduced by errors in the 

NWP model used to integrate the EnKF members.  The background error covariance 

problems described and/or a lack of quality, timely observations may lead the EnKF 

analyses to drift away from the true state of the system resulting in large analysis error.  

The UK Meteorological Office (UKMO) uses a technique called the Ensemble 

Transform Kalman Filter (ETKF).  The ETKF uses a transformation matrix to transform 

an ensemble of perturbed forecast states into an ensemble of perturbed analysis states 

(Wang and Bishop 2003).  The transformation matrix rotates and scales the forecast 

perturbations based on observational information producing orthogonal analysis 

perturbations exhibiting variance that satisfies the Kalman filter error covariance update 

equation (Wang and Bishop 2003; Wei et al. 2006).  The formulation of the ETKF does 

not allow it to be used to produce a best-guess analysis, so it must be used in conjunction 

with some DA technique (LP08; Wang and Bishop 2003).  In this case, the background 

error covariance matrix used in DA will not strictly match the covariance matrix 

developed using the ensemble leading to errors in the estimate of the analysis error 

covariance since the ETKF assumes the matrices match (Wei et al. 2006).  Like the 

EnKF, this perturbation generation method is sensitive to the ensemble size, thus 

covariance inflation is necessary to prevent underestimation of analysis error covariances 

for small ensembles (Wei et al. 2006).  Underestimation of the analysis error covariance 

is also possible if model error is neglected.  Importantly, the transformation matrix and 

the inflation factor as discussed by Wang and Bishop (2003) and Wei et al. (2006) are 

sensitive to the spatial and temporal variability of the observation network used.  Routine 

changes in the observation density in an operational observation network can greatly 

affect the accuracy of the ETKF. 
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The second category of techniques includes those that attempt to select 

perturbations capturing the greatest error growth over some forecast period.  According 

to LP08, the techniques “selectively sample initial uncertainty only in directions that are 

dynamically most important for determining ensemble dispersion.”  It is assumed that the 

growing modes found will continue to show the largest error growth beyond the forecast 

period used for selection.  The bred vectors (BV) method, currently used in the National 

Center for Environmental Prediction’s (NCEP) short-range EF (SREF), is in this 

category.  In BV, a random perturbation is applied to an initial state, and both the 

perturbed and original states are evolved forward using the NWP model over some 

forecast period.  At the end of the forecast period, the vector difference between the 

perturbed and original states is found.  This difference vector is rescaled to match the 

typical analysis error magnitude and then used to perturb a new initial state.  After several 

repeated cycles, the final perturbation direction is found.  This process is repeated using 

several random perturbations to find multiple final perturbations that are used as the 

ensemble ICs (LP08).  The BV method is limited by the fact that it attempts to find only 

the perturbations responsible for the greatest error growth, whereas other perturbation 

directions may also be important (Eckel 2008).  In addition, the perturbation rescaling 

process can introduce errors, thus a regional or variable dependent rescaling may be 

necessary.  Rescaling only certain variables that exceed a global analysis error value 

changes the direction of the hyperdimensional state vector describing the system and 

changes the direction of the perturbation found using BV (Eckel 2008). 

The European Centre for Medium-Range Weather Forecasts (ECMWF) employs 

a technique that falls into the second category termed singular vectors (SV).  The SV 

method finds the leading singular vectors or directions of maximum growth based on a 

linear version of the NWP model over some optimization period, typically taken as 48-

hours for ECMWF ensemble forecasts (LP08).  In other words, SV determines the 

directions of initial uncertainty that lead to the largest forecast uncertainty dynamically 

constrained by the NWP model (LP08).  SV are sensitive to the choices made for the 

length of the optimization period and the norm used to evaluate the magnitude of the 

vector (e.g., Euclidean norm or total energy norm) (Kalnay 2003).  Thus very different 
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SV may result from varying these two parameters.  Another limitation of SV is the 

assumption of linear error growth over the optimization period (ECMWF 2009) requiring 

the use of a tangent-linear version and adjoint of the full, nonlinear NWP model.  The 

tangent-linear model employed at ECMWF uses a simplified physics package without 

physical parameterizations (except for simple vertical mixing and friction), which may 

also result in suboptimal SV perturbations due to model deficiencies (LP08).  Magnusson 

et al. (2008) found that SV are best for shorter time-scale forecasts, as their effectiveness 

degrades at longer time scales.  Presumably, at longer lead times the SV associated with 

maximum error growth are different than those calculated over the optimization period. 

Comparison studies performed to determine if one method or category of IC 

generation techniques is superior have had mixed results.  Using current operationally 

produced data, it is difficult to separate the techniques from the numerical models they 

are applied to, which are of varying quality, thus no conclusive results have been found 

(LP08).  In idealized studies, more interesting and informative comparisons between the 

categories have been achieved.  Houtekamer and Derome (1995) found that the 

techniques in each of the categories produced equally skillful ensemble mean forecasts.  

Hamill et al. (2000) found the ensemble-based methods had superior statistical 

consistency (defined by Anderson 1996, 1997 and Talagrand et al. 1997), mainly early in 

the forecast period.  In a more recent study, Descamps and Talagrand (2007) analyzed the 

skill and statistical consistency of ensemble forecasts made using a model of a low-order 

dynamical system as well as a quasi-geostrophic model in a perfect model context using 

EnKF, ETKF, BV and SV initial conditions.  They found the skill of the ensemble mean 

was significantly higher for the EnKF and ETKF forecasts.  Statistical consistency and 

other forecast skill and quality tests (i.e., Brier score and relative operating characteristic) 

also showed significant improvement when using the ensemble-based methods.  These 

results confirmed tests by Bowler (2006) who found EnKF outperformed SV and BV in 

an EPS based on the same low-order model used by Descamps and Talgrand. 
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2. Accounting for Model Error—Model Perturbations 

Model error is any difference between the model attractor and the true 

atmospheric attractor resulting from the design of the NWP model, including limits in 

model resolution, mathematical formulation, physics, and lateral and surface boundary 

conditions.  For example, parameterizations are used within the NWP model to account 

for the effects of subgrid scale, unresolved processes on the forecast evolution.  In some 

cases, the parameterized process may not be well understood or the availability of 

observational studies used to develop or train the parameterization may be limited.  In 

these cases, forecast uncertainty may be high when the forecast trajectory is sensitive to 

the parameterization errors.  The aim of perturbing the model is to introduce equally 

likely perturbations that represent probable model error covering all scales of motion 

(Eckel 2008), thus providing model diversity during the ensemble forecast that 

adequately represents the current flow’s sensitivity to the model error. 

Although a majority of the research into proper perturbations for an EPS has been 

focused on generation of ICs, the significance of model deficiencies to uncertainty in the 

ensemble forecast cannot be overlooked.  Accounting for model error using one of the 

techniques described below can increase dispersion and improve overall skill particularly 

for surface, sensible weather phenomena of concern to users (Eckel 2003; Mylne et al. 

2002).  EPSs that do not account for model error are necessarily under-dispersive, as the 

model attractor does not mimic the true system attractor. 

Descamps and Talagrand (2007) expanded their study of the quasi-geostrophic 

EPS to include model error.  Once again, they found the ensemble-based IC perturbation 

techniques performed the best, but the skill and consistency of all methods was reduced 

by the introduction of model error.  Their results also indicated that the gains made by 

using the ensemble-based IC generation methods did not last as long into the forecast 

period when model error was introduced.  The authors explain this result as a 

consequence of rapidly growing transient instabilities (errors) in the flow generated early 

in the forecast.  Thus at later lead times, deficiencies in the underlying forecast model 
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may rapidly dominate over the quality of the initial conditions in regards to forecast 

uncertainty.  Therefore, uncertainty in the forecast due to model deficiencies must be 

accounted for. 

a. Basic Techniques 

There are three basic techniques used to account for model error in an 

EPS.  The first technique is called stochastic-physics and is used at ECMWF.  Buizza et 

al. (1999) describe stochastic-physics as randomly perturbing the tendency of the state 

variables during integration with “some appropriate degree of spatio-temporal 

autocorrelation.”  The state variables are perturbed in an attempt to capture the influence 

of parameterization errors.  Studies by Evans et al. (2000), Ziehmann (2000), and 

Richardson (2001) indicate this technique has limited effectiveness, likely due to each 

ensemble member using the same model attractor resulting in limited diversity.  Random 

changes to the state variables move a member’s trajectory off of the attractor, but it then 

converges back rapidly (Eckel 2003).  Backscatter is another stochastic method used to 

account for unrepresented dynamical processes in the NWP model, where energy at 

subgrid scales is excited and transferred up-scale to resolved scales (Shutts 2005).  Shutts 

provides support for the argument that energy dissipation in NWP models is excessive, 

thus arguing the need for local up-scale kinetic energy transfer.  He found an 

improvement in ensemble spread, consistency and skill using an EPS with stochastic-

physics and stochastic backscatter, while acknowledging the stochastic-physics 

contribution to increased spread was “small but consistently positive.”  Backscatter is 

limited by our ability to accurately estimate atmospheric energy dissipation and local up-

scale energy transfer (Shutts 2005), which naturally leads to errors when exciting energy 

transfer in the NWP model. 

The next model perturbation technique is termed perturbed model.  In this 

method, a single NWP model is used, but parameterizations within the model are 

perturbed for each member.  Understanding the uncertainty in the model associated with 

the parameterizations is a difficult question.  Model parameterizations are perturbed 

within some estimate of the parameter uncertainty with the assumption that the correct 
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mean tendency can be achieved from one of the perturbations (LP08).  In this way, it is 

assumed that the distribution of possible forecast states will encompass the true forecast 

state.  However, each member shares many of the same model design features (i.e., the 

model core) and may not adequately reflect the uncertainty in the current flow (Eckel 

2003).  Using a stochastic (randomly perturbed) parameterization in a low-order model, 

Wilks (2005) found the stochastic parameterization outperformed a deterministic 

parameterization in representing the climatology of the true system, ensemble mean 

performance, and ensemble dispersion.  However, the perturbed model EPS is limited by 

our understanding of the parameterized processes and thus our estimate of the associated 

uncertainty and the sensitivity of the forecast to errors in a given parameterization.  Even 

if a parameterization is perturbed accurately, model error is inevitable since the single 

parameter value is used to represent a continuous spectrum of possible true values for a 

single model grid box. 

The final approach used to account for model error is the multi-model 

technique, where each ensemble member is based on a different NWP model or model 

configuration.  For example, two members of a multi-model EPS can be the NCEP and 

ECMWF control forecasts, or they may both be from the same model where a different 

convective parameterization is used in each.  The different models will generally have 

different numerical schemes, physics schemes and parameterizations.  In this way, each 

member model has a distinct attractor increasing ensemble dispersion.  It has been shown 

that differences in skill among members for a given forecast is not a problem, as this also 

adds diversity to the distribution of forecast solutions.  The primary assumption is that on 

any given day, any of the ensemble members has the potential to outperform the others.  

Thus a model that consistently exhibits low individual skill may not add skill to the 

ensemble forecast.  Mylne et al. (2002) found that a multi-model EPS improves skill, 

while Ebert (2001) showed that multi-model ensembles were less likely to suffer from 

under-dispersion due to systematic errors.  Multi-model ensembles are limited by the 

availability of different NWP models or by computational restrictions that do not allow 

all possible combinations of model configurations.  When using a multi-model ensemble 
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where several members are designed around a single model core, similarities between the 

ensemble members will reduce model diversity. 

Error in the NWP model can come from many different sources.  The 

model perturbation techniques described approach the sources of model error from 

different perspectives in an attempt to simulate forecast uncertainty.  Thus, an ideal EPS 

should use all of these methods in conjunction with one another to achieve the greatest 

model diversity and the most accurate estimate of forecast uncertainty.  Additional 

sources of NWP model error that must be accounted for are described in the following 

sections. 

b. Boundary Conditions 

Model boundary conditions are a significant source of model error that is 

normally accounted for separately (from the above basic techniques) in an ensemble.  

This source of error includes the handling of lateral boundary conditions (LBC) for a 

limited-area model (LAM) as well as the surface and upper boundaries of any NWP 

model.  A LAM requires the use of LBC updates during model integration, generally 

supplied by a global NWP model, to transfer information from outside the LAM across 

the boundary.  An EPS based on a LAM must perturb the LBCs to capture uncertainty 

flowing across the boundary into the LAM domain.  Studies described in Nutter et al. 

(2004a and 2004b) indicated that LAMs showed greater sensitivity to changes in LBCs 

than in ICs, and that a SREF using perturbed LBCs produced forecasts with improved 

dispersion.  LBCs may be taken from the members of a single- or multi-model, global 

EPS, where the differences between the global LBCs provide the perturbations.  

Perturbations to LBCs are limited by the coarse spatial and temporal availability of global 

information used to update the boundaries, thus missing mesoscale variability (Eckel 

2008).  Nutter et al. showed how the limitations may be mitigated using dynamically 

consistent, finescale random perturbations mimicking error growth at every time step 

between LBC updates, but there are no operational centers currently applying this 

technique. 
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The surface boundary is another aspect of NWP modeling that plays a 

significant role in producing model error.  Surface boundary parameters, such as soil 

moisture, soil type, vegetation type and fraction, and snow cover for example, impact the 

evolution of the atmosphere.  While these variables are continuous in nature, they are 

accounted for in the model using two-dimensional surface fields providing representative 

values on the NWP model grid (e.g., using seasonally-based land use tables).  Thus the 

surface boundary parameters are a source of random error since they cannot accurately 

represent conditions at all scales and sensitivity to parameter errors are unknown for any 

given forecast.  Another significant source of error at the surface boundary is the sea 

surface temperature (SST) field used in the NWP model.  Most operational NWP 

modeling systems are not coupled to an ocean model and use only a static SST analysis 

throughout the forecast (Kalnay 2003).  Perturbations to the surface boundary parameter 

fields within the estimated uncertainty may be used in an EPS to account for sensitivities 

associated with variations (Eckel and Mass 2005).  The methods used to account for 

uncertainty in the formulation of surface boundary parameters are limited, as many of the 

surface processes taking place may not be well understood or well observed (spatially 

and temporally).  Initializing and estimating the uncertainty associated with these 

processes in order to perturb them properly is difficult, and incomplete parameter field 

tables may potentially omit significant parameters.   

Model error can also be produced by interactions at the model’s upper 

boundary, where assumptions must be made regarding the evolution of conditions above 

the model’s top during integration.  In addition, the rigid lid or constant pressure surface 

employed by most NWP models results in gravity wave reflection, which can impact 

forecast conditions throughout the depth of the model.  The gravity wave effects may be 

mitigated by absorption, damping or other techniques at the upper boundary.  At this 

time, no operational EPSs consider the uncertainty associated with upper boundary 

conditions or interactions at the boundary during the forecast. 
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c. Horizontal Resolution 

Another critical source of model error is the effect of subgrid scale or 

unresolved dynamical processes.  Grid point models can adequately resolve features on 

the scale of 7-8 grid points (Kalnay 2003), which leads to many dynamical processes 

taking place below the resolution of the model.  These unresolved and therefore 

unaccounted for processes add uncertainty to the forecast, resulting in errors in the 

forecast PDF and under-dispersion in that the range of forecast states cannot reach the 

range of possible true states.  Although the stochastic physics techniques described 

previously (Chapter II.A.2.a) attempt to account for these errors, they have been shown to 

produce marginal improvements and cannot fully simulate the subgrid scale uncertainty.  

Additionally, the model attractor will never exactly mimic the atmospheric attractor due 

to its limited dimensionality (i.e., resolution).  Thus any given model state, where the 

value of the state variables at each grid point are the mean values for the grid box, may 

actually map to many different true atmospheric states creating model error.  

Increasing horizontal resolution has been shown to improve the skill of the 

ensemble mean (Szunyogh and Toth 2002), thus providing a forecast PDF with reduced 

random error in location.  An ensemble study conducted by Mullen and Buizza (2002) 

centered on the impacts of horizontal resolution and ensemble size on precipitation 

forecasts found a higher-resolution model performed better than a lower-resolution model 

for multiple consistency and skill measures (e.g. rank histograms, BSS, ROC).  Their 

findings also indicated that using a lower resolution model while increasing ensemble 

size can outperform an EPS using higher resolution and fewer members, especially when 

forecasting rare events.  However, given an equal number of members, the higher-

resolution EPS will perform better.   

Toth et al. (2002) assert the true value of increasing horizontal resolution 

is found when applied to ensemble forecasting.  Their study showed improved ensemble 

mean and probabilistic forecasts for 500 hPa geopotential heights in the northern and 

southern hemisphere extratropics.  Noise associated with small-scale features that have 
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lost predictability interacting with larger-scale, predictable features realistically represent 

natural processes and improves the ensemble’s performance. 

3. Limited Sampling 

Computational constraints on an operational EPS force forecast centers to limit 

the number of ensemble members to ensure timely delivery of forecast products.  An 

ensemble with few members cannot consistently reproduce the forecast PDF from which 

they are drawn (Figure 1).  The mean and spread error for any one case due to limited 

sampling cannot be known a priori.  Sampling distributions of error in the ensemble 

mean and error in the ensemble spread based on random draws from an  0, 1N  

distribution for different ensemble sizes, show that error can vary greatly, especially for 

small ensembles (Figure 2).  For both distributions in Figure 2, the potential error in the 

statistics decreases with increasing ensemble size, indicating that increased sampling 

provides a better estimate of the forecast PDF (Wilks 2006).  Error in the estimated PDF 

due to limited sampling decreases exponentially with increasing ensemble size.  The 

exponential decrease naturally leads to a leveling off of improvements to skill, where the 

added benefit may no longer justify the additional expense of adding more members.  A 

similar effect is seen when comparing the skill of ensemble probability forecasts.   

While the techniques described for perturbing the initial conditions and the NWP 

model in an EPS are sophisticated compared to purely random perturbations, they are still 

limited in their ability to fully cover the spectrum of possible error sources associated 

with an NWP modeling system.  Even if an EPS were perturbed perfectly, limited 

sampling would generate random error in the forecast PDF.  The inescapable existence of 

random or seemingly random error in the ensemble forecast means that ambiguity is 

inevitable in predictions of forecast uncertainty.   

B. AMBIGUITY 

In general terms, ambiguity, or second-order uncertainty, can be described as the 

uncertainty associated with estimates of uncertainty (NRC 2006).  Camerer and Weber 

(1992) defined ambiguity as “uncertainty about probability, created by missing 
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information that is relevant and could be known.”  Ensemble-based forecast probability 

provides uncertainty information regarding the future state of a system, specific to an 

event criterion.  Ambiguity is therefore the uncertainty surrounding the forecast 

probability (NRC 2006; Eckel and Allen 2009), which can be described by a distribution 

of forecast probability values, referred to here as an ambiguity distribution. 

Ambiguity may be found in ensemble forecasts that have limited sampling and 

insufficient simulation of sources of forecast uncertainty, i.e., the relevant, missing 

information.  Ultimately, this leads to an inability of the ensemble to consistently 

reproduce or represent the true forecast PDF.  The true forecast PDF is defined as the 

aggregate of all possible atmospheric states given a particular analysis using a specific 

NWP modeling system (Eckel and Allen 2009).  Therefore, the true forecast PDF is 

specific to the EPS’s underlying modeling system.  Assume we have an infinite record of 

model analyses along with the resulting forecasts and atmospheric observations, where 

neither the model nor the atmospheric system has changed.  To determine the true 

forecast PDF for a specific forecast lead time, we first search the record for all previous 

model forecasts matching the current model forecast.  The analyses used to initialize each 

match will be the same, but their associated true states will be unique due to analysis 

error, thus the true state at each forecast lead time for each matching forecast will be 

unique.  The true forecast PDF at the desired lead is then the combination of all verifying 

observations for the matching forecasts.   

Limited sampling plays a large role in creating ambiguity.  From Figure 1, an EPS 

with finite members cannot consistently represent the distribution from which the 

members are drawn, even if the EPS is otherwise ideal.  The ensemble PDF may be 

calibrated to provide a reliable forecast on average, but the error for any specific case 

cannot be known before hand, which results in random error in the forecast PDF’s 

moments (Figure 2).  This random error exists even for large ensembles, thus sampling is 

a persistent source of random error and ambiguity in the ensemble forecast. 

A non-ideal EPS misses simulation of some aspects of IC and model uncertainty, 

resulting in an ensemble forecast PDF with a variable and unknown ability to represent 

the true forecast PDF thus yielding ambiguity.  Imagine an ideal EPS except that it is 
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designed with a single convective parameterization used for all members (i.e., uncertainty 

in modeling of convection is not represented).  The ensemble PDF will be a close 

approximation to the true PDF if the error in the parameter value is low, or the sensitivity 

of the forecast to the parameter error is low, i.e., when convection is not present (Eckel 

and Allen 2009).  The ensemble PDF may be a poor approximation when either 

parameter error or sensitivity is high.  The variable representativeness of the forecast PDF 

for any one case cannot be predetermined, thus error in the forecast PDF appears random 

(Eckel and Allen 2009). 

In this research, when considering ambiguity associated with ensemble forecast 

probabilities, systematic errors (bias) in the first two moments (mean and variance) of the 

PDF are removed through calibration leaving only the stochastic or random error.  

Although error may be present in higher moments, it is assumed that errors in the first 

two moments have the largest role in creating ambiguity.  This may be explained by 

considering changes in probability density associated with changes to different moments 

of the forecast PDF.  A change in the first moment (i.e., location) of the PDF results in a 

large shift of probability density and thus a relatively large change in forecast probability 

(depending on the placement of the event threshold within the PDF).  While generally not 

as large as changes associated with the first moment, decreasing or increasing the 

variance (i.e., second moment) of the forecast PDF also has the potential to create a 

significant change in probability density, and therefore forecast probability.  The ability 

to significantly adjust probability density relative to a given event threshold decreases 

with higher moments of the forecast PDF. 

Camerer and Weber (1992) posit that uncertainty (first-order) and ambiguity 

(second-order uncertainty) are fundamentally different concepts.  The magnitude of first-

order uncertainty that can be measured as variance in the ensemble forecast PDF can be 

independent of the magnitude of ambiguity (i.e., misrepresentation of uncertainty in the 

ensemble forecast PDF due to random errors in the mean and/or variance).  For instance, 

a well-designed EPS (i.e., well-sampled, well-perturbed) that is based on a poor NWP 

modeling system would produce forecasts with large uncertainty but very little ambiguity 

(Eckel and Allen 2009).  Conversely, a poorly-designed EPS based on a highly skilled 
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NWP model would produce forecasts with low uncertainty and high ambiguity.  

However, Eckel and Allen (2009) assert that “larger uncertainty and/or more diversity in 

its sources may increase the opportunity for ensemble deficiencies, which can create 

ambiguity,” thus correlating forecast uncertainty and ambiguity.  Further evidence to 

support a relationship between ambiguity and the uncertainty in the current forecast is 

presented in the results section of this dissertation. 

C. FORECAST VALUE 

The primary value of weather forecasts to users is the better consequences 

(economic or other benefits) realized from using the information in the decision making 

process (Zhu et al. 2002).  Any new source of weather forecast information should add 

value to the decision maker.  Value is added when the information allows the user to take 

actions that improve overall, long-term average consequences over many decision 

opportunities.  In this research, we are concerned with the impact of introducing the 

ambiguity information into the user’s decision making process.  If users cannot 

effectively use the ambiguity information to add value, then the information holds merely 

entertainment value at best or confuses the user and detracts from optimal decision 

making at worst. 

The analysis of value will be performed in the simple cost-loss (C/L) ratio 

scenario (Murphy 1985; Katz and Murphy 1997; Jolliffe and Stephenson 2003).  In the 

basic C/L scenario, the user will either decide to take protective action to mitigate the 

effects of some weather event or take no protective action based on the weather input.  If 

the user decides to protect, he incurs a cost (C) for taking the protective action, regardless 

of whether or not the weather event occurs.  If the user does not protect and the event 

does not occur, he incurs no expense.  Otherwise, if the user does not protect and the 

event occurs, he will incur a loss (L).  In this research, we assume the protective action is 

sufficient to guard against all loss.  The results of the four possible preparation-outcome 

combinations over a forecast-observation dataset can be tallied in a 2 2  contingency 

table as shown in Table 1 (Jolliffe and Stephenson 2003).  The expense (E) associated 

with each possible consequence is given in the Table 2. 
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For a deterministic forecast, the weather input to the decision making process is 

binary, whereas the stochastic forecast provides a probabilistic input.  The stochastic 

input (i.e., the forecast probability, ep ) is converted to a binary input through application 

of a decision threshold or decision rule that expresses the amount of risk (i.e. the chance 

of getting an undesirable consequence) the user is willing to accept in the forecast of the 

weather event (Jolliffe and Stephenson 2003).  In the C/L scenario, the goal is to use a 

decision rule that minimizes the total expense over many forecast cases, or the expected 

total expense. 

The value score (VS), introduced by Richardson (2000), is a measure of the value 

of weather forecasts that can be explored through the C/L model.  Using tallies (a, b and c 

defined in Table 1) accrued in the contingency table over M forecast-observation 

pairings, it is possible to calculate VS for any C/L ratio ( ): 
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where ( ) /o a c M   is the sample’s climatological rate of occurrence.  In this form, the 

value of the forecast information is calculated assuming that in the absence of a forecast 

decisions will be made based on o  (i.e., protecting when o  ).  Additionally, 

decisions will be made using the ensemble forecast (i.e., protecting when ep  ).  A 

perfect forecast has a VS = 1, while a 0VS   indicates the forecast system adds value 

compared to following sample climatology.  The forecast system has VS < 0 when it 

performs worse than climatology. 

In the context of the C/L scenario where the goal is to minimize expected 

expense, optimal value is attained by a customer who chooses their decision rule or 

decision threshold to match their C/L.  This fact can be demonstrated as follows.  For 

many (M) instances in which the forecast probability ( ep ) takes a specific value, a user 
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would either always protect or never protect based on their decision rule.  For the two 

cases, the total expense (E) can be expressed respectively as: 

 
 *ProtectE M C  (2) 

 

 * *No Protect eE M p L  (3) 

 

The user’s decision should then be to protect when: 
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Alternatively, the user’s decision rule calls for taking no action when: 
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As shown above, the user’s optimal decision threshold is their C/L, prompting them to 

take protective action when ep  is greater then C/L and to take no protective action when 

ep  is less than C/L (Jolliffe and Stephenson 2003).  Using this information, an analysis of 

the optimal VS obtainable by all customers can be determined.  The curve in Figure 3 is 

the optimal VS created using data from the low-order model employed in this research 

(Chapter III.A).  The VS for each C/L is calculated based on a unique contingency table 

(e.g., Table 2) for each user built using the C/L in question as the decision rule. 
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Ambiguity, or uncertainty in the forecast probability, adds another dimension to 

the decision making process, resulting in three possibilities given a user’s C/L: 

 The entire ambiguity distribution may be below the C/L (i.e., optimal 
decision threshold) so the user is convinced to take not protect. 

 The entire ambiguity distribution is above the C/L so the user is convinced 
in their decision to protect.   

 The ambiguity distribution overlaps the C/L.  In this case, the appropriate 
decision is unclear to the user. 

The term overlap is used here to refer to the total proportion of the ambiguity distribution 

that crosses the C/L in the direction opposing the decision based on the best-guess of the 

current risk, i.e., the chance of making the wrong decision.  The ensemble forecast 

probability is taken as the best-guess risk, or alternately the best-guess forecast 

probability, since it represents the likelihood of the verifying observation crossing the 

event threshold resulting in a negative consequence.  In Figure 4, the forecast probability 

indicates the user should protect.  The ambiguity distribution overlap (hatched) in the 

figure describes the probability that the actual forecast probability is less than the C/L and 

the user should not protect.   

In the C/L scenario, long-term expense may still be minimized by using the best 

estimate of risk even if ambiguity is present and ignored.  The ensemble’s estimate of risk 

(i.e., the forecast probability) is simply a random draw from a distribution of many 

possible forecast probability values (i.e., the ambiguity distribution).  Given situations 

where overlap exists over many forecast cases, the best-guess risk will result in both 

positive and negative consequences, with the expectation that the forecast probability is 

truly a random draw from the ambiguity distribution and the selection process is not 

biased towards either of the consequence categories.  Thus, the optimal user, when 

comparing the ensemble forecast probability alone as a measure of risk against the C/L 

(i.e., the optimal decision threshold), implicitly includes cases where overlap exists.   

To this point, we have not addressed the question of value added via knowledge 

of ambiguity.  This research introduces two approaches for attempting to add value to the 
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decision making process in situations where the decision input is unclear (i.e., overlap 

exists) using objective estimates of the ambiguity associated with the ensemble forecast. 

1. Uncertainty-folding 

The first approach to gain value from ambiguity information, called uncertainty-

folding, combines the (first-order) uncertainty and ambiguity information to once again 

give the user a single probabilistic decision input based on the weather information.  

Given a sample of possible true forecast probability values ( ˆTp ) (i.e., ambiguity 

distribution or second-order uncertainty) estimated using some objective method, each 

ˆTp  value is binned using a class interval of 1% over the range 0% to 100%.  The relative 

frequency associated with each bin, ( )r  , within the sample is determined.  Note that 

 0.05, , 0.995    (i.e., each bin’s center value) is a possible true forecast probability 

value, and therefore represents a possible value of risk (i.e., first-order uncertainty).  Each 

  value is multiplied by its respective relative frequency then summed to produce a 

single estimation of the forecast probability ( ap ) that includes the ambiguity information.   

 
 ( )ap r



   (6) 

 

An example of this process is described in Figure 5.   

As value studies in this research are focused on the C/L scenario, it is important to 

address whether or not the C/L is the optimal decision rule to minimize expense when 

using ap .  Samples from the ambiguity distribution (i.e., estimates of the true forecast 

probability, ˆTp ) are all equally plausible realizations of the forecast probability for an 

event given the EPS’s sensitivity to the deficient simulation of uncertainty in the IC and 

model perturbations.  As discussed, for any reliable ensemble forecast probability, the 

C/L is the optimal decision rule to minimize long-term expense, but while the forecast 

probability may be reliable on average, random error and ambiguity still exist for 

individual forecast cases.  Thus, using the C/L with any random ˆTp  value taken from the 

ambiguity distribution over many cases will minimize expected expense in much the 
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same way as using a single ensemble forecast.  The ap  value computed using 

uncertainty-folding is merely a combination of information from all of the ˆTp  values and 

is therefore simply another plausible realization of the true forecast probability.  In 

practice, this theory depends on obtaining an accurate objective estimate of the ambiguity 

distribution, which is discussed in the results section. 

The control ensemble’s calibrated forecast probability ( ep ) is a random sample 

taken from the ambiguity distribution.  On the other hand, uncertainty-folding will 

produce a ap  value close to the expected value of the ambiguity distribution.  Thus the 

difference between ep  and ap  may be large enough to result in different decision inputs, 

i.e., they fall on opposite sides of the C/L.  Over the long-term, ap  should provide the 

best risk estimate and minimize expense by minimizing the error between the estimated 

risk used to make the decision and the true risk. 

2. Secondary Decision Criteria 

Dealing only with the economic value of information (i.e., the C/L scenario) 

neglects factors hard to quantify in terms of dollars that can also bring important 

consequences (e.g., loss of life, customer confidence, morale, mission effectiveness).  

Wallsten (1990) stated that ambiguity information was especially suited to decisions with 

multiple criteria.  Thus, if the weather input to the decision is ambiguous, the user may be 

justified to take other factors into account to make the decision.  This idea is used for the 

second approach to determine the value of ambiguity information.  The simple C/L model 

is still applied, but when the ambiguity distribution overlaps the decision threshold 

(decision is unclear), the user may consider other (non-monetary) decision criteria to 

reverse the decision that would be made based purely on the best-guess risk.  The option 

to include these secondary criteria comes with several questions: 

 How much overlap of the ambiguity distribution across the optimal 
decision threshold (C/L) is necessary before the user should consider 
secondary decision criteria? 

 How does the decision-maker decide whether or not to change their 
decision? 

 How can we measure the improvement in secondary consequences? 
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Using this approach, the idea is not to increase the primary economic value 

(represented by the VS), but rather to add value to the user by improving consequences in 

terms of their secondary concerns.  The goal is to add value to the secondary criteria 

without significantly decreasing the primary value achieved using the first-order criteria. 

As an example of a secondary criteria, consider a user who cannot tolerate repeat 

false alarms (i.e., the event is forecast to occur but does not occur).  An example may be a 

base commander, who previously evacuated aircraft and personnel when a typhoon was 

forecast to strike the base, but the typhoon track changed and it missed the base.  The 

commander’s decision, although justified by risk analysis, resulted in degradation of 

mission effectiveness and unnecessary expense.  As the next typhoon approaches, the 

commander desperately wishes to avoid another unnecessary evacuation.  If the 

commander is given a risk clearly exceeding his C/L, he should again evacuate.  But, 

given ambiguity and overlap, he may choose to stay put.   

Using an estimate of the ambiguity, it may be possible to reduce the likelihood of 

repeat false alarms by going against the decision based on the best-guess forecast 

probability, while not significantly changing the VS based on minimizing total expense.  

The idea is to reshuffle the outcomes to break up repeated false alarms, while keeping VS 

nearly constant.  Changes to the decision based on including secondary decision criteria 

result in a different contingency table as compared to basing decisions only on the 

primary decision criteria (control ep ) (Table 3).  In order to prevent changes in the 

primary value, the secondary criteria decision rule must produce changes that preserve 

the overall balance between positive and negative consequences, while not biasing 

towards one extreme.  The user essentially trades the expense associated with a number 

of false alarms for the expense of a few extra misses as far as negative consequences are 

concerned.  Value is then measured as a significant decrease in the number of repeat false 

alarms for a user who employs the ambiguity information compared to a user who bases 
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decisions solely on the best-guess forecast probability.  Value is not gained if reducing 

the number of repeat false alarms results in a significant decrease in the primary value 

(i.e., increase in expenses). 

It is important to stress that this scenario is just one example of using secondary 

criteria to add value when the decision input is unclear.  There are many possible criteria 

that can be explored, where the criteria are user or context dependent. 

 There has been a great deal of effort put into designing EPSs to efficiently sample 

the uncertainty associated with an NWP modeling system, but the EPSs still have 

limitations that result in random error in the uncertainty estimates (i.e., ambiguity).  The 

purpose of this research was not to explore EPS design, but rather to investigate methods 

for objectively estimating the ambiguity associated with an EPS and to understand how 

EPS deficiencies influence the magnitude of ambiguity.  Additionally, while most 

research has focused on the decision maker’s attitude towards ambiguity in the decision, 

we apply objective ambiguity estimates in the decision making process in an effort to add 

value compared to a user who simply uses the ensemble’s uncertainty estimate.  Thus, 

this research will attempt to show: (1) it is possible to produce reasonably accurate 

objective estimates of the ambiguity associated with an EPS and (2) the ambiguity 

information can add value to the decision making process. 
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Figure 1. Three simulated attempts to represent the forecast PDF using an eight member 
“perfect model” ensemble.  The forecast PDF (solid) being sampled is  0, 1N , 

while the realized ensemble PDF (dashed) is normal with parameters values 
calculated based on random ensemble members  (a) mean and variance close to 

true values.  (b) negatively biased mean and variance too small.  (c) mean close to 
true and variance too large.  Vertical lines represent the location of ensemble 

members. 
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Figure 2. Sampling distributions of the (a) standardized error in ensemble mean and (b) 
fractional error in ensemble spread, dependent on the number of ensemble 

members.  Results are shown for ensemble sizes of 10, 20, 40 and 80 members 
(labeled) [From Eckel and Allen 2009]. 
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Figure 3. Optimal value score across the range of C/L values.  The value score for each C/L 
is calculated using the C/L as the decision threshold.  The climatological rate of 

occurrence ( o ) is 29.5%. 

 
 

 
 

Figure 4. Ambiguity distribution overlap in the C/L scenario.  The hatched area represents 
the overlap of the ambiguity distribution beyond the C/L (blue line), which would 

result in a different decision than that found using the best-guess or control 
forecast probability (red line). 
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Figure 5. Histogram of possible first- and second-order uncertainty associated with some 
event used for calculating the uncertainty-folding forecast probability estimate 
( ap ).  As an example, the bin of forecast probability values 44% 45%ep   

(arrow) has a relative frequency of 5%, thus contributing 44.5% 5% 2.23%   to 
the summation in Equation (6).  
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Table 1. Contingency table used to tally the number of consequences associated with a 
forecast-observation dataset.  A hit (a) is tallied when the weather event is 

forecasted to occur and the event does occur.  When the event is forecasted to 
occur and is not observed, the resulting consequence is a false alarm (b).  

Alternately, when a weather event is not forecasted to occur is observed, the 
consequence is a miss (c).  Lastly, a correct rejection (d) is counted when the 

weather event is not forecast to occur and the event is not observed. 

Yes

No

a (# of hits) b (# of false alarms)

c (# of misses) d (# of correct rejections)

Yes No
Weather Event Observed

Event 
Forecast 

and/or Decide 
to Prepare

 
 

 
 
 
 
 

Table 2. Contingency table of consequences measured as the expense (E) associated with 
each forecast-observation pair within the C/L framework.  C is the cost of taking 

protective action to mitigate the loss (L) if the event occurs.  

Yes No
Weather Event Observed

Event 
Forecast 

and/or Decide 
to Prepare

Yes

No

E = C E = C

E = L E = 0
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Table 3. Contingency table of possible changes in the repeat false alarm secondary 
decision criteria scenario.  The change shown by the solid circle results in a 

positive consequence (correct rejection), while the change shown by the dotted 
circle results in a negative consequence (miss). 

Yes No
Weather Event Observed

Event 
Forecast 
and/or 

Decide to 
Prepare

Yes

No

a b

c d

Yes No
Weather Event Observed

Event 
Forecast 
and/or 

Decide to 
Prepare

Yes

No

a b

c d

Yes No
Weather Event Observed

Event 
Forecast 
and/or 

Decide to 
Prepare

Yes

No

a b

c d

 

 

 



 33

III. METHODOLOGY 

This chapter describes the methods used during this research to accomplish the 

stated research goals.  Specifically, Section A gives a detailed look at the design of the 

EPS and the low-order model it was based on.  Section B provides an overview of data 

postprocessing.  Section C provides a description of the ambiguity estimation techniques, 

while Section D covers the validation of the techniques.  The final section discusses the 

processes and scenarios used for determining the value of the ambiguity information.  

The primary programming platform used during this research was Matlab version 7.0 or 

later. 

A. L96 ENSEMBLE PREDICTION SYSTEM 

1. L96 Model Design 

In order to fully study the ambiguity associated with EF, it is necessary to have 

access to an EPS, a large forecast dataset, and suitable observation information.  As a 

portion of this research will involve running multiple parallel EPS forecasts, using an 

EPS of an atmospheric model is impractical due to computational and storage limitations.  

Therefore, we use an EPS of a more simple dynamical system model to mimic an 

operational EPS.  For this research, we chose the low-order, chaotic model first 

introduced by Lorenz (1996) as a suitable proxy for atmospheric NWP models. 

The model, hereafter L96, includes a set of symmetric, coupled equations 

describing the evolution of variables on two distinct time scales (Lorenz 1996; Wilks 

2005). 

 

 1 2 1
( 1) 1

( ) ; 1
kJ

k
k k k k j

j J k

dX hc
X X X X F Y k K

dt b  
  

         (7) 

 

 1 2 1 int ( 1) / 1( ) ; 1j
j j j j j J

dY hc
cbY Y Y cY X j JK

dt b            (8) 
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The model emulates atmospheric processes in that the linear and forcing (F) terms 

provide internal dissipation and external forcing, and the quadratic terms simulate 

advection (Lorenz 1996).  Results garnered from experiments using the L96 model can 

therefore reasonably be assumed to apply to atmospheric modeling systems.  To further 

ensure the validity of this research, we designed the L96 EPS to operate using state-of-

the-art methods for data assimilation, ensemble perturbations, and numerical techniques. 

The kX  variables in the L96 model can be thought of as describing large-scale, 

slow moving processes, and the jY  variables thought of as small-scale, fast moving 

processes, where energy is transferred between the two scales of motion (Lorenz 1996; 

Wilks 2005).  A possible physical explanation of the modeled process would be to 

consider the jY  variables as representing convective-scale values while the kX  variables 

represent large-scale static instability (Lorenz 1996).  Described another way, the kX  

variables are resolved on the model grid (latitude circle), while the jY  variables are 

unresolved or subgrid scale variables (Wilks 2005). 

The basic setup of the L96 model for this research follows Wilks (2005), with 

some modifications.  After Wilks, K = 8 and J = 32, which corresponds to eight resolved 

variables and 256 unresolved variables (Figure 6).  Scaling constants h, c, and b are taken 

as 1, 10, and 10, respectively, which ensures both scales are chaotic (Lorenz 1996; Wilks 

2005).  To mimic operational atmospheric models, the unresolved variables are not 

modeled explicitly and must be parameterized in some fashion since they influence the 

evolution of the large-scale, resolved variables.  We assume the physical laws governing 

the resolved variables are known completely, but the effects due to the unresolved 

variables are not precisely known and must be parameterized (Wilks 2005).  In this 

configuration, the last term on the right side of Equation (7) is replaced by a 

parameterization term ( Ug , described below) (Wilks 2005; Orrell 2003),  

 

 1 2 1( ) ( ) ; 1k
k k k k U k

dX
X X X X F g X k K

dt            (9) 
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This experiment design gives us a model with random error (i.e., uncertainty) as 

well as the ability to be omniscient and know the true evolution of the system beginning 

from a known initial condition.  The full, coupled L96 equations provide the “ground 

truth” or “true” state of the system.  To provide the true trajectory, Equations (7) and (8), 

henceforth termed the L96 System (L96S), are integrated forward using the fourth-order 

Runge-Kutta (RK4) (Weisstein 2009) numerical scheme at a time step of 0.001 (non-

dimensional).  In comparison, the parameterized L96 equations, Equation (9), henceforth 

the L96 Model (L96M), are integrated forward using the second-order Runge-Kutta 

(RK2) numerical scheme at a time step of 0.005.  Forecasts derived using L96M exhibit 

model errors as a result of using an inferior numerical integration scheme (RK2 vs. RK4) 

and from parameterization of the unresolved scales. 

The parameterization scheme in L96M is stochastic and based on the unresolved 

tendencies found between integrations of the L96S at time steps equivalent to the L96M 

(Wilks 2005).  Developing the parameterization involves first integrating the L96S 

forward over some long trajectory with time step of 0.001, while storing all data.  Then, 

for each time step over this long trajectory, the current resolved variable’s value ( ( )kX t ) 

and the value at a time equivalent to one L96M time step ( ( )kX t t  , 0.005t  ) are 

found in the L96S data.  The unresolved tendencies ( )U t are then calculated as: 

 

  1 2 1

( ) ( )
( ) ( ) ( ) ( ) ( ) k k

k k k k

X t t X t
U t X t X t X t X t F

t  

             
 (10) 

 

Term A represents the model tendency of kX  over t , while term B gives the true 

tendency of kX  over t . 

The range of subsequent values associated with each possible kX  value represents 

the unresolved tendency in kX , or values that could be missed without explicitly 

A B 
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modeling the unresolved jY  variables.  The symmetry of the governing equations 

produces very similar U for each resolved variable, so we can combine all results.  The 

unresolved tendencies in kX  are shown in Figure 7 for all eight resolved variables.  The 

data are fit with a fourth-order polynomial regression (solid line in Figure 7).  The 

unresolved tendency depends “strongly and nonlinearly on the value of the resolved 

variable” (Wilks 2005).  Thus, for each value that the resolved variable can take on, there 

is a distribution of unresolved tendency values, centered on the regression curve.  The 

parameterization function  Ug is thus given both a deterministic and a stochastic 

component:   

 

 2 3 4
0 1 2 3 4( )U k k k k k kg X b b X b X b X b X q       (11) 

 

where 0 0.293b  , 1 1.55b  , 2 0.0201b   , 3 0.0106b   , and 4 0.000565b   are the 

regression coefficients.  The deterministic component (the first five terms on the right 

hand side of Equation (11) is the regression equation.  The kq  term on the right side 

represents the stochastic component that allows for parameter values off of the regression 

curve. 

The simple stochastic term is white noise produced by a normal distribution with 

zero mean and standard deviation of 2.32, which is equal to the average standard 

deviation of unresolved tendencies across all possible kX  values.  We rescale the 

stochastic component following Hansen and Penland (2006) who found that combining 

stochastic components with deterministic differential equations requires scaling by the 

square root of the time step  1 / 0.005 14.14 .  Initial tests of the ensemble resulted in 

ensemble forecasts that were nearly perfectly dispersive.  Since the EPS needed to mimic 

current operational ensembles that are typically under-dispersive (Wilks 2005; Buizza 

1997; Toth and Kalnay 1993; Hamill and Colucci 1997; Eckel 2008), we reduced the 

standard deviation of the white noise distribution to 1.2 to reach a suitable, albeit 

subjective, level of under-dispersion (Chapter III.A.4).  By decreasing the range of white 
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noise in the L96M, additional model error was created, which resulted in under-

dispersion since it was not accounted for in the EPS. 

2. L96 Climatology 

This section provides an understanding of the climatology of the L96S and L96M 

and notes any differences.  For comparison and to show the advantages of using the 

stochastic parameterization, we introduce a simple deterministic parameterization where 

the stochastic component ( kq ) in Equation (11) is set to zero.  Also discussed are the 

correlations between the resolved ( kX ) variables to motivate the decision to consider 

each as independent when determining the ensemble’s error characteristics and for use in 

the validation of the ambiguity estimation techniques. 

To determine the climatological statistics, we ran the L96S and L96M using both 

the deterministic and simple stochastic parameterization schemes over a period 

encompassing 5000 time units beginning from a random, transient-free initial state.  For 

each of the model climatologies (deterministic and stochastic), all eight of the kX  

variables were stored.  For the L96S climatology, both the kX  and jY  variables were 

maintained to understand the climatology of unresolved variables as well.  A summary 

dataset was created for each configuration by assuming independence of the eight 

resolved variables (discussed below) and combining them.  Climatological statistics for 

each dataset are displayed in Table 4.  Comparing the range of values the resolved 

variable trajectory visited, it is clear the stochastic parameterization provided a 

climatology closer to L96S.  The probability density of possible kX  values is shown in 

Figure 8.  Both model configurations do a reasonable job of representing the distribution 

of resolved variables, but the range and shape of the stochastic distribution is superior.  

The mean and standard deviation of the resolved variables are significantly closer to the 

“true” system values for the stochastic parameterization as well.  These results further 

strengthened the case for implementing the L96M as described.   

We may consider the location of the resolved variables in the L96M as grid points 

on a single latitude circle (Lorenz 1996; Wilks 2005), where the forecast values at a 



 38

specific lead time are essentially values at K adjacent grid points.  Thus the resolved 

variables are analogous to variables in an operational NWP model (e.g., 2m temperature 

or 10m wind speed).  Verification of operational deterministic and ensemble forecasts for 

a variable such as 2m temperature over a certain domain can be accomplished by using a 

high quality model analysis.  An “observation” is available at each model grid point, so 

verification takes place at each grid point.  These individual point statistics are then 

combined for an overall assessment of the modeling or ensemble system.  In order to 

combine data from the individual grid points, the data should be independent and 

uncorrelated.  In many cases, these assumptions do not strictly hold, but the correlations 

may be weak.  In practice, the grid point data is typically combined under the assumption 

of independence to increase the size of the forecast-observation dataset used for 

verification. 

Evaluating the error characteristics and skill associated with an EPS requires an 

extensive set of forecasts and observations.  Following Descamps and Talagrand (2007), 

who found that “cross correlation between the kX s  is negligible” in the L96 system, we 

chose to assume independence between the kX  variables.  Although our testing indicated 

a pattern of moderate correlation between the variables, we proceeded under the 

assumption of independence to increase the size of the verification and climatological 

datasets.  By making this choice, we may have underestimated the uncertainty associated 

with our results due to the increase in the size of the datasets. 

3. L96M EPS Design 

This section describes how L96M was incorporated into an EPS for this research.  

As described earlier, the goal of an EPS is to effectively account for all sources of 

uncertainty in the modeling system (Chapter II.A).  Thus, state-of-the-art techniques were 

used to account for analysis errors and model deficiencies. 

To generate a control analysis and a suite of ensemble ICs, the process begins 

with a uniform random draw for each of the eight kX  variables and each of the 256 jY  

variables from their respective climatological ranges.  Using the L96S, the random state 
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is integrated forward to converge upon an arbitrary state on the true system attractor.  

This state is taken as the current true state of the system.  The L96S is then integrated 

forward from this state over the data assimilation period and the entire forecast period to 

provide a true trajectory for the system.  The ICs for the ensemble members are found 

using an Ensemble Kalman Filter (EnKF) data assimilation scheme. 

Data assimilation is the process by which imperfect information (i.e., observations 

and model background) about the current state of a system are combined optimally to 

produce an analysis of the current state that is more precise than the original information 

(Kalnay 2003; Reichle et al. 2002).  The Kalman Filter (KF) (Kalman 1960; Cohn 1997) 

is “an approximation of Bayesian state estimation which assumes linearity of error 

growth and normality of error distributions” (Hamill 2006).  The KF process is generally 

divided into two steps, an update step and a forecast step. 

The update step involves adjusting an estimated state (e.g., background) and 

associated error statistics to new observations to form a new analysis state and 

uncertainty estimate.  In the forecast step, the new analysis and uncertainty estimate are 

propagated forward to the next observation time using the full nonlinear dynamical model 

and tangent linear model and adjoint, respectively.  Ultimately, the traditional KF is 

computationally too expensive for practical use in atmospheric data assimilation due to 

the high dimensionality of atmospheric modeling systems. 

The EnKF process is a sequential data assimilation technique that uses an 

ensemble of perturbed forecasts to provide the statistical information needed to produce 

the new analysis (Evensen 1994, 1997; Burgers 1998).  The process is an approximation 

of the traditional KF or extended KF where the background-error covariance is not 

explicitly propagated forward in time but is estimated using the variance of the ensemble 

of background states (Evensen 1997; Reichle et al. 2002).  In addition to not needing the 

tangent linear model and adjoint for explicit prognosis of the forecast-error covariance, 

the EnKF does not require the assumptions of linear error growth and normality of error 

distributions (Hamill 2006; Kalnay 2003; Tippett et al. 2003; Reichle et al. 2002).  

Determination of the background-error covariance using the ensemble provides a flow-
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dependent estimate of the background error allowing the EnKF to more optimally update 

the background to new observations (Whitaker & Hamill 2002; Hamill 2006). 

Ensemble-based data assimilation can be put into two categories, deterministic 

and stochastic.  The basic difference depends on “whether or not random noise is applied 

during the update step to simulate observation uncertainty” (Hamill 2006).  The EnKF 

used for this research is a stochastic data assimilation technique, in that it involves an 

ensemble of parallel data assimilation cycles where each member of the ensemble is 

updated using an observation set perturbed by white noise while still being a plausible 

realization of the observed state of the system (Hamill 2006).  The process used to 

generate the set of perturbed observations is described below. 

Burgers et al. (1998) showed that for EnKF analysis to work properly, the 

observations must be considered random variables.  Otherwise, the ensemble error 

covariances (background and analysis) will be underestimated since using the same 

observation to update each member results in spurious correlations.  Underestimation of 

the error covariances may lead to filter divergence (i.e., the analysis drifts away from 

truth) as observations are underweighted in the update step (Burgers et al. 1998; Whitaker 

& Hamill 2002).  Using optimal DA, the analysis should typically be more precise than 

the information used to create it.  Several methods have been developed to account for 

error covariance underestimation, such as covariance inflation and localization (e.g., 

Anderson and Anderson 1999; Anderson 2003; Houtekamer and Mitchell 1998). 

Importantly, the underestimation problem is a function of the ensemble size used 

during EnKF (Hamill 2006; Whitaker and Hamill 2002; Reichle et al. 2002).  Burgers et 

al. (1998) noted that using too small an ensemble resulted in large analysis errors, and 

more benefit could be gained by using an optimal interpolation data assimilation scheme.  

According to Kalnay (2003), research using a quasi-geostrophic model found that 25-50 

members were enough to benefit from using EnKF, but Houtekamer and Mitchell (1998) 

found ensembles on the order of 100 members were necessary.  Due to the inexpensive 

computational cost of implementing the EnKF with the L96M, an ensemble size of 500 

members was used for this research.  We tested the EnKF over many scenarios starting 

from different locations in the model attractor to ensure filter divergence was not 
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occurring.  The Euclidean difference between the best-guess analysis and observation 

vectors and the true state vector averaged 0.3 and 1.05, respectively.  Thus covariance 

underestimation was not a problem, likely due to the large ensemble size chosen. 

The EnKF data assimilation process is presented here following notation used by 

Hamill (2006) and is shown in Equation (12) (a)-(e).  Let  b b b
1 mX x , , x   describe an 

ensemble of background state vectors  b
ix  with m members in which each member’s 

data is a column vector covering all state variable values.  Ensemble perturbations  b
ix  

from the mean b
i

1
x

in

 
 
 
  are found in the matrix given by Equation (12) (a). 
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The update process begins by calculating an estimated Kalman gain [ K̂ , Equation 

(12) (b)], which gives the optimal weights for the update based on the observation- and 

background-error covariances (Reichle et al. 2002).  To calculate the Kalman gain, the 

background-error covariance ( bP̂ ) from Equation (12)(c) must be estimated 

diagnostically from the ensemble of background states using Equation (12)(a).  The over-

hat (^) is used to denote that the covariance found is an estimate of the true error 

covariance since the ensemble size is finite.  The H-term is the linear transformation 
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matrix used to interpolate model data to the observation locations and transform the 

model state variables to match the observed variable.  In this research, the observation 

and model data are the same quantity and are collocated, thus H is the identity matrix.  R 

is the observation-error covariance matrix describing the typical observation error.  The 

superscript T denotes the transpose of a vector or matrix. 

With the estimated Kalman gain, Equation (12) (d) is used to update each member 

of the ensemble of background state vectors  b
ix  individually using random (stochastic) 

realizations of the observation information  iy  to find the ensemble of analysis state 

vectors  a
ix .  The nonlinear transformation matrix, H, performs the same function as H, 

and was again simply the identity matrix.  Following the update step, each member of the 

ensemble of analysis states is integrated forward in time using the full nonlinear model 

(M) to the time of the next observation using Equation (12) (e).  The process is repeated 

when new observation data is available.  

For this research, the initial EnKF state estimate (eight kX  variable values) used 

to initialize the spin-up cycle (described below) was taken as an observation of the 

current true state of the system.  We created an observation by adding a random draw 

from an  0,N R  distribution to the current true state taken from the L96S trajectory.  

The standard deviation of the observation error was taken as 5% of the climatological 

standard deviation in kX , thus R  was a diagonal matrix with 0.2 at all locations on the 

diagonal.  We generated 500 additional perturbed observations by adding random draws 

from  0,N R  to the original observation.  These 500 perturbed observations were 

used as the initial EnKF members.  The same process was used to produce perturbed 

observations of the current true state for all subsequent filter updates.   

We ran the EnKF through a one-time spin-up cycle consisting of 1000 model time 

steps (0.005 time units each) where perturbed observations were available to update the 

filter every 10 steps, or one data assimilation cycle.  Each data assimilation cycle is 

approximately equal to receiving observations every six hours, according to Lorenz 
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(1996) who found that one time unit was approximately equal to five days.  The spin-up 

cycle is necessary to allow the EnKF to achieve dynamical stability, ensuring its mean is 

close to the true state and its perturbations have evolved to more accurately estimate the 

background error covariance.  The final forecast states from each of the 500 EnKF 

members following the spin-up cycle were updated to produce the EnKF analyses used 

for the first ensemble forecast.  Additionally, these 500 EnKF analyses were used as the 

starting point for the next data assimilation cycle.   

We chose to separate the ensemble forecast runs by 20 data assimilation cycles 

(i.e., 200 model time steps).  The length of this separation period was chosen empirically 

to allow sufficient time for the trajectory to reach a different region of the model 

attractor, thus reducing correlation between ensemble forecasts and producing forecasts 

that span as much of the attractor as possible.  We monitored the total vector difference 

between the starting mean analysis and the mean analysis found following each data 

assimilation cycle over a number of cycles for many different starting conditions.  The 

vector difference generally increased over a period of 15-25 data assimilation cycles 

before starting to decrease, which led to our choosing 20 cycles as the separation period.   

Following each data assimilation cycle, we took the mean of the EnKF members 

as the best-guess analysis of the current state of the system.  Burgers et al. (1998) 

explained that the EnKF mean is a state estimate minimizing the root mean square error 

of the forecast.  The best-guess analysis provided the initial condition for the 

deterministic forecast.  The 21 ensemble forecast members’ initial conditions were taken 

as uniform random draws (without repeats) from the 500 EnKF members, all of which 

are equally plausible (Hansen 2009).  We chose a 21-member ensemble to coincide with 

NCEP’s Global Ensemble Forecast System (GEFS), which we used during our value 

studies (Chapter III.F). 

Model deficiencies are simulated in the L96M EPS using the perturbed parameter 

approach, which is applied through the simple stochastic parameterization.  As described 

previously, a perturbed parameter EPS uses a single NWP model (i.e., the L96M) where 

parameter values within the model are perturbed for each ensemble member (Chapter 

II.A.2.a).  The stochastic parameterization randomly varies the parameter value for each 
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member at every time step while maintaining the deterministic component of the 

parameterization as the average parameter value. 

We also tested a multi-model configuration of the L96M EPS.  The parameter 

coefficients were designed to be static for each ensemble member, analogous to the 

deterministic portion of the stochastic parameterization (red line in Figure 7).  First, we 

binned the unresolved tendency values (blue dots in Figure 7) across all kX  values using 

a class interval of 0.5 .  To determine a single member’s coefficients, a uniform random 

draw for each bin was taken from a range equaling four times the standard deviation of 

unresolved tendency values within the bin centered on the bin’s average unresolved 

tendency value.  We found each ensemble members parameter coefficients using a 

fourth-order polynomial fit to the values drawn for each bin.  The result was n static 

deterministic parameterizations that are similar in nature but perturbed within the known 

uncertainty of the parameter (Figure 9).  Testing of the multi-model EPS consistency and 

skill (not shown) showed mostly negligible differences between the perturbed parameter 

EPS and the multi-model EPS configurations.  One large difference was found when 

comparing each EPS’s limit of predictability.  The perturbed parameter EPS showed skill 

through ten time units, while the multi-model EPS maintained skill through only eight 

time units.  We chose the perturbed parameter approach for this research since it was 

previously proven to work well in the context of the L96 system (Wilks 2005). 

4. L96M EPS Performance 

Uncalibrated and calibrated forecast data is used to evaluate the consistency and 

skill of the L96M EPS to ensure it behaves similarly to a real-world EPS.  Consistency 

(i.e., statistical consistency) is a measure of how well on average the ensemble forecast 

PDF matches the true forecast PDF (Anderson 1996, 1997; Talagrand et al. 1997).  We 

evaluate consistency using the error variance diagram, dispersion diagram, verification 

rank histograms (VRH), and the verification outlier percentage (VOP).  The error 

variance diagram is used to understand the predictability and benefit of using the 

ensemble forecast by displaying the average error growth and comparing the limits of 

predictability of the deterministic and ensemble forecasts (Eckel 2008).  The dispersion 
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diagram directly compares the mean square error of the ensemble with the average 

ensemble variance at each forecast lead time, where the ratio of these two values should 

equal one for statistical consistency (Eckel 2008).  This diagram is also useful in 

diagnosing ensemble dispersion (i.e. rate of change in ensemble spread with increasing 

time) and ensemble spread problems (under or over) (Eckel 2008).  The VRH aides in 

visualizing dispersion and consistency characteristics by tracking the location of the 

verifying observation amongst the ranked ensemble members over many trials.  Ideally, 

the frequency of occurrence in each rank is equal.  Hamill (2001) described interpretation 

of various VRH shapes, but also demonstrated how EPS problems may be masked in the 

VRH by interactions with other issues.  We employ VOP as a measure of the ensemble’s 

ability to portray truth by finding the percentage of verifications that fall outside three 

standard deviations from the ensemble mean (Eckel 2008).  VOP is calculated as: 
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M is the total number of verifications, me  and  e m
  are the mean and standard deviation 

of the ensemble members for a single verification, respectively, and mV  is a single 

verification value.  Lower VOP values indicate an ensemble PDF that more consistently 

portrays the true state of the system. 

The error variance diagram created from L96M forecast data (Figure 10) shows 

that L96M accurately models the L96S climatology.  Over a long forecast trajectory, the 

deterministic forecast’s error variance should asymptote to twice the climatological 

variance (Eckel 2008), which is seen in the figure.  The deterministic limit of 

predictability due to error growth is found at 3.8   (  equals forecast time), where the 

deterministic error variance increases above the climatological variance ( 2
C ).  Once the 

ensemble mean error variance reaches 2
C  ( 10.2  ), the ensemble forecast has lost 

predictability, and a forecast based on climatology is in order.  The extension of the 
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ensemble mean error variance above 2
C  was not expected, but it is consistent with 

results seen in Tribbia and Baumhefner (2004) using a real-world EPS to forecast 500-mb 

height.  Maximum ensemble dispersion is indicated between 0.6   and 2.0   by the 

average variance between ensemble members, which is a measure of how the ensemble 

members diverge with respect to one another.  In a consistent EPS, this measure should 

match the forecast error growth (i.e. rate of increase of deterministic forecast error 

variance) (Eckel 2008).  Thus, the L96M EPS is under-dispersive, but it was designed 

this way on purpose to imitate the performance of a real-world EPS. 

Dispersion diagrams are provided for both the uncalibrated (Figure 11) and 

calibrated (Figure 12) ensemble forecast data (see Chapter III.B.1 for specifics on the 

calibration technique).  As stated, the dispersion diagram gives a direct look at the 

consistency of the EPS by comparing of mean square error of the ensemble mean and the 

average ensemble variance (Chapter III.B).  As expected, the dispersion diagram for the 

uncalibrated data indicates under-dispersion of the ensemble forecast on average.  The 

bulk calibration is able to correct for the dispersion deficiencies and give near-perfect 

dispersion at all forecast lead times.  VRH for various forecast lead times are provided for 

the uncalibrated (Figure 13) and calibrated data (Figure 14) as well.  In Figure 13, the 

L96M EPS displays the characteristic U-shaped VRH of being under-spread, where more 

verifications fall into the outer ranks than expected.  The indication of a slight positive 

bias (i.e., more verifications in the left-hand ranks) is also present.  This positive bias is 

seen in the L96M error statistics (Chapter III.B.3).  Calibration is able to flatten out the 

VRH (i.e. make the ranks more uniform) throughout the forecast period (Figure 14).  The 

remaining lack of uniformity seen in the calibrated VRH may be explained by the lack of 

calibration on higher moments of the ensemble PDF. 

The VOP values (Figure 15) indicate the calibrated ensemble forecast PDF does a 

better job representing the true forecast PDF compared to the uncalibrated data.  Both 

datasets show low VOP values early in the forecast period, which rapidly increase as 

error growth increases.  Since the calibrated data has a better handle on the dispersion on 

average, its VOP value does not grow to the extent of the uncalibrated data.  Although the 



 47

calibrated data shows near perfect dispersion on average, the VOP does not reach the 

perfect line in Figure 15 since dispersion is not perfect for all individual cases. 

We now evaluate forecast skill using the entire forecast dataset to examine the 

performance of forecast probabilities (see Chapter III.B.2 for specifics on calculating 

forecast probability).  In this research, two representative event thresholds were chosen to 

be verified, one to represent a fairly common event and the other a rare event, based on 

the climatology of the L96S (Figure 8(a), page 84).  The threshold for the common event 

was taken as 6.31X  , which is exceeded 30% of the time.  The rare event threshold was 

9.98X  , which is exceeded only 10% of the time. 

We verified probability forecasts using the Brier Skill Score (BSS) using sample 

climatology as the reference forecast (Jolliffe and Stephenson 2003).  BSS decomposition 

provides a measure of the reliability and resolution of the ensemble forecasts for a given 

event threshold.  Taken over many verifications, reliability is a measure of how well 

forecast probabilities match observed relative frequencies for the event in question 

(Wilks 2006).  For example, over many cases where the probability of occurrence is 20%, 

we expect to observe (verify) that event 20% of the time.  The resolution of the ensemble 

forecasts provides a measure of how well the forecasts distinguish between events and 

non-events (i.e. the sharpness of the forecast PDF) (Wilks 2006). 

The BSS we employed is the decomposed form, which uses discrete, contiguous 

bins of forecast-observation data pairs allowing calculation of the component reliability 

and resolution values (Eckel 2008).  To calculate the BSS, we must first define the Brier 

Score (BS) (Wilks 2006): 
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M is the total number of forecast-observation pairs, I is the total number of bins, and iN  

is the number of forecast-observations pairs in the ith bin.  Also,  e i
p  is the 
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representative forecast probability value for the ith bin (i.e., bin’s average ep  value), io  is 

the observed relative frequency of the ith bin, and o  is the sample climatology.  The first 

term on the right hand side of the equation is the reliability (rel) component of the BS, 

while the second term is the resolution (res) component.  The final term is a measure of 

the uncertainty (unc) in the forecast of the event in question and is solely dependent on 

the event climatology.  BSS may then be computed by (Wilks 2006): 
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For the common event, the BSS indicates forecast skill through 9.6   for the 

uncalibrated data (Figure 16) and 10.2   for the calibrated data (Figure 17).  

Calibration appears to have significantly improved the reliability of the ensemble 

forecasts for this event throughout the forecast [Figure 18(a)], while a small and likely 

insignificant improvement in resolution was also seen [not apparent in Figure 18(b)].  

The combination of improvements provided a small gain in BSS scores throughout the 

forecast, thereby extending the period over which the L96M EPS showed skill.  For the 

rare event, the BSS indicates forecast skill through 7   for both the uncalibrated (Figure 

19) and calibrated (Figure 20) data.  Calibration resulted in an improvement in reliability 

through 2.6  , but degraded reliability after that time [Figure 21(a)].  It should be noted 

that scaling of the figure makes the decrease in reliability appear large, but changes are in 

the thousandths decimal place.  Although hard to discern in Figure 21(b), resolution is 

actually improved by the calibration, which likely offset the decrease in skill due to 

worse reliability.   

Based on this analysis of the EPS performance, we have further confirmed the 

ability of the L96M to simulate the L96S climatology and demonstrated the effectiveness 

of the calibration technique used during this research.  More importantly, we have shown 

that the L96M EPS appears to behave like a real-world EPS.  Additionally, we have seen 

that the uncalibrated and calibrated forecasts for both the rare and common events have 

skill out to approximately seven and ten time units, respectively.  This feature plays a 
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crucial role when we consider the value of the ensemble forecasts and the ambiguity 

information, as it would not make sense to assess the value of a modeling system 

compared to climatology once the modeling system has lost skill compared to 

climatology.  Taking this analysis in conjunction with data processing constraints, we 

only consider forecast lead times less than five time units for exploring the research 

objectives. 

B. POSTPROCESSING OF ENSEMBLE FORECAST DATA 

This section describes the postprocessing of the ensemble forecast data.  We used 

the L96M EPS to generate 3,000 ensemble forecasts each consisting of 8 resolved 

variables, giving a total of 24,000 verifications available at each forecast lead time.  The 

forecasts were run out to five time units (non-dimensional), and postprocessing was 

performed at a time increment of 0.2 time units, which totaled 51 lead times including the 

analysis.  For the purpose of determining the L96M EPS error characteristics and 

calibration coefficients, the postprocessing described in the following subsections was 

performed using all forecast data at each forecast lead time.  Verifying observations were 

taken directly from the L96S trajectory without adding error (based on the typical 

observation error) even though erred observations are a source of random error.  By 

0.2  , the typical observation error was only a small fraction of the total error, thus the 

observation error was inconsequential at later lead times.  

1. Calibration 

We calibrated the L96M ensemble forecast data to correct for systematic errors.  

Once the systematic error is removed, the remaining error is the random error associated 

with the forecast, which is the primary cause of ambiguity.  In this research, a simple 

bulk calibration was performed to correct the average errors associated with the first and 

second moments of the forecast PDF.  We chose to use a bulk calibration technique 

versus a more sophisticated technique to allow for a fair comparison during the estimate 

validation.  A calibration technique that introduces additional information (e.g., 

downscaling) may reduce ambiguity, thus applying a more sophisticated calibration to 
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one of the practical estimation techniques (discussed in Chapter III.C) without 

performing the same calibration on the theoretical estimation method used as the 

validation standard would bias the results.  Calibration was performed at each forecast 

lead time. 

We used a simple shift-and-stretch calibration technique described by Eckel 

(2008).  The shift adjusts the first moment of the ensemble forecast PDF by correcting 

each ensemble member individually by the negative of the mean error in the ensemble 

mean defined as: 
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M is the total number of verification points, me  is the mean of a single ensemble forecast, 

and my  is the observation.  Using eME , the shift calibration is performed as follows: 
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ie  is a single shifted ensemble member, ie  is a single uncorrected member, and n is the 

number of ensemble members.  This approach assumes the bias is the same for each 

ensemble member, making it unacceptable for use with a multi-model EPS. 

The second moment calibration or stretch is performed to increase (or decrease) 

the spread (defined here as standard deviation) of the ensemble forecast PDF in 

accordance with the fractional error in ensemble spread: 
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The numerator is the average ensemble variance, and the denominator is the mean square 

error of the bias-corrected (shifted) ensemble mean, each respectively defined as: 
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n is the number of ensemble members, M  is the total number of individual verifications, 

ie  is the bias-corrected ensemble mean, iy  is the observation, and ,i je  is the thj  bias-

corrected ensemble member (Eckel and Mass 2005; Eckel 2008).  Eckel and Mass 

showed the /( 1)n n   factor in Equation (20) is required for small ensemble sizes.  The 

stretch calibration is performed using the previously shifted ensemble members: 
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ie  is the ith fully calibrated ensemble member. 

2. Calculating Forecast Probability 

Unless otherwise noted, we based all forecast probability calculations during this 

research on probability of exceedance of the event threshold.  The results presented 

would not change if the probability of precedence were used. 

We calculated forecast probability values using the uniform ranks method (Hamill 

and Colucci 1997).  Uniform ranks assumes the output from each of the n ensemble 

members for a variable at one grid point is equally likely, or that there is a uniform 
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probability distribution of the rank-ordered values.  The total probability is then divided 

into 1n   bins, each with equal probability of containing the verifying observation. 

The forecast probability is calculated as the sum of the rank-probability bins 

greater than the event threshold, plus the partial probability of the bin containing the 

event threshold.  For an event threshold in bins 2 through 1n  , the forecast probability 

( ep ) is calculated as: 
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  is the event threshold value, V is the observation value, ie  is the value of the ensemble 

member with rank i, and n is the number of ensemble members (Eckel 2008).  This 

process is depicted in Figure 22 . 

If the event threshold falls in either rank 1 or rank 1n  , it is not possible to use 

Equation (22) since no ensemble value is available to calculate the partial probability.  

For example, if   lies in rank 1n  , then 1i ne e   is the largest ensemble value and no 

1i ne e   ensemble member is available.  In this case, the forecast probability is calculated 

as: 
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 G  represents the Gumbel cumulative density function (CDF) (Wilks 2006) given by 

equations: 
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The Gumbel CDF parameters are estimated using the sample mean ( x ) and standard 

deviation (s) of the ensemble members and 0.57721   (Euler’s Constant).  If   falls in 

rank 1, the reverse Gumbel,  G , is used (Eckel 2008). 
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The Gumbel distribution was chosen to represent the tails of the ensemble distribution 

because of its ability to capture extreme events. 

3. L96M EPS Error Characteristics 

Estimating ambiguity in the ensemble forecast requires knowledge of the error 

characteristics of the EPS.  For the 3,000 forecast cycles, each EPS forecast run consisted 

of 21 members describing plausible realizations of the 8 resolved variables at each time 

step.  From previous discussion, the eight resolved variable forecasts are considered 

independent forecasts and are combined to create a total dataset of 24,000 (3,0008) 

ensemble forecasts.  The postprocessing procedure used for the ensemble forecast data is 

depicted in Figure 23. 
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Using the large calibrated dataset, Equations (16), (18), (19), and (20) are applied 

to diagnose the overall or bulk EPS error characteristics, giving the mean error of the 

ensemble mean, fractional error in ensemble spread, and average ensemble variance at 

each time step.  As stated, uncertainty in the forecast probability is actually a function of 

the error variance and not the bulk error.  We therefore remove the bulk (i.e. systematic) 

error using the shift-and-stretch calibration method to reveal the remaining random error 

which contributes to ambiguity.  The practical ambiguity estimation techniques 

(described in Chapter III.C) use the error variance statistics (i.e., the random error) to 

produce their ambiguity distributions. 

To determine the variance associated with the relevant error statistics, it is 

necessary to subset the large ensemble forecast dataset (Eckel and Allen 2009).  For this 

research, we chose to subset the large dataset of 24,000 verifications (per time step) into 

3,000 sets of 8 forecasts, where each set is an individual EPS run.  Each ensemble 

forecast, consisting of 21 possible values of the eight variables, describes the uncertainty 

about a unique trajectory within the model attractor.  Errors associated with each 

ensemble forecast PDF are sensitive to the flow or current location in the attractor.  Thus 

sub-setting based on complete EPS runs ensures flow-dependent error characteristics 

from different locations around the model attractor are used to find the error variance 

statistics.  This sub-setting strategy also follows the analogy of relating the L96M EPS to 

an operational EPS running once per day.  If we assume each L96M EPS run is the same 

as an operational EPS run then we are essentially looking at a 3,000 individual (one per 

day) ensemble forecasts.  The subset error statistics are thus equivalent to determining the 

error on a daily basis, which is the same as that chosen by Eckel and Allen (2009).  Once 

the error statistics ( eME ,    and 2
e ) are calculated for each of the 3,000 subsets using 

the same equations as above, the variance of the subset values provides the variance of 

the error distributions about the bulk values.  The L96M EPS error statistics (bulk and 

variance) for each time step are provided in Table 5.  The error statistics indicate that the 

L96M EPS had a small positive bias that was consistent throughout the forecast.  The 

fractional error was less than one throughout the forecast, but this was expected since the 

EPS was designed to be under-dispersive to mimic an operational EPS. 
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C. ESTIMATING AMBIGUITY 

This section provides a description of three ambiguity estimation techniques used 

during this research.  The first estimation method is a fundamental approach that would 

produce the true distribution of forecast probabilities given unlimited sampling.  The 

remaining two techniques estimate the ambiguity based on the error characteristics of the 

EPS and are a practical approach to estimating ambiguity.  The explanation of the 

practical methods follows that given in Eckel and Allen (2009) for ease of writing, where 

real-world data from the Japanese Meteorological Agency EPS (hereafter JM) was used 

over the same domain and forecast period described in Chapter III.F. 

1. Ensemble-of-Ensemble 

The ensemble-of-ensemble (EoE) method is the theoretical and impractical 

approach to estimating the ambiguity associated with an operational EPS.  The calibrated 

forecast probability ( ep ) from a non-ideal EPS can be considered a single sample from a 

distribution of true forecast probabilities ( Tp ), since the ensemble forecast PDF is a 

single realization of many plausible forecast PDFs, given the limited sampling and 

unaccounted for uncertainty in the EPS.  The EoE approach builds an estimate of the Tp  

PDF by running N parallel EPSs (termed constituents) each with unique ICs and each 

with unique model perturbations, all of which are similar in nature to the original, control 

EPS.  The result is N equally probable forecast PDF realizations for any single forecast 

timeframe, giving N unique ˆTp  samples (i.e., estimates of the true forecast probability).  

The distribution of ˆTp  reflects the uncertainty in the forecast probability (i.e. the 

ambiguity) in the forecast.  This approach is unrealistic and absurd for operational use 

given the large computational expense of running multiple, parallel ensemble forecasts, 

and if the computational resources were available, they would be better served improving 

the EPS through additional members and/or higher resolution. 

To produce the EoE ambiguity distribution, we ran multiple parallel ensemble 

forecasts (i.e., different versions of the L96M EPS) from the same control analysis state 
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while allowing initial condition perturbations and model parameterization values to vary.  

Each constituent gave a different yet equally plausible set of n members as well as a 

different forecast probability of occurrence of some event threshold.  Taken all together, 

the constituents provided a distribution of forecast probability values (i.e., an estimation 

of the Tp  PDF) for a given event that was flow dependent or sensitive to the uncertainty 

in the EPS perturbations. 

An important consideration for the EoE was the number of constituents required 

to provide a thorough statistical sampling of the ambiguity distribution.  This question is 

analogous to the problem of determining an appropriate number of members to use for an 

ensemble forecast.  Too few constituents may lead to misrepresentation of the desired 

ambiguity distribution even when the distribution the constituents are sampling is perfect 

(Figure 1).  For ensemble forecasts, error in forecast probability decays exponentially 

with increasing ensemble size with the most dramatic decrease for sizes ranging from 2-

20 members, whereas the decrease in error for sizes 20  members dropped off 

significantly.  This suggests that an ensemble size 20  is needed to reasonably represent 

the underlying true forecast PDF.  Using this reasoning, it was assumed that an EoE with 

20  constituents would adequately represent the ambiguity distribution.  As 

computational costs were not a significant limiting factor during the EPS runs, the EoE 

was configured to produce 100N   constituent ensemble forecasts in order to minimize 

sampling error.   

The setup of the L96M EPS used for the EoE forecast runs is shown in Figure 24.  

In contrast to the setup used for determining the EPS error characteristics, the initial state 

fed into the data assimilation for each of the 100 constituent runs is identical (outside the 

dashed blue box in Figure 24).  In this way, the DA process creates a unique set of 

perturbed initial conditions for each constituent based on the same forecast situation.  The 

differences in the perturbed states are due to random processes within the DA process 

varying the outcome within the realm of possible analysis error.  Additionally, the model 

parameterization values vary randomly (by design in the L96M) throughout the 
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constituent runs.  The combination of varying initial condition and model parameter 

perturbations results in varied but equally likely realizations of the uncertainty in the 

future state of the system. 

Creation of an EoE forecast case dataset begins similarly to the runs used for 

finding the EPS error characteristics, described in Chapter III.A.3.  From an initial set of 

500 perturbed observations, we completed a spin-up cycle of 1000 model time steps 

updating the filter with new perturbed observations every 10 steps.  Following the spin-

up cycle, the process then runs an additional 20 data assimilation cycles (10 model steps 

each) from the final spin-up cycle analyses.  The first EoE constituent forecast is run 

using the analyses found at the completion of the last data assimilation cycle, where n 

ensemble members are selected as before.  For the next EoE constituent, another 20 data 

assimilation cycles are run once again starting from the final set of spin-up cycle 

analyses.  Thus the next constituent forecast is run over the same forecast period as the 

previous constituent.  This process is repeated to produce a single dataset of N EoE 

constituents for a specific forecast scenario.  Subsequent EoE forecast case datasets are 

separated from initial state of the previous forecast case by the standard separation period 

(i.e., 200 model steps) to find cases from different regions in the L96M attractor. 

2. Calibrated Error Sampling 

The calibrated error sampling (CES) method uses information on past 

performance of the ensemble to estimate ambiguity.  Errors in ensemble forecast 

probability ( ep ) may be the result of errors in any moment of the ensemble forecast PDF.  

For CES, we focus on errors in the first two moments, as they are believed to be the 

largest contributors.  Possible errors in the ensemble PDF may be described by error 

distributions for the ensemble mean and spread based on long-term verification.  Such 

error distributions reflect error due to finite sampling as well as error due to unaccounted 

for uncertainty in the EPS (Eckel and Allen 2009).  For error in the first two moments, 

we find the error distributions for the mean error of the ensemble mean [ eME , equation 

(16)] and fractional error in ensemble spread [  , equation (18)].  The mean values for 
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the eME  and    error distributions are computed over a full verification dataset, while 

the spread of the distributions are calculated using subsets of the full dataset, as described 

in Chapter III.B.3.  Note that the following explanation of CES follows that given in 

Eckel and Allen (2009) using real-world JM 2-m temperature 5-day forecast data. 

We may estimate the distribution of possible ep  errors by converting potential 

PDF errors into ep  errors.  Consider the following example of translating from a PDF 

error to a ep  error using an arbitrary ensemble 2-m temperature forecast, defined as a 

Gaussian with a mean of 2.8C and a spread of 1.8C, or  2.8 C, 1.8 CN    (Figure 25).  

For this example, we assume that the true forecast PDF is known (which is generally 

untrue), and it is  2.2 C, 2.6 CN   .  The errors in the ensemble PDF mean and spread 

due to finite sampling and/or ensemble deficiencies are 0.6C and 0.8C, respectively.  

The fractional error in spread is thus 1.8 / 2.6 = 0.69.  The ep  error can be calculated for 

any chosen event threshold by comparing the ensemble forecast probability and the true 

forecast probability ( Tp ).  For the event of temperature  0C, the error is 13.9% since 

ep  = 6.0% and Tp  = 19.9% (Figure 25). 

Performing the same type of calculation over many different event thresholds 

(i.e., different values of 2-m temperature) for the same ensemble and true distributions, 

produces different ep  error values for each threshold chosen [Figure 26 (a)].  Similarly, 

we may employ a single event threshold while allowing the location of the ensemble PDF 

to vary (i.e., an ensemble PDF with the same mean and spread errors placed in different 

locations with respect to the event threshold).  In our example, the positive bias of the 

ensemble PDF results in primarily negative ep  error values (since we are considering 

probability of preceding the event threshold).  Positive ep  errors are present for high 

event thresholds once the true PDF’s density becomes larger to the right due to the under-

spread ensemble PDF.  When the event threshold moves deeper into the PDF tails on 

either side, ep  error asymptotes to zero as the outcome of the event for both the ensemble 

and true forecast PDFs become more certain (i.e., ep  closer to 0% or 100%).  Our goal is 
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to provide an estimate of ambiguity as a function of ensemble forecast probability, so we 

replot the results in Figure 26(b) as true probability versus ensemble forecast probability. 

The ensemble PDF in Figure 25 exhibits merely one of many possible errors in 

ensemble mean and spread.  Different PDF error values can produce different ep  errors.  

For a given EPS, the spectrum of ensemble PDF errors is described by error distributions 

(one each for ensemble mean and spread) created by evaluating the EPS’s long-term error 

characteristics as described above.  To remove systematic error leaving only the random 

error component, we bulk calibrate the forecasts as described in Chapter III.B.1.  

Example error distributions for eME  and    are shown in Figure 27 (a) and (b), where 

the eME  distribution is fit using a normal distribution, and the    distribution is fit to a 

gamma PDF. 

CES also requires a distribution for the average ensemble spread, shown in the 

example Figure 27(c).  Error in the ensemble mean affects ep  error, but the actual value 

of the ensemble mean does not impact ep  error.  On the other hand, ep  error is affected 

by both error in the ensemble spread and the magnitude of the ensemble spread itself.  

Wider ensemble PDFs produce smaller values of ep  error since differences in the 

ensemble and true probability densities become smaller.  The distribution of average 

ensemble spread is computed following the same methodology used to find the error 

distributions.  We then fit the ensemble spread distribution with a gamma distribution.   

Scatter plots between these various parameters in Figure 28 show no strong 

correlations between the three variables (average ensemble spread, error in ensemble 

mean, and error in ensemble spread).  The spread-skill relationship suggests that the 

variability of errors in the forecast PDF increase with increasing ensemble spread, which 

would result in larger ambiguity.  Thus we must determine if a significant correlation 

exists between ensemble spread and the variability (i.e., standard deviation) of errors in 

the ensemble mean and spread.  Figure 29 shows a plot of mean error and spread and 

indicates the variability of both errors remains fairly constant regardless of ensemble 

spread (thus independent).  Additionally, the standard deviations of both errors generally 
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match the standard deviation of the error distributions in Figure 27 (a) and (b).  The 

spread-skill relationship is likely not seen due to computing the domain averaged errors 

for each forecast case.  Since the variables are independent, we can sample randomly 

from each variables’ distribution to give a set of possible values, which may then be used 

in CES. 

To summarize the CES method, for a given set of random samples from 

distributions as in Figure 27, the ep  error value for a specific calibrated forecast 

probability value is found as follows.  The randomly drawn ensemble mean error and 

ensemble spread values are assumed to describe a Gaussian distribution, where the mean 

error value is an error in location away from zero.  Using this distribution, the event 

threshold value giving the forecast probability in question is located.  This event 

threshold is then used to find the true forecast probability, where the true PDF is a 

Gaussian distribution with zero location error and spread equal to the ensemble spread 

divided by the randomly drawn fractional error.  In this way, the spread of the true 

forecast PDF will be greater than the ensemble PDF if the fractional error is less than 

one.  The ep  error is then the calibrated forecast probability in question minus the true 

forecast probability.  The true forecast probability is actually a single estimate from the 

distribution of estimated true probabilities ( ˆTp ), since it was found using a single set of 

error distribution and spread values representing plausible variations in the ensemble 

forecast PDF based on past performance.  It is important to note that the CES ambiguity 

estimate is not based on knowing the true forecast PDF, but rather on knowing possible 

values of its mean and spread relative to the ensemble PDF described by the EPS error 

characteristics, as well as possible values of ensemble spread. 

In Figure 30, we see that possible ˆTp  values vary dramatically for five sets of 

random draws from the Figure 27 PDFs.  For ep  = 55%, the ˆTp  values range from 47% 

to 80%, yielding a rough estimate of ambiguity (i.e., the actual Tp  may randomly occur 

within that range).  Looking at the same ep  value (55%), a robust ambiguity estimate can 

be created by repeating the CES process using 50,000 random samples from the error and 
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ensemble spread distributions, thus producing a specific ambiguity distribution [Figure 

31(a)].  CES produces an ambiguity distribution for all values of calibrated forecast 

probability.  We define total ambiguity as the 90% CI (i.e., the maximum likely value 

minus the minimum likely value) of the distribution of ˆTp  values for a specific calibrated 

forecast probability value, 

 
 95 5total ambiguity p p   (26) 

 

where 5p  and 95p  represent the 5th and 95th percentile of the rank-ordered ˆTp  values, 

respectively. 

Computing the total ambiguity for each calibrated forecast probability value 

yields the results in Figure 32, conveying the general, overall ambiguity of our example 

EPS temperature forecasts.  In general, these results do not make sense when considering 

an ensemble forecast at a specific point, as the results were produced for all possible 

values of ensemble spread.  A specific forecast has a specific ensemble spread.  Figure 33 

shows that CES runs for fixed values of ensemble spread, but the same variability of 

mean and spread error described by the distributions in Figure 27 (a) and (b), have very 

different amounts of ambiguity.  Thus, in real-world applications, specific CES ambiguity 

distributions must be generated for the full range of observed ensemble spread values. 

Therefore, CES takes two forms in this research, thus making a distinction 

between developing the CES ambiguity distributions using randomly varying ensemble 

spread values or using specific ensemble spread values.  The former, termed CES Global 

( GCES ), produces a bulk estimate of the ambiguity distributions for any calibrated 

forecast probability, independent of ensemble spread.  The later method, termed CES 

Local ( LCES ), provides a flow-dependent estimate of the ambiguity distributions specific 

to ensemble spread values.   

CES requires a significant up-front computational expense to produce the 

ambiguity lookup tables for each calibrated forecast probability value.  Real-time 

application involves simply calculating the ensemble spread then accessing the lookup 
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table to get the ambiguity data.  The crux lies in developing error distributions for the 

ensemble mean and spread, as these distributions are likely sensitive to changes in 

forecast lead time, season, location, weather patterns, etc.  Subsetting of the verification 

datasets must be accomplished in such as way as to avoid combining dissimilar signals 

while maintaining a large enough sample size to get accurate results. 

3. Randomly Calibrated Resampling 

The second practical method for estimating ambiguity, randomly calibrated 

resampling (RCR), employs bootstrap resampling, which is designed to estimate the 

uncertainty in sample statistics (Wilks 2006).  In application here, the sample dataset is 

the set of ensemble members and the sample statistic is the forecast probability for a 

given event.  A single resampling of the n-member ensemble values consists of making n 

random draws with replacement resulting in a new version of the dataset and a different 

ˆTp  for the event.  Repeating this process 10,000 times gives a distribution of ˆTp  values.  

It is important to note that the original ep  from the control ensemble forecast will be near 

the mean of the resampled ˆTp  distribution since averaging the alternative datasets 

reproduces the original (Eckel and Allen 2009).  Note that the following explanation 

RCR follows that given in Eckel and Allen (2009) using real-world JM 2-m temperature 

5-day forecast data. 

Resampling alone will not provide an accurate estimate of the ambiguity 

associated with a given ensemble forecast, since the resampling process accounts for only 

one source of ambiguity, finite sampling.  The resampled ambiguity distribution is 

dependent on the size of the ensemble used to represent the true forecast PDF.  

Resampled ensemble forecasts from a small ensemble are likely to produce very different 

PDFs and subsequently very different ˆTp  values [Figure 34(a)], resulting in a wider 

ambiguity distribution.  The resampled datasets from a well-sampled, large ensemble are 

more likely to give similar PDFs, reducing the range of ˆTp  values [Figure 34(b)].  

Resampling does not account for random error due to deficient simulation of sources of 
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uncertainty.  Possible forecast solutions missing among the members due to deficiencies 

of an imperfect ensemble would never show up in any resampling, thus the ˆTp  PDF will 

be too narrow (Eckel and Allen 2009).   

Since forecast probability values are confined between 0% and 100%, systematic 

bias can also affect the width of the ˆTp  PDF.  For example, an ensemble with a negative 

bias will shift the ˆTp  PDF towards 0% erroneously, causing a decrease in variance as ˆTp  

values are unable to cross the lower bound.  To provide an accurate estimate of 

ambiguity, the effects of random and systematic error must be included. 

Each resampled dataset can be calibrated using information from the EPS’s error 

characteristics by applying the ‘shift-and-stretch’ technique described previously 

(Chapter III.B.1.).  As before, the bulk mean error in the ensemble mean [ eME , 

Equation(16)] is used to correct the first moment of the ensemble PDF.  Corrections to 

ensemble spread are made using the average fractional error in ensemble spread [  , 

Equation(18)] to stretch (or compress) the bias-corrected members about their mean.  

Each resample dataset is calibrated individually, giving calibrated forecast probability 

values for each resample.   

Bootstrap and calibration account for systematic errors and random errors due to 

finite sampling, but not random errors due to unrepresented sources of uncertainty.  To 

include these effects, the calibration applied to each resample dataset is varied by using 

random draws from the EPS’s eME  and    error distributions.  Random calibration takes 

into account the variation in the ensemble forecast error statistics, which result from the 

EPS’s inability to simulate all of the uncertainty associated with the forecasts.  Thus 

calibrating based on the random errors brings in possible forecast solutions that would 

otherwise be absent in the resampled datasets.  As the distributions from which the 

random deviations are drawn are centered at the average eME  and   , the original 

calibrated forecast probability value is maintained as the central value of the ˆTp  PDF 

(Eckel and Allen 2009). 
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Before the random deviations are drawn from the distributions of eME  and   , 

we must remove the error variance due to finite sampling (Eckel and Allen 2009).  

Otherwise, finite sampling will be accounted for twice (i.e., once by bootstrap resampling 

and once by random calibration) leading to overestimation of ambiguity.  The sampling 

distributions in Figure 2 reflect the contributions purely from finite sampling to error in 

the ensemble mean and spread associated with calibrated PDFs for various ensemble 

sizes.  Since we are concerned with adjusting the raw error distributions, the spread of the 

distributions in Figure 2 must be de-standardized. 

When calibrating ensemble spread towards an average fractional error of one, the 

spread of the fractional error distribution is adjusted by nearly the same proportion as the 

average fractional error.  Thus to de-standardize the spread of the fractional error 

distribution for an n-member ensemble from Figure 2, we reduce the spread value by a 

factor equal to the raw average fractional error (from EPS forecast verification) divided 

by the average fractional error for an n-member ensemble (from Figure 2).  The spread of 

the EPS’s fractional error distribution is then reduced by the de-standardized spread due 

to finite sampling to give the reduced error distribution for random calibration. 

For the contribution of finite sampling for an n-member ensemble to variance in 

eME , Figure 2(a) gives a standardized (i.e., calibrated) value based on 1 / n , which 

must be inflated by eRMSE  to de-standardize to the eME  distribution.  The eRMSE  

represents the best estimate of the standard deviation of the true forecast PDF ( T ), since 

both T  and eRMSE  represent the average error in observations away from the true 

mean ( T ) or the bias-corrected ensemble mean (Eckel and Allen 2009).  Therefore, 

/eRMSE n  is subtracted from the standard deviation of the EPS’s eME  error 

distribution to arrive at the PDF for random calibration.  Examples of the reduced error 

distributions of eME  and    are shown in Figure 35.     

Each resample is thus randomly calibrated using information on the long-term 

variability of the ensemble’s error, which generates a wider ˆTp  PDF (Figure 36).  The 

width of the RCR ambiguity distribution is strongly dependent upon the spread of the 
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original ensemble forecast, giving the RCR estimate flow-dependent characteristics.  An 

ensemble forecast with less uncertainty (low spread) will typically have a wider ˆTp  PDF 

compared to a forecast with greater uncertainty.  For a low spread forecast, the 

adjustment in location for each resample forecast PDF due to the random calibration 

results in a larger range of ˆTp  values for a given event threshold (discussed in detail in 

the Results chapter).   

Although RCR appealingly produces a more flow-dependent ambiguity estimate, 

it comes with a significant, real-time computational cost.  Generating and analyzing the 

resampled datasets (10,000 at each grid point for every variable of interest) may be too 

computationally demanding for operational application. 

D. VALIDATION 

There is a fundamental difference between the EoE approach and the other two 

ambiguity estimation techniques.  In EoE, the original, calibrated, control forecast 

probability value ( ep ) represents a single, random draw from the theoretical Tp  PDF, 

which is estimated by the EoE ˆTp  PDF.  Thus, the original ep  can fall anywhere within 

the Tp  distribution.  The other two estimation techniques use information on past 

ensemble performance to provide a ˆTp  distribution (i.e., Tp  PDF estimate) that is 

centered on the original ep .  Because of this difference, our validation efforts were 

confined to determining how well the practical estimation techniques captured the 

variance of the EoE ambiguity distribution. 

The EoE produces a spectrum of possible forecast PDFs and a ˆTp  PDF for any 

particular event at some particular lead time, and it dynamically captures the EPS 

limitations (i.e., limited sampling and inadequate simulation of uncertainty).  EoE reflects 

the flow-dependent deficiencies in the perturbations associated with the different regions 

in the attractor.  GCES , on the other hand, produces a ˆTp  PDF for any particular ep , 

which could come from any event.  The ˆTp  distribution is a generic ambiguity 

distribution based solely on the EPS’s average error characteristics, which are taken as 
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the same over the entire attractor.  LCES  produces a somewhat flow-dependent 

ambiguity distribution based on the same general error distributions but dependent on 

specific ensemble spread.  RCR again uses the same general error distributions, and its 

ambiguity estimate is somewhat flow-dependent since the estimate is sensitive to the 

distribution of members in the ensemble PDF. 

The validation strategy considers aggregated ambiguity distributions built over 

many locations on the L96M attractor in order to determine the overall effectiveness of 

the ambiguity estimation methods.  This strategy was necessary because the sample PDFs 

used to find the ˆTp  values for the GCES  ambiguity distribution were created using the 

long-term, average error distributions.  Thus the GCES  ambiguity distribution reflected 

the forecast uncertainty from a combination of many possible events or locations on the 

L96M attractor.  We created the aggregates by combining data from all of the EoE 

forecast cases used for validation into a single dataset.  Accordingly, the same 

aggregation had to be done for the GCES  and RCR datasets.  LCES  was developed based 

on the evolution and validation results in this research (Chapter IV), which unfortunately 

resulted in its omission from the validation study due to time and processing constraints. 

For this validation strategy, we must consider what each ambiguity estimation 

method regards as the expected value of its ambiguity distribution,  ˆTE p .  The 

 ˆTE p  for GCES  and RCR is the calibrated forecast probability value ( ep ), which is 

the best-guess forecast probability value from the control ensemble forecast.  The EoE 

 ˆTE p  is the expected value of its ˆTp  PDF, which may be very different from ep .  

Thus, to validate GCES , a certain ep  is chosen and then many cases where EoE  ˆTE p  

matches ep  are found.  The aggregate of EoE ˆTp  distributions from the many cases 

should then match the generic GCES  ˆTp  PDF.   

The validation approach is similar for RCR, with one notable difference.  In the 

case of GCES  where the ambiguity distributions are static, the EoE data does not have to 

coincide with any particular forecast scenario.  RCR on the other hand requires the EoE 
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results specifically coincide with that of the resampled ensemble due to the flow-

dependent aspect.  From an EoE forecast case of N constituents, a single constituent is 

drawn to act as the control ensemble forecast.  The control is then used to create the RCR 

ambiguity estimate, which is centered on the calibrated control forecast probability ( ep ).  

The complete set of N constituents is then used to create the EoE ambiguity distribution.  

Validation is performed where the  ˆTE p  for both the EoE and RCR ambiguity 

distributions are equal.  As RCR uses random deviates of the long-term average error of 

the EPS, its ˆTp  PDF may be over- or under-spread compared to EoE for any one case.  

Therefore, it is again necessary to aggregate many forecast scenarios from across the 

attractor.  Thus for validation, the RCR ˆTp  distributions and the associated EoE ˆTp  

distributions are aggregated separately for comparison.   

These comparisons show how well the estimated GCES  and RCR ambiguity 

distributions capture the variance of the EoE ambiguity distribution when the EoE 

 ˆTE p  equals ep .  However, we cannot validate the estimation methods’ ability to 

consistently capture the location of the EoE ambiguity distribution.  Both the CES and 

RCR ambiguity distributions will be centered on the calibrated forecast probability from 

the control ensemble forecast, which is a random sample from the EoE ambiguity 

distribution, thus a random error in location exists. 

1. Processing of Ambiguity Data 

We used the EoE to create 100 sets of 100 constituent ensemble forecasts to be 

used during validation and value testing.  All of the sets were used during the evaluation 

of value, but computational constraints associated with RCR allowed only 20 of these 

sets to be used during the validation of the estimation techniques.  For each of the 20 EoE 

forecast cases used for validation, the data were processed to ensure comparisons were 

performed using ambiguity distributions with equal expected values.  The overall 

processing scheme for the ambiguity data used for validation is shown in Figure 37. 
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To find the EoE ˆTp  distributions for a single set of 100 constituent forecasts, we 

tested each of the eight kX  variables sequentially across the range of forecast probability 

values shown in Figure 37.  The forecast probability values tested represent possible ep  

values found using the control ensemble forecast.  We will describe the postprocessing 

procedure for 50%ep   and 1kX X  for a single EoE forecast case of 100 constituents 

here as an example of how all ep  values and kX  variables are processed at each lead 

time. 

We must determine the event threshold X-value that yields  ˆTE p  across the 100 

constituents equal to the forecast probability value being tested.  Thus for variable 1X  

within the set of EoE constituents, there exists an X-value such that the distribution of ˆTp  

values calculated using that X-value as the event threshold with each constituent forecast 

creates an  ˆTE p  equal to 50% within 0.01%.  Once this X-value is located, we know 

the distribution of constituent ˆTp  values for 1X  and 50%ep   in our EoE forecast case.  

The X-value and ˆTp  distribution will be different for different EoE forecast cases or even 

different kX  variables within a single dataset. 

We employed an iterative-bisection method for determining the X-value (Figure 

38).  Here, the control EF, taken as the first constituent of the EoE forecast case, was 

used to find the range of 1X  values based on the ensemble members.  This range was 

then expanded on either side by an arbitrary amount, Figure 38(a).  We expanded the 

range after initial tests had difficulties converging on an X-value for extreme forecast 

probability values.  The average of the largest and smallest 1X  values was then taken as 

the first test value used to calculate ˆTp  across the constituents, Figure 38(b).  We then 

tested the  ˆTE p  from the 100 constituents against the desired 50%ep  , which 

resulted in some error value.  When the magnitude of the error was too large compared to 

the tolerance (set to 0.01%), we used the signed value of the error to determine which 

direction to move when adjusting the range of X-values used for determining the next test 
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X-value, Figure 38(c).  The process repeats until the algorithm converges.  The final 

output available for use during validation is a distribution of 100 possible ˆTp  values for 

50%ep   and 1kX X  for this EoE forecast case.  Again, this process was repeated for 

all ep  values listed in Figure 37 for each kX  at all required lead times for every EoE 

forecast case. 

Application of GCES  during the validation process required a control forecast 

probability value about which the appropriate preprocessed GCES  ambiguity distribution 

was placed.  We took the control ensemble forecast for GCES  as the first constituent 

from a set of EoE forecasts.  The GCES  static ambiguity distribution associated with each 

possible ep  value was found using the process described in Chapter III.C.2. 

Similarly to GCES , the RCR estimation required defining a control ensemble 

forecast, which again we took as the first constituent of each EoE set.  The resampling 

process was then performed using the n ensemble members.  For RCR, we used the 

uncalibrated control ensemble forecast data, since each resample must be calibrated using 

randomly drawn calibration coefficients.  Once each of the 10,000 re-sampled ensemble 

datasets had been randomly calibrated, we employed the iterative-bisection method again 

to find the X-value giving  ˆTE p  equal to some desired ep  within 0.01% error.  After 

converging, the desired RCR ambiguity distribution consisting of 10,000 ˆTp  values was 

known.  Since this process had to be completed for each variable within each EoE set at 

every lead time for every desired ep  value, the processing time was extraordinary.  

Therefore for this research, we confined the RCR calculations and thus validation to 

forecast lead times out to 5 time units at a time increment of 0.2 time units, and 

processing was only accomplished for a limited number of ep  values (see Figure 37).  

Additionally, we did not perform validation of the later forecast lead times as changes to 

the ambiguity distributions from all three estimation techniques were insignificant 

beyond 5 time units. 
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2. Comparing Ambiguity Estimates 

The forecast times and probability values available from the computationally 

expensive RCR data constrain the comparison of the ambiguity estimates from the three 

methods.  Thus, we made comparisons only through forecast lead times of 5 time units at 

a time increment of 0.2 and for ep  values listed in Figure 37.  Comparisons were made 

using total ambiguity [Equation (26), page 61].  So, for each ep  value at each time, we 

found the upper and lower bounds of the 90% CI for each estimate type.  As described in 

the previous section, the expected values of the estimated ambiguity distributions match 

by design, so comparing the 90% CI ranges provides a measure of the similarity in the 

variance of the ambiguity distributions.  Even if the total ambiguity is equal, we cannot 

conclude that the ambiguity distributions are the same, since one of the distributions may 

exhibit differences in higher moments.  Thus we are limited to validating only the 

variance of the ambiguity distributions.   

In accordance with the validation theory, we validated specific ep  values using 

aggregates of the EoE and RCR ambiguity distributions.  Since 20 EoE sets are used, this 

resulted in an EoE distribution of 16,000 ˆTp  values and an RCR distribution of 

1,600,000 ˆTp  values.  The CES ˆTp  distribution contained 50,000 values.  The lower and 

upper CI bounds for a certain distribution were found by sorting the ˆTp  values into 

ascending order and taking the 5th- and 95th-percentile based on the size of the dataset, 

respectively.  We then computed the total ambiguity for the distributions as the upper 

bound minus the lower bound.  We compared the GCES  and RCR ambiguity estimates to 

the EoE “standard” by subtracting the EoE estimate from the GCES  or RCR estimates.   

E. VALUE USING UNCERTAINTY-FOLDING 

We applied the uncertainty-folding approach to ambiguity distributions developed 

using the EoE, GCES  and RCR estimation techniques.  Additional testing was performed 

using what is termed the grand ensemble, which consisted of combining the ensemble 

members from the 100 constituents for a given EoE forecast case into a large 2100-
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member ensemble.  The grand ensemble may provide evidence that EPS designers would 

be better off allocating resources towards improving the EPS (i.e., running more 

members) versus devoting resources to implementing the impractical EoE technique to 

estimate ambiguity.  We ran tests using all of the 100 EoE constituent forecast cases with 

the two event thresholds previously described (Chapter III.A.4).  Thus for each event 

threshold, we had 800 control ( ep ) and grand ( gp ) ensemble forecast probabilities and 

800 uncertainty-folding forecast probabilities (i.e., one for each of the eight variables in 

each of the 100 constituents) for each ambiguity estimation method available at each 

forecast lead time.  As before, the control ensemble forecast was always taken as the first 

constituent of each EoE forecast case.  We confined the analysis of value to lead times up 

to 5 time units because changes in the ambiguity distributions were insignificant beyond 

this time and because the L96M EPS was shown to lose skill shortly after this time.   

For a specific forecast case, we developed the EoE ambiguity distributions by 

determining the forecast probability for the two selected thresholds for each of the 100 

EoE constituents.  The GCES  and RCR ambiguity distributions were found using on the 

control ensemble forecast (members from constituent #1), using the same procedure 

described in Chapter III.C.  For the grand ensemble, we found a single gp  value using 

uniform ranks with the 2100-member ensemble for each of the event thresholds.  To find 

the grand ensemble’s gp , each of the constituent forecasts was calibrated separately 

using the average error characteristics for the 21-member L96M EPS.  It may have been 

more appropriate to combine the constituent members and then calibrate using calibration 

coefficients for a 2100-member L96M EPS, but the computational expense of finding the 

error characteristics prevented this approach.  We then applied uncertainty-folding 

(Chapter II.C.1) with the EoE, GCES  and RCR ambiguity distributions to find the ap  

value associated with each estimate. 

We analyzed value using an extension of the optimal VS, called the integrated 

optimal VS (IOVS):   
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where 0.01x   and iVS  is the value score attained using C/L = i as the decision 

threshold.  The summation computes the positive area under the VS curve for a given 

forecast technique at a specific lead time (Figure 39) by breaking the area into sections of 

width x  and length iVS .  In this approach, the optimal VS found using ep  from the 

control ensemble, gp  from the grand ensemble or ap  from EoE, GCES  or RCR at a 

specific lead time is integrated across all C/L giving a single IOVS value for each source 

at each forecast lead time. 

Using IOVS allowed uncertainty-folding from EoE and RCR and the forecast 

probability from the grand ensemble to be easily compared for all lead times.  For 

comparison, we standardized the IOVS values associated with the ambiguity estimation 

techniques and the grand ensemble with respect to the IOVS based on the control forecast 

probability from the first constituent in each EoE forecast case.  Thus, scores greater than 

one indicate improved value over the control ensemble forecast, while scores below one 

indicate a reduction in value. 

F. VALUE USING SECONDARY DECISION CRITERIA 

We undertook the study of value associated with application of secondary 

decision criteria using a real-world operational EPS.  In the study, we developed a 

process for applying ambiguity information towards improving the secondary criteria of 

minimizing repeat false alarms at all locations (i.e., grid points).  We used the LCES  

ambiguity distributions for this portion of the value study because it is the most practical 

approach to use operationally over a large domain.  Thus we attempt to use ambiguity 

and decision thresholds, both based on past performance, to add value in a real-world 

decision context. 
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1. Description of Real-world EPS and Ground Truth Data 

We obtained historical ensemble forecast data from the THORPEX Interactive 

Grand Global Ensemble (TIGGE) database.  TIGGE is a collaborative project where 

ensemble data is made available for scholarly research in support of the THORPEX goals 

of improving accuracy of 1-day to 2-week forecasts (WMO 2009).  The database holds 

surface and upper level variable data from ten operational centers from around the globe 

dating as far back as 2001.  We retrieved the ensemble forecast and ground truth data 

through the ECMWF TIGGE internet portal (TIGGE 2009).  The following EPS and 

model descriptions were also obtained from the TIGGE portal. 

For the secondary criteria value studies, we chose the Global Ensemble Forecast 

System (GEFS) provided by NCEP.  GEFS is a 21-member, single-model ensemble 

based on the NCEP Global Forecast System (GFS).  The model horizontal resolution 

provided is T126 (or ~ 110 km) with 28 vertical levels.  GEFS forecast data is provided 

on a 1o 1o grid initialized daily at 00Z, 06Z, 12Z and 18Z over the forecast period T+0 

to T+384 hours at a six-hour increment.  Initial condition perturbations are produced 

using an ensemble transform method that incorporates regional rescaling of perturbations 

with an optimization period of 48 hours.  At the time of the study, GEFS contained no 

model perturbations or surface boundary conditions perturbations, thus ignoring a 

significant source of uncertainty.  Due to the limited number of members and the lack of 

model perturbations, we expected the ambiguity associated with GEFS to be high, which 

is why it was chosen for this portion of the research.   

We focused the secondary criteria value studies on GEFS 120-hour (T+120) 

forecasts of 2-m temperature over a CONUS domain with corner points 50N, 125E and 

24N, 66E.  Based on the 1o 1o grid, this gave us 1,620 forecast-verification points per 

forecast case, where independence among data points was assumed.  Two separate 

verification periods were used during this study.  The first was a training period where we 

verified the GEFS forecasts to determine the calibration coefficients as well as the 

forecast error characteristics used for estimating ambiguity.  The training period ran from 

15 Dec 2007 to 15 Feb 2008 using only 12Z forecasts for a total of 63 forecast days 
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during the winter season.  The period was chosen to avoid seasonal transitions where 

error characteristics may change dramatically over short periods of time, while providing 

a large enough dataset for robust estimates of the error characteristics.  The second period 

was an independent application dataset where we performed the value studies employing 

the error characteristics obtained during the training period.  We therefore had to assume 

stationarity and seasonal dependence of the systematic and random error in order to apply 

the error statistics to the application period.  The application period covered 1 Jan 2009 

through 31 Jan 2009 using only 12Z forecasts for a total of 31 forecast days. 

To determine the error characteristics associated with the GEFS EPS, we chose 

the ECMWF global model analysis (T+0 hours) as the ground truth to use for 

verification.  The ECMWF analysis, originally run at horizontal resolution T799 (or ~ 25 

km) with 91 vertical levels, is archived on the TIGGE portal using an N200 reduced 

Gaussian grid.  We requested the data on a 1o 1o grid through the TIGGE portal, where 

the portal software automatically interpolates the data to the user’s requested format 

using a bilinear interpolation (Fuentes 2008).  We retrieved 12Z 2-m temperature 

analyses for 20 Dec 2007 through 20 Feb 2008 for a total of 63 days over the training 

period.  Analyses for the application period consisted of 31 days from 6 Jan 2009 through 

5 Feb 2009 for 12Z. 

2. Metrics used in Secondary Criteria Value Study 

From previous discussion, we want to add value to the secondary criteria while 

leaving the primary value significantly unchanged.  The primary value of the forecasts 

was established using the optimal VS.  The main secondary value metric was simply the 

number of repeat false alarms.  Other metrics (described below) were used to ensure the 

primary value of the forecasts was not significantly degraded.  We compute all metrics to 

diagnose any change in primary and secondary value for decisions based on the control 

ensemble forecast alone versus consideration of the ambiguity information. 

In order to ensure the primary value was not significantly reduced, we used the 

following additional metrics.  Probability of detection (POD) is defined as the proportion 
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of correctly forecast occurrences (Jolliffe and Stephenson 2003).  Based on the 

nomenclature introduced in the contingency table (Table 2, page 31), 

 

 
a

POD
a c




 (28) 

 

A metric not normally found in verification readings was defined for this research, the 

probability of missed detection (POMD).  This metric is defined as the proportion of 

incorrectly forecast occurrences. 
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 (29) 

 

The significance of changes to the metrics was evaluated using the 95% CI about 

the scores.  For determining optimization, we considered a change insignificant if the 

expected value of metric from the alternate behavior fell within the upper and lower 

bounds of the control’s 95% CI.   

3. Secondary Criteria Value Study Scenario 

As described above, we used the secondary criteria of reducing the number of 

repeat false alarms for this research, where a repeat false alarm is defined as two 

unnecessary protections in a row at a specific forecast location.  Repeat false alarms were 

chosen because of the tangible and intangible effects they may produce, such as loss of 

customer confidence in the forecast and degraded mission effectiveness, among others.  

While a user may employ the ambiguity information to help prevent repeated misses, we 

considered only repeat false alarms as a secondary criterium.  As this was a preliminary 

study into assessing the value associated with secondary criteria, we chose to focus on a 

single criterium to show the potential benefits of using ambiguity information in the 

decision making process. 
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Here, the goal was to minimize the total number of repeat false alarms over the 

entire domain by allowing the user to incorporate the ambiguity information to alter the 

decision to protect at any grid point where the previous consequence was a false alarm 

(i.e., an unnecessary protection).  In other words, at a specific grid point in the domain, if 

the previous forecast at that location resulted in a false alarm, the user may change the 

current “protect” decision to “do not protect” if the ambiguity distribution indicates that 

the decision input is unclear (i.e., overlap exists).  The occurrence of any other 

consequence following the first false alarm breaks the sequence preventing the user from 

reversing decisions.  An important aspect of the study is that we must maintain the 

primary value associated with using the best-guess forecast probability to minimize 

expected expense while simultaneously gaining value based on the secondary criteria.  

The metrics used to monitor the primary value were discussed in Chapter III.F.2.  Using 

the 2-m temperature data, we focused the study on the event threshold of temperature 

 0oC , which is critical to a variety of users in the real world.  It is easy to imagine the 

issue of repeat false alarms extending to any event of interest. 

In this scenario, we explored several possible decision rules employed by the 

forecast user when the chance of having a repeat false alarm is possible (Table 6).  

Decisions based on users who follow these decision rules are evaluated in relation to a 

normative user who consistently makes decisions based on the best-guess ensemble 

forecast (the ‘Control’ user in the table).  The basic decision flow for using the ambiguity 

distribution overlap to reduce repeat false alarms is shown in Figure 40.  It’s important to 

emphasize that changes to the decision can only happen following a previous false alarm 

at the same grid point.  When an opportunity to reverse the decision arises and the 

decision is unclear, the overlap is compared to an overlap threshold value to determine if 

the user’s action will be changed.  If the current overlap is greater than the overlap 

threshold value, the user will reverse the decision (i.e., choose not to protect). 

The conceptual model, depicted in Figure 41, was our first guess at how the 

overlap threshold value should vary according to C/L.  We assumed that high C/L users 

needed to reverse the decision less often (i.e., higher overlap threshold) since they are 

generally not as concerned about false alarms, while users with low C/L may be anxious 
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to reverse the decision since false alarms may occur frequently.  For a low C/L user, the 

forecast probability is more apt to indicate that protective action is required, which is 

likely to result in more negative consequences (i.e., false alarms and repeat false alarms).  

Thus we assumed the low C/L user will want more leeway (i.e., smaller overlap 

threshold) when the option to reverse the decision is available. 

We found the empirical optimal overlap threshold by building contingency tables 

for overlap thresholds varying from 50% to 0.5% at an increment of -0.5% for each C/L 

while also measuring secondary criteria value.  When using one of the practical 

estimation methods (e.g., LCES ) to create the ambiguity distribution, the best-guess 

forecast probability value is generally located at the center of the distribution, thus the 

maximum overlap value is taken as 50%.  An overlap greater than 50% would necessarily 

result in a different initial decision, and the user would not have the option to change (i.e., 

the current decision would be to not protect).   

For each C/L, primary value metrics (VS, POD, and POMD) based on the control 

user were compared with the metrics computed using the overlap thresholds with the 

ambiguity information to reverse appropriate decisions.  For example, at C/L 1%, the 

control user’s metrics were first compared to metrics found using an overlap threshold of 

50%.  If no significant difference (defined in Chapter III.F.2) was found, 50% was stored 

as the optimal overlap threshold.  Primary value metrics based on subsequent overlap 

thresholds (49.5% to 0.5% at a -0.5% increment) were also compared to the control user 

until a significant difference was found, at which point the optimal overlap threshold was 

taken as the previously stored value.  The comparison process (Figure 42) repeated at 

each C/L resulted in an empirically derived optimal overlap threshold value for each C/L 

representing the lowest overlap threshold value that did not significantly degrade the 

primary value.  This optimal overlap threshold has the potential to deliver significant 

changes to and add value for our secondary criteria. 

4. Processing of Real-World EPS Data  

Using the training dataset of 63 days of 2-m temperature forecasts and 

observations, we processed the data using the same procedures described previously for 
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determining the error characteristics of the L96M forecast data (Chapter III.B.3).  The 

GEFS EPS error characteristics (Table 7) were used to provide calibration coefficients for 

both the training dataset and the independent application dataset.  The bulk-calibrated 

training dataset gave the random error distributions associated with the GEFS forecasts, 

which were used to generate the required LCES ambiguity distributions.  The variance of 

the error distributions was determined using subsets based on forecast days to capture the 

likely flow-dependent sensitivities and the EPS’s inability to adequately sample IC and 

model errors.   

The calibration coefficients (shift = 0.0319°C, stretch = 1.64) derived from the 

training dataset indicated that the GEFS forecasts were on average negatively biased and 

under-spread.  Calibration of the training dataset resulted in a eME  of zero and a 

fractional error in ensemble spread of 0.976 (increased from 0.596), thus even with 

calibration, the ensemble forecasts were still slightly under-spread.  Using the reliability 

diagrams for the raw and calibrated training dataset forecasts (Figure 43), we see that the 

calibration improved the reliability and the forecasts are now highly reliable.  We used 

the reliability diagram to compute the reliability and resolution components of the BSS.  

The reliability (rel) was improved from 32.04 10  for the raw data to 41.23 10  after 

calibration.  From the bin usage histograms, it appears calibration marginally decreased 

resolution (res) (i.e., more forecasts falling outside bins 1 and 11), but both the raw and 

calibrated data had res equal to 0.186.  A decrease in resolution was expected since the 

spread of the forecasts was increased (i.e., made less sharp) during the calibration 

process.  Overall, the calibrated forecasts of 2-m temperature at 120-hr were quite skillful 

with a BSS of 0.756 (increased from 0.752 for the raw data) when compared to the 

sample climatology. 

We also calibrated the application dataset using the coefficients given above, 

which resulted in a eME  of -0.124°C (shifted from -0.156°C) and a fractional error of 

1.015 (increased from 0.620).  Thus the independent forecasts were still negatively biased 

after calibration, but the ensemble spread was increased slightly too much.  Looking at 

the reliability diagrams in Figure 44, we see that the calibration performed quite well.  In 
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general, the assumption of stationary (systematic) error characteristics appeared to hold 

(i.e., difference in eME  between the datasets is less than 0.1°C and the spread correction 

resulted in near perfect fractional error).  Because of the stationarity in systematic error, 

we assume similar stationarity in the random error, indicating that ambiguity estimates 

computed using the training dataset should apply well to the application dataset.  

Component rel values for the raw and calibrated data calculated from the reliability 

diagrams were 33.72 10  and 31.20 10 , respectively, showing the improvement in 

reliability.  The res components for the raw and calibrated data were 0.169 and 0.167, 

respectively, reflecting a slight decrease in resolution.  Thus the calibrated forecasts in 

the application dataset are highly reliable and display fairly high resolution compared to 

the maximum res of 0.245 possible based on the uncertainty (unc) [Equation (14), page 

47] of the forecast associated with the sample climatology.  The BSS for the calibrated 

dataset was 0.677 (increased from 0.673), which indicates quite skillful forecasts that 

should provide value. 

From the description of the NCEP EPS, we expect that ambiguity may be high 

due to the limited number of ensemble members and its complete lack of model 

perturbations, but we have seen that ambiguity also varies by forecast error growth and 

the ensemble spread.  We determined the stage of forecast error growth for the 5-day 

forecasts by comparing the MSE of the control forecast (i.e., the first ensemble member) 

to the climatological variance  2
C  of 2-m temperature taken over the sample dataset.  

Our comparison of 2
C  (154.44) and detMSE  (20.00) resulted in a value of 12.94%, 

indicating that the GEFS forecasts were on average still in the early stages of error 

growth (i.e., since detMSE  may grow to as large as twice 2
C ).  This result provided more 

evidence to support our assumption of high ambiguity in the ensemble forecasts of 2-m 

temperature at the lead time chosen, as the average ensemble variance at this time would 

still on average be relatively small (discussed in detail in the Results chapter). 

For this value study, we employed ambiguity distributions created using LCES  

(Chapter III.C.2), which was configured to produce 50,000 ˆTp  values for all forecast 
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probability values from 0.5% to 99.5% incremented by 0.5%.  Ensemble spread values 

were binned using a class interval of 0.1°C over the range of values from 0-11°C to bin 

forecasts exhibiting similar uncertainty.  In application, any ensemble spread value 

greater than 11°C used the 11°C bin.  The resulting LCES  ambiguity distribution tables 

were provided at a 1% interval from 1%-99%, with a specific table for each combination 

of forecast probability and ensemble spread.  All together, there are 2,231,100 elements 

in the tables, which is much too large to show here, but Figure 45 and Table 8 display 

some sample data.  In Table 8, which shows a sample of three ambiguity distributions for 

15%ep  , we see the distributions narrow for forecasts with larger ensemble spread.  For 

example, the ambiguity distribution for 2e C    ranges from 0% to above 55%, while 

the distribution for 8e C    ranges from 0% to 40%, as seen in Figure 45.   

We used the training dataset to determine the empirical overlap threshold value 

for each C/L (at an increment of 0.01) using the method described above (Figure 46).  We 

computed the first-order and secondary criteria value metrics based on the “control” user 

as well as for each of the possible overlap threshold values (50%-0.5% at -0.5% 

increments).  For each C/L, we then compared the metrics for each overlap threshold 

against the control’s scores to find the optimal overlap threshold (Figure 42).  An 

example of the comparisons made for C/L 0.01 is shown in Figure 47.  Looking at the VS 

alone in this example [panel (a)], we would conclude that the optimal overlap threshold 

was 21.5%, but this threshold still shows a significant difference for the POD and POMD 

metrics [panels (b) and (c)].  The lowest overlap threshold value where no significant 

difference exists for all three metrics is 31.5%, which was taken as the optimal overlap 

threshold value for C/L 0.01 (Figure 46). 

The resampling process was not entirely straightforward for this study.  For 

metrics such as VS, POD and POMD, we were able to use the standard approach to 

resampling, where resample draws may be taken from any grid point on any day.  For 

example, using the training dataset (63 days   1620 grid points = 102,060 forecasts) 

resampling may be accomplished by placing the forecasts sequentially in a single column 

vector and performing 102,060 resamples with replacement for each resampled dataset.  
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For the secondary criteria value metric of repeat false alarms, the sequential resampling 

method proved to be inadequate, where results showed that the score for the original 

dataset was an extreme outlier from the resampled datasets.  For repeat false alarms, we 

found it was necessary to maintain the time-series of forecast-observation pairs at each 

grid point when performing the resampling.  In other words, resampling was performed 

using only the 1620 grid points (i.e., only 1620 draws with replacement performed), but 

when a location was drawn, its entire time-series of forecasts and observations over all of 

the forecast days was taken.  This process maintained the consistency of repeat false 

alarms at a single grid point while allowing the total number of repeat false alarms to 

vary over the domain for each resampled dataset.  The time-series resampling alleviated 

the problem of the control being an outlier for the secondary criteria value metric, but we 

found that it underestimated the first-order value metrics.  This is most likely because 

time-series resampling effectively reduces the variance of the results since as it pulls 

large chunks of data with each draw, and the associated uncertainty within each chunk is 

not sampled. 

The optimal overlap thresholds shown in Figure 46 are close to the reverse of our 

original conceptual model, indicating that low C/L users require a higher overlap 

threshold than mid to high C/L users.  As the C/L increases into and beyond the mid-

range values, the certainty of the forecast required to take protective action increases, 

which decreases the likelihood of false alarms and repeat false alarms.  For these users, 

the size of the overlap was less important, as any overlap threshold used resulted in 

minimal and insignificant changes to the primary value because the difference in expense 

between a false alarm and a miss is small (C L ).  Thus our algorithm resulted in 

smaller values for the optimal threshold.  The low C/L users required a larger overlap 

threshold as a consequence of the large number of opportunities to change, since 

changing too often with a small overlap threshold likely resulted in an increase in misses, 

which significantly degraded the scores based on the primary value metrics. 

Once the optimal overlap was determined, we then used the application dataset to 

compute the primary and secondary criteria value metrics using all of the decision rule 

types described in Table 6.  The optimal and conceptual model overlap thresholds were 
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applied to the forecasts using ambiguity distributions based on the LCES  technique as 

before.  Results from each of these decision rules was then compared to the control user 

to find any improvement in the secondary criteria while not significantly altering the 

primary value, and these comparisons are reported in the Results chapter.   
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Figure 6. Lorenz 96 System schematic with 8 resolved variables (large circles) and 256 
unresolved variables (small circles).  The unresolved variables are grouped with 

the resolved variable to which they belong in sets of 32 [From Wilks 2005]. 
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Figure 7. Scatterplot of the unresolved tendency U from all resolved variables as a function 
of the resolved variable.  The fourth-order polynomial regression best-fit (solid 

line) is the deterministic portion of the parameterization.  The average variance of 
U across all X values about the best-fit line is used for the stochastic portion of the 

parameterization. 

 

Figure 8. Probability density of resolved ( kX ) variable using (a) L96 System, (b) L96 

Model with deterministic parameterization, and (c) L96 Model with stochastic 
parameterization. 
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Figure 9. Multi-model EPS deterministic parameterizations.  The solid line is the 
deterministic portion of the stochastic parameterization shown in Figure 7.  

Dashed lines are static deterministic parameterizations, where each is associated 
with a specific ensemble member.  Only ten members are shown for clarity. 
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Figure 10. Error variance diagram using L96M deterministic and ensemble forecast data 
from 24,000 forecast-observation pairs. 
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Figure 11. Dispersion Diagram using uncalibrated L96M EPS forecast data from 24,000 
forecast-observation pairs. 

 

Figure 12. Dispersion diagram using calibrated L96M EPS forecast data from 24,000 
forecast-observation pairs. 
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Figure 13. Verification rank histograms using uncalibrated L96 EPS ensemble forecast data 
from 24,000 forecast-observation pairs for various forecast lead times.  The solid 

red line indicates the uniform probability of any rank given a 21-member 
ensemble.  The dashed red lines are the bounds of the 95% CI about the uniform 
probability given the number of ensemble forecasts (M). (Continued, next page.) 
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(Figure 13, continued.) 
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Figure 14. Verification rank histograms using calibrated L96 EPS ensemble forecast data 
from 24,000 forecast-observation pairs for various forecast lead times.  Same as 

Figure 13. 
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(Figure 14 continued.) 
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Figure 15. Comparison of Verification Outlier Percentage (VOP) values based on the 
uncalibrated (solid) and calibrated (dot-dash) L96 EPS ensemble forecast data 

from 24,000 forecast-observation pairs.  The perfect VOP-line of 0.26% is shown 
by the dotted line. 

 

 

 

Figure 16. Brier skill score (BSS) for the common event using uncalibrated L96 EPS 
ensemble forecast data from 24,000 forecast-observation pairs.  Error bars created 

using bootstrap resampling represent the 95% CI about the BSS value at each 
forecast lead time.  The dashed line is the zero-skill line. 
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Figure 17. BSS for the common event using calibrated L96 EPS ensemble forecast data from 
24,000 forecast-observation pairs.  Same as Figure 16. 
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Figure 18. Comparison of (a) reliability and (b) resolution components of BSS for both 
uncalibrated (blue solid line) and calibrated (red dashed line) for the common 

event. 
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Figure 19. BSS for the rare event using uncalibrated L96 EPS ensemble forecast data from 
24,000 forecast-observation pairs.  Same as Figure 16. 

 
 

Figure 20. BSS for the rare event using calibrated L96 EPS ensemble forecast data from 
24,000 forecast-observation pairs.  Same as Figure 16. 
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Figure 21. Comparison of (a) reliability and (b) resolution components of BSS for both 
uncalibrated (blue solid line) and calibrated (red dashed line) for the rare event. 

 

 

 

Figure 22. Uniform Ranks method.  Calculating forecast probability for 5.0X   using a 10-
member ensemble.  The probability value of 77% is represented by the hatched 

area [After Szczes 2008]. 
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Generate the dataset of 24,000 EF using L96M EPS

Calibrate the dataset using the shift-and-stretch 
bulk calibration technique (Section III.B.1)

Subset the large, calibrated dataset into 3,000 sets 
of 8 EF  sets represent a single L96M EPS cycle

Calculate the error statistics for each subset  the 
variance of the error statistic values across the 
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Figure 23. Postprocessing steps for L96 EPS Data. 

 

 

 

 

 

 



 98

 

 

 

 

 

 

 

Figure 24. L96M EPS EoE Schematic.  After the random starting state is determined, this 
state is integrated forward through the data assimilation and forecast periods using 
the L96S.  The process inside the dashed box is repeated N times using the L96M 

with the same random initial state to generate the EoE constituents. 
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Figure 25. Example comparison of a true and an ensemble forecast PDF (a) and CDF (b) 
defined as N(2.2C, 2.6C) and N(2.8C, 1.8C) respectively.  An error of 13.9% 

in pe for the chance of temperature  0C is the difference in the PDFs’ shaded 
areas, or the difference in the two CDFs (double arrow) [From Eckel and Allen 

2009].  
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Figure 26. (a) Error in pe for a range of temperature values for the event threshold, calculated 
as the difference in the two CDFs of Figure 25.  The top axis is the nonlinear pe 
scale.  (b)  Plot of pe vs. true forecast probability (solid), where the dashed line 

indicates perfect correlation [From Eckel and Allen 2009]. 

 

 



 101

 

 

(b)(a) (c)
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Figure 27. Histogram and fitted PDFs of results from an example bulk-calibrated ensemble 
forecast dataset for (a) error in ensemble mean, (b) fractional error in ensemble 

spread, and (c) ensemble spread.  The data are based on statistics from the JM 51-
member EPS.  The domain and forecast period are the same as described in 

Chapter III.F. [From Eckel and Allen 2009]. 
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Figure 28. Scatter plots showing relationships between the variables in Figure 27.  
Correlation coefficient (r) is inset in each plot [From Eckel and Allen 2009]. 
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Figure 29. Relationship of ensemble spread with variability (standard deviation) of (a) 
ensemble mean error and (b) fractional error in ensemble spread.  Solid line in 
each plot indicates the standard deviation of the error distributions in Figure 27 

(a) and (b).  [After Eckel and Allen 2009]. 

 
 

 

Figure 30. True forecast probability for five sets of random draws from the PDFs in Figure 
27 where each curve is labeled with its associated ensemble mean error, ensemble 

spread error and ensemble spread.  The five possible values of true forecast 
probability (marked by dots) for a pe of 55% are 79.1, 69.6, 52.4, 51.3, and 46.7% 

[After Eckel and Allen 2009]. 
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Figure 31. Histogram of 50 000 sample values of true forecast probability for calibrated 
ensemble forecast probability of (a) 55.0%, (b) 11.0%, and (c) 94.0% generated 

from random samples from the PDFs in Figure 27.  Each histogram is centered on 
the pe value from which it was generated since the ensemble forecast PDFs were 
calibrated.  The 5th and 95th percentile values of true forecast probability (for use 

in Figure 32) are indicated by p
5
 and p

95
 [From Eckel and Allen 2009]. 
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Figure 32. CES ambiguity for all calibrated forecast probability values.  After repeated 
sampling, the 5th and the 95th percentiles of the possible true forecast probability 

values ( p
5
 and p

95
) represent ambiguity as a 90% CI about the expected true value 

(dashed line) for calibrated pe [After Eckel and Allen 2009]. 
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Figure 33. CES ambiguity for all calibrated forecast probability values using a set ensemble 
spread.  Similar to Figure 32 but for specific values of ensemble spread rather 

than all possible values, but still based on the error distributions in Figure 27 (a) 
and (b).  The thin (thick) curves show the ambiguity for an ensemble spread of 

2.0C (6.0C) [From Eckel and Allen 2009]. 
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Figure 34. Ambiguity distributions produced by bootstrap resampling of simulated ensemble 
forecast data (not shown) for (a) An example, perfect 30-member forecast, 
simulated by 30 random draws from the true PDF in Figure 25 and (b) An 

example, perfect 80-member forecast simulated using the same true PDF as in (a).  
The original forecast probability ( ep ), 5p  and 95p  (5th and 95th percentiles that 

define total ambiguity), and Tp  (true forecast probability) are labeled.  Total 

ambiguity values are 17.8% for (a) and 12.4% for (b).  Notice that pe ends up as 
the distribution’s central value [After Eckel and Allen 2009]. 

(b)(a)

(c)(c)  
 

Figure 35. Error distributions of (a) mean error in the ensemble mean and (b) fractional error 
in ensemble spread.  The solid lines are the original, uncalibrated error 

distributions for the JM 2-m 5-day temperature forecasts.  The dashed lines give 
the reduced error distributions, where the error variance associated with finite 

sampling (for 51-members) has been removed.  The reduced error distributions 
are used to draw random calibration coefficients during RCR 
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Figure 36. Example RCR ambiguity distributions using (a) fixed, bulk calibration on each 
resample and (b) random calibration on each resample for the JM 5-day 2-m 
temperature forecast for a single grid point and date.  Note that the random 

calibration produces a wider ambiguity distribution [After Eckel and Allen 2009]. 
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Figure 37. Post-processing steps for ambiguity data for the three estimation techniques. 

 



 109

 

XX
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XX

bi-val1 bi-val2
bi-val3

(a)

(b)

bi-val3

(b)

bi-val3bi-val3

Bisection Algorithm: 
 
1. Using the control ensemble 
forecast, find the max and min value 
of the ensemble members.  Add -/+ 

X to the min/max values to find  
bi-val1 and bi-val2.   (a) 
Expanding the ensemble range helps 
the algorithm converge on extreme 
probability values. 
 
2. Find the mean of bi-val1 and bi-
val2  bi-val3.   (a) 
 
3. For all EoE constituent forecasts, 
find ( bi-val3)P X  , and find the 
expected value of the constituent’s 
probabilities (E[ ep ]).   (b) 

 
4. Compare E[ ep ] to the desired 

probability value ( ep ): 

              [ ]e eerror p E p   

 
5. If the 0.0001error    and: 

  0error  , set bi-val2 = bi-val3 
   - or - 
  0error  , set bi-val1 = bi-val3   (c) 
 
Return to step 2 and repeat process 
using the new bi-val values.   (c) 
 
6. If 0.0001error   , the 

algorithm has converged. 

Control Ensemble Members 

EoE Constituent PDF 

bi-val3bi-val1 bi-val2

(c)

bi-val3bi-val1 bi-val2

(c)

 

Figure 38. Iterative-bisection method used to converge on the X-value giving the expected 
value of EoE constituent or RCR resampled ˆep  values equal to some desired ep  

value. 
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Figure 39. Integrated optimal VS (IOVS) example for the control forecasts at a single forecast 
lead time.  (a) The optimal VS is computed using the 800 control forecast 

probability values at 2.6  .  The positive area under the curve is computed 
using Equation (27) by summing the area of intervals (gray regions) from C/L 0-1 

using a x  of 0.01.  (b) The y  of each interval’s area is the optimal VS at the 
center of the interval (e.g., for the interval 0.51-0.52, y  is the optimal VS at C/L 

= 0.515).  An interval’s area is taken as zero if the optimal VS 0 . 
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Figure 40. Flowchart of decision process for the repeat false alarms secondary criteria 
scenario using the ambiguity distribution overlap.  Tallying indicates filling in the 

contingency table (Table 2, page 31) for the current decision rule (C/L).  The 
setting of the repeat false alarm flag determines the outcome of the “Previous 

forecast FA” decision point, where a set flag equals Y.  
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Figure 41. Overlap threshold conceptual model as a function of C/L for the repeat false alarm 
secondary criteria value testing scenario. 

 

Key:
Y – significant difference
N – no significant difference

Cycle through overlap 
threshold values: 50% 

to 0.5% at -0.5% 
interval

Test VS:
Control  

vs. Current 
Overlap

Test POD
& POMD:

Control vs. 
Current 
Overlap

Store current 
overlap threshold 
as optimum value

N

N

Y

Y

Key:
Y – significant difference
N – no significant difference

Cycle through overlap 
threshold values: 50% 

to 0.5% at -0.5% 
interval

Test VS:
Control  

vs. Current 
Overlap

Test POD
& POMD:

Control vs. 
Current 
Overlap

Store current 
overlap threshold 
as optimum value

N

N

Y

Y

 
 

Figure 42. Flowchart for determining empirical secondary criteria overlap threshold value.  
Performed for each C/L, testing compares the metrics derived using the control 

forecast probability versus using the current overlap threshold.  
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Figure 43. Reliability diagrams for raw and calibrated NCEP GEFS forecasts based on the 
training dataset with 102,060 forecast-observation pairs.  The reliability diagrams 
for the (a) raw and (c) calibrated data used 11 forecast probability bins (0-0.05, 
0.05-0.15, 0.15-0.25,…, 0.95-1.0) where the average forecast probability with 
each bin is used as the bin’s representative value.  Error bars represent the 95% 

binomial CI (Wilks, 2006).  The dashed line indicates perfect reliability, while the 
dotted line shows the sample climatology.  The bin usage histograms for the (b) 
raw and (d) calibrated data give the number of forecast probabilities falling in 

each of the 11 bins. 
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Figure 44. Reliability diagram for raw and calibrated NCEP GEFS forecasts based on the 
independent application dataset with 50,220 forecast-observation pairs.  Same as 

Figure 43. 

 

 

 



 115

 

 

 

 

 

 

 

Figure 45. Sample LCES  NCEP GEFS 21-member EPS ambiguity distributions created 

using error statistics in Table 7.  The histograms show the relative frequency of 
ˆTp  values for 15%ep   with 2e C    (gray) and 8e C    (transparent). 
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Figure 46. Empirical optimal overlap threshold for reducing repeat false alarms for the event 
2-m temperature 0 C   using the NCEP GEFS training dataset.  The optimal 

overlap threshold is computed at each C/L from 0.01-0.99 at an increment of 0.01 
(solid line). 
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Figure 47. Comparison of primary value metrics (a) optimal VS, (b) POD and (c) POMD 
used to find the optimal overlap threshold for C/L 0.01.  Control scores in all three 
panels are shown by the solid line with error bars representing the 95% CI.  The 
expected value of metrics using overlap threshold values from 0.5% to 50% at a 
0.5% increment are shown by the dot-dashed line with a circle at each overlap 
threshold value.  Arrows indicate the first point where expected value of each 

metric falls within the 95% CI of the control.  The optimal overlap threshold is the 
lowest threshold value where the expected values of all three metrics fall within 
the 95% CI of the control.  In this case, the optimal overlap threshold is 31.5%. 
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Table 4. Climatological Data for L96 System and Model.  The 95% CI about the expected 
value for each statistic is taken as   values in parenthesis 

 System Model (Det.) Model (Stoch.) 

maxX  14.76 (0.003) 14.05 (0.004) 14.78 (0.014) 

minX  -8.31 (0.011) -7.01 (0.012) -7.99 (0.011) 

X  3.69 (0.004) 3.76 (0.004) 3.73 (0.004) 

X  4.54 (0.002) 4.42 (0.002) 4.43 (0.002) 

maxY  2.46 (0.003) –  – 

minY  -1.8 (0.007) – – 

Y  0.12 (0.001) – – 

Y  0.30 (0.001) – – 
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Table 5. L96M EPS Error Statistics (bulk and variance) at each forecast lead time. 

eME  2
e   eMSE     tau 

Bulk Variance Bulk Variance Bulk Variance Bulk Variance 

0 0.0029 0.0036 0.0335 2.0E-05 0.0343 0.0004 0.9776 0.0045 

0.2 0.0326 0.0122 0.1343 0.0010 0.1405 0.0104 0.9558 0.0119 

0.4 0.0476 0.0274 0.3523 0.0228 0.3931 0.1391 0.8963 0.0324 

0.6 0.0182 0.0559 0.7412 0.2273 0.9257 0.9761 0.8007 0.0542 

0.8 0.0116 0.0962 1.3365 0.9026 1.7989 3.3177 0.7430 0.0588 

1 0.0321 0.1532 2.0735 2.1645 2.9757 7.9045 0.6968 0.0545 

1.2 0.0265 0.1957 2.8735 3.8459 4.3806 15.8611 0.6560 0.0459 

1.4 0.0237 0.2388 3.6443 4.7197 5.4344 19.8098 0.6706 0.0379 

1.6 0.0195 0.2644 4.3504 5.2949 6.4032 25.1928 0.6794 0.0314 

1.8 0.0314 0.2855 4.9484 5.3256 7.2733 28.7206 0.6804 0.0249 

2 0.0406 0.2944 5.4895 5.1879 8.0469 34.6424 0.6822 0.0200 

2.2 0.0513 0.3064 6.0126 4.9067 8.7885 40.7473 0.6841 0.0159 

2.4 0.0366 0.3167 6.4537 4.7358 9.3284 44.7655 0.6918 0.0136 

2.6 0.0416 0.3128 6.8608 4.5559 9.8513 47.1874 0.6964 0.0115 

2.8 0.0400 0.3197 7.2593 4.8418 10.5452 49.3660 0.6884 0.0105 

3 0.0573 0.3164 7.6156 4.5110 10.9219 53.1869 0.6973 0.0091 

3.2 0.0570 0.3272 7.9683 4.8239 11.4755 57.6767 0.6944 0.0089 

3.4 0.0503 0.3319 8.2575 4.7032 11.6946 58.7195 0.7061 0.0084 

3.6 0.0422 0.3167 8.5592 4.8423 12.1858 62.2317 0.7024 0.0080 

3.8 0.0434 0.3189 8.8287 5.1559 12.6769 64.4172 0.6964 0.0078 

4 0.0555 0.3177 9.0636 5.0917 12.9123 65.4157 0.7019 0.0074 

4.2 0.0627 0.3266 9.2992 5.2461 13.3640 70.6218 0.6958 0.0071 

4.4 0.0502 0.3306 9.5024 5.2769 13.4321 73.4724 0.7074 0.0071 

4.6 0.0412 0.3218 9.7396 5.4897 13.8778 75.5714 0.7018 0.0069 

4.8 0.0404 0.3116 9.9273 5.6479 14.3054 79.2468 0.6940 0.0067 

5 0.0570 0.3210 10.1377 5.7393 14.5251 79.9435 0.6979 0.0066 
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Table 6. Decision rules tested for secondary criteria value.  With the exception of the 
“Control,” these decision rules are only applicable following a forecast false 

alarm when the current decision input advises taking protective action 

 

Name  Decision Rule 

Control 
 

User always follows the decision based on the control forecast probability, 
regardless of the consequences from the weather forecast. 

Always 
 

User will always reverse the decision. 

Random 
 

User losses confidence and decides randomly (fair coin toss) whether or 
not to reverse the decision. 

Brash 

 
User understands the concept of ambiguity.  Instead of using an objective 
method to apply ambiguity to the forecast, the user applies their own 
‘rough estimate’ of the ambiguity to the control forecast probability to 
avoid repeat false alarms.  The ‘rough estimate’ used here is 5%, thus the 

user reverses the decision when 5%
e

p    C/L. 

Overlap Conceptual Model 

 
User employs the estimated ambiguity distribution to determine the 
overlap.  The overlap value is compared to an overlap threshold 
determined from the conceptual model (discussed in the text).  Overlap 
values greater than the threshold result in the user reversing the decision. 

Optimal Overlap 

 
User employs the full estimated ambiguity distribution to determine the 
overlap.  The overlap value is compared to an empirically determined 
overlap threshold (discussed in the text).  Overlap values greater than the 
threshold result in the user reversing the decision. 

 

Table 7. NCEP GEFS 21-member EPS error statistics used to determine calibration 
coefficients and LCES  ambiguity distributions 

eME     e   
 

Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

Training, raw -0.0319 0.767 0.596 0.139 1.78 0.392 

Training, calibrated 0.0 0.767 1.0 0.228 2.92 0.641 

Application, raw -0.156 0.915 0.620 0.175 2.00 0.569 

Application, calibrated -0.124 0.915 1.015 0.287 3.27 0.931 
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Table 8. Partial ambiguity distributions from the NCEP GEFS 21-member EPS LCES  

tables for 15%ep   using three different ensemble spread values.  The table 

contains the relative frequency of sample ˆTp  values within a 1% bin from 0% to 

55%, where the upper bound of each bin is provided. 

Bin Maximum  ˆ
Tp   2e C  

 4e C  
 8e C  

 

0.01 0.0099 0.0007 0.0001 
0.02 0.0162 0.0032 0.0009 
0.03 0.0210 0.0069 0.0024 
0.04 0.0247 0.0112 0.0050 
0.05 0.0274 0.0163 0.0101 
0.06 0.0305 0.0233 0.0150 
0.07 0.0330 0.0255 0.0221 
0.08 0.0346 0.0326 0.0289 
0.09 0.0354 0.0370 0.0373 
0.1 0.0374 0.0425 0.0432 
0.11 0.0379 0.0467 0.0502 
0.12 0.0381 0.0492 0.0571 
0.13 0.0413 0.0535 0.0630 
0.14 0.0382 0.0540 0.0646 
0.15 0.0373 0.0556 0.0675 
0.16 0.0376 0.0539 0.0659 
0.17 0.0376 0.0530 0.0629 
0.18 0.0364 0.0533 0.0623 
0.19 0.0340 0.0507 0.0566 
0.2 0.0333 0.0481 0.0532 
0.21 0.0322 0.0433 0.0471 
0.22 0.0295 0.0401 0.0401 
0.23 0.0282 0.0355 0.0340 
0.24 0.0269 0.0319 0.0282 
0.25 0.0248 0.0278 0.0222 
0.26 0.0231 0.0232 0.0180 
0.27 0.0216 0.0192 0.0132 
0.28 0.0202 0.0161 0.0094 
0.29 0.0194 0.0126 0.0072 
0.3 0.0167 0.0097 0.0044 
0.31 0.0144 0.0070 0.0032 
0.32 0.0133 0.0054 0.0021 
0.33 0.0118 0.0032 0.0011 
0.34 0.0107 0.0028 0.0008 
0.35 0.0092 0.0019 0.0005 
0.36 0.0083 0.0012 0.0001 
0.37 0.0078 0.0007 0.0001 
0.38 0.0065 0.0005 0.00004 
0.39 0.0054 0.0003 0 
0.4 0.0044 0.0002 0.00002 
0.41 0.0039 0.00004 0 
0.42 0.0037 0.00004 0 
0.43 0.0028 0 0 
0.44 0.0023 0.00002 0 
0.45 0.0019 0.00002 0 
0.46 0.0014 0 0 
0.47 0.0017 0 0 
0.48 0.0012 0 0 
0.49 0.0011 0 0 
0.5 0.0006 0 0 
0.51 0.0005 0 0 
0.52 0.0007 0 0 
0.53 0.0003 0 0 
0.54 0.0003 0 0 
0.55 0.0002 0 0 
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IV. RESULTS 

This chapter presents the results obtained during this research regarding the three 

research objectives outlined in the Introduction.   

A. EVOLUTION OF AMBIGUITY 

This section addresses the first research goal of understanding the behavior of 

ambiguity throughout the forecast.  This goal is accomplished using the EoE.  The EoE is 

our best estimate of ambiguity since it directly samples the inherent uncertainties in the 

IC and model perturbations and their sensitivities to a specific forecast scenario.  The 

constituents’ IC and model perturbations span the range of analysis and model errors, 

giving a distribution of plausible probability forecasts for a given EPS’s sensitivity to 

errors in the ICs and in the model.  The evolution studies were performed using 100 EoE 

forecast cases selected to span the L96M attractor, each with 100 constituents. 

Our original hypothesis concerning the behavior of ambiguity regarded the 

magnitude of the variance of the random errors in the first two moments of the ensemble 

PDF as the primary influences on ambiguity.  Specifically, the mean error of the 

ensemble mean ( eME ) and the fractional error in ensemble spread (  ) were considered.  

We hypothesized that increases (decreases) in ambiguity are directly related to the 

increases (decreases) in the variance of the random errors.  Errors in the first moment 

play a larger role in creating errors in forecast probability, thus the variance of the eME  

dominates. 

Using the large dataset of 24,000 ensemble forecasts from the L96M EPS, the 

variance in eME  and    were diagnosed following bulk calibration of the data to remove 

systematic error.  The evolution of the variance in these two error characteristics is shown 

in Figure 48 (a) and (b).  Early in the forecast (before 0.6  ), error variance is low as all 

ensemble members likely exhibit similar high skill.  Maximum dispersion in the 

ensemble forecasts occurs on average between 0.6   and 2.0   (Chapter III.A.4).  
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During this period, the variance in the eME  error distribution increases.  As ensemble 

spread increases, the possible error in the ensemble mean increases since the verification 

may fall farther from the center of the forecast PDF, thus the variance in the eME  also 

increases.  The variance in the fractional error in ensemble spread increases as dispersion 

ramps up, but quickly peaks and begins a gradual decrease to and below its original level.  

At early lead times, the skill of all ensemble members is likely high, resulting in 

consistently low ensemble spread and similar fractional error values between forecasts.  

As error growth begins to ramp up, some members experience faster error growth than 

others due to sensitivities to the location in the attractor or deficiencies in the EPS.  At 

this point, fractional error between constituents can vary greatly, and it ascends to its 

maximum variance.  Eventually, high error growth occurs in all members resulting in 

similarly high ensemble spread for all constituents, which reduces the variation in 

fractional error values.  Following maximum dispersion, the variance in eME  levels off 

but remains high due to the large spread in the ensemble PDF.  The variance in fractional 

error continues to decrease and asymptotes towards zero as the ensemble spread similarly 

saturates among all constituents. 

Employing the initial hypothesis regarding the behavior of ambiguity, we 

expected the following evolution.  Early in the forecast prior to maximum ensemble 

dispersion, ambiguity should be relatively low since both error variances are low.  As the 

forecast moves into the time of maximum dispersion, ambiguity should rapidly increase 

to a maximum following the increase in variance of both errors.  However, following 

maximum dispersion, ambiguity was expected to decrease and asymptote to zero as the 

forecast PDF saturates towards climatology, resulting in no uncertainty in the PDF. 

Using the 100 EoE forecast cases, we determined the average total ambiguity 

[Equation (26), page 61] as a function of forecast lead time.  Figure 49 shows the average 

total ambiguity for the EoE ambiguity distributions for ep  values of 5%, 50%, and 95%, 

for comparison.  The behavior of ambiguity shown does not follow our initial hypothesis.  

Rather than peaking during the height of error growth, ambiguity maximized early in the 

forecast period then decreased quickly during peak error growth.  Late lead time 
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ambiguity did behave as hypothesized except it asymptoted to a minimum value and not 

zero.  Evidently, the initial hypothesis is in need of revision. 

To explore this behavior in detail, it was beneficial to look at the evolution of 

ambiguity for a single EoE forecast case.  We plotted each of the 100 constituents’ 

forecast PDFs for an arbitrary kX  variable using a normal fit to the 21 members in each 

constituent’s ensemble forecast for forecast lead times 0.2   through 5.0   at an 

interval of 0.2 time units (Appendix).  Each figure also displays a histogram of the EoE 

ˆTp  values at each lead time, where the expected value of each distribution is 50%.  These 

figures display a time sequence where ambiguity starts out high and decreases with 

increasing lead time with some fluctuation around maximum ensemble dispersion.   

For a deeper understanding, we looked more closely at 0.2   (i.e., a high 

ambiguity time) and 4.8   (i.e., a low ambiguity time) in Figure 50 (a) and (b).  For 

analysis of forecast probability in Figure 50(a), the event threshold resulting in 

 ˆ 50%TE p   is 1.72X   .  A wide range of forecast probability values are possible 

using this threshold with each constituent individually.  The calculated range of values 

spans from 1% to 98%, with total ambiguity from 7% to 92% (85%).  The total ambiguity 

compares well with the average value shown in Figure 49 for 50%ep  , although the 

width is slightly larger than the average for this particular EoE forecast case and variable.  

Looking at the later lead time in Figure 50(b) and using a different event threshold 

( 2X  ) that again gives  ˆ 50%TE p  , the range of constituent forecast probability 

values is much smaller, spanning 26% to 78% with total ambiguity of 34% (33% to 

67%).  Again, this is consistent with the evolution shown in Figure 49, where ambiguity 

decreases for later lead times. 

From this analysis, the primary influences on the size of the EoE ambiguity 

distributions appear to be how much variation is present between the locations of the 

constituents’ PDFs and the uncertainty (i.e., ensemble spread) of the constituents’ PDFs.  

Early in the forecast [Figure 50(a)], the typical spread of each constituent is still quite low 

with an average spread of 0.371.  The standard deviation of the constituents’ means is 
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equal to 0.224, which is comparable in size.  For a centrally located decision threshold 

like the one chosen here, the constituent PDFs will be dispersed on either side of the 

threshold, but since the variation in PDF location is large or comparable to the average 

spread of the constituent forecasts, the constituent PDFs will cross the threshold to 

varying degrees giving a wide range of forecast probability values.   

Playing the same game with the constituents at the later lead time [Figure 50(b)], 

we see that the standard deviation of the constituents’ means is now equal to 0.737, 

which has increased.  As expected, the average constituent spread has increased and now 

equals 3.81, which proportionally is a much greater change than was seen in the increase 

in variation of constituent locations (~200% increase versus ~900% increase, 

respectively).  For a given event threshold, the percentile location of the threshold within 

each constituent PDF is now much more alike leading to similar, albeit slightly different, 

forecast probability values from each constituent.  Thus as the typical spread of the 

constituent PDFs increased without a proportional increase in the variation in PDF 

location, the ambiguity associated with the forecast decreased. 

Figure 51 illustrates the sensitivity of forecast probability to PDF spread and 

shifts in PDF location, where a low spread (thick solid) and high spread (dot-dash) PDF 

are shifted from a mean position of 0.75 to -0.25 while maintaining the same spread.  In 

Figure 51(a), the probability of preceding the event threshold (thin solid) for the low and 

high spread PDFs is 15.9% and 35.4%, respectively.  Following the shift in location in 

Figure 51(b), the low spread probability is 63.1%, which is a change of 47.2%.  The high 

spread probability is 55%, giving a change of 19.6%.  The location shift resulted in a 

larger displacement of probability density relative to the event threshold for the low 

spread PDF.  Thus shifts (or errors) in location are likely to produce a wider ambiguity 

distribution when ensemble spread is low.  

The same concept applies to event thresholds that are not centrally located.  In 

this case though, the forecast probability values for many of the constituent PDFs will 

become more certain (i.e., closer to 0% or 100%) leading to a relatively tighter more 

skewed ambiguity distribution.  For example, an event threshold of 4X    in Figure 

50(a), leads to virtually no ambiguity as all constituent PDFs fall above the threshold.  
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For this research, we made comparisons of ambiguity distributions using event thresholds 

that gave the  ˆTE p  of the constituents equal to specific ep  values being tested (Figure 

37, page 108), thus event thresholds used always fell amongst the constituent PDFs.   

The relationship between the variability in constituent PDF location and the PDF 

variance is a major influence on ambiguity.  To explain this, we found the variance of the 

constituents’ means and the average variance of the constituents for each of the 100 EoE 

forecast cases.  These measures are combined over the datasets in order to compare the 

average variance between constituent means and the average constituent variance at each 

lead time, shown in Figure 52.  When ambiguity is high, the average variance of the 

constituent means is comparable in magnitude to the average constituent variance.  As 

forecast lead time increases, there is an increase in both metrics, but the rate of increase 

in each is not proportional.  The average constituent variance increases at a much faster 

rate leading to a decrease in ambiguity with increasing lead time. 

Using Figure 53, we compare the variance information found in Figure 52, the 

ratio of these two variance values, and the average changes in the EoE total ambiguity for 

different ep  values (same as Figure 49).  The variance ratio is computed as the average 

variance in constituent location over the average constituent variance.  At the beginning 

of the forecast period, the variance ratio is high indicating that the variation in the 

location of the constituent PDFs is nearly as large as the typical constituent spread.  

During maximum dispersion, there is a rapid increase in the average constituent variance 

(0.137 to 7.28 for an over 5000% increase), while the variance of constituents’ means 

increases much less (0.0505 to 0.397 for an increase of less than 700%), resulting in a 

rapid drop in the variance ratio.  This period is accompanied by a 40%-50% decrease in 

total ambiguity for the ep  values shown.  Following maximum dispersion, the ratio 

asymptotes to a minimum value (~0.0370) as the average constituent variance continues 

to gradually increase.  At this time, total ambiguity asymptotes to a minimum value as 

well, but not to zero.  The variance of the constituents’ means still results in ambiguity 
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even though constituent variance saturates towards climatology, since shifts in the 

constituents’ PDF locations play a large role in changing the forecast probability value 

associated with each constituent.   

This analysis furthers our understanding of the relationship between forecast 

uncertainty and ambiguity, while solidifying the relationship between ambiguity and 

random errors in the ensemble PDF due to unaccounted for sources of uncertainty.  We 

determined that ambiguity is closely linked to both forecast uncertainty (i.e., first-order 

uncertainty) and the sensitivity of the EPS to deficient IC and model perturbations, in that 

the interaction of these two factors controls the magnitude of the total ambiguity 

associated with a given forecast situation for a particular EPS.   

Recall that EoE is an impractical approach to estimating ambiguity due to the 

large computational expense.  Can ambiguity be estimated without the EoE using 

statistical characteristics of the EPS’s ensemble forecasts?  Looking at Figure 52 and 

Figure 11 (page 87), the average variance of the EoE constituents is the same as the 

average variance of the L96M ensemble forecasts taken over the large forecast dataset.  

As a proxy for the variance of constituents’ means, the variance of the mean error in the 

ensemble mean ( eME ) found using the L96M ensemble forecasts may be used.  This 

relationship is shown in Figure 54 (similar to Figure 53).  The time evolution of average 

ensemble forecast variance and variance of eME  follow the same behavior as seen in 

Figure 53.  The variance ratio (taken as eME  variance over average ensemble variance) 

indicates a similar behavior as well, but note the greatly reduced ratio value early in the 

forecast when using the EPS error statistics.  A comparison of the ratio values from 

Figure 53(b) and Figure 54(b) is shown in Figure 55.  Since the average variance of the 

ensemble forecasts and the EoE constituents are the same, any difference between the 

ratio values must be due to the variance in eME .  In this case, the variance in eME  is not 

large enough to accurately simulate the variation in possible ensemble PDF locations 

found using the EoE (i.e., possible realizations of the ensemble PDF given limitations in 

the EPS perturbations).  Thus, ambiguity estimates obtained using the EPS error 

characteristics may be greatly underestimated.  After maximum dispersion, the ratio nears 



 129

a value of one, indicating ambiguity estimates created using the EPS error characteristics 

may improve.  This problem may be due to the sub-setting used to arrive at the variance 

in eME  (see Chapter III.B.3).  Attempts to use the variance of errors in the ensemble 

mean without sub-setting (i.e., finding the variance of the individual ensemble mean error 

values without averaging) gave an extreme over-estimate of ambiguity at all lead times, 

since the variance of possible error in the ensemble mean value is larger than the average 

variance of the ensemble forecasts at all lead times.   

B. VALIDATION OF AMBIGUITY ESTIMATES 

The discussion of GCES  and RCR ambiguity estimate validation in this section 

refers primarily to the series of comparisons shown in Figure 56 and Figure 57.  Each 

panel in Figure 56 shows comparisons across all forecast lead times for a specific ep  

value.  Alternately, each panel in Figure 57 provides comparisons across all tested ep  

values for a certain forecast lead time.  In both figures, the set ep  value or forecast lead 

time used to create each individual panel is displayed at the top of the panel.  All 

comparisons show the difference in total ambiguity [Equation (26), page 61] of both the 

GCES  and RCR ambiguity distributions compared to the EoE ambiguity distribution, 

where a negative difference indicates the GCES  or RCR ambiguity distribution is too 

narrow compared to EoE.  This validation strategy gave us a look at how well the 

practical ambiguity estimation techniques simulate the variance of our best estimate of 

the ambiguity distribution.   

From Figure 56 and Figure 57, we see that the ambiguity distributions from the 

practical estimation techniques appeared to perform very poorly at early in the forecast 

with total ambiguity differences near 30%, but each showed improvement with increased 

forecast lead time.  Although this feature may appear to be tied to forecast lead time, it is 

actually tied to the ensemble variance, which plays a significant role in the production of 

ambiguity.   



 130

Figure 58 shows that the GCES  and RCR ambiguity distributions generally 

followed the same evolution as the EoE estimate, where all of the estimates had relatively 

large ambiguity at early times that decreased with time.  The exception may be RCR, 

where the total ambiguity began to increase again following a period of decrease.  From 

Figure 11 (page 87), as expected, we see that ensemble variance increased on average 

with increasing lead time.  This can also be seen in Figure 59 (a) and (b), where the 

number of uncertain forecasts (i.e., forecasts with ep  between 0.1% and 99.9%) 

increased with time, indicating that fewer forecasts existed where the event threshold fell 

outside of the forecast PDF.  Even though, the ratio in Figure 55 shows that the variance 

of the eME  error distribution was highly underdone early in the forecast (by a factor of 

six), the GCES  and RCR distributions still exhibited maximum ambiguity early in the 

forecast (Figure 58), as a result of the generally low ensemble variance. 

This analysis suggests that ambiguity will evolve from high values to low values 

on average as a result of the typical increase in ensemble spread with time.  Of course, it 

is possible on a case-by-case basis for an ensemble forecast to exhibit small spread at any 

lead time resulting in large ambiguity associated with the forecast probability.  Thus total 

ambiguity is not necessarily a function of forecast lead time, but rather depends strongly 

on the spread of the current ensemble forecast at the lead time in question. 

From the panels in Figure 57, we see that the largest differences in total ambiguity 

occurred with mid-range forecast probability values.  In the first panel ( 0.2  ), the 

difference in total ambiguity for 50%ep   was almost 30%, while the differences for 

both 1%ep   and 99%ep   were between 4%-7%.  Thus it may appear the GCES  and 

RCR estimates performed better for extreme forecast probability values.  The apparent 

disparity in performance is simply a result of the lower and upper bounds (i.e., 0% and 

100%, respectively) confining the range of possible forecast probability values.  In 

general, we expect to see tighter ambiguity distributions for the extreme forecast 

probability values.  Consider a single set of 100 EoE constituents.  An event threshold 

that results in an expected value of 1% for the EoE ambiguity distribution (using 

probability of exceeding) will likely fall above (i.e., to the right) of many of the 
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constituent’s PDFs resulting in forecast probabilities very close to or equal to 0% for 

those constituents.  In this case, the ambiguity distribution is tighter since it is bounded 

on the low end, where many near 0% forecast probabilities accumulate.  An event 

threshold giving an expected value of 50% for the ambiguity distribution for the same 

EoE forecast case produces a wider ambiguity distribution since the placement of the 

threshold is centrally located among the constituent PDFs allowing forecast probability 

values to spread evenly on either side of 50%.   

Therefore, problems with the variance of GCES  or RCR ambiguity distributions 

were seen on both sides of the distributions as shown in Figure 60.  The figure shows 

EoE and GCES  ambiguity distributions computed from a single EoE forecast case for the 

same variable, both centered on ep  = 50% (in accordance with the validation method) at 

5  .  The GCES  distribution was too narrow (20% versus 32% total ambiguity), and 

the total ambiguity difference when compared to the EoE distribution was equivalent on 

either side at 6%.  In contrast, Figure 61 shows the EoE and GCES  ambiguity 

distributions for ep  = 5% using the same EoE forecast case and variable at the same 

forecast time.  Here, the differences between the distributions were chiefly present in the 

direction of higher forecast probability values.  Both of the distributions are bounded by 

0% on the low side, which resulted in a similar value (approximately 2%) for the lower 

bound of the 90% CI for each estimate.  Thus the difference in total ambiguity was 

essentially one-sided, where the upper bounds are 9% and 12% for CES and EoE, 

respectively.  Although we may be encouraged by the results for extreme forecast 

probability values, it is important to understand that this improvement is in part an 

artificial result. 

We found the GCES  total ambiguity to be too narrow in relation to the aggregated 

EoE ambiguity distributions regardless of forecast lead time or forecast probability value 

tested.  A leading contributor to this problem was the creation of GCES  ambiguity 

distributions using random draws from the distribution of average ensemble variance, 

thus ensemble variance was independent of the forecast situation.  Therefore, the typical 
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ensemble variance used to compute the ˆTp  values was near the average, which in many 

cases would likely be too high compared to the flow-dependent variance.  Since larger 

ensemble variance produces a more narrow ambiguity distribution, the configuration of 

GCES  will likely result in a consistent underestimation of the total ambiguity.  It is likely 

that the flow-dependent LCES  estimates would alleviate much of this problem, but recall 

that this technique was unavailable when the validation study was performed. 

Additionally, from Figure 55, the variance of the eME  error distribution used to 

develop the GCES  ambiguity distributions was not wide enough to adequately simulate 

the variance in forecast PDF location typically found using the EoE constituent forecasts.  

This deficiency was particularly severe at the early forecast lead times prior to maximum 

dispersion, where the variance of the eME  distribution was as much as six times lower.  

So, even if the ensemble variance was correctly simulated, the GCES  sample forecast 

distributions would not be sufficiently separated to produce a wide enough ambiguity 

distribution.  Thus early in the forecast, the combined problems of using forecast-

independent ensemble variance and largely underdone eME  variance resulted in large 

differences in total ambiguity, where the deficiency in the eME  variance was likely the 

dominant factor.   

eME  variance improved to less than a factor of two difference later in the forecast 

following maximum dispersion, performing best towards the end of the period of 

maximum dispersion (ratio value was approximately 1.35).  At this point, we found the 

best performance in GCES  total ambiguity, but the total ambiguity was still too small, 

likely because the eME  variance was slightly too low and because we did not account for 

flow-dependent ensemble variance.  Following maximum dispersion, the ratio value 

began to increase slightly indicating that the eME  variance was performing worse, but 

the slow increase did not continue beyond five time units, and the ratio value never 

increased past 1.7.  The slow deterioration of the eME  variance and the continued 
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increase in average ensemble variance over this period resulted in narrowing of the 

GCES  ambiguity distributions and a slow increase in total ambiguity difference, which 

tapered off near five time units.  

We attempted to use the ratio value from Figure 55 to improve GCES  total 

ambiguity by increasing (i.e., correcting) the eME  variance at each lead time by its 

respective ratio value.  Results showed improved total ambiguity at all lead times, but the 

correction factor caused overcorrection early in the forecast and was still too small later 

on (example shown in Figure 62 for 50%ep  ).  The GCES  estimates were likely still 

degraded due to the lack flow-dependence, thus this line of research was not pursued 

further.   

From Figure 56 and Figure 57, the RCR total ambiguity was too narrow during 

the early forecast lead times, but then transitioned to become slightly too wide later in the 

forecast for most of the ep  values tested.  Since the RCR distributions are flow-

dependent, we find more evidence that the highly deficient variance of the eME  error 

distribution early in the forecast played a significant role in degrading the GCES  and 

RCR ambiguity distributions.  During this timeframe, the RCR PDFs could not 

adequately separate to generate sufficient ambiguity compared to the EoE because of the 

poor eME  variance. 

As the performance of the eME  error distribution began to recover, the total 

ambiguity difference for RCR, like GCES , improved as well.  Unlike GCES , the RCR 

estimates showed continued improvement beyond maximum dispersion, eventually 

becoming too wide, but by no more than 3% compared to EoE.  As forecast error growth 

increased, the average variance of each of the EoE constituents followed, thus decreasing 

the width of the EoE ambiguity distributions.  The RCR ambiguity estimate used only the 

first constituent of a given EoE forecast case, where the variance of the constituent’s 

forecast PDF was varied for each resample based on random draws from the '  error 

distribution.  In general, the variance of any resampled PDF would be similar to the 
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average constituent variance, but over 10,000 resamples, there were likely many 

fractional error draws resulting in a relatively more narrow PDF (compared to the 

average EoE constituent variance), which inevitably produced a wider ambiguity 

distribution.  Thus the total ambiguity difference between RCR and EoE switched from 

negative to positive values for later forecast lead times.  

In the previous discussion of the GCES  and RCR ambiguity distributions, we 

have not yet made judgments about the validity of the estimates.  In order to make a 

judgment, we first consider the use of EoE ambiguity distributions as the standard.  EoE 

provides a flow-dependent ambiguity estimate that accounts for finite ensemble size and 

samples the sensitivity of the probability forecast to deficient analysis and model 

perturbations in the EPS.  Analogous to the single ensemble forecast providing the best 

guess for uncertainty in the deterministic forecast, the EoE gives us our best-guess 

estimate of the uncertainty in the ensemble forecast.  However, EoE suffers from the 

same basic limitations as an EPS.  Limited sampling due to the finite number of 

constituents results in random error in the EoE ambiguity distribution.  Also, any 

incomplete perturbations (simulating EPS deficiencies) in the EoE design will result in 

systematic underestimation of ambiguity. 

It is obvious that deficiencies exist on average in both GCES  and RCR, especially 

early in the forecast when ambiguity is the highest (i.e., when ensemble variance is 

typically low).  The total ambiguity estimates from GCES  and RCR improve with time 

and draw fairly close to the EoE value (generally 10%  and 5%  difference for GCES  

and RCR, respectively) during the timeframe of highest error growth rate between 

0.8   and 3.4  .   

From basic chaos and ensemble forecasting theory, we understand that nonlinear 

error growth limits predictability making the ensemble forecast the best source of forecast 

information in general.  However, considering only the deterministic NWP forecast may 

still be appropriate early in the forecast period while average error is below about 10% of 

the climatological variance  2
C  (i.e., the deterministic realm), which on average occurs 
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between 0.6   and 1.0   for the L96M EPS.  In Figure 59, prior to maximum error 

growth, the frequency of uncertain forecasts is low due to the low ensemble variance 

found in the early forecast period.  Therefore, at early forecast lead times when the GCES  

and RCR ambiguity estimates are performing at their worst, their deficiencies are not 

critical since forecast uncertainty is not prevalent (i.e., ambiguity is not or rarely needed).   

The rate of error growth is dependent on the scale of the forecasted phenomenon, 

where faster error growth is generally observed for smaller scale phenomena.  This scale-

dependency impacts the ambiguity distributions in the same fashion.  The EPS error 

distributions and the ensemble spread statistics are also phenomena-dependent, meaning 

that the ambiguity distributions are also tied to the forecast error growth.  So, regardless 

of the forecast variable, total ambiguity estimates from GCES  and RCR will evolve from 

high to low values but on different variable- or scale-dependent time scales, producing 

reasonably accurate estimates of total ambiguity past the initial deterministic realm.  

Therefore, we conclude that GCES  and RCR ambiguity distributions are likely good 

enough to provide valuable information to the decision process.   

This conclusion should be tempered to apply to situations where the expected 

values of the GCES  or RCR ambiguity distributions are equal to or near the expected 

value of the EoE ambiguity distribution, per our experiment design.  In general, the 

calibrated forecast probability is merely a random sample from the EoE ambiguity 

distribution, thus it may fall anywhere within the distribution.  Since the calibrated 

forecast probability is also the expected value of the GCES  and RCR ambiguity 

distributions, the estimated distributions are often not collocated with the EoE ambiguity 

distribution.  This issue is discussed in detail in the next section. 

In the following sections, we discuss the results of value studies that incorporated 

the CES and/or RCR ambiguity information into the decision making process.  For these 

studies, the question of ambiguity estimate validity becomes a question of whether or not 

the ambiguity information adds value.  For example, even if we show that the difference 

in total ambiguity between RCR and EoE is large for some forecast situation, the RCR 
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ambiguity information may still positively influence the decision making process over the 

long-term and add value, while on a case-by-case basis the results will vary due to 

deficiencies in the estimation process. 

C. VALUE USING UNCERTAINTY-FOLDING 

In this section, we assess improvements to value from the uncertainty-folding 

technique.  Recall that we used two separate event thresholds designed to represent a 

common and a rare event.  Uncertainty folding was performed using ambiguity 

distributions from the EoE, GCES  and RCR estimation techniques to provide ap  values 

for each method.  In addition, a grand ensemble was tested where all constituent members 

for a single EoE forecast case were combined to form a large ensemble giving a single 

forecast probability value ( gp ).  These four decision input sources were compared 

relative to the value provided by basing decisions on the control ensemble forecast 

probability alone.  The control ensemble forecast was taken as the first constituent of 

each EoE forecast case.  Significance of the results in this section was assessed using the 

95% CI for the results produced by resampling.   

To check if the L96M EPS control forecast was behaving well with respect to 

value, we first verified that its forecast probability was outperforming the deterministic 

forecast.  If not, the deterministic forecast would be more appropriate to use in decision 

making, and ambiguity about the forecast probability is irrelevant.  If the control forecast 

probability does add value compared to the deterministic forecast, then our uncertainty-

folding results will show if any additional value can be added by incorporating the 

ambiguity information.  For this comparison, we computed the integrated optimal VS 

[IOVS, Equation (27), page 72] for both common and rare event thresholds for the 

deterministic and control ensemble forecasts, displayed in Figure 63 (a) and (b), 

respectively.  The deterministic forecast was taken as the first member of the first 

constituent in each EoE forecast case.  In both figures, we see that the control ensemble 

forecast provided significantly better value than the deterministic forecast, except at very 

early forecast lead times when the deterministic skill was still high. 
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For both events, the relative IOVS found using the EoE ap  values and the grand 

ensemble’s gp  values was generally greater than one throughout the forecast as shown in 

Figure 64 (a) and (b), indicating that these two sources provided additional value 

compared to the control forecast.  We found the improvement to be significant past 

1.4   for the common event.  For the rare event, the improvement was only significant 

at sporadic lead times.   

At most lead times, the grand ensemble appeared to provide slightly better value 

than the EoE data.  The scores for these two methods started close to one and then 

increased during the time of maximum dispersion.  At the beginning of the forecast, the 

skill associated with the control ensemble forecast was still quite high, thus it was 

difficult for the grand ensemble or EoE to improve on the value attained by the control.  

As the forecast dispersion and error growth ramped up, the skill of the control ensemble 

decreased, and the grand ensemble and EoE were able to provide greater value due to the 

additional information available in each method.   

Each grand ensemble was a collection of 2,100 ensemble members where IC and 

model perturbations were varied within the range of uncertainty.  Thus the grand 

ensemble accounted for deficiencies in the modeling system much more thoroughly than 

a single 21-member ensemble forecast.  The EoE ambiguity distribution was able to 

provide additional value for the same reason, since it incorporated each constituent’s 

simulation of uncertainty in the EPS perturbations.  The grand ensemble appeared to 

marginally outperform the EoE (although not significantly) since information may have 

been lost during the conversion of each EoE constituent to a single ˆTp  value.  Prior to 

computing ˆTp , each constituent ensemble forecast contained information regarding the 

current first-order uncertainty (i.e. spread), as well as higher-order moments of the 

forecast PDF.  This information was lost when a single ˆTp  value was used to estimate the 

event uncertainty, and then combined with the other 99 estimates.  The grand ensemble 

on the other hand retained all information when making its single estimation of the event 

uncertainty. 
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The scores found using uncertainty-folding with the GCES  and RCR ap  values 

were generally not significantly different than one throughout the forecast for both the 

common and rare event, indicating that they performed on par with the control forecast.  

In the validation section, we saw that both techniques did a reasonable job of estimating 

ambiguity.  Their lack of value here can be explained by considering how their ambiguity 

distributions were produced.  Both techniques’ ambiguity distributions were centered on 

the control ensemble forecast’s (i.e., the first constituent from an EoE forecast case) ep  

value.  Based on the uncertainty-folding computation, both the GCES  and RCR ap  

values should remain close to ep .  Thus the value attained using the practical ambiguity 

estimates is unlikely to be significantly different from that of the control ensemble 

forecast. 

Additionally, ep  is a random sample from the EoE ambiguity distribution for a 

certain forecast case, thus it could fall anywhere within the EoE ambiguity distribution.  

We performed validation by artificially locating event thresholds where the expected 

value of the EoE ambiguity distribution was equal to ep , thus collocating the GCES  and 

RCR ambiguity distributions with the EoE ambiguity distribution.  Therefore, validation 

only provided a measure of how well the estimation techniques matched with respect to 

the variance of their respective ambiguity distributions. 

Figure 65 shows a situation where ep  was collocated with the expected value of 

the EoE distribution using a single EoE forecast case at 4  , where the RCR ambiguity 

distribution was shown to provide a reasonably good ambiguity estimate.  The 100 EoE 

constituent ˆTp  values were histogrammed using class interval of 1%.  For clarity in the 

figure, the 10,000 RCR ˆTp  values were fit using a beta distribution.  Although the beta-

fit does not always provide a quality fit to the ˆTp  data, it was sufficient for the 

pedagogical purpose here.  For this forecast case, the total ambiguity of the EoE and RCR 

distributions appeared to match well as was expected (90% CI widths for EoE and RCR 

are 26% and 31%, respectively).  Since the RCR distribution was collocated with the EoE 
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distribution, both estimations gave similar ap  values (78.2% and 78.8%) when used with 

uncertainty-folding.  In Figure 66, we show a different case at the same forecast lead time 

where the RCR ep  value occurred in the upper tail of the EoE ambiguity distribution.  

The total ambiguity of the two distributions was still relatively close (27% and 34%), but 

there is a large difference between the ap  values (19.5% and 36.4%).   

From this analysis, we see that while the practical estimation techniques were 

fairly effective at simulating the variance of the ambiguity distribution, differences 

should typically exist between the EoE and the GCES  and RCR ap  values since ep  is a 

random sample within the EoE ambiguity distribution.  These differences produce errors 

when using the estimates to compute a single decision input combining the first- and 

second-order uncertainty, reducing the value of the decision input in normative decision 

making.  On the other hand, the theoretical and impractical EoE ambiguity estimate was 

able to add significant value to the decision making process, since its ap  value is not tied 

to the control forecast probability.  Additionally, while each of the estimation methods 

produces consistent estimates of the ambiguity, EoE provides a sharper distribution 

eliminating bogus ˆTp  possibilities, resulting in a better ap  value. 

D. VALUE USING SECONDARY CRITERIA 

This section describes our experiments using the ambiguity information to add 

value to the decision making process when considering the secondary criteria of repeat 

false alarms.  Our goal was to use the ambiguity information to significantly reduce the 

number of repeat false alarms while maintaining the primary value (measured by optimal 

VS, as well as POD and POMD) associated with normative decision making within the 

C/L scenario.  To alter the secondary criteria (i.e., reduce repeat false alarms), a user was 

allowed to reverse the current decision of taking protective action if and only if a false 

alarm had just occurred at the same location.  We compared the primary value and 

secondary criteria results for various possible user decision rules (Table 6, page 120) to 

evaluate the effectiveness of each.  The experiment was performed using real-world 
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forecast data as described in Chapter III.F.  We used the 95% CI found through 

resampling to assess the significance of results among user. 

Prior to exploring the secondary criteria, we first evaluated the performance of 

GEFS in relation to the deterministic forecast (member #1).  As described previously, 

forecast error growth was still quite low and barely out of the deterministic realm at 120-

hours (Chapter III.F.4), thus we needed to determine if GEFS was adding value compared 

to the deterministic forecast at this time.  From Figure 67, the deterministic forecast 

provided value for a large range of C/L (10% to 85%), but GEFS added significant value 

over the deterministic forecast, plus, it provided value over a greater range of C/L (1% to 

91%).  Thus it made sense to use the ensemble forecasts since we were at a lead time 

where the ensemble was adding significant value over the deterministic forecast.  We 

were primarily concerned with the value in secondary criteria that could be added to users 

with low C/L since they experience frequent false alarms.  At low C/L, the opportunities 

for false alarms are numerous since there are many forecasts directing the user to protect 

(have low ep  and result in a non-occurrence of the event).  Alternately, high C/L users 

generally see fewer false alarms so may be less concerned with their repeats.   

The number of repeat false alarms found following GEFS with each C/L is shown 

in Figure 68.  As expected, there were a large number of repeat false alarms for the 

extremely low C/L values, because there were many forecasts that required the user to 

protect.  As the C/L increased, fewer false alarm opportunities were available.  The 

fastest rate of decrease in the number of repeat false alarms occurred between the C/L 1% 

and 5%.  From Figure 44(b) (page 114), approximately 40% of all forecast probability 

values from the 50,220 forecasts fell within the 0%-5% bin.  Accordingly, once the C/L 

increased beyond 5%, a large portion of the forecast opportunities would direct the user 

to take not protect, greatly reducing the overall number of false alarm opportunities.  The 

rate of decrease slowed as C/L increased, but the number of repeat false alarms never 

reached zero, even for the highest C/L of 99%.  Since ensemble spread was still relatively 

low at the forecast lead time, many of the control probability forecasts were close to 0% 

and 100% (i.e., forecast res was high).  Approximately 23% of the forecasts fell within 
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the 95%-100% bin, as seen in Figure 44(b).  Thus due to the large number of high 

probability forecasts, there were still false alarm and repeat false alarm opportunities, 

even for the highest C/L values. 

The VS results for the always user (Table 6, page 120) and the control user are 

compared in Figure 69.  Obviously, the number of repeat false alarms for the always user 

was zero at all C/L (i.e., 100% reduction), and the change was significant.  However, 

choosing to always avoid repeat false alarms severely degraded the primary VS, because 

many of the reversals resulted in additional misses (e.g., for C/L 1%, total misses were 

increased from 35 to 1767).  Trading false alarms for misses can severely degrade the VS 

for low C/L users, due to the large change in expense (C L ).  Thus it would take many 

correct reversals (i.e., false alarm to correct rejection) to account for one incorrect 

reversal (i.e., hit to miss) (Table 3, page 32).  Making an incorrect reversal will have a 

much smaller effect on the VS for high C/L users, since C L  and the total expense will 

not be increased greatly.  Therefore, changes to the VS will typically be insignificant for 

high C/L users following the always decision rule, as seen in Figure 69.  

The VS for the always user was significantly reduced compared to the control 

over the C/L range 1% to 70%.  Beyond C/L 70%, the difference in VS was not 

statistically significant, but the change in our other primary value metrics (POD and 

POMD) was significant through C/L 90% (e.g., POD shown in Figure 70).  For C/L 

greater than 90%, there was no significant difference between the control user and the 

always user, but at these C/L, false alarms are typically not a concern (as discussed 

above).  We found that this user provided the most significant reduction in our secondary 

criterion, but also the greatest degradation in primary value.  

Results for the random decision rule are shown in Figure 71 and Figure 72.  This 

uninformed user who based the decision to reverse his protective action on a coin toss 

was also able to significantly reduce repeat false alarms for all C/L.  However, the 

primary value metrics indicated that the random user’s decision strategy was also 

significantly reducing the primary value.  Specifically, the VS was significantly lower 

over the C/L range 1% to 59%, while the performance based on POD and POMD was 

significantly different through C/L 80% (e.g., Figure 73).     
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The percent reduction in repeat false alarms at each C/L was approximately 60% 

(Figure 74), which was greater than our anticipated amount of 50% (i.e., over many cases 

the option to change should occur in approximately half of the opportunities).  This was 

an indication that the decision rule was breaking up series of repeat false alarms.  For 

example, consider a specific grid point that had three false alarms in a row, resulting in 

two repeat false alarms events counted at that point.  If the random user reversed the 

decision for the second false alarm, then both of the repeat false alarm events would be 

eliminated. 

The brash user, who applied a fixed decrease (i.e., 5%) to the control forecast 

probability to mitigate repeat false alarms, was surprisingly able to achieve primary value 

scores similar to those associated with the control user (Figure 75) at all C/L.  

Furthermore, the brash user significantly reduced the number of repeat false alarms for 

two C/L ranges, 1% to 9% and 95% to 99% (Figure 76).  The percent reduction from 

Figure 74 for the lower C/L range decreases from 32% to approximately 11%.  The 

reduction then fluctuated between 5% and 10% for mid-range C/L before dramatically 

increasing once again for C/L above 90%.  The larger reductions for the very low C/L 

values were mainly due to the large proportion of forecasts (~43%) found between 0% 

and 10%, which resulted in more chances to reverse the decision.  For the second range 

of C/L (95% to 99%), the percent reduction was 100% (Figure 74).  Since the brash user 

always decreased the forecast probability by 5% for repeat false alarm opportunities, 

there were no repeat false alarms for C/L > 95% (i.e., forecast probabilities greater than 

95% were always reduced to 95% or less), which mimicked the always decision rule. 

If we increased the brash user’s arbitrary percent decrease to forecast probability, 

we would see wider ranges of significantly higher percent reduction at both C/L extremes 

due to the same effects described above.  However, the brash user’s primary value would 

be significantly reduced for the extreme low C/L if the arbitrary reduction is too large.  In 

other words, increasing the brash user’s percent decrease takes him closer to behaving 

like the always user, who clearly failed to maintain primary value.     
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We now turn to the decision rules where the estimated LCES  ambiguity 

distribution was employed to reduce to the number of repeat false alarms.  The decision 

to reverse the protective action for repeat false alarm opportunities used a variable 

overlap threshold (function of C/L).  If the overlap exceeded the threshold, the decision 

was reversed and no protective action was taken.  The results for the conceptual model 

user (Figure 77 and Figure 78) reveal a significant decrease in the secondary criteria at all 

C/L, but an inability to maintain all the primary value.  The VS was significantly lower 

from the control’s VS only for C/L 1% to 4%, but the POD and POMD indicated a 

significant difference through C/L 12% (Figure 79). 

Recall that the optimal overlap threshold was designed to find overlap threshold 

values that reduced repeat false alarms while maintaining the primary value metrics 

(Figure 80 and Figure 81).  The optimal user was able to match the control user for the 

VS, POD and POMD metrics for all C/L, while also realizing an impressive improvement 

in secondary criteria.   

The percent reduction in repeat false alarms (Figure 74) for the conceptual model 

and the optimal user indicated that both decision strategies improved as C/L increased 

(i.e., percent reduction increased).  As C/L increased, the number of repeat false alarm 

opportunities decreased, thus any reversal comprised a larger proportion of the available 

opportunities.  The conceptual model had significantly fewer repeat false alarms through 

C/L 12%, but since this decision rule degraded primary value over the same C/L, it was 

not superior over this range of users.  The conceptual model employed relatively small 

overlap thresholds (Figure 41, page 112) compared to the optimal user (Figure 46, page 

116) for the low C/L values (e.g., for C/L 1%, 0.5% versus 31.5%, respectively).  Given 

the large number of false alarm opportunities for the low C/L, the conceptual model 

resulted in many more cases where the decision to protect was reversed, which lead to an 

increase in expensive misses.     

Beyond C/L 12%, there was no significant difference in the percent reduction of 

repeat false alarms between the conceptual model and optimal users.  Although the 

difference was insignificant, there was a crossover point (C/L 57% ) where the expected 
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value in percent reduction for the optimal user began performing better than the 

conceptual model’s expected value (i.e., fewer repeat false alarms for the optimal user on 

average).  Since the conceptual model overlap threshold increased with increasing C/L, it 

allowed fewer decision reversals than the decreasing optimal overlap threshold.  

As described in Chapter IV.C, the LCES  ambiguity estimate used during this 

experiment unavoidably suffered from errors in the location of the ambiguity distribution 

as a result of being centered on the control forecast probability.  While the LCES  

distribution likely provided a robust estimate of the variance of the ambiguity 

distribution, the range of possible forecast probability values may be shifted (compared to 

the ambiguity distribution from EoE).  The shift in the LCES  ambiguity distribution was 

random since the control forecast probability is a random sample from the EoE ambiguity 

distribution.  Thus there are random errors in the amount of overlap in cases where the 

decision is unclear, resulting in sub-optimal application of the ambiguity information.  

However, even with this deficiency, LCES  clearly added value to the secondary criteria. 

The results attained during this study clearly show the value of employing an 

estimate of the ambiguity associated with the ensemble forecast.  The decision rules 

explored above provided evidence that mere random or arbitrary reversals of the decision 

for repeat false alarm opportunities were inferior to reversals made by intelligently 

applying the ambiguity estimate (even if the estimate was flawed) only when the decision 

was unclear.  Moreover, we were able to train our decision process based on past 

performance to optimally select an overlap threshold at each C/L to maintain primary 

value while significantly adding value to our secondary criteria. 
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Figure 48. Evolution of L96M EPS error variance for (a) mean error of ensemble mean and 
(b) fractional error in ensemble spread.  The error variances are shown following 

calibration to remove systematic error. 

 

 

Figure 49. Average total ambiguity of the EoE ambiguity distributions for test forecast 
probability values 5% (o), 50% (*) and 95% (x). 
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Figure 50. Arrangement of EoE constituents at a (a) high and (b) low ambiguity timeframe.  
The PDFs for 100 constituents in a single EoE forecast case are displayed using a 

normal fit (solid lines) for (a) 0.2    and (b) 4.8   time units.  An arbitrary 
event threshold (dashed line) is also shown for analysis of forecast probability 
values for each constituent.  Note that in (b) a different event threshold is used, 

and abscissa and ordinate scaling has changed. 
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Figure 51. Example of forecast probability sensitivity to PDF spread and shifts in PDF 
location for low spread (thick solid) and high spread (dot-dash) PDF.  In (a), both 

PDFs are located at 0.75, and the probability of preceding the event threshold 
(thin solid) is 15.9% and 35.4% for the low and high spread PDFs, respectively.  

In (b), each PDF is shifted to -0.25 while holding spread constant, giving 
probability values of 63.1% and 55% for the low and high spread PDFs, 

respectively.  Probability for the low spread PDF changed by 47.2%, while the 
change was 19.6% for the high spread PDF. 

 

Figure 52. Comparison of average variance between EoE constituent ensemble forecast 
mean values (▲) and average variance of EoE constituent ensemble forecasts (■) 

with increasing lead time.  The comparison was made using 100 EoE forecast 
cases each containing 100 constituent ensemble forecasts. 
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Figure 53. Comparing the average evolution of EoE constituent relationships to the typical 
EoE ambiguity evolution using (a) same as Figure 52, (b) the ratio of average 
variance in location of EoE constituent ensemble forecasts’ means to average 

constituent variance and (c) same as Figure 49. 
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Figure 54. Comparing the evolution of average L96M ensemble forecast statistics to the 
typical EoE ambiguity evolution using (a) the variance of mean error in the 

ensemble mean (▲) and average ensemble forecast variance (■) computed from 
24,000 L96M forecast cases, (b) the ratio of the variance of the mean error in the 

ensemble mean to the average ensemble variance in location and (c) same as 
Figure 49. 
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Figure 55. Ratio of average variance of EoE constituent ensemble forecast means to the 
variance of the mean error in the ensemble forecast mean.  The average variance 

in constituent means is computed using 100 EoE forecast cases each with 100 
constituent forecasts.  The mean error is computed using 24,000 L96M EPS 

forecast cases, where the variance in mean error is found by computing the mean 
error over 3,000 subsets of eight forecasts each and taking the variance. 
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Figure 56. Validation of GCES  (o) and RCR (*) total ambiguity across all forecast lead times 

for the specific ep  test values (shown in Figure 37, page 108), which are labeled 

at the top of each panel. 
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(Figure 56 continued.) 
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(Figure 56 continued.) 
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(Figure 56 continued.) 
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(Figure 56 continued.) 

 

 

 

 
 

Figure 57. Validation of GCES  (o) and RCR (*) total ambiguity at select calibrated forecast 

probability values ( ep ) (shown in Figure 37, page 108) for forecast lead times 

0.2-5.0 at an increment of 0.2.  Lead times ( ) are labeled at the top of each 
panel. 
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(Figure 57 continued.) 
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(Figure 57 continued.) 
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(Figure 57 continued.) 
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(Figure 57 continued.) 
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(Figure 57 continued.) 
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(Figure 57 continued.) 
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(Figure 57 continued.) 
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(Figure 57 continued.) 

 

 



 164

 
 

Figure 58. Total ambiguity evolution for EoE (+), CES (o), and RCR (*) for ambiguity 
distributions with expected value of 50%. 

 

 
 

Figure 59. Frequency of uncertain ensemble forecasts (i.e., control ensemble forecasts with  

ep  between 0.1% and 99.9%) for (a) the common event of 6.31X   and (b) the 

rare event of 9.98X  .  The ensemble forecast for each variable from the first 
constituent of each EoE forecast case was utilized as a control ensemble forecast 

for a total of 800 forecasts. 
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Figure 60. Ambiguity distributions for EoE (solid) and GCES  (dashed) with expected value 

equal to 50% for a single EoE forecast case at 5   time units for a single kX  

variable.  The distributions are approximated using a beta-fit to the estimated 
forecast probability values for each technique.  The upper (UB) and low (LB) 

bounds of each technique’s 90% CI (i.e., total ambiguity) are labeled. 

 

Figure 61. Ambiguity distributions for EoE (solid) and GCES  (dashed) with expected value 

equal to 5%.  Same as Figure 60. 
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Figure 62. Comparison of validation of GCES  without correction (o) and with correction (x) 

applied to the variance of the eME  distribution.  The correction is based on the 

ratio of variance in EoE constituents’ location to variance in eME  (Figure 55). 

 

Figure 63. Integrated optimal value score [IOVS, Equation (27), page 72] for the calibrated 
control ensemble forecast (solid) and the deterministic forecast (dashed) for (a) 

the common event and (b) the rare event.  
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Figure 64. Relative integrated optimal value score [IOVS, Equation (27), page 72] using 
uncertainty-folding with EoE (dashed), GCES  (dotted) and RCR (dot-dashed) for 

(a) the common event and (b) the rare event.  The score for the grand ensemble 
(solid) is also shown in both panels.  Error bars represent the 95% CI found using 

resampling.  Note the ordinate scale change between (a) and (b). 
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Figure 65. Control forecast probability well located with respect to the expected value of the 
EoE ambiguity distribution (80%).  A histogram of ˆTp  values for a single EoE 

forecast case (100 constituents) is shown with a Beta-fit curve for the RCR 
ambiguity distribution (solid line) created using the first constituent in the EoE 

forecast case as the control forecast.  The control forecast probability ( 80%ep  ) 

is marked by the dashed line. 

 

 

Figure 66. Control forecast probability poorly located with respect to the expected value of 
EoE ambiguity distribution.  Same as Figure 65 with the expected value of the 

EoE ambiguity distribution at 20% and 40%ep  . 
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Figure 67. Optimal VS comparison for the GFS deterministic forecast (*) versus the GEFS 
forecast (o) using the application dataset of 50,220 forecast-observation pairs. 

 

Figure 68. Number of repeat false alarms for the control user at each C/L based on the 
application dataset of 50,220 forecast-observation pairs. 
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Figure 69. Optimal VS comparison for the control user (solid) versus the always user 
(dashed) based on the application dataset of 50,220 forecast-observation pairs. 

 

Figure 70. POD comparison for the control user (solid) and the always user (dashed) based 
on the application dataset of 50,220 forecast-observation pairs.  The difference 

between the users becomes insignificant beyond C/L 90% (inset). 
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Figure 71. Optimal VS comparison for the control user (solid) versus the random user 
(dashed) based on the application dataset of 50,220 forecast-observation pairs. 

 

Figure 72. Repeat false alarm comparison for the control user (solid) versus the random user 
(dashed) based on the application dataset of 50,220 forecast-observation pairs. 
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Figure 73. POD comparison for the control user (solid) and the random user (dashed) based 
on the application dataset of 50,220 forecast-observation pairs.  The difference 

between the users becomes insignificant beyond C/L 80% (inset). 
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Figure 74. Percent reduction in repeat false alarms from the control user using alternate 
decision rules in Table 6.  Shown are the percent reduction for the optimal (solid), 

conceptual model (dashed), random (dot-dashed) and brash (dotted) users.  The 
always user provided 100% reduction at all C/L and is not displayed.  Results are 

based on the application dataset of 50,220 forecast-observation pairs 
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Figure 75. Optimal VS comparison for the control user (solid) versus the brash user (dashed) 
based on the application dataset of 50,220 forecast-observation pairs. 

 

 

Figure 76. Repeat false alarm comparison for the control user (solid) versus the brash user 
(dashed) based on the application dataset of 50,220 forecast-observation pairs. 
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Figure 77. Optimal VS comparison for the control user (solid) versus the conceptual model 
user (dashed) based on the application dataset of 50,220 forecast-observation 

pairs. 

 

Figure 78. Repeat false alarm comparison for the control user (solid) versus the conceptual 
model user (dashed) based on the application dataset of 50,220 forecast-

observation pairs. 
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Figure 79. POD comparison for the control user (solid) and the conceptual model user 
(dashed) based on the application dataset of 50,220 forecast-observation pairs.  
The inset indicates that the difference between the users becomes insignificant 

beyond C/L 12%. 

 

Figure 80. Optimal VS comparison for the control user (solid) versus the optimal user 
(dashed) based on the application dataset of 50,220 forecast-observation pairs. 
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Figure 81. Repeat false alarm comparison for the control user (solid) versus the optimal user 
(dashed) based on the application dataset of 50,220 forecast-observation pairs. 
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V. CONCLUSIONS 

A.  SUMMARY 

The primary tool for weather forecasters today is the NWP model, which provides 

a detailed forecast that unfortunately contains significant uncertainty (i.e., random error) 

due to analysis and model errors.  An ensemble prediction system (EPS) generates a 

flow-dependent estimate of that uncertainty to provide information critical to optimal 

decision making.  An ideal EPS will account for all sources of uncertainty associated 

with a particular deterministic modeling system.  Today’s EPSs use a finite number of 

ensemble members and inadequate representation of the uncertainty associated with the 

initial conditions and model design.  These deficiencies result in errors in the ensemble 

forecast PDF, thus measures of forecast uncertainty will be incorrect, including forecast 

probability specific to an event criterion.  Thus, there is uncertainty in the estimation of 

forecast uncertainty, a phenomenon termed ambiguity, which can negatively impact the 

ability to optimize decisions.  Ambiguity is the uncertainty surrounding the forecast 

probability, which can be described by a distribution of forecast probability values, 

referred to as an ambiguity distribution (NRC 2006; Eckel and Allen 2009).   

Ensemble forecasts can have high value in the decision making process.  

Numerous studies have shown the value of using probabilistic decision inputs over using 

deterministic or climatological information in the cost-loss (C/L) decision framework 

(e.g., Katz and Murphy 1997; Richardson 2000; Palmer 2002; Zhu et al. 2002).  

However, the possible additional value of using information about ambiguity has not 

been considered.  In situations where the decision input is unclear, (due to ambiguity), an 

objective estimate of the ambiguity may be valuable to the user.   

The three objectives of this research were to: (1) understand the mechanisms 

behind the evolution of ambiguity associated with an ensemble forecast, (2) validate 

objective estimates of ambiguity associated with an EPS, and (3) explore methods of 

applying the ambiguity information to add value in decision making.  All three objectives 

were accomplished using an EPS based on a low-order, chaotic dynamical system, where 
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our aim was to follow state-of-the-art practices in designing the low-order EPS so 

findings would reflect the performance of real-world, operational EPSs.  Additionally, 

real-world EPS data was used for exploring value in objective #3. 

To explore the research objectives, we used the low-order, chaotic dynamical 

system first introduced by Lorenz (1996) as a suitable proxy for the atmosphere.  The 

system (L96) describes the evolution of variables on two distinct scales (Lorenz 1996; 

Wilks 2005).  The small-scale variables are unresolved and thus parameterized in a model 

of the system (L96M) using a stochastic parameterization, providing a model with 

random error.  Data assimilation for the control analysis was accomplished using a 

perturbed-observation Ensemble Kalman Filter (EnKF) scheme.  The L96M EPS used 

random draws from the EnKF members as its suite of initial conditions (IC).  Model 

deficiencies were simulated in the EPS using the perturbed parameter approach applied 

through the stochastic parameterization, which randomly varied the parameter value for 

each member at every time step.  For verification, ground truth was the solution from the 

complete L96 system. 

Ambiguity was estimated using three different techniques.  The first technique, 

ensemble-of-ensemble (EoE), consisted of running multiple, parallel EPSs (constituents) 

for the same forecast case.  The IC and model perturbations were varied within each 

constituent’s EPS, resulting in a spectrum of equally plausible ensemble forecast PDFs 

and a forecast probability PDF (i.e., ambiguity distribution) for any particular event at a 

given lead time.  The EoE dynamically captures the EPS limitations (i.e., limited 

sampling and inadequate simulation of uncertainty), reflecting the EPS output’s 

sensitivity to the flow-dependent deficiencies in the perturbations associated with 

different regions in the model attractor.  Since EoE is an impractical approach to 

estimating ambiguity, we also used two practical ambiguity estimation techniques, 

calibrated error sampling (CES) and randomly calibrated resampling (RCR).  These 

techniques created ambiguity estimates using the long-term, average error characteristics 

of the first two moments in the ensemble PDF, mean error of the ensemble mean ( eME ) 

and fractional error in ensemble spread (  ), as proxies for the relationships among EoE 

constituent PDFs.   
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The CES method took two forms, GCES  (global) and LCES  (local).  GCES  used 

50,000 sets of random draws from the long-term, average distributions for eME ,    and 

ensemble spread to create a distribution composed from 50,000 possible values of true 

forecast probability for any value of calibrated forecast probability.  GCES  produced a 

bulk (generic) ambiguity estimate, independent of ensemble spread, that could come from 

any event since the EPS characteristics are taken as the same across the entire attractor.  

LCES  provided a somewhat flow-dependent ambiguity estimate by following similar 

processing as GCES  but for specific values of ensemble spread.  Thus the LCES  

ambiguity estimate for a certain calibrated forecast probability value is different for 

different values of ensemble spread.  (Note: LCES  was actually developed in response to 

the evolution and validation discoveries in this research so was omitted from validation 

but applied in the value studies). 

RCR produces a somewhat flow-dependent ambiguity estimate using bootstrap 

resampling of the ensemble members.  A distribution of 10,000 possible values of 

forecast probability is produced by generating 10,000 different versions of the members 

at each forecast point by resampling with replacement.  This process accounts for limited 

sampling of the true forecast PDF due to the finite number of members in the EPS, and 

the ambiguity estimate is dependent on the number of members (i.e., fewer members give 

higher ambiguity).  For RCR, each set of resampled members is calibrated using random 

coefficients drawn from the distributions for mean and fractional error of the ensemble 

PDF, which removes systematic error and brings in solutions missed by the original 

members due to EPS deficiencies.  The RCR ambiguity distribution is generally wider 

than would be found using resampling alone. 

The evolution of ambiguity was explored using the EoE, as it produces our best 

estimate of ambiguity.  Ambiguity was found to be highest early in the forecast period 

and then decrease quickly during peak forecast error growth.  We found the primary 

influences on ambiguity magnitude to be the variability in location of the constituents’ 

PDFs and the uncertainty (i.e., ensemble spread) of the constituents’ PDFs.  When the 

ratio of variance in constituents’ locations to ensemble variance is large (typically early 
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in the forecast), large differences in forecast probability may be seen (i.e., high 

ambiguity) since changes in probability density relative to an event threshold are more 

sensitive to location changes when spread is low (Figure 51, page 147).  Later in the 

forecast, the disproportionately larger increase in ensemble variance (due to error growth) 

compared to the separation between constituents’ PDFs results in a narrower range of 

forecast probabilities (i.e., low ambiguity), as probability density shifts amongst the 

constituents are similar.  Since ensemble variance plays a significant role in the 

production of ambiguity, our results suggest that ambiguity generally evolves from high 

to low values as a result of the typical increase in ensemble spread with forecast lead 

time.  Of course, it is possible on a case-by-case basis for an ensemble forecast to exhibit 

small spread at any lead time resulting in large ambiguity.  However, the general 

conclusion is that ambiguity is a function of both ensemble spread and the sensitivity of 

forecast probability estimates to errors in PDF location.  The irony of this finding is that 

sharper ensemble PDFs are generally considered to reflect better performance, but 

ambiguity can be greatly increased by the sensitivity to errors in location with sharper 

forecasts. 

Validation was performed using aggregated GCES  and RCR ambiguity 

distributions built over many locations on the L96M attractor to determine the overall 

effectiveness of the estimates in comparison to EoE.  However, we could not validate the 

estimation methods’ ability to consistently capture the location of the EoE ambiguity 

distribution since a random error in location generally exists between EoE and the GCES  

and RCR distributions.  Validation showed how well GCES  and RCR captured the 

variance of the EoE ambiguity distribution.  Comparisons made using the total ambiguity 

[Equation (26), page 61] of each method’s aggregated ambiguity distributions indicated 

the following trends: 

 The ambiguity distributions from the practical estimation techniques 

appeared to perform very poorly at early forecast lead times with total ambiguity 

differences near 30%, but each showed improvement with time; 
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 The largest differences in total ambiguity appear to have occurred with 

mid-range forecast probability values; 

 The GCES  total ambiguity was too narrow in relation to the aggregated 

EoE ambiguity distributions regardless of forecast lead time or forecast 

probability value tested; 

 The RCR total ambiguity was too narrow during the early forecast lead 

times, but then transitioned to become slightly too wide later in the forecast for 

most of the forecast probability values tested. 

The apparent disparity in performance of the GCES  and RCR estimates at mid-

range and extreme forecast probability values is simply a result of the lower and upper 

bounds (i.e., 0% and 100%, respectively) confining the range of possible forecast 

probability values.  In general, we expect to see tighter ambiguity distributions for the 

extreme forecast probability values, thus total ambiguity is naturally smaller.  

Additionally, as the expected value of the ambiguity distribution approaches either 

extreme, the total ambiguity difference between the EoE and the CES or RCR estimates 

used for validation becomes more one-sided reducing the difference.  For example, when 

the expected value approaches 0%, the lower bounds of each estimation method’s 

ambiguity distributions become more similar, thus differences in total ambiguity are 

found primarily in the upper bounds.  

We found a leading factor in the under-spread GCES  ambiguity distributions was 

the absence of flow-dependent ensemble spread.  The typical ensemble variance used 

when estimating the forecast probability values was near the long-term average, which in 

many cases would likely be too high compared to the flow-dependent variance, 

producing a more narrow ambiguity distribution.  Additionally, the variance of the eME  

error distribution used to create the GCES  ambiguity distributions was inadequate, 

particularly at the early forecast lead times, thus the GCES  sample forecast PDFs were 

not sufficiently separated to produce a wide enough ambiguity distribution.  Therefore, 

GCES  often underestimates the total ambiguity.   
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Similar to GCES , the RCR ambiguity distributions were highly under-spread 

likely due to the low variance of the eME  error distribution.  Even though RCR considers 

the flow-dependent ensemble spread, the RCR PDFs could not adequately separate to 

generate the ambiguity levels provided by EoE.  RCR total ambiguity recovered later in 

the forecast due to the improvement in variance of the eME  error distribution as well as 

its application of flow-dependent ensemble spread.  The random calibration was likely 

the cause for slightly excessive ambiguity estimates later in the forecast. 

In general, ambiguity found using GCES  and RCR evolved similarly to that of 

EoE (i.e., from high to low values), but the magnitude of the ambiguity early in the 

forecast was notably lower compared to EoE.  We concluded that the variance in eME  

(as used by GCES  and RCR) underestimated the variation in possible ensemble forecast 

PDF locations found using the EoE (i.e., the constituents’ PDFs), thus limiting the 

variance of the ambiguity distributions, especially early in the forecast.  However, we 

found the practical ambiguity distributions to be reasonably accurate estimates of the total 

ambiguity once error growth exceeded approximately 10% of the climatological variance.  

In cases where error growth is below 10%, ambiguity generally increases as the ensemble 

forecast PDF gets sharper, but for sharper PDFs, ambiguity is less often a factor since any 

given event is more certain (i.e., forecast probability closer to 0% or 100%).  Therefore, 

we conclude that the GCES  and RCR ambiguity distributions are likely good enough to 

provide valuable information to the decision process. 

This research introduced two approaches for attempting to add value to the 

decision making process using objective ambiguity estimates.  The first approach, 

uncertainty-folding, combines the first- and second-order uncertainty information to once 

again give the user a single probabilistic decision input based on the weather information.  

We performed uncertainty-folding using ambiguity distributions from the EoE, GCES  

and RCR estimation techniques.  We also tested a grand ensemble where all constituent 

members for a single EoE forecast case were combined to produce a single forecast 

probability value.  These four decision input sources were compared in relation to the 
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value provided by basing decisions on the control ensemble forecast probability alone.  

Results for two event thresholds (representing a common and a rare event) were 

examined.   

For both events, the integrated optimal value score (VS) found using the EoE and 

the grand ensemble showed improvement over the control ensemble forecast, but results 

were only significant for the common event at lead times beyond maximum error growth.  

The grand ensemble and EoE generally performed the same, indicating that resources 

may be better spent reducing ambiguity by running a larger EPS than estimating 

ambiguity with an impractical approach like EoE.  The scores found using uncertainty-

folding with the GCES  and RCR were generally not significantly different from the 

control ensemble.  Since the GCES  and RCR ambiguity distributions are centered on the 

control forecast probability, the probability value computed using uncertainty-folding 

will not vary greatly from the control value, which prevented significant improvement in 

value.  Additionally, random error in the location of the practical techniques ambiguity 

distributions produced errors when combining the first- and second-order uncertainty, 

likely reducing the value of the decision input in normative decision making.  Thus 

uncertainty-folding may not be a useful approach to garner value from ambiguity since it 

only works well for EoE, the impractical method of ambiguity estimation. 

For the second method used to attain value using the ambiguity information, we 

looked at improving secondary criteria important to the decision-maker beyond the 

primary value (tied to minimizing total expense).  The example secondary criteria 

considered was repeat false alarms, so the objective was to use the ambiguity information 

to significantly reduce the number of repeat false alarms while maintaining the primary 

value (measured by optimal VS, as well as probability of detection and probability of 

missed detection) associated with normative decision making within the C/L scenario.  

Several user decision rules were studied using real-world ensemble forecast data from 

National Center for Environmental Prediction’s Global Ensemble Forecast System, where 

the different users were allowed to reverse the current decision of taking protective action 

if and only if a false alarm had just occurred at the same location and their decision 

criteria was met. 
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Of all the decision rules studied, the two that considered ambiguity (via an 

overlap threshold) when reversing decisions outperformed the others at significantly 

reducing repeat false alarms while maintaining the primary value.  The overlap is the 

proportion of the ambiguity distribution indicating a different decision than the normative 

input; thus the overlap threshold represents the value of overlap at which the user 

reverses decisions.  We saw the best overall performance by the user who followed the 

optimal overlap threshold.  Developed from a training dataset, the optimal overlap 

threshold for each C/L was the lowest threshold giving the greatest reduction in repeat 

false alarms that resulted in no significant reduction in primary value.  Although the 

conceptual model had significantly fewer repeat false alarms than the optimal user for 

low C/L, the optimal user faired better in regards to primary value than the conceptual 

model since it prevented excessive reversals, thus avoiding a large increase in misses 

(i.e., expense).  For mid-range and high C/L, there was no significant difference between 

the optimal and conceptual model users. 

The results clearly show that we can attain tremendous improvements to 

secondary criteria by employing an objective ambiguity estimate in decision making.  

Moreover, we were able to train our decision process based on past performance to 

optimally select an overlap threshold at each C/L.  Using the flow-dependent LCES  

estimates for this study (instead of GCES  which inherently underestimated ambiguity), 

likely played a large role in attaining significant value for the secondary criteria. 

B.  FUTURE RESEARCH 

The results presented in this research suggest several areas of future research, the 

first of which is to perform a validation study using the LCES  estimation method.  The 

refinements made to include flow-dependence are likely to improve ambiguity estimation 

for LCES  compared to GCES , especially at later forecast lead times when the low eME  

variance played less of a role in degrading the estimates.  However, the inclusion of flow-

dependent ensemble spread at early times may allow LCES  to produce a wider range of 
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forecast probabilities, thus improving its estimates compared to EoE.  Like RCR, LCES  

validation will require aggregates of ambiguity estimates specific to EoE forecast cases.   

The next subject for research is continued investigation of the method used to 

determine the variance of the error distributions, i.e., sub-setting of the long-term 

verification dataset.  The variance of the error distributions is obviously dependent on the 

size of the subset, and properly determining subset size is non-trivial.  For this research, 

sub-setting was based on complete EPS runs to capture flow-dependent error 

characteristics, which appears to be inadequate.   

A related area of future research involves the implications of the spread-skill 

relationship in LCES .  LCES  ambiguity estimates found using the domain averaged eME  

variance in this research ignored the spread-skill relationship, but obtained reasonable 

and ultimately valuable estimates.  However, for a well-calibrated EPS, the correlation 

between ensemble spread and ensemble mean error variance is nearly perfect (as seen in 

a binned spread-skill plot), so LCES  should perhaps use that information in estimating 

ambiguity.  In that case, ambiguity would be similar regardless of the ensemble spread 

value since the variability in location error is proportional.  Additionally, ambiguity 

would be much larger and overestimated in most cases given such a large ratio in the 

variances.  Research is thus needed to resolve this contradiction. 

Further research should be conducted using the correction to eME  variance 

provided by the ratio in Figure 55 (page 150) (i.e., comparison of variance in constituent 

location to eME  variance) with the LCES  method.  Greater improvements are expected 

than those seen with GCES  in Figure 62 (page 166), due to the flow-dependence of 

LCES .  If corrections to the total ambiguity are nearly perfect at all lead times, further 

investigations may be performed using a different low-order model to determine if a 

general relationship (i.e., correction) exists between eME  variance and constituent 

location variance that may be used for higher order models. 

Several subjects for future research involve utilization of the ambiguity 

information in decision making.  While using the practical methods with uncertainty-



 188

folding may not have provided significant improvements in value using the optimal 

integrated VS (a combination of all users), it may be beneficial to perform a more 

thorough evaluation.  Uncertainty-folding should be used with LCES  and RCR ambiguity 

estimates for events at specific lead times, thus allowing analysis of the results for 

specific users (i.e., C/L) instead of integrating all users into the optimal integrated VS.  

Future uncertainty-folding studies should also include real-world EPS data. 

We investigated just one of many possible secondary criteria, but future research 

in this area of value is nearly unlimited.  Studying different secondary criteria entails 

developing methods to measure primary and secondary value, as well as determining 

methods for optimization of the decision process.  The value of some secondary criteria 

may be hard to assess.  For example, mission effectiveness (primary value) may be 

evaluated through battle damage assessment, but the intangible benefits such as improved 

morale (secondary value) that come with a successful mission are hard to quantify.  In 

this case, the user may choose an alternate strike location with a greater chance of success 

to hopefully improve morale.  Additionally, we looked at a single secondary criterion in 

isolation, but it may be equally important to the customer to consider multiple criteria 

(e.g., repeat false alarms and repeat misses). 
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APPENDIX: FIGURE SEQUENCE DISPLAYING THE TIME 
EVOLUTION OF AMBIGUITY 

This appendix includes figures referenced in Chapter IV.A showing the evolution 

of ambiguity with increasing forecast lead time for a single EoE forecast case of 100 

constituents using an arbitrary kX  variable.  The ambiguity distributions were 

determined for each forecast lead time using an X-value event threshold that resulted in 

 ˆ 50%TE p  , thus the event threshold was different for each forecast lead time.  The 

histograms of constituent forecast probability values were created using a class interval of 

1% over the range 0%-100%.  Constituent PDFs were generated using a normal fit to the 

n ensemble members in each constituent ensemble forecast.  Note that the abscissa range 

is fixed for all figures in both (a) and (b), while the ordinate range may vary based on the 

data. 

 

 

Figure 82.  EoE ambiguity evolution showing (a) the histogram of constituent forecast 
probability values and (b) the constituent PDFs used to find each forecast 

probability for forecast lead times 0.2 to 5 at 0.2 increment (labeled at the top of 
each panel).  The total ambiguity for this panel equals 85% (7% to 92%). 
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(Figure 82 continued.)  The total ambiguity for this panel equals 75% (12% to 87%). 

 

 

 
(Figure 82 continued.)  The total ambiguity for this panel equals 74% (13% to 87%). 

 



 191

 
(Figure 82 continued.)  The total ambiguity for this panel equals 49% (25% to 74%). 

 

 

 
(Figure 82 continued.)  The total ambiguity for this panel equals 58% (21% to 79%). 
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(Figure 82 continued.)  The total ambiguity for this panel equals 41% (29% to 70%). 

 

 

 
(Figure 82 continued.)  The total ambiguity for this panel equals 48% (26% to 74%). 
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(Figure 82 continued.)  The total ambiguity for this panel equals 40% (30% to 70%). 

 

 

 
(Figure 82 continued.)  The total ambiguity for this panel equals 40% (30% to 70%). 
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(Figure 82 continued.)  The total ambiguity for this panel equals 42% (29% to 71%). 

 

 

 
(Figure 82 continued.)  The total ambiguity for this panel equals 34% (33% to 67%). 
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(Figure 82 continued.)  The total ambiguity for this panel equals 31% (35% to 66%). 

 

 

 
(Figure 82 continued.)  The total ambiguity for this panel equals 32% (34% to 66%). 
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(Figure 82 continued.)  The total ambiguity for this panel equals 38% (31% to 69%). 

 

 

 
(Figure 82 continued.)  The total ambiguity for this panel equals 32% (34% to 66%). 
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(Figure 82 continued.)  The total ambiguity for this panel equals 32% (34% to 66%). 

 

 

 
(Figure 82 continued.)  The total ambiguity for this panel equals 30% (35% to 65%). 
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(Figure 82 continued.)  The total ambiguity for this panel equals 28% (36% to 64%). 

 

 

 
(Figure 82 continued.)  The total ambiguity for this panel equals 32% (34% to 66%). 
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(Figure 82 continued.)  The total ambiguity for this panel equals 32% (34% to 66%). 

 

 

 
(Figure 82 continued.)  The total ambiguity for this panel equals 34% (33% to 67%). 
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(Figure 82 continued.)  The total ambiguity for this panel equals 30% (35% to 65%). 

 

 

 
(Figure 82 continued.)  The total ambiguity for this panel equals 30% (35% to 65%). 

 



 201

 
(Figure 82 continued.)  The total ambiguity for this panel equals 34% (33% to 67%). 

 

 

 
(Figure 82 continued.)  The total ambiguity for this panel equals 32% (34% to 66%). 
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